
SPDZ2k: Efficient MPC mod 2k for Dishonest
Majority

Ronald Cramer1, Ivan Damg̊ard2, Daniel Escudero2, Peter Scholl2, and
Chaoping Xing3

1 CWI, Amsterdam & Leiden University
2 Aarhus University

3 Nanyang Technological University, Singapore

Abstract. Most multi-party computation protocols allow secure com-
putation of arithmetic circuits over a finite field, such as the integers
modulo a prime. In the more natural setting of integer computations
modulo 2k, which are useful for simplifying implementations and appli-
cations, no solutions with active security are known unless the majority
of the participants are honest.
We present a new scheme for information-theoretic MACs that are ho-
momorphic modulo 2k, and are as efficient as the well-known standard
solutions that are homomorphic over fields. We apply this to construct
an MPC protocol for dishonest majority in the preprocessing model that
has efficiency comparable to the well-known SPDZ protocol (Damg̊ard
et al., CRYPTO 2012), with operations modulo 2k instead of over a field.
We also construct a matching preprocessing protocol based on oblivious
transfer, which is in the style of the MASCOT protocol (Keller et al.,
CCS 2016) and almost as efficient.

1 Introduction

In the context of secure multi-party computation (MPC) there are n parties
P1, . . . , Pn who want to compute a function f : Rn → Rn securely on an in-
put (x1, . . . , xn), where each party Pi holds xi, without revealing the inputs to
each other and only by exchanging messages between them. The main security
guarantee we would like to achieve is that at the end of the interaction each
party Pi only learns xi and the i-th component of f(x1, . . . , xn), and nothing
else. This should hold even if an adversary corrupts some of the parties and, in
case of active or malicious corruption, takes control of the corrupted parties and
have them do what the adversary wants. These ideas are formalized by requir-
ing that using the protocol should be essentially equivalent to having a trusted
third party compute the function. For such a formalization see, for example, the
Universal Composability Framework (UC) [4].

It is well known that the hardest case to handle efficiently is the dishonest
majority case, where t ≥ n/2 parties are actively corrupted. Here we cannot
guarantee that the protocol terminates correctly, and we have to use computa-
tionally heavy public-key technology — unconditional security is not possible in

this scenario. However, in a recent line of work [2,9], it was observed that we
can push the use of public-key tools into a preprocessing phase, where one does
not need to know the inputs or even the function to be computed. This phase
produces “raw material” (correlated randomness) that can be used later in an
online phase to compute the function much more efficiently and with uncondi-
tional security (given the correlated randomness).

In all existing protocols that handle a dishonest majority and active corrup-
tions, the function being computed must be expressed in terms of arithmetic
operations (i.e. additions and multiplications) over a finite field, such as the
integers modulo a prime. However, in many applications one would like to use
numbers modulo some M that is chosen by the application and is not necessarily
a prime. In particular, M = 2k is interesting because computation modulo 2k

matches closely what happens on standard CPUs and hence protocol designers
can take advantage of the tricks found in this domain. For instance, functions
containing comparisons and bitwise operations are typically easier to implement
using arithmetic modulo 2k; these kinds of operations are expensive to emulate
with finite field arithmetic, and also very common in applications of MPC such
as secure benchmarking based on linear programming [6]. This has been done
successfully by the team behind the Sharemind suite of protocols [3], which al-
lows bitwise operations and integer arithmetic mod 232. However, in their basic
setting, they could only get a passively secure solution: here, even corrupt players
are assumed to follow the protocol. Also, the security of Sharemind completely
breaks down if half (or more) of the players are corrupted, and the efficiency
does not scale well beyond three parties.

To obtain active security over fields, the main idea of modern protocols is
to use unconditionally secure message authentication codes (MACs) to prevent
players from lying about the data they are given in the preprocessing phase.
A typical example is the SPDZ protocol [9,7], where security reduces to the
following game: we have a data value x, a random MAC key α and a MAC
m = αx, all in some finite field F. The adversary is given x but not α or αx.
He may now specify errors to be added to x, α and m, and we let x′, α′,m′ be
the resulting values. The adversary wins if x 6= x′ and m′ = α′x′. It is easy to
see that the adversary must guess α to win, and so the probability of winning is
1/|F|. This authentication scheme is additively homomorphic, which is exploited
heavily in the SPDZ protocol and is crucial for its efficiency.

However, the security proof depends on the fact that any non-zero value in F
is invertible, and it is easy to see that if we replace the field by a ring, say Z2k ,
then the adversary can cheat with large probability. For instance, in the ring
Z2k he can choose x′ = x+ 2k−1 and cheat with probability 1/2. Up to now, it
has been an open problem to design a homomorphic authentication scheme that
would work over Z2k or more generally ZM for any M , and is as efficient as the
SPDZ scheme.

2

1.1 Our contributions

In this paper we solve the above question: we design a new additively homomor-
phic authentication scheme that works in Z2k

4, and is as efficient as the standard
solution over a field. The main idea is to choose the MAC key α randomly in
Z2s , where s is the security parameter, and compute the MAC αx in Z2k+s . We
explain below why this helps. We also design a method for checking large batches
of MACs with a communication complexity that does not depend on the size of
the batch. We believe that these techniques will be of independent interest.

We then use the MAC scheme to design a SPDZ-style online protocol that
securely computes an arithmetic circuit over Z2k with statistical security, assum-
ing access to a preprocessing functionality that outputs multiplication triples in
a suitable format. The total computational work done is dominated by O(|C|n)
elementary operations in the ring Z2k+s , where C is the circuit to be computed.
So if k ≥ s, the work needed per player is equal to the work needed to compute
C in the clear, up to a constant factor — as is the case for the SPDZ proto-
col. As in other protocols from this line of work, the overhead becomes more
significant when k is small. Each player stores data from the preprocessing of
size O(|C|(k + s)) bits. The communication complexity is O(|C|(k + s)) bits
per player, plus an overhead that does not depend on C. This is due to the
batch-checking of MACs mentioned above.

Our final result is an implementation of the preprocessing functionality to
generate multiplication triples. It has communication complexity O((k+s)2) bits
per multiplication gate, and is roughly as efficient as the MASCOT protocol [14],
which is the state of the art for preprocessing over a field using oblivious transfer.
Concretely, our triple generation protocol has around twice the communication
cost of MASCOT, due to the overhead incurred when we have to work over
larger rings in certain scenarios. However, this additional cost seems like a small
price to pay for the potential benefits to applications from working modulo 2k

instead of in a field.

1.2 Overview of our techniques

For the authentication scheme, as mentioned, we have a data item x ∈ Z2k+s , a
key α ∈ Z2k+s and we define the MAC as m = αx mod 2k+s. Note that we want
to authenticate k-bit values, so although x ∈ Z2k+s , only the least significant
k bits matter. The adversary is given x, and specifies errors ex, eα, em, which
define modified values x′ = x + ex, α

′ = α + eα,m
′ = m + em. He wins if

m′ = α′x′ mod 2k+s, but note that since we store data in the least significant
k bits only, this is only a forgery if ex mod 2k 6= 0. As we show in detail in
Section 3, if the adversary wins, he is able to compute exα mod 2k+s. From this,
and ex mod 2k 6= 0, it follows that the adversary can effectively guess α mod 2s,
which is only possible with probability 2−s.

We also want to batch-check many MACs using only a small amount of com-
munication. The SPDZ protocol [9] uses a method that basically takes a random

4 We use modulus 2k throughout, but the scheme easily extends to any modulus.

3

linear combination of all messages and MACs and checks only the resulting mes-
sage and MAC. Unfortunately, applying the analysis we just sketched to this
scenario does not give a negligible probability of cheating, unless we ‘lift’ again
and compute MACs modulo 2k+2s, but then our storage and preprocessing costs
would become significantly bigger. We provide a more complicated but tighter
analysis showing that we can still compute MACs mod 2k+s and the batch check-
ing works with 2−s+log s error probability, so we only need increase s by a few
bits.

Using these MACs, we can create an information-theoretically secure MPC
protocol over Z2k in the preprocessing model, similar to the online phase of
SPDZ from [7]. To implement the preprocessing phase, we follow the style of
MASCOT [14], which uses oblivious transfer to produce shares of authenticated
multiplication triples. We first design a protocol for authenticating values us-
ing correlated oblivious transfer, which allows creating the secret-shared MACs
that will be added to the preprocessing data. This stage is similar to MASCOT,
whereby first a passively secure protocol is used to compute shares of the MACs
αxi, for each value xi that is to be authenticated, and then a random linear
combination of these values is opened, and the resulting MAC checked for cor-
rectness. The main change we need to make here is that, depending on the size
of the xi’s being authenticated, we may need to first compute the MACs over a
larger ring in order to apply our analysis of taking random linear combinations.

Once the authentication scheme has been implemented, the main task is
to create the multiplication triples needed in the online phase of our proto-
col. For this we also follow a similar approach to MASCOT, where the overall
idea is that each party Pi chooses its shares (ai, bi) and then is engaged in
an oblivious transfer subprotocol with Pj for each j 6= i, where shares of the
cross products aibj and ajbi are obtained. This yields shares of the product
(
∑n
i=1 a

i)(
∑n
j=1 b

j) =
∑n
i=1 a

ibi +
∑
i 6=j(a

ibj + ajbi), as required. Behind this
simplification lies the problem that some information about the honest parties’
shares can be leaked to a cheating adversary. In MASCOT this potential leakage
is mitigated by “spreading out” the randomness by taking random linear combi-
nations on correlated triples (with the same b value). When working over fields,
the inner product yields a 2-universal hash function so the new distribution can
be argued to be close to uniform using the Leftover Hash Lemma. However, this
is not true anymore over rings like Z2k . We overcome this issue by starting with
triples where the shares of a are bits instead of ring elements, and then taking
linear combinations over the bits. These combinations correspond to a subset
sum over Z2k , which is a 2-universal hash function, so allows for removing the
leakage.

Additionally, random combinations are used in MASCOT to check the cor-
rectness of a triple by “sacrificing” another one. The security argument is that
if the adversary manages to authenticate an incorrect triple, then it will have to
guess the randomness used in the sacrifice step, which is unlikely. This is argued
by deriving an equation from which we can solve for the random value. In order

4

to extend this argument to the ring case, we use the technique sketched at the
beginning of this section, working over Z2k+s to check correctness modulo 2k.

Organization of this document. Section 2 introduces the notation we will
use throughout this document. It also introduces the oblivious transfer and coin
tossing functionalities, FROT and FRand, which constitute our most basic building
blocks and will be used to implement the offline phase of our protocol. We then
describe our information-theoretic MAC scheme in Section 3, and we show how
to check correctness of several authenticated values assuming a functionality
FMAC that generates keys and MACs. Next, in Section 4 we show how to use our
scheme to realise the functionality FOnline, i.e. to evaluate securely any arithmetic
circuit modulo 2k, in the preprocessing model.

The next two sections are concerned with the implementation of the pre-
processing functionality FPrep. Section 5 deals with the implementation of the
functionality FMAC, i.e. the distribution of the MAC key and the generation of
MACs. Our construction is based on a primitive called vector Oblivious Linear
Function Evaluation (FvOLE). This can be implemented using Correlated Obliv-
ious Transfer (F∆-OT), which as we mention in that section can be implemented
using our basic primitive FROT. On the other hand, Section 6 builds on top of our
MAC scheme and generates multiplication triples that will be used during the
online phase of our protocol to evaluate multiplication gates. Finally, in Section 7
we provide an efficiency analysis of our protocol.

To help the reader, Fig. 1 illustrates the different dependencies among our
functionalities, including the section where the protocol is described.

FPrep

(§6)
FOnline

(§4)
FMAC

(§5)
FvOLE

(§C)
F∆-OT

(§C)

FRand

FROT

Fig. 1. Functionalities and their dependencies. An arrow from functionality A to func-
tionality B means that B is realised in the A-hybrid model. Functionalities within
circles represent the main contribution of our work.

5

Related work. There are only a few previous works that study MPC over
rings, and none of these offer security against an active adversary who corrupts
a dishonest majority of the parties. Cramer et al. showed how to contruct actively
secure MPC over black-box rings [5] using secret-sharing techniques for honest
majority, but this is only a feasibility result and the concrete efficiency is not
clear. As already mentioned, Sharemind [3] allows mixing of secure computation
over the integers modulo 2k with boolean computations, but is restricted to
the three-party setting when at most one party is corrupted. In some settings
Sharemind can also provide active security [18].

More recently, Damg̊ard, Orlandi and Simkin [8] present a compiler that
transforms a semi-honest secure protocol for t corruptions into a maliciously
secure protocol that is secure against a smaller number of corruptions (approx-
imately

√
t). This also works for protocols in the preprocessing model, but will

always result in a protocol for honest majority, so they can tolerate a smaller
number of corruptions. On the other hand, their compiler is perfectly secure, so
it introduces no overhead that depends on the security parameter. Thus, their
results are incomparable to ours.

2 Preliminaries

Notation We denote by ZM the set of integers x such that 0 ≤ x ≤ M − 1.
The congruence x ≡ y mod 2k will be abbreviated as x ≡k y. We let x mod M
denote the remainder of x when divided by M , and we take this representative
as an element of the set ZM . Given two vectors x and y of the same dimensions,
x ∗ y denotes their component-wise product, 〈x,y〉 denotes their dot product
and x[i] denotes the i-th entry of x.

2.1 Oblivious Transfer and Coin Tossing Functionalities

Functionality FROT

On input (Sender, Pj , `) from Pj and (Receiver, b, Pi) from Pi, the functionality
samples random values r0, r1 ←R Z2` , then sends (r0, r1) to Pj and rb to Pi.
If Pj is corrupted then the functionality instead allows the adversary to choose
(r0, r1) before sending rb to Pi.

Fig. 2. Random Oblivious Transfer functionality between a sender and receiver

We use a standard functionality for oblivious transfer on random `-bit strings,
shown in Fig. 2. This can be efficiently realised using OT extension techniques
with an amortized cost of κ bits per random OT, where κ is a computational
security parameter [13]. We use the notation FτROT to denote τ parallel copies of
FROT functionalities.

6

We also use a coin tossing functionality, which samples an element from a set
R uniformly at random. This can be implemented in the random oracle model
by having each party Pi first commit to a random seed si with H(i‖si), then
opening all commitments and using

⊕
i si as a seed to sample from R.

Functionality FRand(R)

Upon receiving (Rand) from all parties, sample r ←R R and output r to all parties.

Fig. 3. Coin-tossing functionality

3 Information-Theoretic MAC Scheme

In this section we introduce our secret-shared, information-theoretic message
authentication scheme. This forms the backbone of our MPC protocol over Z2k .
The scheme has two parameters, k, where 2k is the size of the ring in which
computations are performed, and a security parameter s. In the MAC scheme
itself and the online phase of our MPC protocol there is no restriction on k,
whilst in the preprocessing phase k also affects security.

There is a single, global key α =
∑
i α

i mod 2k+s, where each party holds
a random additive share αi ∈ Z2s . For every authenticated, secret value x ∈
Z2k , the parties will have additive shares on this value over the larger ring
modulo 2k+s, namely shares xi ∈ Z2k+s such that x′ =

∑
i x

i mod 2k+s and
x ≡k x′. The parties will also have additive shares modulo 2k+s of the MAC
m = α · x′ mod 2k+s. We will denote this representation by [x], so we have:

[x] =
(
xi,mi, αi

)n
i=1
∈ (Z2k+s × Z2k+s × Z2s)

n
,
∑
i

mi ≡k+s
(∑

i

xi
)
·
(∑

i

αi
)

Notice that if the parties have [x] and [y], then it is straightforward to obtain
by means of local operations [x + y], [c · x] and [x + c], where the arithmetic is
modulo 2k+s and c is a constant. For instance, additions and multiplication by
a constant is obtained by adding each share (both the value and MAC shares)
locally and multiplying by the constant, respectively. Addition by a constant can
be achieved similarly. We state the procedures that allow the parties to do this
in Fig. 4.

In Fig. 5 we define the functionality FMAC, which acts as a trusted dealer
who samples and distributes shares of the MAC key, and creates secret-shared
MACs of additively shared values input by the parties. As with previous works,
it allows corrupt parties to choose their own shares instead of sampling them at
random, since our protocols allow the adversary to influence the distribution of
these. We will show how to implement this functionality in Section 5.

7

Procedure AffineComb

This procedure allows the parties to compute authenticated shares of y = c+c1 ·x1+
· · ·+ ct · xt mod 2k+s given c, c1, . . . , ct, [x1], . . . , [xt]. The input to this procedure
are the constants c, c1, . . . , ct ∈ Z2k+s , the shares of the values {xji}

t
i=1, the shares

of the MACs {mj
i}
t
i=1, owned by each party Pj , and the shares of the MAC key

{αj}j .

1. Party P1 sets y1 = c+ c1 · x11 + · · ·+ ct · x1t mod 2k+s;
2. Each party Pj , j 6= 1, sets yj = c1 · xj1 + · · ·+ ct · xjt mod 2k+s;
3. Each party Pj sets mj = αj · c+ c1 ·mj

1 + · · ·+ ct ·mj
t mod 2k+s.

At the end of the procedure {yj}j are additive shares of y modulo 2k+s and {mj}j
are shares of α · y mod 2k+s, the MAC of y. To simplify the exposition, we write

[c+ c1 · x1 + · · ·+ ct · xt] = c+ c1 · [x1] + · · ·+ ct · [xt]

whenever this procedure is called.

Fig. 4. Procedure for obtaining authenticated shares of affine combinations of shared
values

Note that after running the Authentication command with input the shares
(xj1, . . . , x

j
t) from Pj , the parties will obtain authenticated sharings [x1], . . . , [xt],

where xi =
∑
j x

j
i mod 2k.

3.1 Opening Values and Checking MACs

Given an authenticated sharing [x], a natural (but insufficient) approach to open-
ing and reconstructing x is for each party to first broadcast the share xi and
then compute x′ =

∑
i x

i mod 2k+s. The parties can then check the MAC re-
lation x′ · α without revealing the key α using the method from [7]. Although
this method guarantees integrity of the opened result modulo 2k (by the same
argument sketched in the introduction), it does not suffice for privacy when ac-
counting for the fact that x may be a result of applying linear combinations on
other private inputs. For example, suppose x = y + z for some previous inputs
y, z. When opening x modulo 2k+s, although for correctness we only care about
the lower k bits of x, to verify the MAC relation we have to reveal the entire
shares modulo 2k+s. This leaks whether or not the sum y+ z overflowed modulo
2k.

To prevent this leakage we use an authenticated, random s-bit mask to hide
the upper s bits of x when opening. The complete protocol for doing this is
shown below.

Procedure SingleCheck([x]):

1. Generate a random, shared value [r] using FMAC, where r ∈ Z2s

2. Compute [y] = [x+ 2kr]

8

Functionality FMAC

The functionality generates shares of a global MAC key and, on input shares of a
value, distributes shares of a tag of this value. Let A be the set of corrupted parties
and s be a security parameter.

Initialize: On receiving (Init) from all parties, sample random values αj ←R Z2s

for j /∈ A and receive shares αj ∈ Z2s , for j ∈ A, from the adversary. Store the
MAC key α =

∑n
j=1 α

j (over Z) and output αj to party Pj .

Macro Auth(`, x1, . . . , xn) (this is an internal subroutine only)
1. Let x =

∑n
j=1 x

j mod 2` and m = α · x mod 2`

2. Wait for input {mj}j∈A from the adversary and sample {mj}j /∈A at random
conditioned on m ≡`

∑n
j=1m

j . Output (m1, . . . ,mn).

Authentication: On input (MAC, `, r, {xji}
t
i=1) from each party Pj , where xji ∈

Z2r and ` ≥ r:
1. Wait for the adversary to send messages (guess, j, Sj), for every j /∈ A,

where Sj efficiently describes a subset of {0, 1}s. If αj ∈ Sj for all j then
send (success) to A. Otherwise, send ⊥ to all parties and abort.

2. Execute Auth(`, x1i , . . . , x
n
i) for i = 1, . . . , t, and then wait for the adversary

to send either OK or Abort. If the adversary sends OK then send the MAC
shares mj

i ∈ Z2` to party Pj , otherwise abort.

Fig. 5. Functionality for generating shares of global MAC key, distributing shares of
inputs and tags

3. Each party broadcasts their shares yi and reconstructs y =
∑
i y
i mod 2k+s

4. Pi commits to zi = mi − y · αi mod 2k+s, where mi is the MAC share on y
5. All parties open their commitments and check that

∑
i z
i ≡k+s 0

6. If the check passes then output y mod 2k

Claim 1 If the MAC check passes then y ≡k x, except with probability at most
2−s.

Proof. Suppose a corrupted party opens [y] to some y′ = y+ δ, where δ ∈ Z2k+s

can be chosen by A, and δ 6≡k 0. To pass the MAC check, they must also come
up with an additive error ∆ in the committed values zi such that

∑
i z
i +∆ is

zero modulo 2k+s. This simplifies to finding ∆ ∈ Z2k+s such that∑
i

(mi − (x+ δ) · αi) +∆ ≡k+s 0

⇔ δ · α ≡k+s −∆

Let v be the largest integer such that 2v divides δ, and note that because
δ 6≡k 0 we have v < k. This means that we can divide the above by 2v, reducing
the modulus from 2k+s to 2k+s−v accordingly:

δ

2v
· α ≡k+s−v −

∆

2v

9

By definition of v, δ
2v must be an odd integer, hence invertible modulo 2k+s−v.

Multiply by its inverse gives

α ≡k+s−v −
∆

2v
·
(
δ

2v

)−1
Note that k + s − v > s, since v < k, which implies that A must have guessed
α mod 2s to come up with δ and ∆ which pass the check. This requires guessing
the s least significant bits of α, which are uniformly random, so the probability
of success is at most 2−s. ut

3.2 Batch MAC Checking with Random Linear Combinations

Procedure BatchCheck

Procedure for opening and checking the MACs on t shared values [x1], . . . , [xt].
Let xji ,m

j
i , α

j be Pj ’s share, MAC share and MAC key share for [xi].

Open phase: To open a value [xi]:

1. Each party Pj samples rji ←R Z2s , and then calls FMAC on input (s, s, rji ,MAC)
to obtain [ri].

2. Let [x̃i] = [xi] + 2k[ri]. Denote Pj ’s share and MAC share on x̃i by x̃ji and mj
i .

3. Each party Pj broadcasts x̃ji ∈ Z2k+s .
4. The parties compute x̃i =

∑n
j=1 x̃

j
i mod 2k+s.

MAC check phase:

5. The parties call FRand(Zt2s) to sample public random values χ1, . . . , χt ∈ Z2s

and then compute ỹ =
∑t
i=1 χi · x̃i mod 2k+s.

6. Each party Pj computes mj =
∑t
i=1 χi ·m

j
i mod 2k+s and zj = mj − αj · ỹ.

Then it commits to zj , and then all parties open their commitments.
7. Finally, the parties verify that

∑n
j=1 z

j ≡k+s 0. If the check passes then the

parties accept the values xi := x̃i mod 2k, otherwise they abort.

Fig. 6. Procedure for checking a batch of MACs

The method described in the previous section allows the parties to open and
then check one shared value [x]. However, in many settings it is usefuly to be
able to check a large batch of values at the end of the protocol, rather than
individually as they are opened. To do this, we present a batch MAC checking
procedure for opening and checking t shared values [x1], . . . , [xt], by checking a
single linear combination of the MACs. By postponing the check to the end, this
reduces both communication and round complexity compared with repeatedly
running SingleCheck.

Technically speaking, our main contribution here is a new analysis of the
distribution of random linear combinations of adversarially chosen errors modulo

10

2k, when lifting these combinations to the larger ring Z2k+s . If we naively apply
the analysis from Claim 1 to this case, then we would have to lift to an even
bigger ring Z2k+2s to prove security, adding extra overhead when creating and
storing the MACs. With our more careful analysis in Lemma 1 below, we can
still work over Z2k+s and obtain failure probability around 2−s+log s, which gives
a significant saving.

The procedure that achieves this is described in Fig. 6, and its guarantees
are stated in the following theorem.

Theorem 1. Suppose that the inputs [x1], . . . , [xt] to the BatchCheck procedure
are consistent sharings of x1, . . . , xt under the MAC key α =

∑
i α

i mod 2s,
and the honest parties’ shares αj ∈ Z2s are uniformly random in the view of
an adversary corrupting at most n − 1 parties. Then, if the procedure does not
abort, the values x̃i accepted by the parties satisfy xi ≡k x̃i with probability at
least 1− 2−s+log(s+1).

The following lemma will be used in the proof of this theorem. The lemma
is very general, which will allow us to use it also when we prove the security of
the preprocessing phase of our protocol. However, in the current context, this
lemma will be used with ` = k+ s, r = k and m = s, and the δ’s can be thought
of as the errors introduced by the adversary during the opening phases.

Lemma 1. Let `, r and m be positive integers such that `−r ≤ m. Let δ0, δ1, . . . , δt ∈
Z, and suppose that not all the δi’s are zero modulo 2r, for i > 0. Let Y be a
probability distribution on Z. Then, if the distribution Y is independent from the
uniform distribution sampling α below, we have

Pr
α,χ1,...,χt←RZ2m ,

y←RY

[
α ·

(
δ0 +

t∑
i=1

χi · δi

)
≡` y

]
≤ 2−`+r+log(`−r+1),

Proof. Define S := δ0 +
∑t
i=1 χi ·δi, and define E to be the event that α ·S ≡` y.

Let W be the random variable defined as min(`, e), where 2e is the largest power
of two dividing S. We will use the following claims.

Proposition 1.

i. Pr[E |W = r + c] ≤ 2−(`−r−c) for any c ∈ {1, . . . , `− r}
ii. Pr[E | 0 ≤W ≤ r] ≤ 2−(`−r)

iii. Pr[W = r + c] ≤ 2−c for any c ∈ {1, . . . , `− r}

Proof. For the first part, suppose that 0 < c < ` − r (the case c = ` − r is
trivial), in particular, w = r + c is the largest exponent such that 2w divides
S and therefore S/2w is an odd integer. From the definitions of E and w we
have that E holds if and only if α · S ≡` y, which in turn is equivalent to

α · S
2w ≡`−w

y
2w and therefore to α ≡`−w y

2w ·
(
S
2w

)−1
Since α is uniformly

random in Z2m and independent of the right-hand side, and also ` − w < m

11

(as r < w and ` − r ≤ m), we conclude that the event holds with probability
2−(`−w) = 2−(`−r−c), conditioned on W = r + c.

Similarly, if 0 ≤ w ≤ r then ` − w ≥ ` − r and so α ≡`−r y
2w ·

(
S
2w

)−1
. As

` − r ≤ m, the event holds with probability at most 2−(`−r) if conditioned on
0 ≤W ≤ r. This proves the second part.

For the third part, we must also look at the randomness from the χi coef-
ficients. Suppose without loss of generality that δt is non-zero modulo 2r, and
suppose that W = r+ c some 1 ≤ c ≤ `− r. Since 2W |S, we have S ≡r+c 0, and
so

χt · δt ≡r+c −δ0 −
∑
i 6=t

χi · δi︸ ︷︷ ︸
=S′

Let 2v be the largest power of two dividing δt, and note that by assumption we
have v < r so r + c− v > c. Therefore,

χt ·
δt
2v
≡r+c−v

S′

2v

χt ≡r+c−v
S′

2v

(
δt
2v

)−1
χt ≡c

S′

2v

(
δt
2v

)−1
By the same argument as previously, and from the fact that c ≤ `− r ≤ m, this
holds with probability 2−c, over the randomness of χt ←R Z2m , as required.

Putting things together, we apply the law of total probability over all possible
values of w, obtaining:

Pr[E] = Pr[E | 0 ≤W ≤ r]·Pr[0 ≤W ≤ r]+
`−r∑
c=1

Pr[E |W = r+c]·Pr[W = r+c]

≤ 2−`+r · 1 +

`−r∑
c=1

2−`+r+c · 2−c = 2−`+r +

`−r∑
c=1

2−`+r

= (`− r + 1) · 2−`+r ≤ 2−`+r+log(`−r+1)

where the first inequality comes from applying item ii. of Proposition 1 on
the left, and items i. and iii. on the right. ut

Now we proceed with the proof of Theorem 1.

Proof (of Theorem 1). We first assume that A sends no Key Query messages
to FMAC, and later discuss how the claim still holds when this is not the case.

12

First of all notice that if no error is introduced by the adversary then the
check passes, since we have

n∑
j=1

zj ≡k+s
n∑
j=1

mj − ỹ ·
n∑
j=1

αj ≡k+s 0

Now, consider the case in which the adversary does not open correctly to x̃i
in the protocol. Let x̃i+δi mod 2k+s be the value opened in step 3, so the value
computed in step 5 is equal to ỹ′ = ỹ + δ mod 2k+s, where δ =

∑t
i=1 χi · δi

mod 2k+s. As a consequence, the share that an honest Pj should open in step 6
is zj − αj · δ mod 2k+s. However, the adversary can open this value plus some
errors that sum up to a value ∆ ∈ Z2k+s . If the check passes, this means that

0 ≡k+s
n∑
j=1

(
zj − αj · δ

)
+∆ ⇔ α · δ ≡k+s ∆.

Suppose that for some index it holds that δi 6≡k 0. By setting δ0 = 0, ` = k+s,
r = k, m = s and Y to be the distribution of ∆ produced by the adversary,
we observe we are in the same setting as the hypothesis of Lemma 1. This
allows us to conclude that the probability that the check passes is bounded by
2−`+r+log(`−r+1) = 2−s+log(s+1).

Handling key queries. We now show that this probability is the same for an
adversary who makes some successful queries to an honest party’s αj using the
(guess) command of FMAC. Let S be the set of possible keys guessed by A (if
there is more than one query then we take S to be the intersection of all sets).
The probability that all these queries are successful is no more than |S|/2s, and
conditioned on this event, the min-entropy of the honest party’s key share is
reduced to log|S| ≤ s. Therefore, instead of success probability 2−s+log(s+1) as
above, the overall probability of A performing successful key queries and passing
the check is bounded by

|S|/2s · 2− log|S|+log(log|S|+1) = 2−s+log(log|S|+1) ≤ 2−s+log(s+1)

as required. ut

3.3 Reducing the Number of Masks

One drawback of our MAC scheme is that with both the single and batch check-
ing protocols, each opening requires an extra s-bit authenticated random value,
to mask the upper s bits. This was not needed in the MAC scheme for SPDZ
over fields. We observe, though, that throughout most of the online phase in
our actual MPC protocol, this random mask is unnecessary. In our multiplica-
tion protocol for the online phase (Section 4), the two values being opened are
masked by random multiplication triples. Since our triple generation functional-
ity (Fig. 7) guarantees that the a and b components of triples are random modulo

13

2k+s, they already serve to hide the upper s bits of the values being masked.
This means we can omit the masks used in the Open phase of our batch MAC
check procedure, for every multiplication gate in the circuit. This reduces the
amount of preprocessing material needed, so leads to less communication in the
preprocessing phase.

3.4 Previous Version of the Batch MAC Check

A previous version of the batch MAC checking protocol5 contained an additional
optimization, where the masking was postponed until the MAC check phase
of the protocol. This optimization was not secure, as we now explain. The idea
was that, to initially open each value xi, the parties can open their shares of xi
reduced modulo 2k and reconstruct this, again modulo 2k, avoiding any leakage
on the upper s bits. When checking the MACs, the parties then opened the
random linear combination applied to the upper s bits of the xi’s, and used
this to obtain the missing bits needed to carry out the final MAC check. This
meant that only one s-bit mask was needed, namely, when opening this last
linear combination, and also reduced the online communication (per party) from
O(k + s) to O(k) bits per opening.

However, this check allows a corrupt party to cheat with probability 1/2. If
the adversary introduces some error ε into the final s-bit correction value, it can
be seen that this translates into an error of

α · (2k · ε+

t∑
i=1

χi · δi)

which the adversary must try to guess (here, the δi’s are the original k-bit errors
in the openings of each xi). If, say, δ1 = 2k−1 and all other δj are zero, and if
χ1 is even (which happens with probability 1/2), then the adversary can choose
ε = χ1/2 to make the above go to zero. The main issue here, which was not
considered in the previous version of this work, is that ε can be chosen by the
adversary after the χi’s. In particular, it is not possible to apply Lemma 1 with
δ0 = 2k · ε, since in order to do that δ0 should be fixed before the χi’s.

4 Online Phase

Our protocol is divided in two phases, a preprocessing phase and an online phase.
The preprocessing, which is independent of each party’s input, implements a
functionality FPrep which generates the necessary shared, authenticated values
needed to compute the given function securely. This functionality is stated in
Fig. 7.

The main difference, with respect to SPDZ, is that instead of generating the
random input masks and multiplication triples over the same space as the inputs,
we sample them over Z2k+s , even though we are doing computations in Z2k . In

5 https://eprint.iacr.org/2018/482/20180523:024407

14

https://eprint.iacr.org/2018/482/20180523:024407

Functionality FPrep

The preprocessing functionality has all the same features as FMAC, with the addi-
tional commands:

Input: On input (Input, Pi) from all parties, do the following:
1. Sample a random value r ∈ Z2k+s and generate random shares r =

∑n
j=1 r

j

mod 2k+s. If Pi is corrupted, instead let the adversary choose all shares rj

and compute r accordingly.
2. Run the Auth macro to generate shares and MAC shares of [r].
3. Send r to Pi, and the relevant shares of [r] to each party.

Triple: On input (Triple) from all parties, the functionality performs the following
steps
1. Sample random shares {(aj , bj)}j /∈A ⊆ (Z2k+s)

2

2. Wait for input {(aj , bj , cj)}j∈A ⊆ (Z2k+s)
3 from the adversary and set

c = a · b mod 2k, where a =
∑n
j=1 a

j mod 2k and b =
∑n
j=1 b

j mod 2k.

3. Sample {cj}j /∈A ⊆ Z2k+s and r ∈ Z2s subject to c+ 2kr ≡k+s
∑n
j=1 c

j .
4. Finally, the functionality runs the Auth macro to generate sharings

[a], [b], [c] and sends the j-th output of each result to party Pj .

Fig. 7. Functionality for the preprocessing phase

the input phase, this is necessary to mask the parties’ input whilst also obtaining
a correct MAC over Z2k+s . For the triples, we sample the shares and compute the
MACs in Z2k+s , but only care about correctness of the multiplication modulo
2k, so the upper s bits of a triple are just random.

Modulo these differences, the online phase of our protocol, shown in Fig. 9,
is similar to that in other secret sharing-based protocols like GMW, BeDOZa,
SPDZ and MASCOT [11,2,9,14]. The overall idea is that the parties will have
authenticated shares of the values of all wires in the circuit, beginning with the
input wires until they get shares of the output values, which are then opened
to reconstruct the result of the computation. If desired, the parties can then
continue computing on shares and outputing more results, allowing for arbitrary
reactive computations.

Shares of the inputs are distributed by means of the random shares provided
by FPrep. When an addition gate is found, the parties obtain the output by
adding their shares locally. On the other hand, multiplication triples are used
for the multiplication gates, where the fact that x · y = c + ε · b + δ · a + ε · δ
for c = a · b, ε = x − a and δ = y − b allows us to evaluate multiplications
as affine operations on x and y, once the values of ε and δ are known. Finally,
after checking correctness of all the values opened in multiplications using the
batch MAC checking procedure from section 3, the values for the output wires
are revealed.

The proof of the following theorem is quite straightforward, given the analysis
of the MACs in Section 3, so we present it in Appendix A.

15

Functionality FOnline

Initialization: The functionality receives input (Init, k) from all parties.
Input: On input (Input, Pi, vid, x) from party Pi and input (Input, Pi) from the

other parties, where vid is a fresh, valid identifier, the functionality stores
(vid, x mod 2k).

Add: On input (add, vid1, vid2, vid3) from all parties, the functionality retrieves
(if present in memory) the values (vid1, x1), (vid2, x2) and stores (vid3, x1 +
x2 mod 2k).

Multiply: On input (multiply, vid1, vid2, vid3) from all parties, the functionality
retrieves (if present in memory) the values (vid1, x1), (vid2, x2) and stores
(vid3, x1 · x2 mod 2k).

Output: On input (output, vid) from all honest parties, the functionality looks for
(vid, y) in memory and if present, sends y to the adversary. The functionality
then waits for a message Abort or Proceed from the adversary: if it sends Abort
then the functionality aborts, otherwise the value y is delivered to all parties.

Fig. 8. Ideal functionality for the online phase

Protocol ΠOnline

The protocol is parameterized by k, which specifies the word size on which the
operations are to be performed, and a security parameter s.

Initialize: The parties call the functionality FPrep as follows:
1. On input (Init) to get MAC key shares αj ∈ Z2s .
2. On input (Input, Pi) for all parties to obtain random sharings [r] where Pi

learns r, for every input that Pi will provide.
3. On input (Triple) to get enough triples ([a], [b], [c]).

Input: To share an input xi held by Pi:
1. Pi broadcasts ε = xi − r mod 2k+s, where [r] is the next unused input

mask.
2. The parties compute [xi] = [r] + ε.

Add: To add two values [x] and [y] the parties compute locally [z] = [x] + [y].
Multiply: To multiply two values [x] and [y]:

1. Open [x]− [a] as ε and [y]− [b] as δ using the Open phase of BatchCheck,
where ([a], [b], [c]) is the next unused triple.

2. Locally compute [x · y] = [c] + ε · [b] + δ · [a] + ε · δ.
Output: To output a value [y]:

1. Call the procedure BatchCheck to check the MACs on the values that have
been opened so far in multiplications.

2. If this does not abort, the parties open and check the MAC on [y] using
the procedure SingleCheck from Section 3.1.

Fig. 9. Protocol for reactive secure multi-party computation over Z2k

Theorem 2. The protocol ΠOnline implements FOnline in the FPrep-hybrid model,
with statistical security parameter s.

16

5 Preprocessing: Creating the MACs

We now show how to authenticate additively shared values with the linear MAC
scheme, realising the functionality FMAC from Section 3 (Fig. 5). Recall that
after sampling shares of the MAC key α ∈ Z2s , the functionality takes as input
secret-shared values x ∈ Z2r , and produces shares of the MAC x ·α mod 2`. The
input and output widths r and ` are parameters with ` ≥ r. In our protocol we
actually require ` ≥ 2s and ` ≥ r + s, where s is the security parameter, but if
these do not hold then we work with `′ = max(r+ s, 2s) and reduce the outputs
modulo 2`.

Building block: vector oblivious linear function evaluation. To create
the MACs, we will use a functionality for random vector oblivious linear function
evaluation (vector-OLE) over the integers modulo 2`. This is a protocol between
two parties, PA and PB , that takes as input a fixed element α ∈ Z2s from party
PA, a vector x from party PB , then samples a random vector b ∈ Z2` as output
to PB , and sends a = b+ α · x mod 2` to PA. In the specification of our ideal
functionality in Fig. 10, x is a vector of length t+ 1, with the first t components
from Z2r and the final component from Z2` . This is because our MAC generation
protocol will create a batch of t MACs at once on r-bit elements, but to do this
securely we also need to authenticate an additional random mask of ` bits.

Notice that the functionality also allows a corrupted PB to try to guess a
subset of Z2s in which α lies, but if the guess is incorrect the protocol aborts.
This is needed in order to efficiently implement FvOLE using oblivious transfer on
correlated messages, based on existing oblivious transfer extension techniques,
which we describe in Section C.

Functionality FsvOLE

Initialize: On receiving (sid, Init, α) from PA, where α ∈ Z2s , and (sid, Init) from
PB , store α and ignore any subsequent (sid, Init) messages.

Vector-OLE: On input (sid, `, r, t,x) from PB , where x ∈ Zt2r × Z2` :
1. Sample b←R Zt+1

2`
. If PB is corrupted, instead receive b from A.

2. Compute a = b + α · x mod 2`

3. If PA is corrupted, receive a ∈ Zt2` from A and recompute b = a− α · x.
4. If PB is corrupted, wait for A to input a message (guess, S), where S

efficiently describes a subset of {0, 1}s. If α ∈ S then send (success) to A.
Otherwise, send ⊥ to both parties and terminate.

5. Output a to PA and b to PB .

Fig. 10. Random vector oblivious linear function evaluation functionality over Z2k+s

MAC generation protocol. Each party samples a random MAC key share αi,
and uses this to initialize an instance of FvOLE with every other party. On input

17

a vector of additive secret shares xi = (xi1, . . . , x
i
t) from every Pi, each party

samples a random `′-bit mask xit+1, and then uses FvOLE to compute two-party

secret-sharings of the products αi · (xj‖xjt+1) for all j 6= i. Each party can then
obtain a share of the MACs α · x (where α =

∑
αi and x =

∑
xi), by adding

up all the two-party sharings together with the product αi · xi.
So far, the protocol is only passively secure, since there is nothing to prevent

a corrupt Pj from using inconsistent values of αj or xj with two different honest
parties, so the corrupt parties’ inputs may not be well-defined. To prevent this
issue, and ensure that in the security proof the simulator can correctly extract
the adversary’s inputs, we add a consistency check in steps 6–11: this challenges
the parties to open a random linear combination of all authenticated values. This
is where we need the additional random mask xt+1, to prevent any leakage on
the parties inputs from opening this linear combination. The check does not rule
out all possible deviations in the protocol, however, in what follows we show that
it ensures that the sum of all the errors directed towards any given honest party
is zero, so these errors all cancel out. Intuitively, this suffices to realise FMAC

because the functionality only adds a MAC to the sum of all parties’ inputs, and
not the individual shares themselves.

Protocol ΠAuth

Initialize: Each party Pi samples a MAC key share αi ←R Z2s . Every pair of
parties (Pi, Pj) initializes an instance of FvOLE, where Pi inputs αi.

Authentication: To authenticate the values x = (x1, . . . , xt) over Z2` , where
each party Pj inputs an additive share xj ∈ Zt2r :
1. Let `′ = max(`, r + s, 2s).
2. Each party Pj samples a random mask xjt+1 ←R Z2`

′ and defines x̃j :=

(xj , xjt+1) ∈ Zt2r × Z2`
′ .

3. Every pair (Pi, Pj) (for i 6= j) calls their FvOLE instance with input
(`′, r, t, x̃j) from Pj .

4. Pj receives bj,i and Pi receives ai,j , such that ai,j = bj,i+αi · x̃j mod 2`
′
.

5. For h = 1, . . . , t+ 1, each party Pj defines the MAC share

mj
h = αj · xjh +

∑
i 6=j

(aj,i − bj,i)[h] mod 2`
′

Consistency check:
6. Sample χ1, . . . , χt ←R Zt2s using FRand.
7. Each party Pj computes and broadcasts x̂j =

∑t
i=1 x

j
i ·χi+xjt+1 mod 2`

′
.

8. Each party Pj defines m̂j =
∑t
h=1m

j
h ·χh+mj

t+1 mod 2`
′

and x̂ =
∑
i x̂

i.

9. Each party Pj commits to and then opens zj = m̂j − x̂ · αj mod 2`
′
.

10. All parties check that
∑
i z
i = 0 mod 2`

′
and abort if the check fails.

11. Each party Pj outputs the MAC shares mj
1, . . . ,m

j
t mod 2`.

Fig. 11. Protocol for authenticating secret-shared values

18

5.1 Security

We now analyse the consistency check of the MAC creation protocol. There are
two main types of deviations that a corrupt Pj can perform, namely (1) Input
inconsistent values of αj to the initialization phase of FvOLE with different honest
parties, and (2) Input inconsistent shares xj in the authentication stage.

Let αj,i and xj,i be the actual values used by a corrupt Pj in its FvOLE

instance with honest Pi. For both types of errors, we define the correct values
αj ,xj to equal αj,i0 ,xj,i0 , for some arbitrary, fixed honest party, Pi0 . We then
define the errors

γj,i = αj,i − αj and δj,i = xj,i − xj ,
for each j ∈ A and i /∈ A. For an honest party Pi, we also define αi,j ,xi,j to
be equal to αi,xi for all j 6= i. Finally, for convenience, we define the errors
between a corrupt Pj and corrupt Pi to be zero, i.e. αj,i = αj and xj,i = xj for
j, i ∈ A.

In Claims 2 and 3 below we will show that, if the consistency check passes,
then with overwhelming probability the sum of all corrupted parties’ values is
well-defined. That is, the values

∑
j∈A α

j and
∑
j∈A x

j would be exactly same
even if they were defined using the inputs from Pj with a different honest party
Pi1 6= Pi0 . Since the MACs are computed based only on the sum of the MAC
key shares and input shares, this suffices to prove security of the protocol.

Suppose that the corrupted parties compute the MAC sharesmj as an honest
Pj would, using the values αj ,xj we defined above, as well as the values aj,i, bj,i

sent to FvOLE. Note that even though a corrupt Pj need not do this, any deviation
here can be modelled by an additive error in the commitment to zj in step 9, so
we do not lose any generality.

The sum of the vector of MAC shares on x is then given by∑
i

mi =
∑
i

αi · xi +
∑
i

∑
j 6=i

(ai,j − bj,i)

=
∑
i

αi · xi +
∑
i

∑
j 6=i

αi,j · xj,i

= α · x+
∑
i/∈A

xi ·
∑
j∈A

γj,i︸ ︷︷ ︸
=γi

+
∑
i/∈A

αi ·
∑
j∈A

δj,i︸ ︷︷ ︸
=δi

After taking random linear combinations with the vector χ = (χ1, . . . , χt) to
compute the MAC on x̂, the final MAC shares satisfy

∑
i

m̂i = α · x̂+
∑
i/∈A

(〈xi,χ〉+ xit+1) · γi +
∑
i/∈A

αi · (〈δi,χ〉+ δjt+1) (1)

To pass the consistency check, the adversary must first open the random
linear combination x̂ to some (possibly incorrect) value, say x̂ + ε, in step 7.
Then they must come up with an error ∆ ∈ Z2`′ such that

19

0 ≡`′
∑
i

zi +∆

≡`′
∑
i

(m̂i − (x̂+ ε) · αi) +∆

⇔ −∆ ≡`′
∑
i

m̂i − (x̂+ ε) · α

≡`′ α · ε+
∑
i/∈A

(〈xi,χ〉+ xit+1)︸ ︷︷ ︸
=ui

·γi +
∑
i/∈A

αi · 〈δi,χ〉+ δit+1

−∆−
∑
j∈A

αj · ε ≡`′
∑
i/∈A

ui · γi +
∑
i/∈A

αi · (〈δi,χ〉+ δit+1 + ε)

where the last two congruences come from substituting (1) and moving informa-
tion known by the adversary to the left-hand side.

When proving the two claims below we assume that the adversary does not
send any (guess) messages to FvOLE. Similarly to the proof of Theorem 1, these
can easily be extended to handle this case.

Claim 2 If at least one γi 6= 0 then the probability of passing the check is no
more than 2−s+logn.

Proof. Let i be an index for where γi 6= 0. Recall that γi =
∑
j /∈A γ

j,i, where

each γj,i < 2s, therefore γi < 2s+logn. Note that the distribution of ui is uniform
in Z2`′ and independent of all other terms, due to the extra mask xit+1, so we
can write ui · γi ≡`′ ∆′, for some ∆′ that is independent of ui. Dividing by 2v,
the largest power of two dividing γi, we get

ui · γ
i

2v
≡`′−v

∆′

2v

ui ≡`′−v
∆′

2v
·
(
γi

2v

)−1
Since v < s+ log n, this holds with probability at most 2−`

′+s+logn ≤ 2−s+logn

since `′ ≥ 2s.

Claim 3 Suppose γi = 0 for all i /∈ A, and δi is non-zero modulo 2r in at least
one component for some i /∈ A. Then, the probability of passing the check is no
more than 2−s+log(s).

Proof. Since i0 is an honest index where δi0 and δi0t+1 are both zero, passing the
check implies that

−∆−
∑
j∈A

αj · ε ≡`′ αi0 · ε+
∑

i 6=i0,i/∈A

αi · (〈δi,χ〉+ δit+1 + ε) (2)

20

Let 2v be the largest power of two that divides ε. We can rewrite (2) as

∆′ ≡`′ αi0 · ε,

for some ∆′ that is independent of αi0 . Dividing both sides by 2v and multiplying
by the inverse of ε/2v, we get

αi0 ≡`′−v ∆′ · (ε/2v)−1 (3)

Since αi0 is uniformly random and independent of the right-hand side, the
above only holds with probability ρ0 = 2−`

′+v.
Clearly, if v ≤ r then ρ0 ≤ 2−s and we are done. We now assume that v > r.

Since 2v divides ε, we can write equation (2) in a different way, as

∆′′ ≡v αi1 · (〈δi,χ〉+ δit+1) (4)

for some ∆′′ that is independent of αi1 . Using Lemma 1 with r = r,m = s, ` = v
and δ0 = δi1t+1, the above can only hold with probability ρ1 = 2−v+r+log(v−r+1).

Combining Equations (3) and (4), and using the fact that αi0 , αi1 are sampled
independently, we have

Pr[A passes check] ≤ ρ0 · ρ1 = 2−`
′+v−v+r+log(v−r+1) ≤ 2−s+log(s)

The above two claims show that, except with negligible probability in s, the
sum of all errors directed towards any given honest party is zero, so all errors
introduced by corrupt parties cancel out and the outputs form a correct MAC
on the underlying shared value. In particular, for the security proof, this implies
that in the ideal world the MAC shares seen by the environment (including those
of honest parties’) are identically distributed to the MAC shares output in the
real world.

In Appendix D, we give a complete proof of the following.

Theorem 3. The protocol ΠAuth securely realises FMAC in the (FvOLE,FRand)-
hybrid model.

6 Preprocessing: Creating Multiplication Triples

In this section we focus on developing a protocol that implements the Triple
command in the preprocessing functionality. More precisely, let FTriple be the
functionality that has the same features as FPrep (Fig. 7), but without the In-
put command. Our protocol, described in Fig. 12, implements the functionality
FTriple in the (FROT,FMAC,FRand)-hybrid model. In Appendix B we also present
the complete protocol for implementing FPrep, which includes the method for
generating random masks to authenticate parties’ inputs.

The protocol itself is very similar to the one used in MASCOT [14], with
several changes introduced in order to cope with the fact that our ring Z2k has

21

Protocol ΠTriple

The integer parameter τ = 4s + 2k specifies the size of the input triple used to
generate each output triple.

Multiply:
1. Each party Pi samples ai = (ai1, . . . , a

i
τ)←R (Z2)τ , bi ←R Z2k+s

2. Every ordered pair of parties (Pi, Pj) does the following:
(a) Both parties call FτROT with Pi as the receiver and Pj as the sender. Pi

inputs the bits (ai1, . . . , a
i
τ) ∈ (Z2)τ .

(b) Pj receives qj,i0,h, q
j,i
1,h ∈ Z2k+s and Pi receives si,jh = qj,i

ai
h
,h

for h =

1, . . . , τ .
(c) Pj sends dj,ih = qj,i0,h − q

j,i
1,h + bj mod 2k+s, for h = 1, . . . , τ .

(d) Pi sets ti,jh = si,jh + aih · dj,ij mod 2k+s for h = 1, . . . , τ . In particular

ti,jh ≡k+s s
i,j
h + aih · dj,ij

≡k+s qj,iai
h
,h

+ aih ·
(
qj,i0,h − q

j,i
1,h + bj

)
≡k+s qj,i0,h + aihb

j .

Therefore, the following equation holds modulo 2k+s on each entry
ti,j1
ti,j2
...
ti,jτ

 =


qj,i0,1

qj,i0,2

...

qj,i0,τ

+ bj


ai1
ai2
...
aiτ


(e) Pi sets cii,j =

(
ti,j1 , ti,j2 , . . . , ti,jτ

)
∈ (Z2k+s)

τ .

(f) Pj sets cji,j = −
(
qj,i0,1, q

j,i
0,2, . . . , q

j,i
0,τ

)
∈ (Z2k+s)

τ .
(g) The following congruence holds

cii,j + cji,j ≡k+s a
i · bj ,

where the modulo congruence is component-wise.
3. Each party Pi computes:

ci = ai · bi +
∑
j 6=i

(cii,j + cij,i) mod 2k+s

Fig. 12. Triple generation protocol

non-invertible elements. Most of these changes involve taking the coefficients of
random linear combinations in a different ring Z2s , which is useful to argue that
certain equations of the form r ·a ≡k+s b are satisfied with low probability. This
can be seen for example in the sacrifice step, where the random value t is chosen
to have at least s random bits, instead of k. Additionally, in our protocol (like
in MASCOT) random linear combinations must be used to extract randomness
from partially leaked values a1, . . . , at, which still have reasonably high entropy.

22

Protocol ΠTriple (continuation)

Combine:
1. Sample r, r̂ ←R FRand ((Z2k+s)

τ).
2. Each party Pi sets

ai =

τ∑
h=1

rha
i[h] mod 2k+s, ci =

τ∑
h=1

rhc
i[h] mod 2k+s and

âi =

τ∑
h=1

r̂ha
i[h] mod 2k+s, ĉi =

τ∑
h=1

r̂hc
i[h] mod 2k+s

Authenticate: Each party Pi runs FMAC on their shares to obtain authenticated
shares [a], [b], [c], [â], [ĉ].

Sacrifice: Check correctness of the triple ([a], [b], [c]) by sacrificing [â], [ĉ].
1. Sample t := FRand (Z2s).
2. Execute the procedure AffineComb to compute [ρ] = t · [a]− [â]
3. Execute the procedure BatchCheck on [ρ] to obtain ρ.
4. Execute the procedure AffineComb to compute [σ] = t · [c]− [ĉ]− [b] · ρ.
5. Run BatchCheck on [σ] to obtain σ, and abort if this value is not zero

modulo 2k+s.
Output: Generate using FMAC a random value [r] with r ∈ Z2s . Output

([a], [b], [c+ 2kr]) as a valid triple.

Fig. 13. Triple generation protocol (continuation)

In order to use the Leftover Hash Lemma in this context one needs to make
sure that taking random linear combinations yields a universal hash function.
However, in contrast to the field case it is not true in general that the function
r1 ·a1 + · · ·+ rt ·at mod 2k is universal, unless we make some assumptions about
the set the values ai are picked from. In the case of our protocol, we force the
ai to be −1, 0 or 1. With this additional condition it can be shown that the
function above is universal.

The Multiply phase generates shares {(ai, bi, ci)}ni=1 such that Pi has
(ai, bi, ci), where ai is a vector of bits, bi is a random element of Z2k+s and
ci is a vector of random elements of Z2k+s . These values satisfy c = a · b, where
c =

∑n
i=1 c

i mod 2k+s, a =
∑n
i=1 a

i mod 2k+s and b =
∑n
i=1 b

i mod 2k+s. This
is achieved by letting the parties choose their shares on a and b, and using obliv-
ious transfer to compute the cross products ai · bj . However, this is not a fully
functional multiplication triple yet as it might not satisfy the right multiplica-
tive relation (besides other technical issues like a being a short vector, and not
a value in Z2k+s). To check that the triple is correct, the Sacrifice phase uses
another triple to check correctness. As the name suggests, one triple is “sacri-
ficed” (i.e. opened) so that we can check correctness of the other while keeping
it secret.

On the other hand, we must also ensure that the triple looks random to all
parties. As we will see shortly in the proof of Theorem 4, if the triple is correct
this will reveal some partial information about the honest parties’ shares to the

23

adversary. This means that the adversary can guess a particular bit of these
shares, which would allow him to distinguish in the simulation. This issue is
addressed by the step Combine, which takes place before the Sacrifice step.
Here the parties take a random linear combination of a. Now, in order to pass
the check, the adversary has to guess a random combination of the bits of a,
which is much harder.

At this point a triple ([a], [b], [c]) has been created, with c ≡k a · b. However,
the s most significant bits of c have some information that could allow the ad-
versary to guess the shares of a of the honest parties. Moreover, correctness of
the triple is only required modulo 2k, as this is the modulus in the circuit the
parties want to compute. Therefore, in order to mitigate this issue the parties
use a random authenticated mask to hide the s most significant bits of c. This
mask is very similar to the one used in the procedure SingleCheck from Section
3.1. In fact, in an actual implementation we could ignore the mask on the triples,
as these will be masked before opening in the MAC checking procedures. How-
ever, if we wish to apply the Composition Theorem to our final protocol, each
subprotocol must be UC secure by itself, regardless of any further composition.

Now we proceed with the main theorem of the section, which states the
security of the protocol in Fig. 12.

Theorem 4. If τ ≥ 4k+ 2s, then the protocol ΠTriple (Protocol 12) securely im-
plements FTriple in the (FROT,FMAC,FRand)-hybrid model, with statistical security
parameter k.

Proof. Let Z be an environment, which we also refer to as adversary, corrupting
a set A of at most n − 1 parties. We construct a simulator S that has access
to the ideal functionality FTriple and interacts with Z in such a way that the
real interaction and the simulated interaction are indistinguishable to Z. Our
simulator S proceeds as follows:

Simulating the Multiply phase The simulator emulates the functionality FτROT

and sends qj,i0,h, q
j,i
1,h ∈ Z2k for h ∈ {1, . . . , τ} to every j ∈ A (on behalf of each

honest party Pi). When a corrupted party Pj sends dj,ih to an honest party
Pi, h ∈ {1, . . . , τ}, the simulator uses its knowledge on the q’s to extract the
values of b used by the adversary as bjh = dj,ih − q

j,i
0,h + qj,i1,h mod 2k (notice

that if all the parties were honest we would have that all bjh for h ∈ {1, . . . , τ}
are equal, however, the adversary can take any strategy and this may not
be the case here). The simulator then emulates the multiplication procedure
according to the protocol using a fixed consistent value bj for each j ∈ A (say
the value of bj1 used with a fixed honest party Pi0). We let bj,i ∈ (Z2k+s)

τ

denote the vector of values of b that Pj tried to use in interaction with the
emulated honest party Pi in step (c) and we define δb = bj,i − bj (modulo
2k+s on each entry) where bj is the vector (bj , . . . , bj).
In a similar way, we define δj,ia = aj,i − aj where aj = aj,i0 (these are the
errors introduced by Pj when interacting with Pi with respect to the values
used in the interaction with Pi0) and aj,i is the vector that the corrupt party

24

Pj used in the random OT when interacting with honest party Pi. Notice
that δj,ia ∈ {−1, 0, 1}τ .

Simulating the Combining phase All the computations are local, so S just
emulates FRand and proceeds according to the protocol.

Simulating the Authentication phase Now S emulates FMAC with inputs
from the corrupt parties provided by Z. Notice that S can compute the
actual values that each corrupt party should authenticate. The simulator
authenticates these and defines eAuth and êAuth to be the total error in-
troduced by the adversary in this step. Note that here eAuth, êAuth 6= 0 es-
sentially means that the adversary authenticates values different from those
computed in the previous phases. If Z sends Abort to FMAC then S sends
Abort to FTriple.

Simulating the Sacrifice step The simulator opens a uniform value in Z2k+s

as the value of ρ, and aborts if the triple that it has internally stored is
incorrect modulo 2k. Otherwise it stores this triple as a valid triple.

Now we argue that the environment Z cannot distinguish between the hybrid
execution and the simulated one. We begin by noticing that in the Multiply
phase the adversary only learns the mask di,jh for each i ∈ A, but they look

perfectly random as the values qi,j
1−ajh,h

are uniformly random and never revealed

to Z. On the other hand, we still need to argue that the value ρ during the
Sacrifice step has indistinguishable distributions in both executions, and that
the triple ([a], [b], [c]) obtained in the real execution is indistinguishable from the
triple generated in the ideal execution (where a and b are uniformly random).

In order to analyze these distributions, we study what is the effect of the
adversarial behavior in the final shared value c, and we do this by considering
what happens in the real execution at the end of step 2 when executed by a
pair of parties (Pi, Pj). If both j and i are honest, then the vectors cii,j and cji,j
computed at the end of the execution satisfy cii,j + cji,j ≡k+s ai · bj . Also, if j

and i are both corrupt then we can safely assume that cii,j + cji,j ≡k+s ai · bj
also holds, since any variation on this will result in an additive error term which
depends only in adversarial values and therefore it will get absorbed by the
authentication phase. Now suppose that j is corrupt and i is honest, then Pi
uses ai and Pj uses bj,i, so the vectors cii,j and cji,j computed at the end of the
execution satisfy

cii,j + cji,j ≡k+s a
i · bj,i ≡k+s ai · δj,ib + ai · bj .

Similarly, if i is corrupt and j is honest, then Pi uses ai,j and Pj uses bj , so the

vectors cii,j and cji,j computed at the end of the execution satisfy

cii,j + cji,j ≡k+s a
i,j · bj ≡k+s δi,ja · bj + ai · bj .

25

Now, if ci is the vector obtained by party Pi at the end of the multiplication,
then we have the following

c ≡k+s
n∑
i=1

ci ≡k+s
∑
i

ai · bi +
∑

i/∈A,j /∈A
j 6=i

(
ai · bj

)
+
∑
i/∈A
j∈A

(
ai ∗ δj,ib + ai · bj

)

+
∑
i∈A
j/∈A

(
δi,ja · bj + ai · bj

)
+

∑
i∈A,j∈A
j 6=i

(
ai · bj

)

≡k+s

(
n∑
i=1

ai

)
·

(
n∑
i=1

bi

)
+
∑
i/∈A
j∈A

ai ∗ δj,ib +
∑
i∈A
j/∈A

δi,ja · bj

≡k+s a · b+
∑
i/∈A

ai ∗ δib︸ ︷︷ ︸
ea

+
∑
j /∈A

δja · bj︸ ︷︷ ︸
eb

where a =
∑n
i=1 a

i, b =
∑n
i=1 b

i, δib =
∑
j∈A δ

j,i
b and δja =

∑
i∈A δ

i,j
a , and all

congruences are considered component-wise. Notice that each entry in δja is the
sum of at most n bits and therefore it is upper bounded strictly by n, since
we assume that n � 2k+s we can consider the sum a =

∑n
i=1 a

i (without the
modulus).

Assume all parties (including corrupt ones) take the right linear combination
in the combine phase (every adversarial misbehavior will result in an additive
error term that only depends on values that the adversary has, and this term
will be absorbed by the error term in the authentication phase). Therefore, after
the combination and authentication phases the parties obtain values [b], [a], [c],
[â], [ĉ] where b, a, c, â, ĉ ∈ Z2k+s satisfy

c ≡k+s a · b+ ea + eb + eAuth

ĉ ≡k+s â · b+ êa + êb + êAuth

and

c ≡k+s
τ∑
h=1

rh · c[h], ĉ =

τ∑
h=1

r̂h · c[h]

a ≡k+s
τ∑
h=1

rh · a[h], â ≡k+s
τ∑
h=1

r̂h · a[h]

ea ≡k+s
τ∑
h=1

rh · ea[h], êa ≡k+s
τ∑
h=1

r̂h · ea[h]

eb ≡k+s
τ∑
h=1

rh · eb[h], êb ≡k+s
τ∑
h=1

r̂h · eb[h].

We prove the following two claims in Appendix E, using the same techniques
as in the single and batch MAC checking protocols from Section 3, and Lemma 1.

26

Claim 4 If the sacrifice step passes, then it holds that e := ea+ eb+ eAuth ≡k 0
and ê := êa + êb + êAuth ≡k 0 with probability at least 1− 2−s.

Claim 5 Suppose that the sacrificing step passes, then all the errors {δia[h]}h,i/∈A
are zero except with probability at most 2−k+log(n·(k+1−logn))

The previous claim allows us to conclude that eb = êb ≡k+s 0, except with
negligible probability. Now we would like to claim that the value ρ ∈ Z2k+s

opened in the sacrifice step is indistinguishable from the one opened in the real
execution. Since in the ideal execution the simulator opens a uniform value,
what we actually need to show is that in a real execution ρ looks (close to)
uniform. Given that ρ = t · a− â mod 2k, this can be accomplished by showing
that â looks uniform to the environment. In order to see that â ≡k+s

∑τ
h=1 r̂h ·

a[h] ≡k+s
∑n
i=1

(∑τ
h=1 r̂h · ai[h]

)
is uniformly distributed it suffices to show

that at least for one i0 /∈ A it holds that âi0 looks uniform to the environment,
where âi =

∑τ
h=1 r̂h · ai[h] mod 2k+s, and that all these values are actually

independent. This can be shown using the Leftover Hash Lemma by giving a
good lower bound on the min-entropy of ai0 (see Appendix E for the precise
variant of this lemma that we use). We proceed with the details below.

Using Claim 4 and Claim 5, we have that whenever the sacrifice step passes
it holds that

−eAuth ≡k ea ≡k
τ∑
h=1

rh · ea[h] ≡k
τ∑
h=1

rh
∑
i/∈A

ai[h] · δib[h].

and

−êAuth ≡k êa ≡k
τ∑
h=1

r̂h · ea[h] ≡k
τ∑
h=1

r̂h
∑
i/∈A

ai[h] · δib[h].

Intuitively, the only information that the adversary has about the honest party’s
shares is that the sacrifice step passed, which in turn implies that the above
equation holds. Ideally, the fact that this relation holds should not reveal so
much information about {ai}i/∈A to the adversary. Indeed, this will be the case,
which will be seen when we bound by below the entropy of this random variable.
To this end, let m = n− |A| be the number of honest parties and let S ⊆ Zm·τ2

be the set of all possible honest shares (ai)i/∈A for which the sacrifice step would
pass. Notice that in particular, these shares satisfy the equations above and
therefore they are completely determined by the errors that are introduced by
the adversary. Moreover, since the shares (ai)i/∈A are uniformly distributed in
S, the min-entropy of these shares is log |S|. Additionally, the vectors in (ai)i/∈A
are independent one from each other, hence there is at least one honest party

Pi0 such that the min entropy of ai0 is at least log |S|
m . In the following we show

that ai0 =
∑τ
h=1 rh ·ai0 [h] mod 2k+s and âi0 =

∑τ
h=1 r̂h ·ai0 [h] mod 2k+s look

random to the environment.
Let β be the probability of passing the sacrifice step, i.e. β = |S|

2mτ = 2−c

where c = mτ − log |S|. We get that

H∞
(
ai0
)
≥ log |S|

m
= τ − c

m
≥ τ − c.

27

Now consider the function hr,r̂ : (Z2)τ → (Z2k+s)
2 given by

hr,r̂(a) =

(
τ∑
h=1

r[h] · a[h] mod 2k+s,

τ∑
h=1

r̂[h] · a[h] mod 2k+s

)
,

We claim that this family of functions is 2−universal. Let a,a′ ∈ (Z2)τ such
that a 6= a′, say a[h0] 6≡k+s a′[h0]. If hr,r̂(a) = hr,r̂(a′) then

∑τ
h=1 r[h] ·(a[h]−

a′[h]) ≡k+s 0 and
∑τ
h=1 r̂[h] · (a[h] − a′[h]) ≡k+s 0. Given that a and a′ are

vectors of bits, we have that a[h0]− a′[h0] = ±1, so we can solve for r[h0] and
r̂[h0] in the equations above. Therefore, these equations hold with probability
at most 1

2k+s
· 1
2k+s

= 1
22(k+s)

over the choice of (r, r̂), and hence the family is
2-universal.

According to the Leftover Hash Lemma (see Appendix E), even if the adver-
sary knows r and r̂, the statistical distance between hr,r̂(X) and the uniform
distribution in (Z2k+s)

2 is at most 2−κ, provided that H∞ (X) ≥ 2κ+ 2(k + s).
This is satisfied if we take κ = 1

2 · (τ − c− 2 · (k + s)).
Finally, ignoring the event in which the check passes with some non-zero

errors, which happens with negligible probability, the distinguishing advantage
of Z is the multiplication between the probability of passing the sacrifice step
and the probability of distinguishing the output distribution from random, given
that the check passed. This is equal to

β · 2−κ = 2−c · 2− 1
2 ·(τ−c−2·(k+s)) = 2−

τ−2·(k+s)
2 − c2 .

Since we want this probability to be bounded by 2−s for any c, we take τ so that

s ≤ τ−2·(k+s)
2 , which is equivalent to τ ≥ 4s+ 2k. ut

7 Efficiency Analysis

We now turn to estimating the efficiency of our preprocessing protocol, focus-
ing on the triple generation phase since this is likely to be the bottleneck in
most applications. We emphasise that the costs presented here, compared with
those of previous protocols, do not take into account the benefits to applications
from working over Z2k instead of a finite field with arithmetic modulo a prime.
Supporting natural arithmetic modulo 2k offers advantages on several levels: it
simplifies implementations by avoiding the need for modular arithmetic, it re-
duces the complexity of compiling existing programs into arithmetic circuits,
and we believe that it will also be beneficial in performing operations such as
secure comparison and bit decomposition of shared values more efficiently than
standard techniques using arithmetic modulo p.

Communication complexity of the preprocessing. When authenticating
a secret-shared value x ∈ Z2k , the main cost is running the vector OLEs, which
have inputs over Z2k and outputs over Z2k+s , when the MAC key α ∈ Z2s .
With the method described in Section C, each vector OLE requires s correlated

28

OTs on messages over Z2` , where ` = max(k + s, 2s), which gives an amortized
cost of s · ` bits for each component of the vector OLE. We ignore the cost of
the consistency check, since this is independent of the number of values being
authenticated.

To generate a triple, we need τ random OTs on strings of length k + s bits
between every pair of parties, which cost k + s bits of communication each us-
ing [13], followed by τ · (k + s) bits to send the dj,i values. The parties then
authenticate 5 values in Z2k+s , which requires generating MACs modulo Z2k+2s

for security. Generating these MACs costs 5s ·(k+2s) ·n(n−1) bits of communi-
cation using ΠAuth based on correlated OT, since the vector OLEs are performed
with ` = k+2s. The costs of FRand and the sacrifice check are negligible compared
to this, since the MAC check can be performed in a batch when producing many
triples at once. This gives a total cost estimate of n(n−1)(5s(k+2s)+2τ(k+s))
bits per triple. Setting τ = 4s+ 2k (to give failure probability 2−s) this becomes
n(n− 1)(18s2 + 4k2 + 17sk).

Comparison with MASCOT. Table 1 shows the estimated communication
complexity of our protocol for two parties creating a triple in different rings. Note
that like MASCOT [14] — the most practical OT-based protocol for actively se-
cure, dishonest majority MPC over finite fields — we expect that communication
will be the bottleneck, since the protocol has very simple computational costs. In
the table we fix the computational security parameter to 128, and set the statis-
tical security parameter to s = 64 in a 64 or 128-bit ring, or s = 32 in the 32-bit
ring, giving the claimed security bounds (cf. Theorem 1 and Claim 5). Compared
with MASCOT, our protocol needs around twice as much communication for 64
or 128-bit triples, with roughly the same level of statistical security. Over the
integers modulo 232, the overhead reduces to around 50% more than MASCOT,
although here the statistical security parameters of 26 and 32 bits may be too
low for some applications. Note that many applications will not be possible with
MASCOT or SPDZ over a 32-bit field, since here integer overflow (modulo p)
occurs more easily, and emulating operations such as secure comparison and bit
decomposition over a field requires working with a much larger modulus to avoid
overflow. When working over Z232 instead, this should not be necessary.

These overheads for triple generation, compared with MASCOT, come from
the fact that our protocol sometimes needs to work in larger rings to ensure
security. For example, for the triple check to be secure, our protocol authenticates
shares of triples modulo 2k+s, even though the triples are only ever used modulo
2k in the online phase. This means that when creating these MACs with the
protocol from Section 5, we need to work over Z2k+2s to ensure security. We
leave it to future work to try to avoid these costs and improve efficiency.

Comparison with SPDZ using homomorphic encryption. In very re-
cent work [15], Keller, Pastro and Rotaru presented a new variant of the SPDZ
protocol that improves upon the performance of MASCOT. In the two-party
setting, they show that an optimized implementation of the original SPDZ [9]

29

Protocol Message space Stat. security
Input cost

(kbit)
Triple cost

(kbit)

Ours
Z232 26 3.17 79.87
Z264 57 12.48 319.49
Z2128 57 16.64 557.06

MASCOT
32-bit field 32 1.06 51.20
64-bit field 64 4.16 139.26
128-bit field 64 16.51 360.44

Table 1. Communication cost of our protocol and previous protocols for various rings
and fields, and statistical security parameters

runs around twice as fast as MASCOT, and give a new variant that performs 6
times as fast in 64-bit fields; this would probably be around 12 times as fast as
our protocol for 64-bit rings. The original SPDZ uses somewhat homomorphic
encryption based on the ring-LWE assumption, while their newer variant uses
additively homomorphic encryption, and the conjecture that ring-LWE based
additively homomorphic encryption has “linear-only” homomorphism. It seems
likely that both of these protocols could be adapted to generate triples over Z2k

using our techniques. One challenge, however, is to adapt the ciphertext pack-
ing techniques used in SPDZ for messages over Fp to the case of Z2k , to allow
parallel homomorphic operations on ciphertexts; it was shown how this can be
done in [10], but it’s not clear how efficient this method is in practice.

Acknowledgements

This work has been supported by the European Research Council (ERC) under
the European Unions’s Horizon 2020 research and innovation programme under
grant agreement No 669255 (MPCPRO); the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731583 (SODA);
the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 74079 (ALGSTRONGCRYPTO); and the Danish Indepen-
dent Research Council under Grant-ID DFF–6108-00169 (FoCC).

References

1. Asharov, G., Lindell, Y., Schneider, T., and Zohner, M. More efficient
oblivious transfer extensions with security for malicious adversaries. In EURO-
CRYPT 2015, Part I (Apr. 2015), E. Oswald and M. Fischlin, Eds., vol. 9056 of
LNCS, Springer, Heidelberg, pp. 673–701.

2. Bendlin, R., Damg̊ard, I., Orlandi, C., and Zakarias, S. Semi-homomorphic
encryption and multiparty computation. In EUROCRYPT 2011 (May 2011), K. G.
Paterson, Ed., vol. 6632 of LNCS, Springer, Heidelberg, pp. 169–188.

30

3. Bogdanov, D., Laur, S., and Willemson, J. Sharemind: A framework for fast
privacy-preserving computations. In ESORICS 2008 (Oct. 2008), S. Jajodia and
J. López, Eds., vol. 5283 of LNCS, Springer, Heidelberg, pp. 192–206.

4. Canetti, R. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS (Oct. 2001), IEEE Computer Society Press, pp. 136–145.

5. Cramer, R., Fehr, S., Ishai, Y., and Kushilevitz, E. Efficient multi-party
computation over rings. In EUROCRYPT 2003 (May 2003), E. Biham, Ed.,
vol. 2656 of LNCS, Springer, Heidelberg, pp. 596–613.

6. Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P. S., and Toft, T.
Confidential benchmarking based on multiparty computation. In FC 2016 (Feb.
2016), J. Grossklags and B. Preneel, Eds., vol. 9603 of LNCS, Springer, Heidelberg,
pp. 169–187.

7. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., and Smart,
N. P. Practical covertly secure MPC for dishonest majority - or: Breaking the
SPDZ limits. In ESORICS 2013 (Sept. 2013), J. Crampton, S. Jajodia, and
K. Mayes, Eds., vol. 8134 of LNCS, Springer, Heidelberg, pp. 1–18.

8. Damg̊ard, I., Orlandi, C., and Simkin, M. Yet another compiler for active
security or: Efficient MPC over arbitrary rings. Cryptology ePrint Archive, Report
2017/908, 2017. http://eprint.iacr.org/2017/908.

9. Damg̊ard, I., Pastro, V., Smart, N. P., and Zakarias, S. Multiparty compu-
tation from somewhat homomorphic encryption. In CRYPTO 2012 (Aug. 2012),
R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of LNCS, Springer, Heidelberg,
pp. 643–662.

10. Gentry, C., Halevi, S., and Smart, N. P. Better bootstrapping in fully ho-
momorphic encryption. In PKC 2012 (May 2012), M. Fischlin, J. Buchmann, and
M. Manulis, Eds., vol. 7293 of LNCS, Springer, Heidelberg, pp. 1–16.

11. Goldreich, O., Micali, S., and Wigderson, A. How to play any mental game
or A completeness theorem for protocols with honest majority. In 19th ACM STOC
(May 1987), A. Aho, Ed., ACM Press, pp. 218–229.

12. Impagliazzo, R., Levin, L. A., and Luby, M. Pseudo-random generation from
one-way functions (extended abstracts). In 21st ACM STOC (May 1989), ACM
Press, pp. 12–24.

13. Keller, M., Orsini, E., and Scholl, P. Actively secure OT extension with
optimal overhead. In CRYPTO 2015, Part I (Aug. 2015), R. Gennaro and M. J. B.
Robshaw, Eds., vol. 9215 of LNCS, Springer, Heidelberg, pp. 724–741.

14. Keller, M., Orsini, E., and Scholl, P. MASCOT: Faster malicious arithmetic
secure computation with oblivious transfer. In ACM CCS 16 (Oct. 2016), E. R.
Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, Eds., ACM
Press, pp. 830–842.

15. Keller, M., Pastro, V., and Rotaru, D. Overdrive: Making SPDZ great again.
In EUROCRYPT (2018), LNCS. https://eprint.iacr.org/2017/1230.

16. Nielsen, J. B., Nordholt, P. S., Orlandi, C., and Burra, S. S. A new
approach to practical active-secure two-party computation. In CRYPTO 2012
(Aug. 2012), R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of LNCS, Springer,
Heidelberg, pp. 681–700.

17. Nielsen, J. B., Schneider, T., and Trifiletti, R. Constant round maliciously
secure 2pc with function-independent preprocessing using LEGO. In 24th NDSS
Symposium (2017), The Internet Society. http://eprint.iacr.org/2016/1069.

18. Pettai, M., and Laud, P. Automatic proofs of privacy of secure multi-party
computation protocols against active adversaries. In IEEE 28th Computer Security

31

http://eprint.iacr.org/2017/908
https://eprint.iacr.org/2017/1230
http://eprint.iacr.org/2016/1069

Foundations Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015 (2015), IEEE,
pp. 75–89.

19. Scholl, P. Extending oblivious transfer with low communication via key-
homomorphic PRFs. In Public-Key Cryptography (PKC) (2018), Lecture Notes
in Computer Science. https://eprint.iacr.org/2018/036.

32

https://eprint.iacr.org/2018/036

A Proof of the Online Phase

Theorem 5 (Theorem 2, restated). The protocol ΠOnline implements FOnline

in the FPrep-hybrid model, with statistical security parameter s.

Proof. We prove security using the variant of the universal composability frame-
work [4] with a dummy adversary, who simply forwards messages sent and re-
ceived by corrupted parties in the protocol as directed by the environment, Z.
This means we can assume that Z plays the role of both the distinguisher and
the adversary.

Let Z be an environment corrupting a set A of at most n−1 parties. We con-
struct a simulator S that has access to the ideal functionality FPrep and interacts
with Z in such a way that the real interaction and the simulated interaction are
indistinguishable to Z. Recall that Z chooses the inputs of all parties, and at
the end of the execution also sees the outputs of all parties, including the honest
parties. The simulator S works as follows

Simulating the Initialization and Input phases The simulator simply em-
ulates the functionality FPrep honestly. S also emulates virtual honest parties
with dummy inputs. Notice that S knows all parties’ shares of the MAC key
α and also the randomness distributed to each party for the input masks and
multiplication triples. In particular, S can respond to any adversary’s key
guesses to the Authentication stage of FPrep using the αi shares it knows,
and will abort if any guess fails.
In the Input phase, when a corrupted party Pi broadcasts ε, S extracts its
input as xi = ε + r, where r is the random value that Pi should have used.
The simulator now uses these values as input to the FOnline functionality.

Simulating additions This only consists of local computations, which S car-
ries out honestly on behalf of the virtual honest parties.

Simulating multiplications When the values ε and δ for the multiplication
are opened, S opens random shares on behalf of the virtual honest parties.

Simulating the Output and MAC-Checking phases In the output phase,
S first calls FOnline to obtain the correct output y. Next, to simulate the MAC
checking procedure, S executes BatchCheck with the adversary, on behalf of
the virtual honest parties. If the check fails then S sends Abort to FOnline.
If the above check passed, S modifies the honest parties’ shares it holds to
be consistent with the output y, and also modifies the MAC shares to be a
random sharing of α · y, which it can do since it knows α. It then runs the
SingleCheck procedure with the adversary, on behalf of the honest parties. If
this aborts then S sends Abort to FOnline, otherwise it sends Proceed.

Now we argue that Z cannot distinguish between the real and ideal executions.
This will follow as these are statistically close, as we now show. This is clear for
the Intialization phase, where Z gets random values in both executions. This is
also the case in the Input and Multiplication phases, where Z only see values of
the form x′ = x+ r where r is a fresh uniformly random mask in Z2k+s .

33

It is only in the output phase where care needs to be taken. First notice
that the probability that the Batch and Single MAC-Checking phases result
in Abort is the same in both executions. On the other hand, if the first MAC
check passes, then the honest parties reveal their shares in both executions. In
the real execution these shares are conditioned on adding up (plus the internal
shares of the adversary) to the value computed in the protocol, whereas in the
simulated execution this sum is equal to the value output by the functionality.
However, due to Theorem 1, if this check passes then these two values are the
same, except with probability 2−s+log(s+1). Hence the shares revealed have the
same distribution in both cases with overwhelming probability. On the other
hand, if the single MAC check passes, then due to Claim 1 we have that the
final value output by the honest parties in both executions is the same, except
with probability 2−s.

Summing up, the overall distinguishing advantage of Z can be bounded by
2−s+log(s+1) + 2−s, which is negligible in s. ut

B Complete Preprocessing Phase

So we far we have shown how to create authenticated, secret-shared values and
multiplication triples, but are still missing the random input masks created by
FPrep. This can be done using essentially the same protocol as ΠAuth from Sec-
tion 5, except only a single party, Pi, needs to authenticate their input. In more
detail, Pi samples the random masks r1, . . . , rt (plus one extra for security) and
authenticates them using FvOLE with every other party. Pi also distributes ran-
dom shares of the masks to all other parties, so they end up with authenticated
sharings [r1], . . . , [rt], where only Pi knows rj , as required. The parties can then
use the same MAC checking procedure as in Section 5 to ensure that this was
done correctly.

This gives us the complete protocol for preprocessing shown in Fig. 14, which
calls the previous MAC and triple generation protocols to realise those parts
of FPrep. Security of the initialize, authentication and triple generation stages
follows from the proofs of security of ΠAuth and ΠTriple. Regarding security of the
input phase, note that a corrupted Pi may choose the masks rj and their shares
from a different distribution, which is why FPrep allows a corrupt Pi to specify
these. This does not pose a problem for the online phase, since the randomness
of the masks is only used to protect Pi’s input and not that of any other party.
The consistency check can be analysed just as in the ΠAuth protocol, since we use
exactly the same MAC checking technique there, and this ensures that Pi inputs
the same values of r into the vector-OLE instances with every other party. This
gives us the following theorem.

Theorem 6. The protocol ΠPrep securely realises FPrep in the (FvOLE,FRand,FROT)-
hybrid model.

34

Protocol ΠPrep

Initialize: Same as in ΠAuth

Authentication: Same as in ΠAuth

Triple: Same as in ΠTriple

Input: To create t random, authenticated input masks known only to Pi:
1. Pi samples r = (r1, . . . , rt+1)←R Zt2k+s
2. Pi samples random sharings rj such that r =

∑
j r

j mod 2k+s, and pri-

vately sends rj to Pj
3. For every j 6= i, Pi and Pj call their FvOLE instance with input (k+ 2s, k+

s, t, r) from Pi.
4. Each Pj (j 6= i) receives aj,i and Pi receives bi,j , such that ai,j = bj,i+αj ·r

mod 2k+2s.
5. For h = 1, . . . , t + 1, each Pj 6= Pi defines the MAC share mj

h = aj,i[h],
while Pi computes

mi
h := αi · rh +

∑
j 6=i

bi,j [h]

Consistency check:
6. Sample χ1, . . . , χt ←R Zt2s using FRand.
7. Pi computes and broadcasts r̂ =

∑t
h=1 rh · χh + rt+1 mod 2k+2s.

8. For all j = 1, . . . , n, party Pj defines m̂j =
∑t
h=1m

j
h · χh + mj

t+1

mod 2k+2s.
9. Each party Pj commits to and then opens zj = m̂j − r̂ · αj mod 2k+2s.

10. All parties check that
∑
j z

j = 0 mod 2k+2s and abort if the check fails.
11. Each party Pj outputs the sharings [r1], . . . , [rt], with MACs reduced mod-

ulo 2k+s, whilst Pi also outputs (r1, . . . , rt).

Fig. 14. Complete preprocessing protocol — creating authenticated input masks

C Implementing Vector-OLE mod 2`

We now describe how to implement the random vector oblivious linear function
evaluation functionality FvOLE (Fig. 10), which was used to create MAC shares
in Section 5, using oblivious transfer. Suppose we have a functionality for OT on
correlated strings, where the sender’s messages are vectors over Z2` of the form
(bi, bi + x), where we are also guaranteed that the correlation x is the same in
every pair.

The receiver, who has an input α ∈ Z2s for the vector-OLE protocol, bit-
decomposes α into α1, . . . , αs and uses these as choice bits for the correlated
OT. The messages received can be written as

ai = bi + αi · x, for i = 1, . . . , s

To compute the vector-OLE outputs, the receiver and sender then respectively
compute

a =

s∑
i=1

ai · 2i−1 mod 2`, b =

s∑
i=1

bi · 2i−1 mod 2`

35

and output these vectors, which satisfy a = b+ α · x mod 2` as required.
The main challenge in doing this is to implement the correlated OT protocol

over Z2` with active security. Although most previous protocols [16,17] only
support correlations over GF (2), Scholl [19, Sec. 4] recently showed how to
create correlated OTs over any finite abelian group using a generalisation of
the technique of Asharov et al. [1]. Specifically, the functionality F∆-ROT from
that work can be instantiated over the additive group Zt2r × Z2` to obtain the
correct form of correlated OTs we need. This requires a setup phase consisting
of s oblivious transfers on random strings, which can be realised using FROT,
and a pseudorandom function. However, this protocol only suffices to realise a
leaky version of correlated OT, where a corrupt sender may try to guess a few
bits of the receiver’s choice bits αi — if the guess fails then the protocol aborts.
This is the reason why we define the FvOLE functionality to allow an adversary
to try to guess the honest party’s input α, and abort if the guess fails.

Functionality Fm,k,s∆-OT

Parameters: m, the length; k, the number of OTs.

Initialize: On receiving (sid, Init, α1, . . . , αs) from PA, where αi ∈ {0, 1}, and
(sid, Init) from PB , store {αi}i and ignore any subsequent (sid, Init) messages.

∆-OTs: On input (sid,OTs, (x1, . . . , xt)) from PB , where xi ∈ Z2r , send
(sid,OTs) to PA and do the following.
1. Sample bi ←R Zt2r , for i ∈ [s]. If PB is corrupted, instead receive bi from
A.

2. Compute ai = bi + αi · x
3. If PA is corrupted, receive ai ∈ Gt from A and recompute bi = ai − αi · x.
4. If PB is corrupted, wait for A to input a message (guess, S), where S effi-

ciently describes a subset of {0, 1}s. If (α1, . . . , αs) ∈ S then send (success)
to A. Otherwise, send ⊥ to both parties and terminate.

5. Output ai to PA and bi to PB .

Fig. 15. Correlated random oblivious transfer functionality over Z2k+s

D Proof of the MAC Generation Protocol

Theorem 7 (Theorem 3, restated). The protocol ΠAuth securely realises FMAC

in the (FvOLE,FRand)-hybrid model.

Proof. We construct a simulator S, such that no environment Z can distinguish
between an execution of the real protocol interacting with the honest parties,
and an ideal execution where Z interacts with S, who also has access to the
ideal functionality FMAC.

The overall strategy of the simulator is simply to run a copy of all the honest
parties “in its head” using all-zero inputs, and use this to simulate the interaction

36

with the dummy adversary A, controlled by Z. S also extracts the corrupted
parties’ inputs based on the messages sent to FvOLE with a single honest party,
as described in the text earlier.

Simulating the Initialize phase. Let αj,i be the input by a corrupt Pj into
the FvOLE instance with an honest Pi. S picks an honest party, say Pi0 , and sends
αj := αj,i0 to FMAC for j ∈ A.

Simulating the Authentication phase.

1. For all j ∈ A, i /∈ A, S receives x̂j,i = (xj,i, xj,it+1) ∈ Zt2r × Z2`′ , as well as

aj,i, bj,i ∈ Zt+1
2`′

from A as inputs to FvOLE with the honest Pi.
2. If A sends any (guess, S) message to FvOLE with some honest party Pi, then

forward the guess to FMAC. If FMAC aborts then abort, otherwise store the
set Si = Si ∩ S (where initially Si = Z2s).

3. Sample αi ←R Si, x
i
t+1 ←R Z2`′ , for i /∈ A, on behalf of the honest parties,

and then honestly compute their MAC shares mi
h, for h = 1, . . . , t+ 1, using

zero-valued share inputs.
4. Pick an honest party Pi0 and let x̂j := x̂j,i0 . Write x̂j = (xj , xjt+1) ∈

Zt2r × Z2`′ .
5. Sample and send to A the random values χ1, . . . , χt ←R Zt2s .
6. Send to A the honestly computed shares x̂i, for i /∈ A, and receive back

shares that reconstruct to x′.
7. Receive the corrupt parties’ commitments zj , for j ∈ A, and then open the

honest parties’ commitments as zi = m̂i − x′ · αi.
8. Carry out the consistency check. If this fails then send ⊥ to FMAC and

terminate.
9. If the check passes then define the corrupted parties’ MACs mj

i , for j ∈
A, i = 1, . . . , t using αj ,xj ,aj,i, bj,i according to the protocol, then send
(xji ,m

j
i) to FMAC.

Indistinguishability. It is easy to see that the transcript of messages seen by
an adversary during the protocol is identically distributed in the real and ideal
executions. The probability of passing the consistency check is also identical
in both executions, since the previous analysis showed that it only depends on
the honest parties’ MAC key shares and the random masks xit+1, which are
identically distributed in the view of the environment in both worlds, until the
end of the protocol. It only remains to argue that the MAC shares output by all
parties are distributed the same in both worlds.

From Claims 2 and 3, we know that if the consistency check passed in the
protocol then the MAC shares form a consistency sharing of a correctly com-
puted MAC, just as the shares output by the ideal functionality do, except with
negligible probability. Moreover, the shares of honest parties are uniformly ran-
dom (subject to this constraint) in both executions, since in the protocol they
are obtained by summing up the random outputs of FvOLE instances with all

37

other parties, which serve as random masks. We conclude that the simulation is
statistically close. ut

E Preliminaries and Proofs for Triple Generation
Protocol

E.1 Min-entropy preliminaries

Definition 1. Let R be any set and H = {hr}r∈R be a family of (keyed) hash
functions hr : {0, 1}m → {0, 1}k. Then H is a 2-universal hash function family,
if for every x, y ∈ {0, 1}m, if x 6= y then

Pr
r←RR

[hr(x) = hr(y)] ≤ 2−k.

Definition 2. The min-entropy of a discrete random variable X is defined as

H∞(X) = − log
(

max
x

Pr[X = x]
)

.

In the proof of Theorem 4, we use the following facts about min-entropy.

– If U is the uniform distribution on a set R then H∞(U) = log |R|.
– If X = (X1, . . . , Xn) is a joint distribution then there is an index i for which
H∞(Xi) ≥ H∞(X)/n.

– If X and Y are independent distributions over an additive group, then
H∞(X + Y) ≥ max(H∞(X), H∞(Y)),

Lemma 2 (Leftover Hash Lemma). [12] Let S be a set and ` a positive
integer. Let X be a random variable over S and H = {hr}r∈R, hr : S → {0, 1}`,
a 2-universal hash function. Let US be the uniform distribution over S. If

H∞(X) ≥ 2κ+ `

then for t←R {0, 1}` (independent of X), we have

(hr(X), t)
s
≈ (US , t)

for statistical security parameter κ.

E.2 Proofs of claims

Claim 6 (Claim 4, restated) If the sacrifice step passes, then it holds that
e := ea + eb + eAuth ≡k 0 and ê := êa + êb + êAuth ≡k 0 with probability at least
1− 2−s.

38

Proof. Suppose that the protocol does not abort in the sacrifice step, then
σ ≡k+s 0 which means that t · c − ĉ − b · ρ ≡k+s 0. Since c ≡k+s a · b + e
we have that

0 ≡k+s t · c− ĉ− b · ρ
≡k+s t · (a · b+ e)− (â · b+ ê)− b · (t · a− â)

≡k+s t · e− ê.
Now suppose that e 6≡k 0. Let 2v be the exact power of 2 that divides e. Since
by hypothesis e is not divisible by 2k we have that v < k. Therefore e

2v is odd
(so it has a multiplicative inverse modulo 2k−v+s) which allows us to write

t ≡k+s−v
(e

2v

)−1(ê

2v

)
.

Since s < k+s−v, this shows that the value of t mod 2s is completely determined,
but since t is chosen at random in Z2s we conclude that the probability of this
particular event is at most 2−s.

Finally, if e ≡k 0 then ê ≡k t · e ≡k 0.

Claim 7 (Claim 5, restated) Suppose that the sacrificing step passes, then
all the errors {δia[h]}h,i/∈A are zero except with probability at most 2−k+log(n·(k+1−logn))

Proof. Due to the previous claim we have that if the sacrificing step passes then
it holds that

ea + eb + eAuth ≡k 0,

in particular

− eAuth ≡k ea + eb ≡k
τ∑
h=1

rh · ea[h] +

τ∑
h=1

rh · eb[h] ≡k
τ∑
h=1

rh (ea[h] + eb[h])

≡k
τ∑
h=1

rh

(∑
i/∈A

ai[h] · δib[h] +
∑
i/∈A

δia[h] · bi
)

≡k
∑
i/∈A

bi

(
τ∑
h=1

rhδ
i
a[h]

)
︸ ︷︷ ︸

Si

+

τ∑
h=1

rh

(∑
i/∈A

ai[h] · δib[h]

)
.

Suppose that δi0a [h0] is not zero, as 0 < |δi0a [h0]| < n this means that δi0a [h0] 6≡logn

0 We can write the equation above as bi0 · Si0 ≡k ∆ where

∆ = −
∑

i/∈A,i6=i0

bi

(
τ∑
h=1

rhδ
i
a[h]

)
︸ ︷︷ ︸

Si

−
τ∑
h=1

rh

(∑
i/∈A

ai[h] · δib[h]

)
.

Notice that ∆ is a random variable which is independent from bi0 . If we set
` = k, r = log n and m = k in Lemma 1, we get that if the sacrifice step passes
then the probability of having a non-zero error in {δia[h]}h,i/∈A is bounded by

2−`+r+log(`−r+1) = 2−k+log(n)+log(k−log(n)+1).

39

	SPDZ2k: Efficient MPC mod 2k for Dishonest Majority
	Introduction
	Our contributions
	Overview of our techniques

	Preliminaries
	Oblivious Transfer and Coin Tossing Functionalities

	Information-Theoretic MAC Scheme
	Opening Values and Checking MACs
	Batch MAC Checking with Random Linear Combinations
	Reducing the Number of Masks
	Previous Version of the Batch MAC Check

	Online Phase
	Preprocessing: Creating the MACs
	Security

	Preprocessing: Creating Multiplication Triples
	Efficiency Analysis
	Proof of the Online Phase
	Complete Preprocessing Phase
	Implementing Vector-OLE mod 2
	Proof of the MAC Generation Protocol
	Preliminaries and Proofs for Triple Generation Protocol
	Min-entropy preliminaries
	Proofs of claims

