
Pushing the Communication Barrier in Secure Computation using

Lookup Tables

(Full Version)∗

Ghada Dessouky1, Farinaz Koushanfar2, Ahmad-Reza Sadeghi1, Thomas Schneider3, Shaza
Zeitouni1, and Michael Zohner3

1TU Darmstadt, System Security Lab, name.surname@trust.tu-darmstadt.de
2University of California, Adaptive Computing and Embedded Systems Lab,

fkoushanfar@ucsd.edu
3TU Darmstadt, Engineering Cryptographic Protocols Group, name.surname@crisp-da.de

Abstract

Secure two-party computation has witnessed significant efficiency improvements in the recent years.
Current implementations of protocols with security against passive adversaries generate and process
data much faster than it can be sent over the network, even with a single thread. This paper introduces
novel methods to further reduce the communication bottleneck and round complexity of semi-honest
secure two-party computation. Our new methodology creates a trade-off between communication and
computation, and we show that the added computing cost for each party is still feasible and practicable
in light of the new communication savings. We first improve communication for Boolean circuits with
2-input gates by factor 1.9x when evaluated with the protocol of Goldreich-Micali-Wigderson (GMW).
As a further step, we change the conventional Boolean circuit representation from 2-input gates to
multi-input/multi-output lookup tables (LUTs) which can be programmed to realize arbitrary functions.
We construct two protocols for evaluating LUTs offering a trade-off between online communication and
total communication. Our most efficient LUT-based protocol reduces the communication and round
complexity by a factor 2-4x for several basic and complex operations. Our proposed scheme results in a
significant overall runtime decrease of up to a factor of 3x on several benchmark functions.

1 Introduction

Secure computation allows two or more parties to evaluate a public function on their private inputs without
revealing any information except what can be inferred from the output. In the context of secure two-
party computation with security against passive (semi-honest, honest but curious) adversaries, the most
prominent protocols are Yao’s garbled circuits [Yao86] and the protocol by Goldreich-Micali-Wigderson
(GMW) [GMW87]. Yao’s garbled circuits protocol securely evaluates a function, represented as Boolean
circuit, in a constant number of rounds. The Boolean circuit consists of XOR gates, which can be evaluated
for free [KS08], and AND gates, for which the parties have to send data. The GMW protocol also works on
Boolean circuits where XOR gates can be evaluated locally without any communication and is divided in two
phases: a setup phase and an online phase. The setup phase is executed prior to the actual function evaluation
and is independent of the pertinent function and the parties’ private inputs. It allows to pre-compute
all communication-intensive symmetric cryptographic operations and oblivious transfers (OTs, cf. §2.3) to
generate helper data. The online phase begins when the parties secret-share their private inputs and lasts

∗Please cite the conference version of this paper published at NDSS 2017 [DKS+17].

1

throughout the evaluation of the function circuit using the pre-computed helper data until the final output is
computed. The main difference of both protocols is that the round complexity of the online phase is constant
for Yao’s protocol, but linear in the depth of the circuit in GMW.

In recent years, the practical efficiency of secure two-party computation schemes has been dramatically
improved by orders of magnitudes, making solutions ready for deployment in practice [BCD+09, BJSV15,
Sec15, SHS+15]. One of the key enablers for these improvements has been the efficient instantiation of un-
derlying cryptographic primitives, which decreased the computational cost per cryptographic operation close
to negligible [BHKR13, GLNP15]. While the computation has been dramatically reduced, the communica-
tion improvements have been smaller, shifting the bottleneck in current protocol implementations towards
communication. In particular, the work of [BHKR13] computes at the speed of nearly 2 Gbit/second per
thread. It has been shown in [ZRE15] that today’s best instantiation of Yao’s protocol of [ZRE15] has hit a
lower bound of two κ-bit ciphertexts per AND gate in the Boolean circuit, where κ is the symmetric security
parameter.

In contrast, for the GMW protocol, it has been shown that it is still possible to achieve communication
less than two κ-bit ciphertexts per AND gate [KK13]. The GMW protocol allows that all symmetric
cryptographic operations are pre-computed in the setup phase without knowing the function beforehand,
unlike Yao’s protocol, and thus offers the possibility of a very efficient online phase. Therefore, GMW is the
candidate of choice in our work and the basis of our improved protocols. However, the multi-round online
phase of GMW greatly reduces its practicality for many real-world secure computation applications. In order
to speed up this online phase, recent work of [IKM+13,DZ16] has introduced protocols that use multi-input
tables rather than traditional 2-input Boolean gates to reduce the number of communication rounds. To pre-
compute these tables, the communication complexity in the setup phase was extremely increased, which is a
common approach for improving the online phase. However, the large communication overhead introduced
by these protocols is particularly intolerable for most practical purposes and real-world applications and
would scale very poorly as the function size grows. Furthermore, the protocols are mostly theoretical with
no evaluation of applicability besides AES in [DZ16].

In summary, the main bottlenecks in passively secure two-party computation today are the setup com-
munication (which dominates the total communication) and the online round complexity, both of which are
often at a trade-off. Existing general purpose schemes achieve either low setup communication or low online
round complexity, but not both.

Functionality
in HDL

HW Synthesis Representation

LUT

LUT

(N
1

)
OT Extension

SP-LUTOP-LUTN-MT

Input P0 Input P1

Output

Figure 1: Our toolchain for compiling a high-level hardware description language into a network of 2-input
Boolean gates and LUTs and evaluating them using our communication-efficient SP-LUT, OP-LUT, and
N -MT protocols, which build on our improved

(
N
1

)
OT extension protocol.

1.1 Our Contributions

In this paper, we present a more holistic end-to-end solution that significantly reduces the communication
complexity in semi-honest secure two-party computation, while simultaneously maintaining a low number of
communication rounds.

2

LUT-based Secure Computation. We replace the function representation as 2-input Boolean gate circuit
by a more compact multi-input lookup table (LUT)-based representation. This enables the evaluation of more
complex functions by representing the entire functionality as a compact graph of interconnected LUTs. We
describe, optimize and implement protocols to evaluate LUT-based circuits which reduce the communication
overhead significantly by a factor 4x compared to state-of-the-art Yao’s protocol [ZRE15] and the round
complexity by factor 4x compared to the GMW protocol. Using multi-input gates in secure computation
has been investigated before, but previous works incurred a drastic communication overhead even for a
small number of inputs and only considered this approach for special functions such as the AES S-box,
rendering their protocols unpractical, non-generic, and unscalable for real-world applications [HEKM11,
KK12, IKM+13,MPS15,DZ16]. Instead, we describe a very natural generalization of the protocol of [Gol04,
Sect. 7.3.3] from the case of 2-input gates to d-input gates, which together with the 1-out-of-N OT extension
protocol of [KK13] (and the additional optimizations we propose in our work) enables computation of any
functionality and makes them more practical and scalable for real-world applications.

LUT Protocols. We construct two protocol variants for evaluating LUT-based circuits, called OP-LUT and
SP-LUT, that offer a trade-off between improved online communication (OP-LUT) and improved setup/total
communication (SP-LUT). Our LUT protocols can also be used to evaluate 2-input Boolean gates using the
GMW protocol at no additional cost, since all use XOR-based secret sharing. This allows that we can
effectively and seamlessly combine the benefits of both representations with our protocols. Further details
on their construction can be found in §4.

More Efficient
(
N
1

)
OT Extension. A key building block for our LUT protocols is the 1-out-of-N

oblivious transfer extension protocol, denoted as
(
N
1

)
OT extension. We use the most communication-efficient

OT of [KK13] as a starting point and introduce further optimizations to reduce both its computation and
communication overhead. We propose a protocol called N -MT (multiplication-triple generation based on

(
N
1

)
OT), which leverages our optimizations to achieve a communication reduction per AND gate by a factor of
1.9x from 256 bits to 134 bits in the GMW protocol, for security parameter κ = 128, in comparison to the
traditional 2-MT (multiplication-triple generation based on

(
2
1

)
OT) of [ALSZ13] and a reduction by a factor

of 1.2x compared to the protocol of [KK13]. We describe our optimization techniques in detail in §3.

Compiler for LUT-based Secure Computation. Since we move away from 2-input Boolean gates, we
require new optimized LUT-based circuit representations of functions. However, building such circuits by
hand is tedious, challenging, and error-prone. Instead, we construct an automated toolchain that transforms
high level function descriptions into a LUT representation. More specifically, we re-purpose hardware syn-
thesis tools for secure computation as first shown in [SHS+15,DDK+15], but for LUT-based synthesis tools,
which we customize and manipulate to automatically and efficiently generate multi-input multi-output LUT
representations. An in-depth description of the hardware synthesis tool leveraged and how we re-purpose it
can be found in §5.

Evaluation on Basic Operations and Applications. We demonstrate the improved efficiency and
practicality of our LUT protocols by evaluating a wide range of functionalities. Our protocols are shown to
improve on the communication of floating point operations by factor 2-4x and the round complexity by factor
3-4x. We report and discuss our extensive evaluation results for basic operations in §6 and more complex
applications in §7. For some operations, our most efficient LUT protocol achieves as little as half a κ-bit
ciphertext communication per AND gate. In terms of actual runtime, our protocols achieve up to 3x faster
runtime for AES and private set intersection.

1.2 High-Level Idea of Our Scheme

We construct a toolchain, presented in Fig. 1, that compiles functions described in a high-level hardware
description language into a mixed representation of LUTs and 2-input Boolean gates using a hardware
synthesis tool that we customize and re-purpose for our setting. These circuit representations can then
be evaluated in a communication-efficient manner using our OP-LUT or SP-LUT protocols for LUT gates
and using GMW with our N -MT pre-computation method for 2-input Boolean gates. Note that the LUT

3

protocols can be freely combined with GMW at no additional cost, since all schemes are based on XOR
secret sharing. Our protocols are based on the

(
N
1

)
OT extension protocol of [KK13] which runs in the setup

phase that we further optimize in terms of both communication and computation. We evaluate our protocols
on various basic operations and applications in secure computation and show that our LUT protocols often
achieve significantly better communication and round complexity than traditional 2-input Boolean gate
representations. Our synthesized LUT representations and implementations are available within the ABY
framework [DSZ15] at http://github.com/encryptogroup/ABY.

1.3 Outline

We provide preliminaries and background in §2. Next, we describe in more detail our improved
(
N
1

)
OT

extension protocol in §3, followed by a description of our LUT-based representation and protocols in §4.
Our customized hardware synthesis approach is given in §5. Finally, we show an extensive evaluation of our
toolchain for basic operations in §6 and applications in §7. We give related works in §8 before we conclude
and give future works in §9.

2 Preliminaries

2.1 Notation

We denote the two parties as P0 and P1 or sender PS and receiver PR and the symmetric security parameter
as κ, which we fix to κ = 128 throughout this paper.

2.2 LUT-based Boolean Circuits

In our context, a Lookup Table (LUT) is the set of all functions that map δ ≥ 2 input bits to σ output bits
(cf. Fig. 2 for an example). Using this representation, complex functionalities can be built as a compact
graph of interconnected LUTs.

Boolean Circuit Lookup Table

a b c

d

∧ ⊕

∧

a b c

d

LUT

a b c d

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Figure 2: A function with δ = 3 input and σ = 1 output bits represented as Boolean circuit with 2-input
gates (left) and lookup table (right).

2.3 Oblivious Transfer

In 1-out-of-N oblivious transfer, denoted
(
N
1

)
OT, a sender PS inputs N messages (x1, ..., xN) from which

a receiver PR with selection input r ∈ [1...N] obtains message xr obliviously such that PS does not learn
PR’s choice r and PR does not learn any information about xi with i 6= r. By

(
N
1

)
OTmn we denote m

invocations of
(
N
1

)
OT, where each of the N messages has length n bits. OT is a fundamental primitive in

cryptography and heavily used in secure computation. In [IR89] it was shown that OTs cannot be based on
one-way functions, i.e., OT requires at least some public-key cryptography. Today’s fastest public-key based
OT protocol of [CO15] is able to compute 10,000 OTs per second.

4

http://github.com/encryptogroup/ABY

OT Extension. In [IKNP03] it was shown that it is possible to “extend” a few (around κ) public-key
base-OTs to an arbitrary number of OTs using symmetric cryptography only. Due to their nature, these
protocols are called OT extension protocols. The communication cost of today’s most efficient 1-out-of-2
OT extension protocol is C(

(
2
1

)
OTmn)= mκ+ 2mn bits [ALSZ13,KK13]. The implementation of [ALSZ13]

is able to compute one million OTs per second.

Random OT. Random OT is a special-purpose OT functionality, tailored for more efficient secure compu-
tation. In contrast to the standard OT functionality, in a 1-out-of-N random OT, denoted

(
N
1

)
R-OT, the

sender inputs no messages to the OT protocol, but receives the messages as a random output of the protocol
itself, while the receiver still inputs its selection string to choose one. This allows to remove the last message
in the OT which decreases the communication to C(

(
2
1

)
R-OTmn)= mκ bits [ALSZ13,KK13].

2.4 Yao’s Garbled Circuits

Yao’s garbled circuits protocol [Yao86] allows two parties to securely evaluate any function, represented as a
Boolean circuit. One party, the circuit garbler, assigns symmetric keys corresponding to 0 and 1 to the wires
of the Boolean circuit. The garbler then garbles the circuit by encrypting the keys of the output wires of each
gate using the keys of the gate’s input wires. These encryptions form the garbled tables of the circuit and
are transferred to the evaluator, together with the keys that correspond to both parties’ input wires to the
circuit. The evaluator then iteratively decrypts the correct output keys of the gates using the corresponding
input keys and obtains the output of the circuit using a mapping, provided by the garbler.
Several optimizations for Yao’s garbled circuits have been proposed, most notably: point-and-permute [MNPS04],
free-XOR [KS08], fixed-key AES garbling [BHKR13], and half-gates [ZRE15]. Overall, the garbler has to
send 2κ bits to the evaluator per AND gate, which can be done in the setup phase if the function is known.
In the online phase, the evaluator locally decrypts the garbled table and computes the output in a constant
number of communication rounds.

2.5 Goldreich-Micali-Wigderson

The GMW protocol [GMW87] for secure computation also represents a function as a Boolean circuit and
secret shares the values on the wires between the parties using an XOR-based secret-sharing scheme. XOR
gates can be evaluated for free locally by XORing the shares while AND gates require one interaction step
between the parties using a multiplication triple. A multiplication triple (MT) is a set of shares of the form
(c0 ⊕ c1) = (a0 ⊕ a1) ∧ (b0 ⊕ b1), where Pi holds the shares labeled with i, for i ∈ {0, 1}. MTs can be
pre-computed using

(
2
1

)
R-OT2

1 at the cost of 2κ bits of communication [ALSZ13] and are used in the online
phase to evaluate AND gates at the cost of 4 bits communication. In §3.5 we show how to pre-compute MTs
with less communication overhead using the

(
N
1

)
OT extension of [KK13]. For details on the GMW protocol

please refer to [DSZ15].

2.6 Size and Depth of Boolean Circuits

For our later evaluation in §6.1, we bound the multiplicative size (the number of AND gates) and depth (the
highest number of ANDs from any input to any output) of a Boolean circuit. For many functionalities,
a low multiplicative size and a low multiplicative depth are two mutually exclusive goals. Hence, we first
outline the case for Boolean circuits with δ input bits and σ = 1 output bit, since this allows us to set tighter
upper bounds, and then examine the case for σ > 1.

Boolean Circuits with One Output Bit. It was shown in [TP14] that any functionality with δ ≤ 5 input
bits can be realized by a Boolean circuit with at most δ − 1 AND gates. For functions with δ > 5 inputs,
a bound on the maximum number of AND gates is still unknown but, according to [TP14], “no specific
δ-variable function has yet been proven to have multiplicative complexity larger than δ − 1 for any δ”. We
bound the number of AND gates in a Boolean circuit C with δ inputs by S(C) ≤ δ − 1. In [BB94] it was
shown that every Boolean circuit of multiplicative size n has an equivalent Boolean circuit of multiplicative

5

depth O(log n) and size O(nα) for arbitrary α > 1. We bound the multiplicative depth of a circuit C with
δ inputs by D(C) ≤ log2(δ).

Boolean Circuits with Multiple Output Bits. Finding a size- or depth-optimal Boolean circuit for
functionalities with σ > 1 outputs is a hard problem for a larger number of inputs δ [BP12] and determining
a minimal upper bound is a complex task out of scope of this paper. A more tractable approach to find a
possible upper bound is to build optimal Boolean circuits for each output bit separately. In this paper, we
take this approach and assume that a Boolean circuit C with δ input and σ output bits has at most size
S(C) ≤ σ(δ − 1) if optimized for size and D(C) ≤ log2 δ if optimized for depth.

3 More Efficient
(
N
1

)
OT Extension

In order to evaluate a function using our LUT protocols, we pre-compute the LUTs using OT. However,
using the standard

(
2
1

)
OT extension protocol of [IKNP03, ALSZ13] to pre-compute the LUTs would re-

sult in a higher communication overhead than evaluating traditional Boolean circuits. Therefore, for im-
proved communication efficiency, we make use of the

(
N
1

)
OT extension protocol of [KK13]. Although

the [KK13] OT extension protocol is very communication-efficient, it incurs a significant computation over-
head: N symmetric operations compared to 2 log2N symmetric operations by the

(
2
1

)
OT extension protocol

of [IKNP03, ALSZ13]. In this paper, we take the OT extension protocol of [KK13] as a starting point for
improving communication and introduce optimization mechanisms to effectively reduce both, its computa-
tion and communication overhead.
In this section, we give an overview of the

(
N
1

)
OT protocol (§3.1), outline how to more efficiently instantiate

the underlying error correcting code (§3.2) and sample random choice bits of the receiver to reduce the com-
munication overhead (§3.3). Next, we present our optimizations of the underlying symmetric cryptographic
primitives to reduce the computation overhead (§3.4). Finally, we show how to optimize the evaluation of
AND gates and reduce the communication overhead in the setup phase of the GMW protocol (§3.5). We
call our resulting protocol that combines our proposed optimizations for more efficient evaluation of AND
gates N -MT. We give a full description of the

(
N
1

)
OT extension protocol of [KK13] in Prot. 1.

3.1 Protocol Description

In the
(
2
1

)
OT extension protocol of [IKNP03], the parties use multiple base-OTs to obliviously transfer

shares of the receiver’s selection bits. The main observation of the
(
N
1

)
OT protocol of [KK13] was that this

approach can be generalized to have both parties share a ρ-bit codeword from a code Γρ with codewords
of Hamming distance κ. These codewords encode the receiver’s selection strings and constitute the main
component of the communication workload of the OT extension protocol.
For N = 2, a repetition code can be used, which has 2 codewords of size ρ = κ. In this case, the

(
N
1

)
OT

protocol of [KK13] is identical to the
(
2
1

)
OT protocol of [IKNP03].

For 2 < N ≤ 2κ, the authors of [KK13] propose to use a Walsh-Hadamard code which has codewords of size
ρ = 2κ to achieve a relative Hamming distance of κ. They show that, for appropriate choice of parameters

(κ = 128, ρ = 256, N = 16), generating
(
2
1

)
OT

log2N
1 from their

(
N
1

)
OT protocol requires only 320 bits of

communication while the
(
2
1

)
OT of [IKNP03,ALSZ13] requires 520 bits.

For N > 2κ, a linear error-correcting code achieves the best performance. In particular, when N = poly(κ),
the communication cost for the OT extension part of

(
N
1

)
OT invocations decreases asymptotically from

O(κ logN) to O(κ) compared to a
(
2
1

)
OT instantiation.

3.2 Our Size-Optimized Codes

The efficiency gains from the
(
N
1

)
OT extension protocol of [KK13] forN > 2 are due to efficient instantiations

of the underlying codes. For 2 < N ≤ 2κ, [KK13] uses a Walsh-Hadamard code, which has codewords of
size ρ = 2κ = 256 bits to achieve a Hamming distance of κ = 128 between codewords. However, for N = 2i,

6

PROTOCOL 1 (
(N
1

)
OT extension protocol [KK13])

• Common Input: Symmetric security parameter κ;
code Γρ = (γ1, ..., γN) with ρ-bit codewords.

• Input of PS: m tuples (x1j , ..., x
N
j) of n-bit strings.

• Input of PR: m selection integers r = (r1, . . . , rm)
with rj ∈ [N].

• Oracles and cryptographic primitives: An ideal(2
1

)
OTρκ primitive, a pseudo-random generator G :

{0, 1}κ → {0, 1}m and a correlation-robust function
H : [m]× {0, 1}ρ → {0, 1}n.

1. PS initializes a random vector s = (s1, . . . , sρ) ∈R
{0, 1}κ and PR chooses ρ pairs of seeds (k0i , k

1
i) ∈R

{0, 1}κ.

2. The parties invoke
(2
1

)
OTρκ, where PS acts as the re-

ceiver with input s and PR acts as the sender with
inputs (k0i , k

1
i) for every 1 ≤ i ≤ ρ.

PR forms two m× ρ bit matrices T = [t1| . . . |tρ] with
ti = G(k0i) (where its i-th column is ti and its j-th row
is tj) and C = [c1| . . . |cm], (where its i-th column is ci

and its j-th row is cj) with cj = γrj for 1 ≤ i ≤ ρ and
1 ≤ j ≤ m.

3. PR computes and sends ui = ti⊕G(k1i)⊕ ci to PS for
every 1 ≤ i ≤ ρ.

4. For every 1 ≤ i ≤ ρ, PS defines qi = (si · ui)⊕G(k
si
i).

(Note that qi = (si · ci)⊕ ti.)
Let Q = [q1| . . . |q`] denote the m× ` bit matrix where
its i-th column is qi. Let qj denote the j-th row of
the matrix Q. (Note that qi = (si · ci) ⊕ ti and qj =
(cj ∧ s)⊕ tj .)

5. For p ∈ [N], PS computes ypj = xpj ⊕H(j, qj ⊕ γp) and

sends (y1j , . . . , y
N
j) for every 1 ≤ p ≤ N and 1 ≤ j ≤ m.

6. For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, tj).

7. Output: PR outputs (x1, . . . , xm); PS has no output.

with 2 ≤ i ≤ 8, the Walsh-Hadamard code is not size-optimal with regard to the codeword size ρ. Hence,
we propose to use more size-efficient codes in order to further decrease the communication. We base our
code choices on the list of efficient codes in [SS06] and give the codeword sizes for N = 2i for 1 ≤ i ≤ 12
in Tab. 1. In particular, for N = 4 we use a parity check code, for N ∈ {8, 16, 32, 64, 128, 256}, we use
a Simplex code, for N = 512, we use a Reed-Muller code, for N ∈ {1,024, 2,048}, we use a narrow-sense
BCH-code, and for N = 4,096, we use the concatenation of a Denniston code and a Simplex code (see [SS06]
for more details). The OT communication improvements achieved by adopting our reduced codeword sizes
are the largest for N = 4 (reduced by 64 bits) and decrease with N growing towards 256 (reduced by 1
bit). Note that using size-optimized codes does not increase computation or reduce security over using the
Walsh-Hadamard codes.

3.3 Random Choice Bits

In all
(
N
1

)
OT protocol invocations throughout this work, the receiver samples and inputs a random selection

string r ∈R [1...N]. However, we observe that the communication from receiver to sender can be reduced
by having the

(
N
1

)
OT protocol sample r randomly during the execution and output it to the receiver. In

7

N 2 4 8 16 32 64
Our Size-Efficient Codes [bits] 128 192 224 240 248 252
[KK13] Codes [bits] 128 256 256 256 256 256

N 128 256 512 1024 2048 4096
Our Size-Efficient Codes [bits] 254 255 256 264 268 270
[KK13] Codes [bits] 256 256 - - - -

Table 1: Communication for
(
N
1

)
OT with size-optimal codes [SS06] compared to those used in [KK13].

order to randomly sample r, we transform the code Γρ into a systematic form, similar to [FJJBT16]. In
the systematic form, the input data is embedded into the codeword, i.e., the integer s ∈ {0, 1}log2N is a
sub-string of codeword cs. Assume that s is embedded in the first log2N positions of each cs. We can now
let the receiver compute the choice bits rj in the j-th OT as rj = rj,1||...||rj,log2N with ri = G(k0i)j ⊕G(k1i)j
in Step 2 in Prot. 1. Consequently, we can change Step 3 and Step 4 to avoid sending the uj values for these
positions. In particular, we have PR perform Step 3 only for log2N < i ≤ ρ and PS compute in Step 4:

qi =

{
G(ksii), if 1 ≤ i ≤ log2N

(si · ui)⊕G(ksii), else.

Overall, this enables us to further reduce the communication for
(
N
1

)
OT by log2N bits. Furthermore, this

can be combined with
(
N
1

)
R-OT to further reduce the communication overhead.

3.4 Pipelined AES-256

In OT extension [IKNP03,KK13], both parties process several value tuples that are correlated by a constant
XOR offset using a correlation-robust function (CRF) (cf. H in Step 5 and Step 6 in Prot. 1). While
the CRF has traditionally been instantiated with a hash function, more efficient AES-based constructions
have been used to replace it [KSS12, BHKR13, GLNP15]. When using the most efficient, fixed-key AES
instantiation [BHKR13], the input is restricted to the block-length of AES, i.e., 128-bit, which suffices for
the

(
2
1

)
OT extension protocol of [IKNP03] when κ = 128-bit. However, in the

(
N
1

)
OT extension of [KK13],

we need to process codewords of size ρ > 128 bits for N > 2, which prevents the use of fixed-key AES. Falling
back to a hash function or AES-256 with key schedule [KSS12] greatly decreases performance by about an
order of magnitude, as depicted in Tab. 2. Furthermore, the

(
N
1

)
OT protocol requires N invocations of an

expensive CRF (instantiated via AES-256 with key schedule or SHA-256) as opposed to 2 logN invocations
of a cheaper CRF (instantiated via AES-128) when using

(
2
1

)
OT. In particular, for our protocols in §4

we use N = 256, which requires 256 CRF invocations when using
(
N
1

)
OT compared to 16 invocations

when using
(
2
1

)
OT. Using AES-256 with key schedule instantiation for

(
N
1

)
OT and the pipelined AES-128

instantiation of [GLNP15] for
(
2
1

)
OT, this results in a computational overhead of 480x.

Primitive Width Time [ms] Pipe-Time [ms]

AES-128 [BHKR13] 128 158 54
AES-128+KS [GLNP15] 128 1,460 358
AES-256+KS [KSS12] 256 1,625 476
SHA-256 arbitrary 2,487 -

Table 2: Instantiations of a correlation-robust function with input width in bits and (pipelined) run-time for
107 invocations.

We improve the performance of the CRF instantiation based on AES-256 with key schedule by pipelining
the AES-256 key expansion and encryption routines as well as pipelining multiple invocations of AES, similar
to the approach of [GLNP15] for AES-128. Thereby, we manage to decrease the computation time for AES-
256 by factor 4, which reduces the computational overhead compared to

(
2
1

)
OT to 140x. When evaluating

a
(
256
1

)
OT107

1 using the [KK13] protocol, this reduces the evaluation time from 79 s to 22 s. For ρ > 256,
we instantiate the CRF with SHA-256.
A promising line of research is given in [GM16], which outlines how to obtain cryptographic permutations
with larger block sizes based on fixed-key AES-128. Due to security concerns, however, we refrain from using
their instantiations but point it out as a future alternative to explore.

8

3.5 Multiplication Triples from
(
N
1

)
OT

To improve the communication in secure computation, the work of [KK13] proposed to use their
(
N
1

)
OT

protocol to reduce
(
N
1

)
OT1

log2N
to
(
2
1

)
OT

log2N
1 . They achieved a communication saving of up to 1.6x per(

2
1

)
OT2

1, from 256 bits to 160 bits, when setting κ = 128 and N = 16. In this work, we further improve on

their communication savings by using our optimized
(
N
1

)
OT protocol to directly compute a multiplication

triple (MT), which corresponds to a
(
4
1

)
OT1

1. For this reduction, we evaluate
(
N
1

)
OT1

log4(N) which we can

directly transform to
(
4
1

)
OT

log4(N)
1 . We vary possible choices for N in Tab. 3 and observe that the highest

improvement of 1.9x is obtained for N = 16, where one MT can be computed at the cost of 134 bits in the
setup phase, and 2 MTs at the cost of 268 bits as shown in Tab. 3. Compared to the protocol in [KK13],
our N -MT protocol reduces the communication by factor 1.2x from 160 bits to 134 bits. Adding the 4 bits
for the evaluation in the online phase, the total communication is now as low as 138 bits per AND gate.

N 4 8 16 32 64 128 256

#Triples 1 1.5 2 2.5 3 3.5 4
2-MT 256 384 512 640 768 896 1,024
N-MT 194 223 268 339 438 759 1,271
Improvem. 1.32 1.72 1.91 1.89 1.75 1.18 0.81

Table 3: Communication for generating multiplication triples using
(
2
1

)
R-OT [ALSZ13] (2-MT) and(

N
1

)
OT [KK13] with our optimizations (N -MT). Best results marked in bold.

4 LUT-based Secure Computation

In this section, we discuss how to model the functionality as network of interconnected LUTs with multi-
ple input bits that can be evaluated in a constant number of rounds per layer of LUTs (§4.1). We first
summarize the one-time truth table (OTTT) approach of [IKM+13] with pre-computation of [DZ16] (§4.2).
We then present our Online-LUT (OP-LUT) scheme, which is optimized for an efficient online phase but
has high communication in the setup phase (§4.3). Next, we give the Setup-LUT (SP-LUT) protocol that
dramatically reduces the communication in the setup phase but slightly increases the communication in
the online phase (§4.4). Finally, we show how to optimize the online phase of the SP-LUT protocol to
achieve better round and communication complexity and how to compute LUTs with overlapping inputs
more efficiently (§4.5). We give a summary of the communication costs for these protocols in Tab. 4.

Inputs δ 2 3 4 5 6 7 8 Asymptotic

Setup Communication [bits]
OTTT [IKM+13] ≤ 552σ ≤ 2,208σ ≤ 6,624σ ≤ 17,664σ ≤ 44,160σ ≤≈ 217σ ≤≈ 218σ ≤ 138(δ − 1)2δσ

OP-LUT (§4.3) 16σ + 190 64σ + 221 256σ + 236 1,024σ + 243 4,096σ + 246 ≈ 214σ ≈ 216σ C(
(
N
1

)
OT1

σN)−δ
SP-LUT (§4.4) 190 221 236 243 246 247 247 C(

(
N
1

)
R-OT)−δ

Online Communication [bits]
OTTT / OP-LUT 4 6 8 10 12 14 16 2δ
SP-LUT 4σ + 2 8σ + 3 16σ + 4 32σ + 5 64σ + 6 128σ + 7 256σ + 8 2δσ + δ

Total Communication (Setup + Online) [bits]
OTTT [IKM+13] ≤ 554σ ≤ 2,214σ ≤ 6,632σ ≤ 17,674σ ≤ 44,172σ ≤≈ 217σ ≤≈ 218σ
OP-LUT (§4.3) 16σ + 194 64σ + 227 256σ + 244 1,024σ + 253 4,096σ + 258 ≈ 214σ ≈ 216σ
SP-LUT (§4.4) 4σ + 192 8σ + 224 16σ + 240 32σ + 248 64σ + 252 128σ + 244 256σ + 255

Table 4: Setup, Online and Total communication for a δ-input LUT with σ outputs for the OTTT proto-
col [IKM+13], Online-LUT (OP-LUT) and Setup-LUT (SP-LUT). Best results marked in bold.

4.1 Lookup-Tables

For our protocols in this section, we assume that the parties have XOR secret-shared their private inputs and
represent the functionality as network of LUTs and XOR gates. In our context, a δ-input bit LUT with σ

9

output bits is a table that maps an δ-bit secret-shared input to σ-bit secret-shared output and can thereby be
used to represent any function f : {0, 1}δ 7→ {0, 1}σ. In contrast to Boolean circuits based on 2-input gates,
LUT-based circuits do not use internal logic operations to map inputs to outputs and their evaluation costs
depend only on the number of inputs and outputs. We show how to pre-compute and evaluate a δ-bit input
LUT in the next sections. As in GMW, XOR gates can be evaluated locally by both parties XORing their
respective shares. Moreover, we can reduce the number of output bits if one output bit can be computed as
a linear combination of other outputs.

4.2 One-Time Truth Tables (OTTT)

In this section we describe the OTTT protocol of [IKM+13] with circuit-based pre-computation from [DZ16],
which is given in Prot. 2. The high-level idea behind the OTTT protocol is that two parties hold secret
shares T 0 and T 1 of a lookup table T , whose entries were randomly rotated across both dimensions using
r, s such that T 0[i]⊕ T 1[i] = T [r ⊕ s⊕ i], for all 0 ≤ i < 2δ. Each of the parties knows a secret share of the
truth-table as well as the rotation value, i.e., P0 knows (T 0, r) and P1 knows (T 1, s).

Pre-Computation. During the setup phase, the truth-table T needs to be shared such that P0 holds (T 0, r)
and P1 holds (T 1, s). A possible method for pre-computing the table was outlined in [DZ16]: Both parties
evaluate a Boolean circuit representing the table once for every possible input, resulting in an overhead of
factor 2δ compared to a Boolean circuit evaluation.1 In more detail, the parties represent the table T as
Boolean circuit C : {0, 1}δ 7→ {0, 1}σ. Then, P0 and P1 choose their random rotations values r, s ∈R {0, 1}δ,
securely evaluate C(r ⊕ s⊕ i) = z0i ⊕ z1i and set T 0[i] = z0i and T 1[i] = z1i for all i ∈ [0...2δ − 1]. Assuming
the upper bound of δ − 1 AND gates for a Boolean circuit with δ inputs from §2.6 and the optimized
multiplication triple generation at 138 bits per AND gate from §3.5, this results in an overall communication
of at most 138(δ − 1)2δ bits.

Online Evaluation. In the online phase, the OTTT protocol of [IKM+13] takes as input two δ-bit share
values x0 and x1 such that x = x0 ⊕ x1 and evaluates a function f , represented as a lookup table T . The
parties hold shares (T 0, r) and (T 1, s) of a permuted lookup table T such that T 0[i] ⊕ T 1[i] = T [r ⊕ s ⊕ i],
where r, s ∈R {0, 1}δ and for all 0 ≤ i < 2δ. To evaluate T , the parties exchange u = x0 ⊕ r and v = x1 ⊕ s
and compute the shared result z0 = T 0[u⊕ v] and z1 = T 1[u⊕ v]. To see that z = T [x] = z0 ⊕ z1, observe
that z0 ⊕ z1 = T 0[u⊕ v]⊕ T 1[u⊕ v] = T 0[r ⊕ s⊕ x]⊕ T 1[r ⊕ s⊕ x] = T [x].

4.3 Online-LUT (OP-LUT)

We propose another method for pre-computing the shared permuted table, which performs better for small
number of inputs δ. Instead of evaluating a circuit on all possible inputs, one can directly transfer all possible
choices of the rotated truth-table via our optimized

(
N
1

)
OT protocol described in §3. This protocol is a very

natural generalization of the original GMW construction for evaluating 2-input gates using 1-out-of-4 OT as
described in [Gol04, Sect. 7.3.3]. We call this protocol OP-LUT and describe it in Prot. 3.

Pre-Computation. P0 chooses its share T 0 ∈R ({0, 1}δ 7→ {0, 1}σ) and its rotation value r ∈R {0, 1}δ
of the permuted table and computes the shares of P1 for all possible rotation values: (X0, ..., XN−1), with
Xs′ = T [r⊕s′⊕i]⊕T 0, for all i ∈ [0...2δ−1]. P0 then engages in a

(
N
1

)
OT1

N with P1 who inputs s ∈R {0, 1}δ
as choice bits and obliviously obtains T 1 = Xs = T [r ⊕ s⊕ i]⊕ T 0.

The communication cost for the pre-computation thereby becomes independent of the circuit representa-
tion but it scales with factor 22δ as opposed to 138(δ − 1)2δ for the circuit-based pre-computation. Overall,
the

(
N
1

)
OT-based pre-computation performs better for δ < 10, while the circuit-based pre-computation

performs better for δ ≥ 10 (cf. Tab. 4). The security of this pre-computation method is guaranteed by
oblivious transfer: Neither does P0 learn information about the rotation value or output share of P1, since

1Note that the evaluated circuit can be optimized by removing duplicate gates [KSS12]. Assuming that the last gate in the
circuit is an AND gate (otherwise, one could remove that last gate from the LUT), we expect the circuit after the duplicate
removal to have at least one AND gate per instance, i.e., 2δ AND gates for the 2δ parallel evaluations.

10

PROTOCOL 2 (OTTT Evaluation [IKM+13,DZ16])

• Common Input: Input bit-size δ; Output bit-size σ;
N = 2δ; Truth-table T : {0, 1}δ 7→ {0, 1}σ .

• Input of P0: x0 ∈ {0, 1}δ.
• Input of P1: x1 ∈ {0, 1}δ.

Pre-Computation [DZ16]:

1. The parties represent T as circuit C : {0, 1}δ 7→
{0, 1}σ .

2. P0 chooses r ∈R {0, 1}δ and P1 chooses s ∈R {0, 1}δ.
3. P0 and P1 compute z0i ⊕ z1i = C(s ⊕ r ⊕ i) and set

T 0[i] = z0i and T 1[i] = z1i for all 0 ≤ i < N .

4. Output: P0 outputs (T 0, r); P1 outputs (T 1, s).
Note: ∀i with 0 ≤ i < N it holds that T 0[i] ⊕ T 1[i] =
T [r ⊕ s⊕ i].

Online Evaluation [IKM+13]:

1. P0 sends u = x0 ⊕ r to P1; P1 sends v = x1 ⊕ s to P0.

2. P0 sets z0 = T 0[u⊕ v]; P1 sets z1 = T 1[u⊕ v].

3. Output: P0 outputs z0; P1 outputs z1, s.t. z0⊕ z1 =
T [x0 ⊕ x1].

the rotation value is used as selection string, nor does P1 learn information about the rotation value or share
of P0, since P1 gains no information on any other than the selected truth-table.

4.4 Setup-LUT (SP-LUT)

While the OTTT and OP-LUT approaches achieve a good online communication, their pre-computation cost
scales with at least 2δ, where δ is the number of input bits of a LUT. This greatly hinders the applicability of
these approaches when pre-computation is not negligible, i.e., when the parties do not have a pre-established
communication channel or when they wish to perform secure computation ad-hoc. In order to enable
LUT-based secure computation even in settings with no pre-computation, we suggest a new protocol for
securely pre-computing and evaluating LUTs. This protocol, called Setup-LUT (SP-LUT), achieves much
better total communication but increases the online communication compared to the OTTT and OP-LUT
protocols. The general idea of SP-LUT is simple: Pre-compute

(
N
1

)
OT in the setup phase and obliviously

transfer all possible outcomes of the LUT in the online phase. We give a full description of the protocol
in Prot. 4.

Compared to the OP-LUT approach, the SP-LUT protocol only requires correlated randomness in the
form of a pre-computed

(
N
1

)
OT, which requires only little communication in the setup phase at the cost of 2δ

bits of communication during the online phase. However, the total communication of SP-LUT is much lower
than that of OP-LUT, since only single bits need to be transferred instead of full truth-tables (cf. Tab. 4).
The security of the SP-LUT protocol is similar to that of the GMW protocol [GMW87]: Both parties operate
on secret-shared data by sacrificing a pre-computed OT on random data.

4.5 Optimizations

In the following, we discuss two optimizations for our LUT protocols: Switching roles to reduce the round
complexity for SP-LUT and combining LUTs with overlapping inputs.

11

PROTOCOL 3 (Online-LUT (OP-LUT) - our work)

Inputs and Oracles:

• Common Input: Symmetric security parameter κ;
number of inputs δ; N = 2δ; Truth-table T : {0, 1}δ 7→
{0, 1}σ .

• Input of P0: x0 ∈ {0, 1}δ.
• Input of P1: x1 ∈ {0, 1}δ.

• Oracles: Both parties have access to a
(N
1

)
OT1

σN
functionality.

Pre-Computation:

1. P0 chooses r ∈R {0, 1}δ and T 0 ∈R ({0, 1}δ 7→
{0, 1}σ). P1 chooses s ∈R {0, 1}δ.

2. P0 computes (X0, ..., XN−1), with Xs′ [i] = T [r⊕ s′ ⊕
i]⊕ T 0[i], for all 0 ≤ i, s′ < N .

3. P0 and P1 invoke the
(N
1

)
OT1

σN functionality where
P0 plays the sender with inputs (X0, ..., XN−1) and P1

plays the receiver with input s and output T 1 = Xs
s.t. Xs[i] = T [r ⊕ s⊕ i]⊕ T 0[i], for all 0 ≤ i < N .

4. Output: P0 outputs (T 0, r); P1 outputs (T 1, s).

Online Evaluation (same as OTTT in Prot. 2):

1. P0 sends u = x0 ⊕ r to P1; P1 sends v = x1 ⊕ s to P0.

2. P0 sets z0 = T 0[u⊕ v]; P1 sets z1 = T 1[u⊕ v].

3. Output: P0 outputs z0; P1 outputs z1, s.t. z0⊕ z1 =
T [x0 ⊕ x1].

Reducing the Online Round Complexity. The SP-LUT protocol in §4.4 pre-computes
(
N
1

)
OT in a

setup phase and then uses these pre-computed values in the online phase to securely evaluate the function.
In its vanilla version, the online phase consists of two rounds: 1) the receiver sends its updated choice bits
to the sender and 2) the sender rotates its pre-computed masks and sends the updated correlations to the
receiver. Thereby, we overall require 2D(C) communication rounds in the online phase, where D(C) is the
highest number of LUTs from any input to any output of the circuit.
In order to reduce the number of communication rounds, we let both parties switch roles in the online phase
after each communication round, similar to [Hua12]. More specifically, assume P0 plays the sender and P1

plays the receiver in the first round. P1 first sends its updated choice bits u1 to P0, who plays the receiver
in the second round and replies with the updated correlations V1 and the updated choice bits of the second
round u2. P1 then updates its local shares using V1, switches to the role of the sender and replies with its
updated correlations V2, and then again switches to the role of the receiver and sends its updated choice bits
u3 for the third communication round, etc. Overall, this reduces the number of communication rounds from
2D(C) to D(C) + 1.

Multi-Out LUTs. Note that in our LUT-based approach, we can efficiently combine two or more LUTs
that have the same or even only some common inputs. Consider a functionality which has σ LUTs with one
output bit each and the same δ input bits. When naively applying our approach, we would generate σ δ-input
LUTs, one for each output bit. However, since we build on a

(
N
1

)
OT protocol, we can amortize the cost

for computing the OT protocol by sending σ output bits during the OT protocol. More specifically, instead
of performing

(
N
1

)
OTσ1 , we would perform

(
N
1

)
OT1

σ, thereby saving σ − 1 executions of the OT protocol.
This optimization naturally extends to an arbitrary number of output bits σ. Overall, for a functionality
with δ input bits and σ output bits, we can thereby decrease the required communication from σ(256 + 2δ)
to 256 + σ2δ. In §7.1 we use this optimization to decrease the communication for the 8-input and 8-output
AES S-box by a factor of 1.8 from 4,096 bit to 2,304 bit. Similarly, we can combine two or more LUTs which

12

PROTOCOL 4 (Setup-LUT (SP-LUT) - our work)

Inputs and Oracles:

• Common Input: Symmetric security parameter κ;
number of inputs δ; N = 2δ; Truth-table T : {0, 1}δ 7→
{0, 1}σ .

• Input of P0: x0 ∈ {0, 1}δ.
• Input of P1: x1 ∈ {0, 1}δ.

• Oracles: Both parties have access to a
(N
1

)
R-OT1

σ
functionality.

Pre-Computation:

1. P0 and P1 invoke the
(N
1

)
R-OT1

σ functionality where
P0 plays the sender and P1 plays the receiver. From the
OT, P0 receives random bits (m0, ...,mN−1) and P1

receives a random choice s ∈ {0, 1}δ and message ms.

2. Output: P0 outputs (m0, ...,mN−1); P1 outputs
(ms, s).

Online Evaluation:

1. P1 sends u = s⊕ x1 to P0.

2. P0 chooses z0 ∈R {0, 1}σ and computes and sends V =
(v0, ..., vN−1), where vi = T [i⊕ x0]⊕mi⊕u ⊕ z0.

3. P1 computes z1 = vx1 ⊕ms.
4. Output: P0 outputs z0; P1 outputs z1, s.t. z0⊕ z1 =

T [x0 ⊕ x1].

share a sub-set of inputs. For instance, consider the case where one LUT has δ1 = 3 inputs x0, x1, x2 and
a second LUT has δ2 = 4 inputs x0, x1, x3, x4. In this case, we can combine both LUTs to one LUT with

δ = 5 inputs and thereby replace the
(
23

1

)
OT1

1 and
(
24

1

)
OT1

1 by a
(
25

1

)
OT1

2 which reduces communication
from 488 bits to 312 bits.

5 LUT-based Circuit Synthesis

Hand-optimizing circuit representations for secure computation is a laborious and time-consuming task
which leaves room for errors in the crafted circuit constructions. This only becomes more challenging for
our LUT protocols where LUT-based circuit representations are required, instead of Boolean circuits with
2-input gates. Instead of reinventing the wheel and recreating compilers from scratch, it is much more
intuitive to use existing hardware synthesis tools. This approach, which we also follow in our work, allows
to automatically generate and optimize circuits even for complex functionalities that cannot be easily hand-
optimized. As shown in TinyGarble [SHS+15] and its generalization to GMW [DDK+15], hardware synthesis
tools are a key enabler for making secure computation protocols more practical by automating and speeding
the process of generating compact and correct Boolean circuits and optimizing them for low size [SHS+15]
and/or low depth [DDK+15] depending on the protocol used. In this work, we extend this approach further
by exploiting LUT-based synthesis tools to serve the different requirements of our LUT protocols. However,
such tools do not generate the LUT representations we require by default, and require heavy re-purposing
to adapt them to our protocols. In the following, we briefly introduce hardware synthesis and afterwards
discuss the particular synthesis tool we use and how we customize it for our purposes.

5.1 Hardware Synthesis Tools

Hardware synthesis is the process of transforming an abstract form of function description into a functionally
equivalent logic implementation using different optimization and technology mapping algorithms, which

13

have been the subject of research in electronic design automation for decades. The circuit implementation
generated usually depends on the target hardware platform and manufacturing technology. Common target
hardware platforms include Application Specific Integrated Circuits (ASICs) and Field Programmable Gate
Arrays (FPGAs). While ASIC synthesis tools have been the focus of previous works [SHS+15, DDK+15],
since the protocols therein required circuits with 2-input gates, our work focuses on exploiting multi-input
LUT-based synthesis tools which form the core of FPGA-based synthesis software. ASIC synthesis tools can
also map to multi-input gates, given that the gates are defined in custom libraries. However, this is tedious,
impractical, and would require very large libraries to accommodate all possible LUTs for each input size.
Hence, we opt to use LUT-based synthesis tools instead.

There exists a spectrum of commercial FPGA synthesis tools such as Synplify by Synopsys [Syn], Quartus
by Altera [Alt], XST [Xil09] and Vivado Synthesis [Xil] tools by Xilinx. However, these tools synthesize
LUT-based circuits that target their devices’ specifics such as the number of physically possible inputs to an
LUT (a maximum of 6-input LUTs for most current FPGA devices). For our protocol, we aim to generate
up to 8-input LUTs and this, to the best of our knowledge, is not available in mainstream commercial tools.
Mapping circuits to variable-input LUTs is, however, being investigated by the Berkeley Logic Synthesis and
Verification Group who develop ABC [Ber], a growing open-source software for synthesis and verification of
binary logic circuits. ABC provides an experimental implementation of different mapping and optimization
algorithms based on optimal-delay Directed Acyclic Graph (DAG)-based technology mapping for both stan-
dard gates and LUTs. In this work, we leverage the mapping of ABC, coupled with Yosys [Wol]. We use
Yosys as an open-source framework for front-end processing of our Verilog circuit descriptions to map them
into a network of low-level logic operations in an intermediate format. Then, ABC structures this network
into a DAG and maps it into LUTs in a delay-optimized fashion.

However, for generating circuit netlists of more complex functionalities, such as floating-point operations,
we utilize built-in Intellectual Property (IP) libraries in the Synopsys Design Compiler (DC) [Syn10], a
commercial ASIC synthesis tool. Synopsys DC generates Boolean netlists of these circuits, which we further
process with the Yosys-ABC toolchain to re-map them to LUT-based representations.
In the following, we focus on the Yosys-ABC toolchain and our customizations to tailor its output to the
requirements of our LUT protocols.

Inputs δ 2 3 4 5 6 7 8 9 10 11

N-MT [bits] 138 276 414 552 690 828 966 1,104 1,242 1,518

OP-LUT [bits] 210 291 500 1,277 4,354 ≈ 214 ≈ 216 ≈ 218 ≈ 220 ≈ 222

OP-LUT / N-MT 0.66 0.95 0.85 0.43 0.16 0.05 0.01 < 0.01 < 0.01 < 0.01

SP-LUT [bits] 196 232 256 280 326 372 511 768 1,288 2,316
SP-LUT / N-MT 0.70 1.19 1.62 1.97 2.12 2.23 1.89 1.44 0.96 0.66

Table 5: Communication of OP-LUT (§4.2) with
(
N
1

)
OT and SP-LUT (§4.4) compared to a Boolean circuit

evaluated with N -MT for a δ-input to σ = 1 output bit function with δ − 1 AND gates and 138 bit
communication per AND gate (§3). The results for OP-LUT and SP-LUT that achieve the best performance
compared to N -MT are marked in bold.

5.2 Customizing LUT-based Synthesis

ABC is very fitting for our purposes because it maps circuits to variable δ-input LUTs in a generic manner
and allows the user to determine the maximum input size δmax allowed, regardless of any target-specific
FPGA architecture details. The Yosys-ABC toolchain works by structuring the Boolean circuit network into
a specific type of Directed Acyclic Graph (DAG) consisting of 2-input, 1-output nodes, and then maps this
graph into δ-input LUTs by computing δ-feasible cuts for each graph node. A cut of a node n is a set of
nodes (called leaves of the respective cut), such that each path from the circuit primary inputs to node n
passes through at least one of these leaves. A cut is δ-feasible if the number of leaves in it does not exceed δ.
FPGA mapping either enumerates all or some selected cuts of each node according to the optimization metric.
Then, depth-optimized mapping is performed to select the optimal cuts, followed by area recovery heuristics,
after which the cuts are mapped to LUTs according to their sizes. Additional details on the DAG-based
delay-optimized technology mapping using δ-feasible cuts can be found in [RME+12,MCCB07,MCB07].

14

For the generation of our netlists, we limit the maximum number of LUT inputs to δmax = 4 for OP-LUT
and δmax = 8 for SP-LUT, since it provides a good performance trade-off as we describe later in §6.1. We
optimize for depth, followed by area recovery, and ensure that the circuits remain topologically ordered.

5.3 Generating Multi-Output LUTs

Extending hardware synthesis tools beyond their original purposes and tailoring their output to serve the
purposes of secure computation requires radical engineering and customizations. As discussed in §4.5, our
LUT protocols are significantly optimized by combining LUTs with overlapping inputs and hence multiple
output bits. However, ABC does not support mapping to multi-output LUTs by default (and neither do
commercial hardware synthesis tools except for 2-output LUTs). This remains largely an open and un-
solved research area, without efficient tools. Some research efforts such as the work in [MMRR10] propose
δσ-feasible cuts mapping to control both the number of inputs δ and the number of outputs σ in mapping
circuit cuts. However, their implementation is not available and their approach focuses on contributing to
AIG-based mapping algorithms in general and is not specifically focused on mapping to multi-output LUTs.
We handle this by post-processing the ABC-generated single-output LUT circuits to map them to multi-
output LUT circuits. As already mentioned, we map circuit descriptions to variable-input LUT-based netlists
with an allowed maximum of 4 or 8 inputs per LUT using ABC. The generated circuits are then post-
processed and layered from input to output according to the input-output dependencies. Each LUT is
allocated to its layer according to its topological depth in the circuit. LUTs within the same circuit layer
which share one or more common inputs are grouped together into a single multi-output LUT incrementally.
Each final multi-output LUT is defined by a set of a maximum of 4 or 8 inputs, and the number of grouped
LUTs, their truth-table values, and the subset of inputs on which the output of the included LUT depends.
In a second optimization round, LUTs which have no shared inputs but can be combined together while still
having a union of a maximum of 4 or 8 inputs are grouped together. It is important to only group LUTs
within the same layer to avoid grouping across layers that may increase the circuit depth.
Furthermore, ABC maps circuit descriptions into LUTs only, whereas our protocols allow function represen-
tations with both LUTs and XORs. In the post-processing, we map 2-input LUTs that represent the XOR
function into explicit XOR gates. Extracting all XORs to reduce the overall number and inputs sizes to
LUTs is an interesting direction for future research.

6 Evaluation

In this section we theoretically compare the performance of our LUT-based approaches to Boolean cir-
cuits (§6.1). Since it is not possible to give generic statements about the efficiency comparison between our
LUT protocols and Boolean circuits, we then give an empirical performance comparison on typical basic
operations (§6.2). All protocols are evaluated for 128-bit symmetric security, i.e., κ = 128.

6.1 Comparison to Boolean Circuits

In the following, we theoretically compare our LUT representation with a 2-input Boolean circuits repre-
sentation. We first discuss the advantages of finding an efficient function representation as interconnected
LUTs compared to a Boolean circuit. Then, we compare the communication and round complexity of a single
δ-input LUT with σ = 1 output bit to a Boolean circuit equivalent. Finally, we discuss both representations
when realizing functionalities with σ > 1 output bits. We stress that, even though we discuss and compare
them separately, our LUT protocols can be easily combined with Boolean circuits using GMW at no cost,
achieving the best of both worlds.

Efficient Function Representations. Finding an efficient Boolean circuit representation with low number
of AND gates and small multiplicative depth has been subject to extensive research. E.g., [BP05] have
shown a lower bound on the number of AND gates for the Hamming weight functionality and [ARS+15]
have developed a block-cipher with a small number of AND gates and a small AND depth. Such efficient

15

Boolean representations, however, are non-trivial to identify for more complex functions. Representing the
function as a LUT would reduce the complexity of finding an efficient representation to some extent, since the
costs for securely evaluating a LUT only depend on the number of inputs and outputs and not on its internal
functionality. Hence, the optimization process can be stopped after the functionality has been separated
into connected LUTs and does not need to identify an efficient representation of the functionality as it is the
case for Boolean circuits. As an example, consider the AES S-box, which has 8 input bits and 8 output bits.
While [BP12] have used a special Greedy-approach to identify a small Boolean circuit, a LUT representation
could be obtained by simply evaluating the S-box on all 28 possible inputs.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

A
dd

−
R

C

A
dd

−
B

K

A
dd

−
LF

G
T

−
S

eq

G
T

−
T

re
e

F
P

−
G

T

E
Q

S
−

B
ox

C
om

m
un

ic
at

io
n

[B
yt

es
]

Yao/2−MT
N−MT

OP−LUT
SP−LUT

(a) Communication Small Operations

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

M
ul

−
R

C

M
ul

−
LF

F
P

−
A

dd

F
P

−
M

ul

F
P

−
E

xp
2

F
P

−
Lo

g2

F
P

−
D

iv

F
P

−
S

qr
t

C
om

m
un

ic
at

io
n

[B
yt

es
]

Yao/2−MT
N−MT

OP−LUT
SP−LUT

(b) Communication Large Operations

 0

 5

 10

 15

 20

 25

 30

 35

A
dd

−
R

C

A
dd

−
B

K

A
dd

−
LF

G
T

−
S

eq

G
T

−
T

re
e

F
P

−
G

T

E
Q

S
−

B
ox

#R
ou

nd
s

2/N−MT
OP−LUT
SP−LUT

(c) Rounds Small Operations

 0

 50

 100

 150

 200

 250

 300

 350
M

ul
−

R
C

M
ul

−
LF

F
P

−
A

dd

F
P

−
M

ul

F
P

−
E

xp
2

F
P

−
Lo

g2

F
P

−
D

iv

F
P

−
S

qr
t

#R
ou

nd
s

2/N−MT
OP−LUT
SP−LUT

(d) Rounds Large Operations

Figure 3: Total Communication (a,b) using Yao’s garbled circuits (§2.4) and 2-MT (§2.5), our
N -MT (§3), our OP-LUT (δ ≤ 4 inputs, cf. §4.3) and our SP-LUT (δ ≤ 8 inputs, cf. §4.4) and
round complexity in the online phase (c,d) for a Boolean circuits evaluation using GMW (MT),
OP-LUT, and SP-LUT for 32-bit operations and the 8-bit AES S-box. Yao’s round complexity is
constant and therefore not included.

Single-Output Functionalities. The communication complexity of a Boolean circuit component with δ
inputs depends on the number of AND gates in its function representation, which we bounded by δ − 1
(cf. §2.6). The communication complexity of a δ-input LUT, on the other hand, only depends on δ. Building
on these observations, we outline the best achievable communication ratio for a δ-input functionality of our
OP-LUT and SP-LUT protocols to a Boolean circuit, evaluated using N -MT, in Tab. 5. We observe that the
best communication ratio for OP-LUT is factor 0.95 for δ = 3 and for SP-LUT is factor 2.2 for δ = 7. Hence,
we limit the possible LUT sizes for OP-LUT to δ ∈ [2, 4] and for SP-LUT to δ ∈ [2, 8]. Note, however, that
using LUTs with more inputs can result in better overall performance due to improved round complexity.

16

The round complexity when evaluating a Boolean circuit using GMW depends on the AND depth, which
we bounded by log2 δ (cf. §2.6). A δ-input LUT, on the other hand, always requires one communication
round, independently of δ (plus one global communication round for the whole circuit with SP-LUT). Hence,
for basic operations, we expect a significant decrease in rounds by factor log2 δ.

Multi-Output Functionalities. For functionalities with multiple outputs, we assume that an optimal
circuit is constructed for each output bit separately, resulting in a Boolean circuit with σ(δ − 1) AND gates
(cf. §2.6). However, many functions can be optimized and computed more efficiently. In contrast, our
LUT protocols can easily be extended to handle functionalities with multiple outputs without requiring an
additional logic optimization step (cf. §4.5) but at the cost of at least σ2δ bits communication, which cannot
be reduced via logic optimization. Hence, a Boolean representation can achieve better communication for
multi-output bit functionalities where the number of AND gates can be highly optimized (e.g., ripple-carry
addition), while our LUT representation achieves better communication for functionalities with many AND
gates per input and output bits (e.g., the AES S-box). Nevertheless, our LUT representation needs fewer
communication rounds, independently of the number of outputs.
Network LAN WAN

AES Encryption
Blocks 1 1,000 1 1,000
Protocol Yao 2-MT N -MT OP-LUT SP-LUT Yao 2-MT N -MT OP-LUT SP-LUT Yao 2-MT N -MT OP-LUT SP-LUT Yao 2-MT N -MT OP-LUT SP-LUT
Setup [s] 0.007 0.003 0.004 0.003 0.003 1.395 0.822 0.688 0.781 0.970 0.300 0.423 0.396 0.502 0.180 50.758 25.552 13.719 19.315 2.699
Online [s] 0.003 0.006 0.005 0.006 0.137 0.028 0.024 0.453 0.228 2.397 1.642 0.790 2.234 2.808 2.102 11.080
Total [s] 0.010 0.009 0.010 0.008 0.009 1.561 0.850 0.720 0.805 1.419 0.528 2.823 2.793 2144 0.970 52.992 28.360 16.526 21.417 13.779
Sent [MB] 0.194 0.184 0.140 0.127 0.055 172 169 96 103 44 0.194 0.184 0.140 0.127 0.055 172 169 96 103 44

Private Set Intersection
Set Sizes 256 16,384 256 16,384
Protocol Yao 2-MT N -MT OP-LUT SP-LUT Yao 2-MT N -MT OP-LUT SP-LUT Yao 2-MT N -MT OP-LUT SP-LUT Yao 2-MT N -MT OP-LUT SP-LUT
Setup [s] 0.113 0.069 0.057 0.062 0.267 3.180 2.117 1.784 1.819 5.878 2.414 1.157 1.069 1.237 0.901 61.834 31.347 16.533 18.730 9.857
Online [s] 0.026 0.003 0.004 0.022 1.227 0.079 0.132 0.781 0.802 0.457 0.348 0.693 36.750 1.867 1.742 4.789
Total [s] 0.139 0.072 0.060 0.066 0.310 4.407 2.195 1.862 1.951 6.659 3.217 1.705 1.526 1.585 1.594 98.584 33.214 18.400 20.472 14.089
Sent [MB] 6.923 4.320 2.475 2.971 1.247 339.2 209.4 119.6 144.0 58.6 6.923 4.320 2.475 2.971 1.247 339.2 209.4 119.6 144.0 58.6

Table 6: Summary of our application results on AES and PSI for Yao’s garbled circuits (§2.4), 2-MT (§2.5)
and our N -MT (§3.5) for GMW, and our OP-LUT (§4.3) and SP-LUT (§4.4) protocols. Best results marked
in bold.

6.2 Basic Operations

A general comparison between our LUT protocols and 2-input gate Boolean circuit-based techniques is
difficult to perform, since the performance of both is very function-dependent. To highlight the improvements,
we compare the efficiency of several basic operations: addition (ripple-carry Add-RC, Brent-Kung Add-
BK, and Ladner-Fischer Add-LF) [SZ13], multiplication (ripple-carry Mul-RC and Ladner-Fischer Mul-
LF) [SZ13], equality (EQ), greater-than (sequential GT-Seq and tree-based GT-Tree) [SZ13], floating point
operations [DDK+15], and the AES S-Box [BP12]. For each functionality, we give the total communication
(setup + online) in bytes and the online round complexity (the setup round complexity is constant). We
compare Yao’s garbled circuits (256 bits per AND gate, cf. [ZRE15]) and the 2-MT multiplication triple
generation (260 bits per AND gate, cf. [ALSZ13], decreased to 256 to match Yao’s communication), the N -
MT triple generation (138 bits per AND gate, cf. §3.5), our OP-LUT protocol (using δ ∈ [2, 4] input LUTs,
cf. §4.3) and our SP-LUT approach (using δ ∈ [2, 8] input LUTs, cf. §4.4). Note that for SP-LUT we omit
the extra round that is added due to the role-switching optimization (cf. §4.5), since it amortizes over the
whole protocol execution. Also, we omit Yao’s garbled circuits in the round complexity comparison, since
it has constant rounds for every functionality. We generate the LUT representations of the basic operations
using optimized circuit descriptions fed into our automated toolchain (cf. §5). We present the results for
32-bit operations in Fig. 3.

From the results we can observe that our SP-LUT protocol nearly always has the lowest communication,
achieving up to factor 2 less communication than the N -MT generation, which is the next best. Our
OP-LUT protocol always performs worse than the N -MT generation but most of the times achieves lower
communication than Yao’s garbled circuits and the regular 2-MT generation. The only operations where
our LUT protocols perform worse than the Boolean circuit-based protocols are the ripple-carry adder (Add-

17

RC), the multiplication circuits (Mul-RC and Mul-LF), and the sequential greater-than (GT-Seq), where our
SP-LUT approach performs similar to Yao and 2-MT. As discussed in §6.1, this is probably due to the low
multiplicative complexity of the ripple-carry addition as well as the high number of outputs per LUT. Also
notably, our LUT protocols require less communication for the tree-based greater-than (GT-Tree) than for
the sequential greater-than (GT-Seq), even though the GT-Tree circuit has around three times more ANDs
than the GT-Seq circuit. Hence, building on certain circuit structures results in more efficient LUT circuits
and there is still potential for further optimizations.

Regarding the round complexity, we emphasize that our LUT approaches are almost always better than
2-input gate Boolean circuits, except for the ripple-carry adder (Add-RC) evaluated with OP-LUT. On
average, OP-LUT reduces the number of communication rounds by factor 2x while SP-LUT even reduces
them much further by factor 3-4x.

7 Applications

In this section we evaluate the concrete benefits of our LUT protocols on two practical examples: privacy-
preserving AES (§7.1) and private set intersection (§7.2). We compare our OP-LUT and SP-LUT protocols
to a Boolean 2-input gate circuit, evaluated using Yao’s garbled circuits and GMW using the 2-MT and
N -MT pre-computation in a LAN and WAN setting and summarize our results in Tab. 6.

Benchmark environment. We implement our OP-LUT with
(
N
1

)
OT pre-computation and SP-LUT

protocols in the ABY framework of [DSZ15], written in C++. We benchmark the protocols in two settings:
a LAN setting, consisting of two Intel i7 Haswell PCs connected by a Gigabit network, and a WAN setting,
consisting of a Google n1-standard-4 instance with 4 vCPUs and an Amazon m3Xlarge instance with 4
vCPUs which are connected by a network with 28 MBit bandwidth and 122 ms ping latency on average.
We argue that the WAN setting presents a practical MPC setting, since the machines are controlled by
two different cloud providers and located at two different continents in the US and Europe. We run the
experiments using 4 threads on each machine, average the results over 10 executions, and dismiss outliers
with more than twice the runtime. For Yao’s garbled circuits, we perform multi-threading by splitting the
original circuit into four separate parts that are evaluated in parallel. The variance in the LAN setting was
≈ 1% and in the WAN setting ≈ 5%.

Implementation features. Our LUT protocols work in the pre-processing model, where setup and online
phase are executed separately. Both phases can be combined in case of an ad-hoc execution, resulting in
a lower total time. To process a shared value, our LUT protocols need to read, process, and store a table
entry, in contrast to Boolean circuit-based protocols, which can process multiple shares at once. Thereby,
the amortization that happens when the same circuit is evaluated a large number of times in parallel is less
compared to a Boolean circuit-based evaluation. Finally, our LUT protocols pre-compute and store tables,
which results in a larger memory footprint compared to GMW, which only stores single bits. However, the
storage requirement is still much lower than for pre-computed Yao’s garbled circuits and the table generation
and evaluation can be pipelined, similar to garbled circuits [HEKM11].

7.1 AES Encryption

One of the most widely used benchmark examples for secure computation is AES, which has applications
in encrypted password authentication [Sec15]. We assume that a client holds either one or 1,000 plaintexts,
which should be encrypted with an expanded key, held by a server. We use the Boolean AES S-box circuit
from [BP12] which has 34 AND gates and a multiplicative depth of 4. The OP-LUT representation of the
S-box consists of a network of δ = 2 to σ = 1, δ = 3 to σ = 2, and δ = 4 to σ = 4 LUTs which requires 795
bytes of communication and has 3 communication rounds. The SP-LUT representation of the AES S-box
uses a δ = 8 input to σ = 8 output LUT to evaluate an S-box.

From the results in Tab. 6, we can observe that no protocol consistently performs best across all experi-
ments. This can be explained by a varying bottleneck, depending on the evaluated function and the setting.

18

In the AES(1,000) LAN setting, the N -MT protocol performs best since it has a good balance between
computation and communication. In the AES(1) WAN setting, Yao’s protocol performs best, since it has
the lowest number of communication rounds. Finally, in the AES(1,000) WAN setting, the SP-LUT protocol
performs best, since it has the lowest communication. The 2-MT and N -MT approaches have the same
online phase but the setup phase of the N -MT protocol is more efficient due to the lower communication.
For AES(1000), Yao’s protocol performs worst since its communication is uni-directional from garbler to
the evaluator as opposed to the other protocols, where the communication is evenly divided between both
parties.

7.2 Private Set Intersection

In the private-set intersection (PSI) application, two parties want to identify the intersection of their private
sets without revealing any element that is not in the intersection. PSI can be used for computing the
revenue of online advertisement, for finding common contacts, or for genomic computations [PSSZ15]. For
our experiments, we use the circuit-based PSI protocol of [PSSZ15], which computes the intersection between
two sets by first mapping the elements into hash tables and then performing a pair-wise comparison between
each bin of the hash tables. We compute the intersection between two sets of either 256 or 16,384 elements
with length 32-bit. The Boolean circuit for sets of 256 elements has 138,600 AND gates and for sets of 16,384
elements has 6,724,062 AND gates and both have a multiplicative depth of 5. The OP-LUT circuit for 256
elements has 44,352 δ = 4 to σ = 1 LUTs and 5,544 δ = 2 to σ = 1 LUTs and the circuit for 16,384 elements
has 2,123,388 δ = 4 to σ = 1 LUTs and 353,898 δ = 2 to σ = 1 LUTs and both have a depth of 4. The
SP-LUT circuit for 256 elements has 16,632 δ = 8 to σ = 1 and 5,544 δ = 5 to σ = 1 LUTs and the circuit
for 16,384 elements has 707,796 δ = 8 to σ = 1 and 353,898 δ = 6 to σ = 1 LUTs and both have a depth
of 3.

As shown in Tab. 6, the overall best performing protocol for the PSI experiments in the LAN and PSI(256)
WAN settings is our N -MT generation. In the PSI(256) WAN setting, our LUT protocols are only slightly
slower, while in the PSI(16,384) setting, our SP-LUT protocol achieves the best performance. The reason
for the poor performance of SP-LUT in the LAN setting is its high computation overhead, which is due to
the high number of δ = 8 to σ = 1 LUTs, which is around factor 5 higher than for the N -MT protocol.
Nevertheless, in the WAN setting, where communication becomes the bottleneck, the computation overhead
of our SP-LUT protocol amortizes and it performs better than the standard 2-MT generation. Yao’s garbled
circuits protocol performs poorly in the LAN and WAN settings, since it has larger communication per AND
gate than the other protocols and the number of input wires to the circuit, which require κ bit communication
in the online phase, is as high as the number of AND gates. Finally, the Boolean circuits protocols have a
fast online time in the LAN setting, since the number of communication rounds is low, but OP-LUT achieves
better online time in the WAN setting, due to the higher latency.

8 Related Work

In this section, we discuss related work on improving secure computation (§8.1), secure computation protocols
that represent the functionality as network of multi-input gates (§8.2), and Boolean circuit compilers (§8.3).

8.1 Efficient Secure Computation

One of the main reasons why secure computation was believed to be inefficient was the high number of
symmetric cryptographic primitive invocations. In particular, in Yao’s garbled circuits the circuit garbler
requires 4 invocations to garble an AND gate while for GMW, both parties require 6 invocations to generate
a multiplication triple during OT extension. A dramatic improvement on the computation efficiency of
secure computation protocols has come with the introduction of the AES-NI processor extensions [KSS12,
BHKR13,GLNP15]. Currently, the most efficient instantiation is the fixed-key AES garbling of [BHKR13],
which imposes an ideal permutation assumption on AES. Alternative instantiations that require weaker

19

assumptions and use pipelining techniques to improve efficiency have been given in [GLNP15]. In [ZRE15]
it was shown how to reduce the communication in Yao’s garbled circuits to 2κ bits per AND gate and it
was proven that this matches the lower bound. In [KKS16] the authors utilize the fact that AND gates in
Yao’s garbled circuits where one party knows the plaintext input can be garbled at lower cost to reduce the
communication for specific circuits.
One approach to circumvent the high cost for certain operations are mixed-protocols, which mix secure
computation protocols that operate on arithmetic and Boolean circuits. Thereby, a function can be divided
in sub-blocks that are evaluated in the secure computation protocol for which the representation is more
efficient. The TASTY framework [HKS+10] combined additively homomorphic encryption and Yao’s garbled
circuits protocol. The ABY framework [DSZ15] used OT instead of homomorphic encryption to compute
the multiplication. Our work can be combined with these approaches to achieve another degree of freedom
when constructing mixed-protocols.

8.2 Multi-Input Gates in Secure Computation

The gate-evaluation secret sharing approach (GESS) [Kol05] is an information theoretic variant of garbled
circuits that can be based on OT and performs secure computation in a constant number of rounds. The
idea of GESS is to process the circuit from the outputs to the inputs such that shares on the output wires
determine the shares on the input wires, which leads to a quadratic size increase in circuit depth for shares on
the input wires. Sliced-GESS [KK12] efficiently extends GESS to circuits with higher depth at the cost of an
increased number of communication rounds by slicing the circuit into sub-circuits of constant depth, which
are connected via a string selection OT (security against a covert client can be achieved using longer strings
as selection bits in the OTs). The efficiency of sliced-GESS is not experimentally evaluated but according
to an unpublished full version2, the performance for a rectangular circuit is (112 + κ)/3 = 80-bit per gate,
where each slice has depth d′ = 3, κ = 128 and with the OT extension optimization of [KK13, ALSZ13],
which reduces the number of sent ciphertexts from two to one. In contrast to sliced-GESS, our SP-LUT
approach can achieve less communication for some functionalities, e.g., as little as half a ciphertext (62 bit)
per AND gate when computing the equality between two 7 bit values (cf. Tab. 5 where the equality circuit
has 6 AND gates).
[IKM+13] outlines a scheme called one-time truth tables (OTTTs), which relies on representing the whole
function as a single truth-table and allows the evaluation of an arbitrary-size truth-table in a constant num-
ber of rounds and with linear communication complexity in the input length during the online phase using
correlated randomness that is pre-computed in the setup phase. However, the scheme scales poorly for
functions with large input size as the setup phase requires super-polynomial communication and storage in
the length of the function’s input. [DZ16] tailors the pre-computed randomness to AES S-boxes to allow
an efficient online evaluation of AES with security against malicious adversaries. Their setup phase, how-
ever, becomes very communication intensive, since all possible outcomes for every AES S-box have to be
pre-computed once. We present and analyze the efficiency of [IKM+13] with pre-computation using [DZ16]
in §4.2 and give a protocol that improves on the communication complexity in the setup phase for practical
input sizes in §4.3.
FastGC [HEKM11] and its memory-efficient optimization of [HS13] used Yao’s protocol to evaluate multi-
input gates. Using the garbled row reduction technique [NPS99], this approach requires κσ · (2δ − 1) bits
communication in the setup phase for a LUT with δ input and σ output bits and, in the online phase, requires
constant rounds and no communication. However, a traditional 2-input gate Boolean circuit evaluation using
Yao’s protocol is more efficient than a multi-input gate evaluation, since the communication for multi-input
garbled tables scales exponentially in δ.
A concurrent and independent work introduces TinyTable [DNNR16], a malicious secure computation proto-
col that uses pre-computed tables for secure evaluation of functions. TinyTable was shown to achieve better
online communication for 2-input AND gates in the semi-honest model. For tables with more inputs, its
online phase was evaluated only on the AES SBox. In order to pre-compute the tables, [DNNR16] uses the

2Available at http://www.cs.technion.ac.il/~ranjit/papers/slicegess.pdf.

20

http://www.cs.technion.ac.il/~ranjit/papers/slicegess.pdf

same idea as [DZ16], outlined in §4.2, namely to pre-compute the circuit once for every input combination,
which results in a large communication overhead in the setup phase.
A recent work [GLMY16] proposes to garble a circuit as independent smaller sub-components, which reduces
the communication cost in the online phase but results in a multi-round protocol and more overall commu-
nication.
An ongoing and independent work outlines a polynomial-based garbling scheme in Yao’s protocol [MPS15].
The scheme requires the function to be represented as building blocks with multiple inputs instead of 2-input
gates. We view their work as orthogonal to ours, since they focus on the constant-round Yao’s protocol while
our approach focuses on multi-round secret-sharing based protocols.
New garbling techniques that allow Yao’s garbled circuits protocol to evaluate several functions more effi-
ciently than a regular linear garbling scheme were given in [BMR16]. In particular, the authors showed that
their garbling techniques allows a more efficient evaluation of arithmetic circuits and multi-input threshold
gates in Boolean circuits. For general Boolean circuit constructions, the authors give a construction that
is of theoretical interest since it circumvents the 2κ lower bound of [ZRE15] when evaluating a single AND
gate but does not generalize to arbitrary circuits.
Our techniques for evaluating d-input gates via 1-out-of-2d OT on bitstrings is a very natural generalization of
the original GMW construction for evaluating 2-input gates using 1-out-of-4 OT as described in [Gol04, Sect.
7.3.3]. The main new observation is that using the 1-out-of-N OT extension protocol of [KK13] (and the
additional optimizations we propose in our work), this can be done in a highly efficient manner. This ob-
servation was also made and used in the concurrent and independent work of [KKW17], where the authors
showed how to efficiently overlay a large number of switch branches in secure computation and propose to
evaluate switch statements in GMW using the 1-out-of-N OT extension protocol of [KK13]. They also stress
that their scheme can be adapted to efficiently evaluate multi-input gates in the GMW protocol.

8.3 Boolean Circuit Compilers

Circuit compilers abstract the complexity of designing Boolean circuits by compiling a high level language
(such as Java or C or Verilog) into a Boolean circuit. CBMC-GC [HFKV12] uses a model checker to generate
a Boolean circuit from a description in C. The portable circuit format (PCF) [KSMB13] compiles high level
code into an assembler-like representation. The programming framework ObliVM [LWN+15] introduces a
special purpose language which is compiled into a memory-trace oblivious program based on Boolean circuits
and ORAM. TinyGarble [SHS+15, DDK+15] presents a radically different approach of leveraging already
established hardware synthesis tools within a fully automated toolchain to compile a circuit description in a
hardware description language such as VHDL or Verilog into a Boolean circuit. In our work, we go beyond
the TinyGarble approach and utilize and re-purpose LUT-based synthesis tools which are used to map circuit
implementations on Field Programmable Gate Arrays (FPGAs) to generate LUT representations for a wide
range of functions.

9 Conclusion and Future Work

The current bottleneck in most implementations of semi-honest secure two-party computation protocols are
the network bandwidth and latency. In this work, we show how to significantly reduce the communication
as well as the round complexity at the cost of increased computation. For secure computation on Boolean
circuits, we reduce the communication from 2κ-bit to nearly a single κ-bit ciphertext per AND gate. Fur-
thermore, we outline how to significantly improve round complexity and the communication complexity by
representing the functionality as a network of lookup tables (LUTs). We introduce two protocols, OP-LUT
and SP-LUT, for evaluating LUTs and a compiler that leverages a hardware synthesis tool that we cus-
tomize to automatically translate functions from a high-level description to a LUT representation. Finally,
we show that our SP-LUT protocol achieves a remarkable 3-4x better round complexity and reduces the
communication beyond even the one κ-bit per AND gate boundary that we achieve by evaluating a Boolean
circuit using GMW even with our improved pre-computation for many basic operations. In addition, our

21

LUT protocols can be freely combined with a Boolean circuit evaluation using GMW, incurring no additional
costs and achieving the benefits of both representations.

We see multiple interesting research questions for future work: A) Is it possible to improve the LUT
compiler? Even though the hardware synthesis tools already generated optimized circuits with good perfor-
mance, we see potential in extracting XOR gates from LUTs, since XORs can be evaluated for free. This
would result in LUTs with less inputs and outputs. B) Is it possible to combine the efficient setup phase of
our SP-LUT approach with the efficient online phase of our OP-LUT approach and thereby obtain a protocol
that achieves both, an efficient setup as well as an efficient online phase? C) Do our protocols extend to
stronger adversaries?

Acknowledgments

This work has been partially funded by the European Union’s 7th Framework Program (FP7/2007-2013)
under grant agreement n.609611 (PRACTICE), by the German Federal Ministry of Education and Research
(BMBF) within CRISP, by the DFG as part of projects S5 and E4 within the CRC 1119 CROSSING. This
work is in parts supported by NSF awards 1619261 and 1649423 and AFOSR/MURI FA9550-14-1-0351.

References

[ALSZ13] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer and
extensions for faster secure computation. In CCS’13, pages 535–548. ACM, 2013.

[Alt] Altera Inc. Quartus prime design software. https://www.altera.com/products/

design-software/fpga-design/quartus-prime/overview.html.

[ARS+15] M. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers for MPC and
FHE. In EUROCRYPT’15, volume 9056 of LNCS, pages 430–454. Springer, 2015.

[BB94] M. L. Bonet and S. R. Buss. Size-depth tradeoffs for Boolean fomulae. Information Processing
Letters, 49(3):151–155, 1994.

[BCD+09] P. Bogetoft, D. L. Christensen, I. Damg̊ard, M. Geisler, T. P. Jakobsen, M. Krøigaard, J. D.
Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I. Schwartzbach, and T. Toft. Secure multiparty
computation goes live. In FC’09, volume 5628 of LNCS, pages 325–343. Springer, 2009.

[Ber] Berkeley Logic Synthesis. ABC: a system for sequential synthesis and verification, release 70930.
http://www.eecs.berkeley.edu/~alanmi/abc/.

[BHKR13] M. Bellare, V. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-key
blockcipher. In S&P’13, pages 478–492. IEEE, 2013.

[BJSV15] D. Bogdanov, M. Jõemets, S. Siim, and M. Vaht. How the Estonian tax and customs board
evaluated a tax fraud detection system based on secure multi-party computation. In FC’15,
volume 8975 of LNCS, pages 227–234. Springer, 2015.

[BMR16] M. Ball, T. Malkin, and M. Rosulek. Garbling gadgets for boolean and arithmetic circuits. In
CCS’16, pages 565–577. ACM, 2016.

[BP05] J. Boyar and R. Peralta. The exact multiplicative complexity of the Hamming weight function.
Electronic Colloquium on Computational Complexity (ECCC’05), TR05(049), 2005.

[BP12] J. Boyar and R. Peralta. A small depth-16 circuit for the AES S-box. In Information Security and
Privacy Research (SEC’12), volume 376 of IFIP Advances in Information and Communication
Technology, pages 287–298. Springer, 2012.

22

https://www.altera.com/products/design-software/fpga-design/quartus-prime/overview.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/overview.html
http://www.eecs.berkeley.edu/~alanmi/abc/

[CO15] T. Chou and C. Orlandi. The simplest protocol for oblivious transfer. In Progress in Cryptology
– LATINCRYPT’15, volume 9230 of LNCS, pages 40–58. Springer, 2015.

[DDK+15] D. Demmler, G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, and S. Zeitouni. Au-
tomated synthesis of optimized circuits for secure computation. In CCS’15, pages 1504–1517.
ACM, 2015.

[DKS+17] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schneider, Shaza Zeitouni,
and Michael Zohner. Pushing the communication barrier in secure computation using lookup
tables. In 24. Annual Network and Distributed System Security Symposium (NDSS’17). The
Internet Society, 2017.

[DNNR16] I. Damg̊ard, J. B. Nielsen, M. Nielsen, and S. Ranellucci. Gate-scrambling revisited - or:
The TinyTable protocol for 2-party secure computation. Cryptology ePrint Archive, Report
2016/695, 2016.

[DSZ15] D. Demmler, T. Schneider, and M. Zohner. ABY - a framework for efficient mixed-protocol
secure two-party computation. In NDSS’15. The Internet Society, 2015.

[DZ16] I. Damg̊ard and R. W. Zakarias. Fast oblivious AES: A dedicated application of the MiniMac
protocol. In AFRICACRYPT’16, volume 9646 of LNCS, pages 245–264. Springer, 2016.

[FJJBT16] T. Kasper Frederiksen, T. P. Jakobsen, Nielsen J. B, and R. Trifiletti. On the complexity of
additively homomorphic UC commitments. In TCC’16, volume 9562 of LNCS, pages 542–565.
Springer, 2016.

[GLMY16] A. Groce, A. Ledger, A. J. Malozemoff, and A. Yerukhimovich. CompGC: Efficient offline/online
semi-honest two-party computation. Cryptology ePrint Archive, Report 2016/458, 2016.

[GLNP15] S. Gueron, Y. Lindell, A. Nof, and B. Pinkas. Fast garbling of circuits under standard assump-
tions. In CCS’15, pages 567–578. ACM, 2015.

[GM16] S. Gueron and N. Mouha. Simpira v2: A family of efficient permutations using the AES round
function. Cryptology ePrint Archive, Report 2016/122, 2016.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In STOC’87, pages 218–229. ACM, 1987.

[Gol04] O. Goldreich. Foundations of Cryptography, volume 2: Basic Applications. Cambridge University
Press, 2004.

[HEKM11] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled
circuits. In USENIX Security’11, pages 539–554. USENIX, 2011.

[HFKV12] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith. Secure two-party computations in ANSI
C. In CCS’12, pages 772–783. ACM, 2012.

[HKS+10] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: Tool for
Automating Secure Two-partY computations. In CCS’10, pages 451–462. ACM, 2010.

[HS13] W. Henecka and T. Schneider. Faster secure two-party computation with less memory. In ACM
Symposium on Information, Computer and Communications Security (ASIACCS’13), pages
437–446. ACM, 2013.

[Hua12] Y. Huang. Practical secure two-party computation. Ph.D. Thesis, 2012. Online: https:

//yhuangpress.files.wordpress.com/2014/02/dissertation.pdf.

23

https://yhuangpress.files.wordpress.com/2014/02/dissertation.pdf
https://yhuangpress.files.wordpress.com/2014/02/dissertation.pdf

[IKM+13] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-Cherniavsky. On the power of
correlated randomness in secure computation. In TCC’13, volume 7785 of LNCS, pages 600–620.
Springer, 2013.

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In
CRYPTO’03, volume 2729 of LNCS, pages 145–161. Springer, 2003.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations.
In STOC’89, pages 44–61. ACM, 1989.

[KK12] V. Kolesnikov and R. Kumaresan. Improved secure two-party computation via information-
theoretic garbled circuits. In SCN’12, volume 7485 of LNCS, pages 205–221. Springer, 2012.

[KK13] V. Kolesnikov and R. Kumaresan. Improved OT extension for transferring short secrets. In
CRYPTO’13, volume 8043 of LNCS, pages 54–70. Springer, 2013.

[KKS16] C. Kempka, R. Kikuchi, and K. Suzuki. How to circumvent the two-ciphertext lower bound for
linear garbling schemes. In ASIACRYPT’16, volume 10032 of LNCS, pages 967–997. Springer,
2016.

[KKW17] W. S. Kennedy, V. Kolesnikov, and G. T. Wilfong. Overlaying conditional circuit clauses for
secure computation. In ASIACRYPT’17, volume 10625 of LNCS, pages 499–528. Springer, 2017.

[Kol05] V. Kolesnikov. Gate evaluation secret sharing and secure one-round two-party computation. In
ASIACRYPT’05, volume 3788 of LNCS, pages 136–155. Springer, 2005.

[KS08] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications.
In ICALP’08, volume 5126 of LNCS, pages 486–498. Springer, 2008.

[KSMB13] B. Kreuter, A. Shelat, B. Mood, and K. Butler. PCF: A portable circuit format for scalable
two-party secure computation. In USENIX Security’13, pages 321–336. USENIX, 2013.

[KSS12] B. Kreuter, A. Shelat, and C. Shen. Billion-gate secure computation with malicious adversaries.
In USENIX Security’12, pages 285–300. USENIX, 2012.

[LWN+15] C. Liu, X. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A programming framework for
secure computation. In S&P’15, pages 359–376. IEEE, 2015.

[MCB07] A. Mishchenko, S. Chatterjee, and R. K. Brayton. Improvements to technology mapping for
LUT-based FPGAs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAS’07), 26(2):240–253, 2007.

[MCCB07] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton. Combinational and sequential map-
ping with priority cuts. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD’07), pages 354–361. IEEE, 2007.

[MMRR10] O. Martinello, F. S. Marques, R. P. Ribas, and A. I. Reis. KL-cuts: A new approach for logic
synthesis targeting multiple output blocks. In Design, Automation Test in Europe Conference
Exhibition (DATE’10), pages 777–782. IEEE, 2010.

[MNPS04] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party computation
system. In USENIX Security’04, pages 287–302. USENIX, 2004.

[MPS15] T. Malkin, V. Pastro, and A. Shelat. The whole is greater than the sum of its parts: Linear
garbling and applications. Workshop talk at Securing Computation Workshop in Berkley, 2015.
Online: https://simons.berkeley.edu/talks/tal-malkin-2015-06-10.

24

https://simons.berkeley.edu/talks/tal-malkin-2015-06-10

[NPS99] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In
Electronic Commerce (EC’99), pages 129–139. ACM, 1999.

[PSSZ15] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set intersection using
permutation-based hashing. In USENIX Security’15, pages 515–530. USENIX, 2015.

[RME+12] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and C. Chen. Mapping into LUT structures.
In Design, Automation Test in Europe Conference Exhibition (DATE’12), pages 1579–1584.
IEEE, 2012.

[Sec15] Dyadic Security. Dyadic’s DSM web suite use-cases, 2015. Online: https://www.dyadicsec.

com/wp-content/uploads/2015/06/dyadicwhitepaper.pdf.

[SHS+15] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and F. Koushanfar. TinyGarble:
Highly compressed and scalable sequential garbled circuits. In S&P’15, pages 411–428. IEEE,
2015.

[SS06] R. Schürer and W. Schmid. Monte Carlo and Quasi-Monte Carlo Methods 2004, chapter MinT:
A Database for Optimal Net Parameters, pages 457–469. Springer, 2006. Online: http://mint.
sbg.ac.at.

[Syn] Synopsys Inc. FPGA-based design. http://www.synopsys.com/tools/implementation/

fpgaimplementation/pages/default.aspx.

[Syn10] Synopsys Inc. Design compiler, 2010. http://www.synopsys.com/Tools/Implementation/

RTLSynthesis/DesignCompiler.

[SZ13] T. Schneider and M. Zohner. GMW vs. Yao? Efficient secure two-party computation with low
depth circuits. In FC’13, volume 7859 of LNCS, pages 275–292. Springer, 2013.

[TP14] M. S. Turan and R. Peralta. The multiplicative complexity of Boolean functions on four and
five variables. In Lightweight Cryptography for Security and Privacy (LightSec’14), volume 8898
of LNCS, pages 21–33. Springer, 2014.

[Wol] C. Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

[Xil] Xilinx Inc. Vivado design suite - hlx editions. http://www.xilinx.com/products/

design-tools/vivado.html.

[Xil09] Xilinx Inc. XST synthesis overview, 2009. http://www.xilinx.com/support/documentation/
sw_manuals/xilinx11/ise_c_using_xst_for_synthesis.htm.

[Yao86] A. C. Yao. How to generate and exchange secrets. In FOCS’86, pages 162–167. IEEE, 1986.

[ZRE15] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole: Reducing data transfer in
garbled circuits using half gates. In EUROCRYPT’15, volume 9057 of LNCS, pages 220–250.
Springer, 2015.

25

https://www.dyadicsec.com/wp-content/uploads/2015/06/dyadicwhitepaper.pdf
https://www.dyadicsec.com/wp-content/uploads/2015/06/dyadicwhitepaper.pdf
http://mint.sbg.ac.at
http://mint.sbg.ac.at
http://www.synopsys.com/tools/implementation/fpgaimplementation/pages/default.aspx
http://www.synopsys.com/tools/implementation/fpgaimplementation/pages/default.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler
http://www.clifford.at/yosys/
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_using_xst_for_synthesis.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_using_xst_for_synthesis.htm

	Introduction
	Our Contributions
	High-Level Idea of Our Scheme
	Outline

	Preliminaries
	Notation
	LUT-based Boolean Circuits
	Oblivious Transfer
	Yao's Garbled Circuits
	Goldreich-Micali-Wigderson
	Size and Depth of Boolean Circuits

	More Efficient N()1 OT Extension
	Protocol Description
	Our Size-Optimized Codes
	Random Choice Bits
	Pipelined AES-256
	Multiplication Triples from N()1 OT

	LUT-based Secure Computation
	Lookup-Tables
	One-Time Truth Tables (OTTT)
	Online-LUT (OP-LUT)
	Setup-LUT (SP-LUT)
	Optimizations

	LUT-based Circuit Synthesis
	Hardware Synthesis Tools
	Customizing LUT-based Synthesis
	Generating Multi-Output LUTs

	Evaluation
	Comparison to Boolean Circuits
	Basic Operations

	Applications
	AES Encryption
	Private Set Intersection

	Related Work
	Efficient Secure Computation
	Multi-Input Gates in Secure Computation
	Boolean Circuit Compilers

	Conclusion and Future Work

