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Abstract

In [3], Jhanwar and Barua presented an improvement of the Boneh-
Gentry-Hamburg (BGH) scheme. In addition to reducing the time
complexity of the algorithm to find a solution of the equation ax2 +
Sy2 ≡ 1 mod n, their scheme reduces the number of equations to be
solved by combining existing solutions. In [2], Susilo et al. extended
the Jhanwar-Barua scheme, reducing more the number of equations
to be solved. This paper presents a security flaw that appears in both
schemes and shows that they are not IND-ID-CPA secure.

1 Intoduction

Identity Based Encryption (IBE) is a type of public key encryption in which
the public key can be any arbitrary string. It has been proposed in 1984
by Adi Shamir [6]. Although the idea was presented a long time ago, the
first IBE scheme was proposed relatively recently, in 2001, when Boneh and
Franklin developed an IBE scheme based on elliptic curves [4]. Soon after,
Clifford Cocks developed another IBE scheme [7], based on Quadratic Resid-
uosity Problem (QRA). However, the Cocks scheme is impractical to use
because it encrypts one bit by 2 log n bits.
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In [1], Boneh, Gentry and Hamburg proposed an IBE scheme (BGH) that
encrypts a bit by multiplying it by a random Jacobi symbol, so the ciphertext
expansion is much smaller than the ciphertext expansion of the Cocks scheme.
However, the time complexity is not as good. In order to encrypt or decrypt
a bit, a solution of the equation ax2 + Sy2 ≡ 1 mod n is needed, where a
represents the hashed identity and S is a quadratic residue modulo n. Two
polynomials, f and g, that satisfies the property that g(s) = 2y + 2 and
f(r) = rx+ 1 has the same Jacobi symbol, for every square root s of S and
every square root r of a, are used: the Jacobi symbol of g(s) is used for
encryption and the Jacobi symbol of f(r) is used for decryption. The main
bottleneck of the BGH scheme is the complexity of the algorithm that finds
a solution of the equation ax2 + Sy2 ≡ 1 mod n.

Jhanwar and Barua proposed in [3] an efficient algorithm for finding such
a solution, together with a modified version of the BGH scheme that uses
that algorithm. The resulting scheme is more time efficient than the BGH
scheme, but the ciphertext expansion is bigger. This is because the algorithm
for finding a solution is probabilistic, so it is not guaranteed that it will
find the same solution on both encryption and decryption of a bit. Also,
their scheme reduces the number of equations to be solved at encryption and
doesn’t need to solve any equation at decryption. However, this introduces
a security flaw, as it will be seen in section 4.

In [2], Susilo et. al presents an improvement of the Jhanwar-Barua
scheme, reducing more the number of equation needed to be solved at en-
cryption. Like the Jhanwar-Barua scheme, their scheme is vulnerable.

2 Definitions

2.1 IBE Scheme

An IBE scheme E consists of four randomized algorithms [3]:

• Setup(λ): takes as input a security parameter λ and returns the sys-
tem public parameters PP and the master secret key msk. The system
public parameters PP are publicly known, and the master secret key
msk is known only to a third party, ”Private Key Generator” (PKG).

• Keygen(PP , msk, id): takes as input the system public parameters
PP , the master secret key msk and an arbitrary identity id ∈ {0, 1}∗
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and returns the private key d associated with the identity id.

• Encrypt(PP , id, m): takes as input the system public parameters
PP , an identity id and a message m ∈ {0, 1}∗ and returns the cipher-
text c, that represents the encryption of the message m.

• Decrypt(PP , c, d): takes as input the system public parameters PP ,
a ciphertext c ∈ {0, 1}∗ and a private key d and returns the decrypted
message m, or ⊥ if the ciphertext is not valid.

2.2 The IND-ID-CPA security model

Boneh and Franklin extended the security notion of indistinguishability against
chosen plaintext attack (IND-CPA) to identity-based encryption schemes [4].
The resulting security model (IND-ID-CPA) is defined as the following game
between a challenger C and a PPT adversary A.

IND-ID-CPA game:

1. The challenger C runs the Setup algorithm with a security parameter
λ. It publishes the public system parameters PP to the adversary A
and keeps the master secret key msk for itself.

2. The adversary performs (adaptively) private key extraction queries for
the identities id1, ..., idk. The challenger runs the Extraction algo-
rithm and sends to the adversary the private keys did1 , ..., didk corre-
sponding to the received identities.

3. The adversary makes one challenge query. It selects two equal length
messages m0,m1 and a public key idCh (that didn’t appeared in the
previous phase) and sends them to the challenger.

4. The challenger picks a random bit b ∈ {0, 1} and sends c = mb as a
challenge to the adversary.

5. The adversary performs more private key extraction queries for the
identities idk+1, ..., idn and receives from the challenger the correspond-
ing private keys didk+1

, ..., didn . The only constraint is that idi (k+ 1 ≤
i ≤ n) is not equal to idCh.

6. Finally, the adversary outputs a guess b′ ∈ {0, 1} for the value of b.
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The advantage of the adversary A against an IBE scheme is defined as the
following function of the security parameter λ:

AdvIND−ID−CPA
IBE,A (λ) = Pr[b′ = b]− 1
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Definition 1 An IBE scheme is IND-ID-CPA secure if AdvIND−ID−CPA
IBE,A (λ)

is a negligible function for all PPT adversaries A.

2.3 Jacobi Symbols and the QR assumption

Let p be an odd prime. For any integer a, the Legendre symbol

(
a

p

)
is

defined as follows:

(
a

p

)
=


0, if a ≡ 0 mod p

1, if a is a quadratic residue mod p

−1, if a is a quadratic non-residue mod p.

Let N = p1p2...pk be the product of k odd primes (not necessarily dis-

tinct). For any integer a, the Jacobi symbol
( a
N

)
is defined as the product

of the Legendre symbols corresponding to the prime factors of N :( a
N

)
=

(
a

p1

)(
a

p2

)
...

(
a

pk

)
.

For a positive integer N , let J(N) be the following set:

J(N) = {a ∈ ZN |
( a
N

)
= 1},

where
( a
N

)
is a Jacobi symbol.

The set of quadratic residues modulo N QR(N) is defined as:

QR(N) = {a ∈ ZN | gcd(a,N) = 1 ∧ x2 ≡ a mod N has a solution}.

Definition 2 Let RSAgen(λ) be a PPT algorithm that generates two equal
size primes p and q. The Quadratic Residuosity (QR) Assumption holds for
RSAgen(λ) if given a tuple (N, V ), where N = pq and V ∈ J(N), there
is no polynomial time algorithm which can determine if V ∈ QR(N) or
V ∈ J(N) \QR(N) with non-negligible probability.
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3 The Jhanwar-Barua Scheme

3.1 Preliminaries

The scheme uses the following probabilistic algorithm for finding a solution
of the equation ax2 +Sy2 ≡ 1 mod N , where S is a quadratic residue modulo
N [3]:

1. Randomly choose t ∈ Z∗N such that a+ St2 ∈ Z∗N .

2. Output x0 = −2st
a+St2

, y0 = a−St2
s(a+St2)

.

In addition to this algorithm, the following product formula is used [3]:

Lemma 1 Let (xi, yi) be a solution to ax2 + Siy
2 ≡ 1 mod N for i = 1, 2.

Then (x3, y3) is a solution to

ax2 + S1S2y
2 ≡ 1 mod N

where x3 = x1+x2

ax1x2+1
and y3 = y1y2

ax1x2+1
.

Also, the scheme uses two functions f(r) = rx + 1 and g(s) = 2sy + 2
that satisfies the property that the Jacobi symbol of f(r) equals the Jacobi
symbol of g(s) for every square root s of S and every square root r of a.

3.2 Structure

The JB scheme is detailed below:

• Setup(λ): Generate two primes, p and q, and let N = pq. Choose a
random element u ∈ J(N) \ QR(N) and a hash function H : ID 7→
J(N). The system public parameters PP are (N, u,H). The master
secret key msk is the factorization of N and a secret key K for a
pseudorandom function FK : ID 7→ {0, 1, 2, 3}.

• Keygen(PP , msk, id): Set R = H(id) ∈ J(N) and w = FK(id) ∈
{0, 1, 2, 3}. Choose a ∈ {0, 1} such that uaR ∈ QR(N). Let {z0, z1, z2, z3}
be the four square roots of uaR ∈ ZN . Outputs the private key
r = zw(= did).
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• Encrypt(PP , id, m): The following algorithm is used to encrypt a
message m ∈ {−1, 1}l :

k ←
√
l, R← H(id) ∈ J(N)

for i ∈ [1, l] do
if i ≤ k then

si ∈ Z∗N , S = s2
i mod N

(xi, yi)← Rx2
i + Siy

2
i ≡ 1 mod N

(x̄i, ȳi)← uRx̄2
i + Siȳ

2
i ≡ 1 mod N

ci ← mi ·
(

2yisi+2
N

)
c̄i ← mi ·

(
2ȳisi+2

N

)
else

(j1, j2)← i = k · j1 + j2

yj1,j2 ←
yj1yj2

Rxj1
xj2

+1
, ȳj1,j2 ←

ȳj1 ȳj2
uRx̄j1

x̄j2
+1

ci ← mi ·
(

2yj1,j2sj1sj2+2

N

)
c̄i ← mi ·

(
2ȳj1,j2sj1sj2+2

N

)
end if
c← [c1, c2, ..., cl], c̄← [c̄1, c̄2, ..., c̄l]
x← [x1, x2, ..., xk], x̄← [x̄1, x̄2, ..., x̄k]

end for

The resulted ciphertext is C ← (c, c̄, x, x̄).

• Decrypt(PP , C, did): To decrypt the ciphertext C using the private
key did, the following algorithm is used:

for i ∈ [1, l] do
if r2 = R then

if i > k then
(j1, j2)← i = k · j1 + j2

xi ←
xj1

+xj2

Rxj1
xj2

+1

end if
mi ← ci ·

(
xir+1
N

)
end if
if r2 = uR then

if i > k then
(j1, j2)← i = k · j1 + j2

x̄i ←
x̄j1

+x̄j2

uRx̄j1
x̄j2

+1
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end if
mi ← c̄i ·

(
x̄ir+1
N

)
end if

end for

Susilo et al. extended the Jhanwar-Barua scheme, reducing the number of
equations needed to be solved. They claim that having the Jacobi symbols(

2yj1sj1+2

N

)
and

(
2yj2sj2+2

N

)
is hard to find the value of

(
2yj1,j2sj1sj2+2

N

)
[2],

saying that Damg̊ard proved that [5]. However, because some values are
publicly known, this is not a hard problem, as it will be seen in the next
section.

4 The security flaw

Because the algorithm used for solving the equations is probabilistic, (xi, ..., xk)
and (x̄i, ..., x̄k) are added to the ciphertext so they are publicly known. Thus,
if R is a quadratic residue modulo N , the following property holds:(

rxj1,j2 + 1

N

)
=

(
rxj1 + 1

N

)(
rxj2 + 1

N

)
(Rxj1xj2 + 1)−1 (1)

Because xj1,j2 is composed we have:

rxj1,j2 + 1 = r(xj1 + xj2)(Rxj1xj2 + 1)−1 + 1.

But

(rxj1 + 1)(rxj2 + 1) = r2xj1xj2 + rxj1 + rxj2
= Rxj1xj2 + 1 + r(xj1 + xj2)

and if we multiply this with (Rxj1xj2 + 1)−1 we obtain

(rxj1 + 1)(rxj2 + 1)(Rxj1xj2 + 1)−1 = r(xj1 + xj2)(Rxj1xj2 + 1)−1 + 1,

so the Jacobi symbol
(

(rxj1
+1)(rxj2

+1)(Rxj1
xj2

+1)−1

N

)
equals the Jacobi symbol(

rxj1,j2
+1

N

)
. xj1 and xj2 are publicly known, so anyone can compute this

Jacobi symbol. This proves the property (1).
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We know that the Jacobi symbol
(

g(s)
N

)
equals the Jacobi symbol

(
f(r)
N

)
,

so
(

2yj1sj1+2

N

)
equals

(
rxj1

+1

N

)
,
(

2yj2sj2+2

N

)
equals

(
rxj2

+1

N

)
and

(
2yj1,j2sj1sj2+2

N

)
equals

(
rxj1,j2

+1

N

)
, so when R is a quadratic residue, we have:(

2yj1,j2sj1sj2 + 2

N

)
=

(
2yj1sj1 + 2

N

)(
2yj2sj2 + 2

N

)
(Rxj1xj2 + 1)−1 (2)

But what happens when R is not a quadratic residue? The property (2)
holds even if R is not a quadratic residue modulo N :

2yj1,j2sj1sj2 + 2 = 2yj1sj1yj2sj2(Rxj1xj2 + 1)−1 + 2

= 2
R− Sj1t

2
j1

sj1(R + Sj1t
2
j1

)
sj1

R− Sj2t
2
j2

sj2(R + Sj2t
2
j2

)
sj2(Rxj1xj2 + 1)−1 + 2

=
2(R− Sj1t

2
j1

)(R− Sj2t
2
j2

)

(R + Sj1t
2
j1

)(R + Sj2t
2
j2

)(Rxj1xj2 + 1)
+ 2

=
2(R− Sj1t

2
j1

)(R− Sj2t
2
j2

)

(R + Sj1t
2
j1

)(R + Sj2t
2
j2

)(Rxj1xj2 + 1)
+

+
2(R + Sj1t

2
j1

)(R + Sj2t
2
j2

)(R
−2sj1 tj1
R+Sj1

t2j1

−2sj2 tj2
R+Sj2

t2j2
+ 1)

(R + Sj1t
2
j1

)(R + Sj2t
2
j2

)(Rxj1xj2 + 1)

=
2(R− Sj1t

2
j1

)(R− Sj2t
2
j2

)

(R + Sj1t
2
j1

)(R + Sj2t
2
j2

)(Rxj1xj2 + 1)
+

+
2(R + Sj1t

2
j1

)(R + Sj2t
2
j2

)
4Rsj1 tj1sj2 tj2+(R+Sj1

t2j1
)(R+Sj2

t2j2
)

(R+Sj1
t2j1

)(R+Sj2
t2j2

)

(R + Sj1t
2
j1

)(R + Sj2t
2
j2

)(Rxj1xj2 + 1)

=
2(R− Sj1t

2
j1

)(R− Sj2t
2
j2

)

(R + Sj1t
2
j1

)(R + Sj2t
2
j2

)(Rxj1xj2 + 1)
+

+
8Rsj1tj1sj2tj2 + 2(R + Sj1t

2
j1

)(R + Sj2t
2
j2

)

(R + Sj1t
2
j1

)(R + Sj2t
2
j2

)(Rxj1xj2 + 1)

=
2R2 − 2R(Sj1t

2
j1

+ Sj2t
2
j2

) + 2Sj1Sj2t
2
j1
t2j2

(R + Sj1t
2
j1

)(R + Sj2t
2
j2

)(Rxj1xj2 + 1)
+

+
8Rsj1tj1sj2tj2 + 2R2 + 2R(Sj1t

2
j1

+ Sj2t
2
j2

) + 2Sj1Sj2t
2
j1
t2j2

(R + Sj1t
2
j1

)(R + Sj2t
2
j2

)(Rxj1xj2 + 1)
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=
8Rsj1tj1sj2tj2 + 4R2 + 4Sj1Sj2t

2
j1
t2j2

(R + Sj1t
2
j1

)(R + Sj2t
2
j2

)(Rxj1xj2 + 1)

=
4(R2 + 2Rsj1sj2tj1tj2 + Sj1Sj2t

2
j1
t2j2)

(R + Sj1t
2
j1

)(R + Sj2t
2
j2

)(Rxj1xj2 + 1)

=
4(R + sj1sj2tj1tj2)

2

(R + Sj1t
2
j1

)(R + Sj2t
2
j2

)(Rxj1xj2 + 1)
,

and

(2yj1sj1 + 2)(2yj2sj2 + 2) =

(
2(R− Sj1t

2
j1

)

sj1(R + Sj1t
2
j1

)
sj1 + 2

)(
2(R− Sj2t

2
j2

)

sj2(R + Sj2t
2
j2

)
sj2 + 2

)
=

16R2

(R + Sj1t
2
j1

)(R + Sj2t
2
j2

)
,

so the Jacobi symbol
(

(2yj1sj1+2)(2yj2sj2+2)(Rxj1
xj2

+1)−1

N

)
equals the Jacobi sym-

bol
(

2yj1,j2sj1sj2+2

N

)
even if R is not a residue modulo N . This proves that

Jhanwar-Barua scheme is not IND-ID-CPA secure. An adversary chooses
two messages m1, m2 with m1j1

= m2j1
, m1j2

= m2j2
and m1j1,j2

6= m2j1,j2
,

and sends them to the challenger. The challenger randomly picks one, en-
crypts it and sends it back to the adversary. The adversary can say with
non-negligible probability which message has been encrypted: he obtain the

Jacobi symbols
(

g(sj1 )

N

)
,
(

g(sj2 )

N

)
used for encrypting the bits j1, j2 and com-

putes
(

g(sj1sj2 )

N

)
=
(

g(sj1 )

N

)(
g(sj2 )

N

)
(Rxj1xj2 + 1)−1, so he can decrypt the ith

bit, i = kj1 + j2. Because m1i 6= m2i the adversary can say which message
has been encrypted. It doesn’t matter which component of the ciphertext he
chooses for calculating this because the property (2) holds in both cases. This
proves that the Jhanwar-Barua scheme is not IND-ID-CPA secure. Also, the
scheme proposed by Susilo et al. has the same security flaw.

5 Conclusion

This paper presents a security flaw that affects the Jhanwar-Barua scheme
and it’s extension proposed in [2]. Although Susilo et al. pointed that
Jhanwar-Barua scheme is not IND-ID-CPA secure, their demonstration is
based on the fact that some bits are encrypted using the same solution.
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However, even if their scheme solves that problem, the security flaw pre-
sented in this paper remains.
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