
1

Approximating Private Set Union/Intersection
Cardinality with Logarithmic Complexity

Changyu Dong, Grigorios Loukides

Abstract—The computation of private set union/intersection cardinality (PSU-CA/PSI-CA) is one of the most intensively studied
problems in Privacy Preserving Data Mining (PPDM). However, existing protocols are computationally too expensive to be employed in
real-world PPDM applications. In response, we propose efficient approximate protocols, whose accuracy can be tuned according to
application requirements. We first propose a two-party PSU-CA protocol based on Flajolet-Martin sketches. The protocol has
logarithmic computational/communication complexity and relies mostly on symmetric key operations. Thus, it is much more efficient
and scalable than existing protocols. In addition, our protocol can hide its output. This feature is necessary in PPDM applications, since
the union cardinality is often an intermediate result that must not be disclosed. We then propose a two-party PSI-CA protocol, which is
derived from the PSU-CA protocol with virtually no cost. Both our two-party protocols can be easily extended to the multiparty setting.
We also design an efficient masking scheme for (1n)-OT . The scheme is used in optimizing the two-party protocols and is of
independent interest, since it can speed up (1n)-OT significantly when n is large. Last, we show through experiments the effectiveness
and efficiency of our protocols.

F

1 INTRODUCTION

We are in an era where data becomes increasingly important.
On one hand, data drives scientific research, business analytics,
and government decision making. Advanced technologies for dis-
covering interesting knowledge from large amounts of data have
become an indispensable part of nearly everything. On the other
hand, data privacy becomes of paramount importance as evidenced
by the increasingly tighter legal obligation imposed by legislation
(e.g. HIPAA, COPPA, and GLB in the US, European Union
Data Protection Directive, and more specific national privacy
regulations). Driven by both, recently we have seen a significant
advancement in privacy preserving data mining (PPDM). In many
scenarios, mining the union of data held by two or more parties
could deliver a clear benefit. For example, online retailers want
to find correlations between products bought by their common
customers to boost sales, policy makers want to link healthcare
data held by public and private healthcare providers to develop
better public policies, and geneticists want to associate mutations
in human genomes with diagnoses in medical records to identify
genetic causes of cancers. In all these scenarios, privacy concerns
and/or privacy regulations prohibit the sharing of data between
parties. Thus, the application of conventional data mining methods

• Changyu Dong is with the School of Computing Science,
Newcastle University, Newcastle Upon Tyne, UK. Email:
changyu.dong@newcastle.ac.uk.

• Grigorios Loukides is with the Department of Informatics, King’s College
London, London, UK. Email: grigorios.loukides@kcl.ac.uk.

• This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. The material includes
the appendices of this paper. Contact changyu.dong@newcastle.ac.uk for
further questions about this work.

• Accepted to be published in IEEE Transactions on Information Forensics
and Security (Volume: 12, Issue: 11, Nov. 2017)

• DOI: 10.1109/TIFS.2017.2721360 c© 2017 IEEE. Personal use of this
material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

is not possible, and PPDM methods are needed to perform data
mining in a distributed fashion, without disclosing or pooling the
data of any party.

This paper investigates a long-established problem in PPDM:
how to securely compute the cardinality of the union or the in-
tersection of some private sets (PSU-CA/PSI-CA). More formally,
consider two parties each holding a private set Si. The PSU-CA
problem is to securely compute the union cardinality |S1∪S2|, and
the PSI-CA problem is to securely compute the intersection cardi-
nality |S1 ∩ S2|. At the end, parties should obtain the cardinality
of the union/intersection but nothing else about other parties’ sets.
PSU-CA and PSI-CA can be defined similarly in the multiparty
(> 2) case. PSU-CA and PSI-CA are closely related: often solving
one problem leads to an easy solution to the other problem.
Thus they can be treated as one problem. The problem is of
practical importance because protocols for solving the problem are
important building blocks in PPDM. For example, PSU-CA/PSI-
CA protocols have been used as subroutines in privacy preserving
association rule mining [1], privacy preserving classification (e.g.
decision trees [2] and Support Vector Machine [3]), and privacy
preserving mining of social network data [4].

The PSU-CA/PSI-CA problem can be solved by using generic
secure computation protocols (e.g. garbled circuits [5], GMW
[6]). However those protocols have high computational and com-
munication costs and are difficult to scale to large sets that are
required in real-world data mining applications. Thus several
custom protocols have been proposed to solve the PSU-CA/PSI-
CA problem. Many of them aim to compute the exact cardinality
[7], [8], [9], [1], [10], [11], [12]. Yet, their high computational
cost makes their application to PPDM infeasible. For example,
let us consider a scenario in which two social network providers
need to find out the total number of friends of each user that has
registered in both networks. For each such user, the two providers
can locally construct a set that contains all friends of the user in
their own social network. Then the two providers can run a PSU-
CA protocol to find the union cardinality of the two sets, which
is equal to the total number of friends of the user. The input to

2

the protocol can be large because a user may have thousands of
friends. Even with the most efficient protocol to date, finding the
union cardinality would need tens or even hundreds of seconds.
Furthermore, there are millions of users registered in both social
networks. Thus, the protocol needs to run millions of times, and
the task may take months or even years. This is clearly impractical.
Recently, there has been much interest in approximate PSU-CA
and PSI-CA protocols [13], [14], [15]. It is well-known that in
data mining, a close approximation is often as good as the exact
result [16]. Approximation is widely used in data mining to handle
extremely large datasets when the exact answer is hard to compute
[17]. With a bounded loss of accuracy, it is possible to make
the whole data mining process much more efficient. The same
principle applies to PPDM. That is, approximation can simplify
protocol design and reduce the size of input to the protocol which
both could help making the protocol more efficient. Unfortunately,
the current approximate PSU-CA and PSI-CA protocols are either
insecure ([13], [14]) or not very efficient ([15]), as we discuss in
Section 2.

A more subtle problem of most of existing protocols ([7], [8],
[1], [11], [14], [9], [10], [13], [15], [12]) is that they output the
intersection/union cardinality directly to one or all parties. This is
perfectly fine as per the definition of the problems. However, the
cardinalities may not be the end result the parties want. Especially
in PPDM, these protocols are often used as subroutines and the
cardinalities are only intermediate results. Outputting cardinalities
increases the leakage of the PPDM protocol: ideally intermediate
results should be hidden and the only output should be the data
mining result. For instance, in the social network example above,
the two providers want to find out the k most influential users.
The union cardinality that represents the number of friends is only
a feature to be used in finding such users. It is too excessive if
the total number of friends of every user has to be revealed in
the mining process. Often what we need is, rather than outputting
the cardinalities directly, to keep the cardinalities secret and run a
secure sorting protocol on the secret cardinalities to output the
users who have the most friends, or run a secure comparison
protocol to output the users who have more friends than a pre-
defined threshold. Avoiding this leakage is not easy, due to the
design of the protocols. To find the cardinalities, those protocols
all depend on a party (or all parties) in the protocol to count either
the number of matches among some ciphertexts [7], [8], [1], [11],
[14] or the occurrences of a specific value (e.g. 0) [9], [10], [13],
[15], [12]. Then the party that does the counting inevitably learns
the cardinalities.

Contributions Our main contribution is a secure two-party
approximate PSU-CA protocol. The protocol is based on the
Flajolet-Martin (FM) sketch [18], which is a space efficient
data structure for cardinality estimation. The parties use their
FM sketches as inputs to the protocol and compute the union
cardinality. At the end each party gets a share that can be used to
reconstruct the cardinality, but none of them learns the cardinality
directly. The protocol has the following important features:

• Highly efficient and accurate. The protocol is efficient for two
reasons. First, unlike all existing protocols, our protocol has
computational and communication complexities logarithmic in

N , the maximum possible cardinality of the private sets1.
This is achieved by using FM sketches. Second, our protocol
is mainly based on symmetric key operations, while most
existing protocols (except generic protocols) are based on much
slower public key operations. The accuracy of the estimation
of our protocol is adjustable with a public parameter m. In
practice, largerm values improve the estimation accuracy. More
precisely, by setting m to a large enough value, the protocol
can guarantee the relative error (|Ñ−N |)/N is at most ε with
probability at least 1 − δ for any arbitrary ε, δ ∈ (0, 1), where
N is the true cardinality and Ñ is the estimated cardinality. The
minimum allowable value for m depends on the parameters
δ and ε, as it will be explained in Section 4.1. We evaluated
the protocol based on our prototype implementation and found
that, to compute the union cardinality of two sets with size
up to 1 million, it only needed 2.97 seconds when ε = 1%
and δ = 0.001. In contrast, the state-of-the-art two-party
approximate protocol [15] took 488.48 seconds to do the same
computation with the same accuracy.

• Eliminates unwanted information leakage. We design the pro-
tocol such that by default, no party learns the cardinality at the
end of the protocol. The result is split into secret shares and each
party holds one share. The shares leak no information about
the result. If the cardinality is the final result, the parties can
reconstruct it from the shares easily and reveal the cardinality.
Or if the protocols are used as subroutines in a larger PPDM
protocol, the shares can be fed into the next step of the
PPDM protocol without leaking the cardinality. We decided to
output the result as secret shares for three reasons: (1) it is
simple and incurs virtually no cost to produce the shares; (2)
it allows local computation on the shares (e.g. summing the
output of Protocol 1); (3) the shares can be easily converted
into other encrypted forms using existing techniques (e.g. to
Boolean shares or garbled bit strings [19], to ciphertexts of
homomorphic encryption schemes [20], and to ciphertexts of
other encryption schemes [21]). The last reason is important
because the subsequent protocol that will use the cardinality is
dependent on the application and may require input other than
secret shares. Being able to convert shares into other encrypted
form makes our protocol flexible in such a situation.

• Extensible. We extend the PSU-CA protocol into a PSI-CA
protocol with virtually no cost using the inclusion-exclusion
principle. This is similar to the approach in [11], where the
authors extend a PSI-CA protocol into a PSU-CA protocol
using the same principle. We also extend the two-party PSU-CA
and PSI-CA protocols to the multiparty setting. The multiparty
extensions retain the good properties and can be implemented
easily using generic secret-sharing based multiparty secure
computation frameworks.

A second contribution is the design of a fixed-key masking
scheme for (1

n)-OT . In the past, the computation cost of (1
n)-OT

was dominated by the log(n) invocations of (1
2)-OT . Now since

(1
2)-OT can be obtained by OT extension, the cost of masking the
n strings becomes dominating. The idea of the fixed-key masking
scheme is similar to previous work in fixed-key garbling schemes
[22]. That is, we use a block cipher with a fixed key as a random

1. In this paper, we use N , N and Ñ to denote the maximum possible
cardinality of the private sets, the actual union cardinality, and the approximate
union cardinality. The complexity is in N because the protocol must not leak
the cardinality of the parties’ input sets. This is usually achieved by padding the
sets to a fixed size with random dummy elements or using fixed-size sketches.

3

permutation, and apply the fixed-key block cipher to mask the
strings. The benefit of the fixed-key masking is significant: it
reduces the number of invocations of the encryption function from
log(n) per string to 1 per string; it can take advantage of the AES-
NI set that is widely available on recent X86 CPUs; and using
fixed-key avoids costly key scheduling so the encryption can be
fully pipelined. The efficiency of masking is improved by more
than one order of magnitude compared to the previous masking
scheme.

2 RELATED WORK

Since the groundbreaking work of [23], [24], there has been
extensive research in PPDM. Much research focuses on the
development of a few primitive protocols. This is because there
are many data mining techniques, and it is infeasible or not cost-
effective to develop solutions for individual ones. One observation
is that data mining techniques often perform similar computations
at various stages. Therefore a more viable strategy [7] is to
build a “toolkit” of primitive protocols that can be assembled to
solve specific real-world problems. PSI-CA/PSU-CA is one of the
primitive protocols identified in [7] and is widely used in PPDM.
Exact Protocols There are several exact PSI-CA/PSU-CA proto-
cols. However they all require at least O(N) public key opera-
tions, where N is the maximum possible cardinality of the private
sets. Thus they are less efficient than our protocol.

Both [7] and [8] proposed a PSI-CA protocol based on
commutative encryption. The ideas of the two protocols are
very similar. The main difference is that [7] was presented in
the multiparty setting and [8] in the two-party setting. Both
protocols require O(N) public key operations. In [9], a PSI-CA
protocol was proposed based on oblivious polynomial evaluation.
The computation requires O(N log logN) public key operations.
In [1], a multiparty PSI-CA protocol was proposed based on
commutative one-way hash functions that can be constructed from
public key encryption schemes such as Pohlig-Hellman. Each
party needs to hash τ · N times where τ is the number of
parties. In [10], a multiparty PSI-CA protocol was proposed based
on oblivious polynomial evaluation. The computation requires
O(N 2) public key operations. In [11] a PSI-CA protocol based on
an ElGamal like encryption was proposed. The protocol requires
O(N) public key operations and can be trivially extended to a
PSU-CA protocol. In [12], the authors proposed PSI-CA/PSU-
CA protocols based on Bloom filter and homomorphic encryption.
These protocols also require O(N) public key operations.
Approximate Protocols In data mining, approximation is widely
used when mining extremely large datasets. Approximate PSI-
CA/PSU-CA protocols were proposed in the hope that they can
be more efficient. However, unlike our protocol, they are either
insecure or still have complexity O(N).

In [13] a multiparty PSI-CA protocol was designed but it
is not secure. Adversaries can easily guess any other party’s
set elements, as explained in [15]. In [14], a two-party PSI-CA
protocol was proposed. The protocol uses [11] as a subprotocol
and is based on Minwise sketches [25]. The protocol estimates
Jaccard index from Minwise sketches and then approximates the
intersection cardinality from Jaccard index. However, this protocol
is not secure because party 2 in the protocol leaks the cardinality
of its private set to party 1. Our multiparty PSI-CA protocol
also estimates intersection cardinality from Jaccard index. The
differences are: (1) We use the Min-Max sketch [26], which is

more efficient than the Minwise sketch. The use of Min-Max
sketches also reduces the offline computation by a factor of 2
compared to Minwise sketches [26]. (2) The parties do not need
to reveal the cardinality of their own sets. In [15] the authors
proposed PSU-CA/PSI-CA protocols that use Bloom filters to
estimate the cardinalities. However, the protocols in [15] need
O(N) time. The reason is that Bloom filters were originally
designed for set membership queries, and thus they have to encode
much more information than needed to estimate cardinality.
From PSI to PSI-CA A related line of work is on Private Set
Intersection (PSI) which requires computing the intersection of
private sets (see e.g. [9], [10], [27], [28], [29], [30]). Intersection
cardinality can be obtained from PSI output, but PSI also reveals
the elements in the intersection. Thus PSI protocols cannot be
used as a replacement for PSI-CA in applications where only the
cardinality of a set must be revealed.

It is possible in some cases to extend PSI to PSI-CA. For
example, the PSI-CA protocols in [8], [9], [10], [11], [12] we
mentioned earlier are all extended from PSI protocols. However,
their underlying PSI protocols are public key based, which makes
the above protocols inefficient. There are PSI protocols that
require mostly symmetric key operations ([31], [27], [28], [29]).
Specifically [31], [28], [29], [30] propose Boolean circuits for the
PSI function that can be evaluated securely using generic secure
computation protocols. It is always possible to extend the PSI
Boolean circuits to support PSI-CA. The extended circuits would
have similar complexity as the PSI circuits, which is at least
O(N). On the other hand, the garbled Bloom filter [27] and OT
based [28], [29], [30] PSI protocols cannot be easily extended to
PSI-CA because one party always learns the intersection due to
the way the intersection is obtained. In the garbled Bloom filter
based PSI protocol, one party receives a garbled Bloom filter that
encodes the intersection and allows set membership query. The
party then queries the garbled Bloom filter using every element in
its own set. If the element is in the intersection, the query returns
a fixed string, otherwise it returns a random string. Similarly in
the OT-based PSI protocols, one party first gets some random-
looking strings for each element in its set by running OT. Then
the other party sends a set of strings that are mapped from its set
elements. Next, the first party checks, for each element, whether
there is a string associated with it in the set. If so this element is
in the intersection. The only obvious solution to extend [27], [28],
[29], [30] to support PSI-CA is to interactively blind and randomly
permute the set (of the party who obtains the intersection) at the
start of the protocol, so that at the end the party can query to check
whether a blinded element is in the intersection, without knowing
which element is being queried. This however seems to require at
least O(N) public key operations and cannot hide the cardinality
from the party.

3 PRELIMINARIES

3.1 Notation
For a set X , we denote by x R← X the process of choosing an
element x of X uniformly at random. For a vector V , we denote
by V [i] the ith element in the vector. The index of all vectors in the
paper starts from 0. For an integer a, we denote by JaKi the secret
share of a held by party i. In a loop or a multi-round protocol, we
use superscription in angle brackets to differentiate variables with
the same name in different iterations, e.g. r〈i〉 means variable r in
the ith iteration. All logarithms in this paper are base 2.

4

3.2 Oblivious Transfer (OT)
Oblivious transfer [32], [33] is a protocol between a sender and
a receiver. The most basic type of OT is 1-out-of-2 OT, which
will be denoted as (1

2)-OT . In (1
2)-OT , the sender holds a pair of

strings (x0, x1) and the receiver holds a bit b. The goal is for the
receiver to receive xb such that the receiver learns nothing about
the other string and the server learns nothing about b. The idea
can be extended naturally to 1-out-of-n OT, denoted as (1

n)-OT ,
in which a sender holds a vector of n strings (x0, . . . , xn−1) and
the receiver holds an index 0 ≤ I ≤ n−1. At the end the receiver
only learns xI and the server learns nothing about I . A (1

n)-OT
protocol can be constructed by invoking a (1

2)-OT protocol log(n)
times [34] as follows:
• The sender holds a vector of messages P = (x0, ..., xn−1) and

the receiver holds an index 0 ≤ I ≤ n− 1.
• The sender chooses l pairs of uniformly random keys

(k0,0, k0,1), . . . , (kl−1,0, kl−1,1) for a pseudorandom function
F , where l = dlog(n)e. For the ith message in P , the sender
masks the message P̃ [i]=(

⊕l−1
j=0 Fkj,bj

(i))⊕P [i] where bj is the
jth bit in the binary representation of i and ⊕ is the bitwise
XOR operation. The sender sends P̃ to the receiver.

• Let I0...Il−1 ∈ {0, 1}l be the binary representation of I, then
l (1

2)-OT are performed, where during the jth OT, the sender
sends (kj,0, kj,1) and the receiver uses Ij to receive kj,Ij .

• The receiver now has k0,I0 , ..., kl−1,Il−1
, then can unmask

P [I]=(
⊕l−1
j=0 Fkj,Ij

(I))⊕P̃ [I].
OT protocols inevitably require public key operations, thus

computing a large number of OTs is expensive. Fortunately, it
has been shown by Beaver [35] that it is possible to obtain a
large number oblivious transfers given only a small number of
actual oblivious transfer calls. This is called OT extension. The
first practical OT extension scheme was proposed by Ishai et.
al. [36]. Recently more efficient OT extension schemes were
proposed [37], [38], [39], [40]. In short, in those schemes only
a small number (a few hundred) of (1

2)-OT (“base OTs”) are
required at the bootstrapping phase, then the subsequent (1

2)-OT
can be obtained with the cost of just a few cheap symmetric key
operations. Therefore those schemes can significantly improve the
performance of protocols based on OT. Our two-party protocols
rely heavily on OT. Thus they can benefit from OT extension
schemes. To be clear, in the rest of paper when we write OT we
mean OT obtained though an OT extension scheme.

3.3 Secret Sharing
Secret sharing is widely used in secure computation protocols. In

general, in a (t, n)-secret sharing scheme, a dealer splits a secret
s into n shares. The scheme is correct if s can be reconstructed
efficiently with any subset of t or more shares. The scheme is
secure if given any subset of less than t shares, the secret is
unrecoverable and the shares give no information about the secret.
Some secret sharing schemes have homomorphic properties, i.e.
certain operations on the secret can be performed with the shares
as input. For example, Shamir’s secret sharing scheme [41] is
additively homomorphic.

In our two-party protocols, we will use a simple additively
homomorphic (2, 2)-secret sharing scheme. In this scheme, the
secret and shares are integers in the additive group Zq for some
integer q ≥ 2. Note q can be any integer and does not need to be
a prime number. To share a secret s, choose a uniformly random
r from Zq , and the two shares are JsK1 = r and JsK2 = s − r.

To reconstruct the secret, simply add the two shares together s =
JsK1 + JsK2. The correctness of the scheme is easy to verify and
the scheme is unconditionally secure if r is chosen uniformly at
random. The homomorphic property is obvious: let JaK1, JaK2 be
the two shares of a and JbK1, JbK2 be the two shares of b, then
JcK1 = JaK1 + JbK1 and JcK2 = JaK2 + JbK2 are the two shares of
c such that c = a+ b.

3.4 Security Model

All protocols in this paper are secure in the semi-honest
model [42]. In this model, adversaries are honest-but-curious, i.e.
they will follow the protocol specification but try to get more
information about the honest party’s input. The semi-honest model
is weaker than the malicious model, in which the adversaries can
deviate from the protocol in arbitrary ways. However, designing
protocols in the semi-honest model is still very meaningful as it
captures many realistic scenarios. For example, when the parties’
behaviors are monitored or audited. Also, protocols for the semi-
honest setting are often the stepping-stones towards protocols with
stronger security guarantees. There exist generic ways of obtaining
full security against malicious adversaries from protocols for the
semi-honest setting, e.g. by using zero-knowledge proofs. The
formal definitions can be found in Appendix B.

4 TWO-PARTY PROTOCOLS

In this section, we present the PSU-CA and PSI-CA protocols in
the two-party setting. In this setting, there are two parties P1 and
P2 each holding a private set (S1 and S2 respectively). Our focus
is on computing the union cardinality because the intersection
cardinality can be obtained trivially by applying the inclusion-
exclusion principle: |S1 ∩ S2| = |S1| + |S2| − |S1 ∪ S2|. We
will start by reviewing the FM sketches, then present protocols
designed around this data structure, as well as a few optimizations.

4.1 Flajolet-Martin (FM) Sketches

We briefly review FM sketches. More details and analysis can
be found in [18]. An FM sketch is a probabilistic counter of the
number of distinct elements in a multiset2. The data structure is a
w-bit binary vector. We will use FS to denote an FM sketch built
from a set S, and FS [i] (0 ≤ i ≤ w − 1) to denote the ith bit
in FS . An FM sketch comes with a hash function h : {0, 1}∗ →
{0, 1}w that maps an input uniformly to w-bit output. A function
ρ : {0, 1}w → [0, w] is defined that takes a w-bit string as input
and returns the number of trailing zeroes in the string. Initially, all
bits in FS are set to 0. To count a multiset S, for each element
x ∈ S, we hash x and set FS [ρ(h(x))] = 1 if ρ(h(x)) < w.
The number of distinct elements in S can be estimated using an
estimator z that is the index of the first 0 bit in FS , i.e. FS [z] = 0
and ∀0 ≤ i < z, FS [i] = 1. The expected value of z is close to
log(φN), where φ = 0.77351 is a correction factor and N is the
number of distinct element in S. Given z, we can estimate N by
Ñ = 2z

φ . It is clear that the size of the sketch w must be larger
than log(φN), otherwise we might not be able to obtain z. It was
suggested in [18] that w ≥ log(N) + 4 should suffice.

The standard deviation of the estimator z is 1.12, which is too
high. An estimate Ñ using z will typically be one binary order of

2. A set is treated as a special case of multiset (multiplicity = 1 for all
elements), and all the following applies to sets as well.

5

magnitude off n. To remedy this problem, we can use m sketches
each with an independent hash function. We obtain m estimators
z〈0〉, ..., z〈m−1〉 and sum them Z = z〈0〉+ . . .+z〈m−1〉. We can
then use the average Z

m to estimate n. The standard deviation of
Z
m is 1.12√

m
, which is much smaller.

Another problem of FM sketches is that they give bad esti-
mates for small sets. This has been studied in [43] and the authors
suggested a modified formula to correct the small set bias:

Ñ =
2
Z
m − 2−κ·

Z
m

φ
(1)

where Ñ is the cardinality estimate from m sketches, and κ =
1.75 is a correcting factor. Equation (1) gives very good estimates
for both small sets and large sets [43].

In Theorem 1, we show that the relative error between the true
and estimated cardinality does not exceed ε with probability at
least 1 − δ, when m is sufficiently large. This implies that the
accuracy of the estimation can be adjusted to the desired level, by
choosing a suitable m. The proof of Theorem 1 is in Appendix A.

Theorem 1. Let S1, S2 be two sets and N = |S1 ∪ S2|. Let Ñ
be the estimate obtained from computed using Equation (1). For
any ε, δ ∈ (0, 1), it holds that:

Pr[
|Ñ −N |

N
≤ ε] ≥ 1− δ (2)

when m ≥ 2.5088 · (erf−1(1−δ)
min(− log(1−ε),log(1+ε)))2, where erf−1 is

the inverse error function3.

An important property of FM sketches that we use in the
design of our algorithms is that they can be merged. If we have
two FM sketches FS1

and FS2
built with the same hash function,

then bit-wisely ORing the two sketches produces a new FM sketch
FS1∪S2

that counts the union of the two sets S1 and S2. This
process is lossless: FS1∪S2

is exactly the same as the sketch built
using the union from the scratch. This extends to the union of
multiple sets easily. However, an FM sketch of set intersection
cannot be obtained by combining sketches. This is because there
are no known estimators for the intersection cardinality of two sets
that can be applied to a combined FM sketch, which is derived
from the two sketches by any bit-wise operation. In other words,
the bit patterns that appear in the combined sketch cannot be used
to derive an estimate of the set intersection cardinality. In fact,
union is the only supported set operation that can be performed by
combining FM sketches [44].

4.2 Secure Estimator Computation
To securely compute the cardinality of the union of two private
sets using FM sketches, the first step is to securely compute the
estimator of the union cardinality. The two parties each hold FS1

and FS2 that are FM sketches built from their private sets using
the same hash function and same sketch size w. As we have seen
in Section 4.1, the union sketch FS1∪S2 can be then computed by
bit-wisely ORing FS1 and FS2 in a secure way. However, how to
securely extract the estimator from FS1∪S2 is a non-trivial task.

4.2.1 Data Oblivious Algorithm
Recall that the estimator z is the index of the first 0 bit in the
sketch FS1∪S2 . When computing in the clear, z can be trivially

3. The inverse error function: erf−1(x) =
∑∞
k=0

ck
2k+1

(
√
π

2
x)2k+1,

where ck =
∑k−1
m=0

cmck−1−m
(m+1)(2m+1)

and −1 < x < 1.

obtained by checking whether FS1∪S2
[i] = 0 from i = 0 and

return the index i when hits the first 0 bit in the sketch. However,
this algorithm is not data oblivious (i.e. the control flow and access
pattern are dependent on the data). Thus the algorithm execution
leaks information about the data and cannot be used in secure
computation. In fact this is one of the biggest challenges when
porting data structures to secure computation: most data structure
based algorithms are not data oblivious and generic approaches
for achieving data obliviousness incur a substantial cost.

To solve this problem, we design a data oblivious algorithm to
combine the sketches and extract the estimator. The algorithm is
shown in Algorithm 1 and a small example is shown in Figure 1.
Conceptually, the algorithm does 3 things: (1) it creates FS1∪S2

by bitwisely ORing FS1 and FS2 ; (2) it sets all bits in FS1∪S2

after the first 0 bit to 0; (3) it then adds up all bits. The sum equals
the estimator z.

Algorithm 1: Combine-then-sum(FS1
, FS2

, w)

input : Two w-bit FM sketches FS1 , FS2 and the size w
output: the index of the first 0 bit in FS1∪S2

1 F̂S1∪S2
= new w-bit FM sketch;

2 F̂S1∪S2
[0]= FS1

[0] ∨ FS2
[0];

3 sum = 0;
4 for i = 1 to w − 1 do
5 F̂S1∪S2

[i]=(FS1
[i] ∨ FS2

[i]) ∧ F̂S1∪S2
[i− 1];

6 sum = sum+ F̂S1∪S2 [i];
7 end
8 return sum;

1 0 0 1 0

1 1 0 1 0

1 1 0 1 0

1 1 0 0 0

FS1

FS2

∨
FS1∪S2

∧ ∧ ∧ ∧

z=2

sum =2

F̂S1∪S2

Fig. 1: Example of Combine-then-sum algorithm

The correctness of the algorithm is easy to prove. Let
FS1∪S2 = FS1 ∨ FS2 and z be the estimator. If z > 0, then
by the definition of z, for all 0 ≤ i < z we have FS1∪S2 [i] = 1.
In Algorithm 1, F̂S1∪S2

[0]=FS1∪S2
[0]=1 and for 1 ≤ i < z,

F̂S1∪S2
[i]=(FS1

[i]∨FS2
[i])∧F̂S1∪S2

[i−1]=FS1∪S2
[i]∧F̂S1∪S2

[i−1]. By
induction, for all 0 ≤ i < z, we have F̂S1∪S2

[i]=1 as well.
Therefore, ∑z−1

i=0 F̂S1∪S2
[i]=z. For i ≥ z, since F̂S1∪S2

[z]=0, we
have F̂S1∪S2

[z+1]=FS1∪S2
[z+1]∧F̂S1∪S2

[z]=0, and similarly all the
bits after are 0. Then the sum of the whole F̂S1∪S2

is still z. If
z = 0, then all bits in F̂S1∪S2

are 0 and the sum equals z = 0.
It is also easy to verify that the algorithm is data oblivious:

for any two input tuples (FS1
, FS2

, w) and (F ′S1
, F ′S2

, w), the
memory access pattern and the control flow are exactly the same
when executing the algorithm.

4.2.2 Efficient Protocol

The protocol is presented as Protocol 1. In the protocol, P1 and P2

jointly compute F̂S1∪S2
and share each bit in it, then they use the

homomorphic property to sum their shares locally to get a share
of

∑w−1
i=0 F̂S1∪S2

[i], i.e. z. The key idea in the protocol design is
to fully utilize P1’s local knowledge to generate correlated secret
shares, and to base computation on the correlated shares. By using

6

secret sharing, the result can be obtained but is kept secret at the
end of the protocol.

Protocol 1 Secure Estimator Computation Protocol
Inputs The private inputs of P1 and P2 are the FM sketches FS1

and FS2 respectively. Each sketch encodes the party’s private set.
The auxiliary inputs include the security parameter λ, the sketch
size w and a group Zq where q = m(w− 1) + 1 for some integer
m.
Outputs Let z be the index of the first 0 bit in the union sketch
FS1∪S2 that will be used later to estimate the union cardinality
(see Section 4.1). P1 and P2 obtain JzK1, JzK2 ∈ Zq respectively.
Each party’s output is a secret share of z such that JzK1+JzK2 = z.

1) In round 0, P1 chooses a random number r〈0〉 R← Zq , then sets
r
〈0〉
0 = −r〈0〉 and r

〈0〉
1 = 1 − r〈0〉. Then P1 and P2 run a

(12)-OT in which P2 uses FS2 [0] as the selection bit and P1 uses
(r
〈0〉
0 , r

〈0〉
1) as input if FS1 [0] = 0 or (r〈0〉1 , r

〈0〉
1) if FS1 [0] = 1.

2) Then in round i (1 ≤ i < w), the two parties do the following:

a) P1 chooses a random number r〈i〉 R← Zq , then sets r〈i〉0 =

−r〈i〉 and r〈i〉1 = 1− r〈i〉.
b) P1 prepares 4 strings to send:

(r
〈i〉
0 , r

〈i〉
0 , r

〈i〉
0 , r

〈i〉
1) if r〈i−1〉

0 is even ∧ FS1 [i] = 0

(r
〈i〉
0 , r

〈i〉
0 , r

〈i〉
1 , r

〈i〉
1) if r〈i−1〉

0 is even ∧ FS1 [i] = 1

(r
〈i〉
0 , r

〈i〉
1 , r

〈i〉
0 , r

〈i〉
0) if r〈i−1〉

0 is odd ∧ FS1 [i] = 0

(r
〈i〉
1 , r

〈i〉
1 , r

〈i〉
0 , r

〈i〉
0) if r〈i−1〉

0 is odd ∧ FS1 [i] = 1

c) Let x〈i−1〉 be the string received by P2 in round i− 1. Let bit
b0 = 0 if x〈i−1〉 is even and b0 = 1 if x〈i−1〉 is odd, let bit
b1 = FS2 [i]. P2 gets a 2-bit integer j = b0||b1.

d) P1 and P2 run a (14)-OT in which P1 uses the 4 strings
prepared in step 2b as input and P1 uses j obtained in step
2c as input.

3) P1 outputs JzK1 =
∑w−1
i=0 r〈i〉, P2 outputs JzK2 =

∑w−1
i=0 x〈i〉

where x〈i〉 is the string (an integer) received in round i.

In the following, we explain the protocol. Let’s start from step
1 which computes F̂S1∪S2

[0] = FS1
[0] ∨ FS2

[0], the first bit in
F̂S1∪S2 . In this step, P1 generates the shares for 0 and 1 in a
correlated way. Observe that r〈0〉+ r

〈0〉
0 = 0 and r〈0〉+ r

〈0〉
1 = 1,

therefore (r〈0〉, r〈0〉0) is a pair of shares for bit 0 and (r〈0〉, r〈0〉1)
is a pair of shares for bit 1. Although the shares are correlated,
this does not affect security because P2 can only get one of r〈0〉0 ,
r
〈0〉
1 through OT. In any case, P1 always keeps r〈0〉 and the actual

shared value then is determined by which share P2 receives. Now
if FS1 [0] = 1 then P1 knows the value FS1 [0] ∨ FS2 [0] = 1
regardless of whether FS2 [0] is 0 or 1. Thus in the OT, P1 can use
(r
〈0〉
1 , r

〈0〉
1) as input so that P2 always gets the share of bit 1. If

FS1
[0] = 0 then the value of FS1

[0]∨FS2
[0] depends on FS2

[0].
So in the OT, P1 uses (r

〈0〉
0 , r

〈0〉
1) as input so that P2 always gets

the share of 0 if FS2
[0] = 0 or the share of 1 if FS2

[0] = 1. Take
the example in Fig. 1: FS1

[0] = 1 so in the protocol P1 sends
(r
〈0〉
1 , r

〈0〉
1) and P2 always gets r〈0〉1 that is the share of bit 1.

In step 2, the two parties compute F̂S1∪S2
[i] = (FS1

[i] ∨
FS2

[i]) ∧ F̂S1∪S2
[i − 1]. At the end of each round in this step,

P2 should receive a share x〈i〉. If F̂S1∪S2 [i] = 0, P2 should
receive a share of bit 0, i.e. x〈i〉 = r

〈i〉
0 ; otherwise P2 should

receive a share of bit 1, i.e. x〈i〉 = r
〈i〉
1 . This step is much more

difficult than ORing two bits because F̂S1∪S2
[i− 1] is required in

the computation but may not be known by any party. Our insight
is that we can solve this problem by utilizing the parity of the
correlated shares. The two shares r〈i〉0 , r

〈i〉
1 always differ by 1,

therefore it is guaranteed that one of the shares is even and the
other is odd. Thus the two parties can carry out the computation by
matching parities of some shares which they can observe locally.
In step 2b of the protocol, P1 prepares strings to send by observing
the parity of the share of bit 0 generated in the last round (r〈i−1〉

0)
and its current sketch bit FS1 [i], and later P2 receives a string
by observing the parity of the share received in the last round
(x〈i−1〉

0) and its current sketch bit FSs [i]. Again take the example
in Fig. 1: for the second bit, FS1 [1] = 0, thus if r〈0〉0 is even, P1

will send (r
〈1〉
0 , r

〈1〉
0 , r

〈1〉
0 , r

〈1〉
1). Now since FS2 [1] = 1 and P2

received x〈0〉 = r
〈0〉
1 in the last round that must be odd (because

r
〈0〉
0 is even), then j = (1||1)b = 3. So in this round P2 will

receive the last string r〈1〉1 that is a share of bit 1. If r〈0〉0 is odd,
P1 will send (r

〈1〉
0 , r

〈1〉
1 , r

〈1〉
0 , r

〈1〉
0). Now r

〈0〉
1 must be even, then

j = (0||1)b = 1. So in this round P2 will receive the second
string r〈1〉1 that is a share of bit 1.

The parity of r〈i−1〉
0 , the parity of x〈i−1〉, the bit in FS1 [i]

and the bit in FS2 [i] each have two possible values, thus there are
24 = 16 combinations. The correctness of the protocol can be
shown through Figure 2 that depicts the correspondence between
each combination and the share received by P2 in round i. In
each branch of the tree in the figure, if r〈i−1〉

0 and x〈i−1〉 have
the same parity then x〈i−1〉 must equal r〈i−1〉

0 which is a share
of bit 0, thus F̂S1∪S2

[i − 1] = 0. Otherwise F̂S1∪S2
[i − 1] = 1.

F̂S1∪S2
[i] = (FS1

[i]∨FS2
[i])∧ F̂S1∪S2

[i− 1] can be computed
along the branch and the leaf nodes is the share that P2 receive.
For example, in the leftmost branch r〈i−1〉

0 and x〈i−1〉 have the
same parity (even) so F̂S1∪S2 [i− 1] = 0 and FS1 [i], FS2 [i] both
are 0, so F̂S1∪S2

[i] = (0 ∨ 0) ∧ 0 = 0. Corresponding to this
branch, in the protocol step 2b P1 prepares four strings in case 1
because r〈i−1〉

0 is even and FS1
[i] = 0, and P2 receives the first

of the four strings because x〈i−1〉 is even and FS2
[i] = 0. The

string received by P2 is r〈i〉0 which is a share of F̂S1∪S2
[i] = 0.

r
〈i−1〉
0

FMS1
[i]

x〈i−1〉

FMS1
[i]

x〈i−1〉 x〈i−1〉 x〈i−1〉

FMS2
[i] FMS2

[i]

r
〈i〉
0 r

〈i〉
0 r

〈i〉
1 r

〈i〉
0 r

〈i〉
1 r

〈i〉
0 r

〈i〉
1 r

〈i〉
0 r

〈i〉
1 r

〈i〉
0

FMS2
[i] FMS2

[i] FMS2
[i] FMS2

[i] FMS2
[i] FMS2

[i]

even odd

0 1 0 1

even odd even odd even odd even odd

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

r
〈i〉
0 r

〈i〉
0 r

〈i〉
0r

〈i〉
1r

〈i〉
0 r

〈i〉
1() ()() ()

case 1 case 2 case 3 case 4

Fig. 2: All cases in step 2

In step 3, P1 and P2 locally sum the shares. Each r〈i〉 held by
P1 and each x〈i〉 held by P2 are the two shares of F̂S1∪S2 [i]. By
the homomorphic property, the sums

∑w−1
i=0 r〈i〉 and

∑w−1
i=0 x〈i〉

are the shares of z.
Our final remark is regarding the choice of q, which is m ·

(w − 1) + 1. The reason is that in order to increase accuracy, we
need to average estimators extracted from m sketches. The value
of z〈i〉 is at most w − 1, then the sum of m estimators is at most
m · (w− 1). We need Zq to be large enough to accommodate this
sum. Then q needs to be at least m · (w − 1) + 1. For efficiency,
we choose q to be exactly m · (w − 1) + 1.

7

4.2.3 Efficiency Comparison to the Generic Approach
It is possible to implement Algorithm 1 using generic techniques
such as garbled circuits (GC). The cost of the GC protocol consists
of two parts:
1) Transferring input wires: This requires w invocations of

(1
2)-OT , which can use the C-OT optimization in [37].

2) Building, transferring and evaluating a garbled Boolean cir-
cuit: The circuit consists of w OR-gates, w − 1 AND-gates
and a circuit to compute the Hamming weight of a w-bit
string. The most efficient Hamming weight circuit [45] requires
w − HW(w) AND-gates, where HW(w) is the Hamming
weight of the binary representation of the integer w. In total,
the number of non-free gates is 3w−1−HW(w). However, the
w OR-gates can be evaluated at the wire transferring step using
OT (similar to what we do in step 1 of Protocol 1), thus the
number of non-free gates can be reduced to 2w−1−HW(w).

In comparison, our protocol (Protocol 1) requires 1 invocations of
(1
2)-OT and w − 1 invocations of (1

4)-OT . We can use the C-
OT optimization for the (1

2)-OT and the R-OT optimization (also
from [37]) for the (1

4)-OT (See Appendix D for details).

Fig. 3: Efficiency comparison

Computational Cost: We estimate the computational cost by
counting the number of cryptographic operations. Each (1

2)-OT
requires 3 symmetric key operations when obtained from OT
extension. The cost of each non-free gate is dependent on which
optimization technique is used. At present, the most popular
strategy for optimizing GC is to make the XOR gates free. To
do so, one can use either the Free XOR [46] with point-and-
permute [47] and garbled row reduction [48] technique (Free
XOR for short) or the Half Gates technique [49]. Free XOR
requires 4 symmetric key operations to garble and 1 symmetric key
operations to evaluate a non-free gate, while Half Gates requires
4 and 2 symmetric key operations respectively.

The total number of symmetric key operations required by the
GC protocol is then 3w+5 · (2w−1−HW(w)) = 13w−5−5 ·
HW(w) when using Free XOR or 3w+6 · (2w−1−HW(w)) =
15w − 6− 6 · HW(w) when using Half Gates. The total number
of symmetric key operations in our protocol is 3 · (2w − 1) + 4 ·
(w − 1) = 10w − 7. In practice, w is a small integer and the
computational cost of our protocol is about 80% of that of the GC
protocol if it uses Free XOR, or about 70% if it uses Half Gates.
Fig. 3(a) plots the number of symmetric key operations in each
protocol when w varies from 1 to 64.
Communication Cost: The total communication cost of the GC
protocol again depends on the optimization technique. Using Free
XOR, each non-free gate has 3 entries. Using Half Gates, each
non-free gate has 2 entries. The size of each entry is λ bits, where
λ is the security parameter. The cost for transferring input wires
is 2λ bits per wire (using C-OT) in both cases.

In total, the communication cost of the GC protocol is (2w −
1−HW(w)) ·3λ+w ·2λ = 8wλ−3λ−3 ·HW(w)λ bits if Free

XOR is used, or (2w−1−HW(w)) ·2λ+w ·2λ = 6wλ−2λ−
2 · HW(w)λ bits if Half Gates is used. The total communication
of our protocol is λ+log q bits for the first (1

2)-OT (using C-OT),
and (2w − 2) · λ+ 4(w − 1) · log q bits for the following w − 1
invocations of (1

4)-OT (using R-OT), where q = m · (w−1) + 1.
Roughly, for reasonable λ (128 or 256), w (1 to 64) and m (4,096
to 1,048,576), the communication cost of our protocols is about
35% of that of the GC protocol if it uses Free XOR, or 45% if
it uses Half gate. Fig. 3(b) plots the communication cost in each
protocol when fixing λ = 128,m = 65, 536 and varying w from
1 to 64.

4.3 Secure Cardinality Estimation
4.3.1 The Protocol
In Section 4.2.2, we showed how to compute the estimator z of
the union cardinality from a pair of FM sketches. As mentioned
in Section 4.1, in order to increase accuracy, we need to compute
m estimators from m different pairs of sketches. This requires m
executions of Protocol 1. As illustrated in Fig. 4, in the ith run, P1

and P2 each obtains a share JzK〈i〉1 , JzK〈i〉2 respectively. Then the
two parties can locally sum the shares to get JZK1 =

∑m−1
i=0 JzK〈i〉1

and JZK2 =
∑m−1
i=0 JzK〈i〉2 , where JZK1 and JZK2 are shares of

Z =
∑m−1
i=0 z〈i〉. The two parties can then use Protocol 2 to

compute Equation 1 and estimate the union cardinality.

P1 P2

Protocol 1, 1st execution

F
〈0〉
S1

F
〈0〉
S2

.

.

.

.

.

.
F

〈m−1〉
S1

F
〈m−1〉
S2

Protocol 1, mth execution

!z"〈0〉1 !z"〈0〉2
.

.

.

!z"〈m−1〉
1

!z"〈m−1〉
2

.

.

.

.

.

.

!Z"1 =
∑m−1

i=0 !z"〈i〉1 !Z"2 =
∑m−1

i=0 !z"〈i〉2

Protocol 2

!Ñ"1 !Ñ"2

m executions of protocol 1

!Z"1 !Z"2

Fig. 4: Connection between Protocol 1 to Protocol 2

Our idea is to use a lookup table. A lookup table is a data
structure that encodes a function with a small input domain to
speed up computation. As we can see, in Equation 1, m,κ, φ
are all public constants. So the equation is a function with a single
argumentZ which is an integer from Zq where q = m·(w−1)+1.
In practical cases, m needs to be of the order of 103 − 104 so the
standard deviation of Z is about 10−2, and w is unlikely to be
greater than 50. Then m · (w − 1) is of the order of 104 − 105

which is small enough for a lookup table. Our lookup table based
protocol is presented below (Protocol 2).

In the protocol, P1 first computes Equation 1 for each possible
value of Z , and stores the result in the lookup table. So T [i] stores
the estimated cardinality when Z = i. Note this computation is all
in plaintext, thus we avoid entirely the expensive secure floating
point computation. Each T [i] is an integer after rounding and is

8

Protocol 2 Secure Cardinality Estimation Protocol
Inputs The private input of P1 is a secret share JZK1 and the
private input of P1 is a secret share JZK2 such that JZK1+JZK2 =
Z =

∑m−1
i=0 z〈i〉, i.e. Z is the sum of m union cardinality

estimators. The auxiliary inputs include the security parameter λ,
the public parameters m,w, κ, φ, q = m(w − 1) + 1, and Z2w .
Outputs Let Ñ be the estimate to be computed, P1 and P2 obtain
JÑK1, JÑK2 ∈ Z2w respectively. Each party’s output is a secret
share of Ñ and satisfies JÑK1 + JÑK2 = Ñ .

1) P1 computes a lookup table T which is a vector that has q entries.
P1 first computes for 0 ≤ i ≤ q − 1

T [i] = d2
i
m − 2−κ·

i
m

φ
c

P1 then picks a single r R← Z2w and for all 0 ≤ i ≤ q−1 computes
T ′[i] ≡ T [i]− r mod 2w. P1 then circularly shifts T ′ to the left
JZK1 places, i.e. let T ′′[i] = T ′[j] where j ≡ i+ JZK1 mod q.

2) P1 and P2 run a (1q)-OT in which P1 uses T ′′ as input, P2 uses
JZK2 as input and receives T ′′[JZK2].

3) P1 outputs JÑK1 = r and P2 outputs JÑK2 = T ′′[JZK2].

in Z2w because the way we choose w ensures that 2w is larger
than any possible cardinality. Then P1 picks a single r and creates
correlated shares of all entries in T . Again, since later the protocol
uses OT and P2 is guaranteed to receive only one share, this is
secure. The next thing P1 does is to ensure that P2 can receive
the correct entry T ′[Z]. None of the parties knows Z but each
holds a share. The combined effect of shifting and OT is that
P2 will receive T ′′[JZK2] = T ′[JZK2 + JZK1] = T ′[Z], and
T ′′[JZK2]+r = T ′[Z]+r = T [Z]. So each party indeed obtains
a share of the estimated cardinality.

4.3.2 Efficiency Comparison to the Generic Approach
The computation of Equation 1 needs to be done in floating
point numbers. More concretely, Equation 1 requires 2 divisions,
2 exponentiations and 1 subtraction operations in floating point
numbers. In the past, secure floating point computation was both
complex and inefficient [50], [51], [52]. Recently, it has been
shown that optimized floating point circuits can be generated using
hardware circuits synthesis tools [53] and the GC protocol using
the optimized circuits can be quite efficient. We now compare the
efficiency of Protocol 2 against that of the GC protocol.
Computational Cost: The sizes of the floating point operation
circuits are dependent on the bit size of the floating point number.
For 32-bit single precision floating point operations, the addition
circuit has 1,820 AND-gates, the division circuit has 5,395 AND-
gates and the base 2 exponentiation gate has 9,740 AND-gates.
For 64-bit double precision floating point operations, the gate
numbers are 4,303, 22,741 and 21,431 respectively. For building
and evaluating a 32-bit circuit to compute the estimation, the total
number of symmetric key operations is 160,450 if the circuit uses
Free XOR, or 192,540 if it uses Half Gate. For building and
evaluating a 64-bit circuit to compute the estimation, the total
number of symmetric key operations is 463,235 if the circuit uses
Free XOR, or 555,882 if it uses Half Gate. There will also be some
other costs, e.g. converting the arithmetic shares from Protocol
1 to Boolean shares [20], and OT for transferring input wires.
However the additional costs are small (a few hundreds symmetric
key operations) and can be safely omitted. Our protocol requires
one invocation of (1

q)-OT , in which the computation is dominated
by the q symmetric key operations for masking the strings. The

number q equals m · (w − 1) + 1. Therefore depending on the
value of the parameters m and w, one can decide whether to use
Protocol 2 or the GC protocol. In Table 1, we show some concrete
examples. In Table 1, each row corresponds to a fixed value for m,
and each cell in the row shows the largest value of w, for which
Protocol 2 is computationally more efficient than the GC protocol
based on Free XOR or Half Gates. For example, if m = 4096 and
single precision (32-bit) is enough, then we should use Protocol 2
whenever w ≤ 40 (or equivalently if the set cardinality will not
exceed 236); but if m = 65536, we should use a GC protocol in
almost all cases because w ≤ 3 is too small to be useful.

m
GC 32-bit 64-bit

Free XOR Half Gates Free XOR Half Gates
4096 40 48 114 136
16384 10 12 29 34
65536 3 3 8 9

TABLE 1: Each cell contains the largest value of w for which
Protocol 2 is computationally more efficient than the GC protocol
with Free XOR or with Half Gates.

Communication Cost: For the GC protocol that uses a circuit of c
gates, the communication cost is c ·3λ bits if Free XOR is used, or
c ·2λ bits if Half Gates is used. For Protocol 2, the communication
cost is dominated by transferring the q masked strings, which is
in total q · ` where ` is the bit-size of the floating point numbers.
Then which one is more efficient depends on the parameters and
the optimization technique. Again we worked out the largest value
of w for which Protocol 2 is more efficient than the GC protocol
with Free XOR and the GC protocol with Half Gates (see Table 2).

m
GC 32-bit 64-bit

Free XOR Half Gates Free XOR Half Gates
4096 95 63 136 91
16384 24 16 34 23
65536 6 4 9 6

TABLE 2: Each cell contains the largest value of w for which
Protocol 2 is more efficient than the GC protocol with Free XOR
or with Half Gates, in terms of communication cost.

4.4 Fixed-key Masking

The efficiency of Protocol 2 depends on the underlying (1
n)-OT

(n = q in our protocol). As we have already shown in Section
3.2, the cost of (1

n)-OT consists of two parts: log(n) invocations
of (1

2)-OT and n log(n) pseudorandom function invocations for
masking the sender’s strings. In the past when (1

2)-OT had to
be based on public key operations, the first part dominated the
cost. But now we can obtain (1

2)-OT through OT extension, then
the second part becomes dominating. A more efficient masking
scheme then implies more efficient (1

n)-OT .
In this section, we present an efficient fixed-key masking

scheme. Our design is in line with the fixed-key garbling schemes
that have led to a significant improvement in the computation
of garbled circuits [22]. In the new masking scheme, the cost
of masking in (1

n)-OT is reduced to n invocations of a random
permutation. The random permutation can be instantiated using a
block cipher such as AES with a public and fixed key. This allows
further efficiency improvement by taking advantage of the AES-NI
set [54] and avoiding the cost caused by frequent key scheduling.

Let (E ,D) be a block cipher where E ,D are the encryption
and decryption algorithms respectively. Let ck be a key generated

9

for the cipher and is public. We will model Eck(·) as a random
permutation π and Dck(·) as the inverse permutation π−1 [55].
The masking scheme has four algorithms:

• Gen(n, λ): given n the algorithm uniformly generates a l ×
2 key matrix K where l = dlog(n)e and each cell Ki,j is
a uniformly random λ-bit key. Without loss of generality, we
assume the block size of the cipher is also λ bits.

• Key(K, i): given the key matrix K and an integer 0 ≤ i ≤
n− 1, return the ith masking key. Let the binary representation
of i be b0b1, ..., bl−1, the masking key mk =

⊕l−1
j=0Kj,bj ,

where bj is the jth bit of i.
• Mask(K,P): Mask an n-vector P such that each element in P

is a bit string of λ-bit. For each element P [i], compute mki =
Key(K, i). The masked element P̃ [i] = π(mki)⊕mki⊕P [i]

• Unmask(P̃ , i): given the masked vector P̃ and an index i,
unmask P [i]=P̃ [i]⊕π(mki)⊕mki

This masking scheme is to be used with (1
n)-OT . The sender

runs Gen,Key,Mask to mask the n strings that will be sent to the
receiver. The receiver will use its selection number I to receive
log(n) keys in log(n) (1

2)-OT . The keys will allow the receiver
to reconstruct mkI but not the other masking keys. With mkI ,
the receiver can unmask the sender’s Ith string P [I]. The formal
security definition and proof can be found in Appendix C. At a
high level, the masking scheme is secure if an adversary who
knows the log(n) keys corresponding to I and P̃ can learn P [I]
but nothing about all other P [j], j 6= I , even if the adversary has
oracle access to π and π−1.
A remark on (1

n)-OT extension In our paper, we implement
(1
n)-OT by invoking (1

2)-OT extension log(n) times and masking
the n strings to be sent. Alternatively, one can use (1

n)-OT
extension with the masking scheme to implement (1

n)-OT .
In [38], a (1

n)-OT extension protocol was presented such that
the log(n) invocations of (1

2)-OT extension can be replaced by
one invocation to the (1

n)-OT extension (the masking part remains
the same). This protocol works when n ≤ 2 ·λ, where λ is the se-
curity parameter. The cost of one invocation of (1

n)-OT extension
is about the same as 2 invocations of (1

2)-OT extension. In [56], a
new protocol for (1

n)-OT extension based on pseudorandom code
was presented. The new protocol works for arbitrary n. The cost
of one invocation is about the same as the cost of 4 invocations of
(1
2)-OT extension.

We present some analysis regarding whether (1
n)-OT exten-

sion could improve the efficiency of our protocols:

• The (1
n)-OT extension protocol requires an additional 2λ ([38])

or 3λ to 4λ ([56]) base OTs to setup. Since we use OT extension
already, these base OTs can obtained through OT extension.

• In Protocol 1, we need (1
4)-OT . If we use [38], the cost of 1

invocation is the same as 2 invocations of (1
2)-OT extension.

If we use [56], the cost of 1 invocation is actually higher.
Thus, using (1

n)-OT extension will not improve the efficiency
of Protocol 1.

• In Protocol 2, we need (1
q)-OT . The parameter q is too large

for [38]. We can use [56] in this case. If so, we will use 1
invocation of the (1

n)-OT extension instead of log(q) invoca-
tions of (1

2)-OT extension. However, since Protocol 2 is only
invoked once in the PSU-CA protocol, this improvement will
be offset by the increased number of base OT. Recall that q
equals m · (w − 1) and in most practical cases, q is of the
order of 104 − 105. Therefore log(q) is usually no more than
20. In comparison, when λ = 128, the (1

n)-OT extension in

[56] requires at least 384 more invocations of base OT (that
can be obtained using the same (1

2)-OT extension). Thus, using
(1
n)-OT extension will not improve the efficiency of Protocol 2.

4.5 PSU-CA and PSI-CA Protocols

We now present the PSU-CA and PSI-CA protocols. As we men-
tioned earlier, the PSI-CA protocol can be obtained from the PSU-
CA protocol. The PSU-CA protocol is presented in Protocol 3 and
the security analysis of the protocol can be found in Appendix B.
Building sketches does not involve cryptographic operations and
can be done offline, as this does not require interacting with the
other party. Thus we assume the parties have pre-computed the
sketches before running the protocol and they use the sketches as
the input to the protocol.

Protocol 3 PSU-CA Protocol
Inputs The private inputs of P1 and P2 are the m FM sketches
F
〈0〉
S1
, ..., F

〈m−1〉
S1

and F 〈0〉S2
, ..., F

〈m−1〉
S2

respectively. Each pair of
sketches (F 〈i〉S1

, F
〈i〉
S2

) encodes the private sets of the parties, using
the same hash function hi. The auxiliary inputs include the security
parameter λ, the sketch size w = log(N) + 4 where N is the
max possible cardinality of the private sets, the parameter m that
controls accuracy, and constants κ, φ.
Outputs P1 and P2 obtain JÑK1,JÑK2∈Z2w respectively. Each
party’s output is a secret share of Ñ and satisfies JÑK1+JÑK2=Ñ,
where Ñ is the estimated union cardinality.

1) P1 and P2 run Protocol 1 exactly m times. In the ith run, they use
(F
〈i〉
S1
, F
〈i〉
S2

) and obtain JzK〈i〉1 , JzK〈i〉2 respectively.
2) P1 and P2 compute locally JZK1 =

∑m−1
i=0 JzK〈i〉1 and JZK2 =∑m−1

i=0 JzK〈i〉2 .
3) P1 and P2 run Protocol 2 with JZK1 and JZK2 as input and obtain

JÑK1 and JÑK2 respectively.
4) P1 outputs JÑK1, P2 outputs JÑK2.

For the PSI-CA protocol, the only difference is that in the
last step P1 outputs JĨK1 = |S1| − JÑK1, P2 outputs JĨK2 =
|S2| − JÑK2. In this step each party converts its own share of the
union cardinality to a share of the intersection cardinality using the
cardinality of its own set. This step is done locally and the parties
do not need to know the cardinality of the other party’s set. The
output of P1 and P2 in PSI-CA adds up to |S1| − JÑK1 + |S2| −
JÑK2 = |S1|+ |S2|− Ñ ≈ |S1|+ |S2|− |S1∪S2| = |S1∩S2|.
Complexity: In both the PSU-CA and PSI-CA protocols, the
parties first run m times of Protocol 1, whose cost is 2w − 1
invocations of (1

2)-OT . Then the parties run Protocol 2 whose
cost is one (1

q)-OT and q = m · (w− 1) + 1. The parameter m is
a constant once the desirable error bound is fixed. The parameter
w = log(N) + 4 where N is the maximum possible cardinality
of the private sets. So the computational and communication
complexities are both O(log(N)). Note that N is the maximum
possible cardinality instead of the actual cardinalities of the private
sets. This is because the parties do not and should not know the
cardinality of the other party’s private set. They can set a large
enough w so that the sketches can encode any set that is smaller
than 2w−4. For example, to encode any sets with size up to 1
million, we set w = 24.
Relative Error of PSI-CA: In the PSI-CA protocol we obtain the
intersection cardinality from the estimated union cardinality. The
relative error then is in terms of the union cardinality |Ñ−|S1∪S2||

|S1∩S2| .
We can adjustm to control the relative error if |S1∩S2| is not very
small compared to |S1∪S2|. In many data mining applications the

10

condition often holds and intersection cardinality can be estimated
fairly well based on the inclusion-exclusion principle [57], [58].

5 MULTIPARTY PROTOCOLS

Since Protocol 1 and Protocol 2 require OT, they cannot be directly
migrated to the multiparty setting. However, the protocols can
be re-implemented with standard secret sharing-based multiparty
secure computation schemes e.g. [59], [60], [61]. Computing the
estimator requires bitwise OR and AND protocols, and an integer
addition protocol. Those are standard building blocks that are
readily available in all schemes mentioned above. We use a lookup
table in estimating union cardinality, and secure lookup tables are
also available [62]. Then the PSU-CA protocol can be easily built
after the two building blocks are built. Note here our intention is
to show feasibility. More efficient protocols are possible but we
do not intend to do any optimization now and leave this for future
investigation. Working with standard secure computation building
blocks implies that the protocol is secure (by the composition
theorem [63]), thus the security proof for the multiparty protocols
is omitted.

However, migrating the PSI-CA protocol to multiparty setting
is not easy. This is because computing the intersection cardi-
nality of τ sets using the inclusion exclusion principle requires
exponential time in τ . For example, in the three-parties setting,
|S1∩S2∩S3| = |S1∪S2∪S3|−|S1|−|S2|−|S3|+ |S1∩S2|+
|S1∩S3|+|S2∩S3|. Therefore in the multiparty setting we do not
use the inclusion and exclusion principle. Instead we use Min-Max
sketches [26] to compute the intersection cardinality from shared
union cardinality. This reduces the complexity to linear in τ . In
the following, we introduce Min-Max sketches and then present
the protocol.

5.1 Min-Max Sketches
A Min-Max sketch [26] is a summary of a set that can be used for
estimating Jaccard index of sets. In this paper, we use it to obtain
the cardinality of the intersection of multiple sets.

A Min-Max sketch consists of 2 vectors of k hash values. Let
S be a set and h0, . . . , hk−1 be k independent collision resistant
hash functions that map inputs uniformly to l bit integers. We
define hmini (S) as the element in S that has the lowest hash value,
i.e. hmini (S) = x such that x ∈ S and ∀y ∈ S ∧ y 6= x, hi(x) <
hi(y). Similarly, we define hmaxi (S) as the element in S that has
the highest hash value. A k-Min-Max sketch of S (denoted by
MS) consists of two vectors: Mmin

S = (hmin0 (S), ..., hmink−1(S))
and Mmax

S = (hmax0 (S), ..., hmaxk−1 (S)) .
For two sets S1 and S2, the Jaccard index is defined as

J = |S1∩S2|
|S1∪S2| . Given two k-Min-Max sketches MS1

and MS2

built with the same set of k hash functions, it is clear that
Pr[hmini (S1) = hmini (S2)] = J since hmini (S1) = hmini (S2)
only happens when the element is in the intersection and the
probability that this element is the minimal is 1

|S1∪S2| . Similarly,
Pr[hmaxi (S1) = hmaxi (S2)] = J follows the same line of
reasoning

Thus we have an unbiased estimator of J :

J̃ =
1

2k

k−1∑
i=0

(eq(Mmin
S1

[i],Mmin
S2

[i]) + eq(Mmax
S1

[i],Mmax
S2

[i])) (3)

where eq is the equality function such that eq(x, y) = 1 if x =
y and eq(x, y) = 0 otherwise. The standard deviation of J̃ is√

J
2k ·

|S1∪S2|+|S1∩S2|−2
|S1∪S2|−1 − J2

k ≤
√

J(1−J)
2k ≤

√
1
8k .

This can be generalized to τ sets case where the generalized
Jaccard index is defined as Jτ =

|⋂τi=1 Si|
|⋃τi=1 Si|

. Now J̃τ with τ
sketches MS1 , . . . ,MSτ is defined similarly as:

J̃τ =

∑k
i=0(eq(Mmin

S1
[i], . . . ,Mmin

Sτ
[i]) + eq(Mmax

S1
[i], . . . ,Mmax

Sτ
[i]))

2k
(4)

where eq now is the equality function over multiple values
such that eq(x1, . . . , xτ) = 1 if x1 = . . . = xτ and
eq(x1, . . . , xτ) = 0 otherwise. The accuracy of the estimation
using Min-Max sketches can be adjusted by changing k. More
specifically:

Theorem 2. Let S1 . . . , Sτ be sets and Jτ be the generalized
Jaccard index. Let J̃τ be the estimate obtained from computed
using Equation (4). For any ε, δ ∈ (0, 1), it holds that:

Pr[
|J̃τ − Jτ |

Jτ
≤ ε] ≥ 1− δ (5)

when k ≥ (erf−1(1−δ))2

2ε2J2
τ

where erf−1 is the inverse error function.

The proof of Theorem 2 is similar to that of Theorem 1 and
is omitted. As we can see, the threshold for k depends on Jτ . For
example, if we fix δ = 0.001, then when ε = 0.04, k should be
at least 364

J2
τ

; when ε = 0.01, k should be at least 5817
J2
τ

.

5.2 Multiparty PSI-CA Protocol

Given the generalized Jaccard index (GJI) over τ sets and the
union cardinality of the τ sets, we can compute the intersection
cardinality |⋂τ

i=1 Si| = Jτ ·|
⋃τ
i=1 Si|. We can estimate the union

cardinality using FM sketches, then what is left is to estimate
the GJI over the sets. To estimate GJI and then compute the
intersection cardinality, we only need secure equality test, integer
multiplication and floating point division protocols, which are also
basic building blocks in secret sharing-based multiparty schemes
(e.g. [64], [65]). We can just use them as black boxes. The protocol
is shown in Protocol 4.

Protocol 4 Multiparty PSI-CA Protocol
Inputs The private inputs of P1, ...,Pτ are the Min-Max
sketches MS1 , ...,MSτ and shares of estimated union cardinality
JÑK1,...,JÑKτ respectively. The sketches are generated using the
same set of hash function h0, ..., hk−1. The auxiliary inputs
include the security parameter λ, the sketch size k.
Outputs P1, ...,Pτ obtain the shares JĨK1,...,JĨKτ respectively,
where Ĩ is the estimated intersection cardinality, i.e. JĨK1+···+JĨKτ=

Ĩ= J̃·Ñ
2k

.
1) For 0 ≤ i ≤ k − 1, P1, ...,Pτ run the equal-

ity test protocol to compute eq(Mmin
S1

[i], . . . ,Mmin
Sτ [i]) and

eq(Mmax
S1

[i], . . . ,Mmax
Sτ [i]). The two equality test results are

output as shares to each party and the party can sum the shares
locally. At the end of each iteration, each party holds a share
Jt〈i〉K1, ..., Jt〈i〉Kτ of the result of eq(Mmin

S1
[i], . . . ,Mmin

Sτ [i]) +
eq(Mmax

S1
[i], . . . ,Mmax

Sτ [i]).
2) For each Pj , the party computes the sum of shares locally JuKj=∑k−1

i=0 Jt〈i〉Kj . Each JuKj is a share of

u =

k−1∑
i=0

(eq(Mmin
S1

[i], . . . ,Mmin
Sτ

[i]) + eq(Mmax
S1

[i], . . . ,Mmax
Sτ

[i]))

3) P1, ...,Pτ run the multiplication protocol and the floating point
division protocol to compute Ĩ = u·Ñ

2k
, using their shares

JuK1, ..., JuKτ and JÑK1,...,JÑKτ . The output are shares JĨK1,...,JĨKτ .

11

Note if the cardinality is the final output, then in the last step
the multiparty division can be omitted. The parties can compute
just u · Ñ using their shares and output the result. Then each
party can locally compute u·Ñ

2k since k is public. This makes the
protocol more efficient.

6 PERFORMANCE EVALUATION

In this section, we show performance figures for our two-party
protocol. We implemented the two-party protocol. We did not
implement the multiparty protocols because the performance relies
largely on the implementation of the underlying secret sharing-
based multiparty secure computation framework. Our prototype is
written in C and uses TCP sockets for communication between two
distributed parties. We used OpenSSL for the underlying crypto-
graphic operations. We implemented the OT extension protocol in
[36] with the C-OT and R-OT optimizations from [37]. The base
OT protocol is the Naor-Pinkas OT [34]. In all experiments, we set
the security parameter to 128 and chose key size and cryptographic
functions accordingly as recommended by NIST [66]. This should
provide adequate security for most applications in median and
long term (2031 and beyond) [66]. All experiments were run on
two commodity computers: party 1 ran on a Ubuntu PC with an
Intel Core i7 3.4 GHz CPU (i7-3770) and 8 GB RAM, party 2
ran on a Macbook pro (2011) with an Intel Core i7 2.2 GHz
CPU (i7-2720QM) and 16 GB RAM. Switching computers for the
parties did not cause significant difference in performance. The
two computers are connected by switched 1 Gbit Ethernet. Our
prototype is single-threaded, although the computation is fairly
easy to parallelize.

We first show the accuracy of the estimates obtained from FM
sketches. The sketches were built using Murmurhash 3 that has
been widely used in large systems like Hadoop and Cassandra. Our
initial tests showed that the difference in accuracy using sketches
built from Murmurhash and SHA-1 is negligible and Murmurhash
is much faster (3.3 ns per hash) than SHA-1 (170 ns per hash). We
tested with sets of random 64-bit integers whose union cardinality
ranges from 10 to 106 (1 million). For each union size, we tested
with different m = 4096, 16384, and 65536 to guarantee that the
relative error does not exceed ε = 4%, 2% and 1% respectively
with a probability at least 1 − δ = 0.999 4. All experiments
were repeated 100 times. Figure 5 shows the mean and the ranges
of the estimation errors measured from our experiments5. The
accuracy is good for both small and large sets. In all cases the
mean of estimation error is less than 0.3% and falls within the
desired range (±4%, ±2%, and ±1%). For extremely small sets
(union cardinality = 10), we observed no errors. This shows that
the formula with correction (Equation 1) is very effective.

Then we show the pre-computation performance, i.e. the time
for generating the FM sketches. The result is shown in Table 1.
In the experiment, we set w = 24 and used random sets with
different cardinalities from 10 to 106. For each set, we measured
the time for generating m = 4096, 16384 and 65536 sketches
from it. Note that sketch generation does not require cryptographic
operations. Thus the sketches can be generated once and reused
many times. This is often not possible in protocols that take sets

4. The m values are slightly larger than the required values for the (ε, δ)
pairs calculated from the formula in Theorem 1. We rounded them to the
nearest powers of 2 for the ease of implementation.

5. Appendix E includes histograms showing more detailed error distribu-
tions.

Fig. 5: Mean and range for estimation error N−Ñ
N . For m =

4096, 16384, 65536, the estimation error is in [-4%,4%], [-2%,
2%], [-1%,1%] with probability 0.999.

Card.
m

4096 16384 65536

10 1.53× 10−4 6.42× 10−4 2.61× 10−3

102 1.40× 10−3 6.01× 10−4 2.32× 10−2

103 1.37× 10−2 5.62× 10−2 2.25× 10−1

104 1.32× 10−1 5.58× 10−1 2.21

105 1.26 5.50 2.19× 101

106 1.25× 101 5.45× 101 2.19× 102

TABLE 1: Performance: FM sketches generation (in seconds).

as input. Although parties may be able to encrypt the sets before
engaging in such protocols, the encrypted sets cannot be re-used
because fresh randomness is needed to keep the protocol secure.
Our pre-computation is also different from offline computation in
some protocols that generate data independent values, which will
be consumed in protocol execution and need to be regenerated for
each protocol execution. We consider pre-computation as a one-
off cost and do not include it in the protocol running time that will
be shown later.

Next, we compare the performance of our protocol to existing
protocols. The result is shown in Table 2. All numbers in the
table are obtained by averaging 100 executions, except for the
test of the exact protocol with 106-element private sets which
was too slow (an execution took about 1 hour). The protocols we
compared to are the two-party exact PSI-CA protocol in [11] and
the two-party approximate PSU-CA protocol in [15], the state-of-
the-art in each kind. We implemented these two protocols in C
and use OpenSSL for the cryptographic operations. For the ease
of implementation, we did not implement socket communication
for these two protocols. Instead, we simply ran both parties on
the Linux PC and let the two parties communicate through shared
memory. This clearly favors [11] and [15] in terms of running
time. In the experiment, both parties’ private sets have the same
cardinality. The running time of the approximate protocol in [15]
does not include the time for building Bloom filters (as they can
be pre-computed). Adding this time, as well as the times from
Table 1 for our protocol, does not change the results qualitatively
(our protocol is still faster). In the experiment, we use random sets
with cardinality ranging from 10 to 106. For our protocol we set
w = dlog(N)e + 4, so that the sketches are large enough for
the cardinality N , e.g. w = 24 for N = 106. As we can see in
Table 2, for small sets (cardinality in the order of 102 or less),
the exact protocol in [11] is a better choice. But for larger sets
(cardinality ≥ 103) which are commonly encountered in PPDM,
the approximate protocols are better and the difference becomes
larger when the sets get larger. We tested with m = 4096, 16384
and 65536 so that the relative error bounds are ε = 1%, 2% and
4% respectively (δ = 0.001). In all cases, the performance of our

12

Cardinality 10 102 103 104 105 106

[11] (exact) 0.035 0.35 3.54 35.35 356.93 3507.38

ε = 4%
[15] (approximate) 0.65 0.71 1.50 6.92 45.09 337.51
Ours (m = 4096) 0.29 0.31 0.33 0.35 0.38 0.40

ε = 2%
[15] (approximate) 2.33 2.42 3.37 10.19 56.72 397.13
Ours (m = 16384) 0.46 0.54 0.62 0.73 0.82 0.89

ε = 1%
[15] (approximate) 9.06 9.17 10.22 18.69 77.06 488.48
Ours (m = 65536) 1.17 1.51 1.84 2.29 2.64 2.97

TABLE 2: Performance comparison: computation time (in seconds, δ = 0.001 for approximate protocols)

of pairs 103 104 105 106

Non-fixed Key 0.28 3.90 44.50 489.638

Fixed Key 0.009 0.14 1.23 9.92

Improvement 28× 28× 36× 49×

TABLE 5: Fixed-key vs non-fixed key masking (time in ms)

protocol is much better than the protocol in [15]. The difference is
about 1 - 2 orders of magnitude.

0

1

2

4096 16384 65536
m

T
im

e
 (

s
e

c
o

n
d

s
) Protocol 2

Protocol 1

Base OT

(a)

4096 16384 65536

m

0

20

40

60

80

T
o

ta
l

T
ra

ff
ic

 (
M

b
y

te
s

)

n=10
4

n=10
5

n=10
6

(b)

Fig. 6: PSU-CA protocol: (a) computation time breakdown, and
(b) communication cost.

In Figure 6a, we show the break down of the running time
of our protocol (cardinality = 106). For bootstrapping the OT
extension scheme, we need λ base OT where λ is the security
parameter. In the experiment λ = 128. The base OT cost is about
0.16 second. Recall that if the protocol needs to run multiple
times, the base OT only needs to run once and its cost can be
amortized. Most of the time is spent on them iterations of Protocol
1 to extract the estimators. After that, the cardinality estimation
which involves one (1

q)-OT is very fast. We also measured the
communication cost with different m and cardinalities. The result
is shown in Figure 6b. With the smallest parameters (cardinality
= 104 and m = 4096) the cost is about 4 MB, and with the
largest parameters (cardinality = 106 and m = 65536) the cost
is about 82 MB.

Last we show the performance of the fixed-key masking in
Table 5. We compare it against non-fixed masking. The experiment
ran on the Linux PC. As we can see the fixed-key masking scheme
is more than one order of magnitude faster. In our implementation,
we used the AES-NI set indirectly through the OpenSSL EVP
engine. The performance can be further improved by writing code
that directly uses the AES instructions.

7 DISCUSSION

A limitation of our protocols is that they are not suitable for
applications requiring exact computation of the cardinality of set
union or intersection. However, in PPDM, this is often not a
problem, as long as the approximation accuracy can be tuned
according to the requirements of the PPDM algorithm. Firstly,

data mining is about extracting useful information from data such
as finding frequent patterns or finding similar regions or clustering
the data. To some degree approximation is inherent in all mining
algorithms that seek to approximate the unknown ground truth
from data. Secondly, real world data is never perfect. For example
past research suggested that the average error rate of a dataset in a
data mining application is around 5%-10% [67], [68]. Although
pre-processing can remedy the problem, it cannot completely
remove the noise. To ensure robustness of the mining results, data
mining algorithms are often designed to tolerate noise to some
level. Thirdly, in cases such as mining extremely large data and
data streams, approximation is more commonly used than exact
algorithms. In these cases, computing exact answers is usually not
possible because of limited computational resources such as RAM,
CPU and disk space. Fourthly, as we have already mentioned,
exact PPDM protocols often fail to deliver timely answers due to
their huge computational cost. With time constraints, approximate
but timely answers are often preferable.

8 CONCLUSION AND FUTURE WORK

The secure computation of the union or intersection cardinality
of sets belonging to different parties is a fundamental primitive
in PPDM. However, the existing protocols are too inefficient
for practical use in PPDM and may cause unwanted informa-
tion leakage when used as subroutines. Thus, in this paper, we
proposed novel protocols for the PSU-CA/PSI-CA problems. Our
two-party protocols are very efficient and accurate, substantially
outperforming the existing state-of-the-art protocols as shown in
our experimental evaluation. The protocols compute the resulting
PSI-CA and PSU-CA in a secret-shared form before disclosing
them, which makes them more flexible and thereby more suitable
for PPDM. The protocols can be extended to multiparty settings
while retaining the good properties. A by-product of the protocol
optimization is a fixed-key masking scheme that can significantly
speed up (1

n)-OT when n is large.
Efficiency and scalability are already big challenges for data

mining in the clear, and even bigger challenges for PPDM that
requires more computation on the data in order to preserve data
privacy. To this end, we would like to investigate the following
directions: (1) protocols with sub-linear complexities which would
greatly improve the efficiency; (2) protocols that are secure in
a concurrently composable model. In this paper the protocols
guarantee sequential composability. This could be a limitation
because parallelization is another key tool to improve scalability
and concurrent composability is necessary to ensure security in
parallel protocol executions.

Acknowledgements
We would like to thank the anonymous reviewers. The first author
is supported in part by an EPSRC research grant (EP/M013561/2).

13

REFERENCES

[1] J. Vaidya and C. Clifton, “Secure set intersection cardinality with
application to association rule mining,” Journal of Computer Security,
vol. 13, no. 4, pp. 593–622, 2005.

[2] J. Vaidya, C. Clifton, M. Kantarcioglu, and A. S. Patterson, “Privacy-
preserving decision trees over vertically partitioned data,” TKDD, vol. 2,
no. 3, 2008.

[3] H. Yu, J. Vaidya, and X. Jiang, “Privacy-preserving SVM classification
on vertically partitioned data,” in PAKDD, 2006, pp. 647–656.

[4] B. Liu and U. Hengartner, “Privacy-preserving social recommendations
in geosocial networks,” in PST, 2013, pp. 69–76.

[5] A. C. Yao, “Protocols for secure computations (extended abstract),” in
FOCS 1982, 1982, pp. 160–164.

[6] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,” in
STOC, 1987, pp. 218–229.

[7] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu, “Tools
for privacy preserving data mining,” SIGKDD Explorations, vol. 4, no. 2,
pp. 28–34, 2002.

[8] R. Agrawal, A. V. Evfimievski, and R. Srikant, “Information sharing
across private databases,” in SIGMOD, 2003, pp. 86–97.

[9] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” in EUROCRYPT, 2004, pp. 1–19.

[10] L. Kissner and D. X. Song, “Privacy-preserving set operations,” in
CRYPTO, 2005, pp. 241–257.

[11] E. D. Cristofaro, P. Gasti, and G. Tsudik, “Fast and private computation
of cardinality of set intersection and union,” in CANS, 2012, pp. 218–231.

[12] A. Davidson and C. Cid, “Computing private set operations with linear
complexities,” IACR Cryptology ePrint Archive, vol. 2016, p. 108, 2016.
[Online]. Available: http://eprint.iacr.org/2016/108

[13] V. G. Ashok and R. Mukkamala, “A scalable and efficient privacy
preserving global itemset support approximation using bloom filters,”
in DBSec, 2014, pp. 382–389.

[14] C. Blundo, E. D. Cristofaro, and P. Gasti, “Espresso: Efficient privacy-
preserving evaluation of sample set similarity,” Journal of Computer
Security, vol. 22, no. 3, pp. 355–381, 2014.

[15] R. Egert, M. Fischlin, D. Gens, S. Jacob, M. Senker, and J. Tillmanns,
“Privately computing set-union and set-intersection cardinality via bloom
filters,” in ACISP, 2015, pp. 413–430.

[16] D. Hand, P. Smyth, and H. Mannila, Principles of Data Mining. MIT
Press, 2001.

[17] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets. New
York, NY, USA: Cambridge University Press, 2011.

[18] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” J. Comput. Syst. Sci., vol. 31, no. 2, pp. 182–209,
1985.

[19] D. Demmler, T. Schneider, and M. Zohner, “ABY - A framework for
efficient mixed-protocol secure two-party computation,” in NDSS, 2015.

[20] W. Henecka, S. Kögl, A. Sadeghi, T. Schneider, and I. Wehrenberg,
“TASTY: tool for automating secure two-party computations,” in ACM
CCS, 2010, pp. 451–462.

[21] G. Couteau, T. Peters, and D. Pointcheval, “Encryption switching proto-
cols,” in CRYPTO, 2016, pp. 308–338.

[22] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
garbling from a fixed-key blockcipher,” in IEEE Symposium on Security
and Privacy, 2013, pp. 478–492.

[23] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in CRYPTO,
2000, pp. 36–54.

[24] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in SIG-
MOD, 2000, pp. 439–450.

[25] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-
wise independent permutations,” in STOC, 1998, pp. 327–336.

[26] J. Ji, J. Li, S. Yan, Q. Tian, and B. Zhang, “Min-max hash for jaccard
similarity,” in ICDM, 2013, pp. 301–309.

[27] C. Dong, L. Chen, and Z. Wen, “When private set intersection meets
big data: an efficient and scalable protocol,” in ACM CCS, 2013, pp.
789–800.

[28] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection
based on OT extension,” in USENIX Security, 2014, pp. 797–812.

[29] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private
set intersection using permutation-based hashing,” in USENIX Security,
2015, pp. 515–530.

[30] B. Pinkas, T. Schneider, and M. Zohner, “Scalable private set intersection
based on OT extension,” IACR Cryptology ePrint Archive, vol. 2016, p.
930, 2016. [Online]. Available: http://eprint.iacr.org/2016/930

[31] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols?” in NDSS, 2012.

[32] M. O. Rabin, “How to exchange secrets by oblivious transfer,” Technical
Report TR-81, Harvard Aiken Computation Laboratory, 1981.

[33] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for
signing contracts,” Commun. ACM, vol. 28, no. 6, pp. 637–647, 1985.

[34] M. Naor and B. Pinkas, “Oblivious transfer and polynomial evaluation,”
in STOC, 1999, pp. 245–254.

[35] D. Beaver, “Correlated pseudorandomness and the complexity of private
computations,” in STOC, 1996, pp. 479–488.

[36] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in CRYPTO, 2003, pp. 145–161.

[37] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in ACM
CCS, 2013, pp. 535–548.

[38] V. Kolesnikov and R. Kumaresan, “Improved OT extension for transfer-
ring short secrets,” in CRYPTO, 2013, pp. 54–70.

[39] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer extensions with security for malicious adversaries,” in
EUROCRYPT, 2015, pp. 673–701.

[40] M. Keller, E. Orsini, and P. Scholl, “Actively secure OT extension with
optimal overhead,” in CRYPTO, 2015, pp. 724–741.

[41] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
1979.

[42] O. Goldreich, The Foundations of Cryptography - Volume 2, Basic
Applications. Cambridge University Press, 2004.

[43] B. Scheuermann and M. Mauve, “Near-optimal compression of prob-
abilistic counting sketches for networking applications,” in DIALM-
POMC, 2007.

[44] K. S. Beyer, R. Gemulla, P. J. Haas, B. Reinwald, and Y. Sisma-
nis, “Distinct-value synopses for multiset operations,” Commun. ACM,
vol. 52, no. 10, pp. 87–95, 2009.

[45] J. Boyar and R. Peralta, “The exact multiplicative complexity of the
hamming weight function,” Electronic Colloquium on Computational
Complexity (ECCC), no. 049, 2005.

[46] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in ICALP 2008, 2008, pp. 486–498.

[47] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols (extended abstract),” in STOC, 1990, pp. 503–513.

[48] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” in EC, 1999, pp. 129–139.

[49] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole - reduc-
ing data transfer in garbled circuits using half gates,” in EUROCRYPT,
2015, pp. 220–250.

[50] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele, “Secure computation
on floating point numbers,” in NDSS, 2013.

[51] L. Kamm and J. Willemson, “Secure floating point arithmetic and private
satellite collision analysis,” Int. J. Inf. Sec., vol. 14, no. 6, pp. 531–548,
2015.

[52] P. Pullonen and S. Siim, “Combining secret sharing and garbled circuits
for efficient private IEEE 754 floating-point computations,” in WAHC,
2015, pp. 172–183.

[53] D. Demmler, G. Dessouky, F. Koushanfar, A. Sadeghi, T. Schneider,
and S. Zeitouni, “Automated synthesis of optimized circuits for secure
computation,” in ACM CCS, 2015, pp. 1504–1517.

[54] S. Gueron, “Intel advanced encryption standard (AES) new instructions
set,” Intel, Tech. Rep., 2012.

[55] P. Rogaway and J. P. Steinberger, “Constructing cryptographic hash
functions from fixed-key blockciphers,” in CRYPTO, 2008, pp. 433–450.

[56] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient
batched oblivious PRF with applications to private set intersection,” in
ACM CCS, 2016, pp. 818–829.

[57] S. Michel and T. Neumann, “Search for the best but expect the worst -
distributed top-k queries over decreasing aggregated scores,” in WebDB,
2007.

[58] M. Kamp, C. Kopp, M. Mock, M. Boley, and M. May, “Privacy-
preserving mobility monitoring using sketches of stationary sensor read-
ings,” in ECML/PKDD, 2013, pp. 370–386.

[59] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for
fast privacy-preserving computations,” in ESORICS, 2008, pp. 192–206.

[60] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen, “Asynchronous
multiparty computation: Theory and implementation,” in PKC, 2009, pp.
160–179.

[61] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in CRYPTO 2012,
2012, pp. 643–662.

[62] J. Launchbury, I. S. Diatchki, T. DuBuisson, and A. Adams-Moran,
“Efficient lookup-table protocol in secure multiparty computation,” in
ICFP, 2012, pp. 189–200.

14

[63] R. Canetti, “Security and composition of multiparty cryptographic pro-
tocols,” J. Cryptology, vol. 13, no. 1, pp. 143–202, 2000.

[64] T. Nishide and K. Ohta, “Multiparty computation for interval, equality,
and comparison without bit-decomposition protocol,” in PKC, 2007, pp.
343–360.

[65] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in CRYPTO, 1991, pp. 420–432.

[66] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation
for key management - part 1: General (revision 3),” NIST, Tech. Rep. SP
800-57, July 2012.

[67] K. Orr, “Data quality and system theory,” Commun. ACM, vol. 41, no. 2,
pp. 66–71, 1998.

[68] J. I. Maletic and A. Marcus, “Data cleansing: Beyond integrity analysis,”
in IQ, 2000, pp. 200–209.

APPENDIX A
PROOF OF THEOREM 1
Proof. Ñ is computed using Equation 1 from Z

m =
z〈0〉+...+z〈m−1〉

m . Let X be the random variable representing the
value of Z

m . X has mean µ = log(φN) and standard deviation
σ = 1.12√

m
. We denote Ñ with Y and Equation 1 with a function

g(). We have Y = g(X). The distribution of X is approximately
normal by the central limit theorem. So its Cumulative Distri-
bution Function (CDFX) is 1

2 [1 + erf(x−µ√
2σ

)], where erf is the
error function. Since g is continuous and its derivative is always
positive, g is invertible. Therefore the CDF of Y is CDFY (y) =
Pr[g(x) ≤ y] = Pr[X ≤ g−1(y)] = CDFX(g−1(y)).

The range |Ñ −N | ≤ ε ·N is equivalent to N − εN ≤ Ñ ≤
N + εN , thus we have:

Pr[|Ñ −N | ≤ ε ·N]

= CDFX(g
−1

(N + εN))− CDFX(g
−1

(N − εN))

=
1

2
[1 + erf(

g−1(N + εN)− µ√
2σ

)− 1

2
[1 + erf(

g−1(N − εN)− µ√
2σ

)

=
1

2
erf(

k1√
2

) +
1

2
erf(

k2√
2

)

≥ 1

2
erf(

k√
2

) +
1

2
erf(

k√
2

) = erf(
k√
2

)

≥ erf(
min(− log(1− ε), log(1 + ε)) · √m

1.12
√

2
)

where k1 = g−1(N+εN)−µ
σ = g−1(N+εN)−µ

1.12 · √m and k2 =
µ−g−1(N−εN)

σ = µ−g−1(N−εN)
1.12 · √m and k = min(k1, k2).

Now Equation 2 holds if erf(min(− log(1−ε),log(1+ε))·√m
1.12
√

2
) =

1 − δ. Since erf is strictly increasing, then for any (ε, δ), we
can always ensure a probability at least 1 − δ by setting a
large enough m ≥ 2 · (erf−1(1−δ)·1.12

min(− log(1−ε),log(1+ε)))2 = 2.5088 ·
(erf−1(1−δ)
min(− log(1−ε),log(1+ε)))2.

APPENDIX B
SECURITY ANALYSIS OF THE TWO-PARTY PSU-CA
PROTOCOL

B.1 Security Definitions
A function µ() is negligible in n, or just negligible, if for every
positive polynomial p() and any sufficiently large n it holds
that µ(n) ≤ 1/p(n). A probability ensemble indexed by I is a
sequence of random variables indexed by a countable index set I .
Namely, X = {Xi}i∈I where each Xi is a random variable. Two
distribution ensembles X = {Xn}n∈N and Y = {Yn}n∈N are
computationally indistinguishable, denoted byX

c≡ Y if for every
probabilistic polynomial-time (PPT) algorithm D, there exists a
negligible function µ(·) such that for every n ∈ N,

|Pr[D(Xn, 1
n) = 1]− Pr[D(Yn, 1

n) = 1]| ≤ µ(n)

All our security definitions and proofs are based on computa-
tional indistinguishability. Thus we will omit “computational” and
just use “indistinguishability” and “indistinguishable” for short.

A two-party protocol Π computes a functionality that maps
a pair of inputs to a pair of outputs f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ × {0, 1}∗, where f = (f1, f2). For every pair of
inputs x, y ∈ {0, 1}∗, the output-pair is a random variable
(f1(x, y), f2(x, y)). The first party obtains f1(x, y) and the
second party obtains f2(x, y). The security of two-party protocols
is captured by the simulation paradigm. Loosely speaking, in the
semi-honest model, a protocol Π is secure if whatever can be
computed by a party in the protocol can be obtained from its input
and output only. This is formalized by requiring a party’s view
in a real protocol execution to be simulatable by a simulator in a
ideal model that gets only the party’s input and output. The view
of the party i during a real execution of Π on (x, y) is denoted
by viewΠ

i (x, y) and equals (w, ri,mi
1, ...,m

i
t) where w ∈ (x, y)

is the input of i, ri is the outcome of i’s internal random coin
tosses and mi

j represents the jth message that it received. We also
denote the ith party’s output during an execution of Π on (x, y)
by outputΠi (x, y). The joint output is denoted by

outputΠ(x, y) = (outputΠ1 (x, y), outputΠ2 (x, y))

The security of two-party protocols is formalized in Definition 1,
which requires the joint distribution of the simulated view and
the functionality output must be indistinguishable from the joint
distribution of the real view and joint output in the real execution.

Definition 1. Let f = (f1, f2) be a functionality. We say that a
protocol Π securely computes f in the presence of static semi-
honest adversaries if there exist probabilistic polynomial-time
algorithms S1 and S2 such that for every x, y ∈ 0, 1∗ and a
security parameter λ, we have

{S1(1
λ, x, f1(x, y)), f(x, y)}x,y

c
≡ {viewΠ

1 (x, y), outputΠ(x, y)}x,y

{S2(1
λ, y, f2(x, y)), f(x, y)}x,y

c
≡ {viewΠ

2 (x, y), outputΠ(x, y)}x,y

B.2 F -Hybrid Model

It has been proven that if a protocol is secure in the stand-alone
model against semi-honest adversaries, then it remains secure
under sequential composition [63]. The sequential composition
theorem allows us to prove the security of protocols in the so called
F -Hybrid Model. That is, if a functionality F can be securely
computed by a protocol ρ, then for a protocol Π that uses ρ as a
subroutine, we can prove that Π is secure by proving the security
of a hybrid version of Π. In the hybrid protocol, every invocation
of ρ is replaced by an “ideal call” to a trusted party. Now instead
of showing a simulator that simulates the execution of the real
protocol Π, we only need to show a simulator that simulates the
execution of the corresponding hybrid protocol.

In the F1, . . . ,Fp(λ)-hybrid model, there is a trusted party
that computes F1, . . . ,Fp(λ). For a real protocol Π, if it makes
subroutine calls to protocols ρ1, . . . , ρp(λ) that securely compute
F1, . . . ,Fp(λ), then we can define a hybrid protocol ΠF1,...,Fp(λ)

by replacing each invocation of ρi by an ideal call to Fi and
keeping other parts unchanged. The ideal calls are just messages

15

containing the inputs to the functionalities. The trusted party will
compute and return the output. Upon receiving the output, the
protocol continues. We require sequential composition, i.e. ideal
calls are executed sequentially without overlapping. The view of
party i during an execution of ΠF1,...,Fp(λ) in the hybrid model
contains standard messages that are sent between the parties and
ideal messages that are sent between the party and the trusted
party. We say the protocol ΠF1,...,Fp(λ) in the hybrid model
is secure if its execution can be simulated as in Definition 1.
The sequential composition theorem says that if the protocol
ΠF1,...,Fp(λ) in the hybrid model is secure then the protocol Π in
the real model which uses ρ1, . . . ρp(λ) is also secure . Formally:

Theorem 3. [63] Let p(λ) be a polynomial, let F1, . . . ,Fp(λ)

be two-party probabilistic polynomial-time functionalities and let
ρ1, . . . , ρp(λ) be protocols such that each pi securely computesFi
in the presence of semi-honest adversaries. Let Π be a real pro-
tocol and ΠF1,...,Fp(λ) be a hybrid protocol that is obtained from
Π by replacing ρ1, . . . , ρp(λ) with ideal calls to F1, . . . ,Fp(λ). If
ΠF1,...,Fp(λ) securely computes a two party functionality g in the
presence of semi-honest adversaries, then Π securely computes g
in the presence of semi-honest adversaries.

B.3 Security Analysis

Now we give the security proof of our two-party PSU-CA proto-
col. The security of the two-party PSI-CA follows easily from our
proof, because the PSI-CA protocol requires only an additional
local computation using a local input and thus parties gain no
more information than in the PSU-CA protocol.

Our proofs are in the F -Hybrid model. We work in a hybrid
model which allows ideal calls to the OT functionalities. Once
we prove the hybrid protocol is simulatable, the security of the
real protocol can then be established by applying the sequential
composition theorem. To make our proofs generic and not depen-
dent on a particular OT protocol, in the Lemma and Theorem
statements, we simply assume the existence of protocols that
securely realize the ideal OT functionalities, without explicitly
state the assumptions that made the OT protocols secure. When
instantiating our protocols using some particular OT protocols, we
implicitly inherit their assumptions. In this way our proofs can
work with any secure OT protocols. In our implementation we
use OT extension schemes and the fixed key masking scheme to
implement the OT protocols. The security of this instantiation will
follow from our proofs, the security proofs of building blocks,
and the assumptions on which the security proofs of OT extension
schemes [37] and the masking scheme are constructed.

We start by proving the security of the sub-protocols (Protocol
1 and Protocol 2).

Lemma 1. Assuming the existence of protocols that securely com-
pute the (1

2)-OT and (1
4)-OT functionalities, Protocol 1 (Π1) se-

curely computes the functionality fΠ1(FS1 , FS2) = (JzK1, JzK2),
where FS1 , FS2 , JzK1, JzK2 are defined as in the protocol descrip-
tion.

Proof. Let F(12)-OT and F(14)-OT be the (1
2)-OT and (1

4)-OT

functionalities. We obtain a hybrid protocol Π
F

(12)-OT ,F(14)-OT

1 by
replacing all invocations of the (1

2)-OT and (1
4)-OT protocols

with ideal calls to F(12)-OT and F(14)-OT . We show that there exist
simulators S1 and S2 that simulate the execution of the hybrid
protocol.

P1’s part. P1’s view in the hybrid protocol contains its input, its
random tape, and one ideal call to F(12)-OT followed by w−1 ideal
calls to F(14)-OT . P1 acts as the sender in OT, so the ideal calls have
no output. Thus in the view there are only the input strings (2 or
4 depending on the functionality) to be sent by P1. Given P1’s
input FS1

and output JzK1, the simulator S1 simulates the view as
follows:

1) Put FS1 and a uniform random tape in the simulated view.
2) Choose r〈0〉, ..., r〈w−2〉 R← Zq , and then set r〈w−1〉 = JzK1−∑w−2

i=0 r〈i〉. Then generate r〈i〉0 , r
〈i〉
1 for each round such that

r
〈i〉
0 = −r〈i〉 and r〈i〉1 = 1− r〈i〉.

3) For round 0, put in the simulated view r
〈0〉
0 , r

〈0〉
1 to simulate

the ideal call to F(12)-OT .

4) For rounds 1 to w − 1, generate 4 strings according to r〈i−1〉
0

and FS1 [i] as described in Protocol 1, step 2b. Put the 4 strings
into the view to simulate the ideal call to F(14)-OT .

We now argue the joint distribution of the simulated view and
the output of the functionality is indistinguishable from the joint
distribution of the view and the output of the hybrid protocol. The
functionality fΠ1

(FS1
, FS2

) = (JzK1, JzK2) outputs two shares
that satisfy JzK1 + JzK2 = z where z is the estimator, i.e. the
index of the first 0 bit in FS1∪S2

. It is clear from Section 4.1 that
z is deterministically computed from FS1

, FS2
. We have shown

in Section 4.2.2 that Protocol 1 is correct, which means the hybrid
protocol is also correct since we just replace protocol invocations
with ideal calls to equivalent functionalities. Thus, given the input
(FS1

, FS2
), the output of the hybrid protocol is a pair of shares

JzK′1, JzK′2 such that JzK′1 + JzK′2 = z.
Put together, the random variables in the simulated view and

the output of the functionality are correlated in the following way:

FS1 and uniform random tape

r〈0〉, ..., r〈w−2〉 R← Zq
r〈w−1〉 = JzK1 −

∑w−2
i=0 r〈i〉

r
〈i〉
0 = −r〈i〉, r〈i〉1 = 1− r〈i〉, 0 ≤ i ≤ w − 1

(r
〈i〉
0 , r

〈i〉
0 , r

〈i〉
0 , r

〈i〉
1), if r〈i−1〉

0 is even ∧ FS1
[i] = 0

(r
〈i〉
0 , r

〈i〉
0 , r

〈i〉
1 , r

〈i〉
1), if r〈i−1〉

0 is even ∧ FS1 [i] = 1

(r
〈i〉
0 , r

〈i〉
1 , r

〈i〉
0 , r

〈i〉
0), if r〈i−1〉

0 is odd ∧ FS1 [i] = 0

(r
〈i〉
1 , r

〈i〉
1 , r

〈i〉
0 , r

〈i〉
0), if r〈i−1〉

0 is odd ∧ FS1
[i] = 1

JzK1 + JzK2 = z =⇒ JzK2 =
∑z−1
i=0 r

〈i〉
1 +

∑w−1
i=z r

〈i〉
0

The random variables in the view and the output of the hybrid
execution are correlated in exactly the same way as above except
with JzK′1, JzK′2. The joint distribution in both cases is taken over
FS1

, the random tape and z. Since these three are identical in
both cases, the probability of every component in one ensemble is
almost the same (up to a negligible difference) as the probability
of its counterpart in the other. Thus the joint distributions are
indistinguishable.
P2’s part P2’s view in the hybrid protocol contains its input, its
random tape, and one ideal call to F(12)-OT followed by w − 1
ideal calls to F(14)-OT . P2 acts as the receiver in OT. Thus each
ideal call consists of an integer that is used to select a string and
the string being selected. Given P2’s input FS2 and output JzK2,
the simulator S2 simulates the view as follows:

1) Put FS2
and a uniform random tape in the simulated view.

16

2) Generate r〈0〉, ..., r〈w−2〉 R← Zq and set r〈w−1〉 = JzK2 −∑w−2
i=0 r〈i〉.

3) For round 0, put in the simulated view (FS2
[0], r〈0〉) to

simulate the ideal call to F(12)-OT .
4) For round 1 to w − 1, generate j as described in Protocol 1,

step 2c. Put in the simulated view (j, r〈i〉) to simulate the ideal
call to F(14)-OT .

We now argue the joint distribution of the simulated view and
the output of the functionality is indistinguishable from the joint
distribution of the view and the output of the hybrid protocol.
Let fΠ1(FS1 , FS2) = (JzK1, JzK2) and outputΠ1(FS1 , FS2) =
(JzK′1, JzK′2). As we have argued in P1’s case, the correctness of
the protocol guarantees that JzK1 + JzK2 = JzK′1 + JzK′2 = z.

The random variables in the simulated view and the output of
the functionality are correlated in the following way:

FS2 and uniform random tape

r〈0〉, ..., r〈w−2〉 R← Zq
r〈w−1〉 = JzK2 −

∑w−2
i=0 r〈i〉

in round 1 ≤ i ≤ w − 1,

{
j = 0||FS2[i], if r〈i−1〉 is even
j = 1||FS2[i], if r〈i−1〉 is odd

JzK1 + JzK2 = z =⇒ JzK1 =
∑z−1
i=0 (1− r

〈i〉) +
∑w−1
i=z (−r〈i〉)

The random variables in the view and the output of the hybrid
execution are correlated in exactly the same way as above except
with JzK′1, JzK′2. The joint distribution in both cases is taken over
FS2 , the random tape and z. Since these three are identical in both
case, the joint distributions are indistinguishable.

Summing up, since the hybrid execution can be simulated, Π1

is secure by applying the sequential composition theorem.

Lemma 2. Assuming the existence of a protocol that securely
computes the (1

q)-OT functionality, Protocol 2 (Π2) securely
computes the functionality fΠ2

(JZK1,JZK2) = (JÑK1, JÑK2), where
JZK1,JZK2,JÑK1,JÑK2 are defined as in the protocol description.

Proof. Let F(1q)-OT be the (1
q)-OT functionality. We obtain a hy-

brid protocol Π
F

(1q)-OT

2 by replacing the invocation of the (1
q)-OT

protocol with an ideal call to F(1q)-OT . We show that there exist
simulators S1 and S2 that simulate the execution of the hybrid
protocol.
P1’s part. P1’s view in the hybrid protocol contains its input, its
random tape, and one ideal call to F(1q)-OT . P1 acts as the sender in
OT, so the ideal call contains the strings to be sent in the OT. Given
P1’s input JZK1 and output JÑK1, the simulator S1 simulates the
view as follows:

1) Put JZK1 and a uniform random tape in the simulated view.
2) Compute the lookup table T as described in Protocol 2, step 1.

Then compute T ′ such that T ′[i] = T [i] − JÑK1. Circularly
shift T ′[i] to the left JZK1 places to get T ′′. Put T ′′ in the view
to simulate the ideal call to F(1q)-OT .

We now argue that the joint distribution of the simulated view
and the output of the functionality is indistinguishable from the
joint distribution of the view and the output of the hybrid protocol.
The output of the functionality is fΠ2

(JZK1,JZK2)=(JÑK1,JÑK2)

where the two shares satisfy JÑK1+JÑK2=Ñ and Ñ is the estimated
cardinality. The computation is deterministic meaning that once
Z=JZK1+JZK2 is fixed, Ñ is fixed. In Section 4.3, we showed that
Protocol 2 is correct, thus the hybrid protocol is also correct. The

output of the hybrid protocol is a pair of shares (JÑK′1,JÑK′2) such
that JÑK′1+JÑK′2=Ñ .

The random variables in the simulated view and the output of
the functionality are correlated in the following way:

JZK1 and uniform random tape

T ′′[i] = d 2
j
m−2−κ·

j
m

φ c − JÑK1,where j ≡ i+ JZK1 mod q

JÑK1 + JÑK2 = Ñ =⇒ T ′′[JZK2] = JÑK2

The random variables in the view and the output of the hybrid
execution are correlated in exactly the same way as above except
with JÑK′1,JÑK′2. The joint distribution in both cases is taken over
the random choices of JZK1, JZK2, JÑK1 and Ñ . Since they are
identical in both cases, the joint distributions are indistinguishable.
P2’s part. P2’s view in the hybrid protocol contains its input, its
random tape, and one ideal call to F(1q)-OT . P2 acts as the receiver
in OT, so the ideal call contains the selection integer and the string
received in the OT. Given P2’s input JZK2 and output JÑK2, the
simulator S2 simulates the view as follows:
1) Put JZK2 and a uniformly random tape in the simulated view.
2) Put JZK2 and JÑK2 in the view to simulate the ideal call to
F(1q)-OT .
Since in the simulated view there is nothing created by S2

itself, it is straightforward to see that the joint distribution of the
simulated view and the output of the functionality is indistinguish-
able from the joint distribution of the view and the output of the
hybrid protocol.

To sum up, because the hybrid execution can simulated, by
applying the sequential composition theorem, Protocol 2 is secure.

After proving the security of the sub-protocols, the security
of the PSU-CA protocol is straightforward: the simulators are
given the input (FM sketches) and output (a share of Ñ) of a
party to produce indistinguishable views, and since Protocol 3
involves only calling secure sub-protocols and local computation,
it leaks no more information and its security can be easily proved
by applying the composition theorem.

Theorem 4. Assuming the existence of protocols that securely
compute the (1

2)-OT, (1
4)-OT, (1

q)-OT functionalities, Protocol 3
is a protocol that securely compute the approximates set union car-
dinality functionality f|∪|(FS1

,FS2
)=(JÑK1,JÑK2), where JÑK1,JÑK2

are defined as in the protocol description.

Proof. By Lemmata 1, 2, if there exist protocols that securely
compute the (1

2)-OT, (1
4)-OT, (1

q)-OT functionalities, then we
can construct a hybrid protocol from Protocol 3 by replacing
Protocol 1 and Protocol 2 with ideal calls to fΠ1

and fΠ2
. The

hybrid protocol can be simulated as follows:
P1’s part. P1’s view in the hybrid protocol contains its input, its
random tape, and m ideal calls to fΠ1

and one ideal call to fΠ2
.

In the ith call to fΠ1
, the input is F 〈i〉S1

and the output is a random
share JzK〈i〉1 . In the call to fΠ2

, the input is
∑m−1
i=0 JzK〈i〉1 and the

output is JÑK1. Given the input and output F 〈i〉S1
,JÑK1, the simulator

S1 simulates the view as follows:

1) Put in the simulated view all F 〈i〉S1
(0 ≤ i ≤ m − 1) and a

uniform random tape.
2) For 0 ≤ i ≤ m− 1, choose JzK〈i〉1

R← Zq . Put F 〈i〉S1
and JzK〈i〉1

to simulate the ith ideal call to fΠ1
.

17

3) Compute JZK1 =
∑m−1
i=0 JzK〈i〉1 . Put JZK1 and JÑK1 in the

view to simulate the ideal call to fΠ2
.

We now argue the joint distribution of the simulated view and
the output of the functionality is indistinguishable from the joint
distribution of the view and the output of the hybrid protocol.
The output of the functionality is (JÑK1,JÑK2) where the two
shares satisfy JÑK1+JÑK2=Ñ and Ñ is the estimated cardinality.
The computation is deterministic. That is, once F 〈i〉S1

and F
〈i〉
S2

are fixed, Ñ is fixed. The hybrid protocol is correct so the output
of the hybrid protocol is a pair of shares (JÑK′1,JÑK′2) such that
JÑK′1+JÑK′2=Ñ . The output parts are indistinguishable. In both
views the input F 〈i〉S1

and the random tape are identical. Both
views contain uniformly shares JzK〈i〉1 with JZK1 =

∑m−1
i=0 JzK〈i〉1 .

The shares in the views are indistinguishable and are independent
of other random variables in the view and output. Therefore the
joint distribution of the simulated view and the output of the
functionality is indistinguishable from the joint distribution of the
view and the output of the hybrid protocol.
P2’s part. P2’s view in the hybrid protocol contains its input, its
random tape, and m ideal calls to fΠ1

and one ideal call to fΠ2
.

In the ith call to fΠ1
, the input is F 〈i〉S2

and the output is a random
share JzK〈i〉2 . In the call to fΠ2

, the input is
∑m−1
i=0 JzK〈i〉2 and the

output is JÑK2. Given the input and output F 〈i〉S2
,JÑK2, the simulator

S2 simulates the view as follows:

1) Put in the simulated view all F 〈i〉S2
(0 ≤ i ≤ m − 1) and a

uniform random tape.
2) For 0 ≤ i ≤ m− 1, choose JzK〈i〉2

R← Zq . Put F 〈i〉S2
and JzK〈i〉2

to simulate the ith ideal call to fΠ1
.

3) Compute JZK2 =
∑m−1
i=0 JzK〈i〉2 . Put JZK2 and JÑK2 in the

view to simulate the ideal call to fΠ2
.

We can see that the behavior of S2 is identical to S1 and the
argument of the indistinguishability of the joint distributions is
essential the same (by substituting variable names). Therefore we
omit the rest of the proof.

Summing up, the hybrid protocol is simulatable thus by apply-
ing the sequential composition theorem, Protocol 3 is secure.

Security of the sets. In Protocol 1 (and Protocol 3), the parties
use the sketches as input to the protocol. A question arises as to
whether the sets are adequately protected. The fact that Protocol
1 is secure only guarantees that the adversary learns nothing more
about the honest party’s sketches than it can infer from its own
input and output. It is not obvious about whether the protocol
hides the sets that produce the sketches. We show here that the
sets are indeed hidden from the adversary.

We start by constructing a variant of Protocol 1. Let us call
it Π′1. In Π′1, both parties use their sets as input and then locally
process the sets into sketches. Note that the hash functions are
public, therefore this step does not require any interaction. Then
the two parties run Protocol 1 using the sketches. The difference
is that Protocol 1 computes the functionality fΠ1

(FS1
, FS2

)
= (JzK1, JzK2) using the sketches, and Π′1 computes the function-
ality fΠ′1

(S1, S2) = (JzK1, JzK2) using the sets (S1, S2) as input
directly. Note that the interaction in Π′1 is exactly as in Protocol 1.
Intuitively the adversaries in Π′1 gain exactly the same amount of
information as in Protocol 1. We now prove the following theorem,
which says an adversary learns nothing about the honest parties set
(other than what is allowed to be inferred by the adversary).

Theorem 5. Given that Protocol 1 securely computes
fΠ1

(FS1
, FS2

) = (JzK1, JzK2), then Π′1 securely computes
fΠ′1

(S1, S2) = (JzK1, JzK2).

Proof. By Lemma 1, Protocol 1 securely computes
fΠ1

(FS1
, FS2

). We can construct a hybrid protocol from
Π′1 by replacing the invocation of Protocol 1 with an ideal call to
fΠ1

(FS1
, FS2

). The hybrid protocol can be simulated as follows:
P1’s part. P1’s view in the hybrid protocol contains its input set
S1, its random tape, and an ideal call to fΠ1(FS1 , FS2). The input
to fΠ1(FS1 , FS2) is FS1 and the output is JzK1. Given the input
S1 and the output JzK1, the simulator S1 simulates the view as
follows:
1) Put in the simulated view S1 and a uniform random tape.
2) Compute the sketch FS1 from S1. Put FS1 and JzK1 into the

view to simulate the ideal call
We now argue the joint distribution of the simulated view and

the output of the functionality is indistinguishable from the joint
distribution of the view and the output of the hybrid protocol.

simulated : (S1, R, (FS1 , JzK1), (JzK1, JzK2))

Hybrid : (S1, R, (FS1 , Jz
′K1), (Jz′K1, Jz′K2))

JzK1 + JzK2 = Jz′K1 + Jz′K2 = z

As we can see in the above probability ensemble, (JzK1, JzK2)
and (Jz′K1, Jz′K2) have the same distribution that is taken over z
and R (the uniform random tape). The ensembles have identical
S1 and FS1

. Therefore the joint distribution of the simulated view
and the output of the functionality is indistinguishable from the
joint distribution of the view and the output of the hybrid protocol.
P2’s part. P2’s view in the hybrid protocol contains its input set
S2, its random tape, and an ideal call to fΠ1(FS1 , FS2). The input
to fΠ1(FS1 , FS2) is FS2 and the output is JzK2. Given the input
S2 and the output JzK2, the simulator S2 simulates the view as
follows:
1) Put in the simulated view S2 and a uniform random tape.
2) Compute the sketch FS2

from S2. Put FS2
and JzK2 into the

view to simulate the ideal call
Essentially, the simulator S2 is the same as S1 and we can use the
same argument for the indistinguishability of the joint distribution
of the simulated view and the output of the functionality and the
joint distribution of the view and the output of the hybrid protocol,
which we omit here.

Summing up,the hybrid protocol is simulatable, thus by apply-
ing the sequential composition theorem, Π′1 is secure.

Therefore running Protocol 1 will not leak information about
the parties’ sets. Similarly, for Protocol 3, we can construct the
variant Π′3 that uses sets as input direct, and have the following
theorem:

Theorem 6. Given that Protocol 3 securely computes
f|∪|(FS1

,FS2
)=(JÑK1,JÑK2), then Π′3 securely computes

f|∪|(S1,S2)=(JÑK1,JÑK2).

The proof is very similar to the proof of Theorem 5, thus we
omit it here.

APPENDIX C
SECURITY OF FIXED-KEY MASKING

We analyze the security of the fixed-key masking scheme and
show it is secure in the Random Permutation Model (RPM) [55],

18

in which all parties including the adversary have oracle access to a
single fixed random permutation, and its inverse. The permutation
can be realized by a blockcipher (e.g. AES) with a fixed and
publicly known key. Because we work in the random permutation
model, we replace Eck(·) and Dck(·) with a random permutation
oracle π and its inverse oracle π−1. The oracles work by sharing
a table T which stores pairs (xi, yi) ∈ {0, 1}λ × {0, 1}λ and
initially is empty. When querying π(x), if there is (xi, yi) in T
such that x = xi then return yi, otherwise put a new entry (x, y)

in T such that y R← {0, 1}λ\Ran(π), where Ran(π) is the set of
all yi currently in T . When querying π−1(y), if there is (xi, yi)
in T such that y = yi then return xi, otherwise put a new entry
(x, y) in T such that x R← {0, 1}λ\Dom(π), where Dom(π)
is the set of all xi currently in T . The security of the masking
scheme is captured by the following game:

• Setup Phase: The challenger runs Gen(n, λ) and keeps K
output by Gen privately.

• Query phase: the adversary queries π and π−1 with any chosen
messages in {0, 1}λ up to poly(λ) times.

• Challenge phase: the adversary chooses a vector of n λ-bit
strings P and an index 0 ≤ i ≤ n − 1, and sends (P, i)
to the challenger. The challenger prepares P̃0, P̃1 such that
P̃0 = Mask(K,P), P̃1[i] = P̃0[i] and for all j 6= i

P̃1[j]
R← {0, 1}λ. Then the challenger chooses b at uniformly

random and sends P̃b to the adversary. The adversary also
releases Kj,bj to the adversary where 0 ≤ j ≤ l and bj is
the jth bit in the binary form of i.

• Query phase II: same as the query phase.
• Guess phase: the adversary output b′, and wins iff b′ = b.

Theorem 7. The masking scheme is secure, i.e. for all probabilis-
tic polynomial time adversary A, there is a negligible function
negl such that:

Advπ,π
−1

A (λ) = Pr[b′ = b]− 1

2
≤ negl(λ)

Proof. We prove by a sequence of games. Let the original game
be Game0.
Game1: We first define Game1 that is identical to Game0

except that in the challenge phase, the challenger generates P̃0

as follows:

• Given (P, i), the challenger first gets the ith masking key
mki = Key(K, i), sets P̃0[i] = π(mki) ⊕mki ⊕ P [i]. Then
for all 0 ≤ j ≤ n − 1 ∧ j 6= i, choose sj

R← {0, 1}λ and set
P̃0[j] = sj ⊕mkj ⊕ P [j] where mkj = Key(K, j).

In Game1, all will remain the same as Game0 to the
adversary unless π(mkj) or π−1(sj⊕mkj) (j 6= i) is queried by
the adversary at some point of time, i.e. when mkj ∈ Dom(π)
or sj ⊕mkj ∈ Ran(π). In this case, the adversary will be able
to spot some inconsistency. Let’s name this event BAD.

Because sj is chosen uniformly at random, thus sj ⊕ mkj
is uniformly random. Therefore the probability of sj ⊕ mkj ∈
Ran(π) is qπ

2λ
, where qπ is the total number of queries the

adversary made in the game. There are n−1 such strings sj⊕mkj .
Thus by the union bound, the total probability is less than (n−1)qπ

2λ
.

Now let’s consider the distribution of mkj ∈ Dom(π). since
mkj = Key(K, j) which is obtained by XORing l λ-bit strings
generated independently randomly and it is guaranteed that there
is at least one string that is not known by the adversary since i

and j differ in at least one bit. Thus mkj is uniformly random and
similarly we have the probability less than (n−1)qπ

2λ
.

Since the two games only differ when BAD happens, we have:

|Advπ,π
−1

A,Game0(λ)−Advπ,π
−1

A,Game1(λ)| ≤ Pr[BAD]

The probability Pr[BAD] = 2(n−1)qπ
2λ

which is negligible.
Game2: This game is identical to Game1 except that in the
challenge phase, the challenger generates P̃0 as follows:
• Given (P, i), the challenger first gets the ith masking key
mki = Key(K, i), sets P̃0[i] = π(mki) ⊕mki ⊕ P [i]. Then
for all 0 ≤ j ≤ n − 1 ∧ j 6= i, choose sj

R← {0, 1}λ and set
P̃0[j] = sj ⊕ P [j].

Now the two games differ when sj ∈ Ran(π), and since sj is
uniformly random, then Pr[sj ∈ Ran(π)] = qπ

2λ
after qπ queries.

And the total probability is (n−1)qπ
2λ

. Then we have

|Advπ,π
−1

A,Game2(λ)−Advπ,π
−1

A,Game1(λ)| ≤ (n− 1)qπ
2λ

The probability (n−1)qπ
2λ

is also negligible.
Note in Game2 the adversary’s advantage is 0 since the

distribution of P̃0 is exactly the same as that of the distribution
of P̃1. Then we have

Advπ,π
−1

A,Game0(λ) ≤ 3
(n− 1)qπ

2λ

which is negligible.

APPENDIX D
OPTIMIZED OT EXTENSION IN OUR PROTOCOLS

Our two-party protocols are compatible with the optimized OT
extension protocols presented in [37]. In this section, we show
how to use our protocols with correlated-OT (C-OT) and random-
OT (R-OT).

D.1 OT Extension Optimizations
To make the paper self-contained, we include the protocol de-
scriptions from [37]. More details can be found in the original
paper. The OT extension protocols are run between a sender S
and a receiverR. We first show the general OT extensions protocol
(Protocol 5).
C-OT: If the S’s strings (x0

j , x
1
j) are not prescribed and correlated

in a way such that x0
j

R← {0, 1}l, and x1
j = f(x0

j) for some
function f : {0, 1}l → {0, 1}l, then we can use C-OT.

C-OT works by changing steps 7 and 8 in the general OT
extension protocol (Protocol 5). Since (x0

j , x
1
j) are not prescribed,

S can choose them on-the-fly when executing the OT extension
protocol. More specifically, S sets x0

j = H(qj), and then x1
j =

f(x0
j). In step 7, S sends only one string yj = x1

j ⊕H(qj ⊕ s).
In step 8, if R’s bit rj = 0, then R outputs H(tj), or if rj = 1,
then R outputs H(tj) ⊕ yj . Note that if rj = 0 then tj = qj
and if rj = 1 then tj = qj ⊕ s, so R always outputs the correct
strings.

The computational cost of each C-OT is 3 symmetric key
operations. The communication cost of each C-OT is λ + l bits,
where l is the bit length of yj .
R-OT: If the S’s strings (x0

j , x
1
j) are not prescribed and are two

random strings, then we can use R-OT.

19

Protocol 5 General OT extension Protocol [37]
Inputs S holds m pairs (x0

j , x
1
j) of l-bit strings, for every 1 ≤

j ≤ m. R holds m selection bits r = (r1, . . . , rm). There is also
a security parameter λ.
Outputs R outputs (xr11 , . . . , x

rm
m), S outputs nothing.

Initial OT Phase (Base OTs):
1) S chooses a random string s = (s1, . . . , sλ) and R chooses λ

pairs of λ-bits seeds {(k0
i , k

1
i)}λi=0.

2) The parties invoke the λ×OTλ functionality, where S plays the
receiver with input s and R plays the sender with inputs (k0

i , k
1
i)

for every 1 ≤ i ≤ λ.
3) For every 1 ≤ i ≤ λ, let ti = G(k0

i). let T = [t1| . . . |tλ] denote
the m×λ bit matrix where the i-th column is ti, and let tj denote
the j-th row of T for 1 ≤ j ≤ m.

OT extension Phase:
4) R computes ti = G(k0

i) and ui = ti ⊕G(k1
i)⊕ r, and sends ui

to S for every 1 ≤ i ≤ λ.
5) For every 1 ≤ i ≤ λ, S define qi = (si ·ui)⊕G(ksii). (Note that

qi = (si · ui)⊕ ti).
6) Let Q = [q1| . . . |qλ] denote the m × λ bit matrix where the i-th

column is qi. Let qj denote the j-th row of the matrix Q. (Note
that qj = (rj · s)⊕ tj).

7) S sends (y0
j , y

1
j) for every 1 ≤ j ≤ m, where:

y0
j = x0

j ⊕H(j,qj), and y1
j = x1

j ⊕H(j,qj ⊕ s)

8) For 1 ≤ j ≤ m, R computes xrjj = y
rj
j ⊕H(j, tj).

R-OT also changes steps 7 and 8 in the general OT extension
protocol. The idea is still to let S generate its strings (x0

j , x
1
j) on-

the-fly when executing the OT extension protocol. In R-OT, S set
x0
j = H(qj) and x1

j = H(qj ⊕ s). S skips 7 and sends nothing.
In step 8, R simply outputs H(tj), which always matches the
string to be received.

The computational cost of each R-OT is 3 symmetric key
operations. The communication cost of each R-OT is λ bits

D.2 Use C-OT and R-OT in Our Protocols
Protocol 1 In step 1 of the protocol, we can use C-OT. In step 2
of the protocol we can use R-OT.

Note that in step 1, P1 acts as the sender S and P2 acts as the
receiver R. P1 sends a pair of strings that is either (r

〈0〉
0 , r

〈0〉
1) or

(r
〈0〉
1 , r

〈0〉
1), and P2 receives the first string if FS2

[0] = 0 or the
second string if FS2

[0] = 1. The two strings are correlated so that
C-OT can be used. We can change this step as the following:
1) In round 0, P1 and P2 run a C-OT. Upon receiving q0 in the

the C-OT, P1 computes H(q0). Then:

• If FS1
[0] = 0, P1 sets r〈0〉0 = H(q0) and r〈0〉1 = 1 + r

〈0〉
0 .

Then P1 sends y0 = r
〈0〉
1 ⊕H(q0 ⊕ s) to P2 in C-OT and

stores r〈0〉 = −r〈0〉0 .
• If FS1

[0] = 1, P1 sets r〈0〉1 = H(q0),then sends y0 =

r
〈0〉
1 ⊕H(q0 ⊕ s) to P2. P1 stores r〈0〉 = 1− r〈0〉1 .

• If FS2
[0] = 0, then P2 outputs H(t0), or if FS2

[0] = 1,
outputs y0 ⊕H(t0).

The correctness can be easily checked.
In step 2, P1 sends 4 strings in each round by invoking a

(1
4)-OT . Recall that (1

n)-OT can be implemented using dlog ne
invocations of (1

2)-OT extensions, each sends a pair of random
keys. We can build (1

n)-OT on top of R-OT since in each (1
2)-OT

extension, both keys are random and can be chosen on-the-fly. Step

2 in Protocol 1 does not need to be changed because it just invokes
the (1

4)-OT as a subroutine. Below we show how the (1
n)-OT can

be implemented using R-OT with the fixed-key masking scheme.
1) The sender S holds a vector of messages P = (x0, ..., xn−1)

and the receiver R holds an index 0 ≤ I ≤ n− 1.
2) S and R run l = dlog ne R-OTs. For the i-th R-OT (0 ≤ i ≤
l − 1), the parties do the following:

a) Upon receiving qi in the the R-OT, S computes and stores
ki,0 = H(qi) and ki,1 = H(qi ⊕ s).

b) R computes H(ti) that equals ki,Ii .
3) Treating H as a random oracle, S now has l pairs of uniformly

random keys K = (k0,0, k0,1), . . . , (kl−1,0, kl−1,1). S skips
the Gen function of the fixed-key masking scheme, and invoke
Mask(K,P) to mask the strings, and sends the vector of
masked strings P̃ .

4) The receiver has k0,I0 , ..., kl−1,Il−1
that are received from S.

The receiver can compute the masking key corresponding to
its index mkI =

⊕l−1
j=0 kj,Ij , then calls Unmask(P̃ , I) to

unmask and output P [I] = xi.
Protocol 2 In step 2 of Protocol 2, the parties runs a (1

q)-OT . The
(1
q)-OT can be based on R-OT as described above.

APPENDIX E
ESTIMATION ERROR DISTRIBUTION

We show the estimation error distribution in Fig. 7. For each
(m,N) pair, we executed the protocol 100 times. Each execution
was run with two random set with the union cardinality N . The
estimation error is calculated Ñ−N

N where Ñ is the estimated
cardinality output by the protocol. The histograms were produced
by counting the number of estimates falling in each specific range.

20

! " "
#

$"
"%

"&

#

! !

!

"!

#!

$!

%!

'
()
*
+
)
,
-
.

/01!2345650&!!

! "

#$

%$

"%

!

!

"!

#!

$!

%!

&!

'!

&
'(
)
*
(
+
,
-

./"0120345/"!!

!

"#

#$

!
!

"!

#!

$!

%!

&!!

%&"' (&"')!* (!')"'+ ,"'

-.
/
0
1
/
2
34

5678897):;6"!!

! "
#

$$

%"
$&

"'

! ! !

!

"!

#!

$!

%!

(
)*
+
,
*
-
.
/

01'!234561"4!!!

! !

""
"#

$$
%&

""

% " !

!

"!

#!

$!

%!

'
()
*
+
)
,
-
.

/0"1$त"!!!

!
"

#$

%&

! !

!

"!

#!

$!

%!

'
()
*
+
)
,
-
.

/0#112#345063!!!

! "
#

"$

%$
&&

""

% " !

!

"!

#!

$!

%!

'
()
*
+
)
,
-
.

/0#!$12340"!2!!!

!
"

#

$"

"%

$%

&

! ! !

!

"!

#!

$!

%!

'
()
*
+
)
,
-
.

/012"3%45601!4!!!

! !

"#

$%
&$

"'

%
$! !

!

"!

#!

$!

%!

(
)*
+
,
*
-
.
/

01%##&%2341"!2!!!

!
" #

$" $%
"!

&
'

! !

!

"!

#!

$!

%!

(
)*
+
,
*
-
.
/

01%!&'23415!!2!!!

!
"

#

$%
$#

$$

&$

! ! !

!

"!

#!

$!

%!

'
()
*
+
)
,
-
.

/0&1"234560&!!4!!!

!
"

#"

$%

&'

#!
($! !

!

"!

#!

$!

%!

)
*+
,
-
+
.
/
0

12'""&'3452#!!3!!!

! " "

#$

%% %&

'
&

! !

!

"

#!

#"

$!

$"

%!

%"

&!

(
)*
+
,
*
-
.
/

01&!23451#4!!!4!!!

! !

"

#$

%# %!

#!

!

!

"!

#!

$!

%!

&
'(
)
*
(
+
,
-

./#0%"1234/#2!!!2!!!

!
"

#$

%$ %$

#&

'

! ! !

!

"!

#!

$!

(
)*
+
,
*
-
.
/

012&&32451#4!!!4!!!

Fig. 7: Estimation Error Distribution

