
Fast Correlation Attack Revisited

Cryptanalysis on Full Grain-128a, Grain-128, and Grain-v1

Yosuke Todo1, Takanori Isobe2, Willi Meier3,
Kazumaro Aoki1, and Bin Zhang4,5

1 NTT Secure Platform Laboratories, Tokyo 180-8585, Japan
2 University of Hyogo, Hyogo 650-0047, Japan

3 FHNW, Windisch, Switzerland
4 TCA Laboratory, SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China

5 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing 100878, China

Abstract. A fast correlation attack (FCA) is a well-known cryptanalysis technique for LFSR-
based stream ciphers. The correlation between the initial state of an LFSR and corresponding
key stream is exploited, and the goal is to recover the initial state of the LFSR. In this paper,
we revisit the FCA from a new point of view based on a finite field, and it brings a new
property for the FCA when there are multiple linear approximations. Moreover, we propose
a novel algorithm based on the new property, which enables us to reduce both time and data
complexities. We finally apply this technique to the Grain family, which is a well-analyzed class
of stream ciphers. There are three stream ciphers, Grain-128a, Grain-128, and Grain-v1 in the
Grain family. As a result, we break them all, and especially for Grain-128a, the cryptanalysis
on its full version is reported for the first time. Note that our attack is applied to the stream
cipher mode of Grain-128a, and strong assumption is required to attack its authentication
mode. Since ISO/IEC 29167-13 standardizes only authentication mode, our attack does not
affect the practical use of the ISO/IEC standard.

Keywords: Fast correlation attack, Stream cipher, LFSR, Finite field, Multiple linear ap-
proximations, Grain-128a, Grain-128, Grain-v1

1 Introduction

Stream ciphers are a class of symmetric-key cryptosystems. They commonly generate a key stream
of arbitrary length from a secret key and initialization vector (iv), and a plaintext is encrypted by
XORing with the key stream. Many stream ciphers consist of an initialization and key-stream gener-
ator. The secret key and iv are well mixed in the initialization, where a key stream is never output,
and the mixed internal state is denoted as the initial state in this paper. After the initialization, the
key-stream generator outputs the key stream while updating the internal state. The initialization
of stream ciphers generally requires much processing time, but the key-stream generator is very
efficient.

LFSRs are often used in the design of stream ciphers, where the update function consists of one
or more LFSRs and non-linear functions. Without loss of generality, the key-stream generator of
LFSR-based stream ciphers can be represented as Fig. 1, where the binary noise et is generated by
the non-linear function. LFSR-based stream ciphers share the feasibility to guarantee a long period
in the key stream.

LFSR

et

stzt

f

Fig. 1. Model of LFSR-based stream ciphers

2 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

A (fast) correlation attack is an important attack against LFSR-based stream ciphers. The initial
idea was introduced by Siegenthaler [Sie84], and it exploits the bias of et. We guess the initial state
s(0) = (s0, s1, . . . , sn−1), compute st for t = n, n + 1, . . . , N − 1, and XOR st with corresponding
zt. If we guess the correct initial state, highly biased et is acquired. Otherwise, we assume that the
XOR behaves at random. When we collect an N -bit key stream and the size of the LFSR is n, the
simple algorithm requires a time complexity of N2n.

Following up the correlation attack, many algorithms have been proposed to avoid the exhaustive
search of the initial state, and they are called as “fast correlation attack.” The seminal work was
proposed by Meier and Staffelbach [MS89], where the noise et is efficiently removed from zt by using
parity-check equations, and st is recovered. Several improvements of the original fast correlation
attack have been proposed [ZYR90,MG90,CS91,JJ99b,JJ99a,CT00], but they have limitations such
as the number of taps in the LFSR is significantly small or the bias of the noise is significantly high.
Therefore, their applications are limited to experimental ciphers, and they have not been applied to
modern concrete stream ciphers.

Another approach of the fast correlation attack is the so-called one-pass algorithm [CJS00,MFI01],
and it has been successfully applied to modern concrete stream ciphers [BGM06,LLP08,ZXM15].
Similarly to the original correlation attack, we guess the initial state and recover the correct one
by using parity-check equations. To avoid exhaustive search over the initial state, several methods
have been proposed to decrease the number of secret bits in the initial state involved by parity-
check equations [CJM02,ZF06]. In the most successful method, the number of involved secret bits
decreases by XORing two different parity-check equations. Let et = 〈s(0), at〉⊕zt be the parity-check
equation, where 〈s(0), at〉 denotes an inner product between s(0) and at, and we assume that et is
highly biased. Without loss of generality, we first detect a set of pairs (j1, j2) such that the first ` bits
in aj1 ⊕ aj2 are 0, where such a set of pairs is efficiently detected from the birthday paradox. Then,
〈s(0), aj1⊕aj2〉⊕zj1⊕zj2 is also highly biased, and the number of involved secret bits decreases from
n to n−`. Later, this method is generalized by the generalized birthday problem [Wag02]. Moreover,
an efficient algorithm was proposed to accelerate the one-pass algorithm [CJM02]. They showed that
the guess and evaluation procedure can be regarded as a Walsh-Hadamard transform, and the fast
Walsh-Hadamard transform (FWHT) can be applied to accelerate the one-pass algorithm. While
the naive algorithm for the correlation attack requires N2n, the FWHT enables us to evaluate it
with the time complexity of N + n2n. When the number of involved bits decreases from n to n− `,
the time complexity also decreases to N + (n − `)2n−`. The drawback of the one-pass algorithm
with the birthday paradox is the increase of the noise. Let p be the probability that et = 1, and the
correlation denoted by c is defined as c = 1 − 2p. If we use the XOR of parity-check equations to
reduce the number of involved secret bits, the correlation of the modified equations drops to c2. The
increase of the noise causes the increase of the data complexity.

Revisiting Fast Correlation Attack. In this paper, we revisit the fast correlation attack. We first
review the structure of parity-check equations from a new point of view based on a finite field, and
the new viewpoint brings a new property for the fast correlation attack. A multiplication between
n× n matrices and an n-bit fixed vector is generally used to construct parity-check equations. Our
important observation is to show that this multiplication is “commutative” via the finite field, and
it brings the new property for the fast correlation attack.

We first review the traditional wrong-key hypothesis, i.e., we observe correlation 0 when incorrect
initial state is guessed. The new property implies that we need to reconsider the wrong-key hypothesis
more carefully. Specifically, assuming that there are multiple high-biased linear masks, the traditional
wrong-key hypothesis does not hold. We then show a modified wrong-key hypothesis.

The new property is directly useful to improve the efficiency of the fast correlation attack when
there are multiple high-biased linear masks. In the previous fast correlation attack, the multiple
approximations are only useful to reduce the data complexity but are not useful to reduce the time
complexity [BGM06]. We propose a new algorithm that reduces both time and data complexities.
Our new algorithm is a kind of the one-pass algorithm, but the technique to avoid the exhaustive
search of the initial state is completely different from previous ones. The multiple linear masks are
directly exploited to avoid the exhaustive search.

Fast Correlation Attack Revisited 3

Table 1. Summary of results, where the key-stream generator and initialization are denoted as ksg and init,
respectively.

Target Attack Assumption Data Time Reference

Grain-128a ksg fast correlation attack - 2113.8 2115.4 Sect. 5

Grain-128 init dynamic cube attack chosen IV 263 290 [DGP+11]

init dynamic cube attack chosen IV 262.4 284 [FWC17]

ksg fast correlation attack - 2112.8 2114.4 Sect. 6

Grain-v1 ksg fast near collision attack - 219 286.1 † [ZXM18]

ksg fast correlation attack - 275.1 276.7 Sect. 7

† In [ZXM18], the time complexity is claimed as 275.7 but the unit of the time com-
plexity is 1 update function of reference code on software implementation. Here we
adjusted the time complexity for the fair comparison.

Applications. We apply our new algorithm to the Grain family, where there are three well-known
stream ciphers: Grain-128a [ÅHJM11], Grain-128 [HJMM06], and Grain-v1 [HJM07]. The Grain
family is amongst the most attractive stream ciphers, and especially Grain-v1 is in the eSTREAM
portfolio and Grain-128a is standardized by ISO/IEC [ISO15]. Moreover the structure is recently
used to design a lightweight hash function [AHMN13] and stream ciphers [AM15,MAM16].

Our new algorithm breaks each of full Grain-128a, Grain-128, and Grain-v1. Among them, this is
the first cryptanalysis against full Grain-128a 6. Regarding full Grain-128, our algorithm is the first
attack against the key-stream generator. Regarding full Grain-v1, our algorithm is more efficient than
the previous attack [ZXM18], and it breaks Grain-v1 obviously faster than the brute-force attack.

To realize the fast correlation attack against all of the full Grain family, we introduce novel
linear approximate representations. They well exploit their structure and reveal a new important
vulnerability of the Grain family.

Comparisons with Previous Attacks against Grain Family. To understand this paper, it is
not necessary to understand previous attacks, but we summarize previous attacks against the Grain
family.

Before Grain-v1, there is an original Grain denoted by Grain-v0 [HJM05], and it was broken by
the fast correlation attack [BGM06]. Grain-v1 is tweaked to remove the vulnerability of Grain-v0.
Nevertheless, our new fast correlation attack can break full Grain-v1 thanks to the new property.

The near collision attack is the important previous attack against Grain-v1 [ZLFL13], and very
recently, an improvement called the fast near collision attack was proposed [ZXM18], where the
authors claimed that the time complexity is 275.7. However, this estimation is controversial because
the unit of the time complexity is “1 update function of reference code on software implementation,”
and they estimated 1 update function to be 210.4 cycles. Therefore, the pure time complexity is
rather 275.7+10.4 = 286.1 cycles, which is greater than 280. On the other hand, the time complexity
of the fast correlation attack is 276.7, where the unit of the (dominant) time complexity is at most
one multiplication with fixed values over the finite field. It is obviously faster than the brute-force
attack, but it requires more data than the fast near collision attack.

Grain-128 is more aggressively designed than Grain-v1, where a quadratic function is adopted for
the nonlinear feedback polynomial of the NFSR. Unfortunately, this low degree causes vulnerability
against the dynamic cube attack [DS11]. While the initial work by Dinur and Shamir is a weak-key

6 Grain-128a has two modes of operation: stream cipher mode and authenticated encryption mode. We
assume that all output sequences of the pre-output function can be observed. This assumption naturally
holds under the known-plaintext setting on the stream cipher mode. On the other hand, it is difficult to
observe them under the reasonable assumption on the authentication mode because the half of the pre-
output function is not used as the key stream. Therefore, we do not claim that the authenticated encryption
mode is attacked, but remark that the designers of Grain-128a also considered the authentication will rely
on the security of the pre-output stream [ÅHJM11].

4 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

attack, it was then extended to the single-key attack [DGP+11] and recently improved [FWC17].
The dynamic cube attack breaks the initialization, and the fast correlation attack breaks the key-
stream generator. Note that different countermeasures are required for attacks against the key-stream
generator and initialization. For example, we can avoid the dynamic cube attack by increasing the
number of rounds in the initialization, but such countermeasure does not prevent the attack against
the key-stream generator.

Grain-128a was designed to avoid the dynamic cube attack. The degree of the nonlinear feed-
back polynomial is higher than in Grain-128. No security flaws have been reported on full Grain-
128a, but there are attacks against Grain-128a whose number of rounds in the initialization is
reduced [LM12,TIHM17,WHT+18].

2 Preliminaries

2.1 LFSR-Based Stream Ciphers

The target of the fast correlation attack is LFSR-based stream ciphers, which are modeled as Fig. 1
simply. The LFSR generates an N -bit output sequence as {s0, s1, . . . , sN−1}, and the corresponding
key stream {z0, z1, . . . , zN−1} is computed as zt = st ⊕ et, where et is a binary noise.

Let

f(x) = c0 + c1x
1 + c2x

2 + · · ·+ cn−1x
n−1 + xn

be the feedback polynomial of the LFSR and s(t) = (st, st+1, . . . , st+n−1) be an n-bit internal state
of the LFSR at time t. Then, the LFSR outputs st, and the state is updated to s(t+1) as

s(t+1) = s(t) × F = s(t) ×


0 · · · 0 0 c0
1 · · · 0 0 c1
...

. . .
...

...
...

0 · · · 1 0 cn−2
0 · · · 0 1 cn−1

 ,

where F is an n×n binary matrix that represents the feedback polynomial f(x). In concrete LFSR-
based stream ciphers, the binary noise et is nonlinearly generated from the internal state or another
internal state.

2.2 Fast Correlation Attack

The fast correlation attack (FCA) exploits high correlation between the internal state of the LFSR
and corresponding key stream [Sie84,MS89]. We first show the most simple model, where we assume
that et itself is highly biased. Let p be the probability of et = 1, and the correlation c is defined as
c = 1−2p. We guess the initial internal state s(0), calculate {s0, s1, . . . , sN−1} from the guessed s(0),

and evaluate
∑N−1
t=0 (−1)st⊕zt , where the sum is computed over the set of integers. If the correct initial

state is guessed, the sum is equal to
∑N−1
t=0 (−1)et and follows a normal distribution N (Nc,N) 7.

On the other hand, we assume that the sum behaves at random when an incorrect initial state is
guessed. Then, it follows a normal distribution N (0, N). To distinguish the two distributions, we
need to collect N ≈ O(1/c2) bits of the key stream.

The FCA can be regarded as a kind of a linear cryptanalysis [Mat93]. The output st is linearly
computed from s(0) as st = 〈s(0), At〉, where At is the 1st row vector in the transpose of F t denoted
by TF t. In other words, At is used as linear masks, and the aim of attackers is to find s(0) such that∑N−1
t=0 (−1)〈s

(0),At〉 is far from N/2.

7 Accurately, when the correct initial state is guessed, it follows N (Nc,N−Nc2). However, since N is huge
and Nc2 is small, the normal distribution N (Nc,N) is enough to approximate the distribution.

Fast Correlation Attack Revisited 5

Usually, the binary noise et is not highly biased in modern stream ciphers, but we may be able to
observe high correlation by summing optimally chosen linear masks. In other words, we can execute
the FCA if

e′t =
⊕
i∈Ts

〈s(t+i), Γi〉 ⊕
⊕
i∈Tz

zt+i

is highly biased by optimally choosing Ts, Tz, and Γi, where s(t+i) and Γi are n-bit vectors. Recall
s(t) = s(0) × F t, and then, e′t is rewritten as

e′t =
⊕
i∈Ts

〈
s(t+i), Γi

〉
⊕
⊕
i∈Tz

zt+i

=
⊕
i∈Ts

〈
s(0) × F t+i, Γi

〉
⊕
⊕
i∈Tz

zt+i

=

〈
s(0),

(⊕
i∈Ts

(Γi × TF i)

)
× TF t

〉
⊕
⊕
i∈Tz

zt+i.

For simplicity, we introduce Γ denoted by Γ =
⊕

i∈Ts(Γi×
TF i). Then, we can introduce the following

parity-check equations as

e′t =
〈
s(0), Γ × TF t

〉
⊕
⊕
i∈Tz

zt+i. (1)

We redefine p as the probability satisfying e′t = 1 for all possible t, and the correlation c is also
redefined from the corresponding p. Then, we can execute the FCA by using Eq. (1). Assuming that

N parity-check equations are collected, we first guess s(0) and evaluate
∑N−1
t=0 (−1)e

′
t . While the sum

follows a normal distribution N (0, N) in the random case, it follows N (Nc,N) if the correct s(0) is
guessed.

The most straightforward algorithm requires the time complexity of O(N2n). Chose et al. showed
that the guess and evaluation procedure can be regarded as a Walsh-Hadamard transform [CJM02].
The fast Walsh-Hadamard transform (FWHT) can be successfully applied to accelerate the algo-
rithm, and it reduces the time complexity to O(N + n2n).

Definition 1 (Walsh-Hadamard Transform (WHT)). Given a function w : {0, 1}n → Z, the
WHT of w is defined as ŵ(s) =

∑
x∈{0,1}n w(x)(−1)〈s,x〉.

When we guess s ∈ {0, 1}n, the empirical correlation
∑N−1
t=0 (−1)e

′
t is rewritten as

N−1∑
t=0

(−1)e
′
t =

N−1∑
t=0

(−1)〈s,Γ×
TF t〉⊕

⊕
i∈Tz zt+i

=
∑

x∈{0,1}n

 ∑
t∈{0,1,...,N−1|Γ×TF t=x}

(−1)〈s,x〉⊕
⊕
i∈Tz zt+i


=

∑
x∈{0,1}n

 ∑
t∈{0,1,...,N−1|Γ×TF t=x}

(−1)
⊕
i∈Tz zt+i

 (−1)〈s,x〉.

Therefore, from the following public function w as

w(x) :=
∑

t∈{0,1,...,N−1|Γ×TF t=x}

(−1)
⊕
i∈Tz zt+i ,

we get ŵ by using the FWHT, where ŵ(s) is the empirical correlation when s is guessed.

6 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

3 Revisiting Fast Correlation Attack

We first review the structure of the parity-check equation by using a finite field and show that Γ×TF t

is “commutative.” This new observation brings a new property for the FCA, and it is very important
when there are multiple linear masks. As a result, we need to reconsider the wrong-key hypothesis
carefully, i.e., there is a case that the most simple and commonly used hypothesis does not hold.
Moreover, we propose a new algorithm that successfully exploits the new property to reduce the
data and time complexities in the next section.

3.1 Reviewing Parity-Check Equations with Finite Field

We review Γ × TF t by using a finite field GF(2n), where the primitive polynomial is the feedback
polynomial of the LFSR.

Recall the notation of At ∈ {0, 1}n, which was defined as the 1st row vector in TF t, and then, the
ith row vector of TF t is represented as At+i−1. Let α be a element as f(α) = 0 and it is a primitive
element of GF(2n). We notice that αt becomes natural conversion of At ∈ {0, 1}n. We naturally
convert Γ ∈ {0, 1}n to γ ∈ GF(2n). The important observation is that Γ × TF also becomes natural
conversion of γα ∈ GF(2n) because of

Γ × TF = Γ ×


0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1
c0 c1 · · · cn−2 cn−1

 .

This trivially derives that Γ × TF t is also natural conversion of γαt ∈ GF(2n), and of course,
the multiplication is commutative, i.e., γαt = αtγ. We finally consider a matrix multiplication
corresponding to αtγ. Let Mγ be an n×n binary matrix, where the ith row vector of TMγ is defined
as the natural conversion of γαi−1. Then, αtγ is the natural conversion of At×TMγ , and we acquire
Γ × TF t = At × TMγ . The following shows an example to understand this relationship.

Example 1. Let us consider a finite field GF(28) = GF(2)[x]/(x8 + x4 + x3 + x2 + 1). When Γ =
01011011, the transpose matrix of the corresponding binary matrix Mγ is represented as

TMγ =



0 1 0 1 1 0 1 1
1 0 0 1 0 1 0 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
1 0 1 0 1 0 0 0


,

where the first row coincides with Γ and the second row is natural conversion of γα. Then, Γ×TF t =
At × TMγ , and for example, when t = 10,

Γ × TF 10 = A10 × TMγ ,

⇔
(
0 1 0 1 1 0 1 1

)
×



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 1 1 0 0 0



10

=
(
0 0 1 0 1 1 1 0

)
×



0 1 0 1 1 0 1 1
1 0 0 1 0 1 0 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
1 0 1 0 1 0 0 0


,

and the result is 00010101.

Fast Correlation Attack Revisited 7

We review Eq. (1) by using the “commutative” feature as〈
s(0), Γ × TF t

〉
=
〈
s(0), At × TMγ

〉
=
〈
s(0) ×Mγ , At

〉
,

and Eq. (1) is equivalently rewritten as

e′t =
〈
s(0) ×Mγ , At

〉
⊕
⊕
i∈Tz

zt+i.

The equation above implies the following new property.

Property 1. We assume that we can observe high correlation when we guess s(0) and parity-check
equations are generated from Γ ×TF t. Then, we can observe exactly the same high correlation even
if we guess s(0) ×Mγ and parity-check equations are generated from At instead of Γ × TF t.

Hereinafter, γ ∈ GF(2n) is not distinguished from Γ ∈ {0, 1}n, and we use γ as a linear mask for
simplicity.

3.2 New Wrong-Key Hypothesis

We review the traditional and commonly used wrong-key hypothesis, where we assume that the em-
pirical correlation behaves as random when an incorrect initial state is guessed. However, Property 1
implies that we need to consider this hypothesis more carefully.

We assume that the use of a linear mask Γ leads to high correlation, and we simply call such
linear masks highly biased linear masks. When we generate parity-check equations from Γ × TF t,
let us consider the case that we guess incorrect initial state s′(0) = s(0) ×Mγ′ . From Property 1〈

s′(0), Γ × TF t
〉

=
〈
s(0) ×Mγ′ , At × TMγ

〉
=
〈
s(0), At × TMγγ′

〉
In other words, it is equivalent to the case that γγ′ is used as a linear mask instead of γ. If both γ
and γγ′ are highly biased linear masks, we also observe high correlation when we guess s(0) ×Mγ′ .
Therefore, assuming that the target stream cipher has multiple linear masks with high correlation,
the entire corresponding guessing brings high correlation.

We introduce a new wrong-key hypothesis based on Property 1. Assuming that there are m linear
masks whose correlation is high and the others are correlation zero, we newly introduce the following
wrong-key hypothesis.

Hypothesis 1 (New Wrong-Key Hypothesis) Assume that there are m highly biased linear
masks as γ1, γ2, . . . , γm, and parity-check equations are generated from At. Then, we observe high
correlation when we guess s(0)×Mγi for any i ∈ {1, 2, . . . ,m}. Otherwise, we assume that it behaves
at random, i.e., the correlation becomes 0.

The new wrong-key hypothesis is a kind of extension from the traditional wrong-key hypothesis.

4 New Algorithm Exploiting New Property

Overview. We first show the overview before we detail our new attack algorithm. In this section,
let n be the size of the LFSR in the target LFSR-based stream cipher, and we assume that there
are m (� 2n) highly biased linear masks denoted by γ1, γ2, . . . , γm. The procedure consists of three
parts: constructing parity-check equations, FWHT, and removing γ.

– We first construct parity-check equations. Parity-check equations of the traditional FCA are
constructed from Γ × TF t and

⊕
i∈Tz zt+i. In our new algorithm, we construct parity-check

equations from At instead of Γ × TF t.

8 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

– We use the fast Walsh-Hadamard transform (FWHT) to get solutions with high correlation. In
other words, we evaluate s such that 〈s,At〉 ⊕

⊕
i∈Tz zt+i is highly biased. As we explained in

Sect. 3.1, we then observe high correlation when s = s(0) ×Mγi , and there are m solutions with
high correlation. Unfortunately, even if FWHT is applied, we have to guess n bits and it requires
n2n time complexity. It is less efficient than the exhaustive search when the size of the LFSR is
greater than or equal to the security level. To overcome this issue, we bypass some bits out of n
bits by exploiting m linear masks. Specifically, we bypass β bits, i.e., we guess only (n− β) bits
and β bits are fixed to constant (e.g., 0). Even if β bits are bypassed, there are m2−β solutions
with high correlation in average. Therefore, m > 2β is a necessary condition.

– We pick solutions whose empirical correlation is greater than a threshold, where some of solutions
are represented as s = s(0) ×Mγi . To remove Mγi , we exhaustively guess the applied γi and
recover s(0). Assuming that Np solutions are picked, the time complexity is Np × m. If the
expected number of occurrences that the correct s(0) appears is significantly greater than that
for incorrect ones, we can uniquely determine s(0). We simulate them by using the Poisson
distribution in detail.

4.1 Detailed Algorithm

Let n be the state size of the LFSR and κ be the security level. We assume that there are mp (� 2n)
linear masks γ1, γ2, . . . , γmp with positive correlation that is greater than a given c. Moreover we
assume that there are mm (� 2n) linear masks ρ1, ρ2, . . . , ρmm with negative correlation that is
smaller than −c. Note that c is close to 0, and m = mp +mm.

Constructing Parity-Check Equations. We first construct parity-check equations from At and⊕
i∈Tz zt+i for t = 0, 1, . . . , N − 1, and the time complexity is N . The empirical correlation follows

N (Nc,N) and N (−Nc,N) when we guess one of s(0)×Mγi and s(0)×Mρi , respectively 8. Otherwise
we assume that the empirical correlation follows N (0, N).

FWHT with Bypassing Technique. We next pick s ∈ {0, 1}n such that |
∑N−1
t=0 (−1)e

′
t

N | ≥ th,
where e′t = 〈s,At〉 ⊕

⊕
i∈Tz zt+i and th (> 0) is a threshold. Let ε1 be the probability that values

following N (0, N) is greater than th, and let ε2 be the probability that values following N (Nc,N)
is greater than th. Namely,

ε1 =
1√

2πN

∫ ∞
th

exp

(
− x2

2N

)
dx, ε2 =

1√
2πN

∫ ∞
th

exp

(
− (x−Nc)2

2N

)
dx.

Note that the probability that values following N (0, N) is smaller than −th is also ε1 and the
probability that values following N (−Nc,N) is smaller than −th is also ε2. Let Sp and Sm be the
set of picked solutions with positive and negative correlation, respectively. The expected size of Sp
and Sm is (2nε1 +mpε2) and (2nε1 +mmε2), respectively, when the whole of n-bit s is guessed.

Unfortunately, if we guess the whole of n-bit s, the time complexity of FWHT is n2n and it is less
efficient than the exhaustive search when n ≥ κ. To reduce the time complexity, we assume multiple
solutions. Instead of guessing the whole of s, we guess its partial (n−β) bits, where bypassed β bits
are fixed to constants, e.g., all 0. Then, the time complexity of the FWHT is reduced from n2n to
(n−β)2n−β . Even if β bits are bypassed,mp2

−βε2 (resp.mm2−βε2) solutions represented as s(0)×Mγi

(resp. s(0) ×Mρi) remain. Moreover, the size of Sp and Sm also decreases to (2n−βε1 + mp2
−βε2)

and (2n−βε1 +mm2−βε2), respectively.

8 The correlation c is the lower bound for all γi. Therefore, while the empirical correlation may not follow
N (Nc,N), it does not affect the attack feasibility because it is far from N (0, N).

Fast Correlation Attack Revisited 9

Removing γ. For all s ∈ Sp and all j ∈ {1, 2, . . . ,mp}, we compute s ×M−1γj . It computes s(0) ×
Mγi×M−1γj and becomes s(0) when i = j. Since there are mp2

−βε2 solutions represented as s(0)×Mγi

in Sp, the correct s(0) appears mp2
−βε2 times. On the other hand, every incorrect initial state appears

about mp(2
n−βε1 +mp2

−βε2)2−n times when we assume uniformly random behavior. In total, every
incorrect initial state appears about

λ1 = mp(2
n−βε1 +mp2

−βε2)2−n +mm(2n−βε1 +mm2−βε2)2−n

= (m2n−βε1 + (m2
p +m2

m)2−βε2)2−n

times when we assume uniformly random behavior. On the other hand, the correct s(0) appears

λ2 = (mp +mm)2−βε2 = m2−βε2

times.
The number of occurrences that every incorrect initial state appears follows the Poisson distri-

bution with parameter λ1, and the number of occurrences that the correct s(0) appears follows the
Poisson distribution with parameter λ2. To recover the unique correct s(0), we introduce a threshold
thp as

∞∑
k=thp

λk1e
−λ1

k!
< 2−n.

The probability that the number of occurrences that s(0) appears is greater than thp is estimated as∑∞
k=thp

λk2e
−λ2

k! . Therefore, if the probability is close to one, we can uniquely recover s(0) with high
probability.

4.2 Estimation of Time and Data Complexities

The procedure consists of three parts: constructing parity-check equations, FWHT, and removing γ.
The first step requires the time complexity N , where the unit of the time complexity is a multiplica-
tion by α over GF(2n) and

⊕
i∈Tz zt+i. The second step requires the time complexity (n− β)2n−β ,

where the unit of the time complexity is an addition or subtraction 9. The final step requires the time
complexity (m2n−βε1 + (m2

p +m2
m)2−βε2), where the unit of the time complexity is a multiplication

by fixed values over GF(2n). These units of the time complexity are not equivalent, but at least,
they are more efficient than the unit given by the initialization of stream ciphers. Therefore, for
simplicity, we regard them as equivalent, and the total time complexity is estimated as

N + (n− β)2n−β +m2n−βε1 + (m2
p +m2

m)2−βε2.

Proposition 1. Let n be the size of the LFSR in an LFSR-based stream cipher. We assume that
there are m linear masks whose absolute value of correlation is greater than c. When the size of
bypassed bits is β, we can recover the initial state of the LFSR with time complexity 3(n − β)2n−β

and the required number of parity-check equations is N = (n− β)2n−β, where the success probability

is
∑∞
k=thp

λk2e
−λ2

k! , where thp is the minimum value satisfying

∞∑
k=thp

Nke−N

k!
< 2−n,

and

λ2 =
m2−β√

2πN

∫ ∞
th

exp

(
− (x−Nc)2

2N

)
dx,

th =
√

2N × erfc−1
(

2(n− β)

m

)
.

9 Since we only use N < 2n parity-check equations, it is enough to use additions or subtraction on n-bit
registers.

10 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

−239 −240

2-42

2-41

2-40

240 239 2380

0

Normal distributions

The sum of

p
ro

b
a
b
il
it
y

Random case
Biased case

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Poisson distributions

of occurrences that correct/incorrect initial state appears

p
ro

b
a
b
il
it
y

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Incorrect initial states
Correct initial state

thp = 15th = 239.96715

Fig. 2. Theoretical estimation for Example 2.

Proof. The total time complexity is estimated as

N + (n− β)2n−β +m2n−βε1 + (m2
p +m2

m)2−βε2.

In the useful attack parameter, since (m2
p + m2

m)2−βε2 is significantly smaller than the others, we
regard it as negligible. We consider the case that other three terms are balanced, i.e.,

N = (n− β)2n−β = m2n−βε1,

where ε1 is estimated as

ε1 =
1√

2πN

∫ ∞
th

exp

(
− x2

2N

)
dx =

1

2
× erfc

(
th√
2N

)
=
n− β
m

.

Thus, when th is

th =
√

2N × erfc−1
(

2(n− β)

m

)
,

complexities of the three terms are balanced. We finally evaluate the probability that the initial state
of the LFSR is uniquely recovered. The number of occurrences that each incorrect value appears
follows the Poisson distribution with parameter λ1 = N2−n. To discard all 2n − 1 incorrect values,

recall thp satisfying
∑∞
k=thp

λk1e
−λ1

k! < 2−n. Then, the success probability is
∑∞
k=thp

λk2e
−λ2

k! where λ2
is

λ2 = m2−βε2 =
m2−β√

2πN

∫ ∞
th

exp

(
− (x−Nc)2

2N

)
dx

ut

Example 2. Let us consider an attack against an LFSR-based stream cipher with 80-bit LFSR. We
assume that there are 214 linear masks whose correlation is greater than 2−36. For β = 9, we use
N = (80 − 9) × 280−9 ≈ 277.1498 parity-check equations. The left figure of Fig. 2 shows two normal
distributions: random and biased cases. If we use a following threshold

th =
√

2N × erfc−1
(

2(n− β)

m

)
≈ 239.9672,

ε1 = (n− β)/m ≈ 2−7.8503 and ε2 = 0.99957. The expected number of picked solutions is 280−9ε1 +
214−9ε2 ≈ 263.1498 + 31.98627 ≈ 263.1498. We apply 214 inverse linear masks to the picked solutions
and recover s(0), and the time complexity is 263.1498+14 = 277.1498.

Fast Correlation Attack Revisited 11

The number of occurrences that each incorrect value appears follows the Poisson distribution
with parameter λ1 = 277.1498−80 = 2−2.8502. On the other hand, the number of occurrences that
s(0) appears follows the Poisson distribution with parameter λ2 = 214−9 × 0.99957 ≈ 31.98627. The
right figure of Fig. 2 shows two Poisson distributions. For example, when thp = 15 is used, the prob-
ability that an incorrect value appears at least 15 is smaller than 2−80. However, the corresponding
probability for s(0) is 99.9%. As a result, the total time complexity is 3× 277.1498 ≈ 278.7348.

5 Application to Grain-128a

We apply the new algorithm to the stream cipher Grain-128a [ÅHJM11], which has two modes
of operations: stream cipher mode and authenticated encryption mode. We assume that all output
sequences of the pre-output function can be observed. Under the known-plaintext scenario, this
assumption is naturally realized for the stream cipher mode because the output is directly used as
a key stream. On the other hand, this assumption is very strong for the authenticated encryption
mode because only even-clock output is used as the key stream. Therefore, we do not claim that the
authenticated encryption mode can be broken.

5.1 Specification of Grain-128a

yt

st st+127bt bt+127

24 5

27 7 1

6

h

g f

Fig. 3. Specification of Grain-128a

Let s(t) and b(t) be 128-bit internal states of the LFSR and NFSR at time t, respectively, and
s(t) and b(t) are represented as s(t) = (st, st+1, . . . , st+127) and b(t) = (bt, bt+1, . . . , bt+127). Let yt be
an output of the pre-output function at time t, and it is computed as

yt = h(s(t), b(t))⊕ st+93 ⊕
⊕
j∈A

bt+j , (2)

where A = {2, 15, 36, 45, 64, 73, 89}, and h(s(t), b(t)) is defined as

h(s(t), b(t)) = h(bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+94)

= bt+12st+8 ⊕ st+13st+20 ⊕ bt+95st+42 ⊕ st+60st+79 ⊕ bt+12bt+95st+94.

Moreover, st+128 and bt+128 are computed by

st+128 = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96,

bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕ bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84

⊕ bt+88bt+92bt+93bt+95 ⊕ bt+22bt+24bt+25 ⊕ bt+70bt+78bt+82.

Let zt be the key stream at time t, and zt = yt in the stream cipher mode. On the other hand,
in the authenticated encryption mode, zt = y2w+2i, where w is the tag size. Figure 3 shows the
specification of Grain-128a.

12 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

5.2 Linear Approximate Representation for Grain-128a

If there are multiple linear masks with high correlation, the new algorithm can be applied. In this
section, we show that Grain-128a has many linear approximate representations, and they produce
many linear masks.

93

94796042952013812

g f

93

94796042952013812

g f

93

94796042952013812

g f n

n n

n

h

h

h

Fig. 4. Linear Approximate Representation for Grain-128a

Figure 4 shows the high-level view of the linear approximate representation. It involves from tth
to (t + n + 1)th rounds, where b(t) and b(t+n+1) must be linearly inactive to avoid involving the
state of NFSR. Moreover, yt+i is linearly active for i ∈ Tz, and the linear mask of the input of the
(t+ i)-round h function denoted by Λi must be nonzero for i ∈ Tz. Otherwise, it must be zero.

We focus on the structure of the h function, where the input consists of 7 bits from the LFSR
and 2 bits from the NFSR. Then, non-zero Λi can take several values, and specifically, Λi can take
64 possible values (see Table 2) under the condition that a linear mask for 2 bits from NFSR is
fixed. Since the sum of yt+i for i ∈ Tz is used, it implies that there are 64|Tz| linear approximate
representations. These many possible representations are obtained by exploiting the structure of the
h function, and this structure is common for all ciphers in the Grain family. In other words, this is
a new potential vulnerability of the Grain family.

We first consider Tz to construct the linear approximate representation, but it is difficult to find
an optimal Tz. Our strategy is heuristic and does not guarantee the optimality, but the found Tz is
enough to break full Grain-128a. Once Tz is determined, we first evaluate the correlation of a linear
approximate representation on fixed Λi for i ∈ {0, 1, . . . , n}. The high-biased linear mask γ used in
our new algorithm is constructed by Λi, and the correlation of γ is estimated from the correlation
of Λi.

Finding Linear Masks with High Correlation. We focus on the sum of key stream bits, i.e.,⊕
i∈Tz yt+i. From Eq. (2), the sum is represented as

⊕
i∈Tz

yt+i =
⊕
i∈Tz

h(s(t+i), b(t+i))⊕ st+i+93 ⊕
⊕
j∈A

bt+i+j


=
⊕
i∈Tz

(
h(s(t+i), b(t+i))⊕ st+i+93

)
⊕
⊕
j∈A

(⊕
i∈Tz

bt+j+i

)
.

We first consider an appropriate set Tz. We focus on
⊕

i∈Tz bt+j+i and choose Tz such that
⊕

i∈Tz bt+j+i
is highly biased. Concretely, we tap 6 bits whose index corresponds to linearly tapped bits in the g

Fast Correlation Attack Revisited 13

function, i.e., Tz = {0, 26, 56, 91, 96, 128}. Then, for any j,⊕
i∈Tz

bt+j+i = bt+j ⊕ bt+j+26 ⊕ bt+j+56 ⊕ bt+j+91 ⊕ bt+j+96 ⊕ bt+j+128

= st+j ⊕ g′(b(t+j)),

where

g′(b(t)) = bt+3bt+67 ⊕ bt+11bt+13 ⊕ bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48

⊕ bt+61bt+65 ⊕ bt+68bt+84 ⊕ bt+88bt+92bt+93bt+95

⊕ bt+22bt+24bt+25 ⊕ bt+70bt+78bt+82.

Note that all bits in g′(b(t)) are nonlinearly involved, and the correlation may be high. Then⊕
i∈Tz

yt+i =
⊕
i∈Tz

(
h(s(t+i), b(t+i))⊕ st+i+93

)
⊕
⊕
j∈A

(
st+j ⊕ g′(b(t+j))

)
=
⊕
i∈Tz

st+i+93 ⊕
⊕
j∈A

st+j ⊕
⊕
i∈Tz

h(s(t+i), b(t+i))⊕
⊕
j∈A

g′(b(t+j)).

We next consider a linear approximate representation of h(s(t+i), b(t+i)). Let Λi ∈ {0, 1}9 be the
input linear mask for the h function at time t+ i, and Λi = (Λi[0], Λi[1], . . . , Λi[8]). Then,

h(s(t+i), b(t+i))

≈ Λi[0]bt+i+12 ⊕ Λi[4]bt+i+95 ⊕ 〈Λi[1− 3], (st+i+8, st+i+13, st+i+20)〉
⊕ 〈Λi[5− 8], (st+i+42, st+i+60, st+i+79, st+i+94)〉,

where Λi[x−y] denotes a sub vector indexed from xth bit to yth bit. Let corh,i(Λi) be the correlation
of the h function at time t+ i, and Table 2 summarizes them. From Table 2, corh,i(Λi) is 0 or ±2−4.
We have 6 active h functions because |Tz| = 6, and let ΛTz ∈ {0, 1}9×|Tz| be the concatenated linear
mask, i.e., ΛTz = (Λ0, Λ26, Λ56, Λ91, Λ96, Λ128). The total correlation from all active h functions
depends on ΛTz , and it is computed as corh(ΛTz) = (−1)|Tz|+1

∏
i∈Tz corh,i(Λi) because of the

piling-up lemma. Therefore, if Λi with correlation 0 is used for any i ∈ Tz, corh(ΛTz) = 0. Otherwise,
corh(ΛTz) = ±2−24.

We guess all terms involved in the internal state of the LFSR in the FCA. Under the correlation
±2−24, we get ⊕

i∈Tz

yt+i ≈ (term by guessing s(t))

⊕
⊕
i∈Tz

(Λi[0]bt+i+12 ⊕ Λi[4]bt+i+95)⊕
⊕
j∈A

(
g′(b(t+j))

)
.

Therefore, if

corg(ΛTz) = Pr

⊕
i∈Tz

(Λi[0]bt+i+12 ⊕ Λi[4]bt+i+95)⊕
⊕
j∈A

(
g′(b(t+j))

)
= 0


− Pr

⊕
i∈Tz

(Λi[0]bt+i+12 ⊕ Λi[4]bt+i+95)⊕
⊕
j∈A

(
g′(b(t+j))

)
= 1


is high, the FCA can be successfully applied. Note that corg(ΛTz) is independent of Λi[1− 3, 5− 8]
for any i ∈ Tz.

Appendix A shows the algebraic normal form of
⊕

j∈A
(
g′(b(t+j))

)
. To evaluate its correlation,

we divide
⊕

j∈A
(
g′(b(t+j))

)
into 20 terms, where only bt+67 and bt+137 are involved by multiple

14 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

Table 2. Correlation of the h function. The horizontal axis shows Λh,i[1−3], the vertical axis shows Λh,i[5−8],
and 512× corh,i is shown in every cell.

000 001 010 011 100 101 110 111

0000 -32 -32 -32 32 -32 -32 -32 32
0001 0 0 0 0 0 0 0 0
0010 -32 -32 -32 32 -32 -32 -32 32
0011 0 0 0 0 0 0 0 0
0100 -32 -32 -32 32 -32 -32 -32 32
0101 0 0 0 0 0 0 0 0
0110 32 32 32 -32 32 32 32 -32
0111 0 0 0 0 0 0 0 0
1000 -32 -32 -32 32 0 0 0 0
1001 0 0 0 0 -32 -32 -32 32
1010 -32 -32 -32 32 0 0 0 0
1011 0 0 0 0 -32 -32 -32 32
1100 -32 -32 -32 32 0 0 0 0
1101 0 0 0 0 -32 -32 -32 32
1110 32 32 32 -32 0 0 0 0
1111 0 0 0 0 32 32 32 -32

Case of

Λh,i[0, 4] = 00.

000 001 010 011 100 101 110 111

0000 -32 -32 -32 32 -32 -32 -32 32
0001 0 0 0 0 0 0 0 0
0010 -32 -32 -32 32 -32 -32 -32 32
0011 0 0 0 0 0 0 0 0
0100 -32 -32 -32 32 -32 -32 -32 32
0101 0 0 0 0 0 0 0 0
0110 32 32 32 -32 32 32 32 -32
0111 0 0 0 0 0 0 0 0
1000 32 32 32 -32 0 0 0 0
1001 0 0 0 0 32 32 32 -32
1010 32 32 32 -32 0 0 0 0
1011 0 0 0 0 32 32 32 -32
1100 32 32 32 -32 0 0 0 0
1101 0 0 0 0 32 32 32 -32
1110 -32 -32 -32 32 0 0 0 0
1111 0 0 0 0 -32 -32 -32 32

Case of

Λh,i[0, 4] = 01.

000 001 010 011 100 101 110 111

0000 -32 -32 -32 32 32 32 32 -32
0001 0 0 0 0 0 0 0 0
0010 -32 -32 -32 32 32 32 32 -32
0011 0 0 0 0 0 0 0 0
0100 -32 -32 -32 32 32 32 32 -32
0101 0 0 0 0 0 0 0 0
0110 32 32 32 -32 -32 -32 -32 32
0111 0 0 0 0 0 0 0 0
1000 -32 -32 -32 32 0 0 0 0
1001 0 0 0 0 32 32 32 -32
1010 -32 -32 -32 32 0 0 0 0
1011 0 0 0 0 32 32 32 -32
1100 -32 -32 -32 32 0 0 0 0
1101 0 0 0 0 32 32 32 -32
1110 32 32 32 -32 0 0 0 0
1111 0 0 0 0 -32 -32 -32 32

Case of

Λh,i[0, 4] = 10.

000 001 010 011 100 101 110 111

0000 -32 -32 -32 32 32 32 32 -32
0001 0 0 0 0 0 0 0 0
0010 -32 -32 -32 32 32 32 32 -32
0011 0 0 0 0 0 0 0 0
0100 -32 -32 -32 32 32 32 32 -32
0101 0 0 0 0 0 0 0 0
0110 32 32 32 -32 -32 -32 -32 32
0111 0 0 0 0 0 0 0 0
1000 32 32 32 -32 0 0 0 0
1001 0 0 0 0 -32 -32 -32 32
1010 32 32 32 -32 0 0 0 0
1011 0 0 0 0 -32 -32 -32 32
1100 32 32 32 -32 0 0 0 0
1101 0 0 0 0 -32 -32 -32 32
1110 -32 -32 -32 32 0 0 0 0
1111 0 0 0 0 32 32 32 -32

Case of

Λh,i[0, 4] = 11.

terms. Then we try out 4 possible values of (bt+67, bt+137) and evaluate correlation independently.
As a result, when (bt+67, bt+137) = (0, 0) and (bt+67, bt+137) = (0, 1), the correlation is −2−33.1875

and −2−33.4505, respectively. On the other hand, the correlation is 0 when bt+67 = 1. Therefore

corg(ΛTz) =
−2−33.1875 − 2−33.4505

4
= −2−34.313

when Λi[0, 4] = 0 for all i ∈ Tz.
We similarly evaluate corg(ΛTz) when Λi[0, 4] 6= 0 for any i ∈ Tz. If one of Λ0[0], Λ26[0], Λ56[0],

Λ91[4], Λ96[4], and Λ128[4] is 1, the correlation is always 0 because bt+12, bt+38, bt+68, bt+186, bt+191,
and bt+223 are not involved to

⊕
j∈A

(
g′(b(t+j))

)
. Table 3 summarizes corg(ΛTz) when Λ0[0], Λ26[0],

Λ56[0], Λ91[4], Λ96[4], and Λ128[4] are 0.

For any fixed Λi, we can get the following linear approximate representation⊕
i∈Tz

yt+i ≈
⊕
i∈Tz

st+i+93 ⊕
⊕
j∈A

st+j ⊕
⊕
i∈Tz

〈Λi[1− 3], (st+i+8, st+i+13, st+i+20)〉

⊕
⊕
i∈Tz

〈Λi[5− 8], (st+i+42, st+i+60, st+i+79, st+i+94)〉. (3)

Fast Correlation Attack Revisited 15

Table 3. Summary of correlations when Λi[0, 4] is fixed. Let ∗ be arbitrary bit.

Λ0[4] Λ26[4] Λ56[4] Λ91[0] Λ96[0] Λ128[0] corg(ΛTz)

0 0 0 0 0 0 −2−34.3130

0 0 0 0 0 1 +2−36.1875

0 0 0 0 1 0 −2−37.5860

0 0 0 0 1 1 +2−39.4605

0 0 0 1 0 0 −2−34.9230

0 0 0 1 0 1 +2−36.7975

0 0 0 1 1 0 +2−37.5860

0 0 0 1 1 1 −2−39.4605

0 0 1 0 0 0 −2−35.8980

0 0 1 0 0 1 +2−37.7724

0 0 1 0 1 0 −2−39.1710

0 0 1 0 1 1 +2−41.0454

0 0 1 1 0 0 −2−36.5080

0 0 1 1 0 1 +2−38.3825

0 0 1 1 1 0 +2−39.1710

0 0 1 1 1 1 −2−41.0454

0 1 0 0 0 0 −2−35.3636

0 1 0 0 0 1 +2−37.2381

0 1 0 0 1 0 −2−38.1710

0 1 0 0 1 1 +2−40.0454

0 1 0 1 0 0 −2−35.8490

0 1 0 1 0 1 +2−37.7235

0 1 0 1 1 0 +2−38.1710

0 1 0 1 1 1 −2−40.0454

0 1 1 0 0 0 −2−36.9486

0 1 1 0 0 1 +2−38.8230

0 1 1 0 1 0 −2−39.7559

0 1 1 0 1 1 +2−41.6304

0 1 1 1 0 0 −2−37.4340

0 1 1 1 0 1 +2−39.3085

0 1 1 1 1 0 +2−39.7559

0 1 1 1 1 1 −2−41.6304

1 ∗ ∗ ∗ ∗ ∗ 0

From the piling-up lemma, the correlation is computed as

−corg(ΛTz)× corh(ΛTz),

where corg(Tz) is summarized in Table 3 and corh(ΛTz) = (−1)|Tz|+1
∏
i∈Tz corh,i(Λi).

How to Find Multiple γ. The correlation of the linear approximate representation on fixed Λi
was estimated in the paragraph above. The linear mask γ used in the FCA directly is represented
as

γ =
∑
i∈Tz

(
Λi[1]αi+8 + Λi[2]αi+13 + Λi[3]αi+20 + Λi[5]αi+42

+ Λi[6]αi+60 + Λi[7]αi+79 + Λi[8]αi+94 + αi+93
)

+
∑
j∈A

αj .

If different ΛTz s derive the same γ, we need to sum up corresponding correlations.
Clearly, since this linear approximate representation does not involve Λi[0, 4] for i ∈ Tz, we need

to sum up 22×|Tz| = 212 correlations, where Λi[1 − 3, 5 − 8] is identical and only Λi[0, 4] varies for
i ∈ Tz. Let V be a linear span whose basis is 12 corresponding unit vectors.

16 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

Moreover, there are special relationships. When we focus on Λ56[6] and Λ96[3], corresponding ele-
ments over GF(2128) are identical because α56+60 = α96+20 = α116. In other words, (Λ56[6], Λ96[3]) =
(0, 0) and (Λ56[6], Λ96[3]) = (1, 1) derive the same γ, and (Λ56[6], Λ96[3]) = (1, 0) and (Λ56[6], Λ96[3]) =
(0, 1) also derive the same γ. We have 3 such relationships as follows.

– Λ56[6] and Λ96[3]. Then, α56+60 = α96+20 = α116.

– Λ91[2] and Λ96[1]. Then, α91+13 = α96+8 = α104.

– Λ91[7] and Λ128[5]. Then, α91+79 = α128+42 = α170.

Therefore, from following three vectors

w1(δ[0]) = (09,09,000000100,000000000,000δ[0]00000,000000000),

w2(δ[1]) = (09,09,000000000,001000000,0δ[1]0000000,000000000),

w3(δ[2]) = (09,09,000000000,000000010, 000000000,00000δ[2]000),

a linear span W (δ) = span(w1(δ[0]), w2(δ[1]), w3(δ[2])) is defined, where δ[i] = δ[i]⊕ 1. As a result,
the correlation for γ denoted by corγ is estimated as

corγ =
∑

w∈W (δ)

∑
v∈V
−corg(ΛTz ⊕ v)× corh(ΛTz ⊕ v ⊕ w).

Note that corg is independent of w ∈W (δ).

We heuristically evaluated γ with high correlation. As shown in Table 2, the number of possible
Λi is at most 64. Otherwise, corh is always 0. Therefore, the search space is reduced from 254 to 236.
Moreover, Λ0 is not involved in W (δ), and the absolute value of corγ is invariable as far as we use Λ0

satisfying corh,0 = ±2−4. Therefore, we do not need to evaluate Λ0 anymore, and the search space is
further reduced from 236 to 230. While Λ26 is also not involved to W (δ), we have non-zero correlation
for both cases as Λ26[4] = 0 and 1 (see Table 3). If the sign of corh,26 for Λ26[4] = 0 is different from
that for Λ26[4] = 1, they cancel each other out. Therefore, we should use Λ26 such that the sign of
correlation of Λ26 is equal to that of Λ26 ⊕ (000010000), and the number of such candidates is 32.
Then, we do not need to evaluate Λ26 anymore, and the search space is further reduced from 230

to 224. We finally evaluated 224 ΛTz exhaustively. As a result, we found 49152× 64× 32 ≈ 226.58 γ
whose absolute value of correlation is greater than 2−54.2381.

5.3 Estimation of Attack Complexity and Success Probability

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β

p
ro

b
ab

il
it
y

11
0

11
5

12
0

12
5

13
0

13
5

lo
g2

(c
om

p
le

x
it
y
)

Probability
Complexity

Fig. 5. Time complexity and success probability. FCA against Grain-128a.

Fast Correlation Attack Revisited 17

We apply the attack algorithm described in Sect. 3, and Proposition 1 is used to estimate the at-
tack complexity and success probability. Figure 5 shows the relationship between the time complexity,
success probability, and the size of bypassed bits, where (n,m, c) = (128, 49152×64×32,±2−54.2381)
is used. From Fig. 5, β = 21 is preferable. The time complexity is 3× (128−21)×2128−21 ≈ 2115.3264

and the corresponding success probability is almost 100%. Moreover when β = 22, the time com-
plexity is 2114.3129 and the success probability is 60.95%.

The estimation above only evaluates the time complexity to recover the initial state of the
LFSR. To recover the secret key, we need to recover the whole of the initial state. Our next goal is
to recover the initial state of the NFSR under the condition that the initial state of the LFSR is
uniquely determined, but it is not difficult. We have several methods to recover the initial state and
explain the most simple method.

The key stream is generated as Eq. (2). We focus on (y0, . . . , y34), which involves 128 bits as
(b2, . . . , b129). We first guess 93 bits, and the remaining 35 bits are recovered by using correspond-
ing Eq. (2). Specifically, we first guess (b33, . . . , b75, b80, . . . , b129). Then, (b76, . . . , b79) are uniquely
determined by using (y31, . . . , y34). Similarly, we can uniquely determine the remaining 31 bits step
by step. While we need to guess 93 bits, the time complexity is negligible compared with that for
the FCA.

6 Application to Grain-128

Grain-128 is the preliminary version of Grain-128a. The dynamic cube attack is successfully applied
to analyze full Grain-128 and well exploits the low-degree feedback polynomial of NFSR. Actually,
a higher degree feedback polynomial is adopted for Grain-128a to avoid the dynamic cube attack.

The FCA is absolutely different from the dynamic cube attack. While the dynamic cube attack
analyzes the initialization, the FCA analyzes the key-stream generator. As far as we know, no
vulnerability on the key-stream generator has been reported.

The specification is simpler than Grain-128a. The feedback polynomial of the NFSR is more
sparse and is specified as

bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕ bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84.

Moreover there is a small tweak in the h function as

h(s(t), b(t)) = bt+12st+8 ⊕ st+13st+20 ⊕ bt+95st+42 ⊕ st+60st+79 ⊕ bt+12bt+95st+95,

where st+95 is used instead of st+94.
Since Grain-128 is very similar to Grain-128a, we can use the same Tz. Then −corg = −2−32,

where Λ26[4] and Λ91[0] can be chosen arbitrary but the others are 0.
We heuristically evaluated γ with high correlation, and we used the same strategy as the case

of Grain-128a. As a result, we found 215 × 64 × 32 = 226 γ with correlation ±2−51. We apply the
attack algorithm described in Sect. 3, and Proposition 1 is used to estimate the attack complexity and
success probability. Figure 6 shows the relationship between the time complexity, success probability,
and the size of bypassed bits, where (n,m, c) = (128, 226,±2−51) is used. From Fig. 6, β = 22 is a
preferable attack parameter. The time complexity is 3 × (128 − 22) × 2128−22 ≈ 2114.3129 and the
corresponding success probability is 99.0%.

7 Application to Grain-v1

7.1 Specification of Grain-v1

Let s(t) and b(t) be 80-bit internal states of the LFSR and NFSR at time t, respectively, and s(t) and
b(t) are represented as s(t) = (st, st+1, . . . , st+79) and b(t) = (bt, bt+1, . . . , bt+79), respectively. Then,

18 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

0 5 10 15 20 25
0.

0
0
.2

0.
4

0
.6

0
.8

1
.0

p
ro

b
ab

il
it
y

1
10

1
15

1
20

12
5

13
0

1
35

lo
g2

(c
om

p
le

x
it
y
)

Probability
Complexity

β

Fig. 6. Time complexity and success probability. FCA against Grain-128.

zt

st st+79bt bt+79

13

17 4

6

h

g f

Fig. 7. Specification of Grain-v1

let zt be a key stream at time t, and it is computed as

zt = h(s(t), b(t))⊕
⊕
j∈A

bt+j , (4)

where A = {1, 2, 4, 10, 31, 43, 56} and h(s(t), b(t)) is defined as

h(s(t), b(t)) = h(st+3, st+25, st+46, st+64, bt+63)

= st+25 ⊕ bt+63 ⊕ st+3st+64 ⊕ st+46st+64 ⊕ st+64bt+63

⊕ st+3st+25st+46 ⊕ st+3st+46st+64 ⊕ st+3st+46bt+63

⊕ st+25st+46bt+63 ⊕ st+46st+64bt+63.

Moreover, st+80 and bt+80 are computed by

st+80 = st ⊕ st+13 ⊕ st+23 ⊕ st+38 ⊕ st+51 ⊕ st+62,

bt+80 = st ⊕ bt+62 ⊕ bt+60 ⊕ bt+52 ⊕ bt+45 ⊕ bt+37 ⊕ bt+33 ⊕ bt+28 ⊕ bt+21

⊕ bt+14 ⊕ bt+9 ⊕ bt ⊕ bt+63bt+60 ⊕ bt+37bt+33 ⊕ bt+15bt+9

⊕ bt+60bt+52bt+45 ⊕ bt+33bt+28bt+21 ⊕ bt+63bt+45bt+28bt+9

⊕ bt+60bt+52bt+37bt+33 ⊕ bt+63bt+60bt+21bt+15

⊕ bt+63bt+60bt+52bt+45bt+37 ⊕ bt+33bt+28bt+21bt+15bt+9

⊕ bt+52bt+45bt+37bt+33bt+28bt+21.

Figure 7 shows the specification of Grain-v1.

Fast Correlation Attack Revisited 19

Table 4. Correlation of the h function, where 32× corh,i is shown in every cell.

Λi[0− 3]

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Λi[4] = 0 0 0 0 0 0 -8 0 8 0 8 0 -8 -8 8 -8 8
Λi[4] = 1 0 -8 0 8 -8 -8 -8 -8 0 0 0 0 0 -8 0 8

7.2 Fast Correlation Attack against Grain-v1

When we use Tz = {0, 14, 21, 28, 37, 45, 52, 60, 62, 80}, we focus on the sum of the key stream bits,
i.e., zt+0 ⊕ zt+14 ⊕ zt+21 ⊕ zt+28 ⊕ zt+37 ⊕ zt+45 ⊕ zt+52 ⊕ zt+60 ⊕ zt+62 ⊕ zt+80.⊕

i∈Tz

zt+i =
⊕
i∈Tz

h(s(t+i), b(t+i))⊕
⊕
j∈A

(⊕
i∈Tz

bt+j+i

)
.

For any j, ⊕
i∈Tz

bt+j+i = st+j ⊕ g′(b(t+j)),

where g′(b(t)) is defined as

g′(b(t)) = bt+33 ⊕ bt+9 ⊕ bt+63bt+60 ⊕ bt+37bt+33 ⊕ bt+15bt+9 ⊕ bt+60bt+52bt+45

⊕ bt+33bt+28bt+21 ⊕ bt+63bt+45bt+28bt+9 ⊕ bt+60bt+52bt+37bt+33

⊕ bt+63bt+60bt+21bt+15 ⊕ bt+63bt+60bt+52bt+45bt+37

⊕ bt+33bt+28bt+21bt+15bt+9 ⊕ bt+52bt+45bt+37bt+33bt+28bt+21.

Then ⊕
i∈Tz

zt+i =
⊕
i∈Tz

h(s(t+i), b(t+i))⊕
⊕
j∈A

(
st+j ⊕ g′(b(t+j))

)
=
⊕
j∈A

st+j ⊕
⊕
i∈Tz

h(s(t+i), b(t+i))⊕
⊕
j∈A

g′(b(t+j)).

We next consider a linear approximate representation of h(s(t+i), b(t+i)). Let Λi be the input
linear mask for the h function at time t+ i. Then

h(s(t+i), b(t+i))

≈ Λi[4]bt+i+63 ⊕ 〈Λi[0− 3], (st+i+3, st+i+25, st+i+46, st+i+64)〉.

Let corh,i(Λi) be the correlation of the h function at time t+ i, and Table 4 summarizes them. From
Table 4, corh,i(Λi) is 0 or ±2−2. Since we have |Tz| = 10 active h functions, the total correlation from
all active h functions is computed as (−1)|Tz|+1

∏
i∈Tz corh,i(Λi) = ±2−20 because of the piling-up

lemma. Note that Λi[0− 3] is independent from the state of the NFSR.
All terms involved in the internal state of the LFSR can be guessed in the FCA. Therefore, under

the correlation ±2−20, we get⊕
i∈Tz

zt+i = (term by guessing)⊕
⊕
i∈Tz

(Λi[4]bt+i+63)⊕
⊕
j∈A

(
g′(b(t+j))

)
.

Therefore, if

corg(ΛTz) = Pr

⊕
i∈Tz

(Λi[4]bt+i+63)⊕
⊕
j∈A

(
g′(b(t+j))

)
= 0


− Pr

⊕
i∈Tz

(Λi[4]bt+i+63)⊕
⊕
j∈A

(
g′(b(t+j))

)
= 1



20 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

Table 5. Summary of correlations when Λi[4] is fixed.

Λ14[4] Λ21[4] Λ28[4] Λ45[4] corg(ΛTz)

0 0 0 0 −2−39.7159

0 0 0 1 −2−43.4500

0 0 1 0 −2−39.6603

0 0 1 1 −2−43.7260

0 1 0 0 +2−45.1228

0 1 0 1 −2−42.9025

0 1 1 0 +2−44.3802

0 1 1 1 −2−42.6875

1 0 0 0 +2−41.9519

1 0 0 1 +2−43.5233

1 0 1 0 +2−41.8662

1 0 1 1 +2−43.6420

1 1 0 0 −2−44.9114

1 1 0 1 +2−42.8544

1 1 1 0 −2−44.5232

1 1 1 1 +2−42.7302

is high, the FCA can be successfully applied.
Similarly to the case of Grain-128a, we evaluate corg(ΛTz). If one of Λ0[4], Λ37[4], Λ52[4], Λ60[4],

Λ62[4], and Λ80[4] is 1, the correlation is always 0 because bt+63, bt+100, bt+115, bt+123, bt+125, and
bt+143 are not involved in

⊕
j∈A

(
g′(b(t+j))

)
. Table 5 summarizes corg(ΛTz) when Λi[4] = 0 for

i ∈ {0, 37, 52, 60, 62, 80}.
For any fixed Λi, we can get the following linear approximate representation⊕

i∈Tz

zt+i ≈
⊕
j∈A

st+j ⊕
⊕
i∈Tz

〈Λi[0− 3], (st+i+3, st+i+25, st+i+46, st+i+64)〉. (5)

From the piling-up lemma, the correlation is computed as −corg(ΛTz)× corh(ΛTz).

How to Find Multiple γ. The correlation of the linear approximate representation on fixed Λi
was estimated in the paragraph above. The linear mask γ used in the FCA directly is represented
as

γ =
∑
i∈Tz

(
Λi[0]αi+3 + Λi[1]αi+25 + Λi[2]αi+46 + Λi[3]αi+64

)
+
∑
j∈A

αj .

If different Λh have the same γ, we need to sum up corresponding correlations.
This linear approximate representation does not use Λi[4] for i ∈ Tz. Therefore, we need to sum

up 2|Tz| = 210 correlations, where Λi[0− 3] is identical and only Λi[5] varies for i ∈ Tz. Let V be a
linear span whose basis is 12 corresponding unit vectors.

Moreover, there are special relationships similar to the case of Grain-128a, and we have four such
relationships as

– Λ37[2] and Λ80[0]. Then, α37+46 = α80+3 = α83.
– Λ62[3] and Λ80[2]. Then, α62+64 = α80+46 = α126.
– Λ0[2] and Λ21[1]. Then, α0+46 = α21+25 = α46.
– Λ21[3] and Λ60[1]. Then, α21+64 = α60+25 = α85.

Therefore, from following four vectors

w1(δ[0]) = (00000,05, 00000,05,00100,05,05,00000, 00000,δ[0]0000),

w2(δ[1]) = (00000,05, 00000,05,00000,05,05,00000, 00010,00δ[1]00),

w3(δ[2]) = (00100,05,0δ[2]000,05,00000,05,05,00000, 00000,00000),

w4(δ[3]) = (00000,05, 00010,05,00000,05,05,0δ[3]000,00000,00000),

Fast Correlation Attack Revisited 21

5 10 15

0
.0

0
.2

0
.4

0.
6

0.
8

1.
0

β

p
ro

b
a
b
il
it
y

70
75

80
85

lo
g
2(

co
m

p
le

x
it
y
)

Probability
Complexity

Fig. 8. Time complexity and success probability. FCA against Grain-v1.

a linear span W (δ) = span(w1(δ[0]), w2(δ[1]), w3(δ[2]), w4(δ[3])) is defined, where δ[i] = δ[i] ⊕ 1.
Then, let corγ be the correlation of γ, and

corγ =
∑

w∈W (δ)

∑
v∈V
−corg(ΛTz ⊕ v)× corh(ΛTz ⊕ v ⊕ w).

We heuristically evaluated γ with high correlation. For every element in Tz, since the subset
{14, 28, 45, 52} is independent of the special relationship, we first focus on the subset. Since bt+63+52

is not involved in
⊕

j∈A
(
g′(b(t+j))

)
, Λ52[4] must be 0. Therefore, Λ52[0− 3] should be chosen as

Λ52[0− 3] ∈ {0101, 0111, 1001, 1011, 1100, 1101, 1110, 1111},

and corγ is invariable as far as we use Λ52 satisfying corh,52 = ±2−2. We do not need to evaluate
Λ52 anymore, and the search space is reduced from 240 to 236. For i ∈ {14, 28, 45}, corresponding
masks should be chosen as

Λi[0− 3] ∈ {0101, 0111, 1001, 1011, 1100, 1101, 1110, 1111}

because corg(ΛTz) is high when (Λ14[4], Λ21[4], Λ28[4], Λ45[4]) is 0010 or 0000. Let us focus on Table 5.
We have three-type linear masks as

– Λi[0 − 3] ∈ {1001, 1011, 1100, 1110}, where corh,i = ±2−2 for Λi[4] = 0 but corh,i = 0 for
Λi[4] = 1.

– Λi[0− 3] ∈ {0111, 1101}, where the sign of corh,i is different in each case of Λi[4] = 0 or 1.

– Λi[0− 3] ∈ {0101, 1111}, where the sign of corh,i is the same in both cases of Λi[4] = 0 and 1.

Since corγ is invariable in each case, it is enough to evaluate one from each case. Therefore, the
search space is reduced from 236 to 33 × 224. We finally evaluated 9 × 224 ΛTz exhaustively. As a
result, we found about 442368 γ whose absolute value of correlation is greater than 2−36.

Estimating Attack Complexity and Success Probability. We apply the attack algorithm
described in Sect. 3, and Proposition 1 is used to estimate the attack complexity and success proba-
bility. Figure 8 shows the relationship between the time complexity, success probability, and the size
of bypassed bits, where (n,m, c) = (80, 442368,±2−36) is used. From Fig. 8, β = 11 is preferable, and
the time complexity is 3 × (80 − 11) × 280−11 ≈ 276.6935 and the corresponding success probability
is almost 100%.

22 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

Theoretical and experimental simulations

of occurrences that correct/incorrect initial state appars
p
ro

b
ab

il
it
y

Incorrect initial states (theoretical)
Correct initial state (theoretical)
Incorrect initial state (experimental)
Correct initial state (experimental)

thp = 9

Fig. 9. Comparison between the theoretical and experimental estimations.

8 Verifications, Observations, and Countermeasures

8.1 Experimental Verification

We verify our algorithm by applying it to a toy Grain-like cipher, where the sizes of the LFSR and
NFSR are 24 bits, and st+24, bt+24, and zt are computed as

st+24 = st ⊕ st+1 ⊕ st+2 ⊕ st+7,

bt+24 = st ⊕ bt ⊕ bt+5 ⊕ bt+14 ⊕ bt+20bt+21 ⊕ bt+11bt+13bt+15,

zt = h(st+3, st+7, st+15, st+19, bt+17)⊕
⊕

j∈{1,3,8}

bt+j ,

where the h function is as the one used in Grain-v1.
Similarly to the case of Grain-128a, Tz is used by tapping linear part of the feedback polynomial

of NFSR, i.e., Tz = {0, 5, 14, 24}. Then, the sum of the key stream is⊕
i∈Tz

zt+i =
⊕
i∈Tz

h(s(t+i), b(t+i))⊕
⊕

j∈{1,3,8}

(
st+j + g′(b(t+j))

)
,

where g′(b(t)) = bt+20bt+21 ⊕ bt+11bt+13bt+15. The ANF of the h function involves bt+17, bt+22,
bt+31, and bt+41. If Λi[4] = 1 is used for i ∈ {0, 14, 24}, the correlation is always 0 because⊕

j∈{1,3,8} g
′(b(t+j)) does not involve bt+17, bt+31, and bt+41. Only bt+22 is involved to

⊕
j∈{1,3,8} g

′(b(t+j)).

Therefore, we evaluated correlations of
⊕

j∈{1,3,8} g
′(b(t+j)) and

⊕
j∈{1,3,8} g

′(b(t+j)) ⊕ bt+22, and

they have the correlation 2−3.41504. For i ∈ {0, 14, 24}, we have 8 possible linear masks. Moreover,
we should use 0101 and 1111 for the linear mask Λ14[0 − 3] because the sign of the correlation is
the same in either case of Λ14[4] = 0 and Λ14[4] = 1. As a result, we have 8 × 8 × 8 × 2 = 1024
linear masks whose absolute value of correlations is 2× 2−8−3.41504 = 2−10.41504, where the factor 2
is derived from the sum of correlations for Λ14[4] = 0 and Λ14[4] = 1.

For example, when β = 5, the data complexity is (24− 5)× 224−5 ≈ 223.25. From Proposition 1,
when we use th = 6579 as the threshold for the normal distribution, the complexities for three steps
of the attack algorithm are balanced. Moreover, when we use thp = 9 as the threshold for the Poisson
distribution, the probability that incorrect initial state appears at least thp times is 2−26 < 2−24.

We randomly choose the initial state and repeat the attack algorithm 1000 times. Figure 9 shows
the comparison of the Poisson distributions between the theoretical and experimental ones. From
this figure, our experimental results almost follow the theoretical one.

8.2 Unified Representation with Finite Field

The “commutative” property of Γ × TF t is exploited in our new fast correlation attack, where
Γ ∈ {0, 1}n and F t ∈ {0, 1}n×n are regarded as γ ∈ GF(2n) and αt ∈ GF(2n), respectively. We
further consider the finite field representation of s(0) ∈ {0, 1}n.

Fast Correlation Attack Revisited 23

:n-bit row vector :n-bit column vector:n n-bit matrix

commutative

F ts(0)

τ(s(0))

Fig. 10. “Commutative” property

Recall Eq.(1), the parity-check equation is represented as

e′t =
〈
s(0), Γ × TF t

〉
⊕
⊕
i∈Tz

zt+i

= s(0) × F t × TΓ ⊕
⊕
i∈Tz

zt+i.

We equivalently transform F t×TΓ into αtγ in our new algorithm. We further consider the equivalent
representation of s(0) over GF(2n), which is denoted by τ(s(0)), and Eq.(1) is rewritten as

e′t = (τ(s(0))γαt)[0]⊕
⊕
i∈Tz

zt+i,

where (τ(s(0))γαt)[0] is the first coefficient of τ(s(0))γαt, and Fig. 10 shows the overview.
The conversion function τ : {0, 1}n → GF(2n) is a bit trickier than conversions for F t and Γ . It

is not natural because s(0) is an n-bit row vector, and therefore, we need to introduce a conversion
function τ as follows.

Definition 2 (Conversion function τ). For any y ∈ GF(2n), let us consider an n × n matrix
[y, αy, α2y, . . . , αn−1y]. Then τ−1(y) is the first row n-bit vector in this matrix, and τ is the inversion
of τ−1.

The following is an example in the case of GF(28) = GF(2)[x]/(x8 + x4 + x3 + x2 + 1).

Example 3. We consider the conversion τ for GF(28) = GF(2)[x]/(x8 + x4 + x3 + x2 + 1). When
y = α(= 01000000) and y = α + α3 + α4 + α6 + α7(= 01011011), the first row of the matrix
[y, αy, α2y, . . . , α7y] is 00000001 and 01101001, respectively, because

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


and



0 1 1 0 1 0 0 1
1 0 1 1 0 1 0 0
0 0 1 1 0 0 1 1
1 1 1 1 0 0 0 0
1 0 0 1 0 0 0 1
0 1 0 0 1 0 0 0
1 0 1 0 0 1 0 0
1 1 0 1 0 0 1 0


.

Therefore τ(00000001) = α = 01000000 and τ(01101001) = α+ α3 + α4 + α6 + α7 = 01011011.

8.3 Experimental Path Search Algorithm

An unified representation with the finite field is shown in Sect. 8.2, where s(0) is also represented
by the corresponding element over the finite field. This representation enables us to reveal highly
biased linear masks experimentally.

24 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

We have to enumerate high-biased linear masks and their correlations before we execute fast
correlation attacks. In the application to Grain family, such masks and correlations were theoreti-
cally simulated under the plausible assumption. Here, we demonstrate another method based on an
experimental approach.

Our current goal is not to recover s(0), and rather, we choose s(0) at random and aim to enumerate
high-biased linear masks and their correlations. Therefore, we randomly choose s(0) and execute the
first and second steps of our algorithm. Then, we observe high correlation by guessing s(0) ×Mγi =
τ−1(τ(s(0))γi) if γi is one of highly-biased linear masks. Assuming that guessing s brings high
correlation, the corresponding high-biased linear mask is calculated as γi = τ(s)(τ(s(0)))−1 because

s = τ−1(τ(s(0))γi)

= τ−1(τ(s(0))τ(s)(τ(s(0)))−1)

= τ−1(τ(s)).

In other words, we can enumerate high-biased linear masks experimentally by exploiting known
correct initial state. The complexity of our experimental path search algorithm is almost equivalent
with the complexity of our fast correlation attack. Therefore, when we assume attackers who can
execute our fast correlation attack practically, they can also enumerate high-biased linear masks
experimentally.

In fact, we applied the experimental path search algorithm to the toy Grain-like cipher described
in Sect. 8.1. Our theoretical estimation indicates 1024 high-biased linear masks, and our experimental
path search algorithms also indicated the same linear masks.

8.4 Another View to Find Preferable Tz

In our strategy, we first searched for Tz, which brings the best linear characteristic. A mixed integer
linear programming (MILP) is often applied to search for the best linear characteristics of block
ciphers [MWGP11,SHW+14], and this method is naturally applied to search for the best linear
characteristic of the fast correlation attack. We first generate an MILP model to represent linear
trail with specific number of rounds R. Then, we maximize the probability of the linear characteristic
under the condition that b(0) and b(R) are linearly inactive.

We used Tz = {0, 26, 56, 91, 96, 128} and Tz = {0, 14, 21, 28, 37, 45, 52, 60, 62, 80} for Grain-128a
and Grain-v1, respectively, and they bring the best linear characteristic. For Grain-128a and Grain-
v1, the correlation of the linear characteristic are ±2−80.159 and ±2−38.497, respectively. It is not
enough to estimate the correlation only from the best characteristic because we need to take into
account of the effect by multiple characteristics. For example, assuming that there are two charac-
teristics whose absolute values of correlations are the same but their signs are different, these two
characteristics cancel each other. On the other hand, if their signs are the same, we can observe
double correlations. Especially, it is very interesting that Grain-128a has significant gain from the
best linear characteristic. While the MILP is useful to find the best characteristic, there is no method
to find multiple linear characteristics without repeating MILPs. Therefore, we used the MILP only
to detect a preferable Tz, and the corresponding correlation is estimated as explained in Sects. 5, 6,
and 7.

8.5 Possible Countermeasure against Our New Attack

The simplest countermeasure is to suppress the output at every second position when the key stream
is output. For example, the authenticated encryption mode of Grain-128a has such structure, where
the key stream is output only in the even clock. When we attack Grain-128a, we want to use
Tz = {0, 26, 56, 91, 96, 128}, but we cannot tap 91. As far as we search, we cannot detect a preferable
Tz under the condition that the tapped indices are only even numbers. On the other hand, this
countermeasure leads to low throughput.

Another countermeasure would be to limit the length of the key stream for each pair of secret
key and iv. It would become difficult to collect enough parity-check equations to execute the FCA.

Fast Correlation Attack Revisited 25

Lightweight stream ciphers often have such restriction, e.g., Plantlet outputs only 230-bit key stream
for each pair of secret key and iv [MAM16]. On the other hand, the advantage of stream ciphers can
keep high performance once the initialization finishes, and such restriction does not use the advantage
very well.

Acknowledgments. The authors thank the anonymous CRYPTO 2018 reviewers for careful read-
ing and many helpful comments. Takanori Isobe was supported in part by Grant-in-Aid for Young
Scientist (B) (KAKENHI 17K12698) for Japan Society for the Promotion of Science. Bin Zhang
is supported by the National Key R&D Research programm (Grant No. 2017YFB0802504), the
program of the National Natural Science Foundation of China (Grant No. 61572482), National
Cryptography Development Fund (Grant No. MMJJ20170107).

References

ÅHJM11. Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: a new version of
Grain-128 with optional authentication. IJWMC, 5(1):48–59, 2011.

AHMN13. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Maŕıa Naya-Plasencia. Quark: A
lightweight hash. J. Cryptology, 26(2):313–339, 2013.

AM15. Frederik Armknecht and Vasily Mikhalev. On lightweight stream ciphers with shorter internal
states. In Gregor Leander, editor, FSE 2015, volume 9054 of LNCS, pages 451–470. Springer,
2015.

BGM06. Côme Berbain, Henri Gilbert, and Alexander Maximov. Cryptanalysis of Grain. In Matthew
J. B. Robshaw, editor, FSE 2006, volume 4047 of LNCS, pages 15–29. Springer, 2006.

CJM02. Philippe Chose, Antoine Joux, and Michel Mitton. Fast correlation attacks: An algorithmic
point of view. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages
209–221. Springer, 2002.

CJS00. Vladimir V. Chepyzhov, Thomas Johansson, and Ben J. M. Smeets. A simple algorithm for
fast correlation attacks on stream ciphers. In Bruce Schneier, editor, FSE 2000, volume 1978 of
LNCS, pages 181–195. Springer, 2000.

CS91. Vladimir V. Chepyzhov and Ben J. M. Smeets. On A fast correlation attack on certain stream
ciphers. In Donald W. Davies, editor, EUROCRYPT ’91, volume 547 of LNCS, pages 176–185.
Springer, 1991.

CT00. Anne Canteaut and Michaël Trabbia. Improved fast correlation attacks using parity-check equa-
tions of weight 4 and 5. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 573–588. Springer, 2000.

DGP+11. Itai Dinur, Tim Güneysu, Christof Paar, Adi Shamir, and Ralf Zimmermann. An experimentally
verified attack on full Grain-128 using dedicated reconfigurable hardware. In Dong Hoon Lee
and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 327–343. Springer,
2011.

DS11. Itai Dinur and Adi Shamir. Breaking Grain-128 with dynamic cube attacks. In Antoine Joux,
editor, FSE 2011, volume 6733 of LNCS, pages 167–187. Springer, 2011.

FWC17. Ximing Fu, Xiaoyun Wang, and Jiazhe Chen. Determining the nonexistent terms of non-linear
multivariate polynomials: How to break Grain-128 more efficiently. IACR Cryptology ePrint
Archive, 2017:412, 2017.

HJM05. Martin Hell, Thomas Johansson, and Willi Meier. Grain - a stream cipher for constrained
environments, 2005. http://www.ecrypt.eu.org/stream.

HJM07. Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for constrained envi-
ronments. IJWMC, 2(1):86–93, 2007.

HJMM06. Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A stream cipher proposal:
Grain-128. In IEEE International Symposium on Information Theory (ISIT 2006),, pages 1614–
1618. IEEE, 2006.

ISO15. ISO/IEC. JTC1: ISO/IEC 29167-13: Information technology – automatic identification and
data capture techniques – part 13: Crypto suite Grain-128A security services for air interface
communications, 2015.

JJ99a. Thomas Johansson and Fredrik Jönsson. Fast correlation attacks based on turbo code techniques.
In Michael J. Wiener, editor, CRYPTO ’99, volume 1666 of LNCS, pages 181–197. Springer, 1999.

http://www.ecrypt.eu.org/stream

26 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

JJ99b. Thomas Johansson and Fredrik Jönsson. Improved fast correlation attacks on stream ciphers via
convolutional codes. In Jacques Stern, editor, EUROCRYPT ’99, volume 1592 of LNCS, pages
347–362. Springer, 1999.

LLP08. Jung-Keun Lee, Dong Hoon Lee, and Sangwoo Park. Cryptanalysis of Sosemanuk and SNOW
2.0 using linear masks. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS,
pages 524–538. Springer, 2008.

LM12. Michael Lehmann and Willi Meier. Conditional differential cryptanalysis of Grain-128a. In Josef
Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis, editors, CANS 2012, volume 7712 of LNCS,
pages 1–11. Springer, 2012.

MAM16. Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On ciphers that continuously access
the non-volatile key. IACR Trans. Symmetric Cryptol., 2016(2):52–79, 2016.

Mat93. Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth, editor, EURO-
CRYPT ’93, volume 765 of LNCS, pages 386–397. Springer, 1993.

MFI01. Miodrag J. Mihaljevic, Marc P. C. Fossorier, and Hideki Imai. Fast correlation attack algorithm
with list decoding and an application. In Mitsuru Matsui, editor, FSE 2001, volume 2355 of
LNCS, pages 196–210. Springer, 2001.

MG90. Miodrag J. Mihaljevic and Jovan Dj. Golic. A fast iterative algorithm for a shift register initial
state reconstruction given the nosiy output sequence. In Jennifer Seberry and Josef Pieprzyk,
editors, AUSCRYPT ’90, volume 453 of LNCS, pages 165–175. Springer, 1990.

MS89. Willi Meier and Othmar Staffelbach. Fast correlation attacks on certain stream ciphers. J.
Cryptology, 1(3):159–176, 1989.

MWGP11. Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and linear cryptanalysis
using mixed-integer linear programming. In Chuankun Wu, Moti Yung, and Dongdai Lin, editors,
Inscrypt 2011, volume 7537 of LNCS, pages 57–76. Springer, 2011.

SHW+14. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Automatic se-
curity evaluation and (related-key) differential characteristic search: Application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In Palash Sarkar and Tetsu
Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 158–178. Springer, 2014.

Sie84. Thomas Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic
applications. IEEE Trans. Information Theory, 30(5):776–780, 1984.

TIHM17. Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on non-blackbox poly-
nomials based on division property. In Jonathan Katz and Hovav Shacham, editors, CRYPTO
2017, Part III, volume 10403 of LNCS, pages 250–279. Springer, 2017.

Wag02. David A. Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 288–303. Springer, 2002.

WHT+18. Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and Willi Meier.
Improved division property based cube attacks exploiting algebraic properties of superpoly.
CRYPTO 2018, 2018. Accepted at CRYPTO 2018, http://eprint.iacr.org/2017/1063.

ZF06. Bin Zhang and Dengguo Feng. Multi-pass fast correlation attack on stream ciphers. In Eli Biham
and Amr M. Youssef, editors, SAC 2006, volume 4356 of LNCS, pages 234–248. Springer, 2006.

ZLFL13. Bin Zhang, Zhenqi Li, Dengguo Feng, and Dongdai Lin. Near collision attack on the Grain
v1 stream cipher. In Shiho Moriai, editor, FSE 2013, volume 8424 of LNCS, pages 518–538.
Springer, 2013.

ZXM15. Bin Zhang, Chao Xu, and Willi Meier. Fast correlation attacks over extension fields, large-
unit linear approximation and cryptanalysis of SNOW 2.0. In Rosario Gennaro and Matthew
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 643–662. Springer, 2015.

ZXM18. Bin Zhang, Chao Xu, and Willi Meier. Fast near collision attack on the Grain v1 stream cipher.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821
of LNCS, pages 771–802. Springer, 2018.

ZYR90. Kencheng Zeng, Chung-Huang Yang, and T. R. N. Rao. An improved linear syndrome algorithm
in cryptanalysis with applications. In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO
’90, volume 537 of LNCS, pages 34–47. Springer, 1990.

http://eprint.iacr.org/2017/1063

Fast Correlation Attack Revisited 27

A Algebraic Normal Form of
⊕

j∈A
(
g′(bt+j)

)
⊕
j∈A

(
g′(bt+j)

)
= g′(bt+2)⊕ g′(bt+12)⊕ g′(bt+36)⊕ g′(bt+45)⊕ g′(bt+64)⊕ g′(bt+73)⊕ g′(bt+89)

= bt+24bt+26bt+27 ⊕ bt+26bt+28

⊕ bt+29bt+61 ⊕ bt+58bt+60bt+61 ⊕ bt+56bt+58

⊕ (bt+85bt+93bt+97 ⊕ bt+85bt+93 ⊕ bt+90bt+94bt+95bt+97 ⊕ bt+97bt+101

⊕ bt+95bt+97bt+98 ⊕ bt+63bt+95 ⊕ bt+90bt+91 ⊕ bt+63bt+67 ⊕ bt+55bt+63

⊕ bt+62bt+63 ⊕ bt+91bt+123 ⊕ bt+115bt+123bt+127)

⊕ (bt+5bt+69 ⊕ bt+67bt+69bt+70 ⊕ bt+70bt+86 ⊕ bt+86bt+88bt+89 ⊕ bt+84bt+86

⊕ bt+72bt+80bt+84 ⊕ bt+76bt+84 ⊕ bt+76bt+80 ⊕ bt+72bt+104 ⊕ bt+76bt+140

⊕ bt+104bt+120 ⊕ bt+104bt+112 ⊕ bt+133bt+137
:::::

bt+138bt+140 ⊕ bt+48bt+112

⊕ bt+134bt+138 ⊕ bt+134bt+142bt+146)

⊕ bt+13bt+15

⊕ bt+19bt+20

⊕ bt+42bt+50 ⊕ bt+42bt+74

⊕ (bt+106bt+114bt+118 ⊕ bt+106bt+110 ⊕ bt+106bt+107 ⊕ bt+111bt+113bt+114

⊕ bt+103bt+107bt+108bt+110 ⊕ bt+113bt+129 ⊕ bt+113bt+121 ⊕ bt+39bt+103

⊕ bt+124bt+128bt+129bt+131 ⊕ bt+125bt+129 ⊕ bt+129bt+137
:::::

⊕ bt+37bt+39bt+40 ⊕ bt+67bt+131)

⊕ bt+143bt+151bt+155

⊕ bt+18bt+82 ⊕ bt+81bt+82

⊕ bt+32bt+33

⊕ bt+83bt+99

⊕ (bt+92bt+156 ⊕ bt+152bt+156bt+157bt+159 ⊕ bt+141bt+157 ⊕ bt+157bt+173

⊕ bt+159bt+167bt+171)

⊕ bt+132bt+148 ⊕ bt+100bt+132 ⊕ bt+116bt+148 ⊕ bt+100bt+102

⊕ bt+47bt+49

⊕ bt+53bt+54

⊕ bt+75bt+77

⊕ bt+161bt+165bt+166bt+168

⊕ bt+150bt+154

⊕ bt+177bt+181bt+182bt+184

28 Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang

Table 6. Correlation of
⊕

j∈A
(
g′(bt+j)

)
.

No. Term of Boolean function correlation

1 bt+24bt+26bt+27 ⊕ bt+26bt+28 −0.5

2 bt+29bt+61 ⊕ bt+58bt+60bt+61 ⊕ bt+56bt+58 −0.25

3 bt+85bt+93bt+97 ⊕ bt+85bt+93 ⊕ bt+90bt+94bt+95bt+97

⊕bt+97bt+101 ⊕ bt+95bt+97bt+98 ⊕ bt+63bt+95 ⊕ bt+90bt+91 −0.046875
⊕bt+63bt+67 ⊕ bt+55bt+63 ⊕ bt+62bt+63 ⊕ bt+91bt+123

⊕bt+115bt+123bt+127

4 bt+5bt+69 ⊕ bt+67bt+69bt+70 ⊕ bt+70bt+86 ⊕ bt+86bt+88bt+89 if bt+137 = 0,

⊕bt+84bt+86 ⊕ bt+72bt+80bt+84 ⊕ bt+76bt+84 ⊕ bt+76bt+80 −2−6.41504

⊕bt+72bt+104 ⊕ bt+76bt+140 ⊕ bt+104bt+120 ⊕ bt+104bt+112 if bt+137 = 1,
⊕bt+133bt+137bt+138bt+140 ⊕ bt+48bt+112 ⊕ bt+134bt+138 −2−6.67807

⊕bt+134bt+142bt+146

5 bt+13bt+15 −0.5

6 bt+19bt+20 −0.5

7 bt+42bt+50 ⊕ bt+42bt+74 −0.5

8 bt+106bt+114bt+118 ⊕ bt+106bt+110 ⊕ bt+106bt+107 if bt+67 = 0,
⊕bt+111bt+113bt+114 ⊕ bt+103bt+107bt+108bt+110 ⊕ bt+113bt+129 −2−4.14202

⊕bt+113bt+121 ⊕ bt+39bt+103 ⊕ bt+124bt+128bt+129bt+131 if bt+67 = 1,
⊕bt+125bt+129 ⊕ bt+129bt+137 ⊕ bt+67bt+131 ⊕ bt+37bt+39bt+40 0

9 bt+143bt+151bt+155 −0.75

10 bt+18bt+82 ⊕ bt+81bt+82 −0.5

11 bt+32bt+33 −0.5

12 bt+83bt+99 −0.5

13 bt+92bt+156 ⊕ bt+152bt+156bt+157bt+159 ⊕ bt+141bt+157 −0.1875
⊕bt+157bt+173 ⊕ bt+159bt+167bt+171

14 bt+132bt+148 ⊕ bt+100bt+132 ⊕ bt+116bt+148 ⊕ bt+100bt+102 −0.25

15 bt+47bt+49 −0.5

16 bt+53bt+54 −0.5

17 bt+75bt+77 −0.5

18 bt+161bt+165bt+166bt+168 −0.875

19 bt+150bt+154 −0.5

20 bt+177bt+181bt+182bt+184 −0.875

Fast Correlation Attack Revisited 29

B Examples of γ for Grain-v1

As we show in Sect. 7, the linear mask γ is represented as

γ =
∑
i∈Tz

(
Λi[0]αi+3 + Λi[1]αi+25 + Λi[2]αi+46 + Λi[3]αi+64

)
+
∑
j∈A

αj .

As an example, we use following linear masks and δ = 0000. Then the following linear approximate
representations have the same γ.

Λi[0− 3]

W (δ) 0 14 21 28 37 45 52 60 62 80 correlation

0101 0111 1010 0101 0101 0101 0101 1011 0100 0111 0
w4 0101 0111 1011 0101 0101 0101 0101 1111 0100 0111 0

w3 0111 0111 1110 0101 0101 0101 0101 1011 0100 0111 0
w3 w4 0111 0111 1111 0101 0101 0101 0101 1111 0100 0111 0

w2 0101 0111 1010 0101 0101 0101 0101 1011 0101 0101 0
w2 w4 0101 0111 1011 0101 0101 0101 0101 1111 0101 0101 −2−38.2558

w2 w3 0111 0111 1110 0101 0101 0101 0101 1011 0101 0101 −2−38.2558

w2 w3 w4 0111 0111 1111 0101 0101 0101 0101 1111 0101 0101 −2−38.0837

w1 0101 0111 1010 0101 0111 0101 0101 1011 0100 1111 0
w1 w4 0101 0111 1011 0101 0111 0101 0101 1111 0100 1111 0
w1 w3 0111 0111 1110 0101 0111 0101 0101 1011 0100 1111 0
w1 w3 w4 0111 0111 1111 0101 0111 0101 0101 1111 0100 1111 0
w1 w2 0101 0111 1010 0101 0111 0101 0101 1011 0101 1101 0
w1 w2 w4 0101 0111 1011 0101 0111 0101 0101 1111 0101 1101 −2−38.2558

w1 w2 w3 0111 0111 1110 0101 0111 0101 0101 1011 0101 1101 −2−38.2558

w1 w2 w3 w4 0111 0111 1111 0101 0111 0101 0101 1111 0101 1101 −2−38.0837

total −2−35.6112

If Λ21[0 − 3] = 1010, the correlation is 0. Moreover Λ62[4] must be 0, and Λ62 = 01000 is
correlation 0.

	Fast Correlation Attack Revisited
	Introduction
	Revisiting Fast Correlation Attack.
	Applications.
	Comparisons with Previous Attacks against Grain Family.

	Preliminaries
	LFSR-Based Stream Ciphers
	Fast Correlation Attack

	Revisiting Fast Correlation Attack
	Reviewing Parity-Check Equations with Finite Field
	New Wrong-Key Hypothesis

	New Algorithm Exploiting New Property
	Overview.
	Detailed Algorithm
	Constructing Parity-Check Equations.
	FWHT with Bypassing Technique.
	Removing .

	Estimation of Time and Data Complexities

	Application to Grain-128a
	Specification of Grain-128a
	Linear Approximate Representation for Grain-128a
	Finding Linear Masks with High Correlation.
	How to Find Multiple .

	Estimation of Attack Complexity and Success Probability

	Application to Grain-128
	Application to Grain-v1
	Specification of Grain-v1
	Fast Correlation Attack against Grain-v1
	How to Find Multiple .
	Estimating Attack Complexity and Success Probability.

	Verifications, Observations, and Countermeasures
	Experimental Verification
	Unified Representation with Finite Field
	Experimental Path Search Algorithm
	Another View to Find Preferable Tz
	Possible Countermeasure against Our New Attack

	Algebraic Normal Form of j A (g'(b b b bt+j))
	Examples of for Grain-v1

