
Another coin bites the dust: An analysis of dust in UTXO

based cryptocurrencies

C. Pérez-Solà1,2,3, S. Delgado-Segura2,3, G. Navarro-Arribas2,3, and
J. Herrera-Joancomart2,3

1Dep. of Computer Engineering and Mathematics, Universitat Rovira i Virgili
2Dep. of Information and Communications Engineering, Universitat Autònoma de

Barcelona
3CYBERCAT, Centre de Recerca en Ciberseguretat de Catalunya

Abstract

Unspent Transaction Outputs (UTXOs) are the internal mechanism used in many cryp-
tocurrencies to represent coins. Such representation has some clear benefits, but also entails
some complexities that, if not properly handled, may leave the system in an inefficient state.
Specifically, inefficiencies arise when wallets (the software responsible for transferring coins be-
tween parties) do not manage UTXOs properly when performing payments. In this paper, we
study three cryptocurrencies: Bitcoin, Bitcoin Cash, and Litecoin, by analysing the state of
their UTXO sets, that is, the status of their sets of spendable coins. These three cryptocurren-
cies are the top-3 UTXO based cryptocurrencies by market capitalization. Our analysis shows
that the usage of each cryptocurrency presents some differences, and led to different results.
Furthermore, it also points out that the management of the transactions has not always been
performed efficiently and therefore, the current state of the UTXO sets is far from ideal.

1 Introduction

Blockchain based cryptocurrencies are built on top of an append-only ledger shared among all the
users of the system. Once a transaction is included in the ledger, the transaction can no longer be
modified. Transactions aim to modify account balances.

How such accounts are stored and their balances modified is implemented in entirely different
ways depending on the specific blockchain technology used. The two main approaches are UTXO-
based and account-based, and the most relevant cryptocurrencies for each category are Bitcoin and
Ethereum, respectively.

In the UTXO-based approach, currency units can be identified as coins represented by a specific
data-structure known as UTXO (Unspent Transaction Output). As the coins of the system, the
set of all UTXOs represents the total currency supply. Each coin contains essentially two different
pieces of data: ownership data (specifically, the conditions that have to be fufilled to spend it),
and the amount it represents (that is, the units of the currency it symbolizes). Therefore, in this
model coins do not have a fixed amount: a single coin may represent just the smallest unit of the

1

currency (for instance, 1 satoshi in Bitcoin) up to the total currency supply (e.g., a unique coin
with 21 million bitcoins).

On the other hand, in the account-based approach, the currency is spread among the multiple
accounts of the system, each of which has a specific balance. The sum of all accounts’ balances
is the total amount of the cryptocurrency in circulation. With this approach, the system has to
track the balance of every account, even if such balance is zero. Notice that in this case, the data
required to operate the cryptocurrency is bound to the total number of accounts rather than the
total number of coins.

Both models present their benefits and problems in terms of efficiency, scalability, decentraliza-
tion, and privacy.

One of the benefits of the UTXO-model is its atomicity. Transactions can be processed in parallel
for different UTXOs. There is no need to order transactions since coins involved in one transaction
do not affect other coins of the system. An entity may own different coins and they can all be
used alongside. The UTXO-model also entails some benefits regarding privacy. Coins are attached
to an address, that can be different for each coin. Although such approach may be also used in
the account-based approach, this model suggests holding a single address per user, to minimize the
number of zero-balance accounts the system has to keep track of. In contrast, a UTXO-approach
may discard the UTXO representing a coin once such coin has been spent. Furthermore, atomic
transactions involving inputs from different parties are also easier to perform with a UTXO-model
than with an account-based [1].

However, the UTXO-approach comes with some shortcomings, being its complexity the main
one. When a user needs to know the total value she owns, it is much easier to check her balance
directly than to collect all the coins she owns and count them. Furthermore, for a simple payment
transaction where user A pays an amount x to user B, the account-based model can perform such
operation efficiently but the UTXO-approach may generate some inefficiencies in case A does not
have a coin with the exact amount x. For instance, in case A has a coin with an amount greater
than x, the transaction will increase the number of coins in the system since the initial coin from
A will be transformed in two new coins, a coin of x value for B and another coin for the remainder
value to A (the change). On the other hand, if A did not have a coin with amount greater or equal
than x, she will have to collect multiple coins to make the payment. Such complexities that arise in
a simple payment in the UTXO-approach become more complex when other considerations enter
into the equation. For instance, in order to reward miners, transactions include a fee and such fee
is related to the size of the transaction. The key point here is that such fee is independent of the
value the transaction is transferring, so surprisingly, transferring 1000 bitcoins may incur the same
fees than transferring 0.00001 bitcoins. This fact has huge implications regarding the use of coins.
Notice that such idea indicates that when performing a payment you will pay a fee depending on
the total number of coins you use in that payment. So if you have to collect multiple coins to
achieve the x value of your payment, you will have to pay higher fees than if you had a single coin.
Notice, however, that unless you have the exact value, after the payment you will have a coin with
a value containing the change. After multiple payments with all your bigger coins, you will end
up with multiple small coins. In the following payment, you do not have any other option that
collecting multiple coins to perform the payment, paying a higher fee for that transaction.

The complexity even goes further when the coins that are generated in a transaction end up
with a value that is lower than the fee needed to spend them. In this case, the newly created coins
will probably not be spent, since it is more expensive to spend the coin than not using the coin
at all. In that situation, the system becomes inefficient since it has to track the status of that

2

particular coin, that may never be spent due to an economic disincentive to do so.
To avoid such inefficiencies and to minimize the fees that users pay for their transactions, wallets

should perform accurate management of the UTXOs that use for their payments. However, as we
will see in the analysis presented in this paper, such efficient management has not always been
performed by all wallets.

The main contribution of this paper is an analysis of the UTXO sets of the three most capitalized
UTXO-based cryptocurrencies: Bitcoin, Bitcoin Cash, and Litecoin.1 The paper provides insightful
details about both the current and the evolution of the status of the UTXO sets of those coins.
This analysis allows also to compare the usage of the three cryptocurrencies. Moreover, the paper
further analyses one of the problems of UTXO-based cryptocurrencies: the existence of outputs
not worth spending. We propose two metrics to evaluate whether an output is worth spending and
analyse the UTXO sets of the three abovementioned coins in terms of these metrics.

The rest of the paper is organized as follows. Section 2 provides an overview of the UTXO
set concept. Then, Section 3 describes the contents of the current UTXO sets of Bitcoin, Bitcoin
Cash, and Litecoin. After that, Section 4 describes the metrics used to evaluate if outputs in the
UTXO set are worth spending, that is, dust and unprofitability. Section 5 analyses the UTXO sets
taking into account the previously defined metrics and considering both the current state and their
evolution over time. Finally, Section 6 presents the related work and Section 7 the conclusions of
the paper.

2 The UTXO set

In a UTXO-based cryptocurrency, the Unspent Transaction Output (UTXO) set is the subset of
transaction outputs that have not been spent at a given point in time. Whenever a new transaction is
created, funds are redeemed from existing UTXOs, and new ones are created. Basically, transactions
consume UTXOs (in their inputs) and generate new ones (in their outputs). Therefore, transactions
produce changes in the UTXO set. Regarding UTXOs, they can be identified by their outpoint,
a two field data structure containing the transaction id and output index that created them, and
they store two data fields: the amount they are holding, and the locking script (scriptPubKey)
that specifies the conditions under which they can be redeemed.

The main purpose of the UTXO set is speeding up the transaction validation process. When a
new block is appended to the blockchain, full nodes update their vision of the UTXO set, removing
the outputs that have been spent in the block and adding the newly generated ones. Being all
unspent transactions outputs stored in the set, there is no need to scan throughout the blockchain
to check for double-spends, but just check if the inputs of a transaction can be found in the set.

The format, storage requirements, and implementation of the UTXO set may differ depending
on the specific implementation. However, their content must be consistent between all the imple-
mentations, since all of them need to be able to verify every transaction. For our analysis, we have
chosen the Bitcoin Core implementation. However equivalent results can be obtained by any other
implementation that follows the UTXO set approach. The main benefit of such a choice is that
Bitcoin Core’s implementation is also followed by wallets used in Bitcoin Cash and Litecoin so that
the same analysis tool can be used for all three of them. In such implementation, the UTXO set is
stored in the chainstate, a LevelDB database that provides persistent key-value storage. Apart from
the UTXO set, the chainstate database stores two additional values: the block height at which the

1https://web.archive.org/web/20180227064549/https://coinmarketcap.com/

3

set is updated and an obfuscation key that is used to mask UTXO data [2, 3]. Such an obfuscation
key is used to obtain a different file signature of the UTXO set files for every different wallet, in
order to avoid false-positives with antivirus software.

In order to perform the analysis included in the paper we have created STATUS (STatistical
Analysis Tool for Utxo Set) [4], an open source tool that provides an easy way to access, decode, and
analyse data from the Bitcoin’s UTXO set2. STATUS works with a chainstate folder as input and
can perform two different types of analysis: a UTXO based analysis where each output is indepen-
dent of the rest, and a transaction based analysis where outputs belonging to the same transactions
are aggregated. Moreover, comparative analysis between different states of the UTXO set can be
also performed by using several chainstate snapshots. Our analysis has been complemented using
BlockSci [5] to obtain additional data that can not be covered by a static analysis of the UTXO
set, such as unprofitability outputs estimation, as we will see later in Section 4.

3 Analysis of the UTXO sets of Bitcoin, Bitcoin Cash and
Litecoin

In this section, we provide an overview of the UTXOs sets of Bitcoin, Bitcoin Cash and Litecoin,
the three UTXOs based cryptocurrencies with the highest market capitalization. Results included
in this section correspond to the UTXO set as it was on the 6th of February of 2018 and were made
using the STATUS tool.

Unless the contrary is stated, all the plots included in this section show cumulative distribution
functions. Therefore, a point (x, y) in the plot shows the probability y that a given variable (depicted
in the x axis label) will take a value less than or equal to x.

Bitcoin is the cryptocurrency with the highest market capitalization (135 thousand million
dollars in April 2018)3. Its source code was released in 2009, and since then many other cryptocur-
rencies have forked suck code, sharing many details from the Bitcoin protocol into theirs.

Bitcoin Cash is a fork of the Bitcoin blockchain created on August 2017 as a consequence of the
disagreements between the community about how to handle scaling problems in Bitcoin. Bitcoin
and Bitcoin Cash share the same blockchain history up to block 478,558, where they forked and
each coin followed a different path. On February 2018, Bitcoin and Bitcoin Cash still shared 32.3
million UTXOs (see Figure 1), which respectively constitute 53.65% and 81.28% of Bitcoin and
Bitcoin Cash UTXO sets. Moreover, 40,636,965 of the UTXOs existing in Bitcoin in February 2018
belong to transactions that were made before the fork (67.50%); on the other side, 37,728,355 of
the UTXOs existing in Bitcoin Cash were made before the fork (94.94%). This means that, at the
time of analysing the data, Bitcoin Cash has consumed 8.3 million of UTXOs existing before the
fork, and has created a smaller number of new ones (2 million), whereas Bitcoin has consumed 5.4
million outputs and created two orders of magnitude more new ones (19.5 million).

On the contrary, Litecoin is a coin whose chain is totally independent of the Bitcoin blockchain.
However, the source code of Litecoin is a software fork4 of the original Bitcoin Core client created in
2011. Litecoin mainly differs from Bitcoin in the average time between blocks (2.5 minutes instead

2It can be found under a bigger Bitcoin Tools library at https://github.com/sr-gi/bitcoin_tools/tree/v0.1/
bitcoin_tools/analysis/status.

3https://web.archive.org/web/20180418064506/https://coinmarketcap.com/
4A software fork as in a github fork, not to be confused with a soft/hard fork of the chain.

4

Figure 1: Venn diagram of the UTXO sets of Bitcoin and Bitcoin Cash.

of 10), the hashing algorithm (Scrypt instead of SHA256), and the increased maximum amount of
coins (84 instead of 21 million).

Table 1 presents a summary of the main properties of the UTXO sets of Bitcoin, Bitcoin Cash,
and Litecoin, for the snapshot taken on the 6th of February of 2018. The difference on the time
between blocks in Litecoin versus both Bitcoin versions can be clearly appreciated by its block
height, which was 1.3 million on February 2018 even though the coin started two years after Bitcoin.
In contrast, Bitcoin and Bitcoin Cash height were around half a million. Similarly, the changes on
the coin supply are also clearly reflected in the UTXO set: Litecoin’s current supply is already
higher than the supply limit of Bitcoin. Litecoin also presents a significantly less amount of both
UTXOs and transactions. As a result, the size of his UTXO set is smaller. However, the average
number of UTXOs per transaction in Litecoin is 3 times bigger than Bitcoin’s.

Coin Bitcoin Bitcoin Cash Litecoin

UTXO set date 06/02/2018

Block height 507,964 516,120 1,364,009

Num. of tx 28,414,343 17,709,176 2,721,617

Num. of UTXOS 60,206,616 39,738,238 18,445,858

Avg. num. of UTXOS per tx 2.12 2.24 6.78

Std. dev. num. of UTXOS per tx 16.96 26.10 80.64

Median num. of UTXOS per tx 1 1 1

Size of the (serialized) UTXO set 3.44 GB 2.27 GB 1.04 GB

Amount of coins 16,849,386 BTC 16,951,348 BCH 55,098,258 LTC

Table 1: Summary of the main properties of the UTXO sets.

The distributions of the number of UTXOs per transaction are very skewed (see Figure 2). Even

5

(a) Bitcoin. (b) Bitcoin Cash. (c) Litecoin.

Figure 2: Number of UTXOs per transaction in Bitcoin, Bitcoin Cash and Litecoin.

(a) Bitcoin. (b) Bitcoin Cash. (c) Litecoin.

Figure 3: Number of UTXOs per height in Bitcoin, Bitcoin Cash and Litecoin.

when Bitcoin has an average of 2.12 UTXOs per transaction (2.24 for Bitcoin Cash), most of the
transactions have just one unspent output. 87.6% of transactions in Bitcoin and 88.5% in Bitcoin
Cash have only 1 UTXO and 97.1% (96.8%) have less than 5 in Bitcoin (Bitcoin Cash). For Litecoin,
85% of the transactions have a single UTXO. It is worth noting that almost 1% of transactions
in Litecoin have between 80 and 110 UTXOs (0.44% of them have exactly 90), a phenomenon not
observed in neither versions of Bitcoin. The maximum number of UTXOs per transaction in the
chosen snapshots is exhibited by Bitcoin Cash, with a transaction having 31,243 UTXOs5 (from a
total of 31,244 outputs).

Regarding the transaction height of the UTXOs in the sets (Figure 3), some differences can be
already appreciated in Bitcoin versus Bitcoin Cash: while Bitcoin shows a similar trend regarding
UTXOs in the lasts blocks, there are almost no UTXOs from the firsts blocks after the fork in
Bitcoin Cash, although the tendency seems to recover after a few blocks. Litecoin follows a different
pattern, with as much as 67% of its UTXOs being from the first five months of the coin (first 100,683
blocks). In contrast, in Bitcoin, half of the stored UTXOs are older than December 2016 (block
441,704 corresponds to the median), whereas the other half is younger. Such a phenomenon shows
how almost half of the current UTXO set is composed by UTXOs created in 2017 and 2018. On
the other hand, there are still very old UTXOs: 2% of them are older than October 2012 (block
height 201,408).

Figure 4 shows the cumulative distribution function of the heights of coinbase transactions

5https://blockchair.com/bitcoin-cash/transaction/dbd3f7518111d679c1b229af71181c9395e3bf8c1370b

6856376f391d25c883e

6

(a) Bitcoin. (b) Bitcoin Cash. (c) Litecoin.

Figure 4: Transaction height of the UTXO of coinbase transactions.

(a) Bitcoin. (b) Bitcoin Cash. (c) Litecoin.

Figure 5: Amount in UTXOs.

with UTXOs. For Litecoin, the probability of a coinbase transaction with UTXO(s) being at any
given height is almost the same. On the contrary, for both Bitcoin versions, it is more likely for
such a transaction to belong to an old block than to a newer one (half of those transactions have
heights lower than 61,050 in Bitcoin, 84,897 in Bitcoin Cash). Note the contrast with the analysis
considering all UTXOs, regardless of whether they are coinbase or not (Figure 3). In Bitcoin, 75%
of the coinbase outputs in the UTXO set were created before block 278,983 (January 2014). In
contrast, just 8% of the current UTXOs were created before that block. Regarding the differences
between Bitcoin and Bitcoin Cash, it is also worth noting that for Bitcoin Cash, 17.53% of the
coinbase transactions with UTXO(s) were created after the fork, a phenomenon not observed in
Bitcoin.

Bitcoin and Litecoin also present clear differences regarding the amounts stored in the UTXOs.
66.7% of the UTXOs in Litecoin store the smallest unit of value possible, that is, just 1 litoshi. In
contrast, just 1.4% of Bitcoin’s UTXOs store 1 satoshi. Moreover, the vast majority of UTXOs are
smaller than one bitcoin/litecoin (98.8% and 94.7%, respectively). However, both currencies have
one thing in common: the preference for output amounts that are powers of ten. In Bitcoin, the
most common amount is 103 satoshis (4% of the UTXOs), followed by 104 and 1 (1.9% and 1.4%,
respectively). This can be seen in the plots of Figure 5 by the small upticks on the plotted line. In
Litecoin, the most common amount is 1 (66.7% of the UTXOs), followed by 106 and 108 (0.7% and
0.5%, respectively).

The previous figures draw attention to the fact that there are a lot of UTXOs with an amount
equal to one. To further explore this phenomenon, Figure 6 shows the height of UTXOs with such

7

(a) Bitcoin. (b) Bitcoin Cash. (c) Litecoin.

Figure 6: Transaction height of the UTXOs of amount 1 satoshi/litoshi.

amount (i.e. 1 satoshi or litoshi). For Litecoin, 99% of the UTXOs with an amount equal to one
have height 100,636 or lower, that is, they were made before March 15th, 2012. It turns out that
these UTXOs were created as an attack to Litecoin, and the community even considered marking
these outputs as unpendable so that they could be removed from the UTXO set. The debate about
how to handle these UTXOs is still alive while we are writing these lines.

Table 2 presents the amount of UTXOs divided by script type6. In all the analysed coins,
P2PKH is the most common script type, representing 81% and 94% of the UTXOs in Bitcoin
and Bitcoin Cash, respectively, and 97% of them in Litecoin. It is worth mentioning that there
are no segregated witness scripts in Bitcoin Cash, since such kinds of scripts do not exist in the
coin. Litecoin has a significant amount less of both multisignature scripts and P2PK scripts using
compressed keys.

Figure 7 shows the evolution in time of the different types of outputs in the UTXO set. Regarding
Bitcoin, most P2PK UTXOs were created during the very first years, which is an expected result
since P2PKH was developed afterwards as an improvement of P2PK. However, it is interesting
to see that, after a long time with very few outputs of this type, around March 2017 and during
324 blocks, 15% of the current P2PK outputs included in the UTXO set were created. There are
no multisig, P2SH, P2WPKH nor P2WSH from the first blocks, since these kinds of scripts were
created years after the creation of the coin.

Regarding Litecoin (Figure 7c), it is surprising to see that all multisig UTXOs in the snapshot
were created in a very short time: 99% of them were created before block 753,252 and 96% of them
between blocks 743,428 and 753,252. All existing non-standard UTXOs were only created during
the first 487,470 blocks. P2PKH and P2PK UTXOs were mostly created in the very beginning (as
most of the coins).

4 DUST and unprofitable UTXOs

An interesting type of output included in the UTXO set is that whose economic value is small
enough to pose a problem when it has to be spent. Since such UTXOs are in the set, they occupy
space and thus convey a cost to the system. However, the cost of spending them is so high with
respect to its value, that the owner has no direct economic incentive to do so.

Bitcoin Core currently [6] defines a dust output as an output that costs more in fees to spend

6See Section 44.2 for a detailed description of each UTXO type.

8

Bitcoin Bitcoin Cash Litecoin

Num. of utxos 60,206,616 39,738,238 18,445,858

Pay-to-PubkeyHash (P2PKH) 48,884,862 37,457,455 17,949,409

Pay-to-ScriptHash (P2SH) 10,825,371 1,825,348 399,987

Pay-to-Pubkey (P2PK) 75,394 77,311 81,399

Compressed 39,479 40,956 457

Uncompressed 35,915 36,355 80,942

Multisig 408,847 377,355 325

P2WPKH 6,176 - 76

P2WSH 5,188 - 14

Others (non standard) 778 769 14,648

Table 2: UTXO types

(a) Bitcoin. (b) Bitcoin Cash. (c) Litecoin.

Figure 7: UTXOs output type per height in Bitcoin, Bitcoin Cash and Litecoin.

9

than the value of the output. To compute the cost of spending an output, both its size and the size
of the input from the transaction that will spend it, are required. Since the input that spends a
given UTXO is not yet in the blockchain Bitcoin Core sets such value to 148 regardless of the type
of outputs that will generate the input. These 148 bytes are based on the most common type of
Bitcoin outputs, P2PKH, and account for the outpoint (32 + 4), the length of the script in bytes
(1), the signature (1 + 72), the public key (1 + 33), and the sequence number (4).

Therefore, a given UTXO out is considered dust by the Bitcoin Core client with respect to a fee
per byte rate f with the following definition:

is dust(out) =

{
1, outv < f ∗ (41 + 107/α+ outs)

0, otherwise

where outv is the amount deposited in the output; outs is the size (in bytes) of the output; f is
the current fee rate (in satoshis per byte); and α is the segwit discount factor. If the output is not
a native segwit script, then α is 1. However, if it is indeed a segwit output, the size of the input
script needed to redeem it is discounted by a factor α = 4.

The definition of dust, as interpreted by the Bitcoin Core, has two main limitations. First, it
assumes a fixed transaction input size of 148. Although the exact content of the input of a UTXO
will never be, by definition, known to the client, in fact, the size of an input can usually be predicted
with high accuracy. Second, it considers both the sizes of the output and the input. Although this
may be useful in some cases, we claim that since the transaction containing the output is already
in the blockchain, its size should not be taken into account when analysing the dust problem (since
it has already been paid).

Therefore, we define an unprofitable output as the output of a transaction that holds less
value than the fee necessary to be spent, taking into account only the size of the input that will be
needed to spend it.

is unprofitable(out) =

{
1, outv < f ∗ pred ins
0, otherwise

where pred ins is the predicted size of the input that will spend output out. That is, instead of
using a predefined 148-byte size, we compute as accurately as possible the size of the input that is
going to spend the output.

However, it is not always possible to exactly determine the size of the input of a certain UTXO.
Depending on the type of the script found in the UTXO, we will be able to accurately determine
the size that its input will have, or we will have some uncertainty about it. Therefore, we will con-
sider two different metrics for unprofitability: a lower bound on unprofitability (is unprofitablelow),
that will take into account the minimum size of the input; and an estimation of unprofitability
(is unprofitableest), that tries to estimate as accurately as possible the real unprofitable rates tak-
ing into account data available in the blockchain.

In order to identify the three types of outputs (that is, dust, unprofitablelow and unprofitableest),
it is important to recall that the amount of fees a transaction has to pay to be included in a new
block depend on two factors: the fee-per-byte rate, f, that the network is expecting at the time
of creating the transaction and the size of the transaction. Section 4.1 explains what is the fee-
per-byte rate and shows its value over the past years. Regarding the size of the transaction, the
definition of dust uses a fixed size, but our unprofitability approach takes into account the minimum
size of the input. Section 4.2 explains what are the minimum inputs of UTXOs depending on their

10

type. Finally, the estimation of unprofitability needs to take into account the sizes of variable
parameters. Section 4.3 presents the estimations of those sizes made from blockchain data.

4.1 Fee per byte rate

Block space is a scarce resource. Whenever the throughput of transactions sent to the P2P network
is higher than what blocks can accommodate, transactions pending to be included in blocks start to
accumulate in the mempool. When a block has to be created, miners choose the set of transactions
to include in the block from those stored in the mempool. Assuming miners are rational actors and
given that block space is limited, transactions paying a higher fee per byte rate should be more
attractive to miners, since such transactions would usually provide the highest revenue. However,
there are many both technical and non-technical factors that may affect the miners decision in
choosing a certain transaction for inclusion in a block, e.g. the number of signature check operations
it contains, the cost of recomputing the merkle tree in order to include a new transaction, or even
the attempt to censor a certain transactions.

The fee-per-byte rate measured in satoshis (or litoshis, for litecoin) per byte is a highly variable
factor that depends on the transaction backlog (i.e. how many transactions are pending to be
included in new blocks and how much are those transactions willing to pay to be included in a
block).

Figure 8 shows the average fee per byte paid for transactions included in blocks, from the creation
of the coin up until nowadays. Bitcoin and Bitcoin Cash show differences on the blocks after the
fork, with Bitcoin Cash presenting lower fee rates. Litecoin presents higher variability. In Bitcoin
and Bitcoin Cash, the highest peak is produced by block 157,138, that contains a transaction7 that
paid as much as 85.9 BTC in fees. In Litecoin, the highest peak is found in block 158,277, that has
a single non-coinbase transaction8 paying 100 LTC as fees.

4.2 Determining the size of the minimum-input of an UTXO

Unprofitability is defined considering the size of the minimum-input of each UTXO. In order to
label the outputs in the UTXO set as an unprofitable, we need an estimation of the size of data
required to spend such output. To identify such minimum information, we can consider an already
standard transaction with its inputs and its outputs and enough fees to be relayed. Then, we define
the minimum-input of a UTXO as the smallest size input that spends such UTXO. The size
of such minimum-input, along with the value held in the output and the fee rate, will determine
whether a UTXO may be flagged as unprofitable.

To measure the size of such minimum-input, we need to review the structure of a Bitcoin
transaction. As depicted in Figure 9, all transactions follow a standard structure containing some
fixed length parameters that determine a minimum transaction size, and some variable length
parameters, depending on the transaction type. When a transaction is created, inputs are defined
referring to some UTXOs. Such inputs have different sizes depending on the output type they are
related to. On the other hand, new outputs are generated for every new transaction, and thereby
some additional size, which will depend on the new output type, will be added to the transaction.

7https://blockchain.info/tx/1dbd420f23f8ac58b994c7b84f8667670dfcad39ec9f34e555a0c6281b7e2c04
8https://chainz.cryptoid.info/ltc/block.dws?2465020d67d0f08f53d1df0571af8aadd81b7b60ed27e2f236e1b

08e6321547f.htm

11

0 100000 200000 300000 400000 500000
Height

0

1000

2000

3000

Av
g.

 fe
e

pa
id

 (s
at

os
hi

s p
er

 b
yt

e)

(a) Bitcoin.

0 100000 200000 300000 400000 500000
Height

0

1000

2000

3000

Av
g.

 fe
e

pa
id

 (s
at

os
hi

s p
er

 b
yt

e)

(b) Bitcoin Cash.

0 200000400000600000800000100000012000001400000
Height

0

5000

10000

15000

20000

Av
g.

 fe
e

pa
id

 (l
ito

sh
is

pe
r b

yt
e)

(c) Litecoin.

Figure 8: Average fee rate (in satoshis / litoshis per byte) paid by transactions at a given block
height. The plot is showing 1000 block averages.

Depending on the UTXO type, its minimum-input size will be different. Such measure can be
split in two parts: fixed size and variable size. Regarding the fixed size, as depicted in Figure 9
(taking into account only the input box), we can identify three fields: prev tx id, pev out index

and nSequence. Therefore, for every UTXO, its minimum-input will be at least 40-byte long
independently of its type. On the other hand, the content and length of the fields scriptSig and
scriptSig length depend on the UTXO type, specified in the field scriptPubKey of the UTXO.

The different types of outputs, with their corresponding size, can be classified as follows:

Pay-to-PubKey (P2PK) outputs: The minimum-input of this type of UTXO specifies just a
digital signature to redeem the output and the scriptSig includes the following data:

PUSH sig (1 byte) + sig (71 bytes)

Bitcoin uses DER encoded ECDSA signatures in the scripts of its transactions, which can be
between 71 and 73 bytes long depending on their r and s components [7]. Such variability comes
from the randomness of the r parameter. Since we are defining the minimum possible input to
be created, 71-byte signatures are considered. Hence, the scriptSig for a P2PK UTXO will be
72-bytes long and scriptSig len field will be 1-byte long, resulting in a minimum-input size of 73
bytes.

Pay-to-PubkeyHash (P2PKH) outputs: For this UTXO to be redeemed, both a signature
(sig) and a public key (pk) are required in the scriptSig, as shown below:

PUSH sig (1 byte) + sig (71 bytes) + PUSH pk (1 byte) + pk (33-65 bytes)

Regarding the signatures, the same assumption as for P2PK outputs applies, that is, 71-byte
length can be considered. Regarding public keys used by Bitcoin, they can either be compressed or
uncompressed, which will significantly vary their size:

12

version #inputs #outputs nLockTime

4-byte var size var size 4-byte

value scriptPubKeyscriptPubKey length

8-byte var size var size

prev_out_index scriptSig length scriptSig nSequenceprev_tx_id

32-byte 4-byte 4-bytevar size var size

inputs

outputs

Figure 9: Generic transaction structure

• Uncompressed keys: Such keys were used, by default, in the first versions of the Bitcoin Core
client, and they are 65-byte long.

• Compressed keys: In 2012 Bitcoin Core started using this more efficient type of keys, which
are almost half size of the previous ones (33 bytes), and therefore make smaller scripts.

So, the size for the scriptSig varies from 106 to 138 and therefore, the scriptSig length field
will be 1-byte long, resulting in a total minimum-input size between 107 and 139 bytes.

Pay-to-multisig (P2MS) outputs: the size of the minimum-input to redeem such a script highly
varies depending on the number of signatures required, which ranges up to 20 (20-of-20 multisig)9,
so the scriptSig for redeeming such output is as follows:

OP_0 (1 byte) + (PUSH sig (1 byte) + sig (71 bytes)) *

required_signatures (1-20)

Thus, the size of the scriptSig field will range between 73 and 1441 bytes, making the
scriptSig len field range between 1 and 2 bytes, so the total minimum-input size will be be-
tween 74 and 1443.

Pay-to-ScriptHash (P2SH) outputs: unlike any previous output type, input size created from
P2SH outputs cannot be straightforwardly defined in advance. P2SH outputs hide the actual input
script behind a hash, to make smarter outputs, by making them smaller and thus, allowing the
payer to pay lower fees. However, the scripts held by those UTXOs give us no clue about how the
minimum-input should be build. Therefore, we have set the minimum input size to just the fixed
size (40 bytes) plus an additional byte for the script length, resulting in 41 bytes.

9Although the standard considers a maximum number of 3 signatures in a P2MS output, up to 20 are valid
regarding the consensus rule [8] so they could potentially be found in the UTXO set.

13

Native Pay-to-Witness-Public-Key-Hash (P2WPKH) and Pay-to-Witness-Script-Hash
(P2WSH) outputs: these new types of outputs are redeemed with empty input scripts. Data
that proves ownership is moved into the witness and gets a discount when computing the size of
the input. Therefore, native segwit outputs will need the 40 fixed length bytes, the script size (1)
and the discounted witness size.

The witness script needed to redeem a P2WPKH script is:

PUSH sig (1 byte) + sig (71 bytes) + PUSH pk (1 byte) + pk (33 bytes)

Note that, in contrast with P2PKH scripts, here the public keys will always be found in a
compressed form, as only this format is accepted in P2WPKH scripts. Therefore, P2PKH scripts
will always be 106 bytes, and their inputs will need 40 + 1 + 106/4 = 68 bytes

The witness script to redeem a P2WSH output is equivalent to the input script of a P2SH
output. However, P2WSH are not affected by the 520-byte push limit of P2SH scripts.

Table 3 summarizes the sizes of the minimum-input for each UTXO type, where var indicates
the values are variable and cannot be determined in advance.

scriptSig / redeemScript

UTXO Fixed scriptSig. sig pk push Total
type fields len. size size data size

P2PK 40 1 71 - 1 113
P2PKH 40 1 71 33− 65 2 147− 179
P2MS 40 1− 2 71 ∗m (m ∈ [1, 20]) - m+ 1 42 + 1/2 + 72 ∗m
P2SH 40 1− var var var var 41− var

P2WPKH 40 1 71 33 2 68
P2WSH 40 1 var var var 41− 10041

Table 3: minimum-input size summary

4.3 Estimating variable values

As introduced in the last section, the inputs of some of the output script types contain values whose
size cannot be known before actually seeing the input. However, the moment an output of such
type is spent, we can observe the content of the corresponding input script and, therefore, compute
its size. Yet whenever the output is spent, it is no longer an Unspend Transaction Output (UTXO),
and it is thus no longer the subject of our analysis. On the other hand, we can indeed use historic
data about outputs that have already been spent to estimate the input sizes of unspent outputs of
the same type.

In this section, we provide an estimation of the variable-size parameters of input scripts based
on the real data that already appears in the Bitcoin blockchain. Specifically, we analyse the sizes of
public keys in P2PKH inputs, the sizes of P2SH inputs, the sizes of non-standard inputs, and the
sizes of P2WSH witnesses10. The estimation has also been performed for both Bitcoin Cash and
Litecoin and the obtained values have been used in the analysis performed in Section 5. However,
only the analysis for the Bitcoin blockchain will be broken down into parts due to space limitations.

10The raw data to perform such an estimation has been obtained from BlockSci and http://blockchain.info,
and processed and included within STATUS.

14

Public keys can be found either in a compressed or uncompressed format. Public keys may
be found both in input and output scripts: they may appear in P2PK and multisig outputs or in
inputs spending P2PKH outputs. In our analysis, we have focused on checking public keys in inputs
spending P2PKH outputs, since these are the ones that will affect our profitability analysis. The
first compressed public key in a P2PKH input can be found in block 158,216.11 The input spends
an output in block 158,21412.

The use of compressed or uncompressed public keys highly depends on the height of the block:
whereas there were no compressed public keys in the beginning, nowadays its use is prevalent. For
this reason, we are interested in knowing how likely is for a P2PKH output at a given height,
to be spent by an input with a compressed or uncompressed public key. Figure 10 shows, for
P2PKH outputs at a given height, the average public key size of inputs spending them. The plot
is generated by analysing the 654,245,749 public keys found in P2PKH inputs in the blockchain,
resulting in an overall average public key size of 39.3 bytes. Before block 158,214, all spent P2PKH
outputs have uncompressed public keys in the corresponding inputs, because this was the format
being used by Bitcoin clients at that time. Consequently, the plot shows a smooth line on the low
heights, denoting the constant 64-byte length of public keys being used. The shift towards using
compressed public keys is progressive, so the average public key size decreases from that point until
block 450,000, when it stabilizes at around 34.5 bytes. Such behaviour indicates that, although the
obvious advantage of using compressed public keys, some Bitcoin users are still using uncompressed
keys.

0 100000 200000 300000 400000 500000
Output Height

35

40

45

50

55

60

65

By
te

s

Average PK size per block (P2PKH outputs)

Figure 10: Block average public key sizes for P2PKH outputs. The plot is showing 1000 block
averages.

P2SH inputs must contain the redeem script (whose hash matches the one specified in the
UTXO) and any data that is required to make the redeem script evaluates to true. Both items
must be taken into account when computing the size of the input.

11In the input of transaction https://blockchain.info/tx/94af4607627535f9b2968bd1fbbf67be101971d682023d

6a3b64d8caeb448870
12https://blockchain.info/tx-index/2576077/0

15

Table 4 breaks down the P2SH redeem scripts by type found in the blockchain, describing the
average and the standard deviation of the length of their input script. That is, they consider the
size of both the redeem script and the data consumed by that script.

Redeem script Number of inputs Average input size Std. input size

Multisig 80,839,329 241.6 22.7

P2WPKH 7,961,073 23 0

P2WSH 5,544,793 35 0

Nonstd 112,354 169.98 333.59

P2PK 23,557 108.01 0.51

P2PKH 448 132 0

P2SH (Hash puzzle) 82 28.73 23.75

Total 94,481,636 210.93 78.60

Table 4: Summary of P2SH redeem scripts in the blockchain.

Multisig scripts are by far the most common script encapsulated within P2SH, and they account
for 85.6% of the P2SH redeem scripts in the blockchain. Because native multisig outputs are costly,
it is common to encapsulate them in a P2SH, transferring the fees to the redeemer of the output.
The size of a P2SH multisig input is determined by the number of allowed signers (that determines
the number of public keys) and the number of required signers (that determines the number of
signatures). Although a wide variety of encapsulated multisig scripts can be found in the blockchain,
2-2 and 2-3 multisig account for 97, 85% of multisig scripts (Table 5 shows the amount of multisig
scripts of each kind found in the blockchain).

Multisig specs. Number of scripts found Multisig specs. Number of scripts found

(2 of 3) 56,498,831 (1 of 3) 21,334

(2 of 2) 22,600,200 (3 of 6) 17,131

(2 of 6) 491,146 (3 of 3) 13,357

(3 of 4) 453,256 (4 of 5) 10,456

(1 of 1) 258,449 (2 of 5) 8,826

(2 of 4) 209,809 (4 of 6) 7,918

(3 of 5) 144,958 (1 of 6) 5,864

(1 of 2) 86,678 Others 11,116

Table 5: Summary of multisig configurations found in P2SH redeem scripts in the blockchain.

The activation of SegWit added four more types of output scripts to the existing set: two native
scripts and the two P2SH nested versions. The input of a P2WPKH script nested in a P2SH is
always 23 bytes long, whereas a P2WSH nested in P2SH is always 35. This accounts for the hash
(20 and 32 for P2WPKH and P2WSH, respectively), plus the marker (0x00) and two data pushes.

Non-standard redeem scripts may be of arbitrary length. However, the redeem script has to
be pushed to the stack, so it is affected by the maximum stack element size of 520 bytes.13 The

13https://github.com/bitcoin/bitcoin/blob/0277173b1defb63216d40a8d8805ae6d5d563c26/src/script/scrip

t.h\#L23

16

average size of P2SH scripts with non-standard redeem scripts is 169.98 bytes, although most of
them (66.06%) are just 11 or 12 bytes. The largest input script of this type is 9,319 bytes long.

Inputs of P2SH scripts with nested P2PK scripts may be either 108 or 140 bytes long (assuming
71-byte signatures), depending on whether they use compressed or uncompressed public keys. Nev-
ertheless, data show that almost all of them have compressed public keys (there are just 6 of such
scripts in the blockchain using uncompressed public keys). Similarly, inputs of P2SH scripts with
nested P2PKH scripts may be either 132 or 164 byte long, although all of them used compressed
keys.

Finally, there are 82 redeem scripts that contain hash puzzles, that is, they ask for the preimage
of a hash. We have found there are just two different versions of these scripts, one asking for the
preimage of OP 0 and the other asking for the preimage of a 152-byte length value. These make
input sizes of 25 and 178 bytes, respectively.

In contrast with compressed and uncompressed public key usage, whose behaviour highly de-
pends on the block height, we have found a small correlation between P2SH input script sizes and
the block height where they are found (Figure 11). There are no blocks with P2SH input scripts up
until block 170,060 and the script sizes start to decrease at height 480,000. From block ≈ 275,000
up until block ≈ 480,000, the average size of inputs is almost constant, because 98.2% of them are
2-out-of-2 and 2-out-of-3 multisig scripts which are 216 and 250-byte long, respectively. However,
after this period, P2WSH and P2WPKH scripts encapsulated in P2SH inputs become popular, and
because its size is smaller, the average P2SH input script size decreases.

200000 250000 300000 350000 400000 450000 500000
Input Height

0

100

200

300

400

500

600

By
te

s

Avg. P2SH input script size

Figure 11: Block average P2SH input sizes. The plot is showing 1000 block averages.

Inputs spending non-standard outputs may contain scripts of arbitrary length. Since such
inputs do not have a predefined structure, we resort to analysing the sizes of inputs spending non-
standard outputs in the blockchain. We have found 220,758 of such inputs in the blockchain, which
correspond to 78 different input scripts. The average size of non-standard input scripts is 1.04 bytes
(99.3% of these inputs scripts are a single byte long, and 99.94% have less than three bytes). As a
matter of curiosity, the input script OP TRUE is found in 219,191 inputs.

These 220,758 non-standard inputs are found in just 143 different blocks, so data is too disperse
to evaluate its size with respect to block height.

17

485000 490000 495000 500000 505000 510000
Input Height

125

150

175

200

225

250

275

300
Av

g.
 w

itn
es

s s
ize

 (b
yt

es
)

Avg. witness len. (P2WSH inputs)

(a) Average P2WSH witness size (bytes).

Figure 12: P2WSH inputs in the Bitcoin blockchain. The plot is showing 100 block averages.

As in P2SH inputs, P2WSH inputs must also include the redeem script with a matching hash
and any data needed to redeem it. However, instead of including the redeem script in the input
itself, the redeem script is found in the witness and thus gets discounted by a factor α = 4.

We have found 215,742 P2WSH inputs with an average witness size of 251.6 bytes. From block
≈ 488,000 onwards, the plot shows an stable trend. 97% of the redeem scripts are 252, 253 or 254
bytes long, and correspond to 2-of-3 multisignature scripts. As P2SH input scripts, witness length
is not clearly correlated with block height (Figure 12a). The first P2WSH input is found in block
482,133

5 An analysis of dust and unprofitable outputs

In previous sections, we have seen that the two parameters that affect the amount of fees needed to
spend a transaction are the size of the transaction and the current fee-per-byte rate. In this section,
we first evaluate the current status of the UTXO sets of Bitcoin, Bitcoin Cash and Litecoin regarding
the parameters previously defined: dust, a minimum bound on unprofitability (unprofitable low)
and estimation of unprofitability (unprofitable est). After that, we analyse how has unprofitabil-
ity evolved over time.

To study the impact of dust, we have considered the fixed input size of 148 bytes as defined by the
Bitcoin client (discounting segwit when needed). For a unprofitable low, we have considered the
minimum size of the inputs. Whenever there is a parameter with variable length (whose size cannot
be precisely known in advance), we have chosen the smallest possible value (recall Section 44.2). On
the contrary, for unprofitable est we have considered exact input sizes when known and resorted
to estimations based on blockchain data when a variable-length parameter is needed as described

18

in Section 44.3. As explained in the previous section, the use of compressed or uncompressed
public keys was highly dependant on the block height. On the contrary, P2SH, non-standard, and
P2WSH sizes do not show that tendency (confront Figure 10 with Figures 11 and 12a). Therefore,
to estimate variable sizes, we use the absolute average of the sizes found in the blockchain for P2SH,
non-standard, and P2WSH inputs, and the average for outputs at a given height for P2PKH. Table 6
presents a summary of the values used for the estimations. Note that P2PKH input scripts are
always estimated to be between 148 and 180 bytes regardless of the analyzed coin, although the
exact distribution differs and is computed individually from the history of each coin.

Script Type Estimation method Bitcoin Bitcoin Cash Litecoin

P2PKH Block height average [148, 180] [148, 180] [148, 180]

P2SH Absolute average 210.93 240.99 184.06

Non-std Absolute average 1.04 1.04 −
P2WSH Absolute average 251.5 − 217.5

Table 6: Summary of script size estimations per script type and coin (computed using data in the
blockchain).

As depicted in Figure 8, fee-per-byte rate is far from fixed and has high variability. Thus, to
take into account different possible scenarios, we have considered a broad fee-per-byte spectrum,
ranging from 0 to 349 satoshi/byte.

Figure 13a shows the fraction of UTXOs that are considered dust, unprofitablelow and unprofitableest
in the Bitcoin UTXO set (blue, orange and green lines respectively). For a fee-per-byte as small as
116 satoshi/byte onwards, more than the 50% of UTXOs (30.2 million outputs) from the set can be
considered dust, whereas the same 50% size for unprofitable low is reached for 232 satoshi/byte
onward. Note that 5,617 outputs will always be considered dust and unprofitable, regardless of the
fee rate, because they have an amount of 0.

Dust and the unprofitable est present a very similar distribution, whereas the unprofitable low

always shows, as expected, a lower amount of unprofitable outputs. However, the similar trend
shown by dust an unprofitable est may lead to misinterpretation: although the overall distri-
bution is indeed similar, the individual estimations are very different, but overestimations in one
kind of samples compensate for underestimations of the other kind. For P2PKH outputs (which
represent 81% of the set), dust always considers size of 182 bytes (148 of the input and 34 of the
output). On the contrary, unprofitability will only take into account the size of the input. For
the lower bound, it will be either 147 or 179 (depending if a compressed or uncompressed public
key is considered, a decision taken on the basis of the block height). For the estimation, it will be
any value between 148 and 180 and will depend on the average public key size found for outputs
of the same height. Therefore, on one hand, dust will always estimate higher sizes than both un-
profitability metrics and, on the other hand, the two unprofitability distributions are very similar,
with the estimation offering slightly higher sizes than the minimum (recall Figure 10). However,
for P2SH scripts (which represent 18% of the set), the contrary is observed: dust predicts a fixed
180 bytes whereas unprofitable est predicts around 252 bytes and unprofitable low predicts
42 bytes. As a consequence, in this case unprofitable est always predicts much higher sizes. So
although dust and unprofitable est present similar distributions, it is important to note that size
estimations for individual samples differ.

Figure 13b shows the relative size of dust and unprofitable output sets within the total UTXO

19

(a) Fraction of dust/unprof.
UTXOs w.r.t. fee-per-byte.

(b) Fraction of occupied space
w.r.t. fee-per-byte rate.

(c) Fraction of economic value
w.r.t. fee-per-byte rate.

Figure 13: Dust and unprofitable analysis for Bitcoin.

(a) Fraction of dust/unprof.
UTXOs w.r.t. fee-per-byte.

(b) Fraction of occupied space
w.r.t. fee-per-byte rate.

(c) Fraction of economic value
w.r.t. fee-per-byte rate.

Figure 14: Dust and unprofitable analysis for Litecoin.

set. Dust and unprofitable UTXOs represent a relevant part of the total size from the set (more
than the 50% are dust for around 111 satoshi/byte onward), while the same can be seen for
unprofitable low UTXO for a rate of 204 satoshi/byte onward.

Finally, from an economic point of view, Figure 13c shows, as expected, how those dust and
unprofitable UTXOs represent a negligible amount from the total value of the UTXO set, that is,
the total number of bitcoins in circulation.

Figure 14a shows the fraction of UTXOs that are considered dust, unprofitablelow and unprofitableest
in the Litecoin UTXO set. It is worth noting that 67% of the UTXOs are considered dust and un-
profitable for a fee-per-byte as small as 1 litoshi/byte. Those UTXOs have output amounts of just
1 litoshi (recall Figure 5c). Therefore, the three metrics (dust and the two unprofitability ver-
sions) consider all those UTXOs unprofitable at the same fee rate. From 300 lit./byte onwards, the
same scenario previously seen in Bitcoin is shown: dust estimates bigger sizes for P2PKH whereas
unprofitable est estimate bigger sizes for P2SH outputs.

Finally, Bitcoin Cash dust and unprofitability analysis (Figure 15) shows little difference with
respect to Bitcoin, with dust an unprofitable est showing very similar distributions although
individuals samples’ estimations do differ.

In conclusion, we have seen that the three analysed coins exhibit lots of UTXOs that can be
considered dust/non-profitable and they account for an important part of the UTXO set in terms
of size. However, their value is negligible.

20

(a) Fraction of dust/unprof.
UTXOs w.r.t. fee-per-byte.

(b) Fraction of occupied space
w.r.t. fee-per-byte rate.

(c) Fraction of economic value
w.r.t. fee-per-byte rate.

Figure 15: Dust and unprofitable analysis for Bitcoin Cash.

0 100000 200000 300000 400000 500000
Height

0

1

2

3

4

5

6

7

Nu
m

be
r o

f U
TX

Os

1e7 Number of UTXOs at a given height

Figure 16: Number of UTXOs in each of the snapshots.

5.1 Evolution of unprofitability over time

We have seen how for the most recent analysed UTXO set snapshot, namely data from 6th of Febru-
ary of 2018, the percentage of data that fall into any of the three categories (dust, unprofitablelow,
and unprofitableest) is far from being negligible. In this regard, we have analysed how such data
has evolved since the early days of Bitcoin. To perform such analysis, we have focused on the
unprofitableest metric since we think it is the most accurate one.

For Bitcoin, data has been obtained from 9 snapshots from different heights of the blockchain,
starting from block 100,00014 and stepping every 50,000 blocks until height 500,000. Figure 16
shows the number of UTXOs in the set in Bitcoin over time (dots indicate the snapshots used in
our analysis).

The percentage of unprofitable outputs per snapshot is almost always increasing at any point
in the chart, as we can see depicted in Figure 17a. However, there are a few exceptions, being the
400K snapshot with respect to 450K and 500K the most relevant. As we can see, the amount of
unprofitable outputs located in the lower stages of the fee rate for the 400K snapshot (between
0-75 satoshi/byte) outstands compared to the values from the other two. The explanation of such

14We have not performed the analysis starting from block 1 due to the lack of relevant information in those
snapshots.

21

100K 150K 200K 250K 300K 350K 400K 450K 500K

UTXOs 71,923 1,128,538 2,317,071 6,802,242 10,852,610 18,094,009 34,818,753 44,997,700 59,950,252

P2PKH 19,544 1,084,915 2,273,595 6,731,579 10,756,792 17,593,948 32,158,510 36,761,183 48,258,713

P2SH 0 0 36 14,222 17,801 184,255 2,124,567 7,658,361 11,205,350

P2PK 52,376 43,612 42,386 38,890 41,757 41,500 41,516 50,708 69,756

Others 3 11 1,054 17,551 36,260 274,306 494,160 527,448 416,433

Table 7: UTXO types in each Bitcoin snapshot

(a) Bitcoin

0 50 100 150 200 250 300 350
Fee rate (lit./byte)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rc

en
ta

ge
 o

f U
TX

Os

100K
200K
300K
400K
500K
600K
700K
800K
900K
1000K
1100K
1200K
1300K

(b) Litecoin

Figure 17: Evolution of unprofitable outputs over time.

a huge difference is in the content of that snapshot: the 400K snapshot has an outstanding number
of UTXOs holding exactly 1000 satoshis, whereas in the 450K and 500K snapshots the UTXOs are
more uniformly distributed. In fact, the 54.1% of the unprofitable UTXOs located in the 0-50 range
for the 400K snapshot hold exactly 1000 satoshi, whereas for the 450K and 500K they represent an
18.35% and a 14.21% respectively.

Analysing the general trend of the data for Figure 17a we see how the accumulation of unprof-
itable outputs in the lower fee rates tends to increase over time, which increases the number of
outputs that will be hardly spent. Such accumulation regards mainly to P2PKH outputs, which as
we have already seen in Section 3 represented around the 81% of the outputs in the set.

Similarly, we have analysed the evolution of the UTXO sets of Litecoin by studying 13 snapshots,
from block 100,000 up until block 1,300,000 stepping every 100,000 blocks. Unprofitability is very
stable, with most snapshots (all but 100K) showing very similar distributions (Figure 17b).

We have omitted the figures related to Bitcoin Cash since they share the same history with
Bitcoin (the snapshots up until 450K are thus exactly the same), and therefore do not provide any
new information.

6 Related work

As we have seen, the characteristics of the UTXO set can be a key point in cryptocurrencies like
Bitcoin, Litecoin, and Bitcoin Cash. The size and performance of this set have a direct impact
on how the system will perform, and it is thus a focus area where to improve the scalability and

22

efficiency of these cryptocurrencies. For example, transaction generation performance in Bitcoin is
greatly influenced by the size of the UTXO set [9].

We can currently find typical statics and simple visualizations of the UTXO set of Bitcoin [10,
11], but we are not aware of a more in-depth study and comparison of the UTXO set of significant
cryptocurrencies like the one presented in this paper. We believe that knowing the composition
and evolution of the UTXO set will undoubtedly provide the means to better understand it and
develops strategies and tools to improve the UTXO set usage, enhancing thus the whole system
performance.

The relevance of the UTXO is not new, concerns about its size, composition, and performance
have been around for some time [12]. These concerns are specially relevant in light of the scalability
problems of Bitcoin and are currently an important issue for the future of Bitcoin itself. For instance,
Bitcoin Core changed the UTXO set format in version v0.15 in order to improve its performance [13,
14]. Both individual users and the whole system will benefit from better management of the UTXO
set.

From the user point of view, a strategy of consolidating UTXOs in order to prevent the creation of
dust and unprofitable UTXOs in the future (in case of higher fees) has always been considered [15]15.
But such strategies are not easy to generalize. Not always a consolidation will reduce the fees for
a given user, specially if we cannot anticipate future fee rates. On the other hand, some user will
need to maintain a minimum number of UTXOs to be able to generate transactions in parallel.
Furthermore, such strategies can undermine the privacy requirements of some users. Given these,
sometimes conflicting, constraints and the unpredictability of future fee rates, there is currently no
actual strategy for UTXO consolidation.

An important process that directly impacts (and is influenced by) the UTXO set composition
and size is the coin selection decision performed by wallets [16]. Coin selection is the decision
process that a wallet carries in order to choose UTXOs as inputs for a new transaction. Each
implementation might use a different coin selection strategy [17]. For instance, if we take a look at
Bitcoin, according to [18], several strategies are being used by different wallets. The Bitcoin Core
wallet attempts to find a direct match always minimizing the change to be generated. BRD [19]
(a popular Android and iOS wallet also known as BreadWallet), uses a FIFO strategy, where the
oldest UTXOs from the pool are chosen until the target value is matched. A similar approach is
used by Electrum [20] and Mycelium [21] which additionally prunes small valued UTXOs. The
bitcoinj library [22] determines a priority metric from the age and value of the UTXOs in order to
select new ones. It is by no means clear which strategy is better. Different goals and strategies
can be conflicting, such as minimizing the generation of small UTXOs, minimizing the fees for the
current and future transactions, or improving the user privacy. Even so, nowadays a common goal
shared by all involved parties for the coin selection is actually to prevent the growth of the UTXO
set in Bitcoin [18]. In any case, our work introduces new analysis that can help improve these
selection strategies.

Following these lines other proposals such as TXO commitments [23, 24] could allow to maintain
a smaller functional UTXO set. Similarly one can think of a two-tier data structure where a UTXO
subset containing UTXOs with a low probability of been selected such as dust is kept in disc, while
the other UTXOs are kept in memory. We think that the work presented in this paper provides an
accurate estimation of such unprofitable UTXOs, which has not been previously considered.

15See for instance an example of a consolidation transaction in https://blockchain.info/tx/11ee48127ebf5702e

8883cb829734e444dcc2c4efbdbdfd235726e6acea9fb5c

23

7 Conclusion

In this paper we have presented a detailed analysis of the UTXOs sets of the top three UTXO-based
cryptocurrencies, that is, Bitcoin, Bitcoin Cash, and Litecoin. Our analysis shows that the three
cryptocurrencies present both similarities and differences in their UTXO sets.

On one hand, relevant differences were found in the coin sets of Litecoin with respect to both
Bitcoin versions. The two major ones are related to the height where UTXOs are found and the
value they carry. 67% of Litecoin’s UTXOs belong to the first five months of the coin and a similar
amount carries just one satoshi. Unlike Litecoin, Bitcoin current UTXOs present more diversity
both in their heights and their amounts.

On the other hand, there are some common properties in the UTXO sets of the three cryptocur-
rencies. First, most transactions with at least one UTXO have indeed just one UTXO. Second,
the usage of coins from coinbase transactions is different than the rest of coins. Third, there is
a preference for outputs with powers of 10 values. Finally, regardless of the specific metric used
to quantify if an output is worth spending (namely, dust or unprofitability), we have found many
outputs whose properties (value and size) make them non-economically rational to spend, because
spending them results in losing money. These UTXOs represent an important part of the UTXO
sets of the three coins (e.g., for a fee of 100 sat. or lit. per byte, they represent between 35− 45%
of Bitcoin and Bitcoin Cash UTXOs and 67% of Litecoin’s) and occupy also a significant amount
of space (similar in percentage). However, they are just a very small amount of the current coin
supply (0.01% for Bitcoin and Bitcoin Cash and a negligible percentage of litecoins).

These results indicate the importance of designing proper coin selection strategies in UTXO-
based cryptocurrencies. If these strategies are not properly designed and applied, the UTXO sets
may end up full of outputs not worth spending. In turn, maintaining these UTXO sets becomes
costly, and thus its management may grow into a problem for users with low computational re-
sources available. As a result, lousy UTXO set management threatens the scalability and the
decentralization of UTXO-based cryptocurrencies. Therefore, our work motivates the importance
of designing proper coin selection strategies.

This work opens many lines of further research. On the one hand, by describing the composition
and properties of the UTXO sets, our analysis can be used to optimize the management of the sets.
On the other hand, our work is the first step towards solving the problem of not-worth-spending
UTXOs. With this regard, we envision the design of both strategies to disincentivize the creation
of dust UTXOs and to incentivize dust consolidation.

Acknowledgments

The authors would like to thank Joaqúın Garćıa-Alfaro for the computational resources provided to
run some of the experiments of this paper. This work is partially supported by the Spanish ministry
under grant number TIN2014-55243-P and the Catalan Agència de Gestió d’Ajuts Universitaris i de
Recerca (AGAUR) grant 2014SGR-691. C. Pérez-Solà was affiliated with Universitat Autònoma de
Barcelona when the first version of the manuscript was done, and with Universitat Rovira i Virgili
when the revised version was writen. During this later time, she was founded by the Mart́ı-Franquès
postdoctoral program from Universitat Rovira i Virgili.

24

References

[1] Zahnentferner J. 2018 Chimeric Ledgers: Translating and Unifying UTXO-based and Account-
based Cryptocurrencies. Cryptology ePrint Archive, Report 2018/262. https://eprint.iac
r.org/2018/262.

[2] Bitcoin Core. 2016 Bitcoin Core 0.12.0 Release Notes. https://bitcoin.org/en/release/v
0.12.0.

[3] Bitcoin Core. 2015 Obfuscate database files. Bitcoin Core Github Issue 6613, https://gith
ub.com/bitcoin/bitcoin/issues/6613.

[4] Delgado-Segura S, Pérez-Solà C, Navarro-Arribas G, Herrera-Joancomart́ı J. 2018 Analysis of
the Bitcoin UTXO set. In Proceedings of the 5th Workshop on Bitcoin and Blockchain Research
Research (in Assocation with Financial Crypto 18) Lecture Notes in Computer Science.

[5] Kalodner HA, Goldfeder S, Chator A, Möser M, Narayanan A. 2017 BlockSci: Design and
applications of a blockchain analysis platform. CoRR abs/1709.02489.

[6] Bitcoin Core. 2018 Bitcoin Core Dust Definition. Bitcoin Core Source Code (policy.cpp),
https://github.com/bitcoin/bitcoin/blob/e561cf4fa865a89254e2e6839b3ef343e

06951a2/src/policy/policy.cpp#L20.

[7] Bitcoin Wiki. 2017 Elliptic Curve Digital Signature Algorithm. Elliptic Curve Digital Signature
Algorithm, https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorith

m.

[8] Wuille P. 2014 Answer to: What are the limits of m and n in m-of-n multisig addresses?.
Bitcoin StackExchange. https://bitcoin.stackexchange.com/a/28092/30668.

[9] Stone A. 2016 Optimizing Bitcoin’s Transaction Generation Code. Blog post
https://medium.com/@g.andrew.stone/optimizing-bitcoins-transaction-generat

ion-code-92bd222bae85.

[10] Lopp J. 2018 satoshi.info. Unspent Transaction Output Set. http://statoshi.info/dash
board/db/unspent-transaction-output-set.

[11] Johansson TE. 2018 Bitcoin UTXO Stats. https://utxo-stats.com/.

[12] Andresen G. 2015 UTXO uh-oh Blog post, http://gavinandresen.ninja/utxo-uhoh.

[13] Maxwell G. 2017 A deep dive into bitcoin core 0.15. SF Bitcoin Developers Meetup, http://
diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/.

[14] Bitcoin Core. 2017 Bitcoin Core version 0.15.0 released. https://bitcoin.org/en/release
/v0.15.0.

[15] Bitcoin Wiki. 2017 How to cheaply consolidate coins to reduce miner fees. https://en.bitco
in.it/wiki/How_to_cheaply_consolidate_coins_to_reduce_miner_fees.

25

[16] Lopp J. 2015 The Challenges of Optimizing Unspent Output Selection. Blog post,
https://medium.com/@lopp/the-challenges-of-optimizing-unspent-output-selec

tion-a3e5d05d13ef.

[17] Erhardt M. 2016a Simulation-based Evaluation of Coin Selection Strategies. In Scaling Bitcoin.

[18] Erhardt M. 2016b An Evaluation of Coin Selection Strategies. Master’s thesis Karlsruhe Insti-
tute of Technology.

[19] BRD. 2018 BRD. BreadWallet. https://breadapp.com/.

[20] Electrum. 2018 Electrum Bitcoin Wallet. https://electrum.org/.

[21] Mycelium. 2018 Mycelium Wallet. https://wallet.mycelium.com/.

[22] Bitcoinj Project. 2018 bitcoinj. https://bitcoinj.github.io/.

[23] Todd P. 2016 Making UTXO Set Growth Irrelevant With Low-Latency Delayed TXO Com-
mitments. bitcoin-dev mailing list, https://lists.linuxfoundation.org/pipermail/bitc
oin-dev/2016-May/012715.html.

[24] Todd P. 2017 TXO commitments do not need a soft-fork to be useful. bitcoin-dev mail-
ing list, https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-February/

013591.html.

26

