
Fully Automated Differential Fault Analysis on
Software Implementations of Block Ciphers

Xiaolu Hou1, Jakub Breier2, Fuyuan Zhang2 and Yang Liu2

1 Acronis, Singapore
2 School of Computer Science and Engineeering, Nanyang Technological University, Singapore
ho0001lu@e.ntu.edu.sg,jbreier@jbreier.com,fuyuanzhang@163.com,yangliu@ntu.edu.sg

Abstract. Differential Fault Analysis (DFA) is considered as the most popular fault
analysis method. While there are techniques that provide a fault analysis automation
on the cipher level to some degree, it can be shown that when it comes to software
implementations, there are new vulnerabilities, which cannot be found by observing
the cipher design specification.
This work bridges the gap by providing a fully automated way to carry out DFA on
assembly implementations of symmetric block ciphers. We use a customized data
flow graph to represent the program and develop a novel fault analysis methodology
to capture the program behavior under faults. We establish an effective description
of DFA as constraints that are passed to an SMT solver. We create a tool that takes
assembly code as input, analyzes the dependencies among instructions, automatically
attacks vulnerable instructions using SMT solver and outputs the attack details that
recover the last round key (and possibly the earlier keys). We support our design
with evaluations on lightweight ciphers SIMON, SPECK, and PRIDE, and a current
NIST standard, AES. By automated assembly analysis, we were able to find new
efficient DFA attacks on SPECK and PRIDE, exploiting implementation specific
vulnerabilities, and previously published DFA on SIMON and AES. Moreover, we
present a novel DFA on multiplication operation that has never been shown for
symmetric block ciphers before. Our experimental evaluation also shows reasonable
execution times that are scalable to current cipher designs and can easily outclass
the manual analysis. Moreover, we present a method to check the countermeasure-
protected implementations in a way that helps implementers to decide how many
rounds should be protected.
We note that this is the first work that automatically carries out DFA on cipher
implementations without any plaintext or ciphertext information and therefore, can
be generally applied to any input data to the cipher.
Keywords: differential fault analysis, fault attacks, automation, assembly

1 Introduction
Lightweight cryptography is one of the areas that became crucial with the emergence of
Internet of Things. There are numerous algorithms providing sufficient security properties,
while keeping the footprint minimal [BP17]. Some of them work better in hardware, such
as SIMON [BTCS+15] and SKINNY [BJK+16], while others aim at software, such as
SPECK [BTCS+15] and ChaCha [Ber08]. However, accessibility of IoT devices and lack
of expensive tamper-protection makes them an ideal target for physical attacks, such as
Side-Channel Analysis (SCA) and Fault Analysis (FA). These implementation attacks can
easily bypass the theoretical security provided on the cipher level. In case of SCA [KJJ99],
this is done by observing physical characteristics of a device (electromagnetic emanation,

mailto:ho0001lu@e.ntu.edu.sg, jbreier@jbreier.com, fuyuanzhang@163.com, yangliu@ntu.edu.sg

2 Fully Automated DFA on Software Implementations of Block Ciphers

Figure 1: Overview of TADA.

timing, etc.) and correlating this information with the values processed in the algorithm.
In case of FA [BS97], the attacker disturbs the computation by intentionally changing the
processed values and then gets the secret information by comparing the faulty and the
correct outputs.

Differential Fault Analysis (DFA) [BS97] is normally a method of choice for fault
analysis of symmetric key cryptographic algorithms, thanks to its efficiency and simplicity.
When properly utilized, the attacker only needs very few encryptions for a secret key
recovery. As DFA follows the steps of a reduced-round differential cryptanalysis [BS91],
one can find many attacks that are on the cipher design level. Such methods are universal
and can normally be applied to any unprotected implementation of a given cipher.

When it comes to the attacks on assembly level, there are not many works in this
field, since each implementation is unique and a specific attack on one implementation
cannot be generalized to other implementations. However, these implementations can
often contain DFA related vulnerabilities that are not visible on the first sight and cannot
be identified by simply observing the cipher design [BHL18]. Also, one has to take into
account that the number of faults required by DFA on cipher design might be different than
when attacking the implementation, making the high-level DFA estimates imprecise. For
example, in [HZFW15], the authors claim they can break SPECK cipher with only 5 ∼ 8
faults, but that is only if the whole cipher state is considered as one large variable. If we
have an 8-bit implementation, this number would be 4× bigger in the case of SPECK32/64
and 16× bigger in the case of SPECK128/256.

Furthermore, it is important to do the implementation level analysis since a real attack
will always be executed either on assembly level in software or gate level in hardware, by
utilizing various fault injection techniques, such as clock/voltage glitch, electromagnetic
pulse, or laser pulse [BECN+06].

To analyze the vulnerabilities of a software implementation, one has to analyze the
assembly code line by line to determine whether it can be exploited by a fault attack.
But assembly code of a cryptographic algorithm is normally hundreds to thousands lines
long, making it tedious and time consuming for manual analysis. To solve this problem,
automated approaches are starting to emerge, gaining more popularity in the fault analysis

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 3

community [BHB19].
Shortcomings of current works. As of today, it remains an open problem to automat-
ically find a DFA attack on cryptographic implementation. Current works either focus
on cipher level [SMD18] or are not completely automated [BHL18], thus falling short in
finding an attack without further manual analysis.

Previously developed tools either search for a possible DFA by enumerating different
inputs and then trying to find the key by solving equations for these [SMD18], or provide an
estimate of vulnerabilities based on the structure of the cipher [KRH17, RRHB19]. Similar
enumeration method was used in the Algebraic Fault Analysis tools [ZZG+13, ZGZ+16]
where a subset of all the possible solutions is checked by the SAT solver. For example,
when using CryptoMiniSAT, the number of solutions should be below 218, otherwise the
analysis time becomes impractical [ZGZ+16]. Therefore, while the tools are able to find a
particular key, they fall short of providing a generic proof that the resulting analysis will
work for all keys. Moreover, they also require the knowledge of plaintext in order to carry
out the analysis, which is in contrast to most of DFA attacks that do not assume such
knowledge.
Our contribution. In this work, we focus on the fully automated DFA attack on software
implementations of cryptographic algorithms. We develop a tool that analyzes assembly
code statically, constructs an abstract representation of this code, and searches for an
attack. In case there is a vulnerability, it outputs the attack procedure that can be used to
recover the key by DFA. Unlike aforementioned automated analysis works, our tool does
not require any cipher input, such as plaintext and key. Instead, it gives a generic attacking
method which can be used to recover any key used for encryption of any plaintext, thus
it is aligned with the standard DFA assumptions. This allows us to make the analysis
independent of the data, and therefore, to always find an attack if it exists for the given
implementation.

We design and implement TADA – Tool for Automated DFA on Assembly. An overview
of TADA is shown in Figure 1. TADA reads an assembly code from a text file and creates
a customized Data Flow Graph (DFG) that records the relations between the variables
and identifies the non-linear operations used in the algorithm. It calculates the nodes
that can be directly identified from the known data (ciphertext, constants). Then it
finds instructions vulnerable to DFA by analyzing the graph and outputs subgraphs and
DFA equations for each of these instructions. DFA equations are passed to SMT solver
to analyze. In case the instruction can be attacked by bit flip(s), the attack method
is recorded and the graph is updated to capture the result of this attack. Then TADA
continues to find next vulnerable instruction. TADA stops either when the correct number
of round keys is recovered as required by the user or when no more vulnerable instructions
can be found.

We would like to point out that our static analysis method is sound, meaning that a
fault attack found by TADA is provably exploitable, i.e., there are no false positives.

We present evaluation on implementations of four well-known block ciphers: SIMON
and SPECK are ultra-lightweight algorithms published by NSA [BTCS+15], AES is the
current NIST standard [DR02], and PRIDE [ADK+14] is a lightweight cipher optimized
for 8-bit microcontrollers. For SPECK and PRIDE, we were able to find novel DFA attacks
that are fully implementation specific and provide practical examples of importance of our
methodology. In case of SIMON and AES, we were able to find equivalent attacks that
were presented in the literature on the cipher level. Thanks to TADA, we could identify

Table 1: Examples of linear and non-linear operations.
a b c = a & b d = a⊕ b
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

4 Fully Automated DFA on Software Implementations of Block Ciphers

specific instructions that make these attacks possible, which is the highest level of detail
that can be provided for an attack on software implementation.

Moreover, we develop a novel attack on multiplication used in block cipher implemen-
tations, revealing a vulnerability of such operation. Multiplications with a constant are
normally used for more efficient bit shifting, leading to saving a couple of clock cycles.
However, thanks to non-linearity of multiplication, it opens a new attack vector that can
be exploited by DFA. Such vulnerability can be easily revealed with TADA analysis.

Execution times for finding attacks on full ciphers fall within reasonable range, consider-
ing that the analysis is complete and does not require any human intervention. Lightweight
ciphers vary within the range of minutes – the fastest analysis was on PRIDE (4.6 minutes),
the slowest was on SIMON (17.2 minutes). Larger ciphers fall within the range of hours,
where the analysis of AES needed less than 5 hours.

To show the utility of our approach, we have designed an algorithm that follows up on
results obtained by TADA, to optimize the implementation of DFA countermeasures. It
analyzes the cipher implementations and outputs the earliest rounds which can be attacked
using the vulnerabilities found by TADA. This information can be used to determine the
minimum number of rounds that should be protected. We would like to emphasize that
bit flip attack model represents the strongest adversarial model when considering DFA,
and therefore, it is crucial to test implementations against such model.
Organization. The rest of the paper is structured as follows. Section 2 introduces related
work. Section 3 provides preliminaries on DFA and SMT solvers. Section 4 presents the
design and describes the usage of TADA. Section 5 shows experimental evaluations on
SIMON, SPECK, AES and PRIDE. Section 6 shows how to utilize information found by
TADA to implement efficient countermeasures. Finally, Section 7 concludes this work.

2 Related work
In this section we outline several works that present automated approaches to fault analysis
with different focus.
Assembly Analysis. To the best of our knowledge, the only work on automation of
DFA in assembly implementation is [BHL18], where the authors automated the search for
vulnerable instructions according to user input. However, whether the found instruction is
really exploitable and how to exploit it has to be done manually. Therefore, the developed
tool outputs larger number of vulnerable instructions while only a small subset might be
actually exploitable. Moreover, the vulnerability criteria for finding these instructions have
to be defined by the user.
Cipher level fault analysis. Khanna et al. [KRH17] recently proposed XFC – a frame-
work for exploitable fault characterization in block ciphers. It takes a cipher specification
as input and analyzes it w.r.t. DFA by coloring the fault propagation throughout the
cipher state. While the authors show that this approach works when analyzing a high-level
representation of a cipher, it is not sufficient to discover vulnerabilities that are implemen-
tation specific. Agosta et al. [ABPS14] utilized an approach that works on intermediate
representations in order to identify single bit-flip vulnerabilities in the code. While this
approach takes the analysis one level lower, it still aims at detecting spots that can be
exploited from the cipher level instead of finding implementation specific vulnerabilities.
Hardware level analysis. Dureuil et al. [DPP+16] presented a fault model inference
approach that outputs vulnerability rate for a particular hardware. By observing the
possible fault models and their occurrence probabilities, they could estimate a robustness
of embedded software. The main aim of their approach was to approximate a time that is
needed to successfully inject a required fault model.
SAT related. There are several automation works for algebraic fault attacks on cipher
level [ZZG+13, ZGZ+16] utilizing SAT solver. The main idea is to describe the cipher

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 5

algorithm as well as the fault attack in algebraic equations, then use SAT solver to solve
for the key. But this also limits the attack to a particular key. The developed tool needs
either one or several pairs of ciphertext(s) and plaintext(s). To reduce the search space
to feasible number, these methods normally fix the major portion of the input data and
enumerate the rest. Another work utilizing SAT solver was automation of DFA on the
circuit level [GBH+16]. They describe the circuit, as well as the fault, in conjunctive
normal form and use SAT to solve for the key. Similarly to previous works, the developed
tool aims to solve one key at a time.
Automated Analysis of Public Key Cryptosystems. Barthe et al. [BDF+14] identify
implementation-independent fault conditions and use program synthesis to discover faulted
implementations. Using their tool they found attacks on RSA and ECDSA.

In comparison to these approaches, TADA works on an assembly level in a way that
makes it possible to discover implementation-specific vulnerabilities. Furthermore, it
does not require any ciphertext-plaintext pairs. It analyzes the implementation without
knowledge of the data being processed.

3 Background
In the following, we explain the necessary background on DFA and SMT solvers that will
put the rest of our work into context.

3.1 Differential Fault Analysis
When performing DFA on symmetric block cipher, the attacker first obtains a correct
ciphertext, by running the encryption without any disturbance. Then, she runs the
algorithm again with the same input values (plaintext, secret key), while injecting a fault
into a certain round of the cipher, obtaining a faulty ciphertext. Later, she compares these
two ciphertexts and if the attack was successful, she gets an information about the secret
key.

As an example, let us consider the operation that takes a and b as inputs and outputs
the result c = a & b, where a, b ∈ {0, 1} and & is the bitwise AND operator. We assume
the output is known to the attacker but values of a, b are unknown. The attacker can then
inject fault in b by flipping it to find the value of a: the first three columns of Table 1 show
the case when b is flipped. If the output c stays the same, then a = 0; otherwise a = 1.

Now let us consider the same fault attack on the operation that takes input a, b ∈ {0, 1}
and outputs d = a⊕ b, where ⊕ is bitwise XOR operator. In this case the attack will not
work: columns 1,2,4 in Table 1 shows that whenever b is flipped, d will also be flipped.

The above simple example shows why DFA normally exploits nonlinear operations and
we will also be focusing on nonlinear operations in our analysis. DFA often works with
just a single faulty and correct ciphertext pair from the encryption [TM09]. The attacker
makes use of two sets of equations: one set that describes the correct execution of the
encryption; one set corresponds to the faulted encryption process. For a simple example,
let us consider the program that takes two binary inputs a, b ∈ {0, 1}, calculates c = a & b
and outputs c. The equation corresponding to the correct execution is c = a & b. If a fault
is injected in b such that b is flipped, the equation corresponding to the faulted execution
would be c′ = a & b′, where b′ = b ⊕ δ and δ = 1. By calculating the difference of the
output ∆ = c ⊕ c′, the attacker can get the value in a: a = 0 if ∆ = 0; a = 1 if ∆ = 1.
The two sets of equations corresponding to correct and faulted executions are referred to
as DFA equations. The change in b, denoted by δ, which is equal to 1 in this case, is called
the fault mask. The output difference ∆ is called the output mask.

DFA is usually executed at the final rounds of the cipher, so that there are not too many
collisions of the altered values. Otherwise, it would make the analysis too complex. The

6 Fully Automated DFA on Software Implementations of Block Ciphers

most straightforward approaches inject a fault into the last round, usually requiring at least
as many faults as the number of non-linear operations in the round. More sophisticated
approaches attack 2-3 rounds before the encryption ends, utilizing the permutation layer
that distributes the fault into the whole state. Such techniques require lower number of
faults, but the number of equations to solve is higher.

In our approach, we first consider fault injections in the last round in order to recover
the last round key. If an attack on the last round can be found, it then depends on user
decision whether the attack is carried out further on earlier rounds.

3.2 Satisfiability Modulo Theories
Satisfiability Modulo Theories (SMT) [DMB11] is concerned with deciding the satisfiability
of first order formulas w.r.t. background theories, e.g. the theory of linear arithmetic
over integers, of bit-vectors, of arrays, and so on. Decision procedures for solving SMT
problems are called SMT solvers. In program analysis and verification, many problems
can be naturally reduced to SMT problems and SMT solvers have been used as back-end
engines in many tools for software testing, analysis and verification. The SMT solver we
use in TADA is Z3 [dMB08].

We would like to note that the analysis by the SMT solver involves an exhaustive search
on the possible fault mask values and the output differences. Therefore, while it is feasible
to perform such analysis on fault masks that correspond to bit-flips, when extending it
to all the possible fault mask values, it becomes impractical. To check the random fault
model, the analysis would have to be done in a different manner, shifting the result from
provably exploitable to an estimation based on certain characteristics of the cipher (for
example, based on properties of round operations). Such method can be found for example
in [KRH17].

Consider the case of attacking c = a & b in the above mentioned DFA. Let ψ denote
the formula that specifies the DFA equations as well as the equations for fault mask and
output mask:

ψ := (c = a & b) ∧ (c′ = a & b′) ∧ (b′ = b⊕ δ) ∧ (∆ = c⊕ c′).

Finding a fault attack for c = a & b amounts to finding a mapping between the value of ∆
and a. To this end, we use an SMT solver to check the satisfiability of the following two
formulas, where V denotes the set of variables in ψ:

1) ∀v ∈ V \{δ} : ((ψ ∧∆ = 1)⇒ a = 1) ∧ ((ψ ∧∆ = 0)⇒ a = 0)
2) ∀v ∈ V \{δ} : ((ψ ∧∆ = 1)⇒ a = 0) ∧ ((ψ ∧∆ = 0)⇒ a = 1)

Notice that δ is the only free variable in both formulas. We explain the first formula briefly.
Since δ is the only free variable in formula 1), checking the satisfiability of formula 1)
amounts to asking whether we can find a value for the fault mask δ such that it is always
the case that a = 1 if ∆ = 1 and a = 0 if ∆ = 0. By calling an SMT solver, we know that
formula 1) is satisfiable because the formula evaluates to true when δ = 1. Therefore, we
can perform DFA by using δ = 1. This result is consistent with the fault analysis given in
the above section. On the other hand, formula 2) is unsatisfiable.

4 TADA Methodology
In this section we present the methodology that was used when implementing TADA.
Section 4.1 describes the fault models we consider. Section 4.2 details attacks on target
instructions. Requirements on assembly code are stated in Section 4.3. Section 4.4 provides
the design overview of TADA and details the automated analysis steps. Finally, Section 4.5
explains the analysis carried out by the SMT solver module.

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 7

4.1 Fault Models
An assembly implementation of a cryptographic algorithm, say F , is a finite sequence of
instructions. An instruction f consists of four parts: sequence number, mnemonic, the set
of input operands and the set of output operands. Sequence number is the index of f as
an element of F . The mnemonic of f is the name of the operation that f uses. We say an
instruction f is linear if its mnemonic corresponds to a linear operation.

A single fault attack on an assembly implementation F can be modeled by a fault
injected in one of the instructions in F such that it either affects the input operands/output
operands of this instruction or it deletes this instruction from the sequence (instruction
skip) [MDH+13]. In this work we do not focus on instruction skip faults.

We are interested in single fault adversarial model, meaning that the attacker can inject
exactly one fault during the execution of an assembly implementation of the algorithm at
a time. However, she can repeat the execution as many times as she wants, with different
faults. We consider bit flip fault model, therefore for a register length n, there are n
possibilities of flipping a bit. A bit flip changes one bit in one of the input/output operands
of an instruction in an assembly implementation F . The change is referred to as a fault
mask, which can be chosen by the attacker. Bit flip model is the most precise fault model
for DFA1 and it is usually the model of choice when attacking cryptographic algorithms
with binary non-linear operations (e.g. addition-rotation-xor based ciphers). This model
was previously shown to be practically achievable by laser fault injection, where single
bits in registers manufactured with 90 nm technology were targeted with 100% success
rate [CLMFT14]. When it comes to flipping bits in DRAM, the Rowhammer attack can
be used [SD15]. As it was shown, the DRAM memory bank can be first localized with a
timing side-channel and later the exact row indices can be determined to achieve a precise
bit flip [BM16]. Timing adjustment for targeting single instructions was previously shown
in [BJC15].

As most DFA attacks, we assume known ciphertext attack without the knowledge of
the plaintext.

4.2 Attacks on Target Instructions
In general, DFA aims at attacking non-linear instructions. Up to now, there have been vari-
ous attacks exploiting the following operations: bitwise AND [TBM14], bitwise OR [BHL18],
addition [TBM14, JB15, BGV17], and table lookup [Riv09a, JLSH13, TM09], often used
for Sbox calculation. Even though the attack varies for different ciphers, the main principle
behind the attack of a particular operation stays the same [JT12].

In our work, we focus on these operations and moreover, we present a novel attack on
multiplication with a constant. To the best of our knowledge, this is the first attack on
multiplication used in a cryptographic implementation. Multiplications are not used in
symmetric block cipher designs, however they can be efficient for performing logical bit
shifts. For example, in the implementation of SPECK that we analyzed, shift by 3 bits to
the left was done by multiplication with a constant value of 0x08.

The analysis module of TADA focuses on instructions that implement the aforemen-
tioned operations. Here, we explain the generic idea for attacking each of the operations.
Bitwise AND, bitwise OR. The attack on bitwise AND operator follows the description
in Section 3.1 (c.f. Table 1 and corresponding discussions).

The attack on bitwise OR is similar. Suppose we have a program that takes two binary
inputs a, b ∈ {0, 1}, calculates c = a | b, and outputs c. The relations between a, b, c are as
follows:

1Bit sets/resets, although being more precise than bit flips, are used for other methods, such as
ineffective fault analysis and are out of scope of DFA.

8 Fully Automated DFA on Software Implementations of Block Ciphers

a b c = a | b
0 0 0
0 1 1

a b c = a | b
1 0 1
1 1 1

We inject a fault δ in b and we have the following equations:

DFA equations Fault mask Output mask
c = a | b c′ = a | b′ b′ = b⊕ δ ∆ = c⊕ c′

Take δ = 1, the value of a can be obtained from the value of output mask ∆:

∆ = 1 =⇒ a = 0; ∆ = 0 =⇒ a = 1. (1)

Note that if we let out = 1, var0 = 1, var1 = 0, then ∆ & out = var0 or var1, and the
following is equivalent to equation (1):

∆ & out = var0 =⇒ a = 0; ∆ & out = var1 =⇒ a = 1.

Addition. For addition, we have

a b c = a+ b
0 0 00
0 1 01

a b c = a+ b
1 0 01
1 1 10

We inject a fault δ in b and we have the following equations:

DFA equations Fault mask Output mask
c = a+ b c′ = a+ b′ b′ = b⊕ δ ∆ = c⊕ c′

Take δ = 1, the value of a can be obtained from the value of output mask ∆: if ∆ = 01
then a = 0 and if ∆ = 11 then a = 1. Equivalently, let out = 11, var0 = 01, var1 = 11,
then ∆ & out is either var0 or var1, and ∆ & out = var0 =⇒ a = 0; ∆ & out =
var1 =⇒ a = 1.
Addition with carry. In case there is a carry bit for addition calculation, DFA needs to
take the value of the carry bit into consideration. We look at the program that takes three
inputs a, b, carry ∈ {0, 1}, calculates c = a+ b+ carry and outputs c in binary format.
We have:

a b carry c
0 0 0 000
0 1 0 001
1 0 0 001
1 1 0 010

a b carry c
0 0 1 001
0 1 1 010
1 0 1 010
1 1 1 011

We inject a fault δ in b and we have the following equations:

DFA equations Fault mask Output mask
c = a+ b+ carry c′ = a+ b′ + carry b′ = b⊕ δ ∆ = c⊕ c′

For carry= 0, ∆ = 001 =⇒ a = 0 and ∆ = 011 =⇒ a = 1. For carry= 1, ∆ = 011 =⇒
a = 0 and ∆ = 001 =⇒ a = 1. Let out = 011, var0 = 001, var1 = 011 if carry= 0 and
let out = 011, var0 = 011, var1 = 001 if carry= 1, then ∆ & out = var0 or var1 and
∆ & out = var0 =⇒ a = 0; ∆ & out = var1 =⇒ a = 1. Note that the choices of value
for variables out, var0, var1 are not unique, taking out = 111, var0 = 001, var1 = 011 for
carry= 0 and let out = 010, var0 = 010, var1 = 000 for carry= 1 also gives the same
result. Furthermore, we can see that for DFA, it is necessary to consider both possible
values of the carry bit.
Table lookup for Sbox. Sbox (substitution-box) is a basic nonlinear component in
cipher designs, mostly used in SPN (Substitution-Permutation Network) ciphers. Sbox is
responsible for the confusion property in encryption modules defined by Shannon [Sha49].

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 9

It is a permutation function on integers with values 0, 1, 2, . . . , 2n − 1, where n is referred
to as the number of bits of the Sbox. An Sbox can be described as an array: for
example, {1, a, 0, 2, 3, 4, 5, 6, e, b, c, 8, 7, 9, d, f} is a 4−bit Sbox such that Sbox(0) = 1,
Sbox(1) = a . . . , Sbox(f) = f (integers are in hexadecimal format). It can either be
implemented as a lookup table in the memory or in Algebraic Normal Form (ANF) that
can be calculated as a series of arithmetic and logic operations. We provide analysis of
both - lookup Sbox in case of AES implementation and algebraic Sbox in case of PRIDE.
For any Sbox, there is an associated difference distribution table (DDT) [BS91], where the
(∆, δ)−entry consists of the values x such that Sbox(x)⊕ Sbox(x′) = ∆, where x′ = x⊕ δ.
As we only consider bit flip fault model, for 4−bit Sboxes, the fault mask δ takes only 4
values: 1, 2, 4, 8. The DDT for the above mentioned 4−bit Sbox with only bit flip fault
masks is as follows:

∆\δ 1 2 4 8
1 0 2 a e 1 9
2 2 3 e f 5 7 8 a 0 4 9 d
3 6 7 9 b
4 a b 3 7 4 c
5 8 9 2 6
6 4 6 d f
7 4 5 b f
8 1 3 6 e

∆\δ 1 2 4 8
9 8 c 7 f
a c e 3 b
b 0 1
c 2 a
d 5 d
e c d 1 5
f 0 8

By observing the output mask and fault mask pairs, the attacker can get the value of the
input. For example, if the 4 fault mask and output mask pairs are (1, b), (2, 1), (4, 2), (8, f)
then the input is uniquely identified to be 0.
Multiplication with a constant. Consider a program that takes input a ∈ {0, 1, 2, 3, 4}
and outputs the product, denoted by c, of a with constant 2. The strategy is to inject
fault in the constant operand and get value of a.

DFA equations Fault mask Output mask
c = a× 2 c′ = a× const const = 2⊕ δ ∆ = c⊕ c′

When a bit flip fault is injected in 2, we get either 0 or 3. Representing the integers in
binary format, we have:

a c = a× 2
00 0000
01 0010
10 0100
11 0110

a c′ = a× 0
00 0000
01 0000
10 0000
11 0000

a c′ = a× 3
00 0000
01 0011
10 0110
11 1001

We can see that if the fault mask δ = 2, then the output mask ∆ = c⊕ c′ = a. Similarly,
if fault mask δ = 1, a can also be identified by value ∆.

In real DFA attacks, the output value of a vulnerable instruction normally cannot be
observed directly, but the output mask propagates to the ciphertext and can be analyzed.
However, in assembly implementations, it is not easy to track which register value gives
the information of the output mask. TADA constructs a customized data flow graph to
capture the propagation of the fault, then it utilizes SMT solver to prove whether the
above techniques can be applied to the vulnerable instructions.

4.3 TADA Usage
There are few requirements regarding the assembly implementations that have to be
addressed before the analysis, detailed below.

The developed methodology requires identification of important variables, more specifi-
cally the round keys and ciphertext variables, to be able to correctly focus on key recovery.

10 Fully Automated DFA on Software Implementations of Block Ciphers

Table 2: Assembly implementation Fex for example cipher.
Instruction # Instruction # Instruction
0 LD r0 X+ 3 LD r3 key1+ 6 EOR r1 r3
1 LD r1 X+ 4 AND r0 r1 7 ST x+ r0
2 LD r2 key1+ 5 EOR r0 r2 8 ST x+ r1

TADA implements this in a way that for analyzed assembly code, it requires naming
conventions. Round keys have to be identified by the word “key" followed by the round
number. Ciphertext variables then have to be identified by a small letter “x”.

The analyzed implementations are unrolled – without loops and jumps. While for
standard static code analysis, the conditional branches constitute a non-trivial problem, in
our case we do not need to consider implementations with these or other types of jumps
and branches. The reason is that these implementations are inherently vulnerable against
physical attacks and the attacker can target them with much simpler methods than those
considered in this work. For example, a conditional branch decides on a jump based on
processed variables, and therefore leaks a timing information [Koc96, MHA+15]. Jump to
a sub-routine can be skipped entirely, resulting to a trivial analysis [KPB+17]. Similarly,
round counters used in loops can be attacked to reduce the number of rounds [DMM+13].

The parsing subsystem is currently capable of reading assembly files written for AVR
ATmega microcontrollers2. However, the analysis is done on an intermediate representation
and therefore, after creating a new parsing module, TADA can be reused on any other
instruction set (e.g. Thumb-2 or LLVM).

Software countermeasures can be based for example on coding theory [BH16, BCC+14],
instruction redundancy [PYGS16, LCFS17], or infection [GST12]. We note that TADA is
capable of analyzing single bit flip vulnerabilities and therefore, it can check whether the
countermeasure was implemented sufficiently.

4.4 TADA Design
Implementation. TADA was implemented in Java (static analysis part) and F# (Z3
SMT solver part) programming languages; each of the following steps corresponds to one
module of the tool.
Customized data flow graph. TADA constructs a customized data flow graph in a static
single assignment form from an assembly implementation. The data flow graph represents
the instructions as edges and it takes input and output operands of the instructions as
nodes. Each node in the data flow graph corresponds to one unit of data storage in the
architecture. We refer to the nodes that correspond to registers storing round key values
as key nodes. Similarly, nodes that represent ciphertext words are called ciphertext nodes.
For an instruction f , the nodes corresponding to its input operands are called the input
nodes of f and the nodes corresponding to its output operands are called the output nodes
of f . Both input and output nodes are referred to as nodes of f . If a is an output node of
f , we say f generates a.

Example 1. Let us consider a toy block cipher implemented in AVR assembly, stated in
Table 2. The example cipher has one round. It takes a 16-bit plaintext input. The first 8
bits are XORed with an 8-bit key word and give the first 8 bits of the ciphertext. Bitwise
AND operation is applied on the two parts of the plaintext, then the result is XORed with
another 8-bit key to give the last 8 bits of the ciphertext. The customized data flow graph
generated by TADA for this example cipher implementation is given in Figure 2. As the
registers have 8 bits, the 16−bit ciphertext is stored in two ciphertext words. Nodes r3(3)
and r2(2) are the key nodes; x(8) and x(7) are the ciphertext nodes. Instruction 4 has
input nodes r0(0),r1(1) and output node r0(4). We say that instruction 4 generates
node r0(4).

2https://www.microchip.com/webdoc/avrassembler/avrassembler.wb_instruction_list.html

https://www.microchip.com/webdoc/avrassembler/avrassembler.wb_instruction_list.html

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 11

Known nodes and constants. Before further analysis, TADA does a pre-examination
of the nodes to find the known nodes. Since we assume the attacker knows the ciphertext,
the ciphertext nodes are marked as known nodes. Tracing up from the graph, some nodes
can also be easily identified as known nodes. Moreover, a node that represents a constant
is marked as both a known node and a constant, the value of the constant is also stored.

Example 2. In Figure 2, the value of r0(5) is equal to that of x(7) because they are
respectively the input node and output node of a store instruction, hence r0(5) is marked
as a known node. Similarly, r1(6) is also a known node.

Data propagation is captured within the graph. Each edge has a property that says
whether it is linear or non-linear according to the instruction it represents. A node x
affects a node y if the following two conditions are satisfied: the sequence number of the
instruction that generates y is bigger than the sequence number of the instruction that
generates x; furthermore, changing the value of x would influence the value of y (the second
condition is equivalent as saying y is a child of x in the directed graph). The number
of non-linear operations between a node x and each node y affected by x is recorded as
distance between them. A node x and a key node y are linearly related to each other if x
does not affect y and there is another node z such that both x and y affect z with distance
0. A node x is linearly related to a round key if it is linearly related to a key node of this
round key.

Example 3. In Figure 2, r1(1) affects r0(5) with distance 1; it also affects x(8) with
distance 0. r1(1) is linearly related to key node r3(3) and r0(4) is linearly related to
key node r2(2).

Figure 2: Data flow graph generated by
TADA for example cipher implementa-
tion Fex from Table 2.

Figure 3: Subgraph generated by TADA
for target node r1(1) and vulnerable
node r0(0) from vulnerable instruction
4 of example cipher Fex in Table 2.

Vulnerable instruction. The goal of an attack on cryptographic implementation is
normally the recovery of the master key. For some ciphers, the recovery of the last round
key is sufficient (e.g. AES). For other ciphers, the attacker needs more than one round key
to get the master key. For example, for SPECK, SIMON, and PRIDE, the last round key
and the second last round key are both needed to get the master key. In view of this, we
allow a user input, Number of target round keys, which indicates how many round keys
are supposed to be retrieved, counting from the last round key. Thus if Number of target
round keys = 1, TADA would only aim for the recovery of the last round key. If Number
of target round keys = 2, TADA would work on the attack to obtain the keys from last
two rounds. During the execution, the round key which is under analysis is referred to as
the target round key. An instruction is considered vulnerable by TADA if the following
conditions are satisfied:
1. The instruction is one of the operations as described in Section 4.2. In AVR assembly,

12 Fully Automated DFA on Software Implementations of Block Ciphers

Algorithm 1: Check if an instruction is vulnerable.
Input : f : an instruction of a program F , DFG: customized data flow graph

corresponding to F , key: target round key
Output : boolean: is f vulnerable?

1 if Mnemonic of f ∈ {AND, OR, ADD, ADC, LPM, MUL} then
2 if Mnemonic of f =MUL then
3 boolean vul = false;
4 for a: input nodes of f do
5 if a is a constant then
6 vul=true;

7 if vul=false then
8 return false;

9 for a: output nodes of f do
10 for x: known nodes affected by a do
11 if distance(a, x) > 0 then
12 return false;
13 for b: nodes of f do
14 if b is linearly related to key then
15 return true;

16 return false;

these include operations with mnemonics AND, OR, ADD, ADC, LPM, MUL, which are
respectively bitwise AND, bitwise OR, addition, addition with carry, table lookup and
multiplication. For multiplication, we further check if one of the input nodes is a constant.
2. For each output node of the instruction, the distance from it and each of its affected
known nodes is = 0. Thus, there is only one non-linear instruction between the input
nodes of this instruction and the known nodes, which is the instruction under analysis.
This ensures that there is only one non-linear equation to solve. Furthermore, this enables
us to derive the SMT constraints based on the generic attacking method described in
Section 4.2.
3. At least one of its nodes is linearly related to a key node that stores the value of the
target round key, which is the round key under analysis during the execution.

The algorithm for checking if an instruction is vulnerable is outlined in Algorithm 1.
Remark 1. As explained in Section 3.1, when a fault is injected in a linear instruction,
the output mask does not give information of the inputs as it is always equal to the fault
mask. Similarly, if we have a series of linear instructions before a non-linear instruction,
injecting a fault in one of the linear instructions is equivalent to injecting a fault in the
non-linear instruction3. That is why we put our focus on non-linear instructions only.
Target node and vulnerable node. For a vulnerable instruction, each of its input
nodes that is not known can be a target node. Each of the input nodes can be a vulnerable
node (which can be the same as the target node). Recall that by selection of vulnerable
instructions, at least one of the nodes of the instruction is linearly related to the target
round key nodes. A DFA on the vulnerable instruction injects fault in one of the vulnerable
nodes, hoping to get information about the target node, hence revealing information about
the linearly related key nodes.
Subgraphs and DFA equations generation. For each pair of target node and vul-
nerable node, TADA extracts a subgraph of the full DFG that includes the vulnerable
instruction and the nodes affected by it. The subgraph stops at the known nodes.

3While the linear layer might help to spread the fault and make the analysis more efficient, it is not
the goal of our work – such analysis would be similar to injecting multiple faults into several nodes.

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 13

Table 3: DFA Equations generated for subgraph in Figure 3.
Correct execution Faulted execution Fault mask
(a) r0(4) = r0(0) & r1(1) (d) r0(4)′ = r0(0)′ & r1(1) r0(0)′ = r0(0)⊕ δ
(b) r0(5) = r0(4)⊕ r2(2) (e) r0(5)′ = r0(4)′ ⊕ r2(2)
(c) r1(6) = r1(1)⊕ r3(3)

Example 4. For Fex in Table 2, one of the vulnerable instructions found by TADA is
instruction 4. Figure 3 shows the subgraph for target node r1(1) and vulnerable node
r0(0).

For each subgraph, TADA constructs one set of DFA equations and one equation for
fault mask. The DFA equations describe the relation from the vulnerable instruction until
the known nodes. The equation for fault mask indicates that the change in the vulnerable
node is equal to δ. Input to SMT solver module also indicates which variables involved in
the DFA equations represent known nodes.

Example 5. Equations (in the human readable form) generated by TADA for subgraph
in Figure 3 are given in Table 3 (color scheme corresponds to Figures 2,3). The real format
of the equations is in the form of SMT solver module input. The list of known nodes,
which is {r0(5), r1(6)} is also passed to SMT solver module.

SMT solver and graph update. For each pair of vulnerable node and target node,
the SMT solver module of TADA designs constraints to describe the corresponding DFA
attack and calls SMT solver to output the attack details in case the attack is successful.
The details of this module are presented in Section 4.5. After each successful attack on a
target node, TADA updates the known nodes in the graph.

Example 6. The attack on vulnerable instruction 4 with target node r1(1) and vulnerable
node r0(0) as described in Example 5 gives 8 bits of r1(1). Since r1(6) is a known
node, TADA updates the key node r3(3) as known node. The updated graph is shown in
Figure 4. Furthermore, for the same vulnerable instruction with target node r0(0) and
vulnerable node r1(1), TADA recovers 8 bits of r1(1). At this point, both of the key
bytes are retrieved and the cipher is broken. (The final graph is shown in Appendix A
Figure 7).

In case the target node cannot be obtained from attacking one vulnerable node, TADA
tries to obtain the same target node with a different vulnerable node. The analysis of one
instruction stops when either all the input nodes are retrieved or when there is no more
target node which can be obtained.

X+ (0)

r0 (0)

ld (0)

r1 (1)

ld (1)

r0 (4)

and (4) and (4)

r1 (6)

eor (6)

key1+ (2)

r2 (2)

ld (2)

r3 (3)

ld (3)

r0 (5)

eor (5) eor (6)eor (5)

x+ (7)

st (7)

x+ (8)

st (8)

Figure 4: Updated graph generated by TADA after a successful attack on target node
r1(1) from vulnerable instruction 4 of example cipher Fex in Table 2.

14 Fully Automated DFA on Software Implementations of Block Ciphers

Algorithm 2: The algorithm for attacking bitwise AND, bitwise OR.
Input :ψ: DFA equations and the equation for fault mask; b: vulnerable node; a: target

node; S: the list of knowns nodes in the DFA equations; ψδ: constraint for fault
mask δ as in Equation (2).

Output : boolean: true if a can be obtained by attacking b.
1 for x: S do
2 φ := ψ ∧ (∆ = x⊕ x′);
3 counter = 0;
4 for k = 0, 1, . . . , 7 do
5 ψ1 := φ⇒ ((∆ & out = val0) ∨ (∆ & out = val1));
6 ψ2 := (φ ∧∆ & out = val0)⇒ a[k] = 0;
7 ψ3 := (φ ∧∆ & out = val1)⇒ a[k] = 1;
8 Φ := ψδ ∧ ψ1 ∧ ψ2 ∧ ψ3;
9 V := all variables involved in Φ;

10 if (∀v ∈ V \{out, δ, val0, val1} : Φ) is satisfiable then
11 save to file (k, δ, x, out, val0, val1);
12 counter++;

13 if counter = 8 then
14 return true;

15 return false;

After the attack on one vulnerable instruction is finished, TADA analyzes the new
graph to find another vulnerable instruction. TADA stops when the required number of
round keys is found or when there is no vulnerable instruction that can be attacked.
Remark 2. In practical DFA, the attack is also considered successful if not all of the
bits of the key can be recovered but the brute force complexity of recovering the key is
acceptable. Taking this into consideration, TADA allows the user to specify the least
number of bits that need to be recovered to consider an attack as successful. In case the
number is less than 8, TADA records the number of bits missing and outputs the total
brute force complexity in the end (see Remark 4).

4.5 SMT Solver Module
As mentioned earlier, for each pair of target node and vulnerable node, the input of SMT
solver module is the target node, vulnerable node, the corresponding DFA equations,
equation for fault mask and a list of known nodes involved in the DFA equations (e.g.
Example 5). In this section, we detail how other constraints and the satisfiability problems
are designed for each of the operations described in Section 4.2.

Depending on the mnemonics of the operation, TADA executes different algorithms.
Since we are considering 8−bit architecture and bit flip fault model, in case the mnemonic
is not LPM, TADA generates the following constraint for the fault mask:

(δ = 1) ∨ (δ = 2) ∨ (δ = 4) ∨ (δ = 8) ∨ (δ = 16) ∨ (δ = 32) ∨ (δ = 64) ∨ (δ = 128). (2)

Bitwise AND, bitwise OR. The algorithm for attacking bitwise AND, and bitwise OR,
is outlined in Algorithm 2. For each known node x, TADA generates an equation for
output mask ∆ (line 2). Then it tries to attack each bit of target node a (line 4). Line 5
specifies that for some variables out, var0 and var1, the output mask ∆ has one of the
two patterns: ∆ & out = var0 or ∆ & out = var1. Line 6 specifies if ∆ is of the first
pattern then the kth bit of the target node is 0. Line 7 says if ∆ is of the second pattern,
the kth bit of the target node is 1. Line 10 tests if there exist valuations to variables out,
δ, var0 and var1 such that the above mentioned constraints are all satisfiable. In case it is
satisfiable, the 6−tuple (k, δ, x, out, var0, var1) is saved to a file. This tuple translates to:

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 15

the kth bit of the target node a can be obtained by attacking the vulnerable node using
fault mask δ and observing the output mask ∆ of the known node x: if ∆ & out = var0
then a[k] = 0 and if ∆ & out = var1 then a[k] = 1.

If, for one known node x, 8 bits of the target node can be all retrieved, then it returns
true (line 13− 14). Otherwise it goes to the next known node.

The attack details will be retrieved from the files and output only when the attack is
successful. The output from TADA for example cipher Fex in Table 2 is summarized in
Appendix A Table 8.
Remark 3. The files output by TADA indicate that for target node r1(1) and vulnerable
node r0(0), when the known node r1(6) is considered, there is no attack (this can also
be observed from Figure 2). This is because the injected fault does not affect value in
r1(6). Thus, for each pair of target and vulnerable node, we need to iterate through all
the known nodes that are involved in the DFA equations. Only when none of the known
nodes can help us to find an attack, we consider the attack fails.
Addition (with carry). The algorithm for attacking addition is outlined in Algorithm 3.
The sum of two 8−bit variables is stored in a variable of 8 bits and a carry bit. Thus,
instead of considering the output mask of only one known node, we consider each pair of
known nodes (line 1). Here || indicates concatenation. For example 10||10 = 1010. We first
attack the 0th bit of target node, which does not involve carry bit value. If this bit can
be retrieved, the tuple (0, δ, x, y, out, var0, var1) is saved to a file. This corresponds to:
the 0th bit of the target node a can be obtained by injecting fault mask δ in vulnerable
node and observing the output mask ∆ = y||x⊕ y′||x′. If ∆ & out = var0, a[0] = 0 and if
∆ & out = var1, a[0] = 1. Similar to the discussion of the attack on addition with carry
in Section 4.2, for higher bits, we need to consider two cases separately: the carry bit from
the previous bits is 0 or 1 (line 16, 28). Here a[k − 1, 0] denotes the integer that is the
same as the first k − 1 bits of a. For example 0110[2, 0] = 110. If attack for carry bit = 0
is successful, the tuple (k, 0, δ, x, y, out, var0, var1) is saved to a file, which means: when
carry is 0, the kth bit of the target node a can be obtained by injecting fault mask δ in
vulnerable node and observing the output mask ∆. If ∆ & out = var0, a[k] = 0 and if
∆ & out = var1, a[k] = 1. Similarly, when the attack for carry bit = 1 is successful, the
tuple (k, 1, δ, x, y, out, var0, var1) is saved to a file.

Note that the attack on the kth bit assumes the knowledge of the first k − 1 bits of
both of the operands. Thus, if one bit cannot be attacked, the algorithm goes to next
known node directly (line 13, 26, 40). Moreover, the algorithm for attacking ADD contains
an extra step in SMT solver module – it only returns true for the attack when both inputs
of addition can be retrieved or when one can be retrieved and the other is known.

The attack for ADC can be obtained by minor modifications of Algorithm 2. For example,
the analysis of the 0th bit needs to consider two cases: the carry bit is 1 and the carry bit
is 0. Furthermore, for attacking the addition with carry, it is necessary to require that the
node representing carry is a known node.
Table lookup. If the vulnerable instruction corresponds to Sbox table lookup, the
Algorithm 5 from Appendix B is used.
Multiplication with a constant. When the vulnerable instruction is multiplication
and one of the input operands is a constant, the algorithm for the attack is obtained from
Algorithm 2 with the following changes:
Since the product of two 8−bit variables is stored in two 8−bit variables, we consider each
pair of known nodes instead of only one known node. Lines 1− 2 are changed to

for x, y ∈ S, x 6= y do
φ := ψ ∧ (∆ = y||x⊕ y′||x′)

Accordingly, the output to a file (line 11) is changed to (k, δ, x, y, out, var0, var1), which
indicates the kth bit of target node a can be obtained by injecting fault mask δ in vulnerable
node b and observing the output mask ∆ = y||x⊕ y′||x′. If ∆ & out = var0, a[k] = 0 and
if ∆ & out = var1, a[k] = 1.

16 Fully Automated DFA on Software Implementations of Block Ciphers

Algorithm 3: The algorithm for attacking ADD.
Input :ψ: DFA equations and the equation for fault mask; b: vulnerable node; a: target

node; S: the list of knowns nodes in the DFA equations; ψδ: constraint for fault
mask δ as in Equation (2).

Output : boolean: true if a can be obtained by attacking b.
1 for x, y ∈ S, x 6= y do
2 counter= 0;
3 φ := ψ ∧ (∆ = y||x⊕ y′||x′);
4 ψ1 := φ⇒ ((∆ & out = val0) ∨ (∆ & out = val1));
5 ψ2 := (φ ∧∆ & out = val0)⇒ a[0] = 0;
6 ψ3 := (φ ∧∆ & out = val1)⇒ a[0] = 1;
7 Φ := ψδ ∧ ψ1 ∧ ψ2 ∧ ψ3;
8 V := all variables involved in Φ;
9 if (∀v ∈ V \{out, δ, val0, val1} : Φ) is satisfiable then

10 save to file (0, δ, x, y, out, val0, val1);
11 counter++;
12 else
13 continue;
14 for k = 1, 2, . . . , 7 do
15 ψc0 := (a[k − 1, 0] + b[k − 1, 0])[k] = 0 // the carry from first k bits = 0;
16 φ := ψc0 ∧ ψ ∧ (∆ = y||x⊕ y′||x′);
17 ψ1 := (φ⇒ ((∆ & out = val0) ∨ (∆ & out = val1)));
18 ψ2 := ((φ ∧∆ & out = val0)⇒ a[k] = 0);
19 ψ3 := ((φ ∧∆ & out = val1)⇒ a[k] = 1);
20 Φc0 := ψδ ∧ ψ1 ∧ ψ2 ∧ ψ3;
21 V := all variables involved in Φc0;
22 if ∀v ∈ V \{out, δ, val0, val1} : Φc0 is satisfiable then
23 let output0 = (k, 0, δ, x, y, out, val0, val1);
24 else
25 break;
26 ψc1 := (a[k − 1, 0] + b[k − 1, 0])[k] = 1 // the carry from first k bits = 1;
27 φ := ψc1 ∧ ψ ∧ (∆ = y||x⊕ y′||x′);
28 ψ1 := (φ⇒ ((∆ & out = val0) ∨ (∆ & out = var1)));
29 ψ2 := ((φ ∧∆ & out = val0)⇒ a[k] = 0);
30 ψ3 := ((φ ∧∆ & out = val1)⇒ a[k] = 1);
31 Φc1 := ψδ ∧ ψ1 ∧ ψ2 ∧ ψ3;
32 V := all variables involved in Φc1;
33 if ∀v ∈ V \{out, δ, val0, val1} : Φc1 is satisfiable then
34 let output1 = (k, 1, δ, x, y, out, val0, val1);
35 save to file: output0 and output1;
36 counter++;
37 else
38 break;

39 if counter= 8 then
40 return true;

41 return false;

5 Evaluation

In this section, we will present evaluations of four ciphers using TADA: SIMON [BTCS+15],
SPECK [BTCS+15], AES [DR02] and PRIDE [ADK+14]. Results are summarized in
Table 4. More details are presented in Appendix D. The analysis was done on a standard
laptop computer with Intel Haswell family CORE i7 and 8 GB RAM. For SPECK and

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 17

Table 4: Evaluation by TADA on different implementations.
Cipher implementation SIMON SPECK AES PRIDE

of lines of code (unrolled) 1,272 663 2,057 1590
of nodes in DFG 1,595 843 2,060 1763
of edges in DFG 2,709 1,562 3,209 2586

evaluation time (min) 17.2 9.8 298.7 4.6
fault attack found [TBM14] new [Gir05] new

of known nodes before attack 66 32 69 16
of known nodes after attack 162 117 149 196

of round keys found 2 2 1 2

PRIDE, we were able to find implementation specific attacks that have not been presented
yet, since it is not possible to identify such attack from the cipher-level. For AES and
SIMON, previously published DFA [Gir05, TBM14] were found.

It is to be noted that while AES uses a full key length in each round, SIMON, SPECK
and PRIDE only use half of it. Therefore, for a full key recovery, it is necessary to attack
consecutive two rounds of these ciphers. The first step is to recover the last round key,
then peel-off this round, and continue with the attack on the penultimate round.
SIMON. SIMON is an ultra-lightweight block cipher, based on the balanced Feistel
structure. It supports block sizes from 32 up to 128 bits, with key sizes ranging from 64 to
256 bits. Number of rounds depends on the key size, and ranges between 32 and 72. In
each round, it uses three operations – bitwise AND, bitwise shift, and XOR. Schematic of
SIMON is depicted in Figure 5(a).

For SIMON implementation4, TADA found 8 vulnerable bitwise AND instructions that
are all exploitable. The last round key and the second last round key were recovered. This
attack is the same attack as state of the art DFA on SIMON [TBM14].
SPECK. Similarly to SIMON, it is an ultra-lightweight block cipher. It offers the same
block and key sizes, however the number of rounds ranges from 22 to 34. It follows ARX
structure – each round consists of a modular addition, rotations, and XORs. Schematic of
SPECK is depicted in Figure 5(b).

For SPECK implementation4, TADA found 11 vulnerable instructions, among which
9 are exploitable. These 9 consist of 8 additions (with carry) and 1 multiplication. The
other 2 vulnerable instructions are additions with carry which can only give 7 bits of the
target nodes. Details are summarized in Table 5. Here “keyx[y]” denotes the (y + 1)th
byte of round key in round x.

The attack on multiplication is novel and implementation specific. This particular
multiplication instruction (no. 595 in Table 5) multiplies a value with constant 8, which
corresponds to 3−bit rotation to the left in the second last round of the cipher design.
Attack details output by TADA suggests fault masks 0x10, 0x40 for retrieving the 0th
and 1st bit of target node and 0x08 for retrieving the 2− 7th bits. If a fault mask 0x08
is injected in the constant 8, the operation will be changed to multiplication by 0. We
emphasize that such attack cannot be seen from a cipher design level, which only shows
the rotations, but leaves it to implementer on how to realize them. Normally, rotation
is a linear operation and therefore, cannot be attacked by DFA – the input and output
difference would remain the same, it would only change the position, giving no information
on the processed data. We note that multiplication by 8 is not the only way to implement
3−bit rotation. Only after the implementation analysis by TADA, one can observe the
vulnerability caused by using the multiplication by a constant.
Remark 4. If we consider the attack to be successful with only 7 bits recovered, the analysis
time on SPECK is reduced to 1.9 minutes. In such case, TADA gave us the state-of-the-art
attack published in [TBM14]. It found 8 vulnerable addition (with carry) operations,
recovered the last round key and the second last round key. But 2 bits of brute force is
required. Details are outlined in Table 10.

4https://github.com/openluopworld/simon_speck_on_avr/tree/master/AVR

https://github.com/openluopworld/simon_speck_on_avr/tree/master/AVR

18 Fully Automated DFA on Software Implementations of Block Ciphers

Li Ri

≪ 1

≪ 8

&

≪ 2 Ki

Li+1 Ri+1

Legend

& bitwise AND

bitwise XOR

≪ m m-bit rotation
to the left

Li Ri

≫ 8

Ki ≪ 3

Li+1 Ri+1

Legend

modular addition

bitwise XOR

≪ m m-bit rotation
to the left

≫ m m-bit rotation
to the right

(a) (b)
Figure 5: Schematic of one round of (a) SIMON and (b) SPECK block cipher.

AddRoundKey

Ki

SubBytes

Sbox

x
x
x
x

ShiftRows

⊗c(x)

x
x

x
x

MixColumns

Xi Xi+1

S S S S S S S S S S S S S S S S

L0 L1 L2 L3

Ki

(a) (b)
Figure 6: Schematic of one round of (a) AES and (b) PRIDE block cipher.

AES. AES is the current NIST standard for symmetric cryptography and therefore, widely
used in real world applications. The block size of AES is 128 bits, while the key sizes can
be chosen between 128, 192, and 256-bit variants. Number of rounds varies accordingly,
and can be either 10, 12, or 14. It is based on substitution-permutation network structure
(SPN) and consists of four operations per round: AddRoundKey, SubBytes, MixColumns,
and ShiftRows. Schematic of AES is depicted in Figure 6(a) (picture was drawn with a
usage of library from [Jea16]).

For AES implementation taken from Ecrypt II public repository5, TADA found the
same attack as in [Gir05]. The attack takes advantage of SubBytes operation, implemented
as a table lookup, which is the only non-linear part of the algorithm. With successful
attacks on 16 table lookups, TADA recovered the last round key.
PRIDE. As another SPN representative, we have chosen lightweight cipher PRIDE. The
block size is 64 bits, while the key size is 128 bits. Number of rounds is 20, where the
first 19 rounds are identical and the last round ends with a substitution layer. In the
implementation taken from public repository6, the Sbox is implemented in algebraic form,

5https://perso.uclouvain.be/fstandae/source_codes/lightweight_ciphers/source/AES.asm
6https://github.com/FreeDisciplina/BlockCiphersOnAVR/tree/master/PRIDE_64_128_AVR

Table 5: Attack on SPECK found by TADA - Each row corresponds to a vulnerable
instruction with sequence number “No.” and operation with “Mnemonics” such that after
the attack on this instruction, the number of known nodes is given by “# of known nodes”
and the key nodes that are retrieved are given by the last column.

No. Mnemonics # of known Key nodes recoverednodes
606 ADD 43 key22[0]
607 ADC 52 key22[1]
608 ADC 63 key22[2]
578 ADD 72 -
579 ADC 81 key21[1]
580 ADC 90 key21[2]
595 MUL 99 key21[0],key22[3]
550 ADD 108 -
551 ADC 117 key21[3]

https://perso.uclouvain.be/fstandae/source_codes/lightweight_ciphers/source/AES.asm
https://github.com/FreeDisciplina/BlockCiphersOnAVR/tree/master/PRIDE_64_128_AVR

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 19

therefore, unlike in AES implementation, no table lookup is necessary. Details on this
implementation are shown in Appendix C. Schematic of PRIDE is depicted in Figure 6(b).

TADA found a new attack that exploits the bitwise AND operations, which are used for
the implementation of Sbox (see Appendix C). 10 of such operations are analyzed and
exploited, revealing the last two round keys.

6 Countermeasure implementation based on TADA
An important decision when implementing a countermeasure is how many rounds should be
protected. As some techniques, such as round redundancy, are relatively expensive (> 2×
time/space overhead), it is vital to know the minimal protection threshold. Especially
since there have been proposals targeting middle rounds of AES [PY06, DFL11] and
DES [Riv09b]. To show the practicality of the attack information outputted by TADA, we
will explain how to determine the number of rounds that have to be protected to make the
found attacks ineffective.

In general, it can be assumed that the best differential cryptanalysis to date gives a
good overview of the possibilities of DFA on internal rounds, since DFA is essentially a
differential cryptanalysis on a reduced-round cipher. Therefore, in [PY06], the authors
suggested a combination of these two techniques to attack round R − 5. Since in our
approach we consider DFA in its pure form, the question reduces to how to achieve the
fault found by TADA by injecting faults in earlier rounds without causing collisions7. To
determine the number of rounds that need to be protected against DFA for a cryptographic
implementation, we have designed an addition to TADA that implements Algorithm 4.
Here we utilize the attacks found in Section 5 and refer to the nodes that were proven
to reveal the key information when faulted as exploitable. Since the DFG is already
constructed at the beginning step of the analysis with TADA , the algorithm checks the
relationships between the nodes to identify the possible collisions. For each exploitable
node b and its parent p, Algorithm 4 checks if p affects b with a collision by analyzing pairs
of nodes x, y that are both parents of b and children of p: a collision appears when there is
no parent-child relationship between x, y; in other words, they lie in different paths from p
to b. The output is a set of nodes P that affect the exploitable node b without a collision,
effectively determining the earliest round that can be attacked by the given DFA attack.

Since TADA allows assembly code annotations, with the usage of Algorithm 4 it is
advised to use the “round” annotation so that it can be easily determined in which round
is the node p ∈ P located. After running the algorithm on exploitable nodes from Section 5,
we obtained the information about the earliest possible rounds to be attacked, stated in
Table 6. This information can be used for deciding on countermeasure implementation,
and afterwards, for verification whether the protection was implemented correctly, thus
extending the use cases of TADA greatly. Moreover, such information also helps to find
more efficient attacker model, reducing the number of faults. To illustrate the amount of
resources that can be saved by taking the information from Table 6 into account, it is
≥60% of resources in case of AES-128, 80% in case of PRIDE, ≥81% in case of SPECK,
and ≥90% in case of SIMON.

In the following, we will focus on AES, where an optimal single fault DFA attack was
already found [TM09], making the comparison easy. Table 7 shows the number of vulnerable
nodes found by Algorithm 4 in earlier rounds. The result matches the expectation, where
in total 16 nodes were identified in round 8 that spread into the full state at the input
of the last Sbox. This is aligned with the optimal attack in [TM09]. However, it is also
important to stress that in round 7, there are 64 nodes allow a fault attack, each of them
spreading into 4 bytes in the last Sbox input. It means that rounds 7, 8, 9, 10 have to

7By collision we understand reaching the exploitable node (found by TADA) by propagating through
two different paths in the DFG.

20 Fully Automated DFA on Software Implementations of Block Ciphers

Algorithm 4: The algorithm for finding vulnerable nodes in earlier rounds.
Input : DFG: customized data flow graph corresponding to F ; a: target node; b:

exploitable node found by TADA.
Output :P : set of parent nodes of b which are vulnerable.

1 for p: parents of b do
2 if a 6= b and p is a parent of b then
3 continue;
4 isCollision := false;
5 for x: parents of b and children of p do
6 for y: parents of b and children of p; x 6= y do
7 if x is not a parent of y and y is not a parent of x then
8 isCollision := true;
9 break;

10 if not isCollision then
11 P .add(p);

12 return P ;

Table 6: Results of running Algorithm 4 on exploitable nodes found in Section 5. R denotes
the number of rounds for each cipher.

Cipher implementation SIMON SPECK AES PRIDE
Earliest round attacked R− 2 R− 3 R− 3 R− 3

be countermeasure-protected, saving over 60% resources when considering the minimal
countermeasure (the last round does not contain the MixColumns operation and therefore,
is significantly smaller). The results for the three remaining cipher implementations are
provided in Appendix E.

7 Conclusions
In this work, we proposed a method for fully automated DFA attack on assembly implemen-
tations of symmetric key cryptographic algorithms. The automation of this approach was
implemented in TADA – Tool for Automated DFA on Assembly. To show the practicality
of TADA, we presented novel implementation-specific attacks on SPECK, and PRIDE
that were not published before. We also provided evaluation on AES and SIMON, where
TADA was able to find existing DFA attack published in literature.

In the future, we would like to implement a multi-fault adversarial model, allowing
injecting more than one fault during one encryption/decryption routine. Such model is
necessary for defeating wide range of fault countermeasures based on redundancy. Another
line of interesting future work would be to extend the analysis to different ISAs. This
would allow to compare the same code written in C, compiled for different architectures,
providing insights on how the vulnerabilities differentiate among various ISAs.

This research was supported (in part) by following projects: NRF2016NCR-NCR002-026 (Smart
Binary-Level Vulnerability Assessment For Cyber-Attack Prevention); NRF2018NCR-NSOE003-0001
(National Satellite Of Excellence In Trustworthy Software Systems); NRF2014NCR-NCR001-030 (Securify:
A Compositional Approach Of Building Security Verified System).

Table 7: Results of analysing AES-128 implementation using Algorithm 4.
Round 7 8 9 10

of vulnerable nodes 64 64 48 16 64 48 16 16
Affects # exploitable nodes 4 4 8 16 1 2 4 1

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 21

References
[ABPS14] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale.

Differential fault analysis for block ciphers: An automated conservative
analysis. In Proceedings of the 7th International Conference on Security of
Information and Networks, SIN ’14, New York, USA, 2014. ACM.

[ADK+14] Martin R Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander,
Christof Paar, and Tolga Yalçın. Block ciphers–focus on the linear layer (feat.
pride). In International Cryptology Conference, pages 57–76. Springer, 2014.

[BCC+14] Julien Bringer, Claude Carlet, HervÃľ Chabanne, Sylvain Guilley, and
Houssem Maghrebi. Orthogonal direct sum masking: A smartcard friendly
computation paradigm in a code, with builtin protection against side-channel
and fault attacks. Cryptology ePrint Archive, Report 2014/665, 2014.
http://eprint.iacr.org/2014/665.

[BDF+14] Gilles Barthe, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
and Jean-Christophe Zapalowicz. Synthesis of fault attacks on cryptographic
implementations. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 1016–1027. ACM, 2014.

[BECN+06] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The
Sorcerer’s Apprentice Guide to Fault Attacks. Proceedings of the IEEE,
94(2):370–382, 2006.

[Ber08] Daniel J Bernstein. Chacha, a variant of salsa20. In Workshop Record of
SASC, volume 8, 2008.

[BGV17] Arthur Beckers, Benedikt Gierlichs, and Ingrid Verbauwhede. Fault analysis
of the chacha and salsa families of stream ciphers. Lecture Notes in Computer
Science, 2017.

[BH16] Jakub Breier and Xiaolu Hou. Feeding two cats with one bowl: On designing a
fault and side-channel resistant software encoding scheme (extended version).
Cryptology ePrint Archive, Report 2016/931, 2016. http://eprint.iacr.
org/2016/931.

[BHB19] Jakub Breier, Xiaolu Hou, and Shivam Bhasin, editors. Automated Methods
in Cryptographic Fault Analysis. Springer, 1st edition, Mar 2019.

[BHL18] Jakub Breier, Xiaolu Hou, and Yang Liu. Fault attacks made easy: Differ-
ential fault analysis automation on assembly code. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2018(2):96–122, 2018.

[BJC15] Jakub Breier, Dirmanto Jap, and Chien-Ning Chen. Laser profiling for the
back-side fault attacks: With a practical laser skip instruction attack on aes.
In Proceedings of the 1st ACM Workshop on Cyber-Physical System Security,
CPSS ’15, pages 99–103, New York, NY, USA, 2015. ACM.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The skinny
family of block ciphers and its low-latency variant mantis. Cryptology ePrint
Archive, Report 2016/660, 2016. https://eprint.iacr.org/2016/660.

http://eprint.iacr.org/2014/665
http://eprint.iacr.org/2016/931
http://eprint.iacr.org/2016/931
https://eprint.iacr.org/2016/660

22 Fully Automated DFA on Software Implementations of Block Ciphers

[BM16] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious case of rowham-
mer: flipping secret exponent bits using timing analysis. In International
Conference on Cryptographic Hardware and Embedded Systems, pages 602–624.
Springer, 2016.

[BP17] Alex Biryukov and Leo Perrin. State of the art in lightweight symmetric
cryptography. Cryptology ePrint Archive, Report 2017/511, 2017.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems.
In Advances in Cryptology-CRYPTO, volume 90, pages 2–21. Springer, 1991.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Advances in Cryptology - CRYPTO ’97, pages 513–525. Springer,
1997.

[BTCS+15] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and
L. Wingers. The simon and speck lightweight block ciphers. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, June
2015.

[CLMFT14] Franck Courbon, Philippe Loubet-Moundi, Jacques JA Fournier, and Assia
Tria. Adjusting laser injections for fully controlled faults. In International
workshop on constructive side-channel analysis and secure design, pages
229–242. Springer, 2014.

[DFL11] Patrick Derbez, Pierre-Alain Fouque, and Delphine Leresteux. Meet-in-the-
middle and impossible differential fault analysis on aes. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 274–291.
Springer, 2011.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In Proceedings of the 14th International Conference on Tools and Al-
gorithms for Construction and Analysis of Systems (TACAS 2008), Budapest,
Hungary, pages 337–340, 2008.

[DMB11] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories:
Introduction and applications. Commun. ACM, 54(9):69–77, September 2011.

[DMM+13] Amine Dehbaoui, Amir-Pasha Mirbaha, Nicolas Moro, Jean-Max Dutertre,
and Assia Tria. Electromagnetic glitch on the aes round counter. In Emmanuel
Prouff, editor, Constructive Side-Channel Analysis and Secure Design, pages
17–31, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[DPP+16] Louis Dureuil, Guillaume Petiot, Marie-Laure Potet, Thanh-Ha Le, Aude
Crohen, and Philippe de Choudens. Fissc: A fault injection and simulation
secure collection. In Computer Safety, Reliability, and Security: 35th Inter-
national Conference, SAFECOMP 2016, Trondheim, Norway, pages 3–11.
Springer, 2016.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2002.

[GBH+16] M. Gay, J. Burchard, J. Horacek, A.S.M. Ekossono, T. Schubert, B. Becker,
I. Polian, and M Kreuzer. Small scale aes toolbox: Algebraic and propositional
formulas, circuit implementations and fault equations. FCTRU, 2016. http:
//hdl.handle.net/2117/99210.

http://hdl.handle.net/2117/99210
http://hdl.handle.net/2117/99210

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 23

[Gir05] Christophe Giraud. Dfa on aes. In Proceedings of the 4th International
Conference on Advanced Encryption Standard, AES’04, pages 27–41. Springer,
2005.

[GST12] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. Infective
computation and dummy rounds: Fault protection for block ciphers without
check-before-output. In Alejandro Hevia and Gregory Neven, editors, Progress
in Cryptology – LATINCRYPT 2012, pages 305–321, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[HZFW15] Yuming Huo, Fan Zhang, Xiutao Feng, and Li-Ping Wang. Improved differen-
tial fault attack on the block cipher speck. In Fault Diagnosis and Tolerance
in Cryptography (FDTC), 2015 Workshop on, pages 28–34. IEEE, 2015.

[JB15] Dirmanto Jap and Jakub Breier. Differential fault attack on lea. In Ismail
Khalil, Erich Neuhold, A Min Tjoa, Li Da Xu, and Ilsun You, editors,
Information and Communication Technology, pages 265–274, Cham, 2015.
Springer International Publishing.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016.

[JLSH13] Kitae Jeong, Yuseop Lee, Jaechul Sung, and Seokhie Hong. Improved differ-
ential fault analysis on present-80/128. International Journal of Computer
Mathematics, 90(12):2553–2563, 2013.

[JT12] Marc Joye and Michael Tunstall. Fault Analysis in Cryptography. Springer
Publishing Company, Incorporated, 2012.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Advances in Cryptology — CRYPTO’ 99: 19th Annual International
Cryptology Conference, California, USA, pages 388–397. Springer, 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’96, pages 104–113, London,
UK, UK, 1996. Springer-Verlag.

[KPB+17] SV Dilip Kumar, Sikhar Patranabis, Jakub Breier, Debdeep Mukhopadhyay,
Shivam Bhasin, Anupam Chattopadhyay, and Anubhab Baksi. A practical
fault attack on arx-like ciphers with a case study on chacha20. In 2017
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC, Taipei,
Taiwan, 2017.

[KRH17] Punit Khanna, Chester Rebeiro, and Aritra Hazra. XFC: A Framework for
eXploitable Fault Characterization in Block Ciphers. In Proceedings of the
54th Annual Design Automation Conference 2017, DAC ’17, pages 8:1–8:6.
ACM, 2017.

[LCFS17] Benjamin Lac, Anne Canteaut, Jacques J.A. Fournier, and Renaud Sirdey.
Thwarting fault attacks using the internal redundancy countermeasure (irc).
Cryptology ePrint Archive, Report 2017/910, 2017. http://eprint.iacr.
org/2017/910.

[MDH+13] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz. Elec-
tromagnetic fault injection: Towards a fault model on a 32-bit microcontroller.
In 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages
77–88, Aug 2013.

https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/
http://eprint.iacr.org/2017/910
http://eprint.iacr.org/2017/910

24 Fully Automated DFA on Software Implementations of Block Ciphers

[MHA+15] Baolei Mao, Wei Hu, Alric Althoff, Janarbek Matai, Jason Oberg, Dejun Mu,
Timothy Sherwood, and Ryan Kastner. Quantifying timing-based information
flow in cryptographic hardware. In Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design, ICCAD ’15, pages 552–559,
Piscataway, NJ, USA, 2015. IEEE Press.

[PY06] Raphael C-W Phan and Sung-Ming Yen. Amplifying side-channel attacks
with techniques from block cipher cryptanalysis. In International Conference
on Smart Card Research and Advanced Applications, pages 135–150. Springer,
2006.

[PYGS16] Conor Patrick, Bilgiday Yuce, Nahid Farhady Ghalaty, and Patrick Schau-
mont. Lightweight fault attack resistance in software using intra-instruction
redundancy. Cryptology ePrint Archive, Report 2016/850, 2016. http:
//eprint.iacr.org/2016/850.

[Riv09a] Matthieu Rivain. Differential fault analysis on des middle rounds. In
Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2009: 11th International Workshop Lausanne, Switzer-
land, September 6-9, 2009 Proceedings, pages 457–469, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[Riv09b] Matthieu Rivain. Differential fault analysis on des middle rounds. In
Cryptographic Hardware and Embedded Systems-CHES 2009, pages 457–469.
Springer, 2009.

[RRHB19] Indrani Roy, Chester Rebeiro, Aritra Hazra, and Swarup Bhunia. Safari:
Automatic synthesis of fault-attack resistant block cipher implementations.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2019.

[SD15] Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer bug to
gain kernel privileges. Black Hat, 15, 2015.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. The Bell System
Technical Journal, 28(4):656–715, Oct 1949.

[SMD18] Sayandeep Saha, Debdeep Mukhopadhyay, and Pallab Dasgupta. Expfault:
An automated framework for exploitable fault characterization in block ciphers.
Cryptology ePrint Archive, Report 2018/295, 2018. https://eprint.iacr.
org/2018/295.

[TBM14] H. Tupsamudre, S. Bisht, and D. Mukhopadhyay. Differential fault analysis
on the families of simon and speck ciphers. In 2014 Workshop on Fault
Diagnosis and Tolerance in Cryptography, pages 40–48, Sept 2014.

[TM09] Michael Tunstall and Debdeep Mukhopadhyay. Differential fault analysis of
the advanced encryption standard using a single fault. Cryptology ePrint
Archive, Report 2009/575, 2009.

[ZGZ+16] Fan Zhang, Shize Guo, Xinjie Zhao, Tao Wang, Jian Yang, Francois-Xavier
Standaert, and Dawu Gu. A framework for the analysis and evaluation of
algebraic fault attacks on lightweight block ciphers. IEEE Transactions on
Information Forensics and Security, 11(5):1039–1054, 2016.

http://eprint.iacr.org/2016/850
http://eprint.iacr.org/2016/850
https://eprint.iacr.org/2018/295
https://eprint.iacr.org/2018/295

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 25

[ZZG+13] Fan Zhang, Xinjie Zhao, Shize Guo, Tao Wang, and Zhijie Shi. Improved
algebraic fault analysis: A case study on piccolo and applications to other
lightweight block ciphers. In International Workshop on Constructive Side-
Channel Analysis and Secure Design, pages 62–79. Springer, 2013.

A Attack details for Fex

Here we present more details output by TADA for Fex (in Table 2). Table 8 summaries
the attack details on vulnerable instruction 4. After the analysis of instruction 4, both key
bytes are recovered and the cipher is broken. Figure 7 shows the updated DFG after the
attack on instruction 4. We can see that all the nodes are known now.

Table 8: Summary of TADA output for DFA attacks on Fex in Table 2 (values of
x, out, var0, var1 are in hexadecimal format)

target vulnerable (k, δ, x, out, val0, val1) retrieved
node node key byte

r1(1) r0(0)

(0, 1, r0(5), 0x01, 0x00, 0x01)

key1[1]

(1, 2, r0(5), 0x02, 0x00, 0x02)
(2, 4, r0(5), 0x04, 0x00, 0x04)
(3, 8, r0(5), 0x28, 0x00, 0x08)
(4, 16, r0(5), 0x10, 0x00, 0x10)
(5, 32, r0(5), 0x20, 0x00, 0x20)
(6, 64, r0(5), 0x40, 0x00, 0x40)
(7, 128, r0(5), 0x80, 0x00, 0x80)

r0(0) r1(1)

(0, 1, r0(5), 0x01, 0x00, 0x01)

key1[0]

(1, 2, r0(5), 0x02, 0x00, 0x02)
(2, 4, r0(5), 0x04, 0x00, 0x04)
(3, 8, r0(5), 0x08, 0x00, 0x08)
(4, 16, r0(5), 0x10, 0x00, 0x10)
(5, 32, r0(5), 0x20, 0x00, 0x20)
(6, 64, r0(5), 0x40, 0x00, 0x40)
(7, 128, r0(5), 0x80, 0x00, 0x80)

X+ (0)

r0 (0)

ld (0)

r1 (1)

ld (1)

r0 (4)

and (4) and (4)

r1 (6)

eor (6)

key1+ (2)

r2 (2)

ld (2)

r3 (3)

ld (3)

r0 (5)

eor (5) eor (6)eor (5)

x+ (7)

st (7)

x+ (8)

st (8)

Figure 7: Updated graph generated by TADA after two successful attacks on vulnerable
instruction 4 of example cipher Fex in Table 2.

B Algorithm for attacking table lookup
In this part, we detail the algorithm for attacking Sbox implemented as a table lookup.

26 Fully Automated DFA on Software Implementations of Block Ciphers

Algorithm 5: The algorithm for attacking table lookup.
Input :ψ: DFA equations and the equation for fault mask; b: vulnerable node; a: target

node; S: the list of knowns nodes in the DFA equations; ψδ: constraint for fault
masks as in Equation (3).

Output : boolean: true if a can be obtained by attacking b.
1 list= {δ,∆};
2 for c: variables in DFA do
3 if b affects c then
4 list.add(c);

5 for x in S do
6 counter = 0;
7 for k = 0, 1, . . . , 7 do
8 φ := ψ ∧ (∆ = x⊕ x′);
9 make 8 copies of φ w.r.t. list;

10 let φi denote the ith copy of φ;
11 ψ := φ1 ∧ φ2 ∧ φ3 ∧ φ4 ∧ φ5 ∧ φ6 ∧ φ7 ∧ φ8;
12 V := all variables in ψ;
13 V ′ := V \{δ1, ..., δ8,∆1, ...,∆8};
14 C0 := ∀v ∈ V ′ : ψ ⇒ a[k] = 0;
15 C1 := ∀v ∈ V ′ : ψ ⇒ a[k] = 1;
16 if (ψδ ∧ (∀{∆1, ...,∆8} : C0 ∨ C1)) is satisfiable then
17 counter++;
18 save to file (k, x);

19 if counter=8 then
20 return true;

21 return false;

The algorithm aims to construct the 8 pairs (δ1,∆1), (δ2,∆2), . . . , (δ8,∆8), where
δi(1 ≤ i ≤ 8) are 8 different fault masks that satisfy the constraint given in Equation (3),
and ∆j(1 ≤ j ≤ 8) denote the corresponding output masks. First we identify the variables
that change when input mask δ changes and store them in list (lines 1− 4). Next we
make 8 copies of φ (line 9). They are identical to φ except for the variables in list, which
are replaced by 8 different variables in each of the 8 copies. For example, δ is replaced by
δ1, δ2, . . . , δ8 in φ1, φ2, . . . , φ8 respectively. If the attack on the kth bit is successful, (k, x)
is saved to file (line 16− 18).

(δ1 = 1)∧(δ2 = 2)∧(δ3 = 4)∧(δ4 = 8)∧(δ5 = 16)∧(δ6 = 32)∧(δ7 = 64)∧(δ8 = 128). (3)

This pair (k, x) means that by flipping the bits of vulnerable node b and observing the
change in the known node x, the eight pairs of input and output masks can uniquely
identify the kth bit of a. If all 8 bits of the target node a can be obtained by attacking
vulnerable node b, the algorithm returns true (line 19− 20).

C PRIDE Sbox implementation
The equations for Sbox of PRIDE [ADK+14] are as follows:

A = c⊕ (a&b) (4)
B = d⊕ (b&c) (5)
C = a⊕ (A&B) (6)
D = b⊕ (B&C), (7)

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 27

where the input is a 4−bit variable with bits a, b, c, d and the output is a 4−bit variable
with bits A,B,C,D.

D Attack details
In this part, we provide the attack details on cipher implementations that were chosen
for TADA evaluation in Section 5. Each of the tables provides the information on which
instructions were identified as vulnerable and what was the attack flow leading to secret
key retrieval.

Table 9 shows the attack on SIMON, Table 10 shows attack on SPECK (see Remark 4),
additionally to one described in Section 5. Table 11 provides attack details on AES, and
finally Table 12 details attack on PRIDE. Here “keyx[y]” refers to the (y + 1)th byte of
round key in round x.

Table 9: Attack on SIMON found by TADA - Each row corresponds to a vulnerable
instruction with sequence number “No.” such that after the attack on this instruction,
the number of known nodes is given by “# of known nodes” and the key nodes that are
retrieved are given by the third column.

No. # of known nodes key nodes recovered
1136 73 -
1137 83 -
1138 92 -
1139 106 -
1174 115 key32[3]
1175 129 key31[1], key32[0]
1176 142 key31[2], key32[1]
1177 162 key31[0], key31[3], key32[2]

Table 10: Attack on SPECK found by TADA (considering obtaining 7 bits as successful
attack) - Each row corresponds to a vulnerable instruction with sequence number “No.”
such that after the attack on this instruction, the number of known nodes is given by “# of
known nodes” and the key nodes that are retrieved are given by the third column, in case
only 7 bits of the target node are obtained, the brute force complexity is indicated by 1.

No. # of known nodes key nodes recovered brute force
606 43 key22[0] -
607 52 key22[1] -
608 63 key22[2] -
609 68 key22[3] 1
578 79 key21[0] -
579 88 key21[1] -
580 99 key21[2] -
581 104 key21[3] 1

28 Fully Automated DFA on Software Implementations of Block Ciphers

Table 11: Attack on AES found by TADA - Each row corresponds to a vulnerable
instruction with sequence number “No.” such that after the attack on this instruction,
the number of known nodes is given by “# of known nodes” and the key nodes that are
retrieved are given by the third column.

No. # of known nodes key nodes recovered
1806 73 key11[0]
1808 77 key11[1]
1810 81 key11[2]
1812 85 key11[3]
1814 91 key11[7]
1816 96 key11[4]
1818 101 key11[5]
1820 106 key11[6]
1822 112 key11[10]
1824 118 key11[11]
1826 123 key11[8]
1828 128 key11[9]
1830 133 key11[13]
1832 138 key11[14]
1834 143 key11[15]
1836 149 key11[12]

Table 12: Attack on PRIDE found by TADA - Each row corresponds to a vulnerable
instruction with sequence number “No.” such that after the attack on this instruction,
the number of known nodes is given by “# of known nodes” and the key nodes that are
retrieved are given by the third column.

No. # of known nodes key nodes recovered
1504 21 -
1506 27 -
1508 32 -
1516 54 -

1522 106

key20[0],key20[1],
key20[2],key20[3],
key20[4],key20[5],
key20[6],key20[7]

1422 111 -
1424 117 -
1426 122 -
1434 144 -

1440 196

key19[0],key19[1],
key19[2],key19[3],
key19[4],key19[5],
key19[6],key19[7]

Xiaolu Hou, Jakub Breier, Fuyuan Zhang and Yang Liu 29

E Further results from Algorithm 4
This part provides the remaining results obtained by running Algorithm 4 from Section 6.
More specifically, Tables 13, 14, and 15 provide results for SPECK, SIMON, and PRIDE,
respectively.

Table 13: Results for SPECK32/64 implementation.
Round 19 20 21 22

of vulnerable nodes 9 2 12 7 9 9 1 13
Affects # exploitable nodes 1 2 1 2 1 2 3 1

Table 14: Results for SIMON32/64 implementation.
Round 30 31 32

of vulnerable nodes 5 9 4 10 11 5 5 2 1
Affects # exploitable nodes 1 2 3 1 2 3 1 2 3

Table 15: Results for PRIDE implementation.
Round 17 18 19 20

of vulnerable nodes 4 13 5 5 12 8 4 6
Affects # exploitable nodes 1 1 2 3 1 2 3 1

	Introduction
	Related work
	Background
	Differential Fault Analysis
	Satisfiability Modulo Theories

	TADA Methodology
	Fault Models
	Attacks on Target Instructions
	TADA Usage
	TADA Design
	SMT Solver Module

	Evaluation
	Countermeasure implementation based on TADA
	Conclusions
	Attack details for Fex
	Algorithm for attacking table lookup
	PRIDE Sbox implementation
	Attack details
	Further results from Algorithm 4

