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Abstract

Thus far, several lattice-based algorithms for partial key exposure attacks on RSA, i.e., given
the most/least significant bits (MSBs/LSBs) of a secret exponent d and factoring an RSA mod-
ulus N , have been proposed such as Blömer and May (Crypto’03), Ernst et al. (Eurocrypt’05),
and Aono (PKC’09). Due to Boneh and Durfee’s small secret exponent attack, partial key expo-
sure attacks should always work for d < N0.292 even without any partial information. However,
it was difficult task to make use of the given partial information without losing the quality
of Boneh-Durfee’s attack. In particular, known partial key exposure attacks fail to work for
d < N0.292 with only few partial information. Such unnatural situation stems from the fact that
the additional information makes underlying modular equations involved. In this paper, we pro-
pose improved attacks when a secret exponents d is small. Our attacks are better than all known
previous attacks in the sense that our attacks require less partial information. Specifically, our
attack is better than all known ones for d < N0.5625 and d < N0.368 with the MSBs and the
LSBs, respectively. Furthermore, our attacks fully cover the Boneh-Durfee bound, i.e., they
always work for d < N0.292. At a high level, we obtain the improved attacks by fully utilizing
unravelled linearization technique proposed by Herrmann and May (Asiacrypt’09). Although
Herrmann and May (PKC’10) already applied the technique to Boneh-Durfee’s attack, we show
elegant and impressive extensions to capture partial key exposure attacks. More concretely, we
construct structured triangular matrices that enable us to recover more useful algebraic struc-
tures of underlying modular polynomials. We embed the given MSBs/LSBs to the recovered
algebraic structures and construct our partial key exposure attacks. In this full version, we
provide overviews and explicit proofs of the triangular matrix constructions. We believe that
the additional explanations help readers to understand our techniques.
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1 Introduction

1.1 Background

RSA is one of the most famous public key cryptosystems and numerous papers have studied the
security. Let N = pq be a public modulus, where p and q are distinct primes with the same
bit-size. The bit-size of N should be sufficiently large so that the factorization is computationally
hard. There are a public exponent e and a secret exponent d that satisfy ed = 1 mod ϕ(N),
where ϕ(N) = (p− 1)(q− 1) is Euler’s totient function. During decryption/signing, heavy modular
exponentiations cd mod N should be computed. The most trivial way to reduce the computational
cost is using small d. However, Wiener [Wie90] first reported that too small d makes RSA insecure.
He claimed that there is a polynomial time algorithm for factoring N when d < N1/4. Boneh and
Durfee [BD00] revisited the attack by using lattice-based Coppersmith’s method [Cop96b]. At first,

they proposed an improved attack that works for d < N (7−2
√
7)/6 = N0.284···. In the same work,

they further improved the bound to d < N1−1/
√
2 = N0.292···. Throughout the paper, we call these

bounds the Boneh-Durfee weaker and the stronger bound, respectively.
Boneh, Durfee, and Frankel [BDF98] introduced partial key exposure attacks on RSA, where

the attackers are given the most/least significant bits (MSBs/LSBs) of full size d. The attack
is theoretically interesting to study how many portions of secret information enable attackers to
break the security of RSA. Although Boneh et al.’s partial key exposure attacks work only for small
e, several improvements have been proposed by using Coppersmith’s methods [Cop96a, Cop96b].
Blömer and May [BM03] improved the bound to e < N7/8 with the LSBs of d. Ernst et al.
[EJMdW05] proposed the first attack for full size e with the MSBs of d.

In the same work [EJMdW05], Ernst et al. also studied the attacks with the MSBs/LSBs of small
d. By definition, the attack scenario is an extension of Boneh-Durfee’s work [BD00]. Specifically,
Boneh-Durfee’s small secret exponent attack is a special case of the partial key exposure attack when
the given partial information is exactly zero. Hence, Boneh and Durfee’s result suggests that partial
key exposure attacks should always work for d < N0.292··· even without any partial information.
However, Ernst et al.’s attacks only cover the Boneh-Durfee weaker bound d < N0.284··· when the
given partial information is exactly zero. Aono [Aon09] proposed the first attack to cover the
Boneh-Durfee stronger bound with the LSBs of d. Aono’s attack requires less partial information
than Ernst et al.’s attack for d < N (9−

√
21)/12 = N0.368··· to factor a modulus N . Unfortunately, a

trick of Aono’s algorithm is not applicable to the MSBs case. Hence, extending the Boneh-Durfee
stronger attack with MSBs of d is still an interesting open problem.

1.2 Our Results

In this paper, we propose improved partial key exposure attacks on RSA with the MSBs/LSBs
of d. Our attacks work with less partial information than the previous attacks [Aon09, BM03,

EJMdW05, SSM10] for d < N9/16 = N0.5625 and d < N (9−
√
21)/12 = N0.368··· with the MSBs

and the LSBs, respectively. Furthermore, the most impressive feature of our proposed attacks is
that they always work for d < N0.292··· even when the given partial information is exactly zero.
Therefore, our attack with the MSBs is the first one that cover the Boneh-Durfee stronger bound.
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Figure 1: Comparison of attack conditions

Figure 1 compares attack conditions with Ernst et al’s and ours. Since a condition of Aono’s
attack is close to ours, we do not compare it in the figure. The left and the right figure is for
the MSBs and the LSBs, respectively. Horizontal axes and vertical axes represent sizes of secret
exponents β := logN d and ratios of exposed bits (β − δ)/β, where δ represents sizes of d1 which
are unknown parts of d, respectively. Ernst et al.’s attacks work in the gray areas while our attack
improve the red areas when β is small.

We also show numerical comparisons for attack conditions. Table 1 provides a comparison
between Ernst et al.’s attack and our attack with the MSBs for 1− 1/

√
2 = 0.292 · · · ≤ β ≤ 9/16 =

0.5625. Table 2 provides a comparison between Ernst et al.’s attack, Aono’s attack, and our attack
for 1 − 1/

√
2 = 0.292 · · · ≤ β ≤ (9 −

√
21)/12 = 0.368 · · · . In such small β, our proposed attacks

are better than other ones.

1.3 Technical Overview

Here, we summarize technical background of the work. Then, we explain a technical overview of
our improvements.

Coppersmith’s Methods. In 1996, Coppersmith [Cop96a, Cop96b] introduced lattice-based
methods for solving integer/modular equations with small solutions in polynomial time. The meth-
ods first construct a matrix whose rows consist of coefficient vectors of polynomials that have the
same roots as the original polynomials. Then, we apply the LLL reduction algorithm [LLL82] to
the matrix. If the LLL outputs sufficiently short vectors, one can obtain the desired solutions. The
methods are actively utilized to study the security of RSA including Boneh and Durfee’s small secret
exponent attack [BD00], and partial key exposure attacks [Aon09, BM03, EJMdW05, SSM10].

Some researchers believe that if there is an attack based on Coppersmith’s integer equation
solving method, there should be an analogous attack based on the modular equation solving method,
and vice versa. For example, Blömer-May’s [BM03] and Ernst et al.’s [EJMdW05] partial key
exposure attacks with the LSBs work for the same condition, where the former/latter attack utilized
the modular/integer equation solving method, respectively. However, to the best of our knowledge,

2



Table 1: Comparison of the recoverable bounds for partial key exposure attacks with the MSBs

β Ernst et al.’s δ Our δ

0.292893219 0.27982339 0.292893219

0.3 0.275559982 0.285994506

0.32 0.263733084 0.268592284

0.34 0.252146808 0.253706834

0.36 0.240787039 0.240910032

0.368118692 0.236237384 0.236237384

0.38 0.229640991 0.229891317

0.4 0.218697036 0.220416848

0.42 0.207944565 0.212305314

0.44 0.197373866 0.205412787

0.46 0.1875 0.199622776

0.48 0.1875 0.194839473

0.5 0.1875 0.190983006

0.52 0.1875 0.188518542

0.54 0.1875 0.187647679

0.5625 0.1875 0.1875

there are several counterexamples. The most basic example is Boneh-Durfee’s attack [BD00]. Boneh
and Durfee utilized Coppersmith’s modular equation solving method to construct their attack.
After the proposal, numerous papers have studied several variants of the attack. Then, integer
equation solving analogue has been reported for the Boneh-Durfee weaker bound d < N0.284···.
However, such analogue has not been reported for the stronger bound d < N0.292···.

Due to the situation, solving modular equations seems an appropriate approach to construct
partial key exposure attacks that cover the Boneh-Durfee stronger bound. Indeed, Aono [Aon09]
took the approach and obtained the desired attack with the LSBs. Hence, Sarkar et al. [SSM10] tried
to improve partial key exposure attacks with the MSBs by solving modular equations. However,
what they obtained is the same attack condition as Ernst et al. for N235/512 = N0.458··· ≤ d ≤
N11/16 = N0.6875.

Unraveled Linearization. As we claimed above, Coppersmith’s methods can solve modular equa-
tions whose solutions are small in polynomial time. Constructing partial key exposure attacks with
less partial information is equivalent to constructing modular equation solving algorithms that can
find larger solutions. Technically, it is further equivalent to constructing basis matrices such that
lattices spanned by the matrices have shorter vectors. How to construct such matrices is the most
technical part in this research area. To resolve the technical issue, Jochemsz and May [JM06] intro-
duced a strategy for the matrix construction. Since the strategy is easy to understand, most works
follow it including partial key exposure attacks of Blömer-May [BM03], Ernst et al. [EJMdW05],
and Sarkar et al. [SSM10]. However, the fact does not mean that the Jochemsz-May strategy

3



Table 2: Comparison of the recoverable bounds for partial key exposure attacks with the LSBs

β Ernst et al.’s δ Aono’s δ Our δ

0.292893219 0.27982339 0.292893219 0.292893219

0.3 0.275559982 0.283716 0.285994506

0.31 0.269615516 0.274073 0.276945771

0.32 0.263733084 0.266059 0.268592284

0.33 0.257910783 0.259 0.260865122

0.34 0.252146808 0.252565 0.253706834

0.35 0.246439438 0.246548 0.247068931

0.36 0.240787039 0.240796 0.240910032

0.368118692 0.236237384 0.236237384 0.236237384

always enables ones to construct optimal algorithms. For example, by following the strategy, we
obtain the Boneh-Durfee weaker attack. Constructing the stronger one requires a more technical
matrix construction. Matrices obtained by the Jochemsz-May strategy are always triangular. Since
computing determinants of large matrices is essential task to obtain attack conditions of modular
equation solving algorithms, triangular ones simplify the analyses. However, Boneh and Durfee
constructed non-triangular matrices to obtain the stronger bound with highly technical analyses.
Due to the fact, there were several attacks [Aon13, DN00, Sar14, Sar16] that are extensions of
Boneh-Durfee’s attack, however, cover only the weaker attack.

In 2009, Herrmann and May [HM09] introduced a novel technique which they called unraveled
linearization. They aimed at introducing the technique to solve nonlinear modular equations.
For the purpose, the technique first applies linearization and obtain new linearized variables; the
linearization combines several monomials into one monomial. Although the linearization has been
already taken by numerous papers, the unraveled linearization technique has an additional trick.
Reducing the number of monomials has benefit in general, however, the linearization may lose
some algebraic information. Hence, during the matrix construction, the technique also applies
unraveling that cancels the linearization and separates the combined monomials as they were. The
unraveling enables ones to recover the lost algebraic structures. In other words, the unraveled
linearization transforms non-triangular basis matrices to triangular ones. Furthermore, if we can
apply appropriate unraveling, the matrices preserve useful algebraic structures. Indeed, Herrmann
and May [HM10] provided a simpler proof of the Boneh-Durfee stronger attack. After the proposal,
the unraveled linearization technique has been intensively utilized to improve several lattice-based
attacks on RSA [BVZ12, Her11, HM10, HHX14, Kun12, KSI14, TK14b, TK14c, TK16a, TK16c,
TK17a, TK17b].

Our Approach. In this paper, we fully utilize the unraveled linearization technique and improve
partial key exposure attacks with the MSBs/LSBs of d by solving modular equations. In this full
version, to help readers to understand our techniques easily, we first provide an alternative proof of
the Boneh-Durfee stronger attack. Although the proof does not have any advantages for the attack,

4



it enables readers to easily understand our subsequent matrix constructions of partial key exposure
attacks. In the proof, we apply additional unraveling to Herrmann-May’s triangular matrix while
the matrix is still triangular. It means that our triangular matrix recovers lost algebraic structures
from Herrmann-May’s one. Although the recovered algebraic structures do not affect the attack
condition of the Boneh-Durfee, they are useful for partial key exposure attacks. Specifically, the
recovered structures will enable us to embed the partial information of d.

We provide an improved partial key exposure attack with the MSBs of d by solving modular
equations. As we claimed above, Sarkar et al.’s attack [SSM10] is a modular equation solving
analogue of Ernst et al.’s attack [EJMdW05] for N0.458··· ≤ d ≤ N0.6875. In this full version, before
providing our improved attack, we first construct modular equation solving analogue of Ernst et
al.’s attack for N0.284··· ≤ d ≤ N0.458···. The analogous attack can be viewed as an extension of the
Boneh-Durfee weaker attack that utilize the given MSBs of d. We believe that the attack helps
readers to understand how to embed the partial information in Boneh-Durfee’s matrix. Then, we
provide our main attack that can be viewed as an extension of the Boneh-Durfee stronger attack
with the partial information. We construct the attack by embedding the partial information in
Boneh-Durfee’s stronger matrix with additional unraveling. To this end, our additional unraveling
becomes effective. Herrmann-May’s matrix does not preserve enough algebraic structures to embed
the given partial information. On the other hand, by applying additional unraveling, we recovered
lost algebraic structures that are useful to embed the partial information. As a result, we can
successfully construct the partial key exposure attack that is an extension of the Boneh-Durfee
stronger attack.

Next, we provide an improved partial key exposure attack with the LSBs of d by solving modular
equations. As we suggested above, Blömer-May’s attack [BM03] works for the same condition
as Ernst et al.’s attack [EJMdW05] and it can be viewed as an extension of the Boneh-Durfee
weaker attack that utilized the given LSBs of d. Hence, the result tells us how to embed the
given partial information in Boneh-Durfee’s weaker matrix. To improve the attack, Aono [Aon09]
constructed a matrix that has two layers. The first layer is the same as Blömer-May’s matrix while
the second layer is the same as Boneh-Durfee’s stronger matrix. The second layer did not utilize
the partial information at all, however, it was effective to improve Blömer-May’s attack. Although
Aono analyzed non-triangular basis matrices, we can obtain the same attack condition by using
Herrmann-May’s matrix, which does not have much algebraic structures to embed the given partial
information, in the second layer. In our attack, we construct a matrix, where the second layer is
replaced by Boneh-Durfee’s stronger matrix with additional unraveling. Since the matrix has more
algebraic structures to embed partial information than Aono’s one, we can successfully improve the
attack.

1.4 Related Works

Boneh-Dufee’s small secret exponent attack [BD00] is one of the most famous application of Cop-
persmith’s methods [Cop96a, Cop96b]. Thus far, several variants of the attack has been pro-
posed. They include attacks on RSA variants, e.g., unbalanced RSA [DN00, TK16d], prime
power RSA [LZPL15, Sar14, Sar16, TK16a], Takagi’s RSA [IKK08, IKK09, TK16a], multi-prime
RSA [Hin08], and RSA with multiple exponent pairs [TK14b], and its mathematical exten-
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sions [Kun11, Kun12, KSI14, TK17a]. Recently, Aono et al. [AASW18] found an optimality of
the Boneh-Durfee stronger attack under heuristic assumptions. As similar settings, there are small
CRT exponent attacks [TLP17]. Similarly, there are several partial key exposure on RSA variants,
e.g., prime power RSA [LZPL15, TK16a], Takagi’s RSA [TK16a], multi-prime RSA [Hin08, TK17b],
and RSA with multiple exponent pairs [TK14b, TK16c]. As similar settings, several papers study
partial key exposure attacks on CRT-RSA [SM09, LZL14, TK15, TK16b].

1.5 Roadmap

The organization of this paper is as follows. In Section 2, we recall basic tools and an overview of
Coppersmith’s methods to solve modular equations. In Section 3, we provide an alternative proof
of the Boneh-Durfee stronger attack. In Sections 4 and 5, we study partial key exposure attacks
with the MSBs and the LSBs, respectively.

2 Preliminaries

In this section, we recall Coppersmith’s method to solve modular equations with small solu-
tions [Cop96b]. Coppersmith’s method has been utilized to reveal several vulnerabilities of RSA.
See [Cop97, Cop01, May03, May10, NS01] for more information. In this paper, we use Howgrave-
Graham’s simpler reformulation of the method [How97]. At the end of the section, we summarize
a basic approach to maximize solvable root bounds by utilizing a notion of helpful polynomi-
als [May10, TK14a].

For bivariate polynomials h(x, y) =
∑

hiX ,iY x
iXyiY , let ∥h(x, y)∥ :=

√∑
h2iX ,iY

denote a norm

of the polynomial. The following Howgrave-Graham’s lemma [How97] enables us to solve modular
equations by solving integer equations.

Lemma 1 (Howgrave-Graham’s lemma [How97]). Let h(x, y) ∈ Z[x, y] be a bivariate integer poly-
nomial that consists of at most n monomials. Let W,X, Y be positive integers. If the polynomial
h(x, y) satisfies
1. h(x̃, ỹ) = 0 (mod W ), where |x̃| < X, |ỹ| < Y ,
2. ∥h(xX, yY )∥ < W/

√
n.

Then h(x̃, ỹ) = 0 holds over the integers.

Based on the lemma, solving bivariate modular equations is reduced to finding two low norm
polynomials that has the same small solutions. To find the polynomials, we utilize the LLL lat-
tice reduction algorithm [LLL82]. Let b1, . . . , bn be linearly independent k-dimensional vectors.
The lattice L(b1, . . . , bn) spanned by the basis vectors b1, . . . , bn is defined as L(b1, . . . , bn) =
{
∑n

j=1 cjbj : cj ∈ Z}. When n = k, lattices are described as full rank. The basis matrix of the
lattice B is defined as the n × k matrix that has a basis vector b1, . . . , bn in each row. In this
paper, we use only full rank lattices, i.e., k = n. The determinant of a full rank lattice is computed
by vol(L(B)) = |det(B)|. A lattice has infinitely many bases. Finding a basis that contains low
norm vectors is a fundamental lattice problem. The LLL algorithm proposed by Lenstra, Lenstra
and Lovász [LLL82] finds short lattice vectors in polynomial time.
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Proposition 1 (LLL algorithm [LLL82, May03]). Given k-dimensional basis vectors b1, . . . , bn,
the LLL algorithm finds linearly independent lattice vectors v1 and v2 in L(b1, . . . , bn) such that

∥v1∥ ≤ 2(n−1)/4(vol(L(B)))1/n and ∥v2∥ ≤ 2n/2(vol(L(B)))1/(n−1).

These norms are Euclidean norms. The running time is polynomial in k, n, and the maximum
input length of B.

We summarize how Coppersmith’s method finds a solution (x̃, ỹ) of a bivariate modular equation
h(x, y) = 0 (mod W ) if |x̃| < X, |ỹ| < Y . At first, we create n polynomials h1(x, y), . . . , hn(x, y)
that have the root (x̃, ỹ) modulo Wm for a positive integer m, and so do any integer linear combina-
tions of h1(x, y), . . . , hn(x, y). Then, we generate basis vectors b1, . . . , bn that are coefficient vectors
of h1(xX, yY ), . . . , hn(xX, yY ), respectively. All lattice points correspond to polynomials that are
integer linear combinations of h1(x, y), . . . , hn(x, y). Hence, applying the LLL algorithm to B, we
obtain two short vectors v1 and v2 along with their corresponding low norm polynomials h̃1(x, y)
and h̃2(x, y). If norms of the polynomials are enough small to satisfy Howgrave-Graham’s lemma,
they have the root (x̃, ỹ) over the integers. The root can efficiently be recovered by computing the
Gröbner bases or resultants of the polynomials. The method is heuristic for the bivariate case since
the polynomials h̃1(x, y) and h̃2(x, y) have no assurance of algebraic independency. In this paper,
we assume that these polynomials are algebraic independent and the resultant will not vanish. This
assumption should be reasonable since few negative cases have been reported.

To conclude this section, we briefly explain how to construct a better matrix to find larger
solutions. By using Coppersmith’s method, we can recover the root when |det(B)|1/n < Wm by
omitting small terms. Hence, we can recover larger solutions if we can construct a matrix B with
smaller |det(B)|1/n for a fixed m. Since matrices B usually tend to be triangular, |det(B)|1/n
is an absolute value of a geometric mean of all diagonals. Thus, May [May10] defined a notion
of helpful polynomials whose diagonals in B has smaller absolute values than the modulus Wm

since such polynomials reduce the quantity of | det(B)|1/n and contribute to recovering larger
solutions. Indeed, Takayasu and Kunihiro [TK14a] constructed matrices by collecting as many
helpful polynomials as possible and as few unhelpful polynomials as possible, then improve several
algorithms for solving multivariate modular equations.

In this paper, we follow the approach to improve partial key exposure attacks. Furthermore,
we extend the definition of helpful to capture special matrices which we will use. Specifically, to
recover algebraic structures of modular polynomials, several diagonals of our matrices will change
by adding a new polynomial. Hence, to minimize |det(B)|1/n for fixed m, we use the following
notion.

Definition 1 (Helpful Polynomials). Let B be a matrix to solve a modular equation h(x, y) = 0
(mod W ). Let B′ be a matrix that has the same polynomials as B except h′(x, y) and does not
have further polynomials. We call h′(x, y) a helpful polynomial if and only if

det(B′)

det(B)
≤ Wm

holds. Otherwise, we call h′(x, y) an unhelpful polynomial.
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3 Revisiting Herrmann-May’s Matrix

In this section, we recall Herrmann-May’s triangular matrix that provides a simpler proof for the
Boneh-Durfee stronger attack. Then, we provide an alternative triangular matrix with additional
unraveling. Although our matrix does not improve Boneh-Durfee’s attack at all, it will recover
useful algebraic structures that will be essential to improve partial key exposure attacks in the
subsequent sections.

3.1 Boneh-Durfee’s Attack

We first review the Boneh-Durfee weaker attack. Then, we explain how Boneh-Durfee improves it
to the stronger attack.

Recall an RSA key generation

ed = 1 + ℓ(p− 1)(q − 1) = 1 + ℓ(N − p− q + 1),

where ℓ is an unknown integer. Boneh and Durfee [BD00] solved the following modular equation

fBD(x, y) := 1 + x(N + y) = 0 (mod e)

whose solution is (x, y) = (ℓ,−p− q+1). Let e be full size and d = Nβ. Then, an absolute value of
the solution is bounded above by X := Nβ and Y := N1/2 within a constant factor, respectively.
To recover the solution, Boneh and Durfee utilized the following shift-polynomials

gBD.x
[u,i] (x, y) := xu−ifBD(x, y)

iem−i and gBD.y
[u,j] (x, y) := yjfBD(x, y)

uem−u. (1)

They first defined sets of indices

IBD,x := {u = 0, 1, . . . ,m; i = 0, 1, . . . , u} ,
IBD,y1 := {u = 0, 1, . . . ,m; j = 1, 2, . . . , k} ,

(2)

where κ = k/m ≥ 0 is a parameter to be optimized. They constructed a matrix B that has a
coefficient vector of gBD.x

[u,i] (xX, yY ) for (u, i) ∈ IBD,x and gBD.y
[u,j] (xX, yY ) for (u, j) ∈ IBD,y1 in each

row. Based on the construction, the matrix B becomes triangular as follows.

Lemma 2 (Boneh-Durfee Weaker Matrix [BD00]). Let shift-polynomials gBD.x
[u,i] (x, y) and

gBD.y
[u,j] (x, y), sets of indices IBD,x and IBD,y1, be defined as in (1), (2), respectively. Let B be

a matrix whose rows consist of coefficients of gBD.x
[u,i] (xX, yY ) for (u, i) ∈ IBD,x and gBD.y

[u,j] (xX, yY )

for (u, j) ∈ IBD,y1. If the shift-polynomials are ordered as

• gBD.x
[u,i] (xX, yY ) ≺ gBD.y

[u,j] (xX, yY ),

• gBD.x
[u′,i′] (xX, yY ) ≺ gBD.x

[u,i] (xX, yY ) for

– u′ < u,
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Table 3: Example of a matrix B of Boneh-Durfee’s weaker lattices for m = 2 and κ = 1.
1 y y2 x xy xy2 xy3 x2 x2y x2y2 x2y3 x2y4

gBD.x
[0,0] e2

gBD.y
[0,1] Y e2

gBD.y
[0,2] Y 2e2

gBD.x
[1,0] Xe2

gBD.x
[0,1] – – XY e

gBD.y
[1,1] – – XY 2e

gBD.y
[1,2] – – XY 3e

gBD.x
[2,0] X2e2

gBD.x
[1,1] – – X2Y e

gBD.x
[0,2] – – – – – X2Y 2

gBD.y
[2,1] – – – – – X2Y 3

gBD.y
[2,2] – – – – – X2Y 4

– u′ = u, i′ < i,

• gBD.y
[u′,j′](xX, yY ) ≺ gBD.y

[u,j] (xX, yY ) for

– u′ < u,

– u′ = u, j′ < j,

then the matrix B becomes triangular with diagonals

• XuY iem−i for gBD.x
[u,i] (xX, yY ),

• XuY u+jem−u for gBD.y
[u,j] (xX, yY ).

Table 3 shows1 an example of the triangular matrix. By optimizing κ = (1− 2β)/2, the matrix
provides the Boneh-Durfee weaker attack that works when β < (7− 2

√
7)/6 = 0.284 · · ·.

To improve the weaker attack, Boneh and Durfee exploited sublattices. To be precise, they used
a submatrix of the previous one as a lattice basis. For the purpose, they replaced a set of index
IBD,y1 by2

IBD,y2 := {u = 0, 1, . . . ,m; j = 1, 2, . . . , k + ⌊τu⌋} , (3)

1“–” in matrices denote non-zero elements throughout the paper.
2To be precise, the upper bound of j in IBD,y2 was ⌊τu⌋ in the original paper [BD00]. Indeed, the additional k

is optimized to k = 0. We modify the upper bound since it will be convenient to explain our partial key exposure
attacks later.
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where τ is a parameter to be optimized such that 0 ≤ τ ≤ 1. By optimizing k = 0 and τ = 1− 2β,
the matrix B that has a coefficient vector of gBD.x

[u,i] (xX, yY ) for (u, i) ∈ IBD,x and gBD.y
[u,j] (xX, yY )

for (u, j) ∈ IBD,y2 in each row provides the Boneh-Durfee stronger attack that works when β <
1− 1/

√
2 = 0.292 · · · . Since the matrix does not become triangular, the analysis is involved.

3.2 Herrmann-May’s Matrix

Herrmann and May [HM10] revisited Boneh-Durfee’s work and provided a simpler proof. Specif-
ically, they applied unraveled linearization [HM09] to the Boneh-Durfee’s stronger matrix and
transformed it to be triangular. For the purpose, a new variable

z := 1 + xy

plays an essential role, where an absolute value of the solution is bounded above by Z := XY =
Nβ+1/2 within a constant factor. In the following lemma, we summarize Herrmann-May’s triangular
matrix.3

Lemma 3 (Herrmann-May’s Triangular Matrix [HM10, TK17a]). Let shift-polynomials gBD.x
[u,i] (x, y)

and gBD.y
[u,j] (x, y), sets of indices IBD,x and IBD,y2, be defined as in (1), (3), respectively. Let B be

a matrix whose rows consist of coefficients of gBD.x
[u,i] (xX, yY ) for (u, i) ∈ IBD,x and gBD.y

[u,j] (xX, yY )

for (u, j) ∈ IBD,y2. If the shift-polynomials are ordered as the same way in Lemma 2, then the
matrix B becomes triangular with diagonals

• Xu−iZiem−i for gBD.x
[u,i] (xX, yY ),

• Y jZuem−u for gBD.y
[u,j] (xX, yY ).

As the last statement suggests, all monomials do not have two variables x and y, simultaneously.
Although the linearization z = 1 + xy loses the information of x and y, it can be recovered by
unraveling. Table 4 shows an example of the triangular matrix. The triangular matrix enables us
to analyze the structure easily. Indeed, the following lemma shows one evidence of the optimality
of the Boneh-Durfee stronger attack.

Lemma 4. In the matrix B of the Boneh-Durfee stronger attack, polynomials gBD.y
[u,j] (x, y) are

helpful if and only if j ≤ (1− 2β)u for all u.

Proof of Lemma 4. Let gBD.y
[u′,j′](x, y) be a polynomial with fixed indices (u′, j′), and B′ be a matrix

that is a matrix B without the polynomial gBD.y
[u′,j′](x, y). As stated in Lemma 3, a diagonal of the

polynomial gBD.y
[u′,j′](x, y) in B is Y j′Zu′

em−u′
. Hence,

det(B)

det(B′)
= Y j′Zu′

em−u′

3As we mentioned, the set of indices IBD,y2 is not the same as the the original one in [BD00]. Hence, it is not the
same as the one which Herrmann and May studied in [HM10]. However, Herrmann-May’s approach is also useful for
the modified IBD,y2, where the fact was utilized in [TK17a].
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Table 4: Herrmann-May’s matrix B for m = 2 and κ = 1/2, τ = 1
1 y x z yz y2z x2 xz z2 yz2 y2z2 y3z2

gBD.x
[0,0] e2

gBD.y
[0,1] Y e2

gBD.x
[1,0] Xe2

gBD.x
[0,1] – Ze

gBD.y
[1,1] – – Y Ze

gBD.y
[1,2] – – Y 2Ze

gBD.x
[2,0] X2e2

gBD.x
[1,1] – XZe

gBD.x
[0,2] – – Z2

gBD.y
[2,1] – – – – Y Z2

gBD.y
[2,2] – – – – – Y 2Z2

gBD.y
[2,3] – – – – – Y 3Z2

that is smaller than or equal to the modulus em if and only if

Y j′Zu′
em−u′ ≤ em ⇔ Y j′Zu′ ≤ eu

′

⇔ 1

2
j′ +

(
β +

1

2

)
u′ ≤ u′

⇔ j′ ≤ (1− 2β)u′.

Hence, we conclude the proof.

The lemma suggests that the Boneh-Durfee stronger attack used only helpful gBD.y
[u,j] (x, y) and

no unhelpful gBD.y
[u,j] (x, y). That is why they could successfully improve their own weaker attack.

However, we should note that the lemma does not prove a rigorous optimality of the attack.

3.3 Herrmann-May’s Matrix with Additional Unraveling

In this subsection, we show a new triangular matrix for the Boneh-Durfee stronger attack. In short,
we apply additional unraveling to Herrmann-May’s triangular matrix. Then, there are several
monomials which have two variables x and y, simultaneously, in our matrix. Before providing the
matrix, we introduce some functions that will be used to control the power of unraveling throughout
the paper.

Definition 2. Let m and k be non-negative integers, τ be a real number such that 0 ≤ τ ≤ 1.
Define the following functions lMSBs

k,τ (·) and lLSBs
k,τ (·) whose domains and ranges are non-negative
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Table 5: Herrmann-May’s matrix B with additional unraveling by the function lLSBs
k,τ (j) for m = 2

and κ = 1/2, τ = 1
1 y x xy xy2 y2z x2 x2y x2y2 x2y3 y2z2 y3z2

gBD.x
[0,0] e2

gBD.y
[0,1] Y e2

gBD.x
[1,0] Xe2

gBD.x
[0,1] – – XY e

gBD.y
[1,1] – – XY 2e

gBD.y
[1,2] – Y 2Ze

gBD.x
[2,0] X2e2

gBD.x
[1,1] – – X2Y e

gBD.x
[0,2] – – – – – X2Y 2

gBD.y
[2,1] – – – – – X2Y 3

gBD.y
[2,2] – – – Y 2Z2

gBD.y
[2,3] – – – Y 3Z2

integers:

lMSBs
k,τ (x) := max

{
0,

⌈
x− k

τ + 1

⌉}
and lLSBs

k,τ (x) := max

{
0,

⌈
x− k

τ

⌉}
.

Then, we provide our matrix.

Lemma 5. Let shift-polynomials gBD.x
[u,i] (x, y) and gBD.y

[u,j] (x, y), sets of indices IBD,x and IBD,y2, a

function lLSBs
k,τ (x), a matrix B be defined as in (1), (3), Definition 2, and Lemma 3, respectively.

If the shift-polynomials are ordered as the same way in Lemma 2, then the matrix B becomes
triangular with diagonals

• XuY iem−i for gBD.x
[u,i] (xX, yY ),

• Xu−lLSBs
k,τ (j)Y u+j−lLSBs

k,τ (j)Z lLSBs
k,τ (j)em−u for gBD.y

[u,j] (xX, yY ).

In Herrmann-May’s matrix, two variables x and y does not appear in the same monomials.
Specifically, X does not appear in diagonals of gBD.y

[u,j] (x, y). However, X appears in our matrix. It
means that we apply less linearization z = 1+xy or more unraveling than Herrmann-May’s matrix.
How much we apply linearization/unraveling is controlled by a function lLSBs

k,τ (j).
Table 5 shows an example of the matrix that has the same polynomials as Herrmann-May’s

matrix in Table 4. To illustrate our idea, we use the examples. Herrmann-May’s matrix has
diagonals y, yz, and yz2 for gBD.y

[0,1] , gBD.y
[1,1] , and gBD.y

[2,1] whereas our matrix has diagonals y, xy2, and

12



x2y3 for the same polynomials. We apply additional unravelings z ⇒ 1 + xy and transform the
former diagonals to the latter ones by using the following simple relations:

yz = y(1 + xy) = y + xy2 and yz2 = y(1 + xy)2 = y + 2xy2 + x2y3.

The relation suggests that all integer linear combinations of (y, yz) and (y, yz, yz2) can be replaced
by those of (y, xy2) and (y, xy2, x2y3), respectively. Hence, the matrix is still triangular even if
we apply the additional unravelings. Here, we want to claim that integer linear combinations of
(yz) and (yz, yz2) cannot be rewritten as those of (xy2) and (xy2, x2y3), respectively. To apply the
additional unraveling, the existence of y was essential. Without the variable y, we cannot replace
yz by xy2. However, since yz exists, we can replace yz2 by xy2z by using a relation

yz2 = yz(1 + xy) = yz + xy2z.

Therefore, we define the function lLSBs
k,τ (j) so that yjzl

LSBs
k,τ (j) exists, however,

yjzl
LSBs
k,τ (j)−1, yjzl

LSBs
k,τ (j)−2, · · · do not exist in Herrmann-May’s matrix B. In other words,

in the a set of indices IBD,y2, there are indices (u, j) = (lLSBs
k,τ (j′), j′), (lLSBs

k,τ (j′) + 1, j′), . . . , (m, j′)

whereas no indices (u, j) = (0, j′), (1, j′), . . . , (lLSBs
k,τ (j′)− 1, j′) for a fixed j′ ≥ k. The fact follows

from that

• k + ⌊τu⌋ < j′ for u < lLSBs
k,τ (j′) since k + ⌊τ(lLSBs

k,τ (j′)− 1)⌋ < j′ holds,

• k + ⌊τu⌋ ≥ j′ for u ≥ lLSBs
k,τ (j′) since k + ⌊τ lLSBs

k,τ (j′)⌋ ≥ j′ holds.

Therefore, the function lLSBs
k,τ (j) tells us the maximum unraveling which we can apply.

The matrix with additional unraveling does not provide any benefits in the context of Boneh-
Durfee’s attack. We use the matrix to explain an overview of an unraveled linearization for our
partial key exposure attacks with the LSBs in Section 5.3.

Proof of Lemma 5. We apply unraveling z ⇒ 1 + xy to each variable of Herrmann-May’s ma-
trix B in Lemma 3 and obtain a claimed matrix in Lemma 5. Since the diagonals Xu−iZiem−i

of gBD.x
[u,i] (xX, yY ) and those Y jZuem−u of gBD.y

[u,j] (xX, yY ) for (u, j) = (lLSBs
k,τ (j), j) are the same

between Lemmas 3 and 5, we focus on the other variables

• xu−lLSBs
k,τ (j)yu+j−lLSBs

k,τ (j)zl
LSBs
k,τ (j) for j = 1, 2, . . . , k+ ⌊τm⌋; lLSBs

k,τ (j) + 1, , lLSBs
k,τ (j) + 2, . . . ,m.

We want to claim that a matrix B is still triangular when all variables yjzu are replaced by

xu−lLSBs
k,τ (j)yu+j−lLSBs

k,τ (j)zl
LSBs
k,τ (j) by applying unraveling zu−lLSBs

k,τ (j) ⇒ (1 + xy)u−lLSBs
k,τ (j).

Here, we show an inductive proof that

yjzu =

u−lLSBs
k,τ (j)∑
t=0

ctx
tyj+tzl

LSBs
k,τ (j)
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holds, where c0, c1, . . . , cu−lLSBs
k,τ (j) are integers and cu−lLSBs

k,τ (j) = 1. The statement holds for u =

lLSBs
k,τ (j). We assume that the statement holds for fixed (u′, j′) and prove that the statement also
holds for (u′ + 1, j′). It follows that

yj
′
zu

′+1 = yj
′
zu

′
(1 + xy)

=

u′−lLSBs
k,τ (j′)∑
t=0

ctx
tyj

′+tzl
LSBs
k,τ (j′)

 (1 + xy)

=

u′−lLSBs
k,τ (j′)∑
t=0

ctx
tyj

′+tzl
LSBs
k,τ (j′)

+

u′−lLSBs
k,τ (j′)−1∑
t=0

ctx
tyj

′+tzl
LSBs
k,τ (j′) + xu

′−lLSBs
k,τ (j′)yu

′+j′−lLSBs
k,τ (j′)zl

LSBs
k,τ (j′)

xy

=

u′−lLSBs
k,τ (j′)∑
t=0

c′tx
tyj

′+tzl
LSBs
k,τ (j′) + xu

′−lLSBs
k,τ (j′)+1yu

′+j′−lLSBs
k,τ (j′)+1zl

LSBs
k,τ (j′),

where c′0, c
′
1, . . . , c

′
u′−lLSBs

k,τ (j)
are integers. Hence, the statement holds for all (u, j). By

using the relation, we can replace all integer linear combinations of
∑u′

u=lLSBs
k,τ (j) duy

jzu

by
∑u′

u=lLSBs
k,τ (j) d

′
ux

u−lLSBs
k,τ (j)yu+j−lLSBs

k,τ (j)zl
LSBs
k,τ (j), where dlLSBs

k,τ (j), dlLSBs
k,τ (j)+1, . . . , du′ and

d′
lLSBs
k,τ (j)

, d′
lLSBs
k,τ (j)+1

, . . . , d′u′ are integers such that du′ = d′u′ . Thus, we can replace all vari-

ables yjzu in diagonals of gBD.y
[u,j] (x, y) by xu−lLSBs

k,τ (j)yu+j−lLSBs
k,τ (j)zl

LSBs
k,τ (j). Hence, we complete the

proof.

As we claimed, the function lLSBs
k,τ (j) tells us the maximum unraveling which we can apply to

Herrmann-May’s matrix B. On the other hand, Herrmann-May’s matrix B is still triangular when
we apply less additional unraveling than the above one. For example, Herrmann-May’s matrix B
can be modified as a triangular matrix with diagonals

• Xu−lMSBs
k,τ (i)Y i−lMSBs

k,τ (i)Z lMSBs
k,τ (i)em−i for gBD.x

[u,i] (xX, yY ),

• Xu−lMSBs
k,τ (u+j)Y u+j−lMSBs

k,τ (u+j)Z lMSBs
k,τ (u+j)em−u for gBD.y

[u,j] (xX, yY ).

Here, observe that

lMSBs
k,τ (u+ j) = max

{
0,

⌈
u+ j − k

τ + 1

⌉}
≥ max

{
0,

⌈
j − k

τ

⌉}
= lLSBs

k,τ (j)

holds for (u, j) ∈ IBD.y2 since j ≤ k + τu. Hence, when we apply an unraveling by the function

lMSBs
k,τ (u + j), there are less and more Z’s in diagonals for gBD.y

[u,j] (xX, yY ) than Herrmann-May’s
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Table 6: Herrmann-May’s matrix B with additional unraveling by the function lMSBs
k,τ (u+ j) for

m = 2 and κ = 1/2, τ = 1
1 y x xy yz y2z x2 x2y xyz xy2z y2z2 y3z2

gBD.x
[0,0] e2

gBD.y
[0,1] Y e2

gBD.x
[1,0] Xe2

gBD.x
[0,1] – – XY e

gBD.y
[1,1] – Y Ze

gBD.y
[1,2] – – Y 2Ze

gBD.x
[2,0] X2e2

gBD.x
[1,1] – – – X2Y e

gBD.x
[0,2] – – – – – – – XY Z

gBD.y
[2,1] – – – – – – XY 2Z

gBD.y
[2,2] – – – – – – Y 2Z2

gBD.y
[2,3] – – – – – Y 3Z2

original matrix and a matrix with an additional unraveling by the function lLSBs
k,τ (j). We omit a

proof that a matrix with an unraveling by the function lMSBs
k,τ (u+ j) is triangular with the above

diagonals since the proof is almost the same as the that of Lemma 5. We use the matrix to explain
an overview of an unraveled linearization for our partial key exposure attacks with the MSBs in
Section 4.4.

Table 6 shows an example of the matrix with an additional unraveling by the function lMSBs
k,τ (u+

j), where the matrix has the same polynomials as Tables 4 and 5. Herrmann-May’s matrix in Table 4
has diagonals z, xz, z2, and yz2 for gBD.x

[0,1] , gBD.x
[1,1] , gBD.x

[0,2] , and gBD.y
[2,1] whereas our matrix has diagonals

xy, x2y, xyz, and xy2z for the same polynomials. Our matrix in Table 5 has diagonals xy2, x2y2,
and x2y3 for gBD.y

[1,1] , gBD.x
[0,2] , and gBD.y

[2,1] whereas our matrix in Table 6 has diagonals yz, xyz, and

xy2z for the same polynomials.

4 Partial Key Exposure Attacks with the MSBs

In this section, we propose our improved partial key exposure attack on RSA with the MSBs of d.
In Section 4.1, we formulate the attack scenario as a modular equation. In Section 4.2, we recall
previous attacks [EJMdW05, SSM10]. In Section 4.3, we propose an attack that works in the same
condition as Ernst et al.’s attack [EJMdW05] by solving modular equations. In Section 4.4, we
propose our main attack.
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4.1 Formulation

In this subsection, we formulate the attack scenario with the MSBs as modular equations. We
write a secret exponent d = Nβ as d = d0M +d1, where d0 > Nβ−δ and d1 < N δ denote the known
MSBs and the unknown LSBs of d, respectively, with an integer M := 2⌊δ logN⌋. Recall an RSA
key generation

e(d0M + d1) = 1 + ℓ(p− 1)(q − 1) = 1 + ℓ(N − p− q + 1) (4)

with an unknown integer ℓ as in Section 3.1. Let publicly computable ℓ0 = ⌊(ed0M − 1)/N⌋ be an
approximation to ℓ since

|ℓ− ℓ0| =
∣∣∣∣e(d0M + d1)− 1

N − p− q + 1
−
⌊
ed0M − 1

N

⌋∣∣∣∣
≤

∣∣∣∣e(d0M + d1)N −N − (ed0M − 1)(N − p− q + 1)

(N − p− q + 1)N
− 1

∣∣∣∣
=

∣∣∣∣ed1N − (ed0M − 1)(−p− q + 1)

(N − p− q + 1)N
− 1

∣∣∣∣
≤

∣∣∣∣ ed1
N − p− q + 1

∣∣∣∣+ ∣∣∣∣(ed0M − 1)(p+ q − 1)

(N − p− q + 1)N

∣∣∣∣+ 1

≤ N δ +Nβ−1/2 + 1.

Hence, we can bound unknown |ℓ − ℓ0| < Nγ such that γ = max{δ, β − 1/2} within a constant
factor. By taking modulo e of the equation (4), we obtain a modular polynomial

fMSBs(x, y) := 1 + (ℓ0 + x)(N + y) (mod e)

whose root is (x, y) = (ℓ − ℓ0,−p − q + 1). Absolute values of the root are bounded above by
X := Nγ and Y := N1/2 within constant factors.

4.2 Previous Works

In this subsection, we briefly recall previous attacks proposed by Ernst et al. [EJMdW05] and
Sarkar et al. [SSM10]. Ernst et al.’s attack, which solves integer equations, works when

(1) δ < 5
6 − 1

3

√
1 + 6β,

(2) δ < 3
16 and β ≤ 11

16 ,

(3) δ < 1
3 + 1

3β − 1
3

√
4β2 + 2β − 2 and β > 11

16 .

The condition (1) is the best for β < 235/512. Ernst et al.’s attack can be viewed as an extension of
the Boneh-Durfee weaker attack since the condition (1) is the same as β < (7− 2

√
7)/6 = 0.284 · · ·

for δ = β.
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Sarkar et al.’s attack, which solves the modular equation fMSBs(x, y) = 0, works in the above
condition (2). To solve the modular equation, they used shift-polynomials

gMSBs.x
[u,i] (x, y) := xu−ifMSBs(x, y)

iem−i,

gMSBs.y
[u,j] (x, y) := yjfMSBs(x, y)

uem−u.
(5)

Both shift-polynomials modulo em have the same root as the original solutions, i.e., gMSBs.x
[u,i] (ℓ −

ℓ0,−p− q + 1) = 0 (mod em) and gMSBs.y
[u,j] (ℓ− ℓ0,−p− q + 1) = 0 (mod em). They defined sets of

indices

ISSM,x := {u = 0, 1, . . . ,m; i = 0, 1, . . . ,min{u, s}} ,
ISSM,y := {u = 0, 1, . . . , s− 1; j = 1, 2, . . . , s− u} ,

and used shift-polynomials gMSBs.x
[u,i] (xX, yY ) for (u, i) ∈ ISSM,x and gMSBs.y

[u,j] (xX, yY ) for (u, j) ∈
ISSM,y to construct a triangular matrix B. The definitions of ISSM,x and ISSM,y quite differs
from Boneh-Durfee’s one although Sarkar et al. solved the similar equation. Indeed, Sarkar et al.’s
attack is not an extension of the Boneh-Durfee attack since it does not work for small d.

4.3 Revisiting Ernst et al.’s Attack by Solving Modular Equations

In this subsection, we show that by solving modular equation fMSBs(x, y) = 0 as Sarkar et al., we
can obtain an attack that works in Ernst et al.’s condition (1). We believe that a content in this
subsection will be useful to understand our improved attacks in Section 4.4.

Technically, we use the same shift-polynomials as Sarkar et al., however, we use sets of indices
IBD,x and IBD,y1 as the Boneh-Durfee weaker attack to construct a basis matrix B. Furthermore,
we employ the unraveled linearization to construct triangular matrices. Observe that the modular
polynomial

fMSBs(x, y) = 1 + (ℓ0 + x)(N + y) (mod e)

becomes the same as Boneh-Durfee’s one

fBD(w, y) = 1 + w(N + y) = 0 (mod e)

by introducing a linearized variable
w := ℓ0 + x,

where the absolute value of the solution w = ℓ is bounded above by W := Nβ within a constant
factor. Hence, our matrix construction starts from that of the Boneh-Durfee weaker attack in
Section 3.1. Then, we partially apply unraveling w = ℓ0 + x to utilize the given MSBs.

Proof of the Condition (1) of Ernst et al. As Sarkar et al., we solve the modular equation
fMSBs(x, y) = 0 and use the shift-polynomials gMSBs.x

[u,i] (w, x, y) and gMSBs.y
[u,j] (w, x, y) defined

in (5). As a lattice construction of the Boneh-Durfee weaker attack, we use shift-polynomials
gMSBs.x
[u,i] (wW,xX, yY ) for (u, i) ∈ IBD,x and gMSBs.y

[u,j] (wW,xX, yY ) for (u, j) ∈ IBD,y1, where sets
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of indices IBD,x and IBD,y1 were defined in Section 3.1, then construct a basis matrix B. As in
Lemma 2, we can construct a triangular matrix if we only use a linearized variable w and do not use
x. To utilize the given partial information and equivalently a variable x, we construct a triangular
matrix as follows.

Lemma 6. Let shift-polynomials gMSBs.x
[u,i] (w, x, y) and gMSBs.y

[u,j] (w, x, y), sets of indices IBD,x and

IBD,y1, a function lMSBs
k,0 (·) be defined as in (5), (2), and Definition 2, respectively. Let B

be a matrix whose rows consist of coefficients of gMSBs.x
[u,i] (wW,xX, yY ) for (u, i) ∈ IBD,x and

gMSBs.y
[u,j] (wW,xX, yY ) for (u, j) ∈ IBD,y1. If the shift-polynomials are ordered as

• gMSBs.x
[u′,i′] (wW,xX, yY ) ≺ gMSBs.x

[u,i] (wW,xX, yY ) for

– u′ < u,

– u′ = u, i′ < i,

• gMSBs.x
[u′,i′] (wW,xX, yY ) ≺ gMSBs.y

[u,j] (wW,xX, yY ) for u′ ≤ u,

• gMSBs.y
[u′,j′] (wW,xX, yY ) ≺ gMSBs.x

[u,i] (wW,xX, yY ) for u′ < u,

• gMSBs.y
[u′,j′] (wW,xX, yY ) ≺ gMSBs.y

[u,j] (wW,xX, yY ) for

– u′ < u,

– u′ = u, j′ < j′,

then the matrix B becomes triangular with diagonals

• W lMSBs
k,0 (i)Xu−lMSBs

k,0 (i)Y iem−i for gMSBs.x
[u,i] (wW,xX, yY ),

• W lMSBs
k,0 (u+j)Xu−lMSBs

k,0 (u+j)Y u+jem−u for gMSBs.y
[u,j] (wW,xX, yY ).

If we apply linearization ℓ0+x ⇒ w to all terms, fMSBs(x, y) = fBD(w, y) holds. Hence, a basis
matrix B is the same as that of the Boneh-Durfee weaker attack in Lemma 2. To utilize partial
information ℓ0, we apply unraveling w ⇒ ℓ0 + x and obtain a matrix as stated in Lemma 6. How
much we apply linearization/unraveling is controlled by a function lMSBs

k,0 (·).
Table 7 shows an example of the matrix that has the same polynomials as Boneh-Durfee’s

weaker matrix in Table 3. To illustrate our idea, we use the examples. Here, please replace a
variable x, a polynomial gBD.x

[u,i] and gBD.y
[u,j] in Table 3 by w, gMSBs.x

[u,i] , and gMSBs.y
[u,j] , respectively,

in mind. Boneh-Durfee’s weaker matrix has diagonals y, wy, and w2y for gMSBs.y
[0,1] , gMSBs.x

[0,1] , and

gMSBs.x
[1,1] whereas our matrix has diagonals y, xy, and x2y for the same polynomials. We apply
unravelings w ⇒ ℓ0 + x and transform the former diagonals to the latter diagonals by using the
following simple relations:

wy = (ℓ0 + x)y = ℓ0y + xy and w2y = (ℓ0 + x)2y = ℓ20y + 2ℓ0xy + x2y.
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Table 7: Matrix B for Ernst et al.’s partial key exposure attack with the MSBs for m = 2 and
κ = 1.

1 y y2 x xy xy2 wy3 x2 x2y x2y2 wxy3 w2y4

gMSBs.x
[0,0] e2

gMSBs.y
[0,1] Y e2

gMSBs.y
[0,2] Y 2e2

gMSBs.x
[1,0] Xe2

gMSBs.x
[0,1] – – – XY e

gMSBs.y
[1,1] – – – XY 2e

gMSBs.y
[1,2] – – WY 3e

gMSBs.x
[2,0] X2e2

gMSBs.x
[1,1] – – – X2Y e

gMSBs.x
[0,2] – – – – – – – – X2Y 2

gMSBs.y
[2,1] – – – – – – – WXY 3

gMSBs.y
[2,2] – – – – – W 2Y 4

The relation suggests that all integer linear combinations of (y, wy) and (y, wy,w2y) can be rewrit-
ten as those of (y, xy) and (y, xy, x2y), respectively. Hence, the matrix is still triangular even if
we apply the unravelings. Here, we want to claim that integer linear combinations of (wy) and
(wy,w2y) cannot be rewritten as those of (xy) and (xy, x2y), respectively. To apply the above
unraveling, the existence of y is essential. Without the variable y, we cannot replace wy and w2y
by xy and x2y, respectively. However, if wy exists, we can replace w2y by wxy since

w2y = w(ℓ0 + x)y = ℓ0wy + wxy.

Therefore, we define the function lMSBs
k,0 (·) so that wlMSBs

k,0 (iy)yiy exists, however,

wlMSBs
k,0 (iy)−1yiy , wlMSBs

k,0 (iy)−2yiy , · · · do not exist in Boneh-Durfee’s weaker matrix
B. In other words, in the set of indices IBD.y1, there are indices (u, u + j) =
(lMSBs
k,0 (u′ + j′), u′ + j′), (lMSBs

k,0 (u′ + j′) + 1, u′ + j′), . . . , (m,u′ + j′) whereas no (u, u + j) =

(0, u′+ j′), (1, u′+ j′), . . . , (lMSBs
k,0 (u′+ j′)− 1, u′+ j′) for a fixed u′+ j′. The fact follows from that

• k < j′ for u < lMSBs
k,0 (u+ j′) since u < u+ j′ − k holds,

• k ≥ j′ for u ≥ lMSBs
k,0 (u+ j′) since u ≥ u+ j′ − k holds.

Therefore, the function lMSBs
k,0 (·) tells us the maximum unraveling which we can apply.

Proof of Lemma 6. From Lemma 2, it is straightforward that we can prove the shift-polynomials
in Lemma 6 derive a triangular basis matrix with diagonals
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• W uY iem−i for gMSBs.x
[u,i] (wW,xX, yY ),

• W uY u+jem−u for gMSBs.y
[u,j] (wW,xX, yY ).

We apply unraveling w = ℓ0 + x to each variable of the above matrix. Since the diagonals of
gMSBs.x
[u,i] (wW,xX, yY ) for4 (u, i) = (lMSBs

k,0 (i), i) and those of gMSBs.y
[u,j] (wW,xX, yY ) for (u, u+ j) =

(lMSBs
k,0 (u+ j), u+ j) are the same between Lemmas 2 and 6, we focus on the other variables5

• wlMSBs
k,0 (iy)xu−lMSBs

k,0 (iy)yiy for iy = 0, 1, . . . ,m+ k;u = lMSBs
k,0 (iy) + 1, lMSBs

k,0 (iy) + 2, . . . ,m.

We want to claim that a matrix B is still triangular when all variables wuyiy are replaced by

wlMSBs
k,0 (iy)xu−lMSBs

k,0 (iy)yiy .
Here, we show an inductive proof that

wu =

u−lMSBs
k,0 (iy)∑
t=0

ctw
lMSBs
k,0 (iy)xt

holds, where c0, c1, . . . , cu−lMSBs
k,0 (iy)

are integers and cu−lMSBs
k,0 (iy)

= 1. The statement holds for

u = lMSBs
k,0 (iy). We assume that the statement holds for fixed u = u′ and prove that the statement

also holds for u = u′ + 1. It follows that

wu′+1 = wu′
(ℓ0 + x)

=

u′−lMSBs
k,0 (i′y)∑
t=0

ctw
lMSBs
k,0 (i′y)xt

 (ℓ0 + x)

=

u′−lMSBs
k,0 (i′y)∑
t=0

ctℓ0w
lMSBs
k,0 (i′y)xt +

u′−lMSBs
k,0 (i′y)−1∑

t=0

ctw
lMSBs
k,0 (i′y)xt + wlMSBs

k,0 (i′y)xu
′−lMSBs

k,0 (i′y)

x

=

u′−lMSBs
k,0 (i′y)∑
t=0

c′tw
lMSBs
k,0 (i′y)xt + wlMSBs

k,0 (i′y)xu
′−lMSBs

k,0 (i′y)+1,

where c′0, c
′
1, . . . , c

′
u′−lMSBs

k,0 (i′y)
are integers. Hence, the statement holds for all (u, iy). By

using the relation, we can replace all integer linear combinations of
∑u′

u=lMSBs
k,0 (iy)

duw
uyiy

by
∑u′

u=lMSBs
k,0 (iy)

d′uw
lMSBs
k,0 (iy)xu−lMSBs

k,0 (iy)yiy , where dlMSBs
k,0 (iy)

, dlMSBs
k,0 (iy)+1, . . . , du′ and

d′
lMSBs
k,0 (iy)

, d′
lMSBs
k,0 (iy)+1

, . . . , d′u′ are integers such that du′ = d′u′ . Thus, we can replace all

variables wuyiy by wlMSBs
k,0 (iy)xu−lMSBs

k,0 (iy)yiy . Hence, we complete the proof.

4 When k > 0, there is an index (u, i) ∈ IBD.x such that u = lMSBs
k,0 (i) only for (u, i) = (0, 0).

5These variables are diagonals for both gMSBs.x
[u,i] (wW,xX, yY ) and gMSBs.y

[u,j] (wW,xX, yY ).
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To obtain the bound (i), we compute a dimension

n =
∑

(u,i)∈IBD,x

1 +
∑

(u,j)∈IBD,y1

1 =

(
1

2
+ κ

)
m2 + o(m2),

and a determinant det(B) = W sWXsXY sY ese , where

sW =
∑

(u,i)∈IBD,x

lMSBs
k,0 (i) +

∑
(u,j)∈IBD,y1

lMSBs
k,0 (u+ j) =

1

6
m3 + o(m3),

sX =
∑

(u,i)∈IBD,x

(
u− lMSBs

k,0 (i)
)
+

∑
(u,j)∈IBD,y1

(
u− lMSBs

k,0 (u+ j)
)
=

(
1

6
+

κ

2

)
m3 + o(m3),

sY =
∑

(u,i)∈IBD,x

i+
∑

(u,j)∈IBD,y1

(u+ j) =
(1 + κ)3 − κ3

6
m3 + o(m3),

se =
∑

(u,i)∈IBD,x

(m− i) +
∑

(u,j)∈IBD,y1

(m− u) =

(
1

3
+

κ

2

)
m3 + o(m3).

New polynomials which are derived from outputs of the LLL algorithm satisfy Howgrave-Graham’s
lemma when (det(B))1/n < em, i.e.,

β
1

6
+ γ

(
1

6
+

κ

2

)
+

1

2

(
(1 + κ)3 − κ3

6

)
+

1

3
+

κ

2
<

1

2
+ κ,

by omitting small terms. To maximize the right hand side of the inequality, we set

κ =
1− 2γ

2

and obtain an inequality

12γ2 − 20γ + 7− 8β > 0.

By solving the inequality, we obtain the condition (1) of Ernst et al.’s attack

δ <
5− 2

√
1 + 6β

6

since γ = δ holds. Hence, we conclude the proof.

4.4 Our Attack

In this subsection, we propose our improved partial key exposure attacks with the MSBs of d.
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Theorem 1. Given a public key (N, e) of RSA such that e is full size and d = Nβ along with
d0 > Nβ−δ which is the MSBs of d, if N is sufficiently large and polynomials output by the LLL
will not vanish, then there is a polynomial time factorization algorithm for N when

(i) δ <
1 + β −

√
−1 + 6β − 3β2

2
and β ≤ 1

2
,

(ii) 6γσ − 3σ2 + 2σ3 <
(σ − 2(β − γ))3

2 + 2γ − 4β
, σ = 1− 2β − 1

1− 2
√
1 + γ − 2β

, and
1

2
< β ≤ 9

16
.

The attack is an appropriate extension of the Boneh-Durfee stronger attack in the sense that
the first bound (i) of Theorem 1 is β < 1 − 1/

√
2 for δ = β. We obtain the improved attack by

modifying a polynomial selection for the same shift-polynomials as Sarkar et al. [SSM10].
At first, we focus on the first condition (i) for β ≤ 1/2.

Proof of the Condition (i) of Theorem 1. As Sarkar et al., we solve the modular equation
fMSBs(x, y) = 0 and use the shift-polynomials gMSBs.x

[u,i] (w, x, y) and gMSBs.y
[u,j] (w, x, y) defined in

(5). As a lattice construction of the Boneh-Durfee stronger attack, we use shift-polynomials
gMSBs.x
[u,i] (wW,xX, yY ) for (u, i) ∈ IBD,x and gMSBs.y

[u,j] (wW,xX, yY ) for (u, j) ∈ IBD,y2, where sets
of indices IBD,x and IBD,y2 were defined in Section 3.1, then construct a basis matrix B. As in
Lemma 5, we can construct a triangular matrix if we only use w along with a linearized variable

z := 1 + wy = 1 + (ℓ0 + x)y,

where the absolute value of the root is bounded above by Z := Nβ+1/2 within a constant factor, and
do not use x. To utilize the given partial information and equivalently a variable x, we construct
a triangular matrix as follows.

Lemma 7. Let shift-polynomials gMSBs.x
[u,i] (w, x, y) and gMSBs.y

[u,j] (w, x, y), sets of indices IBD,x and

IBD,y2, a function lMSBs
k,τ (x) be defined as in (5), (3), and Definition 2, respectively. Let B

be a matrix whose rows consist of coefficients of gMSBs.x
[u,i] (wW,xX, yY ) for (u, i) ∈ IBD,x and

gMSBs.y
[u,j] (wW,xX, yY ) for (u, j) ∈ IBD,y2. If the shift-polynomials are ordered as the same way in
Lemma 6, then the matrix B becomes triangular with diagonals

• Xu−lMSBs
k,τ (i)Y i−lMSBs

k,τ (i)Z lMSBs
k,τ (i)em−i for gMSBs.x

[u,i] (wW,xX, yY ),

• Xu−lMSBs
k,τ (u+j)Y u+j−lMSBs

k,τ (u+j)Z lMSBs
k,τ (u+j)em−u for gMSBs.y

[u,j] (wW,xX, yY ).

If we apply linearization ℓ0+x ⇒ w to all terms, fMSBs(x, y) = fBD(w, y) holds. Hence, a basis
matrix B is the same as that of the Boneh-Durfee stronger attack. To utilize partial information
ℓ0, we apply unraveling w ⇒ ℓ0 + x and obtain a matrix as stated in Section 3.3. How much we
apply linearization/unraveling is controlled by a function lMSBs

k,τ (·).
Table 8 shows an example of the matrix that has the same polynomials as Boneh-Durfee’s

stronger matrix with additional unravelings in Table 6. To illustrate our idea, we use the examples.
Here, please replace a variable x, a polynomial gBD.x

[u,i] and gBD.y
[u,j] in Table 6 by w, gMSBs.x

[u,i] , and
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Table 8: Our matrixB of a partial key exposure attack with the MSBs form = 2 and κ = 1/2, τ = 1.

1 y x xy yz y2z x2 x2y xyz xy2z y2z2 y3z2

gMSBs.x
[0,0] e2

gMSBs.y
[0,1] Y e2

gMSBs.x
[1,0] Xe2

gMSBs.x
[0,1] – – – XY e

gMSBs.y
[1,1] – – Y Ze

gMSBs.y
[1,2] – – Y 2Ze

gMSBs.x
[2,0] X2e2

gMSBs.x
[1,1] – – – X2Y e

gMSBs.x
[0,2] – – – – – – – XY Z

gMSBs.y
[2,1] – – – – – – XY 2Z

gMSBs.y
[2,2] – – – – – – Y 2Z2

gMSBs.y
[2,3] – – – – – Y 3Z2

gMSBs.y
[u,j] , respectively, in mind. The matrix in Table 6 has diagonals w,wy,w2, w2y, w2y2, and w2y3

for gMSBs.x
[1,0] , gMSBs.x

[0,1] , gMSBs.x
[2,0] , gMSBs.x

[1,1] , gMSBs.x
[0,2] , and gMSBs.y

[2,1] whereas our matrix has diagonals

x, xy, x2y, xyz, and xy2z for the same polynomials. We apply unravelings w ⇒ ℓ0+x and transform
the former diagonals to the latter diagonals. Here, we use the same relation which was used in
Lemma 6. Hence, the core of a proof of Lemma 7 is the similar to that of Lemma 6.

Proof of Lemma 7. From the discussion at the end of Section 3.3, it is straightforward that we can
prove the shift-polynomials in Lemma 7 derive a triangular basis matrix with diagonals

• W u−lMSBs
k,τ (i)Y i−lMSBs

k,τ (i)Z lMSBs
k,τ (i)em−i for gMSBs.x

[u,i] (wW,xX, yY ),

• W u−lMSBs
k,τ (u+j)Y u+j−lMSBs

k,τ (u+j)Z lMSBs
k,τ (u+j)em−u for gMSBs.y

[u,j] (wW,xX, yY ).

We apply unraveling w ⇒ ℓ0 + x to each variable of the above matrix. Since

wiw = (ℓ0 + x)iw =

iw∑
t=0

ctw
iw−txt (6)

holds, where c0, c1, . . . , ciw are integers and ciw = 1, we can replace all integer linear combinations of∑u−lMSBs
k,τ (iy+iz)

iw=0 diww
iwyiyziz by

∑u−lMSBs
k,τ (iy+iz)

ix=0 d′ixx
ixyiyziz , where d0, d1, . . . , du−lMSBs

k,τ (iy+iz)
and

d′0, d
′
1, . . . , d

′
u−lMSBs

k,τ (iy+iz)
are integers such that du−lMSBs

k,τ (iy+iz)
= d′

u−lMSBs
k,τ (iy+iz)

. Thus, we can

replace all the above variables by those of Lemma 7. Hence, we complete the proof.
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To make use of the given MSBs d0, we set

κ = 2(β − γ) and τ = 1 + 2γ − 4β

and use the set of indices IBD.y2 by following the lemma.

Lemma 8. In the matrix B of Lemma 7, polynomials gMSBs.y
[u,j] (x, y) are helpful if and only if

j ≤ 2(β − γ)m+ (1 + 2γ − 4β)u for all u.

Proof of Lemma 8. Let gMSBs.y
[u′,j′] (x, y) be a polynomial with fixed indices (u′, j′) such that

u′ = lMSBs
k,τ (u′ + j′),

andB′ be a matrix that is a matrixB without the polynomial gMSBs.y
[u′,j′] (x, y). As stated in Lemma 7,

diagonals of the polynomial gMSBs.y
[u′,j′] (x, y) in B is

Y j′Zu′
em−u′

.

Furthermore, diagonals of polynomials

gMSBs.y
[u′+1,j′−1](x, y), g

MSBs.y
[u′+2,j′−2](x, y), . . . , g

MSBs.y
[u′+j′−1,1](x, y)

and
gMSBs.x
[u′+j′,u′+j′](x, y), g

MSBs.x
[u′+j′+1,u′+j′](x, y), . . . , g

MSBs.x
[m,u′+j′](x, y)

in B are
XY j′Zu′

em−u′−1, X2Y j′Zu′
em−u′−2, . . . , Xj′−1Y j′Zu′

em−u′−j′+1

and
Xj′Y j′Zu′

em−u′−j′ , Xj′+1Y j′Zu′
em−u′−j′ , . . . , Xm−u′

Y j′Zu′
em−u′−j′ .

On the other hand, by following the proof of Lemma 7, diagonals of the same polynomials in B′

are
Y j′−1Zu′+1em−u′−1, XY j′−1Zu′+1em−u′−2, . . . , Xj′−2Y j′−1Zu′+1em−u′−j′+1

and

Xj′−1Y j′−1Zu′+1em−u′−j′ , Xj′Y j′−1Zu′+1em−u′−j′ , . . . , Xm−u′−1Y j′−1Zu′+1em−u′−j′ .

Hence,

det(B)

det(B′)
= Y j′Zu′

em−u′ ·
(
XY

Z

)m−u′

that is smaller than or equal to the modulus em if and only if

Y j′Zu′
em−u′ ·

(
XY

Z

)m−u′

≤ em ⇔ Y j′Zu′ ·
(
XY

Z

)m−u′

≤ eu
′
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⇔ Xm−u′
Y j′+m−u′

Z2u′−m ≤ eu
′

⇔ γ(m− u′) +
1

2

(
j′ +m− u′

)
+

(
β +

1

2

)
(2u′ −m) ≤ u′

⇔ j′ ≤ 2(β − γ)m+ (1 + 2γ − 4β)u′.

Hence, we conclude the proof.

To obtain the bound (i) of Theorem 1, we compute a dimension

n =
∑

(u,i)∈IBD,x

1 +
∑

(u,j)∈IBD,y2

1 =

(
1

2
+ 2(β − γ) +

1 + 2γ − 4β

2

)
m2 + o(m2),

and a determinant det(B) = XsXY sY ZsZese , where

sX =
∑

(u,i)∈IBD,x

(
u− lMSBs

k,τ (i)
)
+

∑
(u,j)∈IBD,y2

(
u− lMSBs

k,τ (u+ j)
)

=

(
1

6
+ (β − γ) +

1 + 2γ − 4β

6

)
m3 + o(m3),

sY =
∑

(u,i)∈IBD,x

(
i− lMSBs

k,τ (i)
)
+

∑
(u,j)∈IBD,y2

(
u+ j − lMSBs

k,τ (u+ j)
)

=

(
(β − γ) + 2(β − γ)2 + (β − γ)(1 + 2γ − 4β) +

1 + 2γ − 4β

6
+

(1 + 2γ − 4β)2

6

)
m3 + o(m3),

sZ =
∑

(u,i)∈IBD,x

lMSBs
k,τ (i) +

∑
(u,j)∈IBD,y2

lMSBs
k,τ (u+ j) =

(
1

6
+

1 + 2γ − 4β

6

)
m3 + o(m3),

se =
∑

(u,i)∈IBD,x

(m− i) +
∑

(u,j)∈IBD,y2

(m− u) =

(
1

3
+ (β − γ) +

1 + 2γ − 4β

6

)
m3 + o(m3).

New polynomials which are derived from outputs of the LLL algorithm satisfy Howgrave-Graham’s
lemma when (det(B))1/n < em. By omitting small terms, we obtain an inequality

2γ2 − 2(1 + β)γ + 2β2 − 2β + 1 > 0.

By solving the inequality, we obtain the first bound (i) of Theorem 1

δ <
1 + β −

√
−1 + 6β − 3β2

2

since γ = δ holds. Hence, we conclude the proof.

Before providing a proof of the second condition (ii) of Theorem 1, we explain that the set of
indices

IBD.y2 = {u = 0, 1, . . . ,m; j = 1, 2, . . . , 2(β − γ)m+ ⌊(1 + 2γ − 4β)u⌋}
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which was used for the condition (i) to select shift-polynomials gMSBs.y
[u,j] (x, y) is not useful for β >

1/2. Observe that an upper bound of j is negative for large u since 2(β−γ)m+⌊(1+2γ−4β)m⌋ <
(1 − 2β)m < 0 for β > 1/2. A naive modification is replacing the upper bound by max{0, 2(β −
γ)m + ⌊(1 + 2γ − 4β)u⌋}. However, in this case, there are useless polynomials gMSBs.x

[u,i] (x, y)

for (u, i) ∈ IBD.x. In particular, shift-polynomials gMSBs.x
[u′,i′] (x, y) for large u′ contributed to the

matrix B to be triangular. However, if there are no gMSBs.y
[u,j] (x, y) for the same u′, the matrix B

becomes triangular without the polynomials gMSBs.x
[u′,i′] (x, y) and the polynomials degrade the quality

of B. Hence, some polynomials gMSBs.x
[u,i] (x, y) for large u should be omitted from the above matrix

B. On the other hand, we cannot omit all such polynomials gMSBs.x
[u,i] (x, y) since the polynomials

gMSBs.x
[u′,i′] (x, y) for small i′ contributed for polynomials gMSBs.y

[u,j] (x, y) for i′ = u+ j to be helpful by
following the proof of Lemma 8.

Thus, we modify definition of sets of indices such as

IMSBs.x := {u = 0, 1, . . . ,m; i = 0, 1, . . . ,min{u, s}},
IMSBs.y := {u = 0, 1, . . . , s− 1; j = 1, 2, . . . ,min{k + ⌊τu⌋, s− u}}

(7)

with an additional parameter σ := s/m. As the case for β ≤ 1/2, all shift-polynomials gMSBs.y
[u,j] (x, y)

for (u, j) ∈ IMSBs.y are helpful. The core trick of the modification is that although the polynomials

gMSBs.y
[u,s−u+1](x, y), g

MSBs.y
[u,s−u+2](x, y), . . . , g

MSBs.y
[u,k+⌊τu⌋](x, y)

are helpful, we do not use them. To be precise, let j′ = k + ⌊τu′⌋. Then, for the polynomial
gMSBs.y
[u′,j′] (x, y) whose corresponding diagonal is W u′

Y u′+j′em−u′
to be helpful, we should also use

polynomials

gMSBs.y
[u′+1,j′−1](x, y), g

MSBs.y
[u′+2,j′−2](x, y), . . . , g

MSBs.y
[u′+j′−1,1](x, y)

and

gMSBs.x
[u′+j′,u′+j′](x, y), g

MSBs.x
[u′+j′+1,u′+j′](x, y), . . . , g

MSBs.x
[m,u′+j′](x, y)

whose corresponding diagonals in a matrix B are

W u′
XY u′+j′em−u′−1,W u′

X2Y u′+j′em−u′−2, . . . ,W u′
Xj′−1Y u′+j′em−u′−j′+1,

and

W u′
Xj′Y u′+j′em−u′−j′ ,W u′

Xj′+1Y u′+j′em−u′−j′ , . . . ,W u′
Xm−u′

Y u′+j′em−u′−j′ .

When the diagonal W u′
Y u′+j′em−u′

of helpful gMSBs.y
[u′,j′] (x, y) is close to em, a set of the polynomials

may degrade the quality of the matrix B since other diagonals are large. Hence, we introduce a
parameter σ = s/m to verify whether the set of polynomials is helpful or not.
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Proof of the Condition (ii) of Theorem 1. As Sarkar et al. and the condition (i) of Theorem 1,
we solve the modular equation fMSBs(x, y) = 0 and use the shift-polynomials gMSBs.x

[u,i] (w, x, y) and

gMSBs.y
[u,j] (w, x, y) defined in (5). We use shift-polynomials gMSBs.x

[u,i] (wW,xX, yY ) for (u, i) ∈ IMSBs,x

and gMSBs.y
[u,j] (wW,xX, yY ) for (u, j) ∈ IMSBs,y, where sets of indices IMSBs,x and IMSBs,y were

defined in (7), then construct a basis matrix B. As in Section 4.3, we construct a triangular matrix
with a linearized variable

w := ℓ0 + x,

where the absolute value of the root is bounded above by W := Nβ within a constant factor. To
utilize the given partial information and equivalently a variable x, we construct a triangular matrix
as follows.

Lemma 9. Let shift-polynomials gMSBs.x
[u,i] (w, x, y) and gMSBs.y

[u,j] (w, x, y), sets of indices IMSBs,x

and IMSBs,y, a function lMSBs
k,τ (x) be defined as in (5), (7), and Definition 2, respectively. Let B

be a matrix whose rows consist of coefficients of gMSBs.x
[u,i] (wW,xX, yY ) for (u, i) ∈ IMSBs,x and

gMSBs.y
[u,j] (wW,xX, yY ) for (u, j) ∈ IMSBs,y. If the shift-polynomials are ordered as the same way in
Lemmas 6 and 7, then the matrix B becomes triangular with diagonals

• W lMSBs
k,τ (i)Xu−lMSBs

k,τ (i)Y iem−i for gMSBs.x
[u,i] (wW,xX, yY ),

• W lMSBs
k,τ (u+j)Xu−lMSBs

k,τ (u+j)Y u+jem−u for gMSBs.y
[u,j] (wW,xX, yY ).

We omit a detailed proof of Lemma 9. It is almost trivial that the matrix becomes triangular
with diagonals

• W uY iem−i for gMSBs.x
[u,i] (wW,xX, yY ),

• W uY u+jem−u for gMSBs.y
[u,j] (wW,xX, yY ).

Then, by using the same relation (6) as the proof of Lemma 7, we obtain the matrix as stated in
Lemma 9.

Due to Lemma 8, we set

κ = 2(β − γ) and τ = 1 + 2γ − 4β

for all shift-polynomials gMSBs.y
[u,j] to be helpful.

To obtain the bound (ii) of Theorem 1, we compute a dimension

n =
∑

(u,i)∈IMSBs,x

1 +
∑

(u,j)∈IMSBs,y

1 =

(
σ − (σ − 2(β − γ))2

2(2 + 2γ − 4β)

)
m2 + o(m2),

and a determinant det(B) = W sWXsXY sY ese , where

sW =
∑

(u,i)∈IMSBs,x

lMSBs
k,τ (i) +

∑
(u,j)∈IMSBs,y

lMSBs
k,τ (u+ j)
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=

(
(σ − 2(β − γ))2

2(2 + 2γ − 4β)
− (σ − 2(β − γ))3

3(2 + 2γ − 4β)2

)
m3 + o(m3),

sX =
∑

(u,i)∈IMSBs,x

(
u− lMSBs

k,τ (i)
)
+

∑
(u,j)∈IMSBs,y

(
u− lMSBs

k,τ (u+ j)
)

=

(
σ

2
− (σ − 2(β − γ))3

6(2 + 2γ − 4β)2

)
m3 − sW + o(m3),

sY =
∑

(u,i)∈IMSBs,x

i+
∑

(u,j)∈IMSBs,y

(u+ j)

=

(
σ3 − 8(β − γ)3

6(2 + 2γ − 4β)
+

σ2

2

(
1− σ − 2(β − γ)

2 + 2γ − 4β

))
m3 + o(m3),

se =
∑

(u,i)∈IMSBs,x

(m− i) +
∑

(u,j)∈IMSBs,y

(m− u)

=

(
σ − σ2

2
+

σ3

6
− (σ − 2(β − γ))2

2(2 + 2γ − 4β)
+

(σ − 2(β − γ))3

6(2 + 2γ − 4β)2

)
m3 + o(m3).

New polynomials which are derived from outputs of the LLL algorithm satisfy Howgrave-Graham’s
lemma when (det(B))1/n < em. By omitting small terms, we obtain an inequality

6γσ − 3σ2 + 2σ3 <
(σ − 2(β − γ))3

2 + 2γ − 4β
.

To maximize the right hand side of the inequality, we set

σ = 1− 2β − 1

1− 2
√
1 + γ − 2β

and obtain the condition (ii) of Theorem 1. Hence, we conclude the proof.

5 Partial Key Exposure Attacks with the LSBs

In this section, we propose our improved partial key exposure attack on RSA with the LSBs of d.
In Section 5.1, we formulate the attack scenario as a modular equation. In Section 5.2, we recall
previous attacks [BM03, EJMdW05, Aon09]. In Section 5.3, we propose our main attack.

5.1 Formulation

In this subsection, we formulate the attack scenario with the LSBs as modular equations. We write
a secret exponent d = Nβ as d = d1M +d0, where d0 > Nβ−δ and d1 < N δ denote the known LSBs
and the unknown MSBs of d, respectively, with an integer M := 2⌊(β−δ) logN⌋. Recall an RSA key
generation

e(d1M + d0) = 1 + ℓ(p− 1)(q − 1) = 1 + ℓ(N − p− q + 1) (8)
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with an unknown integer ℓ as in Sections 3.1 and 5.1. By taking modulo eM of the equation (8),
we obtain a modular polynomial

fLSBs(x, y) := 1− ed0 + x(N + y) (mod eM)

whose root is (x, y) = (ℓ,−p− q + 1). Absolute values of the root are bounded above by X := Nβ

and Y := N1/2 within constant factors.

5.2 Previous Works

In this subsection, we briefly recall previous attacks proposed by Ernst et al. [EJMdW05], Blömer
and May [BM03], and Aono [Aon09]. Ernst et al.’s attack, which solves integer equations, works
when

• δ < 5
6 − 1

3

√
1 + 6β.

Ernst et al.’s attack can be viewed as an extension of the Boneh-Durfee weaker attack since the
condition is the same as β < (7− 2

√
7)/6 = 0.284 · · · for δ = β.

We can obtain the same condition by solving a modular equation fLSBs(x, y) = 0, where the
construction is similar to Blömer and May’s attack [BM03] which focused on partial key exposure
attacks with large d and small e. To solve the modular equation, Blömer and May used shift-
polynomials

gLSBs.x
[u,i] (x, y) := xu−ifLSBs(x, y)

i(eM)m−i,

gLSBs.BM
[u,j] (x, y) := yjfLSBs(x, y)

u(eM)m−u.
(9)

Both shift-polynomials modulo (eM)m have the same root as the original solutions, i.e.,
gLSBs.x
[u,i] (ℓ,−p−q+1) = 0 (mod (eM)m) and gLSBs.BM

[u,j] (ℓ,−p−q+1) = 0 (mod (eM)m). They used

shift-polynomials gLSBs.x
[u,i] (xX, yY ) for (u, i) ∈ IBD,x and gLSBs.BM

[u,j] (xX, yY ) for (u, j) ∈ IBD,y1 to
construct a triangular matrix B as the Boneh-Durfee weaker attack. We can obtain Ernst et al’s
condition by using the matrix.

To improve Ernst et al.’s attack by solving the same modular equation fLSBs(x, y) = 0 as
Blömer and May, Aono [Aon09] used the other modular polynomial

fBD(x, y) = 1 + x(N + y) (mod e)

which we can obtain by taking modulo e of the equation (8) along with a shift-polynomial

gLSBs.Aon
[u,j] (x, y) := gBD.y

[u,j] (x, y) ·Mm = yjfBD(x, y)
uem−uMm. (10)

The shift-polynomial modulo (eM)m have the same root as the original solutions, i.e.,
gLSBs.Aon
[u,j] (ℓ,−p− q + 1) = 0 (mod (eM)m). Aono defined a set of indices

IAon := {u = 0, 1, . . . ,m; j = 1, 2, . . . , ⌊τu⌋} \ IBD.y1 (11)
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Table 9: Aono’s matrix B of a partial key exposure attack with the LSBs for m = 2 and κ =
1/2, τ = 1.

1 y x xy xy2 y2z x2 x2y x2y2 x2y3 y2z2 y3z2

gLSBs.x
[0,0] (eM)2

gLSBs.y
[0,1] Y (eM)2

gLSBs.x
[1,0] X(eM)2

gLSBs.x
[0,1] – – XY eM

gLSBs.y
[1,1] – – XY 2eM

gLSBs.y
[1,2] – Y 2ZeM2

gLSBs.x
[2,0] X2(eM)2

gLSBs.x
[1,1] – – X2Y eM

gLSBs.x
[0,2] – – – – – X2Y 2

gLSBs.y
[2,1] – – – – – X2Y 3

gLSBs.y
[2,2] – – – Y 2Z2M2

gLSBs.y
[2,3] – – – Y 3Z2M2

and used shift-polynomials gLSBs.x
[u,i] (xX, yY ) for (u, i) ∈ IBD,x, gLSBs.BM

[u,j] (xX, yY ) for (u, j) ∈
IBD,y1, and gLSBs.Aon

[u,j] (xX, yY ) for (u, j) ∈ IAon to construct a non-triangular matrix B.
Aono claimed that the matrix B is not triangular. However, we find that by utilizing an

unraveled linearization with a linearized variable

z := 1 + xy

and the matrix becomes triangular. Table 9 shows an example of the triangular matrix.

Lemma 10. Let shift-polynomials gLSBs.x
[u,i] (x, y) and gLSBs.BM

[u,j] (x, y), and gLSBs.Aon
[u,j] (x, y), sets of

indices IBD,x and IBD,y1, IAon and be defined as in (9), (10), (2), and (11), respectively. Let B be a
matrix whose rows consist of coefficients of gLSBs.x

[u,i] (xX, yY ) for (u, i) ∈ IBD,x, g
LSBs.BM
[u,j] (xX, yY )

for (u, j) ∈ IBD,y1, and gLSBs.Aon
[u,j] (xX, yY ) for (u, j) ∈ IAon. If the shift-polynomials are ordered

as

• gLSBs.x
[u,i] (xX, yY ) ≺ gLSBs.BM

[u,j] (xX, yY ) ≺ gLSBs.Aon
[u,j] (xX, yY, zZ),

• gLSBs.x
[u′,i′] (xX, yY ) ≺ gLSBs.x

[u,i] (xX, yY ) for

– u′ < u,

– u′ = u, i′ < i,

• gLSBs.y1
[u′,i′] (xX, yY ) ≺ gLSBs.BM

[u,j] (xX, yY ) for

– u′ < u,
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– u′ = u, j′ < j,

• gLSBs.y2
[u′,i′] (xX, yY, zZ) ≺ gLSBs.Aon

[u,j] (xX, yY, zZ) for

– u′ < u,

– u′ = u, j′ < j,

then the matrix B becomes triangular with diagonals

• XuY i(eM)m−i for gLSBs.x
[u,i] (xX, yY ),

• XuY u+j(eM)m−u for gLSBs.BM
[u,j] (xX, yY ),

• Y jZuem−uMm for gLSBs.Aon
[u,j] (xX, yY, zZ).

We omit a proof of Lemma 10 since it is almost straightforward from Herrmann-May’s ma-
trix [HM10].

Aono improved Ernst et al.’s attack for β < (9 −
√
21)/12. In other words, Aono interpolated

the Boneh-Durfee stronger attack and Blömer-May’s attack. The set IBD.x is common among
the three attacks. Recall the definition IBD,y1 := {u = 0, 1, . . . ,m; j = 1, 2, . . . , k} in (2). Aono’s
matrix for k = 0 is the same as that of the Boneh-Durfee stronger attack since IBD.y2 = ∅ and6

IAon = IBD.y2. Aono’s matrix for τ < κ = k/m is the same as that of Blömer-May’s attack since
IAon = ∅.

5.3 Our Attack

In this subsection, we propose our improved partial key exposure attacks with the LSBs of d.

Theorem 2. Given a public key (N, e) of RSA such that e is full size and d = Nβ along with
d0 > Nβ−δ which is the LSBs of d, if N is sufficiently large and polynomials output by the LLL
will not vanish, then there is a polynomial time factorization algorithm for N when

δ <
1 + β −

√
−1 + 6β − 3β2

2
and β ≤ 9−

√
21

12
.

The attack is an appropriate extension of the Boneh-Durfee stronger attack in the sense that
the bound of Theorem 2 is β < 1− 1/

√
2 = 0.292 · · · for δ = β. We obtain the improved attack by

introducing a new shift-polynomial

gLSBs.y
[u,j] (x, y) := gLSBs.BM

[u−lLSBs
k,τ (j),j]

(x, y) · (fBD(x, y)/e)
lLSBs
k,τ (j)

= gLSBs.Aon
[lLSBs
k,τ (j),j]

(x, y) · (fLSBs(x, y)/(eM))u−lLSBs
k,τ (j)

= yjfLSBs(x, y)
u−lLSBs

k,τ (j)fBD(x, y)
lLSBs
k,τ (j)em−uMm−(u−lLSBs

k,τ (j)),

(12)

6Here, we use the fact that k = 0 in IBD.y2 when we optimize κ = k/m.
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where the function lLSBs
k,τ (·) was defined in Definition 2. The shift-polynomial modulo (eM)m have

the same root as the original solutions, i.e., gLSBs.y
[u,j] (ℓ,−p − q + 1) = 0 (mod (eM)m). The shift-

polynomial gLSBs.BM
[u−lLSBs

k,τ (j),j]
and gLSBs.Aon

[lLSBs
k,τ (j),j]

(x, y) is a special case of gLSBs.y
[u,j] (x, y) for lLSBs

k,τ (j) = 0

and lLSBs
k,τ (j) = u, respectively. As opposed to Blömer-May’s matrix, we can exploit the structure

of Boneh-Durfee’s stronger matrix by using the polynomial fBD(x, y), where the same trick was
already used by Aono. Furthermore, as opposed to Aono, we can reduce powers of M by using
the polynomial fLSBs(x, y). The function lLSBs

k,τ (·) is used to construct a triangular matrix with
minimum powers of M .

Proof of Theorem 2. As a lattice construction of the Boneh-Durfee stronger attack, we use shift-
polynomials gLSBs.x

[u,i] (xX, yY ) for (u, i) ∈ IBD,x and gLSBs.y
[u,j] (xX, yY, zZ) for (u, j) ∈ IBD,y2, where

sets of indices IBD,x and IBD,y2 were defined in Section 3.1, then construct a basis matrix B. As
in Lemma 5, to construct a triangular matrix, we use a linearized variable

z := 1 + xy,

where the absolute value of the root is bounded above by Z := Nβ+1/2 within a constant factor. To
utilize as many given partial information as possible, we construct a triangular matrix as follows.

Lemma 11. Let shift-polynomials gLSBs.x
[u,i] (x, y), gLSBs.y

[u,j] (x, y), sets of indices IBD,x and IBD,y2, a

function lLSBs
k,τ (x) be defined as in (9), (12), (3), and Definition 2, respectively. Let B be a matrix

whose rows consist of coefficients of gLSBs.x
[u,i] (xX, yY ) for (u, i) ∈ IBD,x, g

LSBs.y
[u,j] (xX, yY, zZ) for

(u, j) ∈ IBD,y2, and If the shift-polynomials are ordered as

• gLSBs.x
[u,i] (xX, yY ) ≺ gLSBs.y

[u,j] (xX, yY, zZ)

• gLSBs.x
[u′,i′] (xX, yY ) ≺ gLSBs.x

[u,i] (xX, yY ) for

– u′ < u,

– u′ = u, i′ < i,

• gLSBs.y
[u′,i′] (xX, yY, zZ) ≺ gLSBs.y

[u,j] (xX, yY, zZ) for

– u′ < u,

– u′ = u, j′ < j,

then the matrix B becomes triangular with diagonals

• XuY i(eM)m−i for gLSBs.x
[u,i] (xX, yY ),

• Xu−lLSBs
k,τ (j)Y u+j−lLSBs

k,τ (j)Z lLSBs
k,τ (j)em−uMm−(u−lLSBs

k,τ (j)) for gLSBs.y
[u,j] (xX, yY, zZ).
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Table 10: Our matrix B of a partial key exposure attack with the LSBs for m = 2 and κ = 1/2, τ =
1.

1 y x xy xy2 y2z x2 x2y x2y2 x2y3 xy3z y3z2

gLSBs.x
[0,0] (eM)2

gLSBs.y
[0,1] Y (eM)2

gLSBs.x
[1,0] X(eM)2

gLSBs.x
[0,1] – – XY eM

gLSBs.y
[1,1] – – XY 2eM

gLSBs.y
[1,2] – Y 2ZeM2

gLSBs.x
[2,0] X2(eM)2

gLSBs.x
[1,1] – – X2Y eM

gLSBs.x
[0,2] – – – – – X2Y 2

gLSBs.y
[2,1] – – – – – X2Y 3

gLSBs.y
[2,2] – – – – XY 3ZM

gLSBs.y
[2,3] – – – Y 3Z2M2

The diagonals of gLSBs.y
[u,j] (x, y) are the same as those of gLSBs.BM

[u,j] (x, y) of Blömer-May’s matrix

and gLSBs.Aon
[u,j] (x, y) of Aono’s matrix for lLSBs

k,τ (j) = 0 and lLSBs
k,τ (j) = u, respectively. By utilizing

as many given partial information as possible, diagonals of gLSBs.y
[u,j] (x, y) for lLSBs

k,τ (j) ̸= 0 and

lLSBs
k,τ (j) < u are smaller than gLSBs.Aon

[u,j] (x, y) of Aono’s matrix.
Table 10 shows an example of the matrix that has the same polynomials as Aono’s matrix in

Table 9. To illustrate our idea, we use the examples. The matrix in Table 9 has a diagonal Y 2Z2M2

for gLSBs.Aon
[2,2] whereas our matrix has diagonals XY 3ZM for the analogous polynomial gLSBs.y

[2,2] .

Since Y 2Z2 = XY 3Z, the diagonal in Table 10 is smaller by a factor M . We reduce the factor by
using the polynomial fLSBs(x, y) which was not used in gLSBs.Aon

[2,2] .

Proof of Lemma 11. It is straightforward that the shift-polynomials gLSBs.x
[u,i] (x, y) and gLSBs.y

[u,j] (x, y)

for lLSBs
k,τ (j) = 0 and lLSBs

k,τ (j) = u derive a triangular basis matrix B with diagonals as stated in

Lemma 11. We show that so do gLSBs.y
[u,j] (x, y) for lLSBs

k,τ (j) ̸= 0 and lLSBs
k,τ (j) < u. For the purpose,

we define sets of indices

I(u,j)
LSBs := {iy = j, j + 1, . . . , u+ j; ix = lLSBs

k,τ (iy), l
LSBs
k,τ (iy) + 1, . . . , u}

parametrized by (u, j) ∈ IBD.y2 and provide an inductive proof that

yjfLSBs(x, y)
u−lLSBs

k,τ (j)fBD(x, y)
lLSBs
k,τ (j) =

∑
(ix,iy)∈I(u,j)

LSBs

c
(u,j)
ix,iy

xix−lLSBs
k,τ (iy)yiy−lLSBs

k,τ (iy)zl
LSBs
k,τ (iy)
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holds, where c
(u,j)
ix,iy

for (ix, iy) ∈ I(u,j)
LSBs are integers and c

(u,j)
u,u+j = 1. Recall that

gLSBs.y
[u,j] (x, y) := yjfLSBs(x, y)

u−lLSBs
k,τ (j)fBD(x, y)

lLSBs
k,τ (j).

We assume that the claim holds for (u′ − 1, j′) and (u′, j′ − 1), then show that it holds for (u′, j′).
Observe that

yjfLSBs(x, y)
u−lLSBs

k,τ (j)fBD(x, y)
lLSBs
k,τ (j)

= yjfLSBs(x, y)
u−lLSBs

k,τ (j)−1fBD(x, y)
lLSBs
k,τ (j) · (1− ed0 + x(N + y))

=
∑

(ix,iy)∈I(u−1,j)
LSBs

c
(u−1,j)
ix,iy

xix−lLSBs
k,τ (iy)yiy−lLSBs

k,τ (iy)zl
LSBs
k,τ (iy) · (1− ed0 + x(N + y))

=
∑

(ix,iy)∈I(u,j)
LSBs\(u,u+j)

d
(u,j)
ix,iy

xix−lLSBs
k,τ (iy)yiy−lLSBs

k,τ (iy)zl
LSBs
k,τ (iy) + xu−lLSBs

k,τ (u+j)yu+j−lLSBs
k,τ (u+j)zl

LSBs
k,τ (u+j)

holds, where d
(u,j)
ix,iy

∈ I(u,j)
LSBs \ (u, u + j) are integers. Since I(u,j)

LSBs \ (u, u + j) ⊂ I(u−1,j)
LSBs ∪ I(u,j−1)

LSBs

holds, we proved the above claim. Hence, we conclude the proof.

To make use of the given LSBs d0, we set

κ = 2(β − δ) and τ = 1 + 2δ − 4β

and use the set of indices IBD.y2 by following the lemma.

Lemma 12. In the matrix B of Lemma 11, polynomials gLSBs.y
[u,j] (x, y) are helpful if and only if

j ≤ 2(β − δ)m+ (1 + 2δ − 4β)u for all u.

Proof of Lemma 12. Let gLSBs.y
[u′,j′] (x, y) be a polynomial with fixed indices (u′, j′) such that

u′ = lMSBs
k,τ (j′),

andB′ be a matrix that is a matrixB without the polynomial gLSBs.y
[u′,j′] (x, y). As stated in Lemma 11,

diagonals of the polynomial gMSBs.y
[u′,j′] (x, y) in B is

Y j′Zu′
em−u′

Mm.

Furthermore, diagonals of polynomials

gLSBs.y
[u′+1,j′](x, y), g

LSBs.y
[u′+2,j′](x, y), . . . , g

LSBs.y
[m,j′] (x, y)

in B are

XY j′+1Zu′
em−u′−1Mm−1, X2Y j′+2Zu′

em−u′−2Mm−2, . . . , Xm−u′
Y j′+m−u′

Zu′
Mu′

.
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On the other hand, by following the proof of Lemma 11, diagonals of the same polynomials in B′

are

Y j′Zu′+1em−u′−1Mm, XY j′+1Zu′+1em−u′−2Mm−1, . . . , Xm−u′−1Y j′+m−u′−1Zu′+1Mu′+1.

Hence,

det(B)

det(B′)
= Y j′Zu′

em−u′
Mm ·

(
XY

ZM

)m−u′

that is smaller than or equal to the modulus (eM)m if and only if

Y j′Zu′
em−u′

Mm ·
(
XY

ZM

)m−u′

≤ (eM)m ⇔ Y j′Zu′ ≤ eu
′
Mm−u′

⇔ 1

2
j′ +

(
β +

1

2

)
u′ ≤ u′ + (β − δ)(m− u′)

⇔ j′ ≤ 2(β − δ)m+ (1 + 2δ − 4β)u′.

Hence, we conclude the proof.

To obtain the bound of Theorem 2, we compute a dimension

n =
∑

(u,i)∈IBD,x

1 +
∑

(u,j)∈IBD,y2

1 =

(
1

2
+ 2(β − δ) +

1 + 2δ − 4β

2

)
m2 + o(m2),

and a determinant det(B) = XsXY sY ZsZeseM sM , where

sX =
∑

(u,i)∈IBD,x

u+
∑

(u,j)∈IBD,y2

(
u− lLSBs

k,τ (j)
)
=

(
1

3
+ (β − δ) +

1 + 2δ − 4β

6

)
m3 + o(m3),

sY =
∑

(u,i)∈IBD,x

i+
∑

(u,j)∈IBD,y2

(
u+ j − lLSBs

k,τ (j)
)

=

(
1

6
+ (β − δ) + 2(β − δ)2 + (β − δ)(1 + 2δ − 4β) +

1 + 2δ − 4β

6
+

(1 + 2δ − 4β)2

6

)
m3 + o(m3),

sZ =
∑

(u,j)∈IBD,y2

lLSBs
k,τ (j) =

1 + 2δ − 4β

6
m3 + o(m3),

se =
∑

(u,i)∈IBD,x

(m− i) +
∑

(u,j)∈IBD,y2

(m− u) =

(
1

3
+ (β − δ) +

1 + 2δ − 4β

6

)
m3 + o(m3),

sM =
∑

(u,i)∈IBD,x

(m− i) +
∑

(u,i)∈IBD,y2

(
m−

(
u− lLSBs

k,τ (j)
))

=

(
1

3
+ (β − δ) +

1 + 2δ − 4β

3

)
m3 + o(m3).

New polynomials which are derived from outputs of the LLL algorithm satisfy Howgrave-Graham’s
lemma when (det(B))1/n < (eM)m. By omitting small terms, we obtain an inequality

2δ2 − 2(1 + β)δ + 2β2 − 2β + 1 > 0.
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By solving the inequality, we obtain the bound of Theorem 2

δ <
1 + β −

√
−1 + 6β − 3β2

2
.

Hence, we conclude the proof.

6 Concluding Remarks

In this paper, we proposed improved partial key exposure attacks on RSA with the MSBs and
the LSBs of d. In particular, our attack with the MSBs and the LSBs is better than all known
attacks when d is small such that d < N9/16 and d < N (9−

√
21)/12, respectively. Furthermore, our

attack with the MSBs is the first result that is an extension of the Boneh-Durfee stronger attack
and always works for d < N1−1/

√
2. We obtained these improved attacks by utilizing the unraveled

linearization technique and fully exploit the structure of the lattice for the Boneh-Durfee stronger
attack.
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