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Abstract. We construct new multi-signature schemes that provide new
functionality. Our schemes are designed to reduce the size of the Bitcoin
blockchain, but are useful in many other settings where multi-signatures
are needed. All our constructions support both signature compression
and public-key aggregation. Hence, to verify that a number of parties
signed a common message m, the verifier only needs a short multi-
signature, a short aggregation of their public keys, and the message m.
We give new constructions that are derived from Schnorr signatures and
from BLS signatures. Our constructions are in the plain public key model,
meaning that users do not need to prove knowledge or possession of their
secret key.
In addition, we construct the first short accountable-subgroup multi-
signature (ASM) scheme. An ASM scheme enables any subset S of a set
of n parties to sign a message m so that a valid signature discloses which
subset generated the signature (hence the subset S is accountable for
signing m). We construct the first ASM scheme where signature size is
only O(κ) bits over the description of S , where κ is the security param-
eter. Similarly, the aggregate public key is only O(κ) bits, independent
of n. The signing process is non-interactive. Our ASM scheme is very
practical and well suited for compressing the data needed to spend funds
from a t-of-n Multisig Bitcoin address, for any (polynomial size) t and
n.

1 Introduction

Consider n parties where each party independently generates a key pair for a
signature scheme. Some time later all n parties want to sign the same message
m. A multi-signature scheme [28, 38] is a protocol that enables the n signers to
jointly generate a short signature σ on m so that σ convinces a verifier that all n
parties signed m. Specifically, the verification algorithm is given as input the n
public keys, the message m, and the multi-signature σ. The algorithm either
accepts or rejects σ. The multi-signature σ should be short; its length should be
independent of the number of signers n. We define this concept more precisely
in the next section, where we also present the standard security model for such



schemes [38]. Secure multi-signatures have been constructed from Schnorr sig-
natures (e.g. [9]), from BLS signatures (e.g. [10]), and from many other schemes
as discussed in Section 1.5.

A more general concept called an aggregate signature scheme [12] lets each of
the n parties sign a different message, but all these signatures can be aggregated
into a single short signature σ. As before, this short signature should convince
the verifier that all signers signed their designated message.

Applications to Bitcoin. Multi-signatures and aggregate signatures can be
used to shrink the size of the Bitcoin blockchain [40]. In recent work, Maxwell,
Poelstra, Seurin, and Wuille [35] suggest using multi-signatures to shrink the
transaction data associated with Bitcoin Multisig addresses. Conceptually, a
Multisig address is the hash of n public keys pk1, . . . , pkn along with some num-
ber t ∈ {1, . . . , n} called a threshold (see [2, 35] for details). To spend funds
associated with this address, one creates a transaction containing all n public
keys pk1, . . . , pkn followed by t valid signatures from t of the n public keys, and
writes this transaction to the blockchain. The message being signed is the same
in all t signatures, namely the transaction data.

In practice, Multisig addresses often use t = n, so that signatures from all n
public keys are needed to spend funds from this address. In this case, all n sig-
natures can be compressed using a multi-signature scheme into a single short
signature. This shrinks the overall transaction size and reduces the amount of
data written to the blockchain. This approach can also be made to work for
t < n, when

(
n
t

)
is small, by enumerating all t-size subsets [35, Sec. 5.2]. Multi-

signatures can also be used to compress multi-input transactions, but for sim-
plicity we will focus on Multisig addresses.

Notice that we still need to write all n public keys to the blockchain, so com-
pressing the signatures does not save too much. Fortunately, there is a solution
to this as well. Maxwell et al. [35], building on the work on Bellare and Neven [9],
construct a Schnorr-based multi-signature scheme that also supports public key
aggregation; the verifier only needs a short aggregate public key instead of an
explicit list of all n public keys. With this approach, an n-of-n Multisig address
is simply the hash of the short aggregate public key, and the data written to
the blockchain in a spending transaction is this single short aggregated public
key, a single short compressed signature, and the message. This data is sufficient
to convince the verifier that all n signers signed the transaction. It shrinks the
amount of data written to the blockchain by a factor of n.

Maxwell et al. call this primitive a multi-signature scheme with public key
aggregation. Their signing protocol requires two rounds of communication among
the signing parties, and they prove security of their scheme assuming the one-
more discrete-log assumption (as assumption introduced in [8]). However, recent
work [21] has shown that there is a gap in the security proof, and that security
cannot be proven under this assumption. Whether their scheme can be proved
secure under a different assumption or in a generic group model is currently an
open problem.



In Section 5, we present a modification of the scheme by Maxwell et al. that
we prove secure under the standard discrete-log assumption. Our MSDL scheme
retains all the benefits of the original scheme, and in particular uses the same
key aggregation technique, but we add one round to the signing protocol.

1.1 Better constructions using pairings

Our main results show that we can do much better by replacing the Schnorr
signature scheme in [35] by BLS signatures [13]. The resulting schemes are an
extremely good fit for Bitcoin, but are also very useful wherever multi-signatures
are needed.

To describe our new constructions, we first briefly review the BLS signa-
ture scheme and its aggregation mechanism. Recall that the scheme needs: (1)
An efficiently computable non-degenerate pairing e : G1 × G2 → Gt in groups
G1,G2,Gt of prime order q. We let g1 and g2 be generators of G1 and G2 re-
spectively. (2) A hash function H0 : M → G1. Now the BLS signature scheme
works as follows:

– Key generation: choose a random sk ←$ Zq and output (pk , sk) where pk ←
gsk2 ∈ G2.

– Sign(sk ,m): output σ ← H0(m)sk ∈ G1.

– Verify(pk ,m, σ): if e(σ, g2)
?
= e
(
H0(m), pk

)
output “accept”, otherwise out-

put “reject”.

This signature scheme supports a simple signature aggregation procedure. Given
triples (pk i, mi, σi) for i = 1, . . . , n, anyone can aggregate the signatures
σ1, . . . , σn ∈ G1 into a short convincing aggregate signature σ by computing

σ ← σ1 · · ·σn ∈ G1. (1)

To verify this aggregate signature σ ∈ G1 one checks that:

e(σ, g2) = e
(
H0(m1), pk1

)
· · · e

(
H0(mn), pkn

)
. (2)

Note that verification requires all (pk i, mi) for i = 1, . . . , n. When all the mes-
sages being signed are the same (m1 = . . . = mn) the verification relation (2)
reduces to a simpler test that requires only two pairings:

e(σ, g2)
?
= e
(
H0(m1), pk1 · · · pkn

)
. (3)

Moreover, the verifier only needs to be given a short aggregate public-key apk :=
pk1 · · · pkn ∈ G2.

The rogue public-key attack. The simple signature aggregation method in (1)
is insecure on its own, and needs to be enhanced. To see why, consider the
following rogue public-key attack: an attacker registers a rogue public key pk2 :=
gα2 ·(pk1)−1 ∈ G2, where pk1 ∈ G2 is a public key of some unsuspecting user Bob,
and α ←$ Zq is chosen by the attacker. The attacker can then claim that both



it and Bob signed some message m ∈ M by presenting the aggregate signature
σ := H0(m)α. This signature verifies as an aggregate of two signatures, one from
pk1 and one from pk2, because

e(σ, g2) = e
(
H0(m)α, g2

)
= e
(
H0(m), gα2

)
= e
(
H0(m), pk1 · pk2

)
.

Hence, this σ satisfies (3). In effect, the attacker committed Bob to the message
m, without Bob ever signing m.

Defenses. There are two standard defenses against the rogue public-key attack:

– Require every user to prove knowledge or possession of the corresponding
secret key [10, 32, 47]. However, this is difficult to enforce in practice, as
argued in [7, 47], and does not fit well with applications to crypto currencies,
as explained in [35].

– Require that the messages being aggregated are distinct [12, 7], namely the
verifier rejects an aggregate signature on non-distinct messages. This is suf-
ficient to prevent the rogue key attack. Moreover, message distinctness can
be enforced by always prepending the public key to every message prior to
signing. However, because now all messages are distinct, we cannot take ad-
vantage of public-key aggregation as in (3) when aggregating signatures on a
common message m.

1.2 Our pairing-based results

In Section 3 we propose a different defense against the rogue public-key attack
that retains all the benefits of both defenses above without the drawbacks. In
particular, our multi-signature scheme supports public key aggregation and fast
verification as in (3). Moreover, the scheme is secure in the plain public-key
model, which means that users do not need to prove knowledge or possession of
their secret key. The scheme has two additional useful properties:

– The scheme supports batch verification where a set of multi-signatures can
be verified as a batch faster than verifying them one by one.

– We show in Section 3.3 that given several multi-signatures on different mes-
sages, it is possible to aggregate all them using (1) into a single short sig-
nature. This can be used to aggregate signatures across many transactions
and further shrink the data on the blockchain.

Our construction is based on the approach developed in [9] and [35] for securing
Schnorr multi-signatures against the rogue public key attack.

Our BLS-based multi-signature scheme MSP is much easier to use than
Schnorr multi-signatures. Recall that aggregation in Schnorr can only take place
at the time of signing and requires a multi-round protocol between the signers.
In our new scheme, aggregation can take place publicly by a simple multiplica-
tion, even long after all the signatures have been generated and the signers are
no longer available. Concretely, in the context of Bitcoin this means that all the
signers behind a Multisig address can simply send their signatures to one party



who aggregates all of them into a single signature. No interaction is needed,
and the parties do not all need to be online at the same time. Moreover, we de-
scribe an aggregate multi-signature scheme AMSP that further compresses the
multi-signatures on the different transactions into a single aggregate signature,
yielding even more space savings.

Accountable-Subgroup Multi-signatures. Consider again n parties where
each party generates an independent signing key pair. An ASM enables any
subset S of the n parties to jointly sign a message m, so that a valid signature
implicates the subset S that generated the signature; hence S is accountable
for signing m. The verifier in an ASM is given as input the (aggregate) ASM
public key representing all n parties, the set S ⊆ {1, . . . , n}, the multi-signature
generated by the set S , and the message m. It accepts or rejects the signature.
Security should ensure that a set of signers S ′ 6⊇ S cannot issue a signature that
will be accepted as if it were generated by S . We define ASMs and their security
properties precisely in Section 4. This concept was previously studied by Micali
et al. [38].

Any secure signature scheme gives a trivial ASM: every party generates an
independent signing key pair. A signature by a set S on message m is simply the
concatenation of all the signatures by the members of S . For a security parameter
κ, the public key size in this trivial ASM is O(n× κ) bits. The signature size is
O(|S | × κ) bits.

Our ASM scheme is the first ASM where signature size is only O(κ) bits
beyond the description of the set S , and the public key is only O(κ) bits, inde-
pendent of n. Concretely, the multi-signature is only two group elements, along
with the description of S , and the public key is a single group element. The
signing process is non-interactive, but initial key generation requires a simple
one-round protocol between the all n signers.

To see how this can be used, consider again a Bitcoin n-of-n Multisig address.
We already saw that multi-signatures with public key aggregation reduce the
amount of data written to the blockchain to only O(κ) bits when spending funds
from this address (as opposed to O(κ×n) bits as currently done in Bitcoin). The
challenge is to do the same for a t-of-n Multisig address where t < n. Our ASM
gives a complete solution; the only information that is written to the blockchain
is a description of S plus three additional group elements: one for the public key
and two for the signature, even when

(
n
t

)
is exponential. This is much better

than the trivial linear size ASM scheme currently employed by Bitcoin.

1.3 Proofs of possession

Finally, in Section 6 we observe that all our schemes, both BLS-based and
Schnorr-based, can be adapted to a setting where all users are required to pro-
vide a proof of possession (PoP) of their secret key. Proofs of possession increase
the size of individual public keys, but there are applications where the size of
individual keys is less relevant. For example, Multisig addresses in Bitcoin only
need to store the aggregate public key on the blockchain, whereas the individ-
ual public keys are only relevant to the signers and can be kept off-chain, or



Combined
public key size

Combined signature
size

Total size
(KB)

Threshold
support

Bitcoin tx · inp · n · |G| tx · inp · n · 2 · |Zq| 1296 linear
MuSig ([35]) tx · inp · |G| tx · (|G|+ |Zq|) 240 small
MSDL (Sec. 5) tx · inp · |G| tx · (|G|+ |Zq|) 240 small
MSP (Sec. 3.1) tx · inp · |G2| tx · |G1| 360 small
AMSP (Sec. 3.3) tx · inp · |G2| |G1| 216 small
ASM (Sec. 4) tx · inp · |G2| tx · inp · (|G1|+ |G2|) 864 any

Table 1. Comparison of the space required to authorize a block in the Bitcoin
blockchain containing tx transactions, each containing inp inputs, all from n-out-of-n
multisig wallets. Here, |G| denotes the space required to represent an element of a
group. The fourth column shows the concrete number of bytes taken in a bitcoin block
by choosing some sample parameters (tx = 1500, inp = 3, n = 3), using secp256k1 [18]
for Bitcoin, MuSig, and MSDL schemes (|G| = 32B, |Zq| = 32B), and BLS381 [6] for the
pairing-based MSP , AMSP , and ASM schemes (|G1| = 96B, |G2| = 48B, |Zq| = 32B).
In the right-most column, “linear” denotes that t-of-n thresholds are supported with
key and signature sizes linear in n and t, “small” denotes that support is limited to(
n
t

)
being small, and “any” denotes support for arbitrary (polynomial size) t and n.

verified once and then discarded. Other applications may involve a more or less
static set of signing nodes whose keys can be verified once and used in arbitrary
combinations thereafter.

The PoP variants offer some advantages over our main schemes, such as
simply using the product or hash of the public keys as the aggregate public key
(as opposed to a multi-exponentiation), and having tighter security proofs to the
underlying security assumption.

1.4 Efficiency comparison

Table 1 shows to what extent our constructions reduce the size of the Bitcoin
blockchain. Our pairing-based scheme and AMSP and our discrete logarithm-
based scheme MSDL both require less than 20% of the space to authenticate
all transactions in a Bitcoin block compared to the currently deployed solution,
assuming realistic parameters. While not immediately visible from the table,
accountable-subgroup multi-signature schemes ASM is most useful for t-of-n
signatures when

(
n
t

)
is very large. For instance, for a 50-out-of-100 multisig

wallets, the currently deployed bitcoin solution would require 30 times more
space than our ASM scheme. The other schemes support threshold signatures
using Merkle trees [37] as outlined in [35, Sec. 5.2], but only when

(
n
t

)
is small

enough to generate the tree. This method would for example be infeasible for a
50-of-100 threshold scheme.

1.5 Related Work

Multi-signatures have been studied extensively based on RSA [28, 42, 45, 29],
discrete logarithms [25, 31, 26, 27, 19, 43, 16, 38, 17, 9, 3, 4, 34, 35, 21], pair-



ings [10, 32, 47, 11, 30], and lattices [5]. Defending against rogue public-key at-
tacks has always been a primary concern in the context of multisignature schemes
based on discrete-log and pairings [27, 39, 38, 12, 9, 7, 47], and is the main reason
for the added complexity in discrete-log-based multi-signature systems. Aggre-
gate signatures [12, 24, 1] are a closely related concept where signatures by
different signers on different messages can be compressed together. Sequential
aggregate signatures [33, 32, 41, 14, 23] are a variant where signers take turns
adding their own signature onto the aggregate. The concept of public-key aggre-
gation in addition to signature compression has not been explicitly discussed in
the plain public key model until [35] and this work. This concept greatly reduces
the combined length of the data needed to verify a multi-signature.

2 Preliminaries

2.1 Bilinear Groups

Let G be a bilinear group generator that takes as an input a security parameter
κ and outputs the descriptions of multiplicative groups (q,G1,G2,Gt, e, g1, g2)
where G1, G2, and Gt are groups of prime order q, e is an efficient, non-
degenerating bilinear map e : G1 × G2 → Gt, and g1 and g2 are generators
of the groups G1 and G2, respectively.

2.2 Computational Problems

Definition 1 (Discrete Log Problem). For a group G = 〈g〉 of prime order
q, we define AdvdlG of an adversary A as

Pr
[
y = gx : y ←$ G, x←$ A(y)

]
,

where the probability is taken over the random choices of A and the random
selection of y. A (τ, ε)-breaks the discrete log problem if it runs in time at most
τ and has AdvdlG ≥ ε. Discrete log is (τ, ε)-hard if no such adversary exists.

Definition 2 (Computational co-Diffie-Hellman Problem). For a groups
G1 = 〈g1〉,G2 = 〈g2〉 of prime order q, define Advco-CDH

G1,G2
of an adversary A as

Pr
[
y = gαβ1 : (α, β)←$ Z2

q, y ← A(gα1 , g
β
1 , g

β
2 )
]
,

where the probability is taken over the random choices of A and the random
selection of (α, β). A (τ, ε)-breaks the co-CDH problem if it runs in time at most
τ and has Advco-CDH

G1,G2
≥ ε. co-CDH is (τ, ε)-hard if no such adversary exists.

Definition 3 (Computational ψ-co-Diffie-Hellman Problem). For a groups
G1 = 〈g1〉,G2 = 〈g2〉 of prime order q, let Oψ(·) be an oracle that on input

gα2 ∈ G2 returns gα1 ∈ G1. Define Advψ-co-CDH
G1,G2

of an adversary A as

Pr
[
y = gαβ1 : (α, β)←$ Z2

q, y ← AO
ψ(·)(gα1 , g

β
1 , g

β
2 )
]
,



where the probability is taken over the random choices of A and the random
selection of (α, β). A (τ, ε)-breaks the ψ-co-CDH problem if it runs in time at

most τ and has Advψ-co-CDH
G1,G2

≥ ε. ψ-co-CDH is (τ, ε)-hard if no such adversary
exists.

2.3 Generalized Forking Lemma

The forking lemma of Pointcheval and Stern [46] is commonly used to prove the
security of schemes based on Schnorr signatures [48] in the random-oracle model.
Their lemma was later generalized to apply to a wider class of schemes [9, 3].
We recall the version due to Bagherzandi, Cheon, and Jarecki [3] here.

Let A be an algorithm that on input in interacts with a random oracle
H : {0, 1}∗ → Zq. Let f = (ρ, h1, . . . , hqH) be the randomness involved in an
execution of A, where ρ is A’s random tape, hi is the response to A’s i-th
query to H, and qH is its maximal number of random-oracle queries. Let Ω be
the space of all such vectors f and let f |i = (ρ, h1, . . . , hi−1). We consider an
execution of A on input in and randomness f , denoted A(in, f), as successful
if it outputs a pair (J, {outj}j∈J), where J is a multi-set that is a non-empty
subset of {1, . . . , qH} and {outj}j∈J is a multi-set of side outputs. We say that
A failed if it outputs J = ∅. Let ε be the probability that A(in, f) is successful
for fresh randomness f ←$ Ω and for an input in ←$ IG generated by an input
generator IG.

For a given input in, the generalized forking algorithm GFA is defined as
follows:

GFA(in):
f = (ρ, h1, . . . , hqH)←$ Ω
(J, {outj}j∈J)← A(in, f)
If J = ∅ then output fail
Let J = {j1, . . . , jn} such that j1 ≤ . . . ≤ jn
For i = 1, . . . , n do

succi ← 0 ; ki ← 0 ; kmax ← 8nqH/ε · ln(8n/ε)
Repeat until succi = 1 or ki > kmax

f ′′ ←$ Ω such that f ′|ji = f |ji
Let f ′′ = (ρ, h1, . . . , hji−1, h

′′
ji
, . . . , h′′qH)

(J ′′, {out ′′j }j∈J′′)← A(in, f ′′)
If h′′ji 6= hji and J ′′ 6= ∅ and ji ∈ J ′′ then

out ′ji ← out ′′ji ; succi ← 1
If succi = 1 for all i = 1, . . . , n
Then output (J, {outj}j∈J , {out ′j}j∈J) else output fail

We say that GFA succeeds if it doesn’t output fail. Bagherzandi et al. proved
the following lemma for this forking algorithm.

Lemma 1 (Generalized Forking Lemma [3]). Let IG be a randomized al-
gorithm and A be a randomized algorithm running in time τ making at most



qH random-oracle queries that succeeds with probability ε. If q > 8nqH/ε, then
GFA(in) runs in time at most τ ·8n2qH/ε · ln(8n/ε) and succeeds with probability
at least ε/8, where the probability is over the choice of in ←$ IG and over the
coins of GFA.

2.4 Multi-Signatures and Aggregate Multi-Signatures

We follow the definition of Bellare and Neven [9] and define a multisigna-
ture scheme as algorithms Pg, Kg, Sign, KAg, and Vf. A trusted party gen-
erates the system parameters par ← Pg. Every signer generates a key pair
(pk , sk)←$ Kg(par), and signers can collectively sign a message m by each calling
the interactive algorithm Sign(par ,PK, sk ,m), where PK is the set of the public
keys of the signers, and sk is the signer’s individual secret key. At the end of the
protocol, every signer outputs a signature σ. Algorithm KAg on input a set of
public keys PK outputs a single aggregate public key apk . A verifier can check
the validity of a signature σ on message m under an aggregate public key apk by
running Vf(par , apk ,m, σ) which outputs 0 or 1 indicating that the signatures
is invalid or valid, respectively.

A multisignature scheme should satisfy completeness, meaning that for any
n, if we have (pk i, sk i)← Kg(par) for i = 1, . . . , n, and for any message m, if all
signers input Sign(par , sk i,m), then every signer will output a signature σ such
that Vf(par ,KAg(par , {pk i}ni=1),m, σ) = 1. Second, a multisignature scheme
should satisfy unforgeability. Unforgeability of a multisignature scheme AMS =
(Pg,Kg,Sign,KAg,Vf) is defined by a three-stage game.

Setup. The challenger generates the parameters par ← Pg and a challenge key
pair (pk∗, sk∗)←$ Kg(par). It runs the adversary on the public key A(par , pk∗).

Signature queries. A is allowed to make signature queries on any message m for
any set of signer public keys PK with pk∗ ∈ PK, meaning that it has access
to oracle OSign(par ,·,sk∗,·) that will simulate the honest signer interacting in a
signing protocol with the other signers of PK to sign message m. Note that A
may make any number of such queries concurrently.

Output. Finally, the adversary outputs a multisignature forgery σ, a message
m, and a set of public keys PK. The adversary wins if pk∗ ∈ PK, A made no
signing queries on m∗, and Vf(par ,KAg(par ,PK),m)}, σ) = 1.

Definition 4. We say A is a (τ, qS, qH, ε)-forger for multisignature scheme AMS =
(Pg,Kg,Sign,Vf,SAg,AVf) if it runs in time τ , makes qS signing queries, makes
qH random oracle queries, and wins the above game with probability at least ε.
AMS is (τ, qS, qH, ε)-unforgeable if no (τ, qS, qH, ε)-forger exists.

2.5 Aggregate Multi-Signatures

We now introduce aggregate multi-signatures, combining the concepts of aggre-
gate signatures and multisignatures, allowing for multiple multisignatures to be



aggregated into one. More precisely, we extend the definition of multisignatures
with two algorithms. SAg takes input a set of tuples, each tuple containing an
aggregate public key apk , a message m, and a multisignature σ, and outputs
a single aggregate multisignature Σ. AVf takes input a set of tuples, each tu-
ple containing an aggregate public key apk and a message m, and an aggregate
multisignature Σ, and outputs 0 or 1 indicating that the aggregate multisigna-
tures is invalid or valid, respectively. Observe that any multisignature scheme
can be transformed into an aggregate multisignature scheme in a trivial man-
ner, by implementing SAg(par , {apk i,mi, σi}) to output Σ ← (σ1, . . . , σn), and
AVf

(
par , {apk i,mi}, (σ1, . . . , σn)

)
to output 1 if all individual multisignatures

are valid. The goal however is to have Σ much smaller than the concatenation
of the individual multisignatures, and ideally of constant size.

The security of aggregate multisignatures is very similar to the security of
multisignatures. First, an aggregate multisignature scheme should satisfy com-
pleteness, meaning that 1) for any n, if we have (pk i, sk i) ← Kg(par) for i =
1, . . . , n, and for any message m, if all signers input Sign(par , sk i,m), then every
signer will output a signature σ such that Vf(par ,KAg(par , {pk i}ni=1),m, σ) = 1,
and 2) for any set of multisignatures {(apk i,mi, σi)} where every element is valid
(Vf(par , apk i,mi, σi) = 1 for every element), the aggregated multisignature is
also valid: AVf(par , {apk i,mi},SAg(par , {(apk i,mi, σi)})) = 1. Second, an ag-
gregate multisignature scheme should satisfy unforgeability. Unforgeability of
an aggregate multisignature scheme AMS = (Pg,Kg,Sign,KAg,Vf,SAg,AVf) is
defined by a three-stage game, where the setup stage and the signature queries
stage are the same as in the multisignature unforgeability game. The output
stage is changed as follows:

Output. Finally, the adversary halts by outputting an aggregate multisignature
forgery Σ, set of aggregate public keys a message pairs {apk i,mi}, a set of public
keys PK, and a message m∗. The adversary wins if pk∗ ∈ PK, Amade no signing
queries on m∗, and AVf(par , {(apk i,mi)} ∪ {(KAg(par ,PK),m∗)}, Σ) = 1.

Definition 5. We say A is a (τ, qS, qH, ε)-forger for aggregate multisignature
scheme AMS = (Pg,Kg,Sign,Vf,SAg,AVf) if it runs in time τ , makes qS sign-
ing queries, makes qH random oracle queries, and wins the above game with
probability at least ε. AMS is (τ, qS, qH, ε)-unforgeable if no (τ, qS, qH, ε)-forger
exists.

3 Multi-Signatures with Key Aggregation from Pairings

We begin by presenting our new pairing-based multi-signature scheme that sup-
ports public-key aggregation. Bilinear groups are typically asymmetric, in the
sense that one of the two groups has a more compact representation. The pairing-
based schemes below require public keys and signatures to live in different groups.
For standard signatures, a single public key is used to sign many messages, so
it would make sense to use the more compact group for signatures. Because our



schemes below enable aggregation of both signatures and public keys, however,
this may no longer be true, and the best choice of groups may depend strongly
on the concrete application. We describe our schemes below placing signatures
in G1 and public keys in G2, but leave it open which of those two groups has the
more compact representation. Note that efficient hash functions exist mapping
into either of the groups [49, 22, 15].

3.1 Description of our Pairing-Based Scheme

Our pairing-based multi-signature with public-key aggregation MSP is built from
the BLS signature scheme [13]. The scheme is secure in the plain public key
model, and assumes hash functions H0 : {0, 1}∗ → G2 and H1 : {0, 1}∗ → Zq.

Parameters Generation. Pg(κ) sets up bilinear group (q,G1,G2,Gt, e, g1, g2)←
G(κ) and outputs par ← (q,G1,G2,Gt, e, g1, g2).

Key Generation. The key generation algorithm Kg(par) chooses sk ←$ Zq,
computes pk ← gsk2 , and outputs (pk , sk).

Key Aggregation. KAg({pk1, . . . , pkn}) outputs

apk ←
n∏
i=1

pk
H1(pki,{pk1,...,pkn})
i .

Signing. Signing is a single round protocol. Sign(par , {pk1, . . . , pkn}, sk i,m)
computes si ← H0(m)ai·ski , where ai ← H1(pk i, {pk1, . . . , pkn}). Send si to a
designated combiner who computes the final signature as σ ←

∏n
j=1 sj . This

designated combiner can be one of the signers or it can be an external party.

Multi-Signature Verification. Vf(par , apk ,m, σ) outputs 1 iff

e(σ, g−12 ) · e(H0(m), apk)
?
= 1Gt

.

Batch verification. We note that a set of b multi-signatures can be verified as
a batch faster than verifying them one by one. To see how, suppose we are given
triples (mi, σi, apk i) for i = 1, . . . , b, where apk i is the aggregated public-key
used to verify the multi-signature σi on mi. If all the messages m1, . . . ,mb are
distinct then we can use signature aggregation as in (1) to verify all these triples
as a batch:

– Compute an aggregate signature σ̃ = σ1 · · ·σb ∈ G1,
– Accept all b multi-signature tuples as valid iff

e(σ̃, g2)
?
= e
(
H0(m1), apk1

)
· · · e

(
H0(mb), apk b

)
.



This way, verifying the b multi-signatures requires only b + 1 pairings instead
of 2b pairings to verify them one by one. This simple batching procedure can
only be used when all the messages m1, . . . ,mb are distinct. If some messages
are repeated then batch verification can be done by first choosing random ex-
ponents ρ1, . . . , ρb ←$ {1, . . . , 2κ}, where κ is a security parameter, computing
σ̃ = σρ11 · · ·σ

ρb
b ∈ G2, and checking that

e(σ̃, g2)
?
= e
(
H0(m1), apkρ11

)
· · · e

(
H0(mb), apkρbb

)
.

Of course the pairings on the right hand side can be coalesced for repeated
messages.

3.2 Security Proof

Theorem 1. MSP is an unforgeable multisignature scheme (as defined in Def 4)
under the computational co-Diffie-Hellman problem in the random-oracle model.
More precisely, MSP is (τ, qS, qH, ε)-unforgeable in the random-oracle model if
q > 8qH/ε and if co-CDH is ((τ + qHτexp1 + qS(τexpl

2
+ τexp1) + τexpl

2
) · 8q2H/ε ·

ln(8qH/ε), ε/(8qH))-hard, where l is the maximum number of signers involved
in a single multisignature, τexp1

and τexp2
denote the time required to compute

exponentiations in G1 and G2 respectively, and τexpi
1

and τexpi
2

denote the time
required to compute i-multiexponentiations in G1 and G2 respectively.

Proof. Suppose we have a (τ, qS, qH, ε) forger F against the MSP multisigna-
ture scheme. Then consider an input generator IG that generates random tuples
(A,B1, B2) = (gα1 , g

β
1 , g

β
2 ) where α, β ←$ Zq, and an algorithm A that on input

(A,B1, B2) and randomness f = (ρ, h1, . . . , hqS) proceeds as follows.
Algorithm A picks an index k ←$ {1, . . . , qH} and runs the forger F on input

pk∗ ← B2 with random tape ρ. It responds to F ’s i-th H0 query by choosing
ri ←$ Zq and returning gri1 if i 6= k. The k-th H0 query is answered by returning
A. We assume w.l.o.g. that F makes no repeated H0 queries. A responds to F ’s
H1 queries as follows.We distinguish three types of H1 queries:

1. A query on (pk ,PK) with pk ∈ PK and pk∗ ∈ PK, and this is the first such
query with PK.

2. A query on (pk ,PK) with pk ∈ PK and pk∗ ∈ PK, and and a prior query
of this form with PK has been made.

3. Queries of any other form.

A handles the i-th query of type (1) by choosing a random value for H1(pk i,PK)
for every pk i 6= pk∗ ∈ PK. It fixes H1(pk∗,PK) to hi, and returns the H1(pk ,PK).
A handles a type (2) query by returning the values chosen earlier when the type
(1) query for PK was made. A handles a type (3) query by simply returning a
random value in Zq.

When F makes a signing query on message m, with signers PK, A computes
apk ← KAg(par ,PK) and looks up H0(m). If this is A, then A aborts with
output (0,⊥). Else, it must be of form gr1, and A can simulate the honest signer



by computing si ← Br1 . When F fails to output a successful forgery, then A
outputs (0,⊥). If F successfully outputs a forgery for a message m so that
H0(m) 6= A), then A also outputs (0,⊥). Otherwise, F has output a forgery
(σ,PK,m) such that

e(σ, g2) = e(A,KAg(par ,PK)).

Let jf be the index such that H1(pk∗,PK) = hjf , let apk ← KAg(par ,PK),
and let aj ← H1(pk j ,PK) for PK = {pk1, . . . , pkn}. Then A outputs (J =
{jf}, {(σ,PK, apk , a1, . . . , an)}).

The running time of A is that of F plus the additional computation A makes.
Let qH denote the total hash queries F makes, i.e., the queries to H0 and H1

combined. A needs one exponentiation in G1 to answer H0 queries, so it spends
at most qH · τexp1

to answer the hash queries. For signing queries with a PK of
size at most l, A computes one multi-exponentiation costing time τexpl

2
, and one

exponentiation in G1 costing τexp1
, giving a total of qS ·(τexpl

2
+τexp1

). Finally, A
computes the output values, which costs an additional τexpl

2
to compute apk . A’s

runtime is therefore τ+qHτexp1
+qS(τexpl

2
+τexp1

)+τexpl
2
. The success probability

of A is the probability that F succeeds and that it guessed the hash index of
F ’s forgery correctly, which happens with probability at least 1/qH, making A’s
overall success probability εA = ε/qH.

We prove the theorem by constructing an algorithm B that, on input a
co-CDH instance (A,B1, B2) ∈ G1×G1×G2 and a forger F , solves the co-CDH
problem in (G1,G2). Namely, B runs the generalized forking algorithm GFA
from Lemma 1 on input (A,B1, B2) with the algorithm A described above. Ob-
serve that the co-CDH-instance is distributed indentically to the output of IG. If
GFA outputs (0,⊥), then B outputs fail. If GFA outputs ({jf}, {out}, {out ′}),
then B proceeds as follows. B parses out as (σ,PK, apk , a1, . . . , an) and out ′ as
(σ′,PK′, apk ′, a′1, . . . , a

′
n′). From the construction of GFA, we know that out and

out ′ were obtained from two executions of A with randomness f and f ′ such
that f |jf = f ′|jf , meaning that these executions are identical up to the jf -th H1

query of type (1). In particular, this means that the arguments of this query are
identical, i.e., PK = PK′ and n = n′. If i is the index of pk∗ in PK, then again by
construction of GFA, we have ai = hjf and a′i = h′jf , and by the forking lemma

it holds that ai 6= ai. By construction of A, we know that apk =
∏n
j=1 pk

aj
j

and apk ′ =
∏n
j=1 pk

a′j
j . Since A assigned H1(pk j ,PK) ← aj for all j 6= i be-

fore the forking point, we have that aj = a′j for j 6= i, and therefore that

apk/apk ′ = pk∗
ai−a′i . We know that A’s output satisfies e(σ, g2) = e(A, apk)

and e(σ′, g2) = e(A, apk ′), so that e(σ/σ′, g2) = e(A,B2
ai−a′i), showing that

(σ/σ′)1/(ai−a
′
i) is a solution to the co-CDH instance.

Using Lemma 1, we know that if q > 8qH/ε, then B runs in time at most
(τ + qHτexp1

+ qS(τexpl
2

+ τexp1
) + τexpl

2
) · 8q2H/ε · ln(8qH/ε) and succeeds with

probability ε′ ≥ ε/(8qH).



3.3 Aggregating Multi-Signatures

It is possible to further aggregate the multi-signatures of the MSP scheme by
multiplying them together, as long as the messages of the aggregated multi-
signatures are different. The easiest way to guarantee that messages are different
is by including the aggregate public key in the message to be signed, which is how
we define the aggregate multisignature scheme AMSP here. That is, AMSP and
MSP share the Pg, Kg, and KAg, algorithms, but AMSP has slightly modified
Sign and Vf algorithms that include apk in the signed message, and has additional
algorithms SAg and AVf to aggregate signatures and verify aggregate signatures,
respectively.

Signing. Sign(par ,PK, sk i,m) computes si ← H0(apk ,m)ai·ski , where apk ←
KAg(par ,PK) and ai ← H1(pk i, {pk1, . . . , pkn}). The designated combiner col-
lect all signatures si and computes the final signature σ ←

∏n
j=1 sj .

Multi-Signature Verification. Vf(par , apk ,m, σ) outputs 1 if and only if

e(σ, g−12 ) · e(H0(apk ,m), apk)
?
= 1Gt .

Signature Aggregation. SAg(par , {(apk i,mi, σi)}ni=1) outputs Σ ←
∏n
i=1 σi.

Aggregate Signature Verification. AVf({(apk i,mi)}ni=1, Σ) outputs 1 if and

only if e(Σ, g−12 ) ·
∏n
i=1 e(H0(apk i,mi), apk i)

?
= 1Gt

.

The security proof is almost identical to that of MSP , but now requires
an isomorphism ψ between G1 and G2. We therefore prove security under the
stronger ψ-co-CDH assumption, which is equivalent to co-CDH but offers this
isomorphism as an oracle to the adversary.

Theorem 2. AMSP is a secure aggregate multisignature scheme under the com-
putational ψ-co-Diffie-Hellman problem in the random-oracle model. More pre-
cisely, AMSP is (τ, qS, qH, ε)-unforgeable in the random-oracle model if q > 8qH/ε
and if the computational ψ-co-Diffie-Hellman problem is ((τ+qHτexp1+qS(τexpl

2
+

τexp1
) + τexpl

2
+ τexpn

1
) · 8q2H/ε · ln(8qH/ε), ε/(8qH))-hard, where l is the maximum

number of signers involved in a single multisignature, n is the amount of mul-
tisignatures aggregated into the forgery, τexp1 and τexp2 denote the time required
to compute exponentiations in G1 and G2 respectively, and τexpi

1
and τexpi

2
denote

the time required to compute i-multiexponentiations in G1 and G2 respectively.

Proof. Suppose we have a (τ, qS, qH, ε) forger F against the AMSP multisignature
scheme. We construct A exactly as in the proof of Theorem 1, except that F
now outputs an aggregate multisignature signature forgery instead of a plain
multisignature forgery. That is, F outputs an aggregate multisignature Σ, a set
of aggregate public keys and message pairs {(apk1,m1), . . . , (apkn,mn)}, a set
of public keys PK, and a message m∗. Let apk∗ ← KAg(par ,PK). If A correctly
guessed that the k-th H0 query is H0(apk∗,m∗), then we have that

e(Σ, g−12 ) · e(A, apk∗) ·
n∏
i=1

e(H0(apk i,mi), apk i) = 1Gt
.



A looks up ri for every (apk i,mi) such that H0(apk i,mi) = gri1 . It computes
σ ← Σ ·

∏n
i=1Oψ(apk−rii ), so that

e(σ, g2) = e(y, apk∗).

Note that A has now extracted a MSP forgery, meaning that the rest of the
reduction is exactly as in the proof of Theorem 1. The success probability of the
reduction is therefore the same, and the runtime is only increased by the extra
steps required to compute σ, which costs τexpn

1
.

4 Accountable-Subgroup Multisignatures

Micali, Ohta, and Reyzin [38] defined an accountable-subgroup multisignature
scheme as a multisignature scheme where any subset S of a group of signers PK
can create a valid multisignature that can be verified against the public keys of
signers in the subset. An ASM scheme can be combined with an arbitrary access
structure over PK to determine whether the subset S is authorized to sign on
behalf of PK. For example, requiring that |S| ≥ t turns the ASM scheme into a
type of threshold signature scheme whereby the signature also authenticates the
set of signers that participated.

Verification of an ASM scheme obviously requires a description of the set
S of signers which can be described by their indices in the group PK using
min(|PK|, |S |×dlog2 |PK|e) bits. We describe the first ASM scheme that, apart
from the description of S , requires no data items with sizes depending on |S |
or |PK|. Verification is performed based on a compact aggregate public key and
signature. The aggregate public key is publicly computable from the individual
signers’ public keys, but we do require all members of PK to engage in a one-
time group setup after which each signer obtains a group-specific membership
key that it needs to sign messages for the group PK.

4.1 Definition of ASM Schemes

We adapt the original syntax and security definition of ASM schemes [38] to
support public-key aggregation and an interactive group setup procedure.

An ASM scheme consists of algorithms Pg, Kg, GSetup, Sign, KAg, and
Vf. The common system parameters are generated as par ←$ Pg. Each signer
generates a key pair (pk , sk) ←$ Kg(par). To paricipate in a group of sign-
ers PK = {pk1, . . . , pkn}, each signer in PK runs the interactive algorithm
GSetup(sk ,PK) to obtain a membership key mk . We assume that each signer in
PK is assigned a publicly computable index i ∈ {1, . . . , |PK|}, e.g., the index
of pk in a sorted list of PK. Any subgroup of signers S ⊆ {1, . . . , |PK|} of PK
can then collectively sign a message m by each calling the interactive algorithm
Sign(par ,PK,S , sk ,mk ,m), where mk is the signer’s membership key for this
group of signers, to obtain a signature σ. The key aggregation algorithm, on
input the public keys of a group of signers PK, outputs an aggregate public key



apk . A signature σ is verified by running Vf(par , apk ,S ,m, σ) which outputs 0
or 1.

Correctness requires that for all n > 0, for all S ⊆ {1, . . . , n}, and for all
m ∈ {0, 1}∗ it holds that Vf(par , apk ,S ,m, σ) = 1 with probability one when
par ←$ Pg, (pk i, sk i) ←$ Kg(par), mk i ←$ GSetup(sk i, {pk1, . . . , pkn}), and σ ←$

Sign(par , {pk1, . . . , pkn},S , sk i,mk i,m), where GSetup is executed by all signers
1, . . . , n while Sign is only executed by the members of S .

Security. Unforgeability is described by the following game.

Setup. The challenger generates par ← Pg and (pk∗, sk∗) ←$ Kg(par), and runs
the adversary A(par , pk∗).

Group Setup. The adversary can perform the group setup protocol GSetup(sk∗,PK)
for any set of public keys PK so that pk∗ ∈ PK, where the challenger plays the
role of the target signer pk∗. The challenger stores the resulting membership key
mk∗PK, but doesn’t hand it to A.

Signature queries. The adversary can also engage in arbitrarily many concurrent
signing protocols for any message m, for any group of signers PK for which pk∗ ∈
PK and mk∗PK is defined, and for any S ⊆ {1, . . . , |PK|} so that i ∈ S , where i
is the index of pk∗ in PK. The challenger runs Sign(par ,PK,S , sk∗,mk∗,m) to
play the role of the i-th signer and hands the resulting signature σ to A.

Output. The adversary outputs a set of public keys PK, a set S ⊆ {1, . . . , |PK|},
a message m and an ASM signature σ. It wins the game if Vf(par , apk ,S ,m, σ) =
1, where apk ← KAg(PK), pk∗ ∈ PK and i is the index of pk∗ in PK, i ∈ S ,
and A never submitted m as part of a signature query.

Definition 6. We say that A is a (τ, qG, qS, qH, ε)-forger for accountable-subgroup
multisignature scheme ASM if it runs in time τ , makes qG group setup queries,
qS signing queries, qH random-oracle queries, and wins the above game with prob-
ability at least ε. ASM is (τ, qG, qS, qH, ε)-unforgeable if no (τ, qG, qS, qH, ε)-forger
exists.

4.2 Our ASM Scheme

Key generation and key aggregation in our ASM scheme are the same as for
our aggregatable multi-signature scheme in the previous section. We construct
an ASM scheme by letting all signers, during group setup, contribute to multi-
signatures on the aggregate public key and the index of every signer, such that
the i-th signer in PK has a “membership key” which is a multi-signature on
(apk , i). On a high level, an accountable-subgroup multi-siganture now consists
of the aggregation of the individual signers’ signatures and their membership
keys and the aggregate public key of the subroup S . To verify whether a subgroup
S signed a message, one checks that the signature is a valid aggregate signature



where the aggregate public key of the subgroup signed the message and the
membership keys corresponding to S .

The scheme uses hash functions H0 : {0, 1}∗ → G1, H1 : {0, 1}∗ → Zq, and
H2 : {0, 1}∗ → G1. Parameter generation, key generation, and key aggregation
are the same as for the aggregate multi-signature scheme in Section 3.

Group Setup. GSetup(sk i,PK = {pk1, . . . , pkn}) checks that pk i ∈ PK and
that i is the index of pk i in PK. Signer i computes the aggregate public key
apk ← KAg(PK) as well as ai ← H1(pk i,PK). It then sends µj,i = H2(apk , j)ai·ski

to signer j for j 6= i, or simply publishes these values. After having received µi,j
from all other signers j 6= i, it computes µi,i ← H2(apk , i)ai·ski and returns the
membership key mk i ←

∏n
j=1 µi,j . Note that if all signers behave honestly, we

have that
e(g1,mk i) = e(apk ,H2(apk , i)).

In other words, this mk i is a valid multi-signature on the message H2(apk , i)) by
all n parties, as defined in the scheme in Section 3.1.

Signing. Sign(par ,PK,S , sk i,mk i,m) computes apk ← KAg(PK) and

si ← H0(apk ,m)ski ·mk i ,

and sends (pk i, si) to a designated combiner (either one of the members of S or
an external party). The combiner computes

pk ←
∏
j∈S

pk j , s←
∏
j∈S

sj ,

and outputs the multisignature σ := (pk , s). Note that the set S does not have
to be fixed at the beginning of the protocol, but can be determined as partial
signatures are collected.

Verification. Vf(par , apk ,S ,m, σ) parses σ as (pk , s) and outputs 1 iff

e(H0(apk ,m), pk) · e(
∏
j∈S

H2(apk , j), apk)
?
= e(s, g2)

and S is a set authorized to sign.
The presented ASM scheme satisfies correctness. If parties honestly execute

the group setup and and signing protocols, we have pk = g
∑
i∈S ski

2 , apk =

g
∑
i=1,...,n ai·pki

2 , and s = H0(apk ,m)
∑
i∈S ski ·

∏
i∈S H2(apk , i)

∑
j∈1,...,n aj ·skj , which

passes verification:

e(s, g2) = e
(
H0(apk ,m)

∑
i∈S ski ·

∏
i∈S

H2(apk , i)
∑
j∈1,...,n aj ·skj , g2

)
= e
(
H0(apk ,m), pk

)
· e
(∏
i∈S

H2(apk , i), g
∑
j∈1,...,n aj ·skj

2

)
= e
(
H0(apk ,m), pk

)
· e
(∏
i∈S

H2(apk , i), apk
)



4.3 Security of our ASM Scheme

Theorem 3. Our ASM scheme is unforgeable under the hardness of the com-
putational ψ-co-Diffie-Hellman problem in the random-oracle model. More pre-
cisely, it is (τ, qS, qH, ε)-unforgeable in the random-oracle model if q > 8qH/ε
and if ψ-co-CDH is (τ + qH ·max (τexpl

2
, τexp2

1
) + qG · (l − 1)τexp1

+ qS · (τexpl
2

+

τexp1
) + 2τpair + τexp3

1
) · 8q2H/((1 − (qS + qH)/q) · ε) · ln(8qH/((1 − (qS + qH)/q) ·

ε)), (1− (qS + qH)/q) · ε/(8qH))-hard, where l is the maximum number of signers
involved in any group setup, τexp1

and τexp2
denote the time required to compute

exponentiations in G1 and G2 respectively, and τexpi
1

and τexpi
2

denote the time
required to compute i-multiexponentiations in G1 and G2 respectively, and τpair
denotes the time required to compute a pairing operation.

Proof. Given a forger F against the ASM scheme, we construct a wrapper algo-
rithm A that can be used by the generalized forking algorithm GFA. We then
give an adversary B that can solve the ψ-co-CDH problem by running GFA.
The proof essentially combines techniques related to the non-extractability of
BGLS aggregate signatures [12, 20] with Maxwell et al. ’s key aggregation tech-
nique [35].

Given a forger F , consider the following algorithm A. On input in = (q,G1,

G2,Gt, e, g1, g2, A = gα1 , B1 = gβ1 , B2 = gβ2 ) and randomness f = (ρ, h1, . . . , hqH),
and given access to a homomorphism oracle Oψ(·), A proceeds as follows. It
guesses a random index k ←$ {1, . . . , qH} and runs F on input par ← (q,G1,G2,Gt, e,
g1, g2) and pk∗ ← B2, answering its oracle queries using initially empty lists
L0, L2 as follows:

– H1(x): If x can be parsed as (pk ,PK) and pk∗ ∈ PK and F did not make
any previous query H1(pk ′,PK), then it sets H1(pk∗,PK) to the next unused
value hi and, for all pk ∈ PK \ {pk∗}, assigns a random value in Zq to

H1(pk ,PK). Let apk ←
∏

pk∈PK pkH1(pk ,PK) and let i be the index of pk∗

in PK. If F previously made any random-oracle or signing queries involving
apk , then we say that event bad happened and A gives up by outputting
(0,⊥). If H1(x) did not yet get assigned a value, then A assigns a random
value H1(x)←$ Zq.

– H2(x): If x can be parsed as (apk , i) such that there exist defined entries for

H1 such that apk =
∏

pk∈PK pkH1(pk ,PK), pk∗ ∈ PK, and i is the index of

pk∗ in PK, then A chooses r ←$ Zq, adds ((apk , i), r, 1) to L2 and assigns
H2(x) ← gr1A

−1/ai where ai = H1(pk∗,PK). If not, then A chooses r ←$ Zq,
adds (x, r, 0) to L2 and assigns H2(x)← gr1.

– H0(x): If this is F ’s k-th random-oracle query, then A sets m∗ ← x, hoping
that F will forge on message m∗. It then chooses r ←$ Zq, adds (m∗, r, 1) to
L0 and assigns H0(m∗) ← gr1. If this is not F ’s k-th random-oracle query,
then A chooses r ←$ Zq, adds (x, r, 0) to L0 and assigns H0(x)← gr1A.

– GSetup(PK): If pk∗ 6∈ PK, then A ignores this query. Otherwise, it computes

apk ←
∏

pk∈PK pkH1(pk ,PK), internally simulating the random-oracle queries
H1(pk ,PK) if needed. It also internally simulates queries H2(apk , j) for j =



1, . . . , |PK|, j 6= i, to create entries ((apk , j), rj , 0) ∈ L2, as well as ai ←
H1(pk∗,PK), where i is the index of pk∗ in PK. Since H2(apk , j) = g

rj
1 , A

can simulate the values µj,i = H2(apk , j)ai·sk
∗

= H2(apk , j)ai·β for j 6= i as
µj,i ← B

ai·rj
1 .

After having received µi,j from all other signers j 6= i, A internally stores
µapk ←

∏
j 6=i µi,j .

– Sign(PK,S ,m): If F did not perform group setup for PK, then A ignores
this query. If m = m∗, then A gives up by outputting (0,⊥). Otherwise,
it recomputes apk ← KAg(PK) and looks up ((apk ,m), r0, 0) ∈ L0 and
((apk , i), r2, 1) ∈ L2, internally simulating queries H0(apk ,m) and H2(apk , i)
to create them if needed, where i is the index of pk∗ in PK. Now A must sim-
ulate the partial signature si = H0(apk ,m)sk

∗ · µapk · H2(apk , i)ai·sk
∗
, where

ai = H1(pk∗,PK). From the way A responded to random-oracle queries,
we know that H0(apk ,m) = gr01 A = gr0+α1 and H2(apk , i) = gr21 A

−1/ai =

g
r2−α/ai
1 , so that A has to simulate si = g

β(r0+α)
1 · µapk · gβ(air2−α)1 =

µapk · gβ(r0+air2)1 , which it can easily compute as si ← µapk ·Br0+air21 .

When F eventually outputs its forgery (PK,S ,m, σ), A recomputes apk∗ ←
KAg(PK) =

∏|PK|
j=1 pk

aj
j , where pk j is the j-th public key in PK and aj =

H1(apk , j), and checks that the forgery is valid, i.e., Vf(par , apk ,S ,m, σ) = 1,
pk∗ ∈ PK, i ∈ S where i is the index of pk∗ ∈ PK, and F never made a signing
query for m. If any of these checks fails, A outputs (0,⊥). If m 6= m∗, then A
also outputs (0,⊥). Else, observe that σ = (pk , s) such that

s = H0(apk ,m∗)log pk ·
∏
j∈S

H2(apk , j)log apk∗ .

Because of howA simulated F ’s random-oracle queries, it can look up ((apk∗,m∗), r0, 1) ∈
L0, ((apk∗, j), r2,j , 0) ∈ L2 for j ∈ S \ {i}, and ((apk∗, i), r2,i, 1) ∈ L2, where i is
the index of pk∗ in PK, such that

H0(apk ,m∗) = gr01

H2(apk , j) = g
r2,j
1 for j ∈ S \ {i}

H2(apk , i) = g
r2,i
1 A−1/ai

so that we have that

s = glog pk ·r0
1 · glog apk∗·

∑
j∈S r2,j

1 ·A− log apk∗/ai

If we let
t←

(
s−1 · Oψ(pk)r0 · Oψ(apk∗)

∑
j∈S r2,j

)ai
then we have that

t = Alog apk∗ = A
∑|PK|
j=1 aj log pkj .

If I is the index such that H(pk∗,PK) = hI , then algorithm A outputs (I, (t,PK,
a1, . . . , an)).



A’s runtime is F ’s runtime plus the additional computation A performs. Let
qH denote the total hash queries F makes, i.e., the queries to H0, H1, and H2

combined. To answer a H1 query, A computes apk which costs at most τexpl
2

for
groups consisting of up to l signers. To answer H0 and H2 queries, A performs
at most τexp2

1
. A therefore spends at most qH ·max (τexpl

2
, τexp2

1
) answering hash

queries. For every group-setup query with l signers, A computes apk costing
τexpl

2
, and A computes µj,i costing (l−1)τexp1

, meaning A spends qG ·(l−1)τexp1

answering group setup queries. For signing queries with a PK of size at most l,
A computes apk costing time τexpl

2
, and one exponentiation in G1 costing τexp1 ,

giving a total of qS ·(τexpl
2
+τexp1). Finally, A computes the output values, which

involves verifying the forgery (costing 2τpair) and computing t (costing τexp3
1
),

giving A a total runtime of τ + qH · max (τexpl
2
, τexp2

1
) + qG · (l − 1)τexp1 + qS ·

(τexpl
2

+ τexp1) + 2τpair + τexp3
1
. A successfully outputs if the bad event does

not happen, it guesses the index of the forgery correctly, and F successfully
forges. Event bad happens with probability at most (qS + qH)/q for every hash
query, so it happens with probability qH(qS + qH)/q. A guesses the forgery index
correctly with prbability 1/qH, and F forges with probability ε, giving A success
probability (1− (qS + qH)/q) · ε/qH.

Using the generalized forking lemma from Lemma 1, we can build an algo-
rithm B that solves the ψ-co-CDH problem by, on input (A = gα1 , B1 = gβ1 , B2 =

gβ2 ), running GFA(q,G1,G2,Gt, e, g1, g2, A,B1, B2) to obtain two outputs (I, (t,
PK, a1, . . . , an)) and (I, (t′,PK′, a′1, . . . , a′n)), giving GFA access to the homo-
morphism oracle Oψ(·) offered by ψ-co-CDH. Since the two executions of A are
identical up to the first query H1(pk ,PK) involving the forged set of signers PK,
we have that PK = PK′. Also, from the way A assigns values to outputs of H1,
one can see that aj = a′j for j 6= i and ai 6= a′i, where i is the index of pk∗ in
PK. We therefore have that

t/t′ = A(ai−a′i) log pk∗ = g
αβ(ai−a′i)
1 ,

so that B can output its solution gα·β1 = (t/t′)1/(ai−a
′
i).

Using Lemma 1, we know that if q > 8qH/ε, then B runs in time at most
(τ + qH ·max (τexpl

2
, τexp2

1
) + qG · (l−1)τexp1

+ qS · (τexpl
2

+ τexp1
) + 2τpair + τexp3

1
) ·

8q2H/((1 − (qS + qH)/q) · ε) · ln(8qH/((1 − (qS + qH)/q) · ε)) and succeeds with
probability (1− (qS + qH)/q) · ε/(8qH).

5 A Scheme from Discrete Logarithms

The basic key aggregation technique of our pairing-based schemes is due to
Maxwell et al. [35], who presented a Schnorr-based multi-signature scheme that
uses the same key aggregation technique and that also saves one round of in-
teraction in the signing protocol with respect to Bellare-Neven’s scheme [9].
Unfortunately, their security proof was found to be flawed due to a problem in
the simulation of the signing protocol [21]. In the following, we recover Maxwell
et al.’s key aggregation technique for ordinary (i.e., non-pairing-friendly) curves



by combining it with Bellare-Neven’s preliminary round of hashes. The result-
ing scheme achieves the same space savings as Maxwell et al.’s original scheme,
but is provably secure under the hardness of the discrete-logarithm assumption.
Independently from our work, Maxwell et al. [36] revised their work to use the
same protocol we present here.

5.1 Description of our Discrete-Logarithm Scheme

Our discrete-logarithm based multi-signature scheme MSDL uses hash functions
H0,H1,H2 : {0, 1}∗ → Zq, which can be instantiated from a single hash function
using domain separation.

Parameters generation. Pg(κ) sets up a group G of order q with generator g,
where q is a κ-bit prime, and output par ← (G, g, q).

Key generation. The key generation algorithm Kg(par) chooses sk ←$ Zq and
computes pk ← gsk . Output (pk , sk).

Key Aggregation. KAg({pk1, . . . , pkn}) outputs

apk ←
n∏
i=1

pk
H1(pki,{pk1,...,pkn})
i .

Signing. Signing is an interactive three-round protocol. On input Sign(par , {pk1,
. . . , pkn}, sk ,m), signer i behaves as follows:

Round 1. Choose ri ←$ Zq and compute Ri ← gri . Let ti ← H2(Ri). Send ti
to all other signers corresponding to pk1, . . . , pkn and wait to receive tj from all
other signers j 6= i.

Round 2. Send Ri to all other signers corresponding to pk1, . . . , pkn and
wait to receive Rj from all other signers j 6= i. Check that tj = H2(Rj) for all
j = 1, . . . , n.

Round 3. Compute apk ← KAg({pk1, . . . , pkn}) and let ai ← H1(pk i, {pk1,
. . . , pkn}). Note that when multiple messages are signed with the same set of
signers, apk and ai can be stored rather than recomputed.

Compute R̄ ←
∏n
j=1Rj and c← H0(R̄, apk ,m). Compute si ← ri + c · sk i ·

ai mod q. Send si to all other signers and wait to receive sj from all other signers
j 6= i. Compute s←

∑n
j=1 sj and output σ ← (R̄, s) as the final signature.

Verification. Vf(par , apk ,m, σ) parses σ as (R̄, s) ∈ G × Zq, computes c ←
H0(R̄, apk ,m) and outputs 1 iff gs · apk−c

?
= R̄.

The scheme allows for more efficient batch verification, which allows a verifier
to check the validity of n signatures with one 3n-multi-exponentiation instead of
n 2-multi-exponentiations. To verify that every signature in a list of n signatures
{(apk i,mi, (R̄i, si))}ni=1 is valid, compute ci ← H1(R̄, apk i,mi), pick αi ←$ Zq
for i = 1, . . . , n, and accept iff

n∏
i=1

gαisiapk−αicii R̄−αii
?
= 1G .



5.2 Security Proof

The security proof follows that of [35] by applying the forking lemma twice: once
by forking on a random-oracle query H0(R̄, apk ,m) to obtain two forgeries from
which the discrete logarithm w of apk can be extracted, and then once again
by forking on a query H1(pk i, {pk1, . . . , pkn} to obtain two such pairs (apk , w)
and (apk ′, w′) from which the discrete logarithm of the target public key can be
extracted.

Theorem 4. MSDL is an unforgeable multisignature scheme (as defined in
Def 4) in the random-oracle model if the discrete log problem is hard. More pre-
cisely, MSDL is (τ, qS, qH, ε)-unforgeable in the random-oracle model if q > 8qH/ε
and if discrete log is ((τ+4lqT ·τexp +O(lqT)) ·512q2T/(ε−δ) · ln

2(64/(ε−δ)), (ε−
δ)/64)-hard, where l is the maximum number of signers involved in a single mul-
tisignature, qT = qH+qS+1, δ = 4lq2T/q, and τexp is the time required to compute
an exponentiation in G.

Proof. We first wrap the forger F into an algorithm A that can be used in the
forking lemma. We then describe an algorithm B that runs GFA to obtain an
aggregated public key apk and its discrete logarithm w. We finally describe a
discrete-logarithm algorithm D that applies the forking lemma again to B by
running GFB and using its output to compute the wanted discrete logarithm.

Algorithm A, on input in = (y, h1,1, . . . , h1,qH) and randomness f = (ρ,
h0,1, . . . , h0,qH) runs F on input pk∗ = y and random tape ρ, responding to its
queries as follows:

– H0(R̄, apk ,m): Algorithm A returns the next unused value h0,i from its ran-
domness f .

– H1(pk i,PK): If pk∗ ∈ PK and F did not make any previous query H1(pk ′,PK),
then A sets H1(pk∗,PK) to the next unused value h1,i from its input and as-

signs H1(pk ,PK)←$ Zq for all pk ∈ PK\{pk∗}. Let apk ←
∏

pk∈PK pkH1(pk ,PK).
If F already made any random-oracle or signing queries involving apk , then
we say that event bad1 happened and A gives up by outputting (0,⊥).

– H2(R): A simply chooses a random value t ←$ Zq and assigns H2(R) ← t. If
there exists another R′ 6= R such that H2(R′) = t, or if t has already been
used (either by F or in A’s simulation) in the first round of a signing query,
then we say that event bad2 happened and A gives up by outputting (0,⊥).

– Sign(PK,m): Algorithm A first computes apk ← KAg(PK), simulating in-
ternal queries to H1 as needed. In the first round of the protocol, A returns
a random value ti ←$ Zq.
After receiving values tj from all other signers, it looks up the corresponding
values Rj such that H2(Rj) = tj . If not all such values can be found, then A
sends Ri ←$ G to all signers; unless bad2 happens, the signing protocol fin-
ishes in the next round. If all values Rj are found, then A chooses si, c←$ Zq,
simulates an internal query ai ← H1(pk∗,PK), computes Ri ← gsipk∗

−ai·c

and R̄ ←
∏n
j=1Rj , assigns H2(Ri) ← ti and H0(R̄, apk ,m) ← c, and sends

Ri to all signers. If the latter assignment failed because the entry was taken,



we say that event bad3 happened and A gives up by outputting (0,⊥). (Note
that the first assignment always succeeds, unless bad2 occurs.)
After it received the values Rj from all other signers, A sends si.

When F outputs a valid forgery (R̄, s) on message m for a set of signers PK =
{pk1, . . . , pkn}, A computes apk ← KAg(PK), c ← H0(R̄, apk ,m), and ai ←
H1(pk i,PK) for i = 1, . . . , n. If j is the index such that c = h0,j , then A returns
(j, (R̄, c, s, apk ,PK, a1, . . . , an)).

Note that apk =
∏n
i=1 pkaii and, because the forgery is valid, gs = R̄ · apk c.

If F is a (τ, qS, qH, ε)-forger, then A succeeds with probability

εA = Pr[F succeeds ∧ bad1 ∧ bad2 ∧ bad3]

≥ Pr[F succeeds]− Pr[bad1]− Pr[bad2]− Pr[bad3]

≥ ε− qH(qH + qS + 1)

q
−
(

(qH + qS)2

2q
+
lqHqS
q

)
− qH(qH + qS + 1)

q

≥ ε− 4lq2T
q

= ε− δ

where qT = qH + qS + 1 and δ = 4l(qH + qS + 1)2/q. The running time of A is
τA = τ + 4lqT · τexp +O(lqT).

We now construct algorithm B that runs the forking algorithm GFA on
algorithm A, but that itself is a wrapper algorithm around GFA that can be
used in the forking lemma. Algorithm B, on input in = y and randomness
f = (ρ, h1,1, . . . , h1,qH), runs GFA on input in ′ = (y, h1,1, . . . , h1,qH) to obtain
output(

j, (R̄, c, s, apk ,PK, a1, . . . , an), (R̄′, c′, s′, apk ′,PK′, a′1, . . . , a′n)
)
.

In its two executions by GFA, F ’s view is identical up to the j-th H0 query
H0(R̄, apk ,m), meaning that also the arguments of that query are identical in
both executions, and hence R̄ = R̄′ and apk = apk . From the way A answers
F ’s H1 queries by aborting when bad1 happens, the fact that apk = apk ′ also
means that PK = PK′ and that ai = a′i for i = 1, . . . , n. The forking algorithm
moreover guarantees that c 6= c′.

By dividing the two verification equations gs = R̄ · apk c and gs
′

= R̄′ ·
apk ′

c′

= R̄ · apk c
′
, one can see that w ← (s − s′)/(c − c′) mod q is the discrete

logarithm of apk . If i is the index such that H1(pk∗,PK) = h1,i, then B outputs
(i, (w,PK, a1, . . . , an)). It does so whenever GFA is successful, which according
to Lemma 1 occurs with probability εB and running time τB:

εB ≥
εA
8
≥ ε− δ

8
τB = τA · 8qH/εA · ln(8/εA)

≤ (τ + 4lqT · τexp +O(lqT)) · 8qT
ε− δ

· ln 8

ε− δ
.



Now consider the discrete-logarithm algorithm D that, on input y, runs GFB
on input y to obtain output (i, (w,PK, a1, . . . , an), (w,PK′, a′1, . . . , a′n)). Both
executions of B in GFB are identical up to the i-th H1 query H1(pk ,PK), so
we have that PK = PK′. Because A immediately assigns outputs of H1 for all
public keys in PK as soon as the first query for PK is made, and because it
uses h1,i to answer H1(pk∗,PK), we also have that ai = a′i for pk i 6= pk∗ and
ai 6= a′i for pk i = pk∗. By dividing the equations apk =

∏n
i=1 pkaii = gw and

apk ′ =
∏n
i=1 pk

a′i
i = gw

′
, one can see that D can compute the discrete logarithm

of pk∗ = y as x ← (w − w′)/(ai − a′i) mod q , where i is the index such that
pk i = pk∗. By Lemma 1, it can do so with the following success probability εD
and running time τD:

εD ≥
εB
8
≥ ε− δ

64
τD = τB · 8qH/εB · ln(8/εB)

≤ (τ + 4lqT · τexp +O(lqT)) · 512q2T
ε− δ

· ln2 64

ε− δ
.

6 Schemes with Proofs of Possession

As first observed by Ristenpart and Yilek [47], rogue-key attacks in multi-
signatures can for some schemes be prevented by letting signers add a so-called
proof of possession (PoP) to their public keys, which is simply a signature
on their own public key. In particular, they showed this to be the case for
Boldyreva’s [10, 13] and Lu et al.’s [32] multisignatures. We show that all of
our schemes can also be strengthened with PoPs instead of with Maxwell et al.’s
key aggregation [35], yielding an even simpler key aggregation where, after hav-
ing verified the PoPs, the aggregate key is simply the product of all individual
keys.

The main disadvantage of schemes using PoPs is of course the growth in
public key size due to the PoPs. There are situations, however, where the size of
individual public keys is not crucial. For example, Multisig addresses in principle
do not need to reveal the individual public keys of all signers, as long as the
aggregate public key is known and agreed upon by all signers. Signers can build
trust in the aggregate key by exchanging and verifying each others’ PoPs when
the Multisig wallet is created, but only advertise the aggregate key to the outside
world. In distributed ledgers (e.g., Blockchain), the signers may be a relatively
small and static set of nodes whose public keys can be verified once and then
aggregated in arbitrary combinations.

The PoP variants of our schemes do offer some advantages that could make
them worth considering. Namely, the aggregate public keys are a simple multipli-
cation and/or hash of the individual keys, as opposed to a multi-exponentiation,
which could be relevant if the set of active co-signers changes frequently. Also,
their security proofs avoid (one layer of) forking, yielding much tighter security
reductions, and therefore shorter key and signature sizes if concrete security is
taken into account.



Below, we only summarize the differences of the PoP variants to the original
schemes and their security. The security proofs can be found in the supplemen-
tary material.

6.1 Pairing-Based Schemes with PoPs

The MSP -pop and AMSP -pop schemes are PoP variants of the MSP and AMSP
schemes, respectively. In fact, MSP -pop is known [47, 10], but we recall it here for
completeness. The schemes use an additional hash function H1 : {0, 1}∗ → G1

that could be constructed from H0 using domain separation. Key generation
differs in that it computes y ← gsk2 as well as a proof of possession π ← H1(y)x,
and sets pk ← (y, π). To aggregate keys {(y1, π1), . . . , (yn, πn)}), one first checks

that e(H1(yi), yi)
?
= e(πi, g2) for i = 1, . . . , n. If so, then KAg outputs apk ←∏n

i=1 yi, otherwise it outputs ⊥.
The signing protocol of MSP -pop lets a signers with secret key sk i compute

its partial signature as si ← H0(m)ski , while that of AMSP -pop computes it
as si ← H0(apk ,m)ski . Signature combination, aggregation, and verification are
otherwise identical to MSP and AMSP .

Theorem 5. MSP -pop and AMSP -pop are unforgeable multi-signature and ag-
gregate multi-signature schemes under the hardness of the co-CDH and ψ-co-CDH
problems, respectively, in the random-oracle model. More precisely, MSP -pop is
(τ, qS, qH, ε)-unforgeable in the random-oracle model if co-CDH is (τ+(qH+2qS+
l + 3)τexp1 + l · τpair + O(l(qH + qS + 1)), ε/(qH + qS + 1))-hard, where l is the
maximum number of signers involved in a single multisignature, τexp1 is the time
required to compute an exponentiation in G1, and τpair is the time required to
compute a pairing. AMSP -pop is (τ, qS, qH, ε)-unforgeable in the random-oracle
model if ψ-co-CDH is (τ + (qH + 2qS + l + 3)τexp1

+ τexpn
1

+ l · τpair + O(l(qH +
qS + 1)), ε/(qH + qS + 1))-hard, where τexpn

1
is the time required to compute an

n-multiexponentiation in G1.

6.2 Accountable-Subgroup Scheme with PoPs

Key generation in ASM -pop, our ASM scheme with PoPs, is the same as for
MSP -pop and AMSP -pop above. Key aggregation is slightly different in that the
aggregate of a set of keys PK = {(y1, π1), . . . , (yn, πn)}) not only contains the
product Y ←

∏n
i=1 yi, but also the hash of all public keys h ← H3(PK), where

H3 : {0, 1}∗ → Zq is another hash function. The aggregate public key is given by
the pair apk ← (Y, h). The reason to include this hash is that when simulating a
response to H2(apk , i), the simulator must be able to tell whether i is the index
of the target signer in the set PK for which apk is the aggregate public key.

Group setup GSetup(sk i,PK = {pk1, . . . , pkn}) computes apk = (Y, h) ←
KAg(par ,PK) and sends µj,i = H2(apk , j)ski to signer j. After having received
µi,j from all other signers j 6= i, signer i computes µi,i ← H2(apk , i)ski and
outputs the membership key mk i ←

∏n
j=1 µi,j . If all signers behave honestly, it

holds that e(g1,mk i) = e(Y,H2(apk , i)).



Signature and verification are the same as for ASM , except that the product
of public keys pk ←

∏
j∈S pk j is replaced with y ←

∏
j∈S yj .

Theorem 6. Our ASM -pop scheme is unforgeable under the hardness of the
computational ψ-co-Diffie-Hellman problem in the random-oracle model. More
precisely, it is (τ, qS, qH, ε)-unforgeable in the random-oracle model if ψ-co-CDH
is (τ+(qH+qG(l−1)+qS+1)·τexp1

+(2l+2)·τpair+τexpl+2
1
, ε/qH−qH(qS+qH)/q)-

hard, where l is the maximum number of signers involved in any group setup,
τexp1

and τexpi
1

denote the time required to compute an exponentiation and i-
multiexponentiation in G1, respectively, and τpair denotes the time required to
compute a pairing operation.

6.3 Schemes from Discrete Logarithms with PoPs

Drijvers et al. [21] presented the DG-CoSi scheme, which combines double-
generator Okamoto signatures [44] over non-pairing curves with proofs of posses-
sion to protect against rogue-key attacks. The use of Okamoto signatures avoids
the extra round of hashes in the signing protocol of Bellare-Neven [9], but in-
creases the signature size with an additional element in Zq. Alternatively, one
could consider the MSDL-pop scheme, a PoP variant of our MSDL that uses the
extra round of hashes.

To generate a key pair for MSDL-pop, the signer chooses sk ←$ Zq, computes
y ← gsk , and adds proof of possession that is a Schnorr signature [48] on y
using H1 as a hash function. Meaning, it chooses r ←$ Zq and computes t← gr,
c← H1(t, y), and s← r + c · sk mod q. The public key is pk ← (y, c, s).

To aggregate keys {(y1, c1, s1), . . . , (yn, cn, sn)}, one first checks that ci
?
=

H1(gsy−cii , yi) for all i = 1, . . . , n. If so, then the aggregate public key is apk ←∏n
i=1 yi, otherwise it is returned as ⊥. The signing protocol is mostly the same as

MSDL , except that the signer in the third round computes si ← ri+c·sk i mod q.
The MSDL-pop is secure under the discrete-logarithm assumption in the

random-oracle model. The proof is similar to that of DG-CoSi [21] and hence
omitted.
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A Security Proofs for Schemes with Proofs of Possession

A.1 Security Proof for MSP -pop and AMSP -pop

Proof (Theorem 5). Given a (τ, qS, qH, ε) forger F against MSP -pop, consider

the following co-CDH algorithm A. On input A = gα1 , B1 = gβ1 , B2 = gβ2 ,
algorithmA first chooses a random index k ←$ {1, . . . , qH+qS+1}. It then chooses
r ←$ Zq, assigns H1(B2)← gr1, and runs F on target public key pk∗ ← (B2, B

r
1),

responding to its queries as follows:

– H0(m): If this is F ’s k-th random-oracle query, then A assigns H0(m) ← A
and adds (m,⊥, 1) to L0. If not, then it chooses r ←$ Zq, assigns H0(m)← gr1,
and adds (m, r, 0) to L0.

– H1(y): A chooses r ←$ Zq, assigns H1(y)← Br1 , and adds (y, r) to L1.



– Sign(m): A first simulates an internal query H0(m). If m = m∗ then A gives
up. Otherwise, it looks up (m, r, 0) ∈ L0 and returns si ← Br1 .

When F outputs its forgery σ for message m∗ and public keys PK = {pk1, . . . , pkn},
A computes apk ← KAg(PK) and checks that Vf(par , apk ,m∗, σ) = 1. If H0(m∗)
was not F ’s k-th random-oracle query, then A aborts. Otherwise, it parses pk j
as (yj , πj) and looks up (yj , rj) ∈ L1 for j = 1, . . . , n. Let i be the index such
that pk i = pk∗. For j 6= i, we have that πj = Arj ·log pkj , so that A can re-

turn σ ·
∏n
j=1,j 6=i π

−rj
j as its co-CDH solution. Then A succeeds with probability

εA = ε/(qH + qS + 1) and has running time τA = τ + (qH + 2qS + l+ 3)τexp1
+ l ·

τpair +O(l(qH + qS + 1)).
Given a forger F against the AMSP -pop scheme, one can construct an algo-

rithm A solving the ψ-co-CDH problem along the same lines. Its forgery consists
of an aggregate multi-signature Σ, a set of aggregate public keys and message
pairs {(apk1,m1), . . . , (apkn,mn)}, a set of public keys PK, and a message m∗.
Let apk∗ ← KAg(par ,PK). If H0(apk∗,m∗) was F ’s k-th random-oracle query,
then we have that

e(Σ, g−12 ) · e(A, apk∗) ·
n∏
i=1

e(H0(apk i,mi), apk i) = 1Gt .

A looks up ri for every (apk i,mi) such that H0(apk i,mi) = gri1 . It computes
σ ← Σ ·

∏n
i=1Oψ(apk−rii ), so that

e(σ, g2) = e(y, apk∗).

Note that A has now extracted a MSP forgery, meaning that the rest of the
reduction is exactly as for the MSP -pop scheme. The success probability of the
reduction is therefore the same, and the runtime is only increased by the extra
steps required to compute σ, which costs τexpn

1
.

A.2 Security Proof for ASM -pop

Proof (Theorem 6). Given a forger F against the ASM scheme, we construct the
following algorithm A solving the ψ-co-CDH problem. On input (A = gα1 , B1 =

gβ1 , B2 = gβ2 ) and given access to a homomorphism oracle Oψ(·), A proceeds as
follows. It guesses a random index k ←$ {1, . . . , qH}, chooses r ←$ Zq, assigns
H1(B2) ← gr1, and runs F on input par ← (q,G1,G2,Gt, e, g1, g2) and pk∗ ←
(B2, B

r
1), answering its oracle queries using initially empty lists L0, L2 as follows:

– H1(y): Choose r ←$ Zq, assign H1(x)← Ar, and add (y, r) to L1.
– H3(x): Choose a random value h ←$ Zq and assign H3(x) ← h. If F previ-

ously made any random-oracle or signing queries involving h as part of an
aggregated public key, then we say that event bad happened and A gives up.

– H2(x): If x can be parsed as (apk , i) such that apk = (Y, h) and there exists
a defined entry H3(PK) = h such that Y =

∏
(y,π)∈PK y, pk∗ ∈ PK, and i

is the index of pk∗ in PK, then A chooses r ←$ Zq, adds ((apk , i), r, 1) to L2

and assigns H2(x)← gr1A
−1. If not, then A chooses r ←$ Zq, adds (x, r, 0) to

L2 and assigns H2(x)← gr1.



– H0(x): If this is F ’s k-th random-oracle query, then A sets m∗ ← x, hoping
that F will forge on message m∗. It then chooses r ←$ Zq, adds (m∗, r, 1) to
L0 and assigns H0(m∗) ← gr1. If this is not F ’s k-th random-oracle query,
then A chooses r ←$ Zq, adds (x, r, 0) to L0 and assigns H0(x)← gr1A.

– GSetup(PK): If pk∗ 6∈ PK, then A ignores this query. Otherwise, it computes
apk ← KAg(par ,PK), internally simulating the random-oracle queries H1(y)
and H3(PK) if needed. It also internally simulates queries H2(apk , j) for j =
1, . . . , |PK|, j 6= i, to create entries ((apk , j), rj , 0) ∈ L2, where i is the index
of pk∗ in PK. Since H2(apk , j) = g

rj
1 , A can simulate the values µj,i =

H2(apk , j)sk
∗

= H2(apk , j)β for j 6= i as µj,i ← B
rj
1 .

After having received µi,j from all other signers j 6= i, A internally stores
µapk ←

∏
j 6=i µi,j .

– Sign(PK,S ,m): If F did not perform group setup for PK, then A ignores
this query. If m = m∗, then A gives up. Otherwise, it recomputes apk ←
KAg(PK) and looks up (m, r0, 0) ∈ L0 and ((apk , i), r2, 1) ∈ L2, internally
simulating queries H0(m) and H2(apk , i) to create them if needed, where i
is the index of pk∗ in PK. Now A must simulate the partial signature si =
H0(m)sk

∗ · µapk ·H2(apk , i)sk
∗
. From the way A responded to random-oracle

queries, we know that H0(m) = gr01 A = gr0+α1 and H2(x) = gr21 A
−1 = gr2−α1 ,

so that A has to simulate si = g
β(r0+α)
1 · µapk · gβ(r2−α)1 = µapk · gβ(r0+r2)1 ,

which it can easily compute as si ← µapk ·Br0+r21 .

When F eventually outputs its forgery (PK,S ,m, σ), A recomputes apk∗ ←
KAg(PK) = (Y, h) and checks that the forgery is valid, i.e., Vf(par , apk ,S ,m, σ) =
1, pk∗ ∈ PK, i ∈ S where i is the index of pk∗ ∈ PK, and F never made a sign-
ing query for m. If any of these checks fails, A outputs (0,⊥). If m 6= m∗, then
A also outputs (0,⊥). Else, observe that σ = (y, s) such that

s = H0(m∗)log y ·
∏
j∈S

H2(apk , j)log Y .

Because of howA simulated F ’s random-oracle queries, it can look up (m∗, r0, 1) ∈
L0, (yj , r1,j) ∈ L1 and ((apk∗, j), r2,j , 0) ∈ L2 for j ∈ S\{i}, and ((apk∗, i), r2,i, 1) ∈
L2, where i is the index of pk∗ in PK, such that

H0(m∗) = gr01
H1(yj) = Ar1,j for j = 1, . . . , |PK|

H2(apk , j) = g
r2,j
1 for j ∈ S \ {i}

H2(apk , i) = g
r2,i
1 A−1/ai

so that we have that

s = glog y·r01 · glog apk∗·
∑
j∈S r2,j

1 ·A− log apk∗ .

If we let
t← s−1 · Oψ(pk)r0 · Oψ(apk∗)

∑
j∈S r2,j



then we have that

t = Alog apk∗ = A
∑|PK|
j=1 log yj = Aβ ·

|PK|∏
j=1,j 6=i

Alog yj .

From the PoPs in PK, we also have that

πj = H1(yj)
log yj = Ar1,j log yj

so that A can compute its solution to the ψ-co-CDH problem as

gαβ1 = t ·
|PK|∏

j=1,j 6=i

π
−r1,j
j .

A’s runtime is F ’s runtime plus the additional computation A performs.
Let qH denote the total hash queries F makes, i.e., the queries to H0, H1, and
H2 combined. To answer H0, H1, and H2 queries, A performs at most τexp1

. A
therefore spends at most qH ·τexp1

answering hash queries. For every group-setup
query with l signers, A computes µj,i costing (l − 1)τexp1

, meaning A spends
qG(l− 1) · τexp1 answering group setup queries. For signing queries with a PK of
size at most l, A computes one exponentiation in G1 costing τexp1 , giving a total
of qS · τexp1

. Finally, A computes the output values, which involves verifying the
forgery (costing 2τpair) and the PoPs (costing 2lτpair) and computing the final
solution (costing τexpl+2

1
), giving A a total runtime of τ + (qH + qG(l − 1) +

qS + 1) · τexp1
+ (2l+ 2) · τpair + τexpl+2

1
. A successfully outputs if the bad event

does not happen, it guesses the index of the forgery correctly, and F successfully
forges. Event bad happens with probability at most (qS + qH)/q for every hash
query, so it happens with probability qH(qS + qH)/q. A guesses the forgery index
correctly with prbability 1/qH, and F forges with probability ε, giving A success
probability at least ε/qH − qH(qS + qH)/q.
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