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Abstract: Different transforms used in binding a secret key to correlated physical-identifier outputs
are compared. Decorrelation efficiency is the metric used to determine transforms that give
highly-uncorrelated outputs. Scalar quantizers are applied to transform outputs to extract uniformly
distributed bit sequences to which secret keys are bound. A set of transforms that perform well
in terms of the decorrelation efficiency is applied to ring oscillator (RO) outputs to improve the
uniqueness and reliability of extracted bit sequences, to reduce the hardware area and information
leakage about the key and RO outputs, and to maximize the secret-key length. Low-complexity
error-correction codes are proposed to illustrate two complete key-binding systems with perfect
secrecy, and better secret-key and privacy-leakage rates than existing methods. A reference hardware
implementation is also provided to demonstrate that the transform-coding approach occupies a small
hardware area.

Keywords: key agreement; physical unclonable functions; transform coding; privacy leakage;
hardware implementation

1. Introduction

Secret keys stored in a device can provide intellectual property protection, and device
authentication and identification. Non-volatile memory (NVM) is the traditional storage medium for
secret keys. Securing the NVM is expensive due to its susceptibility to physical attacks [3]. A cheap
and safe alternative to the NVM is to use physical identifiers as a source of randomness by applying
the concept of one-way functions [4] to physical systems.

Invasive (physical) attacks to physical identifiers permanently change the identifier output so that
an attacker cannot learn the secret key by using an invasive attack [4]. This property eliminates the
need for continuous hardware protection [5]. Physical identifiers like physical unclonable functions
(PUFs), e.g., the random start-up value of an uninitialized static random access memory (SRAM) [6]
or fine variations of ring oscillator (RO) outputs [7], are considered to be random sources with high
entropy [8]. Thus, we can use PUFs for low-complexity key storage in, e.g., internet of things (IoT)
applications like securing a surgical robot against hacking.
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There are multiple key-generation, or generated-secret (GS), and key-binding, or chosen-secret (CS),
methods to reconstruct secret keys from noisy PUF outputs, where the key is generated from the PUF
outputs or bound to them, respectively. Code-offset fuzzy extractors [9] are examples of key-generation
methods and the fuzzy commitment scheme [10] is a key-binding method. Code constructions based
on Wyner-Ziv (WZ) coding are illustrated in [11] to asymptotically achieve the information-theoretic
limits for the GS and CS models. These constructions might have high complexity, which is undesired
for, e.g., IoT applications. In addition, since a key should be stored in a secure database for both models,
it is more practical to allow a trusted entity to choose the secret key bound to a PUF output. Thus, in
this paper, we aim at further improving reliability, privacy, secrecy, and hardware cost performance of
a transform-coding algorithm, explained next, that is applied to PUF outputs in combination with the
fuzzy commitment scheme.

PUFs have similar features to biometric identifiers like fingerprints. Both identifier types have
correlated and noisy outputs due to surrounding environmental conditions [12]. Correlation in
PUF outputs leaks information about the secret key, which causes secrecy leakage, and about the
PUF output, causing privacy leakage [13–15]. Moreover, noise reduces reliability of PUF outputs
and error-correction codes are needed to satisfy the reliability requirements. The transform-coding
approach [16,17] in combination with a set of scalar quantizers has made its way into secret-key
binding with continuous-output biometric and physical identifiers, as they allow reducing the output
correlation and adjusting the effective noise at the PUF output. For instance, the discrete cosine
transform (DCT) is the building block in [17] to generate a uniformly distributed bit sequence from RO
outputs under varying environmental conditions. Efficient post-processing steps are applied to obtain
more reliable PUF outputs rather than changing the hardware architecture, so standard components
can be used. This transform-coding approach improves on the existing approaches in terms of the
reliability under varying environmental conditions and maximum key length [17,18]. We apply this
algorithm to PUF outputs with further significant improvements by designing the transformation and
error-correction steps jointly.

Information-theoretic limits for the fuzzy commitment scheme are given in [19]. We use these
information-theoretic limits to compare error-correction codes proposed for the transform-coding
algorithm with the limits. Similar analyses were conducted for biometric identifiers in [20], but their
assumptions such as independent and identically distributed (i.i.d.) identifier outputs and maximum
block-error probability constraint PB =10−2 are not realistic. We therefore consider highly correlated
RO outputs with the constraint PB≤10−9, which are realistic for security applications that use PUFs
[21].

1.1. Summary of Contributions and Organization

We improve the DCT-based algorithm of [17] by using different transforms and reliability metrics.
We also propose error-correction codes that achieve better (secret-key, privacy-leakage) rate tuples
than previous code designs. A summary of the main contributions is as follows.

• We compare a set of transforms to improve the performance of the transform coding algorithm
in terms of the maximum secret-key length, decorrelation efficiency, uniqueness and security of
the extracted bit sequence, and computational complexity.

• Two quantization methods with different reliability metrics are proposed to address multiple
design objectives for PUFs. One method aims at maximizing the length of the bit sequence
extracted from a fixed number of ROs, whereas the second method provides reliability guarantees
for each output in the transform domain by fixing the decoding capability of a decoder used for
error correction.

• We give a reference hardware design for the transform with the smallest computational
complexity, among the set of transforms considered, in combination with the second quantization
method to illustrate that our algorithm occupies a small hardware area. Our results are
comparable to hardware area results of previous RO PUF designs.
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• Error-correction codes that satisfy the block-error probability constraints for practical PUF
systems are proposed for both quantization methods to illustrate complete key-binding systems
with perfect secrecy. The proposed codes operate at better rate tuples than previously proposed
codes for the fuzzy commitment scheme. Our quantizer designs also allow us to significantly
reduce the gap to the optimal (secret-key, privacy-leakage) rate point achieved by the fuzzy
commitment scheme.

This paper is organized as follows. In Section 2, we define the fuzzy commitment scheme that uses
PUF outputs as the randomness source. The transform-coding algorithm proposed to extract a reliable
bit sequence from RO PUFs is explained in Section 3. We propose two different quantization methods
with different reliability metrics in Section 4. In Section 5, we illustrate the small hardware area of the
proposed algorithm with a reference hardware design, and the gains in terms of reliability, security,
and maximum secret-key length as compared to the existing methods. Our proposed error-correction
codes, and their secrecy and privacy performance are described in Section 6. Section 7 concludes the
paper.

1.2. Notation

Upper case letters represent random variables and lower case letters their realizations. A letter
with superscript denotes a string of variables, e.g., XN =X1 . . . Xi . . . XN , and a subscript denotes the
position of a variable in the string. A random variable X has probability mass PX or probability density
fX. Calligraphic letters such as X denote sets, and set sizes are denoted as |X |. Bold letters such as
H represent matrices. Enc(·) is an encoder mapping and Dec(·) is a decoder mapping. X − Y − Z
indicates a Markov chain. Hb(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function. The
∗-operator is defined as p ∗ x = p(1− x) + (1− p)x. The operator ⊕ represents the element-wise
modulo-2 summation. A binary symmetric channel (BSC) with crossover probability p is denoted
by BSC(p). Xn ∼ Bernn(α) denotes that Xn is an i.i.d. binary sequence of random variables with
Pr[Xi = 1] = α for i = 1, 2, . . . , n. Unif [1 : |X |] represents a uniform distribution over the integers from
1 to |X |. A linear error-correction code C with parameters (n, k, d) has block length n, dimension k,
and minimum distance d so that it can correct up to b d−1

2 c errors. .

2. System Model and the Fuzzy Commitment Scheme

Consider a RO as a source that generates a symbol x̃. Systematic variations in RO outputs in a
two-dimensional array are less than the systematic variations in one-dimensional ROs [22]. We thus
consider a two-dimensional RO array of size L = r×c and represent the array as a vector random
variable X̃L. Suppose there is a single PUF circuit, i.e., a single two-dimensional RO array, in each
device with the same circuit design, and it emits an output X̃L according to a probability density fX̃L .
Each RO output is disturbed by mutually-independent additive white Gaussian noise (AWGN) and
the vector noise is denoted as Z̃L. Define the noisy RO outputs as ỸL = X̃L+Z̃L. Observe that X̃L

and ỸL are correlated. A secret key can thus be agreed by using these outputs of the same RO array
[13,14,23,24].

One needs to extract random sequences with i.i.d. symbols from X̃L and ỸL to employ available
information-theoretic results for secret-key binding with identifiers. We propose an algorithm that
extracts nearly i.i.d. binary and uniformly distributed random vectors

(
XN, YN

)
from X̃L and ỸL,

respectively. For such XN and YN , we can define a binary error vector as EN =XN⊕YN . The random
sequence EN corresponds to a sequence of i.i.d. Bernoulli random variables with parameter p, i.e.,
EN ∼ Bernn(p). The channel PY|X is thus a BSC(p).

The fuzzy commitment scheme reconstructs a secret key by using correlated random variables
without leaking any information about the secret key [10]. The fuzzy commitment scheme is depicted
in Fig. 1, where an encoder Enc embeds a secret key, uniformly distributed according to Unif [1 : |S|],
into a binary codeword CN that is added modulo-2 to the binary PUF-output sequence XN during
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Figure 1. The fuzzy commitment scheme.

enrollment. The resulting sequence is the public helper data M, which is sent through an authenticated
and noiseless channel. The modulo-2 sum of the helper data M and YN gives the result

RN = M⊕YN = CN⊕ EN (1)

which is later mapped to an estimate Ŝ of the secret key by the decoder Dec during reconstruction.

Definition 1. A secret-key vs. privacy-leakage rate pair (Rs , Rl) is achievable by the fuzzy commitment scheme
with perfect secrecy, i.e., zero secrecy leakage, if, given any ε>0, there is some N≥1 and an encoder and decoder

for which Rs =
log2 |S|

N
and

Pr[S 6= Ŝ] ≤ ε (reliability) (2)

I (S; M)=0 (perfect secrecy) (3)
1
N

I
(

XN ; M
)
≤ Rl + ε (privacy). (4)

Theorem 1 ([19]). The achievable secret-key vs. privacy-leakage rate region for the fuzzy commitment scheme
with a channel PY|X that is a BSC(p), uniformly distributed X and Y, and zero secrecy leakage is

R={ (Rs, Rl) : 0 ≤ Rs ≤ 1− Hb(p), Rl ≥ 1−Rs}. (5)

The region R suggests that any (secret-key, privacy-leakage) rate pair that sums up to 1
bit/source-bit is achievable with the constraint that the secret-key rate is at most the channel capacity
of the BSC. Furthermore, smaller secret-key rates and greater privacy-leakage rates than these rates are
also achievable.

The fuzzy commitment scheme is a particular realization of the CS model. The regionRcs of all
achievable (secret-key, privacy-leakage) rate pairs for the CS model with a negligible secrecy-leakage
rate, where a generic encoder is used to confidentially transmit an embedded secret key to a decoder
that observes YN and the helper data M, is given in [13] as

Rcs=
⋃

PU|X

{
(Rs, Rl) : 0 ≤ Rs ≤ I(U; Y), Rl ≥ I(U; X)− I(U; Y)

}
(6)

where U − X − Y forms a Markov chain and the alphabet U of the auxiliary random variable U
can be limited to have the size |U | ≤ |X | + 1. The fuzzy commitment scheme is optimal, i.e., it
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Figure 2. Transform-coding steps.

achieves a boundary point of Rcs, for a BSC PY|X with crossover probability p, only at the point
(R∗s , R∗l ) = (1−Hb(p), Hb(p)) [19]. This point corresponds to the highest achievable secret-key rate.
Note that the regionRcs gives an outer bound for the perfect-secrecy case (see [13] for discussions).

3. Transform Coding Steps

The aim of transform coding is to reduce the correlations between RO outputs by using a linear
transformation. We propose a transform-coding algorithm that extends the work in [16] and [17].
Optimizations of the quantization and error-correction parameters to maximize the security and
reliability performance, and a simple method to decrease storage are its main steps. The output of
these post-processing steps is a bit sequence XN (or its noisy version YN) used in the fuzzy commitment
scheme. We consider the same post-processing steps for the enrollment and reconstruction with the
exception that during enrollment the design parameters are determined by the device manufacturer
depending on the source statistics. It thus suffices to discuss only the enrollment steps. Fig. 2
shows the post-processing steps that include transformation, histogram equalization, quantization, bit
assignment, and bit-sequence concatenation.

RO outputs X̃L in an array are correlated due to, e.g., the surrounding logic [25]. A transform
Tr×c(·) of size r×c is applied to an array of RO outputs to reduce correlations. Decorrelation
performance of a transform depends on the source statistics. We model each output T in the transform
domain, called transform coefficient, obtained from a RO-output dataset in [26] by using the corrected
Akaike information criterion (AICc) [27] and the Bayesian information criterion (BIC) [28]. These
criteria suggest that a Gaussian distribution can be fitted to each transform coefficient T for the discrete
cosine transform (DCT), discrete Walsh-Hadamard transform (DWHT), discrete Haar transform (DHT),
and Karhunen-Loève transform (KLT), which are common transforms considered in the literature for
image processing, digital watermarking, etc. [29]. We use maximum-likelihood estimation [30] to
derive unbiased estimates for the parameters of Gaussian distributions.

The histogram equalization step in Fig. 2 converts the probability density of the i-th coefficient
Ti into a standard normal distribution such that T̂i = Ti−µi

σi
, where µi is the mean and σi is the

standard deviation of the i-th transform coefficient for all i = 1, 2, . . . , L. Quantization steps for
all transform coefficients are thus the same. Without histogram equalization, we need a different
quantizer for each transform coefficient. Therefore, the histogram equalization step reduces the
storage for the quantization steps. Transformed and equalized coefficients T̂i are independent if
the transform Tr×c(·) decorrelates the RO outputs perfectly and the transform coefficients Ti are
jointly Gaussian. One can thus use a scalar quantizer for all coefficients without a performance
loss. We propose scalar quantizer and bit extraction methods that satisfy the security and reliability
requirements of the fuzzy commitment scheme with the independence assumption, in combination
with a correlation-thresholding approach, as discussed below.
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4. Quantizer and Code Designs

The aim of the post-processing steps in Fig. 2 is to extract a uniformly-random bit sequence XN .
We use a quantizer Q(·) with quantization-interval values k = 1, 2, · · · , 2Ki , where Ki is the number of
bits we extract from the i-th coefficient T̂i for i=1, 2, . . . , L. We have

Q(t̂i) = k if bk−1< t̂i≤bk (7)

and we choose bk = Φ−1
(

k
2Ki

)
, where Φ−1(·) is the quantile function of the standard normal

distribution. The quantizer output k is assigned to a bit sequence of length Ki. The chosen permutation
of assigned bit sequences does not affect the security performance. However, the most likely error
event when we quantize T̂i is a jump to a neighboring quantization step due to zero-mean noise. We
thus apply a Gray mapping when we assign bit sequences of length Ki to the integers k = 1, 2, . . . , 2Ki

so that neighboring bit sequences change only in one bit position.
We next propose two different reliability metrics for joint quantizer and code designs. The first

metric results in BSC measurements of each extracted bit with approximately the same crossover
probability. This method extracts a different number of bits from each transform coefficient. The
code design is then done for a fixed crossover probability of the BSCs. The second method fixes the
maximum number of erroneous transform coefficients and considers an error-correction code that can
correct all error patterns with up to a fixed number of errors.

4.1. Quantizer Design with Fixed Measurement Channels

Observe that with the quantizer in (7) and a Gray mapping, one can model the channel
between a bit extracted from the enrollment outputs X̃L and the corresponding bit extracted from the
reconstruction outputs ỸL as a BSC with a fixed average crossover probability pb. Our algorithm thus
fixes an average crossover probability pb such that the error-correction step in the fuzzy commitment
scheme can satisfy the maximum block-error probability of 10−9. The algorithm enforces that each
output t̂i results in an average bit error probability as close as possible to, but not greater than, pb
by adapting the number of bits Ki(pb) extracted from the i-th coefficient T̂i for all i= 1, 2, . . . , L. We
use the average fractional Hamming distance D(K) between the quantization intervals assigned to the
original and noisy coefficients as a metric to determine Ki(pb). Define

Di(K)=
1
K

∫ ∞

−∞

∫ ∞

−∞

(
2K

∑
k=1

Pr[Q(t̂+n̂) = k]HDk(t̂)

)
· fT̂i

(t̂) fN̂i
(n̂)dt̂dn̂ (8)

where HDk(t̂) is the Hamming distance between the bit sequences assigned to the k-th quantization
interval and to the interval Q(t̂), and N̂i represents the Gaussian noise in the i-th coefficient after
histogram equalization. We then determine Ki(pb) as the greatest number of bits K such that Di(K)≤
pb.

The first coefficient, i.e., DC coefficient, T̂1 is not used since its value is a scaled version of the mean
of the RO outputs in the array, which is generally known by an eavesdropper. Ambient-temperature
and supply-voltage variations have a highly-linear effect on the RO outputs, so the DC coefficient is
the most affected coefficient, which is another reason not to use the DC coefficient [18]. Therefore, the
total number N(pb) of extracted bits from all transform coefficients for a fixed pb is

N(pb) =
L

∑
i=2

Ki(pb). (9)
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We calculate the maximum secret-key length Smax by using (5) for a BSC(pb) with the maximum
secret-key rate R∗s =1−Hb(pb) as

Smax = (1− Hb(pb)) · N(pb) (10)

which is used to compare different transforms and to decide whether one can use an RO PUF with
fixed number of ROs and pb for secret-key binding. For instance, for the advanced encryption standard
(AES), the minimum secret-key length is 128 bits. However, the rate regionR in (5) is valid for large N.
One thus needs to consider the rate loss due to a finite block length for a system design.

4.2. Quantizer Design with Fixed Number of Errors

We now propose a conservative approach, based on the assumption that either all bits extracted
from a transform coefficient are correct or they all flip, to provide reliability guarantees. The correctness
probability Pc of a transform coefficient is defined to be the probability that all bits associated with
this coefficient are correct. We use this metric to determine the number of bits extracted from each
coefficient such that there is an encoder and a bounded minimum distance decoder (BMDD) that
satisfy the block-error probability constraint PB≤10−9. This approach results in reliability guarantees
for the random-output RO arrays.

For a K-bit quantizer and the quantization boundaries bk as in (7) for an equalized (i.e., standard)
Gaussian transform coefficient T̂, we obtain the correctness probability

Pc(K)=
2K−1

∑
k=0

bk+1∫
bk

[
Q
( bk− t̂

σn̂

)
−Q

( bk+1− t̂
σn̂

)]
fT̂(t̂)dt̂ (11)

where σ2
n̂ is the noise variance and fT̂ is the probability density of the standard Gaussian distribution.

Suppose our channel decoder can correct all errors in up to Cmax transform coefficients. Suppose
further that coefficient errors occur independently and that the correctness probability Pc,i(K) of the i-th
coefficient T̂i for i=1, 2, . . . , L is at least Pc(Cmax). A sufficient condition for satisfying the block-error
probability constraint PB≤10−9 is that Pc(Cmax) satisfies the inequality

L

∑
c=Cmax+1

(
L
c

)
(1−Pc(Cmax))

cPc(Cmax)
L−c≤10−9. (12)

We thus determine the number Ki of bits extracted from the i-th transform coefficient as the maximum
value K such that Pc,i(K) ≥ P̄c(Cmax). Similar to Section 4.1, we choose K1=0 so that the total number
N(Cmax) of extracted bits is

N(Cmax)=
L

∑
i=2

Ki. (13)

In the worst case, the coefficients in error are the coefficients from which the greatest number of bits is
extracted. We sort the numbers Ki of bits extracted from all coefficients in descending order such that
K′i≥K′i+1 for all i=1, 2, . . . , L− 1. The channel decoder thus must be able to correct up to

e(Cmax) =
Cmax

∑
i=1

K′i (14)

bit errors, which can be satisfied by using a block code with minimum distance dmin≥2e(Cmax)+1.
Suppose a key bound to physical identifiers in a device is used in the AES with a

uniformly-distributed secret-key with a length of 128 bits. The block code used in the fuzzy
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Table 1. The average RO output decorrelation-efficiency results.

DCT DWHT DHT
ηc for 8× 8 0.9978 0.9977 0.9978

ηc for 16× 16 0.9987 0.9988 0.9986

commitment scheme should thus have a code length of at most N(Cmax) bits, code dimension of
at least 128 bits, and minimum distance of dmin≥2e(Cmax) + 1 for a fixed Cmax. The code rate should
be as high as possible to operate close to the optimal (secret-key, privacy-leakage) rate point of the
fuzzy commitment scheme. This optimization problem is hard to solve. We illustrate by an exhaustive
search over a set of Cmax values and over a selection of algebraic codes that there is a channel code
that satisfies these constraints with a reliability guarantee for each extracted bit. Restricting our search
to codes that admit low-complexity encoders and decoders is desired for IoT applications, for which
complexity is the bottleneck.

Note that the listed conditions are conservative. For a given transform coefficient, the correctness
probability can be significantly greater than the correctness threshold Pc(Cmax). Secondly, due to Gray
mapping, it is more likely that less than Ki bits are in error when the i-th coefficient is erroneous.
Thirdly, it is also unlikely that the bit errors always occur in the transform coefficients from which the
greatest number of bits is extracted. Therefore, even if a channel code cannot correct all error patterns
with up to e(Cmax) errors, it can still be the case that the block-error probability constraint is satisfied.
We illustrate such a case in the next section.

5. Performance Evaluations

Suppose the device output X̃L is a vector random variable with the autocovariance matrix CX̃X̃.
Consider RO arrays of sizes 8×8 and 16×16. Autocovariance matrix elements of such RO array outputs
and noise are estimated from the dataset in [26]. We compare the DCT, DWHT, DHT, and KLT in terms
of their decorrelation efficiency, maximum secret-key length, complexity, uniqueness, and security.

5.1. Decorrelation Performance

One should eliminate correlations between the RO outputs and make them independent to
extract uniform bit sequences by treating each transform coefficient separately. We use the decorrelation
efficiency ηc [31] as a decorrelation performance metric. Consider the autocovariance matrix CTT of the
transform coefficients, so ηc of a transform is

ηc = 1−

L
∑

a=0

L
∑

b=0
|CTT(a, b)|1{a 6=b}

L
∑

a=0

L
∑

b=0
|CX̃X̃(a, b)|1{a 6=b}

(15)

where the indicator function 1{a 6=b} takes on the value 1 if a 6=b and 0 otherwise. The decorrelation
efficiency of the KLT is 1, which is optimal [31]. We list the average decorrelation efficiency results of
other transforms in Table 1. All transforms have similar and good decorrelation efficiency performance
for the RO outputs in the dataset in [26]. The DCT and DHT have the highest efficiency for 8×8 RO
arrays, whereas for 16×16 RO arrays, the best transform is the DWHT. Table 1 indicates that increasing
the array size improves ηc.

5.2. Maximum Secret-key Length

The maximum number of bits extracted with the method given in Section 4.2 depends on the
fixed number of transform coefficients that are in error. Moreover, the method uses a conservative
metric. However, for the method given in Section 4.1, we can optimize the number of bits extracted



Entropy 2018 9 of 18

0.05 0.10 0.15 0.20 0.25
100

120

140

160

180

200

220

240

Crossover probability pb

M
ax

.K
ey

Le
ng

th
S m

ax
(b

it
s)

DHT
DWHT
DCT
KLT

Figure 3. The maximum key lengths Smax for 8×8 RO arrays.

from each coefficient to maximize the secret-key length. We therefore consider only the method in
Section 4.1 for maximum key-length comparisons.

The secret key S should satisfy the length constraints of the cryptographic primitives that use
it. Consider again the AES with a 128-bit secret key. We compare different transforms by calculating
the maximum secret-key lengths Smax, defined in (10), for various crossover probabilities pb that can
be obtained by applying the post-processing steps in Fig. 2. For RO array dimensions 8×8, we show
Smax results of the considered transforms in Fig. 3. For pb ≤ 0.05, R∗s is high but N(pb) is small, so
Smax is mainly determined by N(pb), as depicted in Fig. 3. For pb≥0.07, N(pb) is high but R∗s mainly
determines Smax, which is small.

The DHT, DWHT, and DCT have similar Smax results and the KLT has worse performance
than the others, which is mainly determined by the signal-to-noise ratio (SNR) in the transform
domain. This illustrates that a transform’s ηc performance for the estimated RO output distribution
and its Smax performance for the estimated RO output and noise distributions can be different. We
determine a crossover probability range P=[0.05, 0.07] such that the secret-key length of all transforms
are close to their maximum and greater than 128. For a BSC with crossover probability p ∈ P ,
we design error-correction codes such that PB ≤ 10−9 is satisfied. The crossover probability range
considered in [21] is [0.12, 0.14], while 0.14 is the only value considered in [32] for the same PB constraint.
Considering a set of crossover values rather than a single value provides more flexibility in designing
error-correction codes. Our crossover probability range also allows us to use higher-rate codes than
the codes for the range [0.12, 0.14] since the maximum key rate R∗s of the fuzzy commitment scheme
increases with decreasing pb. The proposed transform-coding algorithm with the first quantizer
method is thus beneficial for code design due to smaller crossover probability pb.

The maximum number of extracted bits, which corresponds to N in (9), for an 8×8 RO array is 16
bits for the 1-out-of-8 masking scheme [7], 32 bits for the non-overlapping RO pairs [7], and 64 bits for the
regression-based distillers [33]. Even if one assumes no errors, i.e., R∗s =1, for these methods, their Smax

results are much smaller than the Smax results of our algorithm, as shown in Fig. 3.

5.3. Transform Complexity

We measure the complexity of a transform in terms of the number of operations required to
compute the transform and the hardware area required to implement it in a field-programmable gate
array (FPGA). We are first interested in a computational-complexity comparison for RO arrays of
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sizes r= c=8 and r= c=16, which are powers of 2, so that fast algorithms are available for the DCT,
DWHT, and DHT. We then present an RO PUF hardware design for the transform with the minimum
computational complexity.

The computational complexity of the KLT for r = c = N is O(N3), while it is O(N2 log2 N) for
the DCT and DWHT, and O(N2) for the DHT [29]. There are efficient implementations of the DWHT
without multiplications [34]. The DWHT is thus a good candidate for RO PUF designs for, e.g., internet
of things (IoT) applications.

We now give a reference FPGA implementation for the DWHT without multiplications to illustrate
that the hardware area occupied by the transform-coding algorithm is small and the processing time is
significantly better than previous RO PUF designs.

5.3.1. FPGA Implementation

We use a Xilinx ZC706 evaluation board with a Zynq-7000 XC7Z045 system-on-chip (SoC) to
evaluate our DWHT design. A high level overview of the design is depicted in Fig. 4. The Zynq SoC
consists of an FPGA part and an ARM Cortex-A9 dual-core processor, connected with memory-mapped
AXI4 buses [35]. The ARM processor is connected to three components: the RO array, DWHT, and
quantizer. The RO array is connected via a bi-directional memory-mapped AXI bus, and the other
components are connected via AXI streaming buses [36]. We first measure RO outputs with counters,
give the counter values as input to the DWHT, and then quantize the transform coefficients to assign
bits. This is an implementation of the transform-coding algorithm given in Fig. 2.

We use a standard RO array of size 16× 16. All ROs in a row are connected to a counter and ROs
in the same row can be measured serially by using the counter. There is an additional counter that
stops the counting operations after a specified time. For the FPGA we use, it is practically necessary to
use at least five inverters for each RO since using three inverters results in oscillation frequencies of
about 1GHz, which violates the timing constraints of the FPGA. Our RO designs with five inverters
operate reliably and give oscillation frequencies in the range [400, 500] MHz. Furthermore, we use
16-bit counters so that the minimum duration Tmin to have an overload in a counter is

Tmin =
216 − 1

500MHz
= 131µs. (16)

We therefore count each RO output for a duration of 100µs, which is less than Tmin to avoid overloads.
This results in a total counting duration of 1.6ms for all 16 columns of the RO array, which is compared
below with the previous RO PUF designs.
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We next implement an extended version of the algorithm, proposed for an 8× 8 array, in [34] to
calculate the two-dimensional (2D) 16× 16 DWHT without multiplications. The main block we use is
the 4-point (4P)-2D DWHT [34] that takes four inputs [x0, x1, x2, x3] and calculates[

y0 y1

y2 y3

]
=

1
2

[
x0 + x1 + x2 + x3 x0 − x1 + x2 − x3

x0 + x1 − x2 − x3 x0 − x1 − x2 + x3

]
. (17)

We successively apply the 4P-2D DWHT to the 16× 16 RO array according to an extension of the
input-selection algorithm proposed in [34]. We implement a finite state machine (FSM) to control
the input and output AXI streaming interfaces as well as the input-selection algorithm. The building
blocks of our DWHT implementation is depicted in Fig. 5, which includes

• a data random access memory (RAM) to store all array elements,
• a 32-bit index read-only memory (ROM), where each word stores four 8-bit array-element

addresses,
• a multiplexer (MUX) to select the RAM address to be accessed,
• a second MUX to select the ROM input,
• a register for each input to convey different RAM words to different ports.

We first store all RO outputs in the data RAM. Then, the first word of the index ROM is fetched.
This word holds the addresses of four array elements to be loaded. These array elements are passed
to the 4P-2D DWHT’s input registers by selecting the corresponding port in the address MUX and
register bank. After evaluating the 4P-2D DWHT, the new array elements [y0, y1, y2, y3] are written
back to the locations from where the inputs [x0, x1, x2, x3] were fetched. The FSM performs the same
steps for all remaining ROM words and conveys the 2D DWHT coefficients to the AXI output port.

The addition and subtraction operations on four numbers in each 4P-2D DWHT evaluation
requires at most two additional bits, while the subsequent bit shift to implement the division by 2 in
(17) removes one bit. Since the 4P-2D DWHT is applied in total four times to each RAM location, the
transform requires 20-bit operations and storage in order to process the 16-bit signed numbers used
for counter values.

The quantizer contains AXI stream ports, an FSM, and one ROM. The ROM holds 2Ki − 1
quantization boundaries for the i-th transform coefficient. We remark that the histogram equalization
step in Fig. 2 is useful when the number of bits Ki extracted are large, but we choose Ki = K = 1 for all
used transform coefficients, which is illustrated in combination with an error-correction code design
in Section 6.2. Therefore, we do not apply the histogram equalization step for this case, so the ROM
contains 255 words and is of size 638 Bytes (≥ 255 ∗ 20 bits) in total. The FSM compares the quantizer
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Table 2. Hardware area and processing delays for RO PUF designs.

Blocks LUTs Registers MUXes RAM&ROM [Byte] Slices Duration [µs]
Proposed-ROs 1632 397 65 0 729 1600

Proposed-DWHT 326 200 0 1664 99 66
Proposed-Quantizer 43 39 0 638 21 14
Proposed (ROPUF) 2001 636 65 2302 849 1680

PUFKY (ROPUF) [21] n.a. n.a. n.a. n.a. 952 4611

input with the corresponding quantization boundary to assign a bit 1 for transform-coefficient values
greater than the quantization boundary, and the bit 0 otherwise. The assigned bits are then conveyed
to the output port.

5.3.2. Hardware Design Comparisons

We now compare our results with another RO PUF hardware design given in [21] in terms of the
hardware area and processing times. The number of LUTs, registers, and MUXs used in [21] are not
available. However, our results can be compared with their slice-count and processing-delay results
since the FPGA (Spartan-6) used in [21] also has 4 LUTs, 8 registers and 3 MUXes in each slice, the
same as the FPGA used in this work. In addition, the quantizer and DWHT clock rate is 54MHz, as in
[21]. There are alternative RO PUF designs in [37,38], but their secret-key lengths are smaller than 128
bits, which makes a comparison with our scheme difficult. Therefore, we list in Table 2 the hardware
area occupied by individual components of our RO PUF design and by the RO PUF design of [21].

Table 2 illustrates that the RO array causes the highest hardware cost and uses approximately
82% of all occupied LUTs, 62% of registers, and 86% of slices. We do not include the area for RAMs
and ROMs, because we use Block RAM slices that are available in the FPGA. However, we include
the control logic area required to control the Block RAM slices. Our DWHT-based design occupies an
approximately 11% smaller RO PUF hardware area than the RO PUF design proposed in [21] in terms
of the number of slices used. This result can be improved if we re-use the same area for different ROs,
which might increase correlations in the RO outputs. In addition, the DWHT and quantizer constitute
approximately 14% of the total slice count of our RO PUF design. These results illustrate that the
transform-coding approach occupies a small hardware area.

The total counter duration of 1.6ms is a result of the calculation given in (16) to avoid overloads in
the counters, and the choice of this value depends mainly on the number of inverters used for each RO
and counter bit width. The overall processing time of the proposed design is approximately 1.68ms,
which is significantly better than the processing delay of the RO PUF design in [21].

5.4. Uniqueness and Security

The bit sequence extracted from a physical identifier should consist of uniformly distributed
bits so that the rate region R in (5) is valid. A common measure, called uniqueness, for checking
randomness of a bit sequence is the average fractional Hamming distance between the bit sequences
extracted from different RO PUFs [17]. We obtain similar uniqueness results for all transforms, where
the mean Hamming distance is 0.500 and Hamming distance variance is approximately 7×10−4. All
transforms thus provide close to optimal uniqueness results due to their high decorrelation efficiencies
and equipartitioned quantization intervals. These results are significantly better than the results 0.462
[7] and 0.473 [26].

The National Institute of Standards and Technology (NIST) provides a set of randomness tests
that check whether a bit sequence can be differentiated from a uniformly random bit sequence [39].
We apply these tests to evaluate the randomness of the generated sequences. We observe that the bit
sequences generated from ROs in the dataset [26] with the DWHT pass most of the applicable tests for
short lengths for both reliability metrics, which is considered to be an acceptable result [39]. We also
conclude that the KLT performs the best due to its optimal decorrelation performance. One can apply
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a thresholding approach such that the reliable transform coefficients from which the bits are extracted
do not have high correlations, which further improves the security performance [18].

6. Privacy and Secrecy Analysis of Proposed Error-correction Codes

Suppose that extracted bit sequences are uniformly distributed so that the secrecy leakage is
zero. We propose different codes for the transform-coding algorithm according to the two proposed
reliability metrics.

6.1. Codes for the Quantizer Design with Fixed Measurement Channels

For the first quantizer method given in Section 4.1, fix an average crossover probability pb =0.06 to
obtain the highest maximum secret-key length, as shown in Fig. 3. We illustrate that there are efficient
error-correction codes for the fuzzy commitment scheme with PB≤10−9 and a small privacy-leakage
rate. Recall that the code dimension has to be at least 128 bits, a requirement of the AES, so the block
length is in the short block-length regime for error-correction codes with high rates and k=128. We
expect a rate loss in our code designs due to the small block-error probability constraint and short block
length. One needs finite-length bounds for the fuzzy commitment scheme, which are not available in
the literature. We thus compare the performance of our codes with the regionR given in (5). The basic
approach to design codes for small block-error probabilities and reasonable decoding complexity is
to use concatenated codes. Since the hardware complexity of a code design should be small for IoT
applications, we minimize also the field sizes of the codes.

Remark 1. It would be natural to use iterative decoders in combination with high-performance codes
like low density parity check (LDPC) and turbo codes. However, hardware complexity might increase
and it is a difficult task to simulate these codes for PB ≤ 10−9. We thus use concatenated algebraic
codes so that we can find analytical bounds on PB without simulations for the outer code.

The first construction uses a Reed-Muller (RM) code C(32, 6, 16) as the inner code and a
Reed-Solomon (RS) code C(28, 22, 7) that operates with symbols from the Galois field F26 as the
outer code of a concatenated code. Every symbol of the RS code can be represented by 6 bits and the
code takes 22 symbols as input, which corresponds to 132 input bits that is greater than 128 bits. The
majority logic decoder (MLD) of the inner RM code transforms the BSC with crossover probability
pb =0.06 into a channel with errors and erasures by declaring an erasure if there are two codewords with
equal distances to a received vector and makes an error if a wrong codeword is selected. Simulation
results show that the erasure probability after the MLD of the inner code is about 6.57×10−5 and the
error probability is about 4.54×10−6. The BMDD for the outer code correctly reconstructs the codeword
if 2 · e+ν<d, where e is the number of errors and ν is the number of erasures in the received vector
[40]. The block-error probability after decoding the outer RS code is approximately PB≈1.37×10−11.
The key and leakage rates of this code are Rs =0.1473 and Rl =0.8527 bits/source-bit, respectively.

An alternative concatenated code is a binary extended Bose-Chaudhuri-Hocquenghem (BCH)
code C(256, 132, 36) as the outer code and a repetition code C(3, 1, 3) as the inner code. The
maximum-likelihood decoder for the inner code transforms the BSC with crossover probability
pb = 0.06 into a BSC with pb = 0.0104 so that the BMDD for the outer BCH code results in PB =

3.48×10−10. The key-leakage rate pair (Rs, Rl) for this code is (0.1719, 0.8281) bits/source-bit, which
gives better rates than the RM+RS concatenation above and the best generalized-concatenated-code
(GCC) design with the fuzzy commitment scheme in [32] with the key-leakage rate pair (0.1260, 0.8740)
bits/source-bit, which is shown to be better than the previous results in [21]. The significant
improvement in the rates with a low-complexity code is due to the decrease in pb by using our
transform-coding algorithm.

The fuzzy commitment scheme can asymptotically achieve the maximum secret-key rate R∗s =

0.6726 bits/source-bit and corresponding minimum privacy-leakage rate R∗l = 0.3274 bits/source-bit
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Figure 6. The correctness probabilities for transform coefficients.

for a BSC(pb = 0.06). Better key-leakage rate pairs are thus possible, e.g., by using GCCs or by
improving the decoder for the outer code. However, these constructions would result in increased
hardware complexity, which is not desired for IoT applications.

6.2. Codes for the Quantizer Design with Fixed Number of Errors

We now select a channel code according to Section 4.2 to store a secret key of length 128 bits.
The correctness probabilities defined in (11) for the transform coefficients T with the three highest
and three smallest probabilities are plotted in Fig. 6. The indices of the 16× 16 transform coefficients
follow the order in the dataset [26], where the coefficient index at the first row and first column is 1,
and it increases columnwise up to 16 so that the second row starts with the index 17, the third row
with the index 33, etc. The most reliable transform coefficients are the low-frequency coefficients,
which are in our case at the upper-left corner of the 2D transform-coefficient array with indices such as
1, 2, 3, 17, 18, 19, 33, 34, 35. The low-frequency transform coefficients therefore have the highest SNRs for
the source and noise statistics obtained from the RO dataset in [26]. The least reliable coefficients are
observed to be spatially away from the transform coefficients at the upper-left or lower-right corners
of the 2D transform-coefficient array. These results indicate that the SNR-packing efficiency, which can
be defined similarly as the energy-packing efficiency, of a transform follows a more complicated scan
order than the classic zig-zag scan order used for the energy-packing efficiency metric [41]. Observe
from Fig. 6 that increasing the number of extracted bits decreases the correctness probability for all
coefficients since the quantization boundaries get closer so that errors due to noise become more likely,
i.e., the probability Pc(K) defined in (11) decreases with increasing K.

We fix the maximum number Cmax of transform coefficients T allowed to be in error and calculate
the correctness threshold Pc(Cmax) using (12), the total number N(Cmax) of extracted bits using (13),
and the number e(Cmax) of errors the block code should be able to correct using (14). We observe
that if Cmax≤10, Pc(Cmax) is so large that Pc,i(K=1)≤Pc(Cmax) for all i = 2, . . . , L. If 11≤Cmax≤15,
N(Cmax) is less than the required code dimension of 128 bits. Increasing Cmax results in a smaller
correctness threshold Pc(Cmax) so that the maximum of the number Kmax(Cmax) = K′1(Cmax) of bits
extracted among the L− 1 used coefficients increases. This approach can increase hardware complexity.
We thus do not consider the cases where Cmax>20. Table 3 shows Pc(Cmax), N(Cmax), and e(Cmax) for
the remaining range of Cmax values, which are used for channel-code selection.

Consider again binary (extended) BCH and RS codes, which have good minimum-distance
properties. An exhaustive search does not provide a code with dimension of at least 128 bits and
with parameters satisfying any of the (N(Cmax), e(Cmax)) pairs in Table 3. However, the correctness
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Table 3. Code-parameter constraints.

Cmax 16 17 18 19 20
P̄c 0.9902 0.9889 0.9875 0.9860 0.9844

Kmax 3 3 3 3 3
N 144 224 250 255 259
e 18 20 21 23 25

threshold analysis leading to Table 3 is conservative. We therefore choose a BCH code with parameters
as close as possible to a (N(Cmax), e(Cmax)) pair and then prove that even if the number eBCH of errors
the chosen BCH code can correct is less than e(Cmax), the block-error probability constraint is satisfied.
Consider therefore the BCH code with the block length 255, code dimension 131, and a capability of
correcting all error patterns with eBCH = 18 or less errors.

We now show that the proposed code satisfies the block-error probability constraint. First,
we impose the condition that exactly one bit is extracted from each coefficient, i.e., Ki = 1 for all
i=2, 3, . . . , L, so that in total N=L− 1=255 bits are obtained. Note that this results in independent
bit errors Ei. It follows from this condition that the chosen block code should be able to correct all error
patterns with up to e = 20 bit errors rather than e(20) = 25 bit errors, which is still greater than the
error-correction capability eBCH = 18 of the considered BCH code.

The block error probability PB for the BCH code C(255, 131, 37) with a BMDD corresponds to the
probability of having more than 18 errors in the codeword, i.e.,

PB =
255

∑
j=19

[
∑

A∈Fj

∏
i∈A

(1− Pc,i) • ∏
i∈Ac

Pc,i

]
(18)

where Pc,i is the correctness probability of the i-th transform coefficient T̂i defined in (11) for i =
2, 3, . . . , 256, Fj is the set of all size-j subsets of the set {2, 3, . . . , 256}, and Ac denotes the complement of
the set A. The correctness probabilities Pc,i are different and they represent probabilities of independent
events due to the independence assumption for the transform coefficients.

One needs to consider ∑18
j=0 (

255
j ) ≈ 1.90×1027 different cases to calculate (18), which is not

practical. We thus use the discrete Fourier transform - characteristic function (DFT-CF) method [42] to
calculate the block-error probability and obtain the result PB≈ 1.26×10−11 < 10−9. The block-error
probability constraint is thus satisfied by using the BCH code C(255, 131, 37) with a BMDD although
the conservative analysis suggests that it would not be satisfied.

We now compare the BCH code C(255, 131, 37) with previous codes proposed for binding keys
to physical identifiers with the fuzzy commitment scheme and a secret-key length of 128 bits such
that PB ≤ 10−9 is satisfied. The (secret-key, privacy-leakage) rate pair for this proposed code is
(Rs, Rl) = ( 131

255 , 1− 131
255 ) ≈ (0.514, 0.486) bits/source-bit. This pair is significantly better than our

previous results in Section 6.1 proposed for a BSC(pb =0.06). The main reason for obtaining a better
(secret-key, privacy-leakage) rate pair is that the quantizer in Section 4.2 allows us to exploit higher
identifier-output reliability by decreasing the number of bits extracted from each transform coefficient.

We compare the secret-key and privacy-leakage rates of the BCH code C(255, 131, 37) with the
region of all achievable rate pairs for the CS model and the fuzzy commitment scheme for a BSC
PY|X with crossover probability pb = 1− 1

L−1 ∑L
i=2 Pc,i(Ki = 1)≈ 0.0097, i.e., the probability of being

in error averaged over all used transform coefficients with the quantizer in Section 4.2. We compute
the boundary points of the region Rcs by using Mrs. Gerber’s lemma [43], which gives the optimal
auxiliary random variable U in (6) when PY|X is a BSC. We plot the regions of all rate pairs achievable
with the fuzzy commitment scheme and CS model, the maximum secret-key rate point, the (secret-key,
privacy-leakage) rate pair of the proposed code, and a finite-length bound [44] for the block length of
N = 255 bits and PB =10−9 in Fig. 7.
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Figure 7. The operation point of the proposed BCH code C(255, 131, 37), regions of achievable rate pairs
according to (5) and (6), the maximum secret-key rate point, and a finite-length bound for N = 255 bits,
PB = 10−9, and BSC(0.0097).

The maximum secret-key rate is R∗s ≈ 0.922 bits/source-bit with a corresponding minimum
privacy-leakage rate of R∗l ≈0.079 bits/source-bit. There is a gap between the secret-key rate of the
proposed code and the only operation point where the fuzzy commitment scheme is optimal. Part
of this rate loss can be explained by the short block length of the code and the small block-error
probability constraint. The finite-length bound given in [44, Theorem 52] establishes that the rate
pair (Rs, Rl) = (0.691, 0.309) bits/source-bit is achievable by using the fuzzy commitment scheme,
as depicted in Fig. 7. One can therefore further improve the rate pairs by using better codes and
decoders with higher hardware complexity, but this may not be possible for IoT applications. Fig. 7
also illustrates that there exist other code constructions, e.g., the WZ-coding construction in [11], that
reduce the privacy-leakage rate for a fixed secret-key rate.

7. Conclusion

The reliability, uniqueness, security, computational-complexity, and key-length performance of
various transforms was compared to select the best transforms for reliable secret-key binding for
RO PUFs by using the fuzzy commitment scheme. The DWHT and DHT perform best in terms of
computational-complexity, maximum key length, and reliability. All transforms give close to optimal
uniqueness and good security results. A reference hardware design with the DWHT showed that
the hardware area required by the transform-coding approach is small and less than required by
the existing RO PUF designs. Low-complexity concatenated codes with high secret-key and small
privacy-leakage rates, which are better than previous results, are proposed for a realistic block-error
probability of 10−9.

We further improved the transform-coding algorithm applied to physical identifiers by designing
quantizers with reliability guarantees. This alternative quantizer converts the block-error probability
constraint PB≤10−9 into a constraint on the number of transform coefficients allowed to be in error.
We proposed a BCH code C(255, 131, 37) with a higher code rate than our previously proposed codes.
Comparisons with the region of all achievable (secret-key, privacy-leakage) rate pairs for the fuzzy
commitment scheme show that there is still a gap between the optimal rate pairs and the proposed
code. This gap can be closed by using other channel codes and decoders at the cost of higher hardware
complexity or by designing codes for other CS model constructions. In future work, we will apply an
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extension of water-filling techniques to the transform-coefficients in order to improve the reliability
and security performance.
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