
1

Forward Private Searchable Symmetric
Encryption with Optimized I/O Efficiency

Xiangfu Song, Changyu Dong, Dandan Yuan, Qiuliang Xu and Minghao Zhao

Abstract—Recently, several practical attacks raised serious concerns over the security of searchable encryption. The attacks have
brought emphasis on forward privacy, which is the key concept behind solutions to the adaptive leakage-exploiting attacks, and will very
likely to become a must-have property of all new searchable encryption schemes. For a long time, forward privacy implies inefficiency
and thus most existing searchable encryption schemes do not support it. Very recently, Bost (CCS 2016) showed that forward privacy
can be obtained without inducing a large communication overhead. However, Bost’s scheme is constructed with a relatively inefficient
public key cryptographic primitive, and has poor I/O performance. Both of the deficiencies significantly hinder the practical efficiency of
the scheme, and prevent it from scaling to large data settings. To address the problems, we first present FAST, which achieves forward
privacy and the same communication efficiency as Bost’s scheme, but uses only symmetric cryptographic primitives. We then present
FASTIO, which retains all good properties of FAST, and further improves I/O efficiency. We implemented the two schemes and
compared their performance with Bost’s scheme. The experiment results show that both our schemes are highly efficient.

Index Terms—searchable encryption, symmetric primitives, forward privacy, I/O efficiency.

F

1 INTRODUCTION

S EARCHABLE encryption is perhaps one of the most inten-
sively studied cryptographic primitives. The need for search-

able encryption comes from the surge of Storage-as-a-service, a
service model in which the clients store their data on remote
servers that are managed by external service providers (e.g.
Amazon S3, Microsoft Azure Storage, Google Cloud Storage
etc.). When data storage is outsourced, data privacy becomes a
primary concern because the service providers may not always be
trusted. While conventional encryption can be used to protect the
outsourced data, it does not allow effective retrieval of data by
searching on encrypted data. Searchable encryption was proposed
to solve this problem. In general, searchable encryption schemes
work by generating an encrypted index, which will be outsourced
to the service provider along with the encrypted data. Later the
client can generate search tokens that encrypt certain keywords
and the server can perform a search algorithm using the tokens
and the encrypted index to find matches. In this way, even though
data is stored on and searching is handled by an untrusted server,
the privacy of the data can still be preserved.

• X. Song, D. Yuan and Q. Xu are with the School of Computer Science and
Technoloy, Shandong University, 250101 Jinan, China.
E-mail: bintasong@gmail.com, dandanyuan.sdu@gmail.com,
xql@sdu.edu.cn

• C. Dong is with the School of Computing, Newcastle University, NE4 5TG
Newcastle Upon Tyne, U.K.
E-mail: changyu.dong@newcastle.ac.uk

• M. Zhao is with the School of Software, Tsinghua University, 100084
Beijing, China.
E-mail: mh-zhao17@mails.tsinghua.edu.cn

• Accepted to be published in IEEE Transactions on Dependable and Secure
Computing.

• DOI: 10.1109/TDSC.2018.2822294 c© 2018 IEEE. Personal use of this
material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Recently, there has been a major concern over the security
of searchable encryption schemes. Since 2012, several attacks [1],
[2], [3] have been devised that allow an untrusted server to recover
the keywords in the client’s search tokens, and in consequence, to
learn a significant amount of information about the outsourced
encrypted data. These attacks are normally performed by utilizing
information leaked in the searching and updating phases, and they
are pervasive because the information leakage exists inevitably
in all searchable encryption schemes. In the most recent work
by Zhang et al. [3], the authors showed a simple yet effective
adaptive attack that can fully reveal the client’s queries by injecting
only a small number (usually less than 100) of files. The result
is devastating: not only it enables the server to learn partial
information about the encrypted data, the recovered keywords can
also help the server in other statistical attacks. The essential idea of
the attack is that the server first crafts a set of files (each contains
certain keywords), then sends the files to the client and tricks
the client into encrypting them. After the client has encrypted
and uploaded the injected files, the server can use the tokens
previously submitted by the clients to search on the injected
files. By knowing which keywords are in each injected file and
observing which files match a token, the server can deduce easily
which keyword is encrypted in the token. The attack shows that
even seemingly harmless small leakage can be exploited, and
highlights the importance of forward privacy, which requires that
a newly inserted file cannot be linked in anyway with previous
search queries. With forward privacy, the attack can be prevented.

While forward privacy is not a new concept, most searchable
encryption schemes do not support it. Until recently, forward
private searchable encryption implies prohibitively high commu-
nication cost. There is a trivial way to achieve forward privacy:
when a new file needs to be added, the client downloads all
encrypted files from the server, re-indexes them with the new file
and re-encrypts everything with new keys. This is obviously im-
practical. There were also non-trivial solutions using an oblivious
data storage, e.g. Oblivious RAM (ORAM)[4], [5] or Distributed

Oblivious Data structure (DOD) [6], which hides search patterns
and access patterns from the server. In this approach, the server
cannot observe which files match the token, therefore cannot
learn anything about the query. Nevertheless, the communication
cost is still too high unless replying on strong assumptions like
multiple non-colluding servers. One notable work by Chang and
Mitzenmacher [7] achieves forward privacy without using an
oblivious data storage. However, in this scheme the search query
size grows linearly in the number of updates, which means after
the system has run for a period of time, the communication cost
for the search operation will become unacceptably high due to the
ever-growing query size.

In CCS 2016, Bost [8] proposed an efficient forward secure
searchable encryption scheme called Sophos that achieves a low
communication cost. In this scheme, the client keeps a state for
each keyword and evolves the state when updating a file on the
server that contains this keyword. The state is used as an input
when generating the encrypted index for the updated file, which
means the previous tokens are outdated and cannot be used to
match the new index. The state is kept secret from the server until
the client performs a search, at which point a constant size token
is generated that contains the current state. The token enables the
server to recover all previous states from the current state. By
knowing all states, the server can search through all updates and
find matching files. Sophos uses trapdoor permutation, a public
key primitive, for evolving the state so that the server, who does
not know the private key, cannot predict future states. Thus when
new updates come in, the server learns nothing and forward
privacy is achieved.

Although Sophos is more efficient than previous forward
private schemes, there are still two significant deficiencies in the
design. Firstly, the scheme is based on public key cryptography.
It has been showed clearly in Bost’s paper [8] that if the data
is updated frequently, the public key operations become a major
performance bottleneck. It would be ideal if only symmetric
cryptographic primitives are used. Secondly, the search operation
is not I/O efficient. Recently it has been shown that I/O has
become a major bottleneck that prevents searchable encryption
from scaling up to large data [9], [10]. In Sophos, the locality,
a measure of I/O efficiency, of the search operation increases
linearly in the number of updates. The performance of the search
operation is inversely proportional to the locality, which means
search performance will degrade inevitably and eventually become
unacceptably slow after a long run. The author acknowledged this
problem but also argued that the poor locality is a necessary price
paid for forward privacy.

1.1 Our Contributions

Our investigation started from two questions: 1) can we construct
a communication-efficient forward private searchable encryption
scheme using only symmetric key primitives? 2) to what extent
can we optimize the I/O efficiency under the security constraint
imposed by forward privacy? We present positive answers to these
two questions by constructing two new searchable encryption
schemes FAST and FASTIO.
• FAST (Forward privAte searchable Symmetric encrypTion)

is our first attempt to construct a forward private searchable
encryption scheme using only symmetric key primitives. The
design of FAST follows the state-based approach used by
Sophos [8], but with a very different idea. In Sophos, the

states are related by a trapdoor permutation. Since the trapdoor
permutation is a public key primitive, by giving the server only
the public key, the server can generate states backwards, but
not forwards. This strategy however is not valid when using
symmetric key primitives. The idea in FAST is inspired by
singly linked list, a classic data structure. Each update is like
a node in a singly linked list and contains a randomly generated
ephemeral key (encrypted). The key is like the pointer in a list
node that points backwards to the previous node. In FAST, a
new state is generated by encrypting the previous state using
the ephemeral key. Given the current key and the current state,
the server can compute the previous state by decryption. The
decrypted state will help the server to get the previous update
and then the previous key. Iteratively, the server can find all
previous states as well as all previous updates. However, since a
future key is randomly generated on-the-fly by the client and is
independent of the current and past keys, by no means can the
server predict the future keys/states given the keys/states it has
already known. Thus forward privacy is achieved.

• FASTIO, where IO in the name stands for I/O Optimized.
While FAST is entirely based on symmetric key cryptography
which makes it computationally more efficient, it has bad I/O
efficiency. The I/O overhead comes from 1) the ephemeral keys
that are required to be stored on the server, and 2) the fact
that the server is forced to read the index in a very non-local
manner in order to achieve forward privacy. Our idea is simple:
after each search query, we can let the server store the result.
Since the search result has already been revealed to the server,
saving it will not leak additional information to the server. The
server now needs only the latest state and does not need to store
ephemeral keys anymore. In addition, the non-local reads are
also minimized because the previous search result can be read
continuously.

We implemented the two schemes and conducted experi-
ments to measure their performance. The results confirm that our
schemes are more efficient in terms of computation than Sophos,
which is the most efficient forward private searchable encryption
scheme to date. The results also confirm that FASTIO has a much
better I/O efficiency, which makes its much more scalable.

2 RELATED WORK

Searchable encryption The functionality of secure search can
be realized by using generic cryptographic primitives such as
Fully Homomorphic Encryption (FHE) [11], Oblivious RAM
(ORAM)[12], [13] and Secure Multi-Party Computation(SMPC)
[14], [15]. With the generic primitives, it is possible to per-
form secure search with minimum information leakage. However,
searchable encryption based on generic primitives is inefficient
and is not suitable to be used in practice. Research in practical
searchable encryption started from the seminal paper by Song et al.
[16], and the goal is to achieve practical efficiency and scalability
with the price of accepting a small leakage.

One branch in this research area considers the static setting, in
which the client encrypts the data at the setup phase, and does not
update the ciphertexts on the server side afterwards. In this setting,
Curtmola et al. [17] gave the first reversed-index based scheme
with sub-linear efficiency. Chase and Kamara [18] also proposed
a similar scheme but with a higher storage complexity. Cash et
al. [9] proposed a scheme that supports boolean queries. Static
searchable encryption, although can achieve sub-linear efficiency,

2

are not suitable in many application scenarios where updates
are required.

Dynamic searchable encryption enables the client to add and
delete data items after the dataset is outsourced to the cloud. Actu-
ally, the work of Song et al. [16] supports dynamically update, but
search and update operations require sequential scan performed
on the full-text. Kamara et al. [19] proposed a dynamic searchable
symmetric encryption (DSSE) scheme as an improvement of [17].
Their scheme achieves sub-linear search time but has a high
complexity for the add and delete operations. The scheme also
leaks much more information to the server than [17]. Dong et
al. [20] proposed a dynamic searchable encryption scheme that
supports multiple users. However the scheme is based on public
key cryptography. Kamara and Papamanthou [21] proposed a
parallel DSSE scheme, which leaks less information but requires
multiple interactions between the server and client. Sun et al. [22]
proposed a multi-client version of DSSE scheme that supports
boolean query. Hahn and Kerschbaum [23] proposed a scheme that
only leaks the search pattern and also achieves linear searching
complexity. Naveed et al. [24] proposed a new primitive called
blind-storage, and based on it, they constructed a DSSE scheme.
Instead of processing and computing on the data stored on it, in
this scheme, the server just acts as a transmission and storage
entity. It achieves less information leakage but requires multiple
rounds of interaction between the client and server. Gajek [25]
proposed a DSSE scheme based on constrained functional en-
cryption (CFE), which encodes the index as an encrypted binary
tree and constructed an inner product functionality to traverse the
encrypted tree. Another DSSE scheme with multi-keyword ranked
search was given by Xia et al. [26].
Forward Privacy Roughly, forward privacy requires that a newly
inserted file cannot be matched with previous search queries. This
notion is not applicable to static searchable encryption schemes
because they do not support update. Most dynamic searchable
encryption schemes do not support forward privacy. To date, most
existing forward secure dynamic searchable encryption schemes
are constructed based on ORAM-like structure. Among them, the
concept of forward privacy was firstly precisely stated by Stefanov
et al. [4]. They proposed a forward private DSSE scheme based
on hierarchical ORAM. Likewise, Garg et al. [5] proposed the
first efficient round-optimal oblivious RAM(ORAM) scheme. As
an application of their ORAM scheme, they constructed a DSSE
scheme with sub-linear search efficiency that conceals the search
pattern. The problem of this approach is the high communication
cost that is resulted from using ORAM like structures. In the
scheme of Hoang et al. [6], they use a distributed oblivious data
structure that is a distributed encrypted incidence matrix created
on two non-colluding servers. There are only a few forward
private searchable encryption schemes that do not use ORAM.
In the scheme proposed by Chang and Mitzenmacher [7], forward
privacy was achieved by changing search token after each update.
The tokens are unrelated. Thus to perform a search, the client
needs to submit all previous tokens in the query. The most efficient
forward private searchable encryption scheme was proposed by
Bost [8], in which forward privacy is achieved by using a one-way
trapdoor permutation to evolve a state stored at the client side.
I/O Efficiency of Searchable Encryption Focusing on the prac-
tical performance of searchable encryption, Cash et al. [9] made
a compromise in security and efficiency and proposed a scheme
with good I/O efficiency based on T-Set (a data structure of
keyword-entry tuple). Their method was extended by Cash et al.

[27]. The new scheme has a better performance in both searching
and updating phase. Cash and Tessaro [10] investigated the I/O
efficiency of searchable encryption and proved that it is impossible
to achieve optimal server storage, read efficiency and locality
at the same time due to the security requirement of searchable
encryption. Following the work of Cash and Tessaro, a tight lower
bound of storage locality was given by Asharov et al. [28]. A
tunable SSE scheme was given by Demertzis et al. [29] in which
the locality can be tuned. Recently, Demertzis et al. [30] proposed
a linear-space searchable encryption scheme with constant locality
and sublogarithmic read efficiency. All these schemes are mainly
for the static setting and do not support dynamic update. Miers et
al. [31] came up with a DSSE scheme by using oblivious update
index (OUI) as an intermediate cache and pushing a bucket of
document identifiers from OUI to append-only storage when that
bucket is full. Their scheme has a higher I/O efficiency compared
to using an ORAM scheme and achieves a better locality through
the bucket mechanism, but leaks more information and does not
support forward privacy.
Recent Work While this manuscript was in submission, four new
papers appeared [32], [33], [34], [35]. Some ideas in this paper
were independently developed in those papers. Here we provide a
brief review of the overlaps and differences between our work and
the simultaneous work. All four papers construct a forward private
searchable encryption scheme using only symmetric key primi-
tives. As we have discussed in section 1.1, the difficulty of using
only symmetric key primitives is how to prevent the server from
generating future states. In [32], the strategy is the same as that
in [7], thus has a big communication overhead because a search
query needs to include one token for each new update since the
last search. In [33], they observe that updates are naturally ordered
in a sequence. By using a range-constrained PRF, a search token
can be restricted to only applicable to updates within a specified
range. Thus, future updates are secure as they are out of the range
of past search tokens. However, there is an upper bound on the
number of updates that can be performed, and this scheme has a
higher computational and communication overhead compared to
our schemes. In [34], [35], they both generate a new key for future
updates after each search query (the current key is given to the
server as part of the search token). A major disadvantage of this
rekeying strategy is that the search operation is not read-only and
the search result has to be re-encrypted and written back, which
increases computational and I/O costs. Re-encryption is done by
the server in [34], and by the client in [35] (which requires an
additional round and more data to be transferred). While in FAST,
our search is read-only because we use an ephemeral key for each
update, which means rekeying and re-encryption are not needed.
Communication and/or computational wise, our schemes are better
than the schemes in the four papers. The idea of caching previous
search results to improve efficiency, which we use in FASTIO, is
also used/mentioned in [32], [33].

3 PRELIMINARIES

3.1 Notations
We use r $←− X to denote that an element r is sampled uniformly
at random from a set X , {0, 1}l to denote the set of all l-bit
strings, {0, 1}∗ to denote the set of arbitrary length strings, and
a||b to denote the concatenation of two strings a and b. Let λ be a
security parameter, we say a function ν : N→ R is negligible in λ
if for every positive polynomial p, ν(λ) < 1/p(λ) for sufficiently

3

large λ. We use poly(λ) and negl(λ) to represent the unspecified
polynomial and negligible functions in λ, respectively. For a set
S, we use |S| to denote S’s cardinality. For a string a, we use |a|
to denote a’s bit length.

3.2 Searchable Encryption
A dynamic searchable symmetric encryption (DSSE) scheme
enables a client to outsource its data to an untrusted server in
an encrypted form. Later the server can execute search or update
queries on the encrypted data. We only consider the dynamic
setting in this paper because forward privacy is not applicable
to the static setting.

Let a database DB = {(indi,Wi)}Di=1 be a D-vector of
identifier/keyword-set pairs, where indi ∈ {0, 1}l is a document
identifier and Wi ⊆ P({0, 1}∗). The universe of keywords of
the database DB is W = ∪Di=1Wi. We use N =

∑D
i=1 |Wi| to

denote the number of document/keyword pairs. We use DB(w) =
{indi|w ∈ Wi} to denote the set of documents that contain the
keyword w. A DSSE scheme Π = {Setup,Search,Update}
consists of three protocols ran by the client and the server:
• ((K,σ); EDB)← Setup(λ,DB;⊥): It takes a security param-

eter λ and a database DB as inputs and outputs (K,σ) to the
client and EDB to the server, where K is a secret key, σ is the
client’s state, and EDB is the encrypted database.

• ((σ′,DB(w)); EDB′) ← Search(K,σ,w; EDB): The client’s
input consists of its secret key K , the state σ and a keyword
w, the server’s input is the encrypted database EDB. The
client’s output includes a possibly updated state σ′ and DB(w),
i.e. the set of the identifiers of the documents that contain
the keyword w. The server’s output is the possibly updated
encrypted database EDB′.

• (σ′; EDB′) ← Update(K,σ, ind,w, op; EDB): The client’s
input is the secret key K , the state σ, a document identifier ind,
a keyword w and an operation type op. The server’s input is
EDB. The operation op is taken from the set {add, del}, which
means the client wants to add or delete a document/keyword
pair. The client updates its state and the server updates EDB as
requested by the client.

3.3 Security Definition
All existing searchable encryption schemes leak more or less some
information to the server, as a tradeoff to gain efficiency. Thus,
the security of searchable encryption is defined in the sense that
no more information is leaked than allowed. This is captured by
using the simulation paradigm and providing the simulator a set
of predefined leakage functions L = {LSetup, LSearch, LUpdate}.
Definition 1 (Adaptively Secure Searchable Encryption). Let

Π = (Setup, Search, Update) be a searchable encryption
scheme, A be an adversary, S be a simulator parameterized
with leakage function L = {LSetup, LSearch, LUpdate}. We
define the following two probabilistic experiments:
• RealΠA(λ): A chooses a database DB, the experiment runs

Setup(λ,DB;⊥) and returns EDB to A. Then, the ad-
versary adaptively chooses queries qi. If qi is a search
query then the experiment answers the query by running
((σi+1,DBi(wi)),EDBi+1)) ← Search(K,σi, qi; EDBi).
If qi is an update query, then the experiment an-
swers the query by running (σi+1,EDBi+1) ←
Update(K,σi, qi; EDBi). Finally, the adversary A outputs
a bit b ∈ {0, 1}.

• IdealΠA,S(λ): A chooses a database DB. Given the leakage
functionLSetup(DB), the simulator S generates an encrypted
database EDB ← S(LSetup(DB)) and returns it to A.
Then, the adversary adaptively chooses queries qi. If qi is
a search query, the simulator answers the query by running
S(LSearch(qi)). If qi is an update query, the simulator
answers the query by running S(LUpdate(qi)). Finally, the
adversary A outputs a bit b ∈ {0, 1}.

We say Π is an L-adaptively-secure searchable encryption
scheme if for any probabilistic, polynomial-time (PPT) ad-
versary A, there exists a PPT simulator S such that:

|Pr(RealΠA(λ) = 1)− Pr(IdealΠA,S(λ) = 1)| ≤ negl(λ)

3.4 Leakage Functions and Forward Privacy
A good searchable encryption scheme should reveal as little
information as possible. The leakage is captured by the leakage
functions. Usually we require LSetup = (D,N), i.e. the Setup
protocol only leaks the size of DB and the number of docu-
ment/keyword pairs. For the Search protocol, we usually require
LSearch = (ap, qp), where ap is the access pattern and qp
is the query pattern. More formally, LSearch keeps a history
Hist = {(DBi, qi)}Qi=0, which contains all queries qi so far
and the snapshot of the database DBi corresponding to qi. The
access pattern is defined as ap(Hist) = (t1, . . . , tQ) where ti =
(i,DBi(wi)) if qi = wi is a search query, or ti = (i, opi, indi)
if qi = (indi, wi, opi) is an update query. The query pattern is
defined as qp(w) = {j|qj contains w for each qj in Hist}.

Note that in Section 3.2, 3.3 and this section, we only consider
the encrypted index, but not the encrypted files. The operations
for manipulating the actual stored files are not included in the
protocols and information leaked through file operations are not
modeled explicitly. This simplified treatment of SSE is one of the
influential formalizations and is often seen in the literature, e.g.
see [27], [9], [8], [33]. The rationale behind this simplification
is that the actual files are always encrypted using a semantically
secure encryption scheme thus the ciphertext of a file leak no
information about its content except size. If operations on files are
limited to only add and delete, then the information leaked from
file operation is limited to the size of the file. The size information
is assumed to be implicitly included in the identifier (ind) and can
be computed from it if needed.
Forward privacy is a strong property regarding the leakage of
the update operation in DSSE. Intuitively, it requires that given
previous search tokens, an update query leaks no information
about the keywords being searched in the past. If a searchable
encryption scheme is not forward private, a search token can be
used to retrieve documents added after the token being issued.
Thus, after a token has been given to a curious server, the server
can save it and test it on every new update to see whether the
new update matches the old token. This is exactly what has been
exploited in the file-injection attack: the server tricks the client
into encrypting files containing certain chosen keywords, then test
previously received tokens over the injected files to find for each
token which files it matches. Then the server can deduce which
keyword is encoded in this token. With forward privacy, this attack
can be prevented because the previous tokens cannot be used on
new updates. The formal definition is as the following:
Definition 2 (Forward Privacy). An L-adaptively-secure SSE

scheme is forward private if for an update query qi =

4

(indi, wi, opi), the update leakage function LUpdate(qi) =
(i, opi, indi).

For the convenience of proof, in our definition the update
query contains only one document/keyword pair. This definition
is actually equivalent to the one in [8], where the update query
contains multiple keywords. Our definition also supports adding
or removing full document, which can be regarded as iteratively
adding or removing the corresponding document/keyword pairs.
The number of updated pairs to a document is also leaked and can
be computed easily from our defined leakage.

3.5 Searchable Encryption and I/O Efficiency

Scalability is a key consideration when designing a searchable
encryption scheme because the target application is data storage
outsourcing, which usually implies that there is a large amount
of data. Recent searchable encryption schemes are often very
efficient in terms of computation so one consequence is that I/O
efficiency becomes the bottleneck for scaling [9], [10], [31], [29].

The I/O efficiency of searchable encryption is characterized
by three factors: server side index size, the locality and the read
efficiency. The first is self-explanatory. The locality is the number
of non-contiguous reads the server must perform when answering
a search query. High locality means more random access I/O
requests and a longer latency due to the inter-requests latency.
The read efficiency is quantified by the amount of unnecessary or
irrelevant data read. More formally, we have:

Definition 3 (Locality). Let Π be a searchable encryption scheme,
K be a secret key, σ be the client’s state and EDB be a
database encrypted by Π under K with regard to σ. For
every w ∈ W, we say the locality is r for the search query
Search(K,σ,w; EDB) if the server can answer the query by
reading at most r intervals from EDB.

Definition 4 (Read Efficiency). Let Π be a searchable encryption
scheme, K be a secret key, σ be the client’s state and EDB be
a database encrypted by Π underK with regard to σ. For every
w ∈ W, we say the read efficiency is c for the search query
Search(K,σ,w; EDB) if the server can answer the query by
reading at most c · (

∑
si∈DB(w) |si|) bits.

Cash et al. [10] noticed that the security property has a
negative effect on I/O efficiency and pointed out that, for the sake
of security, a searchable encryption scheme must either extend
the encrypted index to an overwhelming large size, or perform
searching in a non-local way (e.g. in a random manner), or
read much more bits than actually needed. Afterwards Bost [8]
additionally observed that locality and forward privacy are two
irreconcilable notions. On the one hand, forward privacy requires
that in an update operation for a keyword w, the locations in the
EDB that are modified should be unrelated to the locations that are
already known to match w. On the other hand, to reduce locality,
it is necessary to organize entries in EDB relating to w together
so that they can be read continuously. Bost concluded, which is
not entirely true as we will show later, that under the constraint of
forward privacy, no locality optimization is possible for keyword
w unless large modification is done to the encrypted database,
either during searches or updates.

4 FAST: FORWARD PRIVATE SEARCHABLE SYM-
METRIC ENCRYPTION

In this section, we present FAST, our first forward private search-
able encryption scheme. The main design goal of this scheme
is to eliminate public key operations while retaining optimal
communication complexity.

Recall that a forward private searchable encryption scheme can
be based on ORAM. While ORAM can be purely symmetric key
based [12], [13], [36], [37], it has a large communication overhead.
Therefore, we turned to the state-based approach that was used in a
few existing schemes [7], [8]. The main challenge of this approach
is how to allow the server to re-generate all previous states (so that
communication cost can be reduced), but not later states (so that
forward privacy can be achieved). Sophos [8] solved this problem
by using a public key primitive (trapdoor permutation), so that
the client can evolve the state forward using a private key and
the server can re-generate the whole history of the states using
the public key. However, there exists a huge gap in adopting this
strategy with symmetric key cryptography. Symmetric key means
there is only one key and once it is released to the server, the
server can compute future states and there is no forward privacy
any more. This is why in [7], the client has to keep the key secret
and generate the history of states locally rather than giving the key
to the server and letting the server to generate the history. However
since the query contains the full history of the state, this results
in a huge expansion in the token size and a large communication
overhead.

A naive symmetric key based solution with low communica-
tion overhead is to use a hash chain for the states. More specif-
ically, for each keyword, the client chooses the last state stL

$←−
{0, 1}λ, then generates all other states sti ← H(sti+1), 0 ≤
i < L. When performing update queries, the client starts from
st0 then st1 and so on so forth. When performing a search query,
a state stc is revealed to the server. By the one-wayness of the
hash function, the server can recover stc−1, . . . , st0 but not states
after stc, thus forward privacy is guaranteed. However, there are
two intrinsic problems. The first problem is that the hash chain
parameter L must be fixed at the beginning, which is inflexible
because it limits the number of update operations the client can
perform. The second problem is that, if the client stores the hash
chains, then the storage overhead is too high; on the other hand,
if the client only stores stL and computes the state stc on-the-
fly, then it will need L − c hash invocations per search or update
query, which is computationally too expensive. Therefore we need
a better way to generate and evolve the states.

The idea of FAST is that rather than pseudorandomly generat-
ing all states using a fixed key as in Sophos or use a hash chain
as in the naive solution, the client chooses a random ephemeral
key every time to evolve the state. The current state is essentially
the encryption of the previous state under the ephemeral key.
The ephemeral key is then stored on the server side, encrypted
using the current state. The server can only get the ephemeral
key if it knows the current state. Then by decrypting the current
state with the ephemeral key, the server can derive the previous
state. Iteratively, the server obtains all states, which enable it to
search. Forward privacy is guaranteed since the server cannot infer
unknown states from currently known states and keys, and the
search token size can be made constant because the client only
needs to give the latest state to the server.

5

Setup(λ,⊥;⊥)

Client:
1: ks

$←− {0, 1}λ
2: ΣΣΣ← empty map

Server:
3: T← empty map

Update(ks,ΣΣΣ, ind, w, op; T)

Client:
4: tw ← F (ks, h(w))
5: (stc, c)← ΣΣΣ[w]
6: if (stc, c) = ⊥ then
7: st0

$←− {0, 1}λ, c← 0
8: end if
9: kc+1

$←− {0, 1}λ
10: stc+1 ← P (kc+1, stc)

11: ΣΣΣ[w]← (stc+1, c+ 1)
12: e← (ind||op||kc+1)⊕H2(tw||stc+1)
13: u← H1(tw||stc+1)
14: send (u, e) to server

Server:
15: T[u] = e

Search(ks,ΣΣΣ, w; T)

Client:
16: tw ← F (ks, h(w))
17: (stc, c)← ΣΣΣ[w]
18: if (stc, c) = ⊥ then
19: return ∅
20: end if
21: send (tw, stc, c) to Server

Server:
22: ID,∆← ∅

23: for i = c to 1 do
24: u← H1(tw||sti)
25: e← T[u]
26: (ind, op, ki)← e⊕H2(tw||sti)
27: if op = “del” then
28: ∆← ∆ ∪ {ind}
29: else if op = “add” then
30: if ind ∈ ∆ then
31: ∆← ∆− ind
32: else
33: ID← ID ∪ {ind}
34: end if
35: end if
36: sti−1 ← P−1(ki, sti)
37: end for
38: send ID to client

Fig. 1: Pseudocode of Protocols in FAST

stc+1

P(kc+1,stc)

stc

H1(tw||stc)

P-1(kc+1,stc+1)st1

H1(tw||st1)

P(k1,st1)

st0 P-1(k1,st1)

k1 kc+1

Update

...

Search

st2

H1(tw||st2)

P-1(k2,st2)

P(k2,st2)

...

k2

P-1

 P

H2(tw||stc+1)

kc+1 indop

 H1(tw||stc+1)

H2(tw||stc)

kc indop

H2(tw||st2)

k2 indop

H2(tw||st1)

k1 indop

Fig. 2: Update and Search in FAST

Fig. 1 shows the protocols of the scheme. We also depict in
Fig. 2 how the states evolve forward and backward in the update
and search protocols. In the Setup protocol, the client generates
ks and Σ, where ks is a λ-bit long-term key that will be used
to encrypt keywords and Σ is an empty map that will be used
to store the states on the client side. The long-term key ks is
necessary to prevent the server from generating tokens by itself.
The server generates T, which is an empty map to be used to store
the encrypted index. In the Update and the Search protocols, F
is a pseudorandom function, P is a pseudorandom permutation
(and P−1 is the inverse permutation), and h,H1, H2 are secure
hash functions with appropriate output lengths. When updating a
file that contains a keyword w and whose identifier is ind, the
client needs to retrieve the previous state stc from the local state
store Σ (line 5-8), then generates a random ephemeral key kc+1

and evolves the state forward to the current state stc+1 using the
pseudorandom permutation (line 9-11). The ephemeral key kc+1

is not stored on the client side, but is embedded in the encrypted
index entry e that will be stored on the server side (line 12).
The client also generates a reference u from the current state
and the keyword (line 13). The pair (u, e) is sent to the server
and the server updates its map T accordingly (line 15). To search

a keyword w, the client retrieves the current state from Σ and
sends a search token that contains the encrypted keyword and
the current state to the server. Given the current state, the server
needs to generate all previous states sti and find the corresponding
update sequence. In the for loop of the algorithm, the server can
recover the ephemeral key ki (line 26), which can later be used
to recover the previous state (line 36). Because both “add” and
“del” are allowed update operations, the server needs to make sure
not including deleted files in the result set. To do so, the server
maintains a set ∆ that contains deleted file identifiers during the
search process. When the server sees a delete update, the server
puts the file identifier ind into ∆. When the server sees an add
update and the file identifier ind is in ∆, the server removes ind
from ∆. The idea is that the server searches backwards with regard
to the update sequence, therefore ind ∈ ∆ means the added file
later was deleted. So the two operations cancelled, then ind should
be removed from ∆ and should not be added to the result set. If
the server sees an add update and the file identifier is not in ∆ then
the file was not deleted and the identifier is added to the result set.

Complexity Analysis On the client side, the computational com-
plexity for update and search is O(1). The client stores a λ-bit key
and a map ΣΣΣ whose size is O(|W|), where |W| is the total number
of keywords. On the server side, the computational complexity
for update is O(1), and for search is O(cw) where cw is the
total number of updates (add + del) that contain the keyword
being searched since the initialization of the system. The server
stores a map T whose size is O(Nu), where Nu =

∑
w∈W cw

is the total number of updated document/keyword pairs since
setup. The communication complexity is O(1) for update. For
search, the communication complexity is O(1) for the query and
O(|DB(w)|) for the result set, which contains |DB(w)| match-
ing files. Complexity-wise, FAST is optimal (given the security
constraints).
Security Analysis FAST satisfies the adaptive security definition
(Definition 1). The search query leaks only the access pattern
and query pattern, which is standard in searchable encryption.
The update query leaks no information about the keywords, thus
satisfies forward privacy. We have the following theorem regarding

6

the security of FAST:
Theorem 1. Let F be a pseudorandom function, P be a

pseudorandom permutation. Let H1 and H2 be two hash
functions modeled as random oracles. Define leakage L =
(LSetup,LSearch,LUpdate) as

LSetup = ⊥
LSearch(w) = (ap(w), qp(w))

LUpdate(i, opi, w, indi) = (i, opi, indi)
Then FAST is a L-adaptively-secure dynamic SSE with for-
ward privacy.

The proof can be found in Appendix A.

5 FASTIO: I/O OPTIMIZED SCHEME

In this section, we present FASTIO, our second forward private
searchable encryption scheme. FASTIO retains all good properties
of FAST, and has been optimized for I/O efficiency, which enables
it to scale up to very large datasets.

5.1 I/O Deficiencies in FAST
Let us compare Sophos and FAST in term of I/O efficiency. The
criteria are the server side index size, read efficiency and locality.
In Sophos, the server side index size is N · l bits where N is
the number of document/keyword pairs in the index and l is the
identifier’s size. This is optimal. To answer a search query with
keyword w, Sophos needs to read cw · l bits, where cw is the
number of updates that contain w since the initialization of the
system. The read efficiency is 1, which means no unnecessary data
is read and the read efficiency is optimal. The locality of Sophos is
cw because the cw entries are located randomly in the encrypted
index. In FAST, the server side index size is N · (l + 1 + λ)
bits where λ is the size of the random ephemeral key and the
additional 1 bit is used to indicate the operation (“add” or “del”).
To answer a search query with keyword w, FAST needs to read
cw ·(l+1+λ) bits, which means the read efficiency is (l+1+λ)/l.
The locality of searching a keyword in FAST is cw, which is the
same as Sophos.

As we can see, in FAST the server side index size and read
efficiency are worse than those in Sophos. And the locality is
as poor as Sophos. Take a closer look, we can find that the I/O
deficiencies in FAST are related to its symmetric key construction.
To use symmetric key primitives, FAST has to store the ephemeral
key in the index. The key size λ is often similar to l, which means
a concrete overhead of 100% or so. However, if we do not store
the key in the index, the server cannot re-generate previous states
and cannot search. The question is: do we have to sacrifice I/O
efficiency for computational efficient (i.e. using symmetric key
primitives)?

5.2 The Construction
The idea of FATIO is to store the search query result, then when
the server answers a new search query, it can use the saved result
and only needs to search through new updates since the last search
query. The protocols of FASTIO can be found in Fig. 3. In the
Setup protocol, the client generates a long-term key for blinding
keywords, and an empty map ΣΣΣ for storing states. The server
generates two empty maps, Te is to be used to store the encrypted
index and Tc is to store the last search query results. For each
keyword w, the client stores in ΣΣΣ two things: a state st that is
generated randomly at the first time w is encountered or after each

search query of w, and a counter c to produce a sub-state for each
update after a search query (until the next search query). Note that
unlike in FAST that the state st must evolve each time an update
is made, in FASTIO st stays unchanged in between two search
queries even though there might be many updates. Although two
updates may be based on the same st, in the Update protocol,
the client can still make them unlinkable by hashing a sub-state
that is the concatenation of st and a counter (line 9 - 12). In the
Search protocol, if there are some documents on the server side
that contain the keyword w, the client generates tw (line 18). The
purpose of tw is to enable the server to find the last search query
result of w in Tc. The client also retrieves the stored state as well
as the counter, and checks whether they should be sent to the
server as part of the search token (line 19 - 25). In this process,
if the counter c is non-zero, which means there have been updates
since the last search query, then st will be sent to the server and the
client must generate a new random state st and reset the counter
at this point so that future updates can be made unlinkable. If the
counter c is zero, then there is no update since the last search
query and the query result should be the same as the previous
search. Therefore in this case tw alone is enough to retrieve the
result and the client keeps st secret. Search on the server side
consists of two steps. The first step is to retrieve the last search
query result using tw (line 27). Then the server may proceed to the
second step (line 31 - 40). If there have been updates since the last
search query, the server finds all updates using kw (the state) and
the counter. Then the server finds the document identifier from
each update and either removes it from or adds it to the result
set depending on whether the update operation is del or add. The
server also removes the update from Te since its content has been
revealed and is no long secret to the server. After all updates have
been processed, the server returns the result set to the client and
also stores it in Tc (line 41 - 42).
Complexity Analysis Complexity wise, FASTIO is almost the
same as FAST, except that on the server side, the computational
complexity for search now is O(c̄w) where c̄w is the total number
of updates that contain the keyword w since the last time w was
searched.
Security Analysis FASTIO achieves the same security level as
FAST. We have the following theorem regarding the security of
FASTIO:
Theorem 2. Let F be a pseudorandom function, H1 and H2 be

two hash functions modeled as random oracles. Define leakage
functions L = (LSetup,LSearch,LUpdate) as

LSetup = ⊥
LSearch(w) = (ap(w), qp(w))

LUpdate(i, opi, w, indi) = (i, opi, indi)
Then FASTIO is an L-adaptively-secure dynamic SSE with
forward privacy

The proof can be found in Appendix B.

5.3 I/O Efficiency Analysis
FASTIO has a near optimal server side index size and read
efficiency. In FASTIO, the server stores the index in two maps
Te and Tc. In Te, each entry is l + 1 bits where l is the size of
the document identifier. In Tc, each entry is a set of document
identifiers, thus the size is a multiple of l. In total, when there
are Nu document/keyword pairs, the size of the whole index is
between Nu · l and Nu · (l+ 1) bits. To answer each search query,
the server needs to read relevant entries in the index. The server

7

Setup(λ,⊥;⊥)

Client:
1: ks

$←− {0, 1}λ
2: ΣΣΣ← empty map

Server:
3: Te,Tc ← empty map

Update(ks,ΣΣΣ, ind, w, op; Te)

Client:
4: (st, c)← ΣΣΣ[w]
5: if (st, c) = ⊥ then
6: st

$←− {0, 1}λ
7: c← 0
8: end if
9: u← H1(st||(c+ 1))

10: e← (ind||op)⊕H2(st||(c+ 1))
11: ΣΣΣ[w]← (st, c+ 1)

12: send (u, e) to server

Server:
13: Te[u] = e

Search(ks,ΣΣΣ, w; Te,Tc)

Client:
14: (st, c)← ΣΣΣ[w]
15: if (st, c) = ⊥ then
16: return ∅
17: end if
18: tw ← F (ks, h(w))
19: if c 6= 0 then
20: kw ← st, st $←− {0, 1}λ
21: ΣΣΣ[w]← (st, 0)
22: else
23: kw ←⊥
24: end if
25: send (tw, kw, c) to Server

Server:
26: ID← ∅
27: ID.add(Tc[tw])
28: if kw =⊥ then
29: return ID
30: end if
31: for i = 1 to c do
32: ui ← H1(kw||i)
33: (ind, op)← Te[ui]⊕H2(kw||i)
34: if op = “del” then
35: ID← ID− {ind}
36: else if op = “add” then
37: ID← ID ∪ {ind}
38: end if
39: delete Te[ui]
40: end for
41: Tc[tw]← ID
42: send ID to client

Fig. 3: Pseudocode of Protocols in FASTIO

10 100 1000 10000 100000
Number of matching documents(log scala)

0.000

0.004

0.008

0.012

0.016

0.020

0.024

S
e
a
rc

h
 t

im
e
 p

e
r

m
a
tc

h
in

g
 e

n
tr

y
(m

s)

FAST

FASTIO

Sophos

(a) |DB| = 14× 106

10 100 1000 10000 100000
Number of matching documents(log scala)

0.000

0.004

0.008

0.012

0.016

0.020

0.024

S
e
a
rc

h
 t

im
e
 p

e
r

m
a
tc

h
in

g
 e

n
tr

y
(m

s)

FAST

FASTIO

Sophos

(b) |DB| = 14× 107

10 100 1000 10000 100000
Number of matching documents(log scala)

0.080

0.120

0.160

0.200

0.240

S
e
a
rc

h
 t

im
e
 p

e
r

m
a
tc

h
in

g
 e

n
tr

y
(m

s)

FAST

FASTIO

Sophos

(c) |DB| = 14× 108

Fig. 4: Search time per matched document for FAST, FASTIO and Sophos.

needs to read in total |DB(w)| document identifier (|DB(w)| is
the number of documents matching the keyword w). In a plaintext
search, the server must read in at least all identifiers of the
documents matching the keyword, which is in total |DB(w)| · l
bits. In FASTIO, some identifiers are read from Te and some are
read from Tc. Entries in Te adds 1 bit overhead per identifier for
the operation type, and entries in Tc have no overhead. Therefore,
the read efficiency of the search query is between 1 and 1 + 1

l .
In practice, the document identifiers need to be long enough to be
unique and l is often large, e.g. 128. Then the server side index
size and read efficiency in FASTIO are only less than 1% worse
than optimal.

The locality can be improved because reading the previous
search query result can be done in one go. If there have been
c̄w new updates after the last search query, we need c̄w non-
contiguous reads (this part cannot be improved by caching pre-
vious result). Therefore the overall locality is c̄w + 1 (in contrast
to cw). As we have discussed in Section 3.5, locality and forward
privacy are two irreconcilable notions. The implication is that,
as Bost observed, the worst-case locality cannot be improved
unless large modifications is done to the encrypted database. If
the keyword is rarely searched, the optimization has little effect.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of FAST and FASTIO,
and compare the results with Sophos, which is the most efficient
forward private searchable encryption to date.

6.1 Implementation and Experiment Settings
We implemented FAST and FASTIO using C++1. We use
Crypto++ library2 for the cryptographic operations: SHA256 for
H1 and H2, and AES-128 for F and P . To make the comparison
fair, in our implementation, we use the same underlying libraries
as in the Sophos implementation: Rocksdb3 for storing key-
value pairs and gRPC4 for communication. We used the C++
implementation of Sophos5 by the author in our comparison. The
identifier length is set to 64-bit in all schemes. The server is
deployed on an Alibaba Cloud ECS.i1.xlarge instance located in
US West, which has 4 cores (Intel Xeon E5-2682v4, 2.5 GHz),

1. https://github.com/BintaSong/DistSSE/tree/2.0
2. https://cryptopp.com
3. http://rocksdb.org
4. http://www.grpc.io
5. https://gitlab.com/sse/sophos

8

16GB RAM and 2 × 104 GB SSD disks. The client is deployed
on a desktop PC located in China, which has 4 cores (Intel Core
i5-3470, 3.7Ghz), 4 GB RAM and 500 GB hard disk.

6.2 Experiment Results
6.2.1 Update Efficiency
We first show the performance of the update operation. As we
explained earlier, the update operation in Sophos is based on
a public key primitive, while update operations in FAST and
FASTIO are all symmetric key based. We first measured the update
efficiency of FAST, FASTIO and Sophos in a local setting in which
we ran the client and the server on the same cloud instance. In this
setting, the time we measured does not include latency caused
by network, therefore it gives a better picture of the difference in
computational efficiency. We then measured the update efficiency
in a WAN setting, in which the server (in US) and the client (in
China) are distributed. The results are shown in Table 1.

As we can see, in the local setting, the throughput of FAST
is about 11×, and FASTIO is about 15×, that of Sophos. In the
WAN setting, the throughput of FAST is about 7×, and FASTIO
about 10×, that of Sophos. The results confirm that FAST and
FASTIO are superior in terms of update efficiency, compared to
public key based Sophos.

FAST FASTIO Sophos

Local Throughput (ops/s) 54060 76100 4890
Single update time (ms) 0.018 0.013 0.20

WAN Throughput (ops/s) 21650 31080 2990
Single update time (ms) 0.046 0.032 0.334

TABLE 1: Update efficiency for FAST, FASTIO and Sophos

6.2.2 Search Efficiency – Index Processing
For FAST, FASTIO and Sophos, the search operation on the server
side requires processing a list of encrypted index entries to find
matching documents. The search efficiency thus depends crucially
on the efficiency of processing the index. In Fig. 4, we show the
performance of index processing in the three schemes.

We conducted three experiments with different database sizes
14×106, 14×107 and 14×108. In each experiment, we measured
the total time on the server side (i.e. without counting network
latency and token generation time on the client side) for searching
keywords that have 10 − 105 matching documents. We repeated
30 times and took the average, then divided it by the number
of matching documents to get the time for processing a single
entry. As we can see in the figure, the time for processing a
single entry decreases when the number of entries increases. This
is because there is a fixed cost for initializing the search, which
is amortized into the per entry processing time. As the number
of entries increases, the amortized initialization cost becomes less
significant. When the database size is 14 × 106 and 14 × 107,
FAST performs better than FASTIO and Sophos in the cases where
the number of entries is small (10). This is because FAST has a
smaller initialization cost, which is the result of an implementation
level optimization.

We can observe the impact of I/O from Fig. 4. As we can
see, for the same scheme and the same index size, the time we
measured with the largest database (14 × 108) is much higher
than the time we measured with the smaller databases (14 × 106

and 14 × 107). The performance degradation is about 2 orders
of magnitude. The observation is in line with the results from

previous studies (see Section 2). We can also see that FAST was
impacted the most as it has the worst I/O efficiency.

In smaller databases where I/O does not dominates the pro-
cessing time, FASTIO performs much better than Sophos. The
performance difference is about 1 - 2 times. This is mainly because
FASTIO uses only symmetric key operations. In large databases,
the performance difference is not that large, but FASTIO still
performs marginally better than Sophos.

Even though FAST is based on symmetric primitives, we can
observe that compared to Sophos, the efficiency improvement for
search (around 2 × faster) is not as significant as that with update
(10× faster). One reason is that in the Sophos implementation, the
trapdoor permutation evaluation (for generating previous states) on
the server side is done by a dedicated thread, and there are multiple
threads taking the states produced and searching in parallel. While
in FAST, due to its inherent structure (conceptually a linked list),
the search cannot be parallelized because the previous state cannot
be found until the search has gone through the current node.
FASTIO does not have this problem.

6.2.3 Search Efficiency – Trace Simulation

The experiments in Section 6.2.2 do not fully reflect the search
performance of FASTIO. In fact, it shows the worst-case perfor-
mance of FASTIO. Recall that in FASTIO, the previous search
results are stored to make search more efficient. In order to
see how significant this improvement is, we also simulated the
dynamic setting using traces. We generated 3 traces. Each trace is
a list of update and search queries for a certain keyword. We fixed
the length of the trace to 100,000. Each trace has a parameter α
that is the probability of search queries, i.e. each query in the trace
has a probability of α to be a search query and a probability of
1 − α to be an update query. In the experiment, we let the client
to replay the traces to simulate a real-world setting where updates
and search queries are interleaved. We recorded the total time on
the server side for each search query (from receiving search token
to obtaining the results) in the trace.

In Fig. 5, we show the comparison of search efficiency with
regard to the random traces. We used three different database
sizes and three different query probabilities. In each sub-figure,
the x-axis shows the sequence number of the query in the trace
and the y-axis shows the search time. For FAST and Sophos, the
search time increases almost monotonically in accordance to the
number of update queries performed so far. Recall that in these
two schemes, their indexes contain all entries from all previous
updates. The index entries have to be stored in random locations in
order to ensure forward privacy, this results in the decrease of I/O
efficiency as the locality will increase monotonically. For FASTIO,
as we can see, the search performance is much better, especially
when search is more frequent. The difference is more significant
for large databases. This is because in FASTIO, the index contains
only entries since the last search query. The locality is much better
than in the other two schemes.

In Fig. 6, we show the search time of FASTIO with regard to
the traces. As we can see, despite the large number of updates,
FASTIO’s search time is always kept low. Obviously the more
frequent the search queries are performed, the more performance
gain we will see. This suggest that FASTIO has a better scalability,
as frequent updates and large database size has a much less impact
on its search performance than in the other two schemes.

9

0 20000 40000 60000 80000 100000
Sequence number of queries

0

100

200

300

400

500

600

700

800

900
S
e
a
rc

h
 t

im
e
(m

s)

Sophos

FAST

FASTIO

(a) α = 0.0001, |DB| = 14× 106

0 20000 40000 60000 80000 100000
Sequence number of queries

0

100

200

300

400

500

600

700

800

900

S
e
a
rc

h
 t

im
e
(m

s)

Sophos

FAST

FASTIO

(b) α = 0.001, |DB| = 14× 106

0 20000 40000 60000 80000 100000
Sequence number of queries

0

100

200

300

400

500

600

700

800

900

S
e
a
rc

h
 t

im
e
(m

s)

Sophos

FAST

FASTIO

(c) α = 0.01, |DB| = 14× 106

0 20000 40000 60000 80000 100000
Sequence number of queries

0

100

200

300

400

500

600

700

800

900

S
e
a
rc

h
 t

im
e
(m

s)

Sophos

FAST

FASTIO

(d) α = 0.0001, |DB| = 14× 107

0 20000 40000 60000 80000 100000
Sequence number of queries

0

100

200

300

400

500

600

700

800

900

S
e
a
rc

h
 t

im
e
(m

s)
Sophos

FAST

FASTIO

(e) α = 0.001, |DB| = 14× 107

0 20000 40000 60000 80000 100000
Sequence number of queries

0

100

200

300

400

500

600

700

800

900

S
e
a
rc

h
 t

im
e
(m

s)

Sophos

FAST

FASTIO

(f) α = 0.01, |DB| = 14× 107

0 20000 40000 60000 80000 100000
Sequence number of queries

0

5000

10000

15000

20000

25000

30000

S
e
a
rc

h
 t

im
e
(m

s)

Sophos

FAST

FASTIO

(g) α = 0.0001, |DB| = 14× 108

0 20000 40000 60000 80000 100000
Sequence number of queries

0

5000

10000

15000

20000

25000

30000

S
e
a
rc

h
 t

im
e
(m

s)

Sophos

FAST

FASTIO

(h) α = 0.001, |DB| = 14× 108

0 20000 40000 60000 80000 100000
Sequence number of queries

0

5000

10000

15000

20000

25000

30000

S
e
a
rc

h
 t

im
e
(m

s)

Sophos

FAST

FASTIO

(i) α = 0.01, |DB| = 14× 108

Fig. 5: Search efficiency by trace simulation.

0 20000 40000 60000 80000 100000
Sequence number of the queries

0.1

1

10

100

1000

10000

S
e
a
rc

h
 t

im
e
(m

s)

α=0.0001

α=0.001

α=0.01

(a) |DB| = 14× 106

0 20000 40000 60000 80000 100000
Sequence number of queries

0.1

1

10

100

1000

10000

S
e
a
rc

h
 t

im
e
(m

s)

α=0.0001

α=0.001

α=0.01

(b) |DB| = 14× 107

0 20000 40000 60000 80000 100000
Sequence number of queries

0.1

1

10

100

1000

10000

S
e
a
rc

h
 t

im
e
(m

s)

α=0.0001

α=0.001

α=0.01

(c) |DB| = 14× 108

Fig. 6: Trace simulation for FASTIO. Search time is presented in log scale.

7 CONCLUSION

Designing searchable symmetric encryption is not trivial if we
want to combine efficiency and forward privacy, which are two

irreconcilable properties. In this paper, we designed two forward
private searchable symmetric encryption schemes, both achieve

10

optimal computational and communicational complexity. As the
first attempt, FAST utilized a state based approach and is compu-
tation friendly for its symmetric construction. Based on the idea
from FAST and utilizing intrinsic leakage, our second construction
FASTIO improves I/O efficiency significantly. Our experiment
results demonstrated that our schemes are efficient and scalable.
Future work and Open questions For static searchable encryp-
tion, Cash et al. [10] gave theoretical bounds of locality, storage,
and read efficiency and showed the relationship between them
and the security notion. For dynamic searchable encryption, the
relationship has not been well-understood and there has not been
any theoretical study to establish the bounds. We would like to
investigate in this direction so that we can understand better the
limit and margin of further performance improvement.

In addition, modern data management system leverage dis-
tributed and parallel architecture to handle large amount of data.
For SSE, search efficiency will sharply drop when the database
is out of the capability of the single machine. In fact, even for
plaintext database, it’s not practical to be deployed on a single
server. We would like to investigate searchable encryption in
distributed and parallel settings.

ACKNOWLEDGMENT

The authors would like to thank the editor and the anonymous
reviewers for their help in improving the paper. This work is
supported by the National Natural Science Foundation of China
(Grant No. 61572294, Grant No. 61632020), the Special Fund
for General Scientific Research in Shandong University (Grant
No. 2017JC019), and by the Engineering and Physical Sciences
Research Council of UK (Grant No. EP/M013561/2). Qiuliang
Xu and Changyu Dong are corresponding authors.

REFERENCES

[1] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation.” in NDSS,
2012.

[2] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in ACM CCS, 2015, pp. 668–679.

[3] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: The power of file-injection attacks on searchable encryption,” in
USENIX Security, 2016, pp. 707–720.

[4] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage.” in NDSS, 2014.

[5] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: efficient obliv-
ious RAM in two rounds with applications to searchable encryption,” in
CRYPTO, 2016, pp. 563–592.

[6] T. Hoang, A. A. Yavuz, and J. Guajardo, “Practical and secure dynamic
searchable encryption via oblivious access on distributed data structure,”
in ACSAC, 2016, pp. 302–313.

[7] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in ACNS, 2005, pp. 442–455.

[8] R. Bost, “Σoϕoς: Forward secure searchable encryption,” in ACM CCS,
2016, pp. 1143–1154.

[9] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in CRYPTO, 2013, pp. 353–373.

[10] D. Cash and S. Tessaro, “The locality of searchable symmetric encryp-
tion,” in EUROCRYPT, 2014, pp. 351–368.

[11] C. Gentry et al., “Fully homomorphic encryption using ideal lattices.” in
STOC, vol. 9, no. 2009, 2009, pp. 169–178.

[12] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious rams,” in STOC, 1987, pp. 182–194.

[13] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” JACM, vol. 43, no. 3, pp. 431–473, 1996.

[14] A. C. Yao, “Protocols for secure computations,” in FOCS, 1982, pp.
160–164.

[15] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game,” in STOC, 1987, pp. 218–229.

[16] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in IEEE (SP)., 2000, pp. 44–55.

[17] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, no. 5, pp. 895–934, 2011.

[18] M. Chase and S. Kamara, “Structured encryption and controlled disclo-
sure,” in ASIACRYPT, 2010, pp. 577–594.

[19] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in ACM CCS, 2012, pp. 965–976.

[20] C. Dong, G. Russello, and N. Dulay, “Shared and searchable encrypted
data for untrusted servers,” Journal of Computer Security, vol. 19, no. 3,
pp. 367–397, 2011.

[21] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in FC, 2013, pp. 258–274.

[22] S.-F. Sun, J. K. Liu, A. Sakzad, R. Steinfeld, and T. H. Yuen, “An
efficient non-interactive multi-client searchable encryption with support
for boolean queries,” in ESORICS, 2016, pp. 154–172.

[23] F. Hahn and F. Kerschbaum, “Searchable encryption with secure and
efficient updates,” in ACM CCS, 2014, pp. 310–320.

[24] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic searchable
encryption via blind storage,” in IEEE (SP)., 2014, pp. 639–654.

[25] S. Gajek, “Dynamic symmetric searchable encryption from constrained
functional encryption,” in CT-RSA, 2016, pp. 75–89.

[26] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic
multi-keyword ranked search scheme over encrypted cloud data,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 2, pp.
340–352, 2016.

[27] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in NDSS, 2014.

[28] G. Asharov, M. Naor, G. Segev, and I. Shahaf, “Searchable symmetric en-
cryption: Optimal locality in linear space via two-dimensional balanced
allocations,” in STOC, 2016, pp. 1101–1114.

[29] I. Demertzis and C. Papamanthou, “Fast searchable encryption with
tunable locality,” in SIGMOD, 2017, pp. 1053–1067.

[30] I. Demertzis, D. Papadopoulos, and C. Papamanthou, “Searchable en-
cryption with optimal locality: Achieving sublogarithmic read efficiency,”
IACR eprint, 2017.

[31] I. Miers and P. Mohassel, “Io-dsse: Scaling dynamic searchable encryp-
tion to millions of indexes by improving locality,” IACR eprint, 2017.

[32] R. W. F. Lai and S. S. M. Chow, “Forward-secure searchable encryption
on labeled bipartite graphs,” in ACNS, 2017, pp. 478–497.

[33] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward private
searchable encryption from constrained cryptographic primitives,” in
ACM CCS, 2017, pp. 1465–1482.

[34] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W. Kim, “Forward secure
dynamic searchable symmetric encryption with efficient updates,” in
ACM CCS, 2017, pp. 1449–1463.

[35] M. Etemad, A. Küpçü, C. Papamanthou, and D. Evans, “Efficient dy-
namic searchable encryption with forward privacy,” PoPETs, vol. 2018,
no. 1, pp. 5–20, 2018.

[36] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path oram: an extremely simple oblivious ram protocol,”
in ACM CCS, 2013, pp. 299–310.

[37] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram with
O((logN)3) worst-case cost.” in ASIACRYPT, 2011, pp. 197–214.

APPENDIX A
PROOF OF THEOREM 1

Proof: We model the two hash functions H1 and H2 as
random oracles. The oracles for H1 and H2 are identical except
for different output lengths. Each oracle maintains a mapping Hi

that stores input/output pairs (in, out) where in ∈ {0, 1}∗ and
out ∈ {0, 1}` where ` is the the length of the hash function’s output.
Given an input string x, the oracle first checks mapping Hi, if there is
an entry for x then it returns the value associated with x and terminates
here. If there is not an entry for x in Hi, the oracle randomly picks a
string y from {0, 1}`, then stores (x, y) in Hi and returns y.

We prove through a sequence of games. We start from RealΠA(λ)
and construct a sequence of games that differs slightly from the pre-
vious game and show they are indistinguishable. Eventually we reach
the last game that is IdealΠA,S(λ). By the transitive property of the

11

indistinguishability, we conclude that RealΠA(λ) is indistinguishable
from IdealΠA,S(λ) and complete our proof.
Hybrid G1: G1 is the same as RealΠA(λ) except that instead of
generating tw using F , the experiment maintain a mapping Token
to store (h(w), tw) pairs. In the search protocol, when tw is needed,
the experiment first checks whether there is an entry in Token for
h(w), if so returns the entry; otherwise randomly picks a tw in {0, 1}l
and stores the (h(w), tw) pair in Token. It’s trivial to see that G1

and RealΠA(λ) are indistinguishable, otherwise we can distinguish a
pseudo-random function F and a truly random function.
Hybrid G2: G2 differs from G1 in two places. Firstly, the experiment
maintains a mapping Key. In the update protocol (line 9 in Fig. 1),
after kc+1 is generated, the experiment stores (w||(c + 1), kc+1) in
Key. Secondly, instead of querying H1 in the update protocol, a
random string is used. The random string is used to program the
random oracle when a search query is issued. More specially, Instead
of doing u← H1(tw||stc+1), which is line 13 in the update protocol
in Fig. 1, the experiment does the following:

u
$←− {0, 1}`

L[tw||stc+1]← u

where L is a mapping maintained by the experiment. The second
change is in the search protocol. The following is added after line 20
and line 21 of the search protocol:

for i = 1 to c do
H1[tw||stc+1]← L[tw||stc+1]
ki ← Key[w||i]
sti−1 ← P−1(ki, sti)

end for
where H1 is the table for random oracle H1.

Now G1 and G2 behaves exactly the same except that in G2, with
some probability inconsistency in random oracle query results can be
observed. In G2, H1 is not updated immediately. For tw||stc+1, the
corresponding value u is generated in the update protocol. However, u
is only pushed into H1 when a search query is issued. After the update
with state tw||stc+1, if the adversary queries H1 with tw||stc+1

before the next search query, it will get a value u′ such that with
a overwhelming probability u′ 6= u because H1[tw||stc+1] has not
been updated and a random string u′ is chosen by the oracle in this
case. If the adversary queries H1 with tw||stc+1 again after the next
search query, u will be updated to the H1 and the query result will be
u. If the inconsistency is observed (we denote this event as Bad), the
adversary knows it is in G2. We have:

Pr[G1 = 1]− Pr[G2 = 1] ≤ Pr[Bad]

Note that the event Bad can only happen if the adversary
can query the oracle with tw||stc+1. Since stc+1 is pseudoran-
dom, the probability of the adversary choosing stc+1 by chance is
2−λ + negl(λ). A PPT adversary can make at most q1 = poly(λ)
guesses, then Pr[Bad] ≤ q1

2λ
+ q1 · negl(λ). The probability is

negligible and G1 and G2 are indistinguishable.
Hybrid G3: G3 is obtained from G2 in a similar way. In the update
protocol, we replace the line e ← (ind||op||kc+1) ⊕ H2(tw||stc+1)
(line 12 in Fig. 1) with the following:

u
$←− {0, 1}l+λ+1

E[tw||stc+1]← u
e← (ind||op||kc+1)⊕ u

where E is a mapping maintained by the experiment. Similarly, the
following is added after line 20 and line 21 of the search protocol:

for i = 1 to c do
H2[tw||stc+1]← E[tw||stc+1]
ki ← Key[w||i]
sti−1 ← P−1(ki, sti)

end for
Using the same argument, we can conclude that G2 and G3 are
indistinguishable.
Hybrid G4: In G4, the client side algorithms are changed as shown
in Fig. 7. The main difference between G4 and G3 is that in G4,
st and k is generated on the fly when search is performed. In G4 a
mapping Updates is maintained by the experiment to record all the

Setup(λ,⊥;⊥)

Client:
1: L,E← empty map
2: v ← 0

Update(ks,ΣΣΣ, ind, w, op; T)

Client:
3: v ← v + 1
4: Append (v, op, ind) to

Updates[w]
5: L[v] $←− {0, 1}`

6: E[v] $←− {0, 1}l+λ+1

7: send (L[v], E[v]) to server

Search(ks,ΣΣΣ, w; T)

Client:
8: if Token[h(w)] = ⊥ then
9: Token[h(w)]

$←− {0, 1}λ
10: end if
11: tw ← Token[h(w)]
12: if ΣΣΣ[w] = ⊥ then
13: ΣΣΣ[w]

$←− {0, 1}λ
14: end if
15: st0 ← ΣΣΣ[w]
16: c← |Updates[w]|
17: [(u0, op0, ind0), ..., (uc, opc, indc)]← Updates[w]
18: if c = 0 then
19: return ∅
20: end if
21: for i = 1 to c do
22: if Key[w||i] 6= ⊥ then
23: ki ← Key[w||i]
24: else
25: ki ← {0, 1}λ
26: Key[w||i]← ki
27: end if
28: sti ← P (ki, sti−1)
29: H1(tw||sti)← L[ui]
30: H2(tw||sti)← E[ui] ⊕ (indi||opi||ki)
31: end for
32: send (tw, stc, c) to Server

Fig. 7: Description of hybrid G4

update requests since the last search query. Unlike in G3 where the
random oracle query results are chosen according to tw||stc+1, in G4

the values are chosen randomly without the knowledge of st (line 5
and 6, Fig. 7). Then when performing a search, st0 is generated if
this the first search query of w (line 12 - 15, Fig. 7). Then ki, sti are
generated retrospectively and then the oracle is updated accordingly
(line 21 - 31, Fig 7). The change however are not observable by the
adversary. From the adversary’s perspectively, G3 and G4 behaves
exactly the same: in both games the update protocol outputs two
uniformly random strings, and the search protocol outputs (tw, kw, c)
that has the same distribution in the two games. Therefore they are
perfectly indistinguishable.

Pr[G3 = 1] = Pr[G4 = 1]

IdealΠA,S(λ): in this game, a simulator must generate a view given
only the leakage functions, but not the actual data and queries. For
convenience, in the proof we will use search pattern and update
history instead of using the search leakage function LSearch(w)
directly. The two can be constructed from the leakage function. The
search pattern sp(w) = {j|qj = w in Hist} reveals which queries in
the history are search queries with regard to w. The update history

12

S.Setup()

Client:
1: L,E← empty map
2: v ← 0

S.Update()
Client:

3: v ← v + 1

4: L[v] $←− {0, 1}`

5: E[v] $←− {0, 1}l+λ+1

6: send (L[v], E[v]) to Server

S.Search(sp(w), uh(w))

Client:
7: w ← min sp(w)
8: if Token[w] = ⊥ then
9: Token[w]

$←− {0, 1}λ
10: end if
11: tw ← Token[w]
12: if ΣΣΣ[w] = ⊥ then
13: ΣΣΣ[w]

$←− {0, 1}λ
14: end if
15: st0 ← ΣΣΣ[w]
16: c← |uh(w)|
17: [(u0, op0, ind0), ..., (uc, opc, indc)]← uh(w)
18: if c = 0 then
19: return ∅
20: end if
21: for i = 1 to c do
22: if Key[w||i] 6= ⊥ then
23: ki ← Key[w||i]
24: else
25: ki

$←− {0, 1}λ
26: Key[w||i]← ki
27: end if
28: sti ← P (ki, sti−1)
29: H1(tw||sti)← L[ui]
30: H2(tw||sti)← E[ui] ⊕ (indi||opi||ki)
31: end for
32: send (tw, stc, c) to Server

Fig. 8: Description of simulator S

up(w) = {(j, opj , indj)|qj = (indj , w, opj) for each qj in Hist}
reveals which queries in the history are update queries with regard
to w, as well as the update types and the document identifiers. We use
up>k(w) to denote the partial update history after the k-th query. It
is clear that sp(w) can be obtained from qp(w) by throwing away all
update requests, and up(w) can be obtained from (ap(w), qp(w)) by
combining the information about update queries. They do not require
additional information beyond what the leakage function allowed.

The simulator S is shown in Fig. 8. The simulator maintains
two mappings for simulating random oracle queries, and a counter
to record the number of updates since the initialization of the system.
For each update query, two random strings are chosen. In the search
protocol, we use w = min sp(w) to denote the very first index that
w appeared in search pattern. Each w uniquely identify an unknown
keyword w and the simulator can just use w without knowing w.
The token tw is associated with w. The simulator can use the
update history to decide the update queries with regard to w and
their sequence number. Then states and keys can be generated given
the update history. Then the random oracles are updated. The view
produced by the simulator is perfectly indistinguishable from the one
produced in G4.

Pr[IdealΠA,S(λ) = 1] = Pr[G4 = 1]

Summing up, we have

Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1] ≤ negl(λ)

Q.E.D.

APPENDIX B
PROOF OF THEOREM 2

Proof: We model the two hash functions H1 and H2 as
random oracles and prove through a sequence of games.
Hybrid G1: G1 is the same as RealΠA(λ) except that instead of
generating tw using F , the experiment maintain a mapping Token
to store (h(w), tw) pairs. In the search protocol, when tw is needed,
the experiment first checks whether there is an entry in Token for
h(w), if so returns the entry; otherwise randomly picks a tw in {0, 1}l
and stores the (h(w), tw) pair in Token. It’s trivial to see that G1

and RealΠA(λ) are indistinguishable, otherwise we can distinguish a
pseudo-random function F and a truly random function.
Hybrid G2: G2 differs from G1 in that instead of querying H1 in the
update protocol, a random string is used. The random string is used
to program the random oracle when a search query is issued. More
specially, Instead of doing u ← H1(st||(c + 1)), which is line 9 in
the update protocol in Fig. 3, the experiment does the following:

u
$←− {0, 1}`

UT[st||(c+ 1)]← u

where UT is a mapping maintained by the experiment. The second
change is in the search protocol. The following is added in between
line 19 and line 20 of the search protocol:

for i = 1 to c do
H1[st||i]← UT[st||i]

end for
where H1 is the table for random oracle H1.

Now G1 and G2 behaves exactly the same except that in G2, with
some probability inconsistency in random oracle query results can be
observed. In G2, H1 is not updated immediately. For st||(c + 1), the
corresponding value u is generated in the update protocol. However,
u is only pushed into H1 when a search query is issued. After the
update with state st and counter c + 1, if the adversary queries H1

with st||(c+1) before the next search query, it will get a value u′ such
that with a overwhelming probability u′ 6= u because H1[st||(c+ 1)]
has not been updated and a random string u′ is chosen by the oracle in
this case. If the adversary queries H1 with st||(c+ 1) again after the
next search query, u will be updated to the H1 and the query result
will be u. If the inconsistency is observed (we denote this event as
Bad), the adversary knows it is in G2. We have:

Pr[G1 = 1]− Pr[G2 = 1] ≤ Pr[Bad]

Note that the event Bad can only happen if the adversary can
query the oracle with st||(c+ 1). Since st $←− {0, 1}λ, the probability
of the adversary choosing st by chance is 2−λ. A PPT adversary
can make at most q1 = poly(λ) guesses, then Pr[Bad] ≤ q1

2λ
. The

probability is negligible and G1 and G2 are indistinguishable.
Hybrid G3: G3 is obtained from G2 in a similar way. In the update
protocol, we replace the line e ← (ind||op) ⊕H2(st||(c + 1)) with
the following:

u
$←− {0, 1}l+1

E[st||(c+ 1)]← u
e← (ind||op)⊕ u

where E is a mapping maintained by the experiment. Similarly, the
following is added in after line 19 of the search protocol:

for i = 1 to c do
H2[st||i]← E[st||i]

end for
Using the same argument, we can conclude that G2 and G3 are

indistinguishable.
Hybrid G4: In G4, the client side protocols are changed as shown
in Fig. 9. The main difference between G4 and G3 is that in G4, st
is generated on the fly when search is performed. In G4 a mapping
Updates is maintained by the experiment to record all the update

13

Setup(λ,⊥;⊥)

Client:
1: UT,E← empty map
2: v ← 0

Update(ks,ΣΣΣ, ind, w, op; Te)

Client:
3: v ← v + 1
4: Append (v, op, ind) to Updates[w]
5: UT[v] $←− {0, 1}`

6: E[v] $←− {0, 1}l+1

7: send (UT[v], E[v]) to server

Search(ks,ΣΣΣ, w; Te,Tc)

Client:
8: if Token[h(w)] = ⊥ then
9: Token[h(w)]

$←− {0, 1}λ
10: end if
11: tw ← Token[h(w)]
12: if Updates[w] = ⊥ then
13: kw ← ⊥
14: else
15: kw

$←− {0, 1}λ
16: c← |Updates[w]|
17: {(v1, op1, ind1),...,(vc, opc, indc)} ← Updates[w]
18: for 1 ≤ i ≤ c do
19: H1(kw||i)← UT[vi]
20: H2(kw||i)← E[vi] ⊕ (opi||indi)
21: end for
22: end if
23: send (tw, kw, c) to Server
24: Updates[w]← ⊥

Fig. 9: Description of hybrid game G4

requests since the last search query. Unlike in G3 where the random
oracle query results are chosen according to st||(c + 1), in G4 the
values are chosen randomly without the knowledge of st (line 5 and
6, Fig 9). Then when performing a search, kw (i.e. st) is generated
retrospectively and then the oracle is updated accordingly (line 15 -
21, Fig 9). The change however are not observable by the adversary.
From the adversary’s perspectively, G3 and G4 behaves exactly the
same: in both games the update protocol outputs two uniformly
random strings, and the search protocol outputs (tw, kw, c) that has
the same distribution in the two games. Therefore they are perfectly
indistinguishable

Pr[G3 = 1] = Pr[G4 = 1]

IdealΠA,S(λ): in this game, a simulator must generate a view given
only the leakage functions, but not the actual data and queries. For
convenience, in the proof we will use search pattern and update
history instead of using the search leakage function LSearch(w)
directly. The two can be constructed from the leakage function. The
search pattern sp(w) = {j|qj = w in Hist} reveals which queries in
the history are search queries with regard to w. The update history
up(w) = {(j, opj , indj)|qj = (indj , w, opj) for each qj in Hist}
reveals which queries in the history are update queries with regard
to w, as well as the update types and the document identifiers. We use
up>k(w) to denote the partial update history after the k-th query. It
is clear that sp(w) can be obtained from qp(w) by throwing away all
update requests, and up(w) can be obtained from (ap(w), qp(w)) by
combining the information about update queries. They do not require
additional information beyond what the leakage function allowed.

The simulator S is shown in Fig. 10. The simulator maintains
two mappings for simulating random oracle queries, and a counter to

S.Setup()

Client:
1: UT,E← empty map
2: v ← 0

S.Update()

Client:
3: v ← v + 1

4: UT[v] $←− {0, 1}`

5: E[v] $←− {0, 1}l+1

6: send (UT[v], E[v]) to Server

S.Search(sp(w), uh(w))

Client:
7: w ← min sp(w)
8: w ← max sp(w)
9: if Token[w] = ⊥ then

10: Token[w]
$←− {0, 1}λ

11: end if
12: tw ← Token[w]
13: if uh>w(w) = ⊥ then
14: kw ← ⊥
15: else
16: kw

$←− {0, 1}λ
17: c← |uh>w(w)|
18: {(v1, op1, ind1),...,(vc, opc, indc)} ← uh>w(w)
19: for 1 ≤ i ≤ c do
20: H1(kw||i)← UT[vi]
21: H2(kw||i)← E[vi] ⊕ (opi||indi)
22: end for
23: end if
24: send (kw, tw, c) to Server

Fig. 10: Description of simulator S

record the number of updates since the initialization of the system.
For each update query, two random strings are chosen. In the search
protocol, we use w = min sp(w) to denote the very first index that w
appeared in search pattern and w =max sp(w) to denote the last index
that w been searched. Each w uniquely identify an unknown keyword
w and the simulator can just use w without knowing w. The token
tw is associated with w. The simulator can use the update history
to decide whether there have been new updates since the last search
query. If so, a random kw is generated and the number of updates after
the last search query can be decided given the update history. Then
the random oracles are updated. The view produced by the simulator
is perfectly indistinguishable from the one produced in G4.

Pr[IdealΠA,S(λ) = 1] = Pr[G4 = 1]

Summing up, we have

Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1] ≤ negl(λ)

Q.E.D.

APPENDIX C
A BRIEF SUMMERY OF SOPHOS
Fig. 11 shows the pseudocode of Sophos. The state in Sophos is
evolved using a trapdoor permutation π. The client evaluate π−1

SK

to generate a new state STc+1 to perform an update. The client
only reveals STc+1(then constant communication obtained) during
a search. At that point, the server can reconstruct all previous states
by evaluating πPK, which enables it to perform search. Because only
the client has the secret key SK, the server has no idea about STc+1

before it revealed, thus forward privacy is obtained.

14

Setup()

Client:
1: KS

$←− {0, 1}λ
2: (SK, PK)← KeyGen(1λ)
3: W, T← empty map
4: return ((T, PK), (KS , SK),W)

Update(add, w, ind, σ; EDB)

Client:
1: Kw ← FKS (w)
2: (STc, c)←W[w]
3: if (STc, c) =⊥ then
4: ST0

$←−, c← −1
5: else
6: STc+1 ← π−1

SK(STc)
7: end if
8: W[w]← (STc+1, c+ 1)
9: UTc+1 ← H1(Kw, STc+1)

10: e← ind⊕H2(Kw, STc+1)
11: Send (UTc+1, e) to the server

Server :
12: T[UTc+1]← e

Search(w, σ; EDB)

Client:
1: Kw ← FKS (w)
2: (STc, c)←W[w]
3: if (STc, c) =⊥ then
4: return ∅
5: end if
6: Send (Kw, STc, c) to the server.

Server:
7: for i = c to 0 do
8: UTi ← H1(Kw, STi)
9: e← T[UTi]

10: ind← e⊕H2(Kw, STi)
11: Output each ind
12: STi−1 ← πPK(STi)
13: end for

Fig. 11: Pseudocode of Protocols in Sophos

15

