
Cryptographic Constructions Supporting Implicit

Data Integrity

Michael Kounavis, David Durham† and Sergej Deutsch†

† Intel Labs, Intel Corporation, 2111, NE 25th Avenue, Hillsboro, OR 97124

email: michael kounavis@hotmail.com.

{david.durham, sergej.deutsh}@intel.com

Rev. 0.1 May 2018, Rev. 1.0 Feb. 2021

Abstract

We study a methodology for supporting data integrity called ‘implicit integrity’ and
present cryptographic constructions supporting it. Implicit integrity allows for corruption
detection without producing, storing or verifying mathematical summaries of the content
such as MACs and ICVs, or any other type of message expansion. As with authenti-
cated encryption, the main idea behind this methodology is that, whereas typical user
data demonstrate patterns such as repeated bytes or words, decrypted data resulting from
corrupted ciphertexts no longer demonstrate such patterns. Thus, by checking the entropy
of some decrypted ciphertexts, corruption can be possibly detected.

The main contribution of this paper is a notion of security which is associated with
implicit integrity, and which is different from the typical requirement that the output of
cryptographic systems should be indistinguishable from the output of a random permuta-
tion. The notion of security we discuss reflects the fact that it should be computationally
difficult for an adversary to corrupt some ciphertext so that the resulting plaintext demon-
strates specific patterns. We introduce two kinds of adversaries. First, an input perturbing
adversary performs content corruption attacks. Second an oracle replacing adversary per-
forms content replay attacks. We discuss requirements for supporting implicit integrity in
these two adversary models, and provide security bounds for a construction called IVP, a
three-level confusion diffusion network which can support implicit integrity and is inexpen-
sive to implement.

1 Introduction

1.1 The Concept of implicit data integrity

This paper addresses the problem of corruption detection without producing, storing or ver-
ifying mathematical summaries of the content. Such summaries, typically known as Message
Authentication Codes (MACs) [6] [7] or Integrity Check Values (ICVs) are typically costly to
maintain and use. The standard way of supporting data integrity is by using MACs produced
by cryptographic hash functions such as SHA256 [4] or SHA3 [5], the use of which typically
results in latency, storage and communication overheads. These overheads are due to the
unavoidable message expansion associated with using the MACs. For example, if a system
protects a cache line with a MAC [10], this MAC value needs to be read in every data read
operation. This wastes memory access bandwidth resources as each data read operation needs
to be realized as two memory read operations.

plaintext

content
(e.g., cache line)

encryption

ciphertext

corruption

corrupted
ciphertext

decryption

corrupted
plaintext

modified content

distinguishable
from random

no longer
distinguishable

from random

Figure 1: The concept of implicit integrity

Another area where our work applies is in network and communication systems which
employ a number of different protocols at different layers of the network stack, ranging from
the link layer to the application layer, with additional corruption detection mechanisms [6]
[7] [31]. Many of these protocols employ corruption detection mechanisms to cater for any
intentional or unintentional corruptions encountered during the transmission of data from
point A to point B. The cost of providing such capabilities is the additional metadata per
packet, which can be sigificant. This paper describes an alternative methodology that uses
pattern techniques in order to support corruption detection for the large majority of user data
without message expansion. The main idea is discussed below.

If some content exhibits patterns (i.e., has low entropy), then such content can be dis-
tinguished from random data. Let’s consider that this content is encrypted, as shown in the
figure, where the encryption algorithm is a good pseudo-random permutation and thus can
successfully approximate a random oracle. The cipher text which is produced in this way
is no longer distinguishable from random data, under certain reasonable assumptions about
the adversary. Any corruption on the cipher text results in a new cipher text value, which is
different from the original one. Furthermore, any decryption operation on this new cipher text
value results in a corrupted plaintext value which is different from the original one as well. As
decryption is the inverse operation of encryption, the decryption algorithm also approximates
a random oracle under reasonable adversary models. Because of this reason, the corrupted
plaintext value is also indistinguishable from random data with very high probability. From a
system realization standpoint, the corrupted plaintext is indistinguishable from random data
because block ciphers or cryptographic constructions typically perform strong mixing of their
input bits. Due to an ‘avalanche effect’ associated with the decryption oracle, even a single
bit change in the cipher text can affect all bits of the decrypted plaintext. For these reasons,
checking the entropy of the result of a decryption operation can be a reliable test for detecting
corruption for some data. We refer to such methodology as ‘implicit data integrity’ or just
‘implicit integrity’.

One of the main challenges in building a system, the operation of which is based on the
principle of implicit integrity is how to define ‘high or ‘low’ entropy. It is not straightforward
how to determine that some content’s entropy is ‘low enough’ or ‘high enough’ so as to safely
deduce that the original content has not been corrupted.

2

Another challenge has to do with the design of cryptographic constructions for supporting
implicit integrity and the derivation of analytical proofs associated with security claims. A
large body of work exists that focuses on bounds associated with distinguishing the output
of cryptographic constructions from that of a random permutation or a random function. In
our work we argue that such strong notion of security may not be required in the context of
implicit integrity. The security objective which we discuss in this paper is that it should be
computationally hard for adversaries to modify a set of given ciphertext messages so as to result
in plaintexts of low entropy, while preserving confidentiality. This paper focuses on formalizing
this security objective, exploring the requirements of cryptographic constructions supporting
it, and providing an example of a simple, implementable three level confusion diffusion network
that meets these requirements for a specific security level.

1.2 Paper Summary

A first topic covered by this technical report is the description of a class of constructions
which we refer to as ‘Random Oracles according to Observer functions’ (RO2). An observer
function is a function that searches the output of cryptographic systems in order to detect
unusual behavior, such as the presence of patterns. Patterns can be repeated nibbles, bytes,
words or double words. If an observer function detects unusual behavior with the same or
similar probability in a cryptographic system’s output as in a random oracle’s output then
such cryptographic system belongs to the class of RO2 constructions associated with the specific
observer function.

A second topic covered by this paper is the description of a security model against data
corruption and replay attacks, which is associated with implicit integrity and connected with
the class of RO2 constructions. Specifically, we show that if a construction is in the RO2 class,
then the construction always supports some form of implicit data integrity, and is secure in
the proposed model. The proposed model comprises two kinds of adversaries. First, an input
perturbing adversary is an algorithm which is given a set of ciphertext messages q0, . . . , qm−1,
the plaintexts of which exhibit patterns. The algorithm succeeds if it finds a ciphertext message
y which is different from q0, . . . , qm−1, the plaintext of which also exhibits patterns. Security in
this adversary model indicates protection against data corruption attacks. Second, an oracle
replacing adversary is an algorithm which, like the input perturbing adversary, is given a set
of cipher messages q0, . . . , qm−1 the plaintexts of which also exhibit patterns. The algorithm
succeeds if it replaces a set of internal random permutations R0, R1, . . . ,Rn−1 queried by the
decryption system with a new set of random permutations R′0, R′1, . . . ,R′n−1, so that there
exists a ciphertext message y ∈ {q0, . . . , qm−1} the plaintext of which continues to exhibit
patterns even when the permutations R0, R1, . . . ,Rn−1 are replaced by R′0, R′1, . . . ,R′n−1.
Security in this adversary model indicates protection against content replay attacks.

A third topic of this paper is a cryptographic construction called IVP (stands for ‘Implicit
integrity Via Pre-processing’), which is in the proposed class RO2. IVP is a three level confusion
diffusion network that includes pseudo-random permutations of varying widths. Proofs for
this construction derive from computing the probability that the system state is being altered
by the flow of differentials inside the construction. Differentials are caused by adversarial
perturbations. In our analysis we consider that the number of queries issued by adversaries
is bounded in such a way, so that the internal pseudo-random permutations queried by the
proposed construction are indistinguishable from truncated output random oracles. In this
case, differential signals coming out of these components are indistinguishable from random,
uniformly distributed and statistically independent signals.

3

1.3 Protecting data that do not exhibit patterns

One issue that needs addressing, when building a system that protects data using the principle
of implicit integrity, is how to detect corruption if data do not exhibit patterns. As we elaborate
below, patterns can be found in up to 91% of the data of client workloads and 84% of the data
of server workloads. The numbers come from observations on 111 million representative client
workload cache lines and 1.4 billion representative server workload cache lines. Whereas such
data can be protected using implicit integrity, the remaining 9% − 16% of the data need
protecting also.

Such design issue can be easily addressed. Implementations can protect the overwhelming
majority of user data that exhibit patterns using implicit integrity and the remaining data
using standard techniques. There is nothing in the implicit integrity methodology, discussed
here, that prevents it from being used together with other independent integrity mechanisms
such as MACs. Such solutions can co-exist with implicit integrity.

Cost reduction comes from the fact that only MACs computed from high entropy data
need to be stored and accessed. If some decrypted content exhibits patterns, then there is
some assurance that no corruption has occurred. If no patterns are exhibited, however, a
search can be made for a MAC associated with the content. If no MAC is found, then the
data is deemed corrupted. Otherwise, an integrity check is made using the returned MAC.
Such implementation can use a content addressable memory unit or a hash table for accessing
and managing MACs. We remind that MACs are significantly fewer than those required for
protecting all the data, and this is the main advantage of this approach. Further investigations
on hardware and operating system changes required in order to support implicit integrity are
beyond the scope of this paper.

2 Related work

2.1 Robust Authenticated Encryption (RAE)

References [26, 27] discuss an integrity methodology called Robust Authenticated Encryption
(RAE), which generally involves some type of message expansion in the form of some additional
bits of length λ. Such redundancy bits are appended to an input message before encryption.
At decryption time, RAE verifies that the redundancy bits have the value they are supposed
to have. The authors of [26, 27] also discuss a subcase of RAE where λ = 0. In this subcase,
integrity is provided by taking into account further redundancy which may exist in an input
message, besides the additional bits of length λ. Such subcase of RAE is equivalent to our
concept of implicit integrity. There are several differences between our work and references
[26, 27], however.

The first difference is in the extent of the security analysis provided concerning integrity
without message expansion. Message expansion (i.e., all cases where λ > 0) is an integral part
of the security methodology of references [26, 27]. In our work it is not. For example, the game
RAEΠ ,S defined in reference [26] involves a simulator S which is invoked only when there is
message expansion. Such simulator is part of this game and is used in the proofs that reduce
the security of the paper’s proposed construction AEZ to the indistinguishability of AEZ from
a pseudo-random permutation.

A second difference between our work and references [26, 27] is in the formulation of the
security objective that guides the design of the proposed cryptographic constructions. Refer-
ences [26, 27] base their notion of security on the indifferentiability or indistinguishability of
their proposed constructions from a random permutation or a random function. Indifferen-

4

tiability and indistinguishability are mostly used in these references in the general sense (as
in reference [28]). For example reference [26] proposes a wide block cipher design (AEZ) and
proves that this design is indeed difficult to distinguish from a wide random permutation. In
this paper we argue that, while such notion of security is useful, and the analysis of references
[26, 27] insightful, implicit integrity may not need such strong notion of security.

There is a simple argument to see why this is the case. Let’s consider some hypothetical
implicit integrity system, the security of which is based on the presence of some specific patterns
in input data. For example, patterns may be sequences of 10 repeated adjacent bytes, appearing
with probability 2−65.1 among random 1024 bit inputs, while being frequent among specific
user data. Let’s also consider that the provided security level of 65 bits is adequate to the
users of the system and that the users might not even mind of a small drop in the security
offered (e.g., if 62 or 63 bits of security are offered). Finally, let’s assume that the system
uses a wide block cipher which is highly indistinguishable from a wide random permutation,
where a distinguisher’s advantage is bounded by 2−256 given some adversary query budget. In
this hypothetical example, the distinguisher’s advantage is much smaller than the probability
of seeing patterns in corrupted input data. As a result, the security of the system is mostly
determined by the probability of seeing patterns in corrupted input data, and not by the
indistinguishability of the wide block cipher employed. Due to this fact, a wide block cipher
like the one employed may be functional but possibly unnecessary. A valid design could have
used an alternative wide construction, which may have been “more distinguishable” from a
random permutation, but still able to support the necessary security level associated with 62-
65 bit implicit integrity, and also provide confidentiality. The confidentiality provided might
not have been the same as the one provided by a wide block cipher, but it may have been the
same as the confidentiality provided by a mode of a block cipher.

One aspect of our methodology is that we decouple the derivation of any security state-
ments concerning integrity from any statements concerning confidentiality, and deal only with
integrity. We also address the question whether it is possible to study implicit integrity-based
security without studying the indifferentiability of constructions from ideal primitives in the
general sense. Our answer is affirmative. We use the concept of random oracles according
to observer functions for this purpose. Random oracles according to observer functions can
be used for formulating security objectives which are associated with specific types of pattern
detectors and result in designs which are possibly simpler than alternative wide block cipher
designs. Finally, one could argue in favor of a methodology like the one followed in this paper
due to the fact that, for some constructions, it may be easier to study their behavior in the con-
text of producing outputs with specific patterns, as opposed to studying their indifferentiability
or indistinguishability in the general sense.

2.2 Correlation intractability

Besides the relationship between our work and references [26, 27], the concept of random
oracles according to observer functions bears some similarity with the concept of correlation
intractability discussed in reference [23]. The aim of reference [23] is different from ours.
Reference [23] establishes that there exist signature and encryption schemes that are secure
in the random oracle model, but for which any implementation of a random oracle results in
insecure schemes. In the process, reference [23] introduces two concepts which are related to
our definition of the class RO2. First, a binary relation is introduced as “evasive” if, when
given access to a random oracle O(), it is infeasible to find a string x so that the pair (x;O(x))
is in the relation. Second, a function ensemble F is called correlation intractable if for every
evasive binary relation, given the description of a uniformly selected function fs from F it is

5

infeasible to find an x such that (x; fs(x)) is in the relation.
Notable differences between our paper and [23] are the following: First, the binary relation

as defined in [23] involves a relationship between two strings. In our case, we employ an
observer function which examines the output of the system and produces a Boolean value
from this output, after running a polynomial time algorithm. The two definitions may be
equivalent, however, the difference in the formalism reflects further contrasts. Second, in
reference [23], much is said about intractability. There is a function defined, which characterizes
probability values associated with the output of a system as negligible or non-negligible, and
the whole function ensemble as tractable or intractable. This is a “black-and-white” binary
characterization which is not directly relevant to our analysis. In the case of the RO2 definition,
we are more interested in the relative behavioral difference in the output of a system, when
compared to a random oracle or a random function, in the context of producing outputs
with specific patterns. For this purpose, we introduce the concepts of the pattern observation
probability and the indistinguishability parameter ε. This parameter characterizes this relative
behavioral difference between the real system we examine and a truncated output random
oracle.

3 Preliminary concepts and definitions

3.1 Patterns and observer functions

We begin our analysis by formally defining the terms “pattern” and “observer function”.

Definition 1: Definition of a pattern. A Boolean function FL,l,m,P : {0, 1}L → {true, false},
associated with a string length value L, a segment length value l ∈ [1, L], a number of segments
m ∈ [1, L/l], and a set of additional parameters P , is called a “pattern”, if and only if it accepts
as input a binary string x from the set {0, 1}L, outputs one of {true, false}, and the response
depends only on the input string x and the values of L, l,m, P .

In the analysis that follows, some of the subscripts from L, l,m, P may be omitted when
denoting patterns, if their values are implied. Furthermore, additional subscripts may be
introduced in order to denote specific types of checks performed by patterns on input strings.

Definition 2: Definition of the set of strings exhibiting a pattern. A set of binary strings
Π(FL,l,m,P) ⊆ {0, 1}L, associated with the pattern FL,l,m,P , and the string length value L, is
called the “set of strings exhibiting the pattern FL,l,m,P ”, if and only if it contains all those
binary strings x ∈ {0, 1}L, for which FL,l,m,P (x) = true and no other:

Π(FL,l,m,P) = { x ∈ {0, 1}L : FL,l,m,P (x) = true } (3.1)

Similarly, for every binary string x ∈ {0, 1}L, we will be using the expressions “x exhibits
the pattern FL,l,m,P)”, “x demonstrates the pattern FL,l,m,P)”, or “x contains the pattern
FL,l,m,P)”, to refer to the relation x ∈ Π(FL,l,m,P).

Definition 3: Definition of an observer function. A function Fobv,L : {0, 1}L → {true, false}
associated with an input string length value L, is called an observer function if and only if it
accepts as input a binary string from the set {0, 1}L and outputs one of two values true or
false.

We let Π(Fobv,L) denote the set of all binary strings in {0, 1}L for which Fobv,L(x) = true, and
call such set the set of strings “satisfying the observer function Fobv,L(x)”. Similarly, for every

6

binary string x ∈ {0, 1}L, we will be using the expression “x satisfies the observer function
FL,l,m,P ”, or “x demonstrates unusual behavior according to observer function FL,l,m,P ”, to
refer to the relation x ∈ Π(Fobv,L).

An observer function may or may not be a pattern. Though the analysis that follows
applies to all observer functions, the most interesting applications of the theory are those for
which the observer functions are patterns.

3.2 Random Oracles according to Observer functions (RO2)

We continue our discussion presenting the concept random oracles according to observer func-
tions.

Definition 4: Random Oracle according to an Observer function (RO2). Let {y(0)
0 , y

(0)
1 ,

. . . , y
(0)
m0−1}, {y

(1)
0 , y

(1)
1 , . . . , y

(1)
m1−1}, . . . be sets of binary strings of length L, the cardinalities

of which satisfy mi 6 B, ∀i > 0, for some value B. Let also Fobv,L be an observer function
associated with inputs of length L, and O ← 2∞ a random oracle. A cryptographic system S
with input output characteristics S : {0, 1}L → {0, 1}L is called a “random oracle according to
observer function Fobv,L”, associated with a lifetime value B and indistinguishability parameter
ε if the following conditions are simultaneously true:

(i) ∀ y(k)
i , y

(k)
j ∈ {y(k)

0 , y
(k)
1 , . . . , y

(k)
mk−1}, i 6= j, k > 0 : y

(k)
i 6= y

(k)
j ;

(ii) if y ∈ Π(Fobv,L), y ∈ {y(k)
0 , y

(k)
1 , . . . , y

(k)
mk−1}, k > 0, then ∀ l 6= k: y /∈ {y(l)

0 , . . . , y
(l)
ml−1};

(iii) ∀ y, y0, . . . , yq−1, y 6= y0, . . . , y 6= yq−1, y ∈ {y(k)
0 , y

(k)
1 , . . . , y

(k)
mk−1}, yi ∈ {y

(li)
0 , y

(li)
1 ,

. . . , y
(li)
mli
−1}, k > 0, li > 0, 0 6 i < q and 0 6 q 6 B, it holds that:

Prob[S(y) ∈ Π(Fobv,L) | y0,S(y0), . . . , yq−1,S(yq−1)] 6 PFobv,L
· 2ε (3.2)

where PFobv,L
= Prob[truncL(O(y)) ∈ Π(Fobv,L))] and function truncL() truncates its input

returning the input’s L most significant bits. The probability value PFobv,L
is referred to as

“observation probability” associated with Fobv,L. If a cryptographic system S : {0, 1}L →
{0, 1}L is a random oracle according to observer function Fobv,L, associated with lifetime B
and indistinguishability parameter ε, we will be denoting this fact as S ∈ RO2(Fobv,L,B, ε).

In Definition 4, we consider observer functions, which may be patterns, that search cryp-
tographic system outputs in order to detect abnormal behavior, such as repetitions of values
of different sizes. The concept is illustrated in Figure 2. Function Fobv,L observes unusual
behavior in the values of the output of a random oracle with probability PFobv,L

. The same
function Fobv,L observes the same unusual behavior in the values of the output of the real
system S with probability PSFobv,L

← Prob[S(y) ∈ Π(Fobv,L) | y0,S(y0), . . . , yq−1,S(yq−1)]. If

PSFobv,L
6 PFobv,L

· 2ε for a given maximum non-repeating input sequence of size B, and if this

relation holds even when the event S(y) ∈ Π(Fobv,L) is conditioned upon inputs y0, . . . , yq−1

and their responses, then the system S is a random oracle according to the observer function
Fobv,L.

Cryptographic systems or constructions, which are random oracles according to observer
functions, are not indistinguishable from ideal primitives. In fact, it may be possible to dis-
tinguish an RO2 system from a random function or a random permutation. However, there is
a notion of indistinguishability in Definition 4. An RO2 system is indistinguishable from an

7

Random
Oracle

function observes
unusual behavior with

prob.

System

function observes
the same unusual

behavior with prob.

If for non-repeating input size ,
then

Figure 2: The Concept of a Random Oracle according to an Observer function (RO2)

ideal primitive, only with respect to specific distinguishers. Such distinguishers are observer
functions, and may be searching for patterns frequently encountered among user data. The
notion of security we discuss in this paper is based on this property of RO2 systems. Due to the
indistinguishability of RO2 systems according to Definition 4, it is difficult for an adversary to
compute inputs, the outputs of which exhibit patterns, if the internal secrets of RO2 systems
are unknown.

Furthermore, systems which are RO2 may be capable of supporting confidentiality, as modes
of block ciphers do. Even though RO2 systems are not indistinguishable from ideal primitives,
as discussed, they can produce outputs consisting of indistinguishable blocks. Each block
output of an RO2 system may be indistinguishable from the output of a random permutation
or a random function, even though the output consisting of the concatenated blocks may
not be. This is the notion of confidentiality characterizing block cipher modes as well. The
RO2 systems, which produce such outputs, are of particular interest in this study, as they
support both cryptographic integrity, by applying the implicit integrity methodology, and
confidentiality, due to the indistinguishability of their block outputs. The IVP construction
discussed is an example.

The query bound B denotes the lifetime of the construction. In order for a construction to
be RO2 it needs to satisfy the condition PSFobv,L

6 PFobv,L
· 2ε for non-repeating input. So what

does non-repeating input mean? From Definition 4, it follows that having non-repeating input
means:

• within a lifetime of a construction {y0, y1, . . . , yB−1} input is not repeating, i.e., yi 6=
yj ∀i, j ∈ [0,B − 1]; and

• inputs that result in unusual behavior in one lifetime {y0, y1, . . . , yB−1} of a construction
are not repeated in any other lifetime {z0, z1, . . . , zB−1} of the same construction.

Whereas the inputs to constructions that are in the class RO2 can be from any set of
values, the constructions are most useful when the inputs considered are adversary queries,
i.e., corrupted ciphertext values. In this case, the conditions of non-repeating input are not as
restrictive as they sound. The intuition behind introducing these conditions, which are used
in the derivation of our main results below, is that if an adversary repeats queries as part
of the attack strategy, then the system provides the same output for these repeated queries.
Specifically, we consider that there are no parameters, potentially randomizing the system

8

which are out of the adversary’s control. Under this assumption it is clear that it is not
beneficial for an adversary to repeat queries which are unsuccessful, as their result will be the
same. On the other hand, if some queries are successful, then the adversary does not need
to repeat these queries, as the adversary possesses the knowledge about the impact of such
queries. Because of these reasons, it is not restrictive to introduce the non-repeating input
requirement, as we consider adversaries that do not repeat their queries to the construction.
We also note that we do not restrict every input to the construction. We just restrict only the
inputs for which the condition PSFobv,L

6 PFobv,L
· 2ε needs to be satisfied.

We conclude, noting that the indistinguishability of Definition 4 is expressed in a multiplica-
tive form as opposed to the typical additive form. The reason why we use the multiplicative
form in Definition 4, is because such form can better express the exponential drop in security
which is due to the use of a non-ideal primitive, i.e., an RO2 system. The security offered by
an RO2 system is expressed as the security stemming from the rarity of some specific patterns
in a random oracle’s output, minus an exponential drop ε associated with the use of the RO2

system, which is non-ideal.

3.3 Constrained RO2 systems

Next, we discuss what a “constrained” RO2 system is. Such system, shown in Figure 3,
employs n internal invertible functionsR0,R1, . . . ,Rn−1 which are randomly chosen, uniformly
distributed permutations from the set P of all permutations R : {0, 1}L → {0, 1}N . These
primitives are referred to as “internal random permutations”. The relationship between the
constrained RO2 system’s input and output length L, and the input and output length of the
internal permutations N is L = n ·N .

A constrained RO2 system is invertible itself. One direction is denoted by ER0,...,Rn−1()
and referred to as “encryption”, whereas the other direction is denoted by DR0,...,Rn−1()
= ER0,...,Rn−1()−1 and referred to as “decryption”. A constrained RO2 system accepts a bi-
nary input string y ∈ {0, 1}L and employs an invertible polynomial time algorithm Pre() to
perform preprocessing on the string y. The output of algorithm Pre() is a string of length
L = n · N , which contains the inputs to the internal random permutations R0, . . . ,Rn−1.
The internal random permutations R0, . . . ,Rn−1 provide responses, which, after concatena-
tion, form a response vector r. The response vector r is then passed by the RO2 system to a
postprocessing algorithm. Postprocessing is performed by a second invertible polynomial time
algorithm Post().

In the remaining sections of the paper, we will be focusing only on constrained RO2 systems,
omitting the term “constrained”, if implied. Furthermore, if ER0,...,Rn−1() and DR0,...,Rn−1()
are RO2 systems associated with an observer function Fobv,L, a query bound B and an indis-
tinguishability parameter ε, we will be denoting this fact as:

ER0,...,Rn−1(),DR0,...,Rn−1() ∈ RO2(Fobv,L,B, ε) (3.3)

Proposition 1: The set of constrained RO2 systems is non-empty. Indeed, at least one
construction has been proposed and proven to be in this class. This is IVP, which is discussed
in this technical report.

We further note that if algorithm Pre() is replaced by the identity function and the data path
of Figure 3 implements a decryption operation, then the ciphertext of such system is obtained
directly from the output of random permutations R−1

0 (), . . . ,R−1
n−1(). This means that the

system does not compromise the confidentiality offered by R0, . . . ,Rn−1 in any way, at the
block granularity.

9

preprocessing

y

r

postprocessing

…

…

Figure 3: Internal structure of a constrained RO2 construction

3.4 Pattern frequency observers

The pattern frequency observers, discussed in this technical report, output “true” if a number
of values that are equal to each other, or exhibit certain properties, from a given input set,
exceed a threshold. Value types can range and may include nibbles, bytes, words and double
words. The reason why we study these functions in this paper, is because such functions
have experimentally been proven successful in characterizing the overwhelming majority of
typical uncompressed, unencrypted client and server data. We have observed that client and
server data demonstrate repetitions of values of different types, which in truly random data
(i.e, random oracle outputs) appear with very low probability. It is these observations that
motivate the implicity integrity work.

The fact that uncompressed, unencrypted user data demonstrate patterns should not come
as a surprise. User data often consist of code, data structures, media data, pointer tables, and
other types of structured data that are characterized by significant redundancy. For example,
there exists a simple pattern which is frequently encountered in client and server data. This
is the appearance of 4 or more 16-bit words which are equal to each other in a collection of 32
words. In this pattern the input size is 512 bits (i.e., each data is a memory cache line). An
observer function which detects the presence of such pattern in inputs of size L = 512 bits is
denoted by FEQ,512,16,4. Our experimental observations come from over 111 million client cache
lines and 1.47 billion server cache lines of typical workloads. According to these observations,
the FEQ,512,16,4 pattern characterizes 82% of the client cache lines and 78% of the server cache
lines.

Pass rate comparisons associated with different pattern detectors are shown in Figure 4.
Pattern detection based on the observer function FEQ,512,16,4 is referred to as ‘Standard Pattern
Matching’ (SPM). Pattern detection based on the equality of words as well as other types of
data such as bytes, double words and nibbles is referred to as ‘Extended Pattern Matching’
(EPM). As is evident from the figure, there are many typical client workloads (e.g., Microsoft®
Office, transcoding, video player), the pass rates of which are quite high, ranging between 75%-
80%, when Standard Pattern Matching is employed. These pass rates are boosted to 98% when
Extended Pattern Matching is employed. Overall, the average client pass rates associated with
Standard Pattern Matching are 82%. The average pass rates associated with Extended Pattern
Matching are 91%. For server data, the corresponding pass rates are 78% and 84% respectively.

The EPM scheme encompasses many more pattern detectors than SPM. Pattern frequency
observers, associated with the EPM scheme detect entities among the input data which are not
only equal to each other, but are also placed in continuous index positions. These observers
are not necessarily the same as those detecting value equalities. One can associate these two

10

0
10
20
30
40
50
60
70
80
90

100

h
ad

o
o

p
_

w
o

rd
co

u
n

t

h
ad

o
o

p
_

w
o

rd
so

rt
au

d
io

_p
la

yb
ac

k
b

la
ck

ja
ck

-v
e

ga
s

n
av

it
-g

p
s

o
ff

ic
e

-i
m

p
re

ss
o

ff
ic

e
-s

p
re

ad
sh

e
et

o
ff

ic
e

-w
ri

te
r

p
ic

tu
re

-a
n

im
at

e

tr
an

sc
o

d
in

g
3

d
ga

m
e

vi
d

eo
-p

la
yb

ac
k

sp
e

cp
o

w
er

ed
in

b
u

rg
h

ad
o

b
e-

fl
as

h
h

d
r-

ex
p

o
se

h
d

r_
p

h
o

to
-m

at
ri

x
it

u
n

es

m
ed

ia
sh

o
w

p
h

o
to

sh
o

p
-e

le
m

en
ts

p
re

m
ie

re
-e

le
m

en
ts

d
ra

g-
n

-d
ro

p

w
in

d
o

w
-m

ed
ia

-p
la

ye
r

fi
re

fo
x

3
d

m
ar

kv
an

ta
ge

A
V

ER
A

G
E

P
as

s
R

at
e

(%
)

Standard Pattern Matching and ICV Cache Hit Rates

Standard Pattern Matching Rate ICV Cache Hit Rate

0
10
20
30
40
50
60
70
80
90

100

h
ad

o
o

p
_

w
o

rd
co

u
n

t
h

ad
o

o
p

_
w

o
rd

so
rt

au
d

io
_p

la
yb

ac
k

b
la

ck
ja

ck
-v

e
ga

s
n

av
it

-g
p

s

o
ff

ic
e

-i
m

p
re

ss

o
ff

ic
e

-s
p

re
ad

sh
e

et
o

ff
ic

e
-w

ri
te

r

p
ic

tu
re

-a
n

im
at

e
tr

an
sc

o
d

in
g

3
d

ga
m

e

vi
d

eo
-p

la
yb

ac
k

sp
e

cp
o

w
er

ed
in

b
u

rg
h

ad
o

b
e-

fl
as

h
h

d
r-

ex
p

o
se

h
d

r_
p

h
o

to
-m

at
ri

x

it
u

n
es

m
ed

ia
sh

o
w

p
h

o
to

sh
o

p
-e

le
m

en
ts

p
re

m
ie

re
-e

le
m

en
ts

d
ra

g-
n

-d
ro

p

w
in

d
o

w
-m

ed
ia

-p
la

ye
r

fi
re

fo
x

3
d

m
ar

kv
an

ta
ge

A
V

ER
A

G
E

P
as

s
R

at
e

(%
)

Extended Pattern Matching and ICV Cache Hit Rates

Extended Pattern Matching Rate ICV Cache Hit Rate

Figure 4: Pass rates associated with Standard and Extended Pattern Matching on client
workload cache lines

11

state
i.e., cipher text

can be any of q0,…,qm-1 or one of the new queries

perturbation ⊕

adversary adds
perturbations
to the input satisfies

focus: data corruption attacks

y
?

Figure 5: Input perturbing adversary

types of observer functions with different thresholds and, by doing so, build two different
integrity schemes. Yet another type of observer function detects entities that take special
values. Special values are values that are frequently encountered in regular user data but are
infrequently encountered in random or corrupted plaintext data. For example, in memory
cache lines obtained from client and server data workloads, a high percentage of bytes take the
values of 0x00 or 0xFF.

A last type of observer functions used by EPM detects entities the value histogram of which
demonstrates a sum of n highest entries (i.e., frequencies) being higher than a threshold. The
intuition behind this type of pattern check is that there are several types of input messages,
the content of which is not as random as that of encrypted data, but also does not demonstrate
patterns at the byte or word granularity. One example of such content is media data, where
nibble values may be replicated, but data do not demonstrate significant byte or word repli-
cations. Our experimental studies showed that there are millions of cache lines demonstrating
a limited set of byte equalities but many nibble equalities. By checking whether the sum of
the two highest nibble frequencies exceeds a threshold, a more flexible pattern detector can be
built, which on the one hand encompasses significantly more regular user inputs, and on the
other hand is associated with an event that is infrequent among random data.

Figure 4 also shows Integrity Check Value (ICV) cache hit rates for these algorithms. It
is assumed that not all memory cache lines are protected visa implicit integrity, as discussed
above, but some are protected using standard methods. For these, ICVs or MACs are cached.
The hit rates of Figure 4 are obtained from a simulator implementing the caching of 32-bit
ICVs using a 4KB cache unit for this purpose. When ICVs are cached the total pass rate
observed by SPM and EPM are boosted significantly. For Standard Pattern Matching, the
total pass rate, which includes a pattern check pass rate and an ICV cache hit rate, is 97%.
For Extended pattern matching this rate is increased to 99%.

4 Adversary models and main security claims

4.1 The input perturbing adversary

The first type of adversary presented, describes adversaries which aim in corrupting encrypted
data that are stored somewhere, or are in transit, in such a way so that the corruptions pass
undetected. We refer to such type of adversary as “input perturbing” adversary.

To present the adversary, we first describe the system which is attacked. The system, which
is attacked implements the procedures ReadImplicit() and WriteImplicit() below. Procedure
ReadImplicit() accepts as input an address value A, a data array DataArray[], which may contain
data stored in memory, in permanent storage, or transmitted as part of a communication
session, an array of per address message authentication codes MACArray[], an observer function

12

Fobv,L(), a decryption oracle DR0,...,Rn−1(), and a MAC verification function Verify(). The
observer function and decryption oracle satisfy (3.3) for some B, ε. In line 1, procedure
ReadImplicit() reads data y from address A of the array DataArray[]. In line 2, it decrypts the
data using the oracle DR0,...,Rn−1(). In line 3, it applies the observer function Fobv,L() on the
decrypted data x to determine if data x satisfies the observer function. If the response is true,
then it returns x and exits in line 4. In this case, procedure ReadImplicit() determines that the
decrypted data x has not been corrupted. If the response from the observer function Fobv,L()
is not true, a message authentication code for y is read in line 6 and verified in line 7. If the
response from function Verify() is true, then procedure ReadImplicit() returns x and exits in
line 8. Otherwise, it returns an empty string in line 10.

Procedure WriteImplicit() accepts as input an address value A, a data value x, the array
DataArray[], the array of per address message authentication codes MACArray[], the observer
function Fobv,L(), an encryption oracle ER0,...,Rn−1(), and a MAC sign function Sign(). The
observer function and encryption oracle satisfy (3.3) for the same B, ε as those of procedure
ReadImplicit(). Furthermore ER0,...,Rn−1() = DR0,...,Rn−1()−1. In line 1, procedure WriteIm-
plicit() encrypts data x using the oracle ER0,...,Rn−1(). In line 2, it writes the encrypted data
y at address A of the array DataArray[]. In line 3, it applies the observer function Fobv,L() on
the data x to determine if data x satisfies the observer function. If the response is true, then
procedure WriteImplicit() exits in line 4. Otherwise, it computes a message authentication code
z for the encrypted data y, which writes into MACArray[] in line 7, exiting in line 8.

ReadImplicit(A,DataArray[],MACArray[],Fobv,L(),DR0,...,Rn−1(),Verify())

1. y ← DataArray[A]

2. x← DR0,...,Rn−1(y)
3. if Fobv,L(x) = true
4. return x
5. else
6. z ← MacArray[A]
7. if Verify(y, z) = true
8. return x
9. else
10. return ⊥

WriteImplicit(A, x,DataArray[],MACArray[],Fobv,L(),ER0,...,Rn−1(),Sign())

1. y ← ER0,...,Rn−1(x)
2. DataArray[A]← y
3. if Fobv,L(x) = true
4. return
5. else
6. z ← Sign(y)
7. MacArray[A]← z
8. return

The input perturbing adversary models any software process or physical intruder that aims
in intentional corruptions of data. The underlying assumption of this adversary model is that
the adversary can access data in their encrypted form. Specifically, the adversary can observe
the contents of the array DataArray[] of the pseudocode, but cannot access the encryption key

13

which has produced the data. This adversary can corrupt ciphertext data in any possible way
hoping that the corruptions will result in plaintexts with patterns, and thus pass undetected.

This adversary model is not unrealistic. In secure network connections or encrypted storage
systems, many attacks originate from sources outside of these trusted domains (e.g., malware
running in different processes or virtualized environments, untrusted hypervisors, man-in-the-
middle attackers intercepting the packets of secure connections etc.) These attackers can
possibly inspect a range of encrypted data, such as the whole encrypted memory of a computing
system, but do not have access to the encryption keys required for obtaining the corresponding
plaintexts. Thus, these attackers are unable to corrupt user data in a straightforward manner,
such as directly changing plaintext bytes from 0x00 to 0xFF. Attackers can only do this through
the modification of ciphertexts, where ciphertexts are produced using keys unknown to the
attackers.

Definition 5: Input perturbing adversary. Let’s consider a pair of encryption and decryption
oracles E() and D() such that E() = D−1() and for which E(),D() ∈ RO2(Fobv,L,B, ε) for some
Fobv,L,B, ε. The oracle invocations to R0, . . . ,Rn−1 are omitted from the notation for the

sake of conciseness. An input perturbing adversary AD()
INP(q0, . . . , qm−1, QB′) is defined as a

polynomial time algorithm for which the following hold:

• The adversary has oracle access to D().

• The adversary can observe m ciphertexts q0, . . . , qm−1 stored in the array DataArray[],
which, prior to his game have been submitted to D(). These are referred to as “prior
queries”. The oracle responses D(q0), . . . , D(qm−1) satisfy the observer function Fobv,L,
i.e., D(q0), . . . ,D(qm−1) ∈ Π(Fobv,L). The adversary has knowledge of that, as well as
knowledge of the oracle responses D(q0), . . . ,D(qm−1) themselves.

• The adversary can issue at most B′ new, non-repeating queries from a set QB′ to D()
as part of his game, where |QB′ | = B′, m + B′ 6 B, and each new query does not
need to be one of q0, . . . , qm−1. For each of the new queries, the adversary observes the
corresponding plaintext, as well as whether the plaintext satisfies Fobv,L or not.

The algorithm succeeds if it finds a new input data word y which is different from q0, . . . ,
qm−1, as well as different from the new queries, the output of which satisfies the observer
function Fobv,L. The input perturbing adversary is shown in Figure 5. The advantage of the
input perturbing adversary is defined as:

Adv(AD()
INP(q0, . . . , qm−1, QB′),Fobv,L) = Prob[y ← AD()

INP(q0, . . . , qm−1, QB′);

y /∈ {q0, . . . , qm−1}; y /∈ QB′ ; D(y) ∈ Π(Fobv,L)]
(4.1)

In the paper, we argue that the game of adversary AD()
INP() is difficult to win, if the oracle D() is

in the class of RO2 systems, associated with observer function Fobv,L, lifetime B, and indistin-
guishability parameter ε. This happens because such systems output values that satisfy their
associated observer function with very low probability, which is quantifiable. Furthermore,
such probability does not depend on the previous history of inputs, as long as the inputs which
satisfy the observer function are not repeated. Moreover, as will be made clear, the prior

queries q0, . . . , qm−1 , as well as new queries end up not helping adversary AD()
INP() win his game

at all.

14

state i.e.,
cipher text

DR0’, R1’, R2’,… ∈ RO2(f, Β, ε)

y can be any of
q0,…,qm-1

satisfies

focus: replay attacks across domains
of trust such as memory address domains

adversary has replaced the internal random
permutations R0, R1, R2 ,… with R0’, R1’, R2’,…

which are also random permutations

?
y

Figure 6: Oracle replacing adversary

Another observation is that the input perturbing adversary, as defined by Definition 5,
diverges from the classical MAC adversary definition. The new adversary definition applies
to the cases where data integrity is supported by applying the implicit integrity methodology.
The input perturbing adversary of Definition 5 creates forgeries by crafting ciphertexts, the
plaintexts of which exhibit certain patterns. In this way, forgeries created by the adversary of
Definition 5 are successful, not because the adversary supplies a carefully crafted MAC, but
because the adversary supplies a carefully created ciphertext, the plaintext of which exhibits
patterns. The fact that the word y, returned by the input perturbing adversary, constitutes a
forgery follows directly from the definition of procedures ReadImplicit() and WriteImplicit().

One special case of attacks performed by this adversary but not the only one studied in
this paper, includes attacks where the query budget B′ is tight. These are the cases of online
attacks where a bounded number of failures from the adversary’s side exposes the attack (e.g.,
B′ cannot exceed 232). These attacks are further discussed in section 5.

4.2 Oracle replacing adversary

Another type of adversary, the “oracle replacing adversary”, shown in Figure 6 is associated
with replay attacks. Replay attacks may happen across key domains, such as network sessions
that are encrypted with different keys, or encrypted memory domains. The oracle replacing
adversary, as described in the section, performs replay attacks under the assumption that the
internal random permutations of an RO2 system are a unique property of the system and of a
domain of trust.

Specifically, we consider that the array DataArray[] of the pseudocode of procedures Read-
Implicit() and WriteImplicit() does not contain data encrypted in the same manner, but instead
is segmented into different domains. The data of each domain is encrypted using oracles E()
and D(), which are RO2 systems. These oracles invoke a different set of internal random per-
mutations when performing the encryptions and decryptions of each different domain. The
internal random permutations of different domains are independently drawn and uniformly
distributed in the set P of all permutations R : {0, 1}L → {0, 1}N .

Given the above, it is evident that when some valid encrypted data is replayed from one
domain to another domain, then this is equivalent to replacing the internal random permuta-
tions of an RO2 system and domain with a different set of internal random permutations, and
then performing a decryption operation. In our analysis, the internal random permutations of
domains are ideal primitives, which in practical realizations are implemented as ciphers using
different keys and tweaks.

15

Definition 6: Oracle replacing adversary. Let’s consider a pair of encryption and decryption
oracles E() and D() such that E() = D−1(), and for which E(),D() ∈ RO2(Fobv,L,B, ε) for some
Fobv,L,B, ε. For a particular domain, the oracles have access to internal random permutations

R0, . . . ,Rn−1. An oracle replacing adversary AD()
REPL(q0, . . . , qm−1, QB′ ,RD) is defined as a

polynomial time algorithm for which the following hold:

• The adversary has oracle access to D().

• The adversary can observe m ciphertexts q0, . . . , qm−1 stored in the domain associated
with permutations R0, . . . ,Rn−1, and mD ciphertexts of set QD stored in other domains.
The observed ciphertexts are referred to as “prior queries”. Prior queries are submitted
before the beginning of the adversary’s game. The oracle responses to prior queries,
including DR0,...,Rn−1(q0), . . . , DR0,...,Rn−1(qm−1), satisfy the observer function Fobv,L.
The adversary has knowledge of that, as well as the oracle responses themselves.

• The adversary is aware of the existence of a set RD = {{R(0)
0 , . . . , R(0)

n−1}, . . . , {R
(nD−1)
0 ,

. . . , R
(nD−1)
n−1 }} of nD sets of internal random permutations of domains other than the tar-

get domain, which have the same input and output length characteristics asR0, . . . ,Rn−1

and are all different from R0, . . . ,Rn−1.

• can issue at most B′ new, non-repeating queries to the decryption oracles of any domain
of array DataArray[] from a set QB′ , as part of his game. Prior queries are not repeated
on the same domain. Furthermore, it should hold that |QB′ | = B′, m + B′ 6 B and
mD + B′ 6 B. For each of the new queries, the adversary observes the corresponding
plaintext, as well as whether the plaintext satisfies Fobv,L or not.

The algorithm succeeds if it finds a set of new internal random permutations {R′0, . . . ,R′n−1}
∈ RD and an input ciphertext y ∈ {q0, . . . , qm−1}, the output of which satisfies the observer
function Fobv,L when y is applied on an instance of D() that invokes the new internal random

permutations R′0, . . . ,R′n−1, i.e., DR
′
0,...,R′n−1(y) ∈ Π(Fobv,L). Oracle DR

′
0,...,R′n−1() should not

be queried with input y as part of the adversary’s game. The oracle replacing adversary is
shown in Figure 6. The advantage of the oracle replacing adversary is defined as:

Adv(AD
REPL(q0, . . . , qm−1, QD, QB′ ,RD),Fobv,L) =

Prob[{{R′0, . . . ,R′n−1}, y} ← AD
REPL(q0, . . . , qm−1, QD, QB′ ,RD);

y ∈ {q0, . . . , qm−1}; {R′0, . . . ,R′n−1} ∈ RD;

oracle DR
′
0,...,R′n−1() has not been queried with input y;

DR
′
0,...,R′n−1(y) ∈ Π(Fobv,L)]

(4.2)

4.3 Security of RO2 systems in the input perturbing and oracle replacing
adversary models

The following two theorems connect the concept of a random oracle according to an observer
function with security claims associated with the input perturbing and oracle replacing adver-
sary models.

Theorem 1: About the security of an RO2 system in the input perturbing adversary model.
Given a pair of encryption and decryption oracles E() and D(), D() = E()−1, an observer

16

function Fobv,L, a lifetime B, a set of query bounds {m,B′}, and an indistinguishability pa-
rameter ε such that: E(),D() ∈ RO2(Fobv,L,B, ε), then for any input perturbing adversary

AD()
INP(q0, . . . , qm−1, QB′):

Adv(AD()
INP(q0, . . . , qm−1, QB′),Fobv,L) 6 PFobv,L

· 2ε (4.3)

where PFobv,L
is the observation probability associated with the observer function Fobv,L. The

proof of Theorem 1 can be found in Appendix A. A next theorem is about the security of RO2

systems in the oracle replacing adversary model.

Theorem 2: About the security of an RO2 system in the oracle replacing adversary model.
Given a pair of encryption and decryption oracles E() and D(), D() = E()−1, an observer
function Fobv,L, a lifetime B, a set of query bounds {m,mD,B′}, and an indistinguishability
parameter ε such that: E(),D() ∈ RO2(Fobv,L,B, ε), then for any oracle replacing adversary
AD

REPL(q0, . . . , qm−1, QD, Q′B,RD):

Adv(AD
REPL(q0, . . . , qm−1, QD, QB′ ,RD),Fobv,L) 6 PFobv,L

· 2ε (4.4)

where again, PFobv,L
is the observation probability associated with observer function Fobv,L.

The proof of Theorem 2 can be found in Appendix B.
Theorems 1 and 2 indicate that the probability PFobv,L

·2ε of observing unusual behavior in
the output of an RO2 system, associated with observer function Fobv,L, is also the advantage of
input perturbing and oracle replacing adversaries attacking the RO2 system. Such probability
depends mainly on the probability PFobv,L

of observing the unusual behavior associated with
Fobv,L in the output of a random oracle. Therefore, to effectively design of a cryptographic
system that applies the implicity integrity methodology, one needs to search for patterns which,
on the one hand characterize the overwhelming majority of client and server data, and on the
other hand minimize the advantage bound PFobv,L

· 2ε.

5 Example of a cryptographic construction supporting implicit
integrity

Implicit data integrity can be supported by block ciphers. In this section we analyze a cryp-
tographic construction which is not a block cipher, but supports confidentiality as a mode of
a block cipher does, as well as implicit integrity. The cryptographic construction we discuss,
called IVP, is shown in Figures 7 and 8. Figure 7 provides an overview of the encrypt and
decrypt paths of the construction, while Figure 8 provides a description of the stages involved
in the decrypt path. The IVP construction is a three level confusion diffusion network. It first
employs two rounds of substitution and permutation stages followed by a byte remapping stage.
The byte remapping stage prepares the inputs to four parallel random permutations, which
provide an encryption result. On the decrypt path this order is reversed. The construction is
512-bit wide and its internal stages are defined for specific input and state lengths, which are
discussed below.

The purpose of the two rounds of substitution and permutation stages is to diffuse every
bit of the input into sets of 128 bits. Specifically, each bit is fully diffused into one of four sets
of 128 bits. The purpose of the subsequent byte remapping stage is to change the order of
bytes so that every 128-bit input, which is passed into the subsequent random permutations,
contains bytes that depend on all 512 bits of the input. The random permutations of the
construction can be realized using any block cipher which is 128-bit wide. For example, they

17

output

encrypt path

input

four parallel
random permutations

(e.g., realized as
AES block encryptions)

byte
remapping

2 rounds
of permutation-

substitution
stages

decrypt path

input output

byte
remapping

four parallel
random permutations

(e.g., realized as
AES block encryptions)

2 rounds
of substitution-

permutation
stages

Figure 7: Overview of the encrypt and decrypt paths of the IVP construction

can be realized as four independent AES block encryption stages. The preceding substitution
and permutation stages can also be realized using AES round building blocks for convenience,
as discussed later in this section.

The IVP construction, as we prove later, is indeed RO2 for the FEQ,512,16,4 observer function,
the lifetime of B = 232 queries and the indistinguishability parameter ε = 0.697 bits. For the
sake of clarity, we remind that we are interested in the RO2 behavior of the decrypt path of
the construction, where the inputs are provided by an entity who has no knowledge of any
keys used by the construction. So, the lifetime B = 232 is not the lifetime of a valid user of
the construction but of an adversary (i.e., input perturbing or oracle replacing adversary) who
attacks it.

5.1 Online attacks and their implications

IVP supports implicit integrity at a security level of 32 bits. Such security level is lower than
the security levels supported by standard MAC algorithms (e.g., [4] [5]), which are typically
at 256 or 512 bits. Still, 32-bit security is not insignificant in the context of online attacks. In
online attacks, the detection of even a single corruption exposes the attack and the adversary.
As the adversary can only corrupt data in their encrypted form, any subsequent read operation
performed on corrupted data results in plaintext with high entropy with very high probability,
thus exposing the attack. For this reason, even a lower level of security, such as at 32 bits,
may be quite effective in protecting some computing systems. Defense against online attacks
at 32 bits of security also means that the probability of the adversary succeeding one and only
time is 2−32+ε for some ε. Moreover, a single corruption detection can cause re-encryption of
all user data with new keys, thus mitigating the attack. Online attacks are discussed in RFC
4086 [34].

In the context of online attacks, a lower bound on the number of queries issued by an
adversary can be set. Within such bound, not exceeding 232 queries, the block cipher stages
employed safely approximate truncated output random oracles. For example, if the output of an
128-bit random permutation is not truncated, then the advantage of distinguishing this random
permutation from an 128-bit truncated output random oracle after 232 queries are performed
is still 6 2−64. Practically, this means that whereas bytes in the truncated output of a random
oracle are random and uniformly distributed, bytes in the output of a random permutation
take every value from 0 to 255 with probability that differs from 2−8 by no more than a value

18

R0

R2

R1

R3

B

CM
(first stage)

μ0
μ1

μ3

μ4

μ7

μ8
μ9
μ10
μ11

μ12
μ13
μ14
μ15

μ2

μ6

μ5

CM
(second stage)

RS

RS

RS

RS

Sbox

Sbox

Sbox

Sbox

RS Sbox

ν0
ν1

ν3

ν4

ν7

ν8
ν9
ν10
ν11

ν12
ν13
ν14
ν15

ν2

ν6

ν5 RS Sbox

RS Sbox

RS Sbox

plaintext
output

ciphertext
input

Figure 8: Description of the decrypt path of the IVP construction

∆ = 2−64. In the analysis that follows we will be using the term “almost” random, uniformly
distributed and statistically independent to characterize bytes or words, when the statistical
properties of bytes or words differ from the properties of random, uniformly distributed and
statistically independent bytes or words by no more than O(∆), where ∆ = 2−64.

5.2 Construction stages

Figure 8 shows the decrypt path for the IVP construction. In this figure, the input is the
cipher text and the output is the plaintext. In the figure, the four internal random permu-
tations employed R0, . . . , R3 are four symmetric encryption/decryption stages. Each stage
applies on inputs of width W1. In the specific design we propose W1 = 128 bits and the four
random permutations of the figure can be realized as AES encryption/decryption stages. En-
cryption/decryption is repeated four times, each for a separate 128-bit block of the input. If
realized via an array of four block ciphers, encryption/decryption uses a key value K, which
is a vector of four concatenated encryption keys, one for each block, and, optionally, a tweak
vector T .

The stage B indicates an entity reordering operation. Entities are groups of W2 bits. In
this design W2 = 8 bits and this stage is a byte remapping operation. Entity reordering takes
place across the entire width of the construction which is 4 · W1 bits. Entity reordering is
an interleaving operation that ensures that outputs of the four internal random permutations
of the construction are evenly distributed among the subsequent processing stages. Such
interleaving operation is further discussed below. Two subsequent stages denoted by “CM”
perform AES-like bit linear processing on their inputs, which we refer to as “column mixing”.
In one realization the CM stages may implement the inverse mix columns or the mix columns
transformation of AES. In general, the requirement for each CM stage is to implement bit
linear systems that connect m W2-bit input entities to m W2-bit output entities using an MDS
matrix. The rank of each bit linear system for each output entity should be exactly W2. It
is easy to see that the AES mix columns and inverse mix columns transformations meet this

19

8 bits

byte remapping
in the construction

…

…

…

byte
reordering

Figure 9: Byte remapping in the IVP construction

requirement for m = 4 and W2 = 8 bits. For the proofs discussed below we require that m = 4.
In the figure there are 16 first stage CM transformations denoted by ν0, . . . , ν15 and 16 second
stage CM transformations denoted by µ0, . . . , µ15.

The subsequent “RS” stages indicate a “Row Shifting” operation which is an entity reorder-
ing operation similar to B. Row shifting occurs only inside W1 bit blocks and not across such
blocks as in the case of B. RS stages operate on entities of W2 bits and perform cyclic rotation
of such entities by increasing the number of rotate positions one at a time row-by-row. As in
AES, it is assumed that W2 bit entities are arranged in a matrix formation. In this formation
rows are cyclically rotated either to the left or to the right by a number of positions which is
increasing by one row-by-row. Row 1 for instance may be shifted by one entity position to the
left. Row 2 by two entity positions to the left etc. In one realization RS stages implement the
inverse shift rows or the shift rows transformation of AES.

Sbox stands for substitution box. Substitution occurs in the granularity of W2 bits as
in the case of the CM and RS stages. Each Sbox stage in the figure is an array of multiple
substitution boxes of width W2 bits. A substitution box is a randomly chosen 8-bit Pseudo-
Random Permutation (PRP) which can be realized in many ways, such as by combining key
additions with strong non-linear bit mixing operations. In one realization the key values used
by these PRPs are set at the beginning of the operation of the IVP construction. This is
equivalent to selecting a set of W2-bit PRPs at random in the beginning of operation and
using these PRPs as substitution boxes. It is under these considerations that we have proven
specific security claims for the IVP construction, which we discuss in this section. Since we can
select PRPs once at the beginning of operation of the construction, this means that we can
have a single key set for the Sbox stages, which is independent of the keys used by the block
ciphers which implement the random permutations R0, . . . , R3.

The entity reordering operation B of the IVP construction is further illustrated in Figure
9 for the case where W2 = 8 bits (byte remapping). Here, each byte is reordered to a new
position so that all bytes coming from the same 128-bit block output are evenly distributed
to all 128-bit block inputs of a next stage. For instance, regarding the outputs coming from a
first random permutation R0, a first byte is mapped to the position of index 0 in a next block.

20

�� = �0

�� = �0 + �0
, �0 ≠ 0

,

�0 is almost random uniformly distributed

�� = �0 + �00| �01,
�00 ≠ 0, �01 = 0,

�00 is almost random uniformly distributed

original
word

covered
word

uncovered
word

data exhibiting
a pattern

pattern is not present

partially
covered word

(single
covered byte)

�� = �0 + �0
, �0 = 0

Figure 10: Covered, uncovered and partially covered words

A second byte is mapped to the position of index 4. A third byte to the position of index 8,
and so on. Similarly, concerning the outputs coming from a second random permutation R1,
a first byte is mapped to the position of index 1. A second byte is mapped to the position of
index 5. A third byte is mapped to the position of index 9, and so on.

To derive our byte remapping scheme we considered all possible ways to place 8 bits coming
from the output of an internal random permutation into a 32-bit entity. This number which
is equal to

(
32
8

)
= 10, 518, 300 is tractable and allows for the space to be searched even with

exhaustive search. Each bit placement choice corresponds to a different bit linear system
connecting the input bits of the CM transformation to the output bits. The bit placement
choice determines which columns of the CM system matrix are selected in order to describe
the input output relationship. As stated earlier, it is desirable for the rank of the system
characterizing the derivation of each output byte to be exactly equal to W2 = 8 bits. For
the four output bytes we would like to have a cumulative rank equal to 32 bits. From the
10,518,300 choices 158,382 choices result in systems with cumulative rank 32, including the
choice of Figure 9.

5.3 Covered, uncovered and partially covered words

To prove that the IVP construction is RO2 we first demonstrate that the flow of differentials
characterizing this construction is associated with values that are almost random, uniformly
distributed and statistically independent, where the term almost random, uniformly distributed
and statistically independent is defined in Section 5.1. For this purpose we introduce the
concept of covered, uncovered and partially covered words and bytes shown in Figure 10. A
word w0 in the output is covered, w0 ∈ C(W), if the differential p0 which is superimposed on
its state x0 as a result of some input perturbation is (i) non-zero, (ii) almost random, uniformly
distributed, and (iii) almost statistically independent from other word differentials. A word
w0 is uncovered w0 ∈ U(W), if the differential p0 superimposed on its state x0 as a result of

21

internal
random

permutations
R0, R1,…

reordering
bit linear

processing

8-bit
PRPs

non-zero perturbation
bytes are almost

random, uniformly distributed,
statistically independent

non-zero perturbation
bytes remain

almost random,
uniformly distributed,

and statistically
dependent

non-zero perturbation
bytes are almost

random, uniformly
distributed,

but not statistically
independent

non-zero perturbation
bytes are again

almost random, uniformly
distributed, statistically

independent

…

Figure 11: Statistical properties of differentials associated with internal random permutation
outputs

some input perturbation is zero (e.g., the word may be exhibiting patterns).
Similarly, a byte b0 in the output is covered, b0 ∈ C(B), if the differential p0 which is

superimposed on its state x0 as a result of some input perturbation is (i) non-zero, (ii) al-
most random, uniformly distributed, and (iii) almsot statistically independent from other byte
differentials. A byte b0 is uncovered b0 ∈ U(B), if the differential p0 superimposed on its
state x0 as a result of some input perturbation is zero. Finally, a word w0 is partially covered
w0 ∈ P (W) if the differential p0 superimposed on its state x0 causes one byte to be uncovered
and the other byte to be covered.

It is not difficult to see that the covered and uncovered states are mutually exclusive for
bytes and, consequently, each word can be in only one of the three states: covered, uncovered
or partially covered. For the IVP construction, the mutual exclusivity of covered and uncovered
states for bytes and can be established by observing that the internal random permutations
are the sole source of non-zero byte differentials. Any subsequent processing involves only:
(i) re-ordering operations at the byte granularity; (ii) full-rank bit-linear processing; and (iii)
8-bit PRPs. Based on this fact, byte differentials remain almost random, uniformly distributed
and statistically independent as they flow through the IVP construction, as shown in Figure
11. First, at the output of the internal random permutation stages, non-zero byte differentials
are almost random, uniformly distributed and statistically independent based on the indistin-
guishability of the internal random permutations from truncated output random oracles and
the lifetime limitation B = 232.

After the bit linear preprocessing stage, non-zero byte differentials are still almost random,
uniformly distributed, but not necessarily statistically independent as each output byte is a
linear combination of input bytes. After the byte remapping stage, non-zero byte differentials
remain almost random, uniformly distributed, and possibly statistically dependent. It is in
the last stage, and due to the fact that 8-bit PRPs are independently chosen at random, that
non-zero byte differentials become again almost random, uniformly distributed and statistically
independent. Furthermore, these properties of byte differentials do not change if additional
diffusion stages or similar processing steps are added to the construction.

22

5.4 The state of column mixing transformations

The state S(µ0) of a 4 byte column mixing transformation µ0 can only be any of the following
three of Figure 12: (i) zero state S(µ0) = Szero. In this state all differential inputs a0, . . . , a3 to
the transformation µ0 are equal to zero: ai = 0, ∀i ∈ [0, 3]. Furthermore all output differentials
are zero too; (ii) single byte stimulus state S(µ0) = Sstim. In this state only one of the input
byte differentials is non-zero and all other byte differentials are zero: ∃ i ∈ [0, 3] : ai 6= 0 ∧
(∀j, j 6= i, j ∈ [0, 3], aj = 0). Since the column mixing transformation matrix is MDS, all
output byte differentials are non-zero; and (iii) saturation state S(µ0) = Ssat where more
than one of the input byte differentials is non-zero: ∃ q0, . . . , qm−1 ∈ [0, 3] : 1 < m 6 4 ∧
(aqi 6= 0, ∀i ∈ [0,m−1]). Since the transformation µ0 is bit linear of full rank, the following four
possible events may be true for a transformation in the saturation state: First, all output byte
or byte differentials may be non-zero with probability 1− 4 · 2−8 +O(2−16) +O(∆). Second, a
single output byte or byte differential at a specific location may be zero with probability equal to
2−8 +O(∆), if inputs satisfy the statistical properties discussed above. Third, two output byte
or byte differentials at specific locations may be zero with probability 2−16+2−8 ·O(∆)+O(∆2),
if, again, inputs satisfy the statistical properties discussed above. Fourth, three output byte or
byte differentials at specific locations may be zero with probability 2−24 + 2−16 ·O(∆) + 2−8 ·
O(∆2) +O(∆3), for the same inputs.

The effects different numbers of non-zero byte stimuli have on column mixing transforma-
tions are further illustrated in Figure 13. These observations are a direct consequence of the
definition of the column mixing transformation being based on an MDS matrix. First, zero
byte stimuli result in all output bytes being zero. Second, a single byte stimulus results in all
output bytes being non-zero. Third, two byte stimuli result in at most one output byte being
zero. Fourth, three byte stimuli result in at most two output bytes being zero. Finally, four
byte stimuli result in at most three output bytes being zero.

5.5 Main result

We begin the discussion on the security of the IVP construction by establishing the fact that the
observer function FEQ,512,16,4, which we choose to use is indeed associated with 32-bit security.
This function observes whether there are 4 or more 16-bit words which are 16-bit aligned and
equal to each other in a set of 512 bits.

Corollary 1: The FEQ,512,16,4 observer function is associated with observation probability
2−32.866.

To demonstrate that Corollary 1 holds, we need to show that the probability of finding at
least 4 16-bit words that are equal to each other in a set of 32 words in random data is
2−32.866. This is an instance of the more generic problem of computing the birthday collision
probability P (B)(m,n, |V |) for a number of people m > 1 having the same birthday from among
the members of a set n, where the number of birthdays is |V |. In this case |V | = 65536. For
this problem solutions exist [16, 18, 17, 19, 20] such as the the Suzuki et. al. bounds [19] and
the approximation by Kounavis et. al. [20]. Using the Suzuki bounds, the probability of the
observer function FEQ,512,16,4 returning true upon receiving some 512-bit input is computed
and found to be P (B) < 2−32.8659. Using the Kounavis approximation, the same probability is
found to be P (B) ≈ 2−32.8662. Both numbers are consistent and establish the security of the
FEQ,512,16,4 observer function.

Theorem 3: On the security of the IVP construction. The IVP construction is in the set
RO2(FEQ,512,16,4, 2

32, ε), associated with the observer function FEQ,512,16,4, the life time 232,

23

μ0

� �� = ����

μ0

� �� = ����

μ0

� �� = ����

μ0

� �� = ����

(a) all output bytes
are non-zero with
Prob ≈ 1- 4∙2-8

(b) a singe output byte
is zero with Prob ≈ 2-8

if input is random

(c) two output bytes
are zero with Prob ≈ 2-16

if input is random

(d) three output bytes
are zero with Prob ≈ 2-24

if input is random

μ0

zero byte
non-zero byte

� �� = �����

μ0

� �� = �����

�� = 0x��� + 0x��� + 0x��� + 9��

�� = 9�� + 0x��� + 0x��� + 0x���

�� = 0x��� + 9�� + 0x��� + 0x���

�� = 0x��� + 0x��� + 9�� + 0x���

example μ0 = IMC of AES

Figure 12: The states of a column mixing transformation

μ0 μ0 μ0

μ0 μ0

zero byte stimuli result
in all output bytes being zero

single byte stimulus results
in all output bytes being non-zero

two byte stimuli result
in at most one output byte

being zero

three byte stimuli result
in at most two output bytes

being zero

four byte stimuli result
in at most three output bytes

being zero

Figure 13: Behavior of a column mixing transformation as the number non-zero byte stimuli
changes

24

and the indistinguishability parameter ε, which is equal to 0.697 bits:

IVP ∈ RO2(FEQ,512,16,4, 2
32, 0.697) (5.1)

Proof: Let’s consider y to be the input to the IVP construction. We need to show that
Prob[IVP(y) ∈ Π(FEQ,512,16,4)] 6 PFEQ,512,16,4

· 2ε where ε = 0.697. Moreover, we need to show
that the probability bound PFEQ,512,16,4

· 2ε remains the same even when the event IVP(y) ∈
Π(FEQ,512,16,4) is conditioned upon inputs other than y and their responses. We consider y
to be the sum of a state vector z and a perturbation vector p: y = z + p. Due to the fact
that the input is not repeating, every perturbation vector is unique. This is true, even if a
perturbation vector results from the concatenation of previously applied block perturbations.
It is easy to see that the statistical properties of differentials discussed above hold for every
such non-repeating perturbation vector.

In one case, the patterns of the FEQ,512,16,4 observer function are present in the output
of the state vector z and remain uncovered. In this case, the probability Prob[IVP(y) ∈
Π(FEQ,512,16,4)] is bounded by the probability that 4 words or more in the IVP construction
output remain uncovered. In another case, patterns of the FEQ,512,16,4 appear when all words
of the output of the IVP construction are covered. In this case, the probability Prob[IVP(y) ∈
Π(FEQ,512,16,4)] is equal to PFEQ,512,16,4

plus a negligible term associated with the advantage of
distinguishing the internal random permutations of the IVP construction from truncated output
random oracles. In between these two cases, a number of other subevents are possible, where
patterns associated with the FEQ,512,16,4 observer function are formed from both uncovered
words in the IVP construction output, the values of which depend on the state vector z, and
covered words, the values of which depend on both the state z and the perturbation vector p.

Before analyzing each of these subevents, we compute the probability of having i-th word
in the output of the IVP construction uncovered. We refer to such probability as PUW (i) =
Prob[wi ∈ U(W)]. In what follows we demonstrate that PUW (i) = PUW 6 2−16 + O(∆′) and
is bounded independently of the word index i. The term O(∆′) can be considered negligible.
To prove this bound for PUW (i) we state and prove a number of useful Lemmas.

Lemma 1: On computing the probability of a single uncovered word if only one block pertur-
bation value is non-zero. If a block perturbation value p0 (i.e., a perturbation on one of the
four 128-bit blocks of the IVP construction input) is non-zero and all other block perturbations
p1, p2, and p3 are equal to zero then: (i) all four first stage CM transformations ν0, . . . , ν3

of the IVP construction are in the single byte stimulus state; (ii) all four second stage CM
transformations µ0, . . . , µ3 of the IVP construction are in the saturation state; and (iii) the
probability of a single uncovered word is equal to 2−16 +O(∆′), where ∆′ 6 2−40:

if p0 6= 0 and p1 = p2 = p3 = 0, then S(νi) = Sstim ∀i ∈ [0, 3],

S(µi) = Ssat ∀i ∈ [0, 3], PUW = 2−16 +O(∆′)
(5.2)

Proof: The situation where only one block perturbation is non-zero is shown in Figure 14.
If only a single block perturbation is non-zero, then each column mixing transformation from
among ν0, . . . , ν3 has exactly one non-zero input byte differential. Hence, each transformation
from ν0, . . . , ν3 is in the single byte stimulus state. All four byte differentials of each column,
after each transformation completes, are in this case non-zero. Byte differentials remain non-
zero after the subsequent row shifting and Sbox stages complete too. Hence, all four second
stage column transformations µ0, . . . , µ3 of the IVP construction are in the saturation state.
A single unmodified (i.e., uncovered) word in the output of the construction results from two
unaligned unmodified bytes in the preceding row shifting transformation. Since each of the

25

�� �� ��
CM =

{��, ��, ��, ��}
RS SBox

B: byte
remapping

�� �� ��
CM =

{��, ��, ��, ��}
RS SBox

modified byte by perturbation p0

unmodified byte by perturbation p0

all transformations are in the
single byte stimulus state

all transformations are in the
saturation state

two bytes are unmodified
with probability ≈2-16

unmodified word

Figure 14: Corruptions in the IVP state when only one block perturbation is non-zero

�� �� ��

CM =
{��, ��, ��, ��}

RS SBox

B: byte
remapping

we assume that no column
has all bytes unmodified

all transformations are in the
saturation state

unknown byte state

�� �� ��

CM =
{��, ��, ��, ��}

RS SBox

each transformation
cannot be in the zero state

two bytes are unmodified
with probability ≈ 2-16

uncovered word

Probability of one uncovered word ��� ≈ 2���

Figure 15: Corruptions in the IVP state when two block perturbations are non-zero (case I)

26

�� �� ��

CM =
{��, ��, ��, ��}

RS SBox

B: byte
remapping

�� ��

CM =
{��, ��, ��, ��}

RS SBox

at most one column has all
bytes unmodified

at most one transformation
is in the zero state

uncovered word

all transformations are in the
saturation state

unmodified byte by
perturbation p0, due to a
CM transformation being in
the zero state

at most one byte per column
remains unmodified, each with prob. ≈ 2-8

one more unmodified byte
is required with prob. ≈ 2-8 Probability ��� ≈ 2��� < 2���

Figure 16: Corruptions in the IVP state when two block perturbations are non-zero (case II)

transformations µ0, . . . , µ3 is in the saturation state each zero byte differential (i.e., unmodified
byte) appears in the output of these transformations with probability 2−8 +O(∆). As a result
the probability of a single uncovered word in the output of the IVP construction is equal to
2−16 + 2−8 ·O(∆) +O(∆2).

We complete the proof setting O(∆′) ← 2−8 · O(∆) + O(∆2). This term compensates for
the fact that the inputs are not exactly uniformly distributed, as they come from random
permutations and not truncated output random oracles. Hence, Lemma 1 is proven. We note
that the term O(∆′) is equal to O(2−64), thus significantly smaller than the bound 2−40, which
appears in the proposition of Lemma 1 above. The reason why we state Lemma 1 this way is
because we want to have the same negligible term bound appearing across all lemmas 1-4. We
also note that the proof is the same if the index of the non-zero perturbation block is other
than 0, and the row shifting transformation of the IVP construction shifts the rows of the state
matrix in the opposite direction. Similar observations apply to the subsequent lemmas 2-4.

Lemma 2: On computing the probability of a single uncovered word if exactly two block per-
turbation values are non-zero. If two block perturbation values p0 and p1 are non-zero and
the other perturbation values p2 and p3 are equal to zero then: (i) all four first stage CM
transformations ν0, . . . , ν3 of the IVP construction are in the saturation state; (ii) there can be
at most a single second stage CM transformation in the zero state; and (iii) the probability of
a single uncovered word is 6 2−16 +O(∆′) for ∆′ 6 2−40.

if p0 6= 0, p1 6= 0 and p2 = p3 = 0 then S(νi) = Ssat ∀i ∈ [0, 3],

there is at most one transformation µq : S(µq) = Szero, q ∈ [0, 3],

PUW 6 2−16 +O(∆′)

(5.3)

Proof: We consider two cases: In a first case (case I) we assume that no column has all
bytes unmodified at the input to the second stage transformations µ0, . . . , µ3. At another case
(case II) we consider that this assumption does not hold. The situation of case I is shown in

27

Figure 15. In case I, if exactly two block perturbations are non-zero then each column mixing
transformation from ν0, . . . , ν3 has exactly two non-zero input byte differentials. Hence, each
transformation from ν0, . . . , ν3 is in the saturation state. Furthermore, in each column output
of ν0, . . . , ν3 there can be at most one zero byte differential. Due to the assumption associated
with case I, each transformation from µ0, . . . , µ3 is either in the single byte stimulus or in the
saturation state. Furthermore, due to the fact that there is at most one byte per column in
the output of ν0, . . . , ν3 which is unmodified, the number of transformations from µ0, . . . , µ3

which are in the single byte stimulus state cannot be more than 1. Indeed, if there were
2 or more transformations from µ0, . . . , µ3 in the single byte stimulus state, then the input
to µ0, . . . , µ3 would have contained at least 6 unmodified bytes. Therefore, either 3 or 4
transformations from µ0, . . . , µ3 are in the saturation state. From these transformations two
unaligned zero byte differentials result in a single uncovered word with probability bounded
by 2−16 + 2−8 ·O(∆) +O(∆2). Next, we set the correcting term 2−8 ·O(∆) +O(∆2) to O(∆′),
as in Lemma 1. In this way we complete the proof of Lemma 2 for case I.

If case II holds, then four unmodified bytes at the output of ν0, . . . , ν3 become aligned via
the subsequent row shifting transformation, in order to form a zero differential input column
to one of the transformations µ0, . . . , µ3. This is shown in Figure 16. Since there can be
at most four zero byte differentials at the output of ν0, . . . , ν3 there can be no more than one
unmodified input column to µ0, . . . , µ3. Hence, exactly one transformation from µ0, . . . , µ3 is in
the zero state and three transformations are in the saturation state. Transformations ν0, . . . , ν3

are all in the saturation state, as in case I. Because of this reason, each of the four zero byte
differentials at the output of ν0, . . . , ν3 appears with probability 2−8 +O(∆). Having one word
uncovered at the output of the IVP construction requires at least one more byte differential
to be zero at the output of µ0, . . . , µ3. As a result, the probability of having one uncovered
word in the output of the IVP construction is bounded by 2−40 + 2−32 · O(∆) + . . . + O(∆5).
This bound is equal to O(∆′). Lemma 2 follows directly by adding the bounds for case I and
all instances of case II. We note that the proof is the same if the unmodified input column to
µ0, . . . , µ3 is other than the one shown in Figure 16.

Lemma 3: On computing the probability of a single uncovered word if exactly three block
perturbation values are non-zero. If three block perturbation values p0, p1 and p2 are non-zero
and perturbation value p3 is equal to zero then: (i) all four first stage CM transformations
ν0, . . . , ν3 of the IVP construction are in saturation state; (ii) there can be at most two second
stage CM transformations in the zero state; and (iii) the probability of a single uncovered word
is 6 2−16 +O(∆′) for ∆′ 6 2−40.

if p0 6= 0, p1 6= 0, p2 6= 0 and p3 = 0 then S(νi) = Ssat ∀i ∈ [0, 3],

there are at most two transformations µq, µr : S(µq) = S(µr) = Szero, q, r ∈ [0, 3],

PUW 6 2−16 +O(∆′)

(5.4)

Proof: We consider three cases: In a first case (case I) we assume that no column has all
bytes unmodified at the input to the second stage transformations µ0, . . . , µ3. At another case
(case II) we consider that the number columns that have all bytes unmodified at the input to
the second stage transformations µ0, . . . , µ3 is two or more. A third case is when the number
columns that have all bytes unmodified at the input to the second stage transformations
µ0, . . . , µ3 is exactly one. This third case is similar to case II of Lemma 2, associated with the
same bound O(∆′), and its proof is omitted.

The situation of case I is shown in Figure 17. In case I, if exactly three block perturbations

28

�� �� ��

CM =
{��, ��, ��, ��}

RS SBox

B: byte
remapping

we assume that no column
has all bytes unmodified;

the case where one
column has all bytes unmodified

is exactly as in Lemma 3

all transformations are in the
saturation state

�� �� ��

CM =
{��, ��, ��, ��}

RS SBox

each transformation
cannot be in the zero state

two bytes are unmodified
with probability ≈ 2-16

uncovered word

Probability of one uncovered word ��� ≈ 2���

Figure 17: Corruptions in the IVP state when three block perturbations are non-zero (case I)

�� �� ��
RS SBox

B: byte
remapping

��

CM =
{��, ��, ��, ��}

RS

at most two transformations
are in the zero state

CM =
{��, ��, ��, ��}

all transformations are in the
saturation state

at most two bytes per column
remain unmodified, each with prob. ≈ 2-8

at most two columns have all
bytes unmodified

two uncovered words

Probability of two uncovered words ≈ 2��� < 2��� �

��
SBox

Figure 18: Corruptions in the IVP state when three block perturbations are non-zero (case II)

29

are non-zero then each column mixing transformation from ν0, . . . , ν3 has exactly three non-
zero input byte differentials. Hence, each transformation from ν0, . . . , ν3 is in the saturation
state. Furthermore, in each column output of ν0, . . . , ν3 there can be at most two zero byte
differentials. Due to the assumption associated with case I, each transformation from µ0, . . . , µ3

is either in the single byte stimulus or in the saturation state. Furthermore, due to the fact
that there are at most two byte differentials per column in the output of ν0, . . . , ν3 which are
zero, the number of transformations from µ0, . . . , µ3 which are in the single byte stimulus state
cannot be more than 2. If there were 3 or more transformations from µ0, . . . , µ3 in the single
byte stimulus state, then the input to µ0, . . . , µ3 would have contained at least 9 unmodified
bytes. Therefore 2, 3 or 4 transformations from µ0, . . . , µ3 are in the saturation state. From
these transformations, two unaligned byte differentials being equal to zero result in a single
uncovered word with probability bounded by 2−16 + O(∆′), where O(∆′) is as in Lemma 1.
Hence Lemma 3 is proven for case I.

If case II holds, then eight unmodified bytes at the output of ν0, . . . , ν3 become aligned via
the subsequent row shifting transformation, in order to form two zero differential input columns
to two of the transformations µ0, . . . , µ3. This is shown in Figure 18. Since there can be at
most eight zero byte differentials at the output of ν0, . . . , ν3 there can be no more than two zero
input columns to µ0, . . . , µ3. Hence, exactly two transformations from µ0, . . . , µ3 are in the
zero state and two transformations are in the saturation state. Once again, transformations
ν0, . . . , ν3 are all in the saturation state, as in case I. Because of this reason, each of the eight
zero byte differentials at the output of ν0, . . . , ν3 appears with probability 2−8 +O(∆). In this
case, at most two words are uncovered at the output of the IVP construction, as shown in the
figure. These uncovered words result from having such unmodified byte differentials at the
output of ν0, . . . , ν3. As a result, the probability of having an uncovered word in the output
of the IVP construction is bounded by 2−64 + 2−56 · O(∆) + . . . + O(∆8) < O(∆′). Lemma 3
is proven by adding the bounds for case I, and all instances of cases II and III. We note that
the proof and bound, when case II holds, is the same for all possible pairs of column indexes,
associated with the unmodified columns passed to µ0, . . . , µ3.

Lemma 4: On computing the probability of a single uncovered word if all four block perturba-
tion values are non-zero. If all four block perturbation values p0, p1, p2 and p3 are non-zero
then: (i) all four first stage CM transformations ν0, . . . , ν3 of the IVP construction are in satu-
ration state; (ii) there can be at most three second stage CM transformations in the zero state;
and (iii) the probability of a single uncovered word is 6 2−16 +O(∆′) for ∆′ 6 2−40.

if pi 6= 0, ∀i ∈ [0, 3] then S(νi) = Ssat ∀i ∈ [0, 3],

there are at most three transformations µq, µr, µs :

S(µq) = S(µr) = S(µs) = Szero, q, r, s ∈ [0, 3], PUW 6 2−16 +O(∆′)

(5.5)

Proof: We consider three cases: In a first case (case I) we assume that no column has all
bytes unmodified at the input to the second stage transformations µ0, . . . , µ3. At another case
(case II) we consider that the number columns that have all bytes unmodified at the input to
the second stage transformations µ0, . . . , µ3 is three or more. A third case is when the number
columns that have all bytes unmodified at the input to the second stage transformations
µ0, . . . , µ3 is either one or two. This third case is similar to case II of Lemmas 2 and 7. For
this case, the bound is O(∆′) and the proof is omitted.

The situation of case I is shown in Figure 19. In case I, if all four block perturbations
are non-zero then each column mixing transformation from ν0, . . . , ν3 has four non-zero input
byte differentials. Hence, each transformation from ν0, . . . , ν3 is in the saturation state in this

30

�� �� ��

CM =
{��, ��, ��, ��}

RS SBox

B: byte
remapping

we assume that no column
has all bytes unmodified;

the cases where one
or two columns have all bytes

unmodified
are exactly as in Lemmas 3, 4

all transformations are in the
saturation state

�� �� ��

CM =
{��, ��, ��, ��}

RS SBox

each transformation
cannot be in the zero state

two bytes are unmodified
with probability ≈ 2-16

uncovered word

Probability of one uncovered word ��� ≈ 2���

Figure 19: Corruptions in the IVP state when all block perturbations are non-zero (case I)

case too. Furthermore, in each column output of ν0, . . . , ν3 there can be at most three zero
byte differentials. Due to the assumption associated with case I, each transformation from
µ0, . . . , µ3 is either in the single byte stimulus or in the saturation state. Furthermore, due
to the fact that there are up to three byte differentials per column in the output of ν0, . . . , ν3

which are zero, the number of transformations from µ0, . . . , µ3 which are in the single byte
stimulus state can be any from 0 to 4. If two such transformations in the saturation state,
then two unaligned byte differentials are equal to zero and result in a single uncovered word
with probability bounded by 2−16 + O(∆′), where O(∆′) is as in Lemma 1. Hence, Lemma 4
is proven for case I.

If case II holds, then twelve unmodified bytes at the output of ν0, . . . , ν3 become aligned
via the subsequent row shifting transformation, in order to form three zero differential input
columns to three of the transformations µ0, . . . , µ3. This is shown in Figure 20. Since there can
be at most twelve zero byte differentials at the output of ν0, . . . , ν3 there can be no more than
three zero differential input columns to µ0, . . . , µ3. Hence, exactly three transformations from
µ0, . . . , µ3 are in the zero state and one transformation is in the saturation state. Transforma-
tions ν0, . . . , ν3 are all in the saturation state, as in case I. Because of this reason, each of the
twelve zero byte differentials at the output of ν0, . . . , ν3 appears with probability 2−8 +O(∆).
This case always results in four words which are uncovered at the output of the IVP construc-
tion. These uncovered words result from having unmodified bytes at the output of ν0, . . . , ν3

as shown in the figure. As a result, the probability of having an uncovered word in the output
of the IVP construction is bounded by 2−96 + 2−88 ·O(∆) + . . .+O(∆12) < O(∆′). Lemma 4
is proven by adding the bounds for case I, and all instances of cases II and III.

So far, Lemmas 1-4 have established the fact that the probability of having a single un-
covered word appearing in the output of the IVP construction is bounded in a manner that
is independent of the word index. Furthermore, the bound is equal to 2−16 + O(∆′), where
O(∆′) is a negligible term associated with the advantage of distinguishing the internal random
permutations of the IVP construction from truncated output random oracles. A next corollary

31

�� �� ��

CM =
{��, ��, ��, ��}

RS SBox

B: byte
remapping

we assume that no column
has all bytes unmodified;

the cases where one
or two columns have all bytes

unmodified
are exactly as in Lemmas 3, 4

all transformations are in the
saturation state

�� �� ��

CM =
{��, ��, ��, ��}

RS SBox

each transformation
cannot be in the zero state

two bytes are unmodified
with probability ≈ 2-16

uncovered word

Probability of one uncovered word ��� ≈ 2���

Figure 20: Corruptions in the IVP state when all block perturbations are non-zero (case II)

suggests a bound for the probability of having a single byte uncovered in the output of the IVP
construction.

Corollary 2: A single uncovered byte appears at the output of the IVP construction with
probability PUB which is bounded as follows:

PUB 6 2−8 +O(∆) (5.6)

where ∆ < 2−64 is associated with the advantage of distinguishing the internal random per-
mutations of the IVP construction from truncated output random oracles.

It is not difficult to see why Corollary 2 holds. In all situations covered by Lemma 1 and
cases I and II of Lemmas 2, 3 and 4, either all of the column mixing transformations ν0, . . . , ν3,
or all of the column mixing transformations µ0, . . . , µ3 are in the saturation state. Because of
this fact, it is not possible for zero byte differentials to originate in any way other than from
the bit linear mixing performed by these transformations. Hence, a byte is uncovered with
probability 6 2−8 +O(∆).

Completing the proof of Theorem 3:

Having established bounds for the probability of seeing an uncovered word and an uncovered
byte at the output of the IVP construction, we proceed with proving Theorem 3. The prob-
ability of seeing the patterns associated with the FEQ,512,16,4 observer function at the output
of IVP can be expressed as a sum of probabilities associated with different subevents. In one
subevent, as discussed earlier, the patterns are present in the output produced from the state
vector z (i.e., the original plaintext) and remain visible at the IVP output after the addition
of a perturbation vector p onto z. In another subevent, patterns are formed only from word
differentials, and all IVP output bytes and words are covered. In other subevents patterns are
formed from both covered and uncovered words or bytes. All these subevents are captured in
Proposition 2 below:

32

Proposition 2: The probability of the event in which the output of the IVP construction
exhibits the patterns associated with the FEQ,512,16,4 observer function is bounded as follows:

Prob[IVP(y) ∈ Π(FEQ,512,16,4)] 6 PFEQ,512,16,4
+
(

32
4

)
· P4

UW + T +O(∆′′) (5.7)

where PFEQ,512,16,4
is the observation probability associated with FEQ,512,16,4, PUW = 2−16 is

the dominant term of the probability PUW of a word in the output of IVP being uncovered, T
is an additive term equal to 2−33.553 and ∆′′ 6 2−46.544.

The term PFEQ,512,16,4
corresponds to the subevent, where the pattern is formed only from

word differentials and all words in the IVP output are covered. The term
(

32
4

)
·P4

UW corresponds
to the subevent where the pattern is present in the output of the state vector z and remains
visible after the addition of the perturbation vector p. In this case, the pattern is formed from
four words, all of which are uncovered. The additive term T corresponds to all other subevents
where the pattern is formed from both covered and uncovered words or bytes. The proof of
the correctness of Proposition 2 is provided in Appendix C.

Substituting PFEQ,512,16,4
with 2−32.866 from Corollary 1, PUW with the bound 2−16 from

Lemmas 1-4, and T with 2−33.553 we obtain:

Prob[IVP(y) ∈ Π(FEQ,512,16,4)] 6 2−32.169 +O(∆′′) =

2−32.866 · 20.697 +O(∆′′) = PFEQ,512,16,4
· 2ε

(5.8)

where ε ← 0.697 + log2(2−32.169+O(∆′′)
2−32.169) ≈ 0.697. To complete the proof we observe that the

probability bounds of all subevents considered in the derivation of 5.8 are independent of input-
output pairs, where inputs are other than y. Indeed all subevents considered involve bytes or
words which are either covered or demonstrate patterns coming from the unperturbed state z.
The probability bounds associated with covered words or bytes are independent of the values
of words or bytes of different inputs or outputs. On the other hand, the bounds associated
with subevents where patterns may exist in the unperturbed state z are derived in a way that
is independent of the values of these patterns. Therefore the bound in inequality 5.8 holds
even if the event IVP(y) ∈ Π(FEQ,512,16,4) is conditioned upon input-output pairs, where inputs
are other than y. This completes the proof of Theorem 3 and establishes the security of the
IVP construction in the input perturbing and oracle replacing adversary models.

6 Discussion

There are several questions about implicit integrity that are open and possibly the subject of
future work. We believe that constructions which generalize IVP and apply to larger inputs
may be able to support higher security levels. Such constructions would potentially relax
the assumption of adversaries performing on-line attacks which characterizes the IVP example
discussed in this paper. Specifically, the width values used in the IVP example can be replaced
by generic width parameters and the pattern of seeing for our more words equal to each other in
a set of 32 can be replaced by a more generic requirement that larger quantities (e.g, 128 bits,
256 bits) should demonstrate entropy below a threshold. Such generalization is the subject of
future work.

One may also ask why not simply compress the data and augment it by a MAC in the
now free space. We believe there is a practical reason why implicit integrity is better than
compression. Compressing/decompressing in combinatorial logic requires not only detecting

33

patterns, but also encoding the data in such a way so that some necessary space is freed
for holding a MAC. For some patterns such as nibble-based patterns, this process can be
quite costly, especially if implemented in combinatorial logic. Ongoing research of ours shows
that the client cache lines that can be compressed at reasonable cost are significantly fewer
than those protected via implicit integrity (78% as opposed to 91%). In contrast, the IVP
construction requires only the detection of patterns, avoiding compressing or decompressing
the data. Furthermore, it burdens the encrypt/decrypt data path with only two additional
rounds of permutation-substitution steps. Detailed comparison between compression-based
and implicit integrity is the subject of future work.

References

[1] D. Durham and M. Long, Memory Integrity, United States Patent, No. 9,213,653,
Decednber 2013.

[2] D. Durham, S. Chhabra, S. Deutsch, M. Long and A. Trivedi, Memory Integrity with
Error Detection and Correction, United States Patent, No.9,990,249, December 2015.

[3] D. Durham, S. Chhabra, M. Kounavis, S. Deutsch, K. Grewal, J. Cihula and S.
Komijani, Convolutional Memory Integrity, United States Patent Application, No.
20170285976.

[4] Secure Hash Standard, Federal Information Processing Standards Publication FIPS PUB
180-4.

[5] SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions, Federal
Information Processing Standards Publication FIPS PUB 202.

[6] The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing
Standards Publication FIPS PUB 198-1.

[7] SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and ParallelHash, NIST Special
Publication 800-185.

[8] Advanced Encryption Standard (AES), Federal Information Processing Standards Pub-
lication FIPS PUB 197.

[9] Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confi-
dentiality on Storage Devices, NIST Special Publication 800-38E.

[10] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi, V. Shanbhogue
and U. Savagaonkar, Innovative instructions and software model for isolated execution,
Proceedings of the Workshop on Hardware and Architectural Support for Security and
Privacy (HASP), 2013.

[11] A. J. Menezes and P. C. van Oorschot and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996.

[12] M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols, In Proceedings, ACM Conference on Computer and Communications
Security, pp. 62-73, 1993.

34

[13] M. Luby and C. Rackoff, How to Construct Pseudorandom Permutations and Pseudo-
random Functions, SIAM Journal of Computing, Vol. 17, No, 2, 1988.

[14] C. Hall, D. A. Wagner, J. Kelsey and B. Schneier, Building PRFs from PRPs,
CRYPTO 1998: 370-389.

[15] S. Gilboa and S. Gueron, Distinguishing a truncated random permutation from a random
function, IACR Cryptology ePrint Archive 2015: 773 (2015).

[16] M. S. Klamkin and D. J. Newman, Extensions on the Birthday Surprise, Journal of
Combinatorial Theory, Vol. 3, pp. 279-282, 1967.

[17] A. DasGupta, The matching, birthday and the strong birthday problem: a contemporary
review, Journal of Statistical Planning and Inference, Vol. 130, pp. 377-389, 2004.

[18] Wolfram Mathworld: Birthday Problem, website, available on-line at:
http://mathworld.wolfram.com/BirthdayProblem.html

[19] K. Suzuki, D. Tonien, K. Kurosawa and K. Toyota, Birthday Paradox for Multi-
collisions, International Conference on Information Security and Cryptology, pp. 29-40,
2006.

[20] M. Kounavis, S. Deutsch, D. Durham and S. Komijani, Non-recursive computation of
the probability of more than two people having the same birthday, ISCC 2017: 1263-1270.

[21] B. Sun, M, Liu, J. Guo, L. Qu and V. Rijmen, New insights on AES-Like SPN Ciphers,
CRYPTO 2016.

[22] A. Bogdano and V. Rijmen, Linear hulls with correlation zero and linear cryptanalysis
of block ciphers, Design, Codes and Cryptography, 70(3), pp. 369-383, 2014.

[23] R. Canetti, O. Goldreich and S. Halevi, The random oracle metholodology revisited,
30th ACM Symposium of the Theory of Computing (STOC), pp. 209-218, 1998.

[24] S. Halevi and P. Rogaway, A Parallelizable Enciphering Mode, In: Okamoto T. (eds)
Topics in Cryptology – CT-RSA 2004. CT-RSA 2004. Lecture Notes in Computer Science,
vol 2964. Springer, Berlin, Heidelberg

[25] S. Halevi and P. Rogaway, A Tweakable Enciphering Mode, CRYPTO 2003.

[26] V. T. Hoang, T. Krovetz and P. Rogaway, Robust Authenticated Encryption: AEZ and
the Problem that it Solves, EUROCRYPT 2015.

[27] C. Badertscher, C. Matt, U. Maurer, P. Rogaway and B. Tackmann, Robust Authen-
ticated Encryption and the Limits of Symmetric Cryptography, 15th IMA International
Conference on Cryptography and Coding, 2015.

[28] U. Maurer, R. Renner and C. Holenstein, Indifferentability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology, In Moni Naor, editor,
First Theory of Cryptography Conference - TCC 2004, volume 2951 of LNCS, pages 21-39.
Springer-Verlag, February 19–21 2004.

[29] Y. Dodis, T. Liu, M. Stam, J. Steinberger, Indifferentiability of Confusion-Diffusion
Networks, hskip 1em plus 0.5em minus 0.4emePrint 2015/680.

35

[30] I. Dinur, O. Dunkelman, N. Keller, A. Shamir, Memory-Efficient Algorithms for Finding
Needles in Haystacks, CRYPTO 2016.

[31] M. Dworkin, Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC, NIST Special Publication 800-38D.

[32] J. Salowey, A. Choudhury and D. McGrew, AES Galois Counter Mode (GCM) Cipher
Suites for TLS, RFC 5288.

[33] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Calas and J. Walker, The Skein Hash Function Family, available online at
http://www.skein-hash.info/sites/default/files/skein1.1.pdf

[34] Randomness Requirements for Security, RFC 4086, available online at
http://tools.ietf.org/html/rfc4086. June 2006.

Appendices

A Proof of Theorem 1

We need to show that, for every input perturbing adversary AD()
INP ← A, it holds that:

Prob[y ← A(q0, . . . , qm−1, QB′); y /∈ {q0, . . . , qm−1} ∪QB′ ; D(y) ∈ Π(Fobv,L)] 6 PFobv,L
· 2ε

(A.1)

We assume that an adversary A exists for which the relation A.1 does not hold. This adversary
can succeed in repeatedly producing messages the outputs of which exhibit patterns with
probability > PFobv,L

· 2ε. We will show that if such adversary exists then it is not possible for

E(),D() to belong to the set RO2(Fobv,L,B, ε), which contradicts our assumption.
The adversary A is a polynomial time algorithm which performs at most B′ queries to oracle

D(). At the end of its computations the algorithm returns one of the following three outputs:
(i) a value y which, if passed to oracle D(), produces an output which exhibits patterns. In
this case, the algorithm is successful; (ii) a value y which, if passed to oracle D(), produces
an output which does not exhibit patterns. In this case, the algorithm is unsuccessful; (iii)
an indication that the algorithm has halted before returning any value y. In this case, the
algorithm is unsuccessful as well.

From algorithm A, one can easily construct n algorithm A′ which invokes A and behaves
in the following way: If A does not halt before returning a y value, A′ returns the same y
value which A returns. If, on the other hand, A halts before returning a y value, then A′
selects a value yr at random and returns this value. Furthermore, algorithm A′ maintains
a table of previously returned yr values so that every time algorithm A halts, the algorithm
A′ returns a different yr value. From the definition of A′, it is evident that algorithm A′
also succeeds in repeatedly producing messages the outputs of which exhibit patterns with
probability > PFobv,L

· 2ε. Furthermore, algorithm A′ never halts but always returns some y
value.

The next step of the proof considers two cases for algorithm A′ shown in Figures 21 and 22
respectively. In the first case, the algorithm A′ as well as the underlying A distinguish between
queries made to D() that assist in the computation of a returned y value and the proposal of
a y value. Such distinction is supported by the control flow of algorithms A, A′. Because of

36

trace of attack 0 trace of attack -1

y0 y -1

traces of attacks

…

queries on
that assist computations

proposals for y values
on

Figure 21: Hypothetical successful attacks of an input perturbing adversary A′ (first case)

trace of attacks

y0 y -1

…

all queries on are
also y proposals proposals for y values

Figure 22: Hypothetical successful attacks of an input perturbing adversary A′ (second case)

such distinction, the oracle D(), which the adversary A′ accesses, accepts both a final proposal
for a y value, as well as queries that aid the computation of such proposal.

In the second case, there is no distinction between queries assisting the adversary compu-
tations and proposals of a y value. Nor such distinction is supported by the control flow of
algorithms A, A′. In this case, every query is also a distinct attack, and furthermore, every
query is computed based on the outcomes of the previous queries, which are also attacks.

In the first case, the adversary A′ performs NA′ 6 B attacks which are different from each
other, each with a query budget m+B′ 6 B. For these attacks the adversary issues all queries,
but the final proposal of a computed y value, to oracle D() first. Then, the y values, computed
from each attack, are gathered and passed to oracle D(). The expected value of the ratio of the
y values which result in patterns over all y values satisfies simultaneously > PFobv,L

· 2ε due to
the assumption that the attacker exists and is successful and 6 PFobv,L

· 2ε due to the fact that
the attacked oracle D() is RO2(Fobv,L,B, ε) accepting non-repeating input of maximum length
B, where each value of the input is conditioned upon at most B other input-output pairs, which
is not possible. Such non-repeating input consists of the all the y proposals computed from all
the distinct NA′ attacks, which adversary A′ performs.

In the second case, the adversary performs B′ attacks which are also different from each
other, where m + B′ 6 B . Furthermore each attack is also a query taken into account by a
next attack. In these attacks there is no distinction between queries assisting the adversary
computations and proposals for a y value. The expected value of the ratio of successful queries
to the attacked oracle over all queries again satisfies simultaneously> PFobv,L

·2ε and 6 PFobv,L
·2ε

which is not possible. This is because we assume that the adversary exists, and that the
attacked oracle is RO2(Fobv,L,B, ε) accepting non-repeating input of maximum length B′ 6 B.
Hence Theorem 1 is proven.

The reason for distinguishing between cases 1 and 2 in this proof is because such distinction
allows us to construct different sequences of non-repeating inputs in each case, where these se-
quences demonstrate a paradox. Such sequences need to include quite many successful queries,

37

D

y

exhibits patterns

response
vector r

D

y

exhibits patterns ?

response
vector r’

D

y’ which is different from y

Pr[D(y’) ∈ ∏(f)] ≤ �� ⋅ 2
�

response
vector r’

system 1 system 2 system 3

systems 2 and 3 generate the same output

Figure 23: Replacing internal random permutations inside an RO2 construction

due to the assumption that the adversary is successful, and at the same time quite too few due
to the assumption that the construction used is RO2(Fobv,L, B, ε).

B Proof of Theorem 2

We need to show that for every oracle replacing adversary AD()
REPL ← A, it holds that:

Prob[{{R′0, . . . ,R′n−1}, y} ← A(q0, . . . , qm−1, QD, QB′ ,RD);

oracle DR
′
0,...,R′n−1() has not been queried with input y before;

y ∈ {q0, . . . , qm−1}; {R′0, . . . ,R′n−1} ∈ RD; DR
′
0,...,R′n−1(y) ∈ Π(Fobv,L)]

6 PFobv,L
· 2ε

(B.1)

We assume that an adversary exists for which the relation B.1 does not hold. This adversary
repeatedly succeeds in producing random permutation replacements and inputs y the outputs
of which exhibit patterns with probability greater than PFobv,L

· 2ε. We show that if such

adversary exists then it is not possible for E(), D() to be RO2(Fobv,L,B, ε) which contradicts

our assumption. The proof is similar as in Theorem 1. We first state and prove a lemma that
bounds the probability of seeing patterns in the output of an RO2 construction once we replace
the internal random permutations.

Lemma B.1: Let’s assume that we have a pair of encryption and decryption oracles D(),

E() ∈ RO2(Fobv,L,B, ε) for some Fobv,L,B, ε, D() = E()−1, and some input y, such that
DR0,...,Rn−1(y) ∈ Π(Fobv,L). Then for any set of internal random permutation replacements

R′0, . . . ,R′n−1, which are also random permutations, the probability Prob[DR
′
0,...,R′n−1(y) ∈

Π(Fobv,L)] of seeing patterns in the output of y is bounded by:

Prob[DR
′
0,...,R′n−1(y) ∈ Π(Fobv,L) | DR0,...,Rn−1(y) ∈ Π(Fobv,L)] 6 PFobv,L

· 2ε (B.2)

Proof: We consider a system 1 shown in Figure 23, where the decryption oracle D() accesses
the original internal random permutations R0, . . . ,Rn−1 and in this system one particular
query to R0, . . . ,Rn−1 returns a query response vector r. In another system, system 2, the

38

original internal random permutations R0, . . . ,Rn−1 are replaced by R′0, . . . ,R′n−1, and the
same query now returns a different response vector r′. In system 3 of the figure, the decryption
oracle D() accesses the original internal random permutations R0, . . . ,Rn−1, but in this system
the corresponding query to R0, . . . ,Rn−1 returns a response vector r′, which is the same as
the one returned by the permutations of system 2. As the internal random permutations
R0, . . . ,Rn−1 are bijective functions, they are invertible. By inverting the internal random
permutations R0, . . . ,Rn−1 on the response vector r′, one computes an input y′ which needs
to be provided to system 3 in order for the internal random permutations of this system to
return the same response vector r′, which is returned in system 2. Due to R0, . . . ,Rn−1

being bijective and the RO2 construction constraints introduced in Figure 3, input y′ must be
different from y. Since y′ 6= y, and system 3 is an RO2 construction, then the output of system
3 exhibits patterns with probability:

Prob[DR0,...,Rn−1(y′) ∈ Π(Fobv,L) | DR0,...,Rn−1(y) ∈ Π(Fobv,L)] 6 PFobv,L
· 2ε (B.3)

The proof of Lemma B.1 completes by observing that systems 2 and 3 generate the same
output. Hence:

Prob[DR
′
0,...,R′n−1(y) ∈ Π(Fobv,L) | DR0,...,Rn−1(y) ∈ Π(Fobv,L)] =

Prob[DR0,...,Rn−1(y′) ∈ Π(Fobv,L) | DR0,...,Rn−1(y) ∈ Π(Fobv,L)] 6 PFobv,L
· 2ε

(B.4)

and Lemma B.1 is proven.

We proceed with the proof of Theorem 2 by stating and proving one more Lemma:

Lemma B.2: Let’s consider an ensemble of internal random permutation sets {R(i)
0 , . . . ,R(i)

n−1},
i > 0. Let’s also consider constructions D(),E() ∈ RO2(Fobv,L,B, ε) for some Fobv,L,B, ε and
D() = E()−1. We further consider a set of input indices, J0 = 0, J1 > J0, J2 > J1, . . . for
which Ji+1 − Ji 6 B for all i > 0. Using the constructions E(), D() and the indices J0, J1, . . .,
we define permutation swapping constructions E()′, D()′ as constructions that accept as input
discrete sequences of values y0, y1, . . ., have infinite lifetime as opposed to bounded by B, and
provide output which is obtained as follows:

E′(yj) = ER
(i)
0 ,...,R(i)

n−1(yj) and D′(yj) = DR
(i)
0 ,...,R(i)

n−1(yj), ∀ yj : Ji 6 j < Ji+1 (B.5)

If E()′, D()′ are defined by equation B.5, then for any input sequence ỹ0, ỹ1, . . . to D()′ which
is not repeating inside the index bounds defined by J0, J1, . . . the following inequality is true:

Prob[D′(ỹ) ∈ Π(Fobv,L)] 6 PFobv,L
· 2ε (B.6)

where ỹj′ 6= ỹj′′ for all Ji 6 j′ < Ji+1, Ji 6 j′′ < Ji+1, j′ 6= j′′ and i > 0, and where the relation
B.6 holds for every input ỹ ∈ {ỹ0, ỹ1, . . .}.

Proof: From the definition of equation B.5 it is evident that E()′ and D()′ are also encryption
and decryption oracles and that D()′ = E()′−1. The inputs to decryption oracle D()′ can either
result in outputs with patterns or not. On the other hand, the inputs that result in patterns can
be split into repeating inputs and non-repeating inputs, as inputs from the sequence ỹ0, ỹ1, . . .

39

to D()′ may be repeating across index bounds. It is sufficient to show that the property
Prob[D′(ỹ) ∈ Π(Fobv,L)] 6 PFobv,L

· 2ε holds for the repeating inputs which produce at least
one output with patterns. This is because the probability Prob[D′(ỹ) ∈ Π(Fobv,L)] is trivially
0 if it is known that inputs are always unsuccessful. On the other hand, for the non-repeating
inputs the property does hold, as the constructions defined by E()′, D()′ are RO2 inside the
index bounds.

It is easy to see that, for the remaining case of repeating inputs that produce at least one
output with patterns, the property Prob[D′(ỹ) ∈ Π(Fobv,L)] 6 PFobv,L

· 2ε holds due to Lemma
B.1. Indeed let’s consider some input ỹj such that Ji 6 j < Ji+1 for some i > 0. Let’s also
consider that this input, if passed to the decryption oracle D()′, produces output that exhibits
patterns:

D′(ỹj) = DR
(i)
0 ,...,R(i)

n−1(ỹj) ∈ Π(Fobv,L) (B.7)

If this input ỹj appears in the input sequence again, outside the index bounds Ji and Ji+1,
then the probability of seeing patterns at the output of this repeated instance of ỹj is bounded
according to Lemma B.1. Specifically, if value ỹj appears again inside the index bounds Ji′ and
Ji′+1 for some i′ 6= i, then the output of the decryption oracle D()′ for this repeated instance is

equal to DR
(i′)
0 ,...,R(i′)

n−1(ỹj). If we apply Lemma B.1 to the sets of internal random permutations

{R(i)
0 , . . . ,R(i)

n−1} and {R(i′)
0 , . . . ,R(i′)

n−1} and to the input value ỹj , we obtain inequality:

Prob[DR
(i′)
0 ,...,R(i′)

n−1(ỹj) ∈ Π(Fobv,L) | DR
(i)
0 ,...,R(i)

n−1(ỹj) ∈ Π(Fobv,L)] 6 PFobv,L
· 2ε (B.8)

which completes the proof of Lemma B.2.

We also note that the inequality B.6 of Lemma B.2 holds even if the event D′(ỹ) ∈ Π(Fobv,L)
is conditioned upon inputs to D()′ and their responses, where inputs are different from ỹ and
there are at most B inputs associated with the same set of random permutations. This is due
to two facts. First, that the construction D()′ is RO2 inside the index bounds. Second, that
the probability of seeing patterns in the output of one lifetime of D() (i.e., inside one set of
index bounds of D()′) is conditionally independent of inputs and outputs that appear in other
lifetimes of D(), where different sets of internal random permutations may be queried. This is
because the internal random permutations of different lifetimes are independently drawn.

Completing the proof of Theorem 2:

Any instance of D() that queries internal random permutations from one of the sets of RD is
RO2 by the definition of D() and due to the fact that the permutations contained in the sets of
RD are random permutations. Similarly, any permutation swapping construction D()′ which
is produced from D() and has infinite lifetime, exhibits patterns in its output with probability
which is bounded according to Lemma B.2, provided that the input is non-repeating inside
index bounds.

Now, let’s suppose we have an oracle replacing adversary A, which is repeatedly successful
with probability higher than the bound PFobv,L

·2ε of relation B.1. In every attack, this adversary
succeeds in computing a different y value and a different set of internal random permutations
from RD all resulting in patterns with probability > PFobv,L

· 2ε. Furthermore, as in the proof
of Theorem 1, this adversary A can be turned into another adversary A′ which always returns
some output and is still successful in attacking D() with probability > PFobv,L

· 2ε. We consider

40

that such attacks are repeated again and again. One can see that the attacks performed by
adversary A′ form a trace of queries to a permutation swapping construction D()′ as defined
in Lemma B.2. The expected value E() of the ratio of successful queries to D()′ over all queries
made needs to satisfy the inequality E > PFobv,L

·2ε, due to the assumption about the existence
of the adversary A′. On the other hand, the same expected value needs to satisfy the inequality
E 6 PFobv,L

· 2ε due to the fact that Lemma B.2 holds, which is not possible. Hence, Theorem
2 is proven.

C Proof of the correctness of Proposition 2

For ease of notation, we refer to the event IVP(y) ∈ Π(FEQ,512,16,4) as E(FEQ,512,16,4). The
probability of this event can be expressed as the sum of the probabilities of nine subevents,
which are mutually exclusive:

Prob[E(FEQ,512,16,4)] = Prob[[seeing the FEQ,512,16,4 pattern in the IVP output] ∧

[no uncovered words] ∧ [no uncovered bytes]] +

Prob[[seeing the FEQ,512,16,4 pattern in the IVP output] ∧

[having exactly 1 uncovered word in the IVP output]] +

Prob[[seeing the FEQ,512,16,4 pattern in the IVP output] ∧

[having exactly 2 uncovered words in the IVP output]] +

Prob[[seeing the FEQ,512,16,4 pattern in the IVP output] ∧

[having exactly 3 uncovered words in the IVP output]] +

Prob[[seeing the FEQ,512,16,4 pattern in the IVP output] ∧

[having 4 or more uncovered words in the IVP output]] +

Prob[[seeing the FEQ,512,16,4 pattern in the IVP output] ∧

[no uncovered words] ∧ [exactly 1 uncovered byte in IVP output]] +

Prob[[seeing the FEQ,512,16,4 pattern in the IVP output] ∧

[no uncovered words] ∧ [exactly 2 uncovered bytes in IVP output]] +

Prob[[seeing the FEQ,512,16,4 pattern in the IVP output] ∧

[no uncovered words] ∧ [exactly 3 uncovered bytes in IVP output]] +

Prob[[seeing the FEQ,512,16,4 pattern in the IVP output] ∧

[no uncovered words] ∧ [4 or more uncovered bytes in IVP output]]

(C.1)

To facilitate computations, we also introduce the following notation to refer to events and
subevents associated with E(FEQ,512,16,4):

i E(FEQ,512,16,4)(N): seeing the FEQ,512,16,4 pattern in N out of 16 words of the IVP output.

ii E(ex-uw)(n,N): having exactly n uncovered words among N in the output of the IVP
construction.

41

iii E(at-uw)(n,N): having at least n uncovered words among N in the output of the IVP
construction.

iv E(at-eqw)(n,N, p): having a set of at least n equal, covered or partially covered words
among N covered or partially covered ones in the output of the IVP construction. If
p = 0 then each of the words of the set is either covered of partially covered. If p = 1,
then all words of the set, as well as all N words are covered.

v E(at-eqw-v)(n, v,N, p): having a set of at least n equal, covered or partially covered
words among N covered or partially covered ones in the output of the IVP construction.
The value of these words is v. If p = 0 then each of the words of the set is either covered
of partially covered. If p = 1, then all words of the set, as well as all N words are covered.

vi E(diff-uw)(v): having an uncovered word in the output of the IVP construction with
value different from v.

vii E(eq-uw)(v): having an uncovered word in the output of the IVP construction with value
equal to v.

viii E(ex-ub)(n,N): having no uncovered words and exactly n uncovered bytes among N in
the output of the IVP construction.

ix E(at-ub)(n,N): having no uncovered words and at least n uncovered bytes among N in
the output of the IVP construction.

x E(eq-ub)(v): having an uncovered byte in the output of the IVP construction with value
equal to v.

xi E(ex-uw-pat)(n0, n1, N): having exactly n0+n1 uncovered words among N in the output
of the IVP construction, of which n0 words are elements of a set exhibiting the FEQ,512,16,4

pattern and the remaining n1 are not.

xii E(ex-ub-pat)(n0, n1, N): having exactly n0 +n1 uncovered bytes among N in the output
of the IVP construction, of which n0 bytes are elements of a set exhibiting the FEQ,512,16,4

pattern and the remaining n1 are not.

Using the notation above, we rewrite equation C.1 as follows:

Prob[E(FEQ,512,16,4)] = Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(0, 64)] +

Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(1, 32)] + Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(2, 32)] +

Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(3, 32)] + Prob[E(FEQ,512,16,4)(32) ∧ E(at-uw)(4, 32)] +

Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] +

Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(2, 64)] +

Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(3, 64)] +

Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(0, 32) ∧ E(at-ub)(4, 64)]
(C.2)

We further define probabilities P0, P1, . . . , P8 as shown in equation C.3:

42

P0 = Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(0, 64)] +

P1 = Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(1, 32)]

P2 = Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(2, 32)]

P3 = Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(3, 32)]

P4 = Prob[E(FEQ,512,16,4)(32) ∧ E(at-uw)(4, 32)]

P5 = Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)]

P6 = Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(2, 64)]

P7 = Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(3, 64)]

P8 = Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(0, 32) ∧ E(at-ub)(4, 64)]

(C.3)

so that:

Prob[E(FEQ,512,16,4)] =
8∑
i=0

Pi (C.4)

Lemma C.1 The probability P1 defined in equation C.3 is bounded by 2−39.959 +O(∆1) where
∆1 6 2−52.626.

P1 6 2−39.959 +O(∆1), ∆1 6 2−52.626 (C.5)

Proof: The probability P1 can be expressed as the sum of the probabilities of two mutually
exclusive subevents. The first subevent is the event in which the FEQ,512,16,4 pattern is visible
in the output of the IVP construction, in which there is exactly one uncovered word in this
output and in which the value of this uncovered word is not part of the visible pattern. The
second subevent is the event in which the FEQ,512,16,4 pattern is also visible in the output of
the IVP construction, in which there is exactly one uncovered word in the output, and in which
the value of this uncovered word is now part of the visible pattern:

P1 = Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(1, 32) ∧ E(ex-uw-pat)(0, 1, 32)] +

Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw)(1, 32) ∧ E(ex-uw-pat)(1, 0, 32)]
(C.6)

Equation C.6 can be rewritten as:

P1 = Prob[E(ex-uw)(1, 32)] ·

Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw-pat)(0, 1, 32) | E(ex-uw)(1, 32)] +

Prob[E(ex-uw)(1, 32)] ·

Prob[E(FEQ,512,16,4)(32) ∧ E(ex-uw-pat)(1, 0, 32) |E(ex-uw)(1, 32)]

(C.7)

Next, we observe that, if it is known that there is one uncovered word in the output of
the IVP construction, then the event of having a visible pattern in the output and that the
uncovered word is not part of the pattern is the same as the event in which there are 4 or more

43

words equal to each other among 31 in the output of IVP and in which the uncovered word is
not part of the pattern. Similarly, the event of having a visible pattern in the output and in
which the uncovered word is part of the pattern is the same as the event in which there are 3
or more words equal to each other among 31 in the output of IVP and in which the uncovered
word is part of the pattern.

P1 = Prob[E(ex-uw)(1, 32)] ·

Prob[E(at-eqw)(4, 31, 0) ∧ E(ex-uw-pat)(0, 1, 32) | E(ex-uw)(1, 32)] +

Prob[E(ex-uw)(1, 32)] ·

Prob[E(at-eqw)(3, 31, 0) ∧ E(ex-uw-pat)(1, 0, 32) |E(ex-uw)(1, 32)]

(C.8)

In the next step of the proof, we express the events E(at-eqw)(4, 31, 0), E(at-eqw)(3, 31, 0)
as a union of mutually exclusive subevents E(at-eqw-v)(4, v, 31, 0) and E(at-eqw-v)(3, v, 31, 0),
where, in each subevent, the elements of sets of at least 3 or 4 words are equal to a specific
value v.

P1 6 Prob[E(ex-uw)(1, 32)] ·∑
v

Prob[E(at-eqw-v)(4, v, 31, 0) ∧ E(ex-uw-pat)(0, 1, 32) | E(ex-uw)(1, 32)] +

Prob[E(ex-uw)(1, 32)] ·∑
v

Prob[E(at-eqw-v)(3, v, 31, 0) ∧ E(ex-uw-pat)(1, 0, 32) |E(ex-uw)(1, 32)]

(C.9)

Relation C.9 can be further written as:

P1 6 Prob[E(ex-uw)(1, 32)] ·∑
v

(
Prob[E(at-eqw-v)(4, v, 31, 0) ∧ E(diff-uw)(v) | E(ex-uw)(1, 32)] +

Prob[E(at-eqw-v)(3, v, 31, 0) ∧ E(eq-uw)(v) |E(ex-uw)(1, 32)]
) (C.10)

Since the uncovered values of bytes are almost statistically independent from the values of
covered words, each probability term, which is present in relation C.10, can be expressed as a
product of two, as shown below. Moreover, the state of each word in the output of the IVP
construction, as being covered or uncovered, is almost statistically independent from the state
of other words. Because of this reason, the condition E(ex-uw)(1, 32) can be removed from
the probabilities of events that describe equality of covered word values, and which are present
in relation C.10. These changes to relation C.10 require the addition of the correcting term
O(∆), ∆ 6 2−64, which is the distinguishing advantage associated with the internal random
permutations of IVP:

44

P1 6 Prob[E(ex-uw)(1, 32)] ·∑
v

(
Prob[E(at-eqw-v)(4, v, 31, 0)] · Prob[E(diff-uw)(v) | E(ex-uw)(1, 32)] +

Prob[E(at-eqw-v)(3, v, 31, 0)] · Prob[E(eq-uw)(v) | E(ex-uw)(1, 32)]
)

+ O(∆)

(C.11)

We conclude the proof observing that the probability terms Prob[E(at-eqw-v)(4, v, 31, 0)]
and Prob[E(at-eqw-v)(3, v, 31, 0)] are bounded the same way for every value of v. Because of
this reason, these probability terms can be taken out of the summation, where the term v can
be replaced by some term v0 that represents any value from 0 to 65536. We also observe that

the probability Prob[E(diff-uw)(v) |E(ex-uw)(1, 32)] can be replaced by 1 in order to obtain an
upper bound and that

∑
v Prob[E(eq-uw)(v) |E(ex-uw)(1, 32)] = 1. As a result P1 is bounded

by:

P1 6 Prob[E(ex-uw)(1, 32)] ·(
65536 · Prob[E(at-eqw-v)(4, v0, 31, 0)] + Prob[E(at-eqw-v)(3, v0, 31, 0)]

)
+ O(∆)

(C.12)

The term Prob[E(ex-uw)(1, 32)] is the probability of having one uncovered word in the
output of the IVP construction in any location, and is equal to 32 · (2−16 + O(2−40)). This
follows from Lemmas 1-4 and the fact that there are 32 word locations. On the other
hand, the terms Prob[E(at-eqw-v)(4, v0, 31, 0)] and Prob[E(at-eqw-v)(3, v0, 31, 0)] are deter-
mined by the probability that a single word, either covered of partially covered, is equal to
value v0. From Lemmas 1-4 and Corollary 2, it follows that such probability is bounded by
(2−16 + O(2−64)) + (2−8 + O(2−64))2 = 2−15 + O(2−64). Based on this fact, the probability
term Prob[E(at-eqw-v)(4, v0, 31, 0)] is bounded by 2−45.059 + O(2−57.626). The term 2−45.059

corresponds to the most dominant subevent where there is exactly one set with 4 words equal
to v0 that are covered or partially covered. The term O(2−57.626) corresponds to the next most
dominant subevent where there is exactly one set with 5 words equal to v0 that are covered
or partially covered. This term also includes the probabilities of other subevents where even
more words are equal to v0. The probability term Prob[E(at-eqw-v)(3, v0, 31, 0)] is similarly
be bounded by 2−32.866 +O(2−45.059). From these bounds and relation C.12, it holds that:

P1 6 2−39.959 +O(2−52.626) (C.13)

A number of subsequent lemmas are stated, the proof of which is similar to the proof of
Lemma C.1.

Lemma C.2 The probability P2 defined in equation C.3 is bounded by 2−44.281 +O(∆2) where
∆2 6 2−52.304.

P2 6 2−44.281 +O(∆2) (C.14)

Lemma C.3 The probability P3 defined in equation C.3 is bounded by 2−45.866 +O(∆3) where
∆3 6 2−55.474.

45

P3 6 2−45.866 +O(∆3) (C.15)

A next lemma refers to the case where there are no uncovered words but only a single
uncovered byte.

Lemma C.4 The probability P5 defined in equation C.3 is bounded by 2−34.866 +O(∆5) where
∆5 6 2−48.626.

P5 6 2−34.866 +O(∆5) (C.16)

Proof: The probability P5 can be expressed as the sum of the probabilities of two mutually
exclusive subevents. The first subevent is the event in which the FEQ,512,16,4 pattern is visible
in the output of the IVP construction, in which there are no uncovered words but one uncovered
byte in this output, and in which this uncovered byte is not part of the visible pattern. The
second subevent is the event in which the FEQ,512,16,4 pattern is also visible in the output of
the IVP construction, in which there are no uncovered words but one uncovered byte in the
output, and in which the value of this uncovered byte is part of the visible pattern. According
to such consideration, the probability P5 can be written as:

P5 = Prob[E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] ·

Prob[E(FEQ,512,16,4)(32) ∧ E(ex-ub-pat)(0, 1, 64) | E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] +

Prob[E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] ·

Prob[E(FEQ,512,16,4)(32) ∧ E(ex-ub-pat)(1, 0, 64) |E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)]

(C.17)

Next, as in the proof of Lemma C.1, we represent the probability of the event intersection

E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64) as a separate factor, while at the same time introducing
conditional probabilities for the mutually exclusive subevents where the uncovered byte is, or
is not part of the visible pattern.

P5 = Prob[E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] ·(
Prob[E(at-eqw)(4, 31, 1) ∧ E(ex-ub-pat)(0, 1, 64)| E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] +

Prob[E(at-eqw)(3, 31, 1) ∧ E(ex-ub-pat)(1, 0, 64) |E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)]
)

(C.18)

Next, express the events E(at-eqw)(4, 31, 1) and E(at-eqw)(3, 31, 1) as a union of mutually
exclusive subevents E(at-eqw-v)(4, v|w, 31, 1) and E(at-eqw-v)(3, v|w, 31, 1), where, in each
subevent, the elements of sets of at least 3 or 4 words are, not only equal to each other, but
also equal to the word v|w, which results from the concatenation of two specific byte values v
and w:

46

P5 6 Prob[E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] ·(∑
v|w

Prob[E(at-eqw-v)(4, v|w, 31, 1) ∧ E(ex-ub-pat)(0, 1, 64)

| E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] +∑
v|w

Prob[E(at-eqw-1)(3, v|w, 31, 1) ∧ E(ex-ub-pat)(1, 0, 64)

| E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)]
)

(C.19)

We proceed with the proof taking into account the almost statistical independence between
the values of uncovered bytes, and the values of covered bytes or words. We also take into
account the fact that the state of each byte or word in the output of the IVP construction, as
being covered or uncovered, is almost statistically independent from the state and value of any
other byte or word:

P5 6 Prob[E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] ·∑
v|w

(
Prob[E(at-eqw-v)(4, v|w, 31, 1)] ·

Prob[E(ex-ub-pat)(0, 1, 64) | E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] +

Prob[E(at-eqw-v)(3, v|w, 31, 1)] ·

Prob[E(ex-ub-pat)(1, 0, 64) | E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)]
)

+O(∆)

(C.20)

The probability terms Prob[E(at-eqw-v)(4, v|w, 31, 1)] and Prob[E(at-eqw-v)(3, v|w, 31, 1)]
are bounded independently of the exact values of v and w. These terms can be taken out of the
summation, replacing v and w with v0 and w0 respectively in order to refer to any value of v, w.

We also observe that the term Prob[E(ex-ub-pat)(0, 1, 64) | E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)]

can be bounded by 1. Moreover, it holds that
∑

v|w Prob[E(ex-ub-pat)(1, 0, 64)|E(ex-uw)(0, 32)

∧ E(ex-ub)(1, 64)] = 1. Based on these observations, the relation C.20 can be simplified as
follows:

P5 6 Prob[E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] ·(
65536 · Prob[E(at-eqw-v)(4, v0|w0, 31, 1)] + Prob[E(at-eqw-v)(3, v0|w0, 31, 1)]

)
+ O(∆)

(C.21)

The term Prob[E(ex-uw)(0, 32)∧E(ex-ub)(1, 64)] is the probability of having an uncovered
byte in the output of the IVP construction in any location, and no uncovered words. This term
is bounded by 64 · (2−8 +O(∆)), according to Corollary 2 and the fact that there are 64 byte
locations. The term Prob[E(at-eqw-v)(4, v0|w0, 31, 1)] is bounded by 2−35.059 + O(2−48.626).
The term 2−35.059 corresponds to the most dominant subevent where there is exactly one set
with 4 words equal to v0|w0 that are covered. The term O(2−48.626) corresponds to the next
most dominant subevent where there is exactly one set with 5 words equal to v0|w0 that are
covered. This term also includes the probabilities of other subevents where even more covered

47

words are equal to v0|w0. The probability term Prob[E(at-eqw-v)(3, v0|W0, 31, 1)] is similarly
be bounded by 2−37.866 +O(2−51.059).

From these bounds and relation C.21 we get:

P5 6 2−34.866 +O(2−48.626) (C.22)

A number of subsequent lemmas are also stated concerning cases where bytes are uncovered,
the proof of which is similar.

Lemma C.5 The probability P6 defined in equation C.3 is bounded by 2−35.882 +O(∆6) where
∆6 6 2−49.059.

P6 6 2−35.882 +O(∆6) (C.23)

Lemma C.6 The probability P7 defined in equation C.3 is bounded by 2−35.624 +O(∆7) where
∆7 6 2−48.059.

P7 6 2−35.624 +O(∆7) (C.24)

Lemma C.7 The probability P8 defined in equation C.3 is bounded by 2−36.308 + ∆8 where
∆8 6 2−46.544.

P8 6 2−36.308 +O(∆8) (C.25)

Lemma C.8 The probability P0 defined in equation C.3 is bounded by 2−32.866 +O(∆0) where
∆0 6 2−64.

P0 6 2−32.866 +O(∆0) (C.26)

Probability P0 is the probability of seeing the FEQ,512,16,4 pattern in the output of the IVP
construction when all words of the output are covered. Lemma C.8 follows directly from
Corollary 1.

Lemma C.9 The probability P4 defined in equation C.3 is bounded by 2−48.866 +O(∆4) where
∆4 6 2−94.866.

P4 6 2−48.866 +O(∆4) (C.27)

Proof of Lemma C.9 Probability P4 is the probability of seeing the FEQ,512,16,4 pattern in
the output of the IVP construction when four or more words of the output are uncovered. This
is bounded by the probability of having four or more words in the IVP output uncovered, which
is further bounded by

(
32
4

)
· (2−16 +O(2−64))4. This bound is equal to 2−48.866 +O(∆4).

Completing the proof of the correctness of Proposition 2:

We let P1, P2, P3, P5, P6, P7 and P8 denote the non-negligible terms of the probabilities P1,
P2, P3, P5, P6, P7, and P8, respectively. Summing up these non-negligible terms, we compute
a term T as follows:

48

T =
∑

i∈{1,2,3,5,6,7,8}

Pi = 2−33.553
(C.28)

This is the additive term that appears in Proposition 2. On the other hand, the observation
probability PFEQ,512,16,4

, which also appears in Proposition 2, is the non-negligible term of

probability P0. Furthermore, the remaining non-negligible term
(

32
4

)
· P4

UW in Proposition 2 is
the non-negligible term of probability P4. Finally, we set O(∆′′) ← O(∆0) + O(∆1) + . . . +
O(∆8). This concludes the proof.

49

