
The Curse of Class Imbalance and Conflicting
Metrics with Machine Learning for Side-channel

Evaluations

Stjepan Picek1,2, Annelie Heuser3, Alan Jovic4,
Shivam Bhasin5, and Francesco Regazzoni6

1 Delft University of Technology, Delft, The Netherlands
2 LAGA, Department of Mathematics, University of Paris 8 (and Paris 13 and

CNRS), France
3 Univ Rennes, Inria, CNRS, IRISA, France

4 University of Zagreb Faculty of Electrical Engineering and Computing, Croatia
5 Physical Analysis and Cryptographic Engineering, Temasek Laboratories at

Nanyang Technological University, Singapore
6 University of Lugano, Switzerland

S.Picek@tudelft.nl,annelie.heuser@irisa.fr, Alan.Jovic@fer.hr,

sbhasin@ntu.edu.sg, regazzoni@alari.ch

Abstract. We concentrate on machine learning techniques used for pro-
filed side-channel analysis in the presence of imbalanced data. Such sce-
narios are realistic and often occurring, for instance in the Hamming
weight or Hamming distance leakage models. In order to deal with the
imbalanced data, we use various balancing techniques and we show that
most of them help in mounting successful attacks when the data is highly
imbalanced. Especially, the results with the SMOTE technique are en-
couraging, since we observe some scenarios where it reduces the number
of necessary measurements more than 8 times. Next, we provide exten-
sive results on comparison of machine learning and side-channel metrics,
where we show that machine learning metrics (and especially accuracy as
the most often used one) can be extremely deceptive. This finding opens
a need to revisit the previous works and their results in order to properly
assess the performance of machine learning in side-channel analysis.

Keywords: Profiled side-channel attacks, Imbalanced datasets, Synthetic ex-
amples, SMOTE, Metrics

1 Introduction

Side-channel Attacks (SCA) is a serious threat, which exploits weaknesses in the
physical implementation of cryptographic algorithms [1]. The weakness stems
from basic device physics of underlying computing elements i.e., CMOS cells,
which makes it hard to eliminate such threats. SCA exploits any unintentional
leakage observed in physical channels like timing, power dissipation, electromag-
netic (EM) radiation, etc. For instance, a data transition from 0 → 1 or 1 → 0

2

in a CMOS cell causes current flow leading to power consumption. This can be
easily distinguished from the case when no transition occurs (0→ 0 or 1→ 1).
When connected with sensitive data, these differences can be exploited by an
adversary using statistical means.

Template attack is recognized as the most powerful SCA, at least from an
information theoretic point of view [2]. There, the attacker first profiles the be-
havior of a device similar to the targeted one, followed by exploitation of the
profiled information to finalize the attack. In practice, there are many scenar-
ios where machine learning (ML) techniques are outperforming template attack
(for instance, when the profiling set is small). Thus, several works explored the
use of machine learning (and more recently, deep learning) in the context of
SCA [3,4,5,6,7,8,9,10,11].

In order to run SCA, one may select a leakage model where common exam-
ples are the intermediate value, the Hamming weight, and the Hamming distance
models. As an example, let us consider a generator returning random numbers
between 0 and 255. If we take output values as class labels, we have uniformly
distributed data. Simpler models would be the Hamming weight (HW) (and the
Hamming distance (HD)), which are commonly used in power analysis. Unfor-
tunately, with such models, we obtain severely imbalanced data. There, some
classes appear in 1/256 cases (when the HW/HD equals 0 and 8), while one
class appears in 70/256 cases (when the HW equals 4). This problem, in reality,
is much more complex due to the presence of noise. In this case, previous works
demonstrate that machine learning techniques often classify all measurements
as the majority class (Hamming weight 4), see e.g., [12]. Then, accuracy will
reach around 27% on average, but such a classifier will not provide any relevant
information in the context of SCA to recover the secret key. Such issues with
imbalanced data are well-known in the data science community and there ex-
ists no definitive solution to this problem. The solutions that are available are
purely empirical, so it is not possible to give proper theoretical results on the
best approaches to deal with imbalanced data.

Since imbalanced data can introduce severe problems in the classification
process, the question is how to assess the performance of a classifier, or even
how to compare the performance of several classifiers. While ML uses metrics
like accuracy, precision, or recall as indicators of performance, SCA has specific
metrics like guessing entropy and success rate that are applied over a set of
experiments [13]. As we show in this paper, in some scenarios, the metrics from
ML and SCA are sufficiently similar. Then, it is possible to estimate the success
capabilities of an SCA already on the basis of ML metrics. In other scenarios,
ML metrics do not provide relevant information to side-channel attackers.

In this paper, we concentrate on the problem of imbalanced datasets and how
such data could be still used in a successful SCA. We examine the influence of
the imbalanced data over several domain-relevant datasets and then we balance
them by using either class sensitive learners or data sampling techniques. To
the best of our knowledge, the performance of various oversampling techniques
has not yet been studied in the SCA context. To assess the performance of such

3

methods, we use both standard ML and SCA metrics. Our results show that
data sampling techniques are a very powerful option to fight against imbalanced
data and that such techniques, especially SMOTE, enables us to conduct suc-
cessful SCAs and to significantly reduce the number of measurements needed.
We emphasize that although we discuss machine learning, the same issues with
the imbalanced data and metrics also remain in deep learning. For instance,
Cagli et al. report problems coming from imbalanced data when using convolu-
tional neural networks [11]. They use accuracy as the performance metric and
recognize some limitations of it, but do not investigate it in more depth.

Our main contributions are:
1. We show the benefits of data sampling techniques to fight against imbalanced

data in the context of SCA.
2. We provide a detailed analysis of various machine learning metrics for as-

sessing the performance of classifiers and we show that ML metrics should
not be used to properly assess SCA performance.

3. The data balancing techniques we use, especially SMOTE, enable us to reach
excellent results, where we reduce the number of traces needed for a success-
ful attack up to 8 times.

4. We investigate the use of different machine learning metrics already in the
training process in order to mitigate the effects of imbalanced data.

5. We present a detailed discussion on accuracy and SCA metrics to recognize
the limitations of one metric for assessing the performance with another
metric. As far as we are aware of, such an analysis has not been done before.

6. We extend the present study to include a deep learning method, like CNN,
to show that deep learning equally suffers from the curse of imbalanced data.

2 Background

2.1 Profiled SCA

Profiling SCA performs the worst-case security analysis since it assumes a strong
adversary which has access to a clone device. The adversary obtains side-channel
measurements from a clone device with known inputs, including the secret key.
From this data set, also known as the profiling set, the adversary completely
characterizes the relevant leakages. Characterized leakages are typically obtained
for the secret key dependent intermediate values, that are processed on the
device and result in physical leakages. A leakage model or profile maps the
target intermediate values to the leakage measurements. These models can then
be used in the attacking phase on the target device to predict which intermediate
values are processed, thus revealing information about the secret key.

Formally, a small part of secret key k∗ is processed with t (i.e., a part of)
input plaintext or output ciphertext of the cryptographic algorithm. In the case
of AES, k∗ and t are bytes to limit the attack complexity. The mapping y maps
the plaintext or the ciphertext t ∈ T and the key k∗ ∈ K to a value that

4

is assumed to relate to the deterministic part of the measured leakage x. For
example,

y(t, k∗) = HW (Sbox[t⊕ k∗]), (1)

where Sbox[·] is substitution look-up table and HW the Hamming weight. We
denote y(t, k∗) as the label which is coherent with the terminology used in the
machine learning community.

In the rest of the paper, we are particularly interested in multivariate leak-
age x = x1, . . . , xD, where D is the number of time samples, i.e., features (or
attributes). The adversary first profiles the clone device with known keys and
uses obtained profiles for the attack. In particular, the attack functions in two
phases:

– profiling phase: N traces xp1 , . . . ,xpN , plaintext/ciphertext tp1 , . . . , tpN and
the secret key k∗p, such that the attacker can calculate the labels y(tp1 , k

∗
p), . . . , y(tpN , k

∗
p).

– attacking phase: Q traces xa1 , . . . ,xaQ (independent from the profiling traces),
plaintext/ciphertext ta1 , . . . , taQ .

In the attack phase, the goal is to make predictions about the occurring labels

y(ta1 , k
∗
a), . . . , y(taN , k

∗
a),

where k∗a is the secret unknown key on the attacking device.
One of the first and most commonly used profiling SCA methods is tem-

plate attack (TA) [2]. The attack uses Bayes theorem, dealing with multivariate
probability distributions as the leakage over consecutive time samples is not
independent.

2.2 The Hamming Weight and Distance Models

The preference for HW/HD model is related to the underlying device. As stated
earlier, observing power consumption allows distinguishing a transition from no
transition. Thus, when a new data is written into memory (or flip-flop), the total
power consumption is directly proportional to the number of bit transitions. For
example, this happens when a new data is written over old data (HD model)
in flip-flops on embedded devices, or on a precharged data bus (HW model) in
a microcontroller. Although the power consumption occurs both in logic and
memory elements, the power consumption of memory is synchronized with the
clock and is stronger than in logic. This makes exploitation easier due to high
SNR. While weighted HW/HD model was shown to be better [14], it requires
strict profiling, which varies from device to device. Contrarily, HD/HW model
works on a range of devices, when not many details of the underlying implemen-
tations are known to provide a good starting point for evaluations. The leakage
model can then be improved faster after a few hints on the implementations are
derived.

In Eq. (1) y(t, k∗) for i.i.d. values for t, follows a binomial distribution B(n, p)
with p = 0.5 and n = 8 in the case of AES. Accordingly, the HW class values
are imbalanced. Table 1 gives their occurrences.

5

Table 1: Class taxonomy

HW value 0 1 2 3 4 5 6 7 8
Occurrences 1 8 28 56 70 56 28 8 1

Obviously, observing an HW value of 4 is more likely than any other value.
This also has an influence on the amount of information each observed HW class
value gives to an attacker to recover the secret key k∗a. For example, knowing
t and observing an HW of 4 gives an attacker 70 possible secret keys, whereas
observing an HW of 0 or 8 leads to only one possible secret key. Accordingly, the
occurrence of HW classes close to 4 is more likely but brings less information
about the secret key.

To avoid such imbalance, working with intermediate values rather than its
HW is an alternative. However, the computational complexity increases when
dealing with a huge number of intermediate classes (256 vs 9). With only 9
classes, HW is more resistant to noise as compared to 256 classes, which means
less misclassification. The impact is even higher when dealing with 16-bit (65,536
vs 17), 32-bit (4,294,967,296 vs 33) or wider intermediate values. The disadvan-
tages of the HW model, apart from imbalance, are less information on the secret
key as multiple intermediate value classes map to the same HW class. HW model
can sometimes be also misleading when dealing with countermeasures like dual-
rail logic [15].

2.3 Attack Datasets

We use three different datasets for our experiments. The underlying crypto-
graphic algorithm remains AES. As we are dealing with the classification prob-
lem with different machine learning algorithms, we are more interested in the
first order leakage rather than higher order variants [16]. Consequently, coun-
termeasures like masking remain out of scope. To test across various settings,
we target 1) high-SNR unprotected implementation on a smartcard, 2) low-SNR
implementation on a smartcard protected with the randomized delay counter-
measure, and 3) low-SNR unprotected implementation on FPGA.

DPAcontest v4 DPAcontest v4 provides measurements of a masked AES soft-
ware implementation [17]. As we are interested in an unmasked implementation,
we consider the mask to be known and thus can easily turn it into an unpro-
tected scenario. It is a software implementation with the most leaking operation
not being the register writing but the processing of the S-box operation and we
attack the first round. Accordingly, the leakage model changes to

y(tb1 , k
∗) = HW (Sbox[tb1 ⊕ k∗]⊕ m︸︷︷︸

known mask

), (2)

where tb1 is a plaintext byte and we choose b1 = 1. Compared to the mea-
surements from AES HD, the SNR is much higher with a maximum value of

6

5.8577. The measurements consist of 4 000 features around the S-box part of the
algorithm execution.

Random Delay Countermeasure Dataset (AES RD) Next, we use a pro-
tected (i.e., with a countermeasure) software implementation of AES. The target
smartcard is an 8-bit Atmel AVR microcontroller. The protection uses random
delay countermeasure as described by Coron and Kizhvatov7 [18]. Adding ran-
dom delays to the normal operation of a cryptographic algorithm has an effect
on the misalignment of important features, which in turns makes the attack
more difficult. As a result, the overall SNR is reduced. We mounted our attacks
in the Hamming weight power consumption model against the first AES key
byte, targeting the first S-box operation. The dataset consists of 50 000 traces of
3 500 features each. For this dataset, the SNR has a maximum value of 0.0556.
Recently, this countermeasure was shown to be prone to deep learning based
side-channel [11]. However, since it is a quite often used countermeasure in com-
mercial products, while not modifying the leakage order (like masking), we use
it as a target case study. We additionally keep the misalignment countering fea-
tures of deep learning out of scope in order to study the impact of imbalanced
classes only. In the rest of the paper, we denote this dataset as the AES RD.

Unprotected AES-128 on FPGA (AES HD) Finally, we target an un-
protected implementation of AES-128, which was written in VHDL in a round
based architecture that takes 11 clock cycles for each encryption. The AES-128
core is wrapped around by a UART module to enable external communication.
It is designed to allow accelerated measurements to avoid any DC shift due to
environmental variation over prolonged measurements. The total area footprint
of the design contains 1 850 LUT and 742 flip-flops.

The design was implemented on Xilinx Virtex-5 FPGA of a SASEBO GII
evaluation board. Side-channel traces were measured using a high sensitivity
near-field EM probe, placed over a decoupling capacitor on the power line. Mea-
surements were sampled on the Teledyne LeCroy Waverunner 610zi oscilloscope8.
A suitable and commonly used (HD) leakage model when attacking the last
round of an unprotected hardware implementation is the register writing in the
last round [17], i.e.,

y(tb1 , tb2 , k
∗) = HW (Sbox−1[tb1 ⊕ k∗]︸ ︷︷ ︸

previous register value

⊕ tb2︸︷︷︸
ciphertext byte

), (3)

where tb1 and tb2 are two ciphertext bytes, and the relation between b1 and b2 is
given through the inverse ShiftRows operation of AES. We choose b1 = 12 result-
ing in b2 = 8 as it is one of the easiest bytes to attack. These measurements are

7 Trace set publicly available at https://github.com/ikizhvatov/randomdelays-traces
8 Trace set publicly available at https://github.com/AESHD/AES HD Dataset. Note

we provide a full dataset consisting of 1 250 features but here we use only the 50
most important features that are selected with Pearson correlation.

7

relatively noisy and the resulting model-based SNR (signal-to-noise ratio), i.e.,
var(signal)
var(noise) = var(y(t,k∗))

var(x−y(t,k∗)) , with a maximum value of 0.0096. In total, 500 000

traces were captured corresponding to 500 000 randomly generated plaintexts,
each trace with 1 250 features. As this implementation leaks in HD model, we
denote this implementation as AES HD.

2.4 Performance Metrics

As machine learning performance metrics, we consider total classification accu-
racy (ACC), Matthew’s correlation coefficient (MCC), Cohen’s kappa score (κ),
precision, recall, F1 metric, and G-mean. To evaluate a side-channel attack, we
use two common SCA metrics: success rate (SR) and guessing entropy (GE) [13].

Machine Learning Metrics MCC was first introduced in biochemistry to as-
sess the performance of protein secondary structure prediction [19]. It can be
seen as a discretization of the Pearson correlation for binary variables. Cohen’s
kappa is a coefficient developed to measure agreement among observers [20]. It
shows the observed agreement normalized to the agreement by chance. Precision
(also called positive predictive value) is considered to be a measure of classifier’s
exactness, as it quantifies true positive instances among the all deemed positive
instances. Recall (also sensitivity) is considered to be a measure of classifier’s
completeness, as it quantifies true positive instances that are found among posi-
tive instances. F1 is a harmonic mean value of precision and recall, while G-mean
is geometric mean of recall (also called sensitivity) and negative accuracy (also
called specificity). MCC, κ, precision, recall, F1, and G-mean are all well estab-
lished in measuring classification performance on imbalanced datasets and are
great improvements over accuracy on such datasets [21,22,23]. The equations
used to obtain the evaluation metrics are given here:

ACC =
TP + TN

TP + TN + FP + FN
. (4)

PRE =
TP

TP + FP
, REC =

TP

TP + FN
. (5)

F1 = 2 · PRE ·REC
PRE +REC

=
2TP

2TP + FP + FN
. (6)

Gmean =

√
TP

TP + FN
× TN

TN + FP
. (7)

κ =
PObs − PChance

1− PChance
. (8)

8

MCC =
TP × TN − FP × FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
. (9)

TP refers to true positive (correctly classified positive), TN to true negative
(correctly classified negative), FP to false positive (falsely classified positive),
and FN to false negative (falsely classified negative) instances. TP, TN, FP and
FN are well-defined for hypothesis testing and binary classification problems.
In the multiclass classification, they are defined in one class–vs–all other classes
manner, and are calculated from the confusion matrix. The calculation of TP,
TN, FP, and FN instances for an actual class 0 in a three-class classification
problem confusion matrix example is shown in Table 2. Note that the evaluation
metrics in Eqs. (4)- (9) consider mean values of TP, TN, FP, and FN taken from
all the individual classes included in the multiclass problem, unless otherwise
stated.

Table 2: Calculation of TP , TN , FP , and FN instances for actual class 0.
Predicted (%) Actual

0 1 2

12.198.124.06 0
1.6216.269.75 1
2.433.2542.27 2

PObs is the percentage of observed agreement among observers, and PChance
is the agreement expected by pure chance. To efficiently visualize the perfor-
mance of an algorithm, we can use the confusion matrix, where, in each row,
we represent the instances in an actual class, while each column represents the
instances of a predicted class.

Success Rate and Guessing Entropy Most of the time, in side-channel
analysis an adversary in not only interested to predict the labels y(·, k∗a) in the
attacking phase, but aims at revealing the secret key k∗a. Common measures are
the success rate (SR) and the guessing entropy (GE) of a side-channel attack.
In particular, let us assume, given Q amount of samples in the attacking phase,
an attack outputs a key guessing vector g = [g1, g2, . . . , g|K|] in decreasing order
of probability with |K| being the size of the keyspace. So, g1 is the most likely
and g|K| the least likely key candidate.

The success rate is defined as the average empirical probability that g1 is
equal to the secret key k∗a. The guessing entropy is the average position of k∗a in
g. As SCA metrics, besides plotting GE and SR, we report the number of traces
needed to reach a success rate SR of 0.9 as well as a guessing entropy GE of 10.
We use ’–’ in case these thresholds are not reached within the test set.

Both SR and GE can be applied to a variety of SCA distinguishers to evaluate
an attack. These distinguishers may include Pearson’s correlation [24], mutual

9

information [25], maximum likelihood (for templates or linear regression), etc.
Evaluation labs often resort to these distinguishers and metrics for common
criteria evaluations of security critical products. There is much space for adopting
ML-based distinguishers in such evaluations.

FIPS standard is based on a different methodology called conformance-style
testing. The idea here is to detect the presence of leakage in SCA measurement
rather than exploiting it for key recovery. Test vector leakage assessment [26] is
a popular choice for conformance based testing, which uses t-test to detect the
presence of side-channel leakage. Few other works look into alternate statistical
tools for leakage assessment [27]. The use of ML in leakage assessment is still an
open question.

2.5 Classifiers

We use radial kernel support vector machines (SVM) and Random Forest (RF).
These well-known classifiers were used since they represent the usual classifiers
of choice if highly accurate classification is sought. It is expected that they will
perform among the best classifiers on the variety of datasets [28]. Although they
may perform reasonably well even for moderately imbalanced data sets, it was
already shown that performance of the classifiers on highly imbalanced data is
expected to be reduced [29,30].

Radial Kernel Support Vector Machines Radial Kernel Support Vector
Machines (denoted SVM in the rest of this paper) is a kernel based machine
learning family of methods that are used to accurately classify both linearly
separable and linearly inseparable data. The idea for linearly inseparable data
is to transform them to a higher dimensional space using a kernel function,
wherein the data can usually be classified with higher accuracy. Radial kernel
based SVM that is used here has two significant tuning parameters: the cost of
the margin C and the kernel parameter γ. The scikit-learn implementation we use
considers libsvm’s C-SVC classifier that implements SMO-type algorithm based
on [31]. The multiclass support is handled according to a one-vs-one scheme.
The time complexity for SVM with the radial kernel is O

(
D · N3

)
, where D is

the number of features and N is the number of instances. We experiment with
C = [0.001, 0.01, 0.1, 1] and γ = [0.001, 0.01, 0.1, 1] in the tuning phase.

Random Forest Random Forest (RF) is a well-known ensemble decision tree
learner [32]. Decision trees choose their splitting attributes from a random sub-
set of k attributes at each internal node. The best split is taken among these
randomly chosen attributes and the trees are built without pruning, RF is a
parametric algorithm with respect to the number of trees in the forest. RF is a
stochastic algorithm because of its two sources of randomness: bootstrap sam-
pling and attribute selection at node splitting. Learning time complexity for RF
is approximately O

(
I · k ·NlogN

)
. We use I = [10, 50, 100, 200, 500, 1000] trees

in the tuning phase, with no limit to the tree size.

10

3 Imbalanced Data and How to Handle It

Imbalanced data are a phenomenon often occurring in the real-world application
where the distribution of classes is not balanced, i.e., some classes appear much
more frequently than the other ones. In such situations, machine learning clas-
sification algorithms (e.g., decision trees, neural networks, classification rules,
support vector machines, etc.) have difficulties since they will be biased towards
the majority class. The reason is that canonical machine learning algorithms as-
sume the number of measurements for each class to be approximately the same
and are derived optimizing accuracy. Usually, within an imbalanced setting, we
consider cases where the ratio between the majority and minority classes goes
between 1 : 4 and 1 : 100. When the imbalancedness is even more pronounced, we
talk about extremely imbalanced data [33]. By referring to Table 1, we see that
our HW scenario belongs to imbalanced scenarios, but approaching extremely
imbalanced scenarios.

3.1 Handling Imbalanced Data

There are essentially two main approaches to improve the classification results
by avoiding model overfitting to majority class in imbalanced data setting:
1. Data-level methods that modify the measurements by balancing distribu-

tions (which falls under the term data augmentation).
2. Algorithm-level methods that modify classifiers to remove (or reduce) the

bias towards majority classes.
Both of the approaches are performed in the data preprocessing phase, indepen-
dently of the classifier that is used later for building the model. We consider typ-
ically used methods in machine learning community for both approaches. Aside
from the methods that we consider here, there are also other approaches to help
with imbalanced datasets, including those based on loss function maximization
in cost-sensitive learning, classifiers adaptations (e.g., boosting SVMs) [34], or
active learning [35]. For the purpose of introducing efficient imbalance solving
methods in SCA, we focus on the well-known and successful methods for han-
dling imbalanced data, which are described in the following paragraphs.

3.2 Cost-Sensitive Learning by Class Weight Balancing

The importance of a class is equal to its weight, which may be determined as the
combined weight of all the instances belonging to that class. Balancing the classes
prior to classification can be made by assigning different weights to instances of
different classes (so-called dataspace weighting) [23], so that the classes have the
same total weight. The total sum of weights across all instances in the dataset is
usually maintained, which means that the new instances are not introduced and
that the weights of the existing instances are rebalanced so that it counteracts
the effect of numbers of instances in each class in the original dataset. Thus, for
example, a class A, having 2 times the number of instances as class B, would

11

have all its instances’ weights divided by 2, while class B would have all its
instances multiplied by 2. To calculate the class weights, we use the expression:

class weighti =
#samples

#classes ∗#samplesi
, (10)

where #samples denotes the number of measurements in a dataset, #classes
the number of classes, and #samplesi denotes the number of measurements
belonging to the class i.

3.3 Data Resampling Techniques

Data resampling techniques usually belong in two major categories: undersam-
pling and oversampling. In undersampling, the number of instances for a ma-
jority class is reduced, so that it becomes the same or similar to the minority
class. In oversampling, the number of instances in the minority class is increased
in order to become equal or similar to the majority class. In imbalanced multi-
class setting, undersampling reduces the number of instances in all classes except
the one with the smallest number of instances, and oversampling increases the
number of instances of all classes except the one with the highest number of
instances. Oversampling may lead to overfitting when samples from the minor-
ity class are repeated and thus synthetic samples (synthetic oversampling) may
be used to prevent it [36]. Here, overfitting means that the machine learning
algorithm adapts to the training set too well and thus loses the ability to gener-
alize to another dataset (e.g., test set). A simple way to identify overfitting is to
compare the results on the training and testing sets: if the training set accuracy
is much higher than the test set accuracy, then the algorithm overfitted.

Random Undersampling Random undersampling undersamples all classes
except the least populated one (here, HW 0 or HW 8). This is a very sim-
ple technique to balance the data but one that can suffer from two important
drawbacks. The first one is that we must significantly reduce the number of
measurements in other classes. For instance, on average we need to reduce the
measurements belonging to HW 4 for 70 times or measurements belonging to
classes HW 3 and HW 5 56 times. Although a common assumption is that the
profiling phase is unbounded, the ratio of acquired measurements vs the num-
ber of actually used measurements is extremely unfavorable from the attacker’s
perspective. The second reason is that since we need to remove measurements,
we are in danger of removing extremely important information (measurements),
which would make the loss of information even more significant than suggested
by purely considering the number of removed measurements.

Random Oversampling with Replacement Random oversampling with re-
placement oversamples the minority class by generating instances randomly se-
lected from the initial set of minority class instances, with replacement. Hence,

12

an instance from a minority class is usually selected multiple times in the final
prepared dataset, although there is a possibility that some instances may not
be selected at all. All minority classes are oversampled in order to reach the
number of instances equal to the highest majority class. Interestingly, this sim-
ple technique has previously been found comparable to some more sophisticated
resampling techniques [37].

Synthetic Minority Oversampling Technique The second method is SMOTE,
a well-known resampling method that oversamples by generating synthetic mi-
nority class instances [36]. This is done by taking each minority class instance
and introducing synthetic instances along the line segments joining any/all of the
k minority class’ nearest neighbors (using Euclidean distance). It is reported that
the k parameter works best for k = 5 [36]. The user may specify the amount of
oversampling for each class, or else, the oversampling is performed in such a way
that all minority classes reach the number of instances in the (highest) majority
class.

Cagli et al. proposed a custom data augmentation (DA) technique to fight
overfitting, where augmented traces are generated from the original traces by
applying a uniform (random) shift. The augmented traces are added to all the
classes. In this setting, SMOTE can be considered as a general case of the DA
proposed in [11]. SMOTE not only adds synthetic examples with random shift
but it also applies other transformations along with the goal of balancing the
classes.

Synthetic Minority Oversampling Technique with Edited Nearest Neigh-
bor SMOTE + ENN [37] combines oversampling used by SMOTE and data
cleaning by Edited Nearest Neighbor (ENN) method, originally proposed by
Wilson [38]. ENN cleaning method works by removing from the dataset any
instance whose class differs from the classes of at least two of its three nearest
neighbors. In this way, many noisy instances are removed from both the ma-
jority and minority classes. By first applying SMOTE oversampling on all but
the most numerous class, thus leveling the number of instances per class, and
then applying ENN, noisy instances from all the classes are removed so that the
dataset tends to have more defined class clusters of instances. Note that this
type of cleaning may again lead to some class imbalance, depending on the data.

4 ML metrics vs SCA metrics

Most previous works on machine learning techniques for SCA used ML evaluation
metrics to tune (and even compare) their performances. However, it has been
noted already (e.g. [3]) that ML metrics may not coincide with SCA metrics. In
order to better understand their diversities, we formally discuss and highlight
two differences between accuracy and SR/GE. The first difference is present
regardless of the imbalanced data problem and applies in general. We start by
detailing the empirical computations of accuracy, SR, and GE in practice.

13

4.1 Empirical Computation of Accuracy and SR/GE

Let us denote the class labels in the attacking phase as

ya1 , . . . , yaQ = y(ta1 , k
∗
a), . . . , y(taQ , k

∗
a), (11)

with y ∈ {c1, . . . , cC} with C being the number of classes. For example, when
considering the HW/HD over a byte, we have C = 9 with {c1, . . . , c9} =
{0, . . . , 8}. We denote the vector of output probabilities of a classifier for the
ith measurement sample as

pi = pi,c1 , . . . , pi,cC , (12)

where i = 1, . . . , Q. For each sample i in the test set, the classifier predicts a
class label ỹai corresponding to the maximal output probability in pi, i.e.,

ỹai = arg max
{c1,...,cC}

pi. (13)

The accuracy is then computed as

1

Q

∑
i

1ỹai=yai (14)

with 1 being the indicator function. Accordingly, accuracy only takes into ac-
count the most likely label predictions, without their exact values of probabilities
(see Eq. (13)) and predictions over i are considered independently (see Eq. (14)).

Contrarily, GE and SR are computed regarding the secret key k∗a and output
probability values are computed over a set of i measurements. In particular, for
a given plaintext tai let us denote the set of keys corresponding to the class ci
through y(tai , k) = ci as

Kci;tai
= {k1, . . . , kδci}, (15)

where δci is the amount of keys corresponding to one class ci. For example,
for y(tai , k) = HW (Sbox[tai ⊕ k]) we have δci =

(
ci
8

)
. Now, for each class ci the

probability pi,k of each key k in Kci;tai
is set to pi,ci . Given Q amount of samples

in the test set and uniformly chosen plaintexts t, the log-likelihood for each k is
calculated as

log(pQk) =

Q∑
i=1

log(pi,k). (16)

A classifier now decides for the key k̃Q with the maximum log-likelihood, i.e.,

k̃Q = arg max
k

log(pQk). (17)

14

The SR is then computed over an amount of E experiments as

1

E

E∑
e=1

1k̃Q=k∗a
. (18)

Note that, normally, for each experiment e, an independent and uniformly dis-
tributed set of plaintexts and a new secret key ka is chosen. Taking pQk in Eq. (16)
and sorting it in the descending order of likelihood, the GE over E experiments
is the average position of ka in the sorted vector.

4.2 Label Prediction vs Fixed Secret Key Prediction

The first difference between accuracy and SR/GE is that, for accuracy, each
label prediction in the test set is considered independently, whereas SR/GE is
computed regarding a fixed secret key. More precisely, comparing Eq. (14) and
Eq. (18), one can see that accuracy is measured regarding class labels y averaged
over Q amount of samples, whereas SR (and GE) is measured with respect to
the secret key ka accumulated over Q amount of samples and averaged over E
experiments. Moreover, SR/GE are taking into account the exact value of the
output probability of each class (see Eq. (16)), whereas accuracy only considers
which class corresponds to the maximal output probability (see Eq. (13)).

Based on these differences, we can derive that a low accuracy may not indicate
that the SR is reaching the threshold value of 90% using a higher amount of traces
(or similarly the GE). Let us consider a toy example with 3 classes c1, c2, c3 with
ka = 2 for Q = 3 and

p1 = {0.4, 0.5, 0.1}, p2 = {0.3, 0.4, 0.3}, p3 = {0.1, 0.4, 0.5}, and (19)

y1 = c1, y2 = c3, y3 = c2. (20)

We consider the simplified case that each class label corresponds to only one key,
i.e., Kci = ki, and E = 1. According to Eq. (19) and (20), the accuracy is 0%,
but the SR will reach 100% for ≥ 1 sample(s), as

p1k=1 = 0.4, p2k=1 = 0.7, p3k=1 = 0.8, (21)

p1k=2 = 0.5, p2k=2 = 0.9, p3k=2 = 1.3, (22)

p1k=3 = 0.1, p2k=3 = 0.4, p3k=3 = 0.9. (23)

Still, the opposite conclusion might hold: A high accuracy may indicate that
the SR/GE is reaching the threshold value of 90% using a lower amount of
traces. Note that, the differences between accuracy and SR/GE derived in this
subsection are not based on the imbalancedness of the class labels, as also our
toy example shows, but are general in nature.

4.3 Global Accuracy vs Class Accuracies

When considering the case of imbalanced classes, as e.g., y(tai , ka) = HW (Sbox[tai⊕
ka]), the amount of information in respect to the secret key ka is varying de-
pending on the observed class y(tai , k) (see δci in Eq. (15) or the explanation in

15

Subsection 2.2). Accordingly, accurately predicting the classes corresponding to
a smaller δci may improve SR/GE more than accurately predicting classes with
a higher δci . Therefore, the class accuracies corresponding to smaller δci may be
more relevant than the class accuracies for higher δci or the global accuracy (i.e.,
averaged over all classes). Note that this observation may bring a new direction
for future work on how to derive (or tune) classification techniques which are
more accurate for classes contributing more information to the secret key.

Remark 1. Note that the same arguments given for accuracy apply also for recall.
Even though recall is computed class-wise, it does not consider the imbalanced-
ness, and the arguments given in Subsect. 4.2 and Subsect. 4.3 follow similarly.

5 Experimental Validation and Discussion

First, we randomly select a number of measurements from each dataset. From
DPAv4 and AES HD datasets, we select 75 000 measurements, while for the
AES RD dataset, we take all 50 000 measurements that are available. Next,
before running the classification process, we select the most important 50 features
for each dataset. To do that, we use the Pearson correlation coefficient. Pearson
correlation coefficient measures linear dependence between two variables, x and
y, in the range [−1, 1], where 1 is a total positive linear correlation, 0 is no linear
correlation, and −1 is the total negative linear correlation [39].

We divide the traces into training and testing sets, where each test set has
25 000 measurements. We experiment with three training set sizes, where the
measurements are selected randomly from the full training set: 1 000, 10 000,
and 50 000 measurements (25 000 for AES RD). We use 3 datasets with signifi-
cantly different sizes to demonstrate that imbalanced data problem persists over
different problem sizes and that simply adding/removing measurements cannot
help. On the training set, we conduct a 5-fold cross-validation for 10 000 and
50 000 (25 000 for AES RD) measurements. We run 3-fold cross-validation for
1 000 measurements due to the least represented class having only 3 measure-
ments on average. We use the averaged results of individual folds to select the
best classifier parameters. Before running the experiments, we normalize all the
data into [0, 1] range. We report results from the testing phase only, as these
are more relevant than the training set results in assessing the actual classifica-
tion strength of the constructed models. All the experiments are done with the
scikit-learn library [40] from Python.

5.1 Results

We tested all the classifiers with all the datasets with varying training set sizes
and computed the relevant metrics. Interested readers can refer to Tables 7
to 9 in Appendix A. These tables provide the classification results for the orig-
inal (imbalanced), class weight balanced, random oversampling, SMOTE, and
SMOTE+ENN datasets. We do not give MCC, kappa, and G-mean results, since

16

we found those metrics not providing relevant information, except in the easiest
cases (where also the presented metrics work). Additionally, we observe that
even when SCA metrics show significant differences between scenarios, MCC,
kappa, and G-mean often do not differ significantly (or at all).

Our results clearly demonstrate that, if the classification problem is suffi-
ciently hard (e.g., for a dataset with a high level of noise) and there is an im-
balance within the dataset, data sampling techniques may increase SR and GE
significantly. Comparing techniques we investigated, the SMOTE technique per-
forms the best, followed by Random Oversampling, class weight balancing, and
finally, SMOTE+ENN. Here, we focus on three main metrics: accuracy (Fig. 1),
success rate, and guessing entropy (Fig. 2). We compare the results for the im-
balanced case (i.e., original) and after applying the SMOTE method (i.e., the
method with the best results). We also provide insights on how other tested
balancing methods compare against SMOTE.

SVM (10000) RF (10000) SVM (50000) RF (50000)
Classfier (Training Dataset Size)

0

20

40

60

80

100

A
cc

u
ra

cy

Imbalanced

SMOTE

(a) DPA v4 dataset.

RF (10000) SVM (10000) RF (25000) SVM (25000)
Classfier (Training Dataset Size)

0

20

40

60

80

100

A
cc

u
ra

cy

Imbalanced

SMOTE

(b) AES RD dataset.

RF (10000) SVM (10000) RF (50000) SVM (50000)
Classfier (Training Dataset Size)

0

20

40

60

80

100

A
cc

u
ra

cy

Imbalanced

SMOTE

(c) AES HD dataset.

Fig. 1: Accuracy for imbalanced and SMOTE on all three datasets.

DPAcontest v4 dataset has the highest SNR of all the considered datasets
(and is consequently the easiest one). Here, we see that machine learning algo-
rithms do not have problems in dealing with imbalanced data – Figure 1a and
Table 7. When the number of measurements is sufficiently high, we easily get ac-
curacies of around 70%. At the same time, both SR and GE indicate it is possible
to attack the target without issues. What is interesting, the difference in GE be-
tween SVM with 10 000 measurements and RF with 50 000 measurements is more
than double, while the accuracies are within 1%. This is a clear indication that
we cannot use accuracy as a good estimate of a susceptibility of an attack, even
for a simple dataset. When applying class weight balancing, we observe small
changes in both accuracies and GE/SR (no apparent correlation in change). For
RF with 50 000 measurements, the accuracy even decreases when comparing to
the imbalanced case, but both SR and GE reduce significantly. Random over-
sampling does not seem to be a good technique for handling imbalanced data in
SCA, since, although accuracy does not decrease significantly, GE/SR for cer-
tain cases indicate a much larger number of traces needed when compared to the
imbalanced case. Finally, SMOTE and SMOTE+ENN techniques show that, al-
though accuracy could be even improved over the imbalanced case, there seems

17

to be no apparent advantage in using such techniques when considering SCA
metrics. To conclude, in this low noise scenario, we see that using techniques
to fight imbalanced data are not always bringing high improvements, especially
when considering SCA metrics. As a natural question, one could ask how to
decide do we need to use techniques to balance the data. One option would be
to consider the confusion matrix. We give one example in Table 3. As it can
be seen, machine learning classifier is able to correctly classify examples of all
but one class, which is a good indication that we do not need to use additional
techniques (although it could be beneficial).

Table 3: Confusion matrix for DPAcontest v4 imbalanced dataset, SVM with
C = 1, γ = 1, 10 000 measurements in the training phase and 25 000 measure-
ments in the testing phase. Results are given in percentages.

Predicted (%) Actual

0 1 2 3 4 5 6 7 8

0 0.26 0.17 0 0 0 0 0 0 0
0 0.15 2.84 0.02 0 0 0 0 0 1
0 0 8.47 2.68 0.01 0 0 0 0 2
0 0 1.30 16.59 3.57 0.01 0 0 0 3
0 0 0.02 2.97 21.64 2.87 0.01 0 0 4
0 0 0 0.02 3.80 16.48 1.68 0 0 5
0 0 0 0 0.03 2.51 8.27 0.14 0 6
0 0 0 0 0 0.01 2.33 0.70 0 7
0 0 0 0 0 0 0.03 0.29 0.03 8

Table 4: Confusion matrix for AES RD imbalanced dataset, SVM with C =
1, γ = 1, 10 000 measurements in the training phase and 25 000 measurements
in the testing phase. Results are given in percentages.

Predicted (%) Actual

0 1 2 3 4 5 6 7 8

0 0 0 0 0.39 0 0 0 0 0
0 0 0 0 2.90 0 0 0 0 1
0 0 0 0 11.06 0 0 0 0 2
0 0 0 0 21.92 0 0 0 0 3
0 0 0 0 27.26 0 0 0 0 4
0 0 0 0 21.68 0 0 0 0 5
0 0 0 0 11.10 0 0 0 0 6
0 0 0 0 3.23 0 0 0 0 7
0 0 0 0 0.41 0 0 0 0 8

18

When considering the AES RD dataset, we see that the problem is much more
difficult (see Figure 1b and Table 8). In fact, for the imbalanced dataset, only
in a few cases are we able to reach the threshold for SR/GE, but the number of
traces needed is quite high. Interestingly, here we do not see almost any improve-
ment when using class weight balancing (more precisely, we require around 500
traces less to reach the threshold for GE). Random oversampling is able to bring
improvements, since we are now able to reach the thresholds on two more cases
when considering GE and in 4 cases when considering SR. SMOTE, although,
strictly speaking, is successful in one less occasion, brings even more significant
improvements, since we now need fewer traces to successfully reach the thresh-
olds. We emphasize the imbalanced case, RF with 50 000 measurements, where
we need 13 500 measurements and the same classifier with SMOTE, where we
need only 1 600 measurements, which represents an improvement of more than 8
times. With SMOTE, we are able to reach an SR of 90% with only ≈5 500 mea-
surements, where for all imbalanced data sets this threshold cannot be reached.
SMOTE+ENN is, again, less successful than SMOTE and somewhere similar to
the class weight balancing technique. Generally speaking, we observe that RF
is more successful than SVM, which we attribute to the RF’s capability to deal
with noisy measurements. Finally, this dataset is a good example of the problem
of assigning all the measurements to the majority class, as seen in Table 4. Re-
gardless of the number of measurements, with such imbalancedness, we would
never be able to break this target, despite a relatively good accuracy of 27.3%.

Finally, for the AES HD dataset, the results could be considered somewhere
in between the previous two cases: the dataset characteristics and imbalanced-
ness represent bigger problems than for DPAcontest v4, but not as significant
ones as for the AES RD dataset. The results are given in Figure 1c and Table 9.
We observe that, for this scenario, class weight balancing is actually deteriorat-
ing the behavior of classifiers, as in fewer cases are we able to actually reach
the threshold. Contrarily, random oversampling helps and we have only three
instances where GE or SR do not reach the threshold. Additionally, we see that,
due to oversampling, several scenarios require fewer measurements to reach the
threshold values. SMOTE, as in the previous scenarios, proves to be the most
powerful method. There is only one instance where we are not able to reach the
threshold and we observe a significant reduction in the number of traces needed.
SMOTE+ENN reaches all thresholds for the SVM algorithm, but none for the
RF algorithm. This further demonstrates how accuracy is not a suitable measure
since the RF algorithm reaches higher accuracy values. Finally, other considered
ML metrics and confusion matrices also do not reveal further insights, which
shows how misleading ML metrics can be. We compare two confusion matrices:
for the imbalanced scenario with RF and 10 000 measurements, and for SMOTE,
RF and 10 000 measurements, in Tables 5 and 6, respectively. Differing from Ta-
ble 3, we observe that here, even for the imbalanced scenario, our classifier is able
to correctly classify measurements into several classes (more precisely, 5 classes,
but where for one of them, we have only a single successful measurement). After
applying SMOTE, we observe correct predictions for 7 classes.

19

Table 5: Confusion matrix for the AES HD imbalanced dataset, RF with 1 000
iterations, 10 000 measurements in the training phase and 25 000 measurements
in the testing phase. Results are given in percentages.

Predicted (%) Actual

0 1 2 3 4 5 6 7 8

0 0 0.004 0.05 0.28 0.06 0 0 0 0
0 0 0.02 0.32 2.32 0.36 0 0 0 1
0 0 0.05 1.09 8.18 1.54 0 0 0 2
0 0 0.11 2.26 16.69 2.97 0.01 0 0 3
0 0 0.06 2.38 20.45 4.11 0 0 0 4
0 0 0.10 2.05 16.70 3.22 0 0 0 5
0 0 0.03 0.91 8.32 1.74 0.004 0 0 6
0 0 0.01 0.27 2.32 0.50 0 0 0 7
0 0 0.004 0.02 0.28 0.06 0 0 0 8

Table 6: Confusion matrix for the AES HD after SMOTE, RF with 1 000 it-
erations, 10 000 measurements in the training phase (plus the measurements
obtained with SMOTE in latter) and 25 000 measurements in the testing phase.
Results are given in percentages.

Predicted Actual

0 1 2 3 4 5 6 7 8

0 0.01 0.09 0.08 0.08 0.08 0.04 0.004 0.004 0
0 0.07 0.63 0.49 0.78 0.58 0.30 0.13 0.3 1
0.01 0.17 2.13 1.78 2.92 2.09 1.23 0.45 0.08 2
0.03 0.34 4.36 3.45 5.76 4.44 2.46 1.10 0.08 3
0.01 0.41 4.76 3.98 7.70 5.91 3.25 1.49 0.11 4
0.02 0.30 3.79 3.36 5.83 4.63 2.60 1.40 0.12 5
0.01 0.17 1.73 1.65 2.89 2.50 1.32 0.69 0.04 6
0.004 0.02 0.49 0.46 0.86 0.63 0.42 0.19 0.01 7
0 0.01 0.4 0.4 0.12 0.10 0.03 0.01 0 8

20

In Figures 2a until 2d, we depict guessing entropy and success rate results
for all datasets, when using either imbalanced datasets (full lines) or those after
applying SMOTE (dashed lines). We depict the results for both SVM and RF
classifiers illustrating the significant improvements for the AES RD and AES HD
datasets. Observe how guessing entropy and success rate clearly show improve-
ments after SMOTE despite the fact that accuracy indicates worse performance
(cf. Figures 1a until 1c).

Remark 2. Even though our previous experiments demonstrated the beneficial
impact of balancing techniques like SMOTE, a straightforward approach to com-
pensate the effect of global vs class accuracies may be not to consider the Ham-
ming weight and directly use the intermediate value e.g., Sbox[tai ⊕ ka]. This
approach has its own merits and demerits (see also Subsection 2.2). Using the
intermediate value directly increases the number of classes, for which a larger
training set is required. As a larger number of classes are present within the
same margins, the classification becomes more prone to noise. The aforemen-
tioned problems may be partly solved if a large enough set of profiling traces
are provided. That is not always possible, due to several practical shortcomings.
To name a few, countermeasures can restrict the number of available traces for
a given key. Similarly, time-bounded certification process also does not give the
luxury to collect a large number of traces. Accordingly, to cope up with these
issues in the absence of an infinite number of traces, considering HW/HD classes
with proposed data balancing techniques can prove as a practical solution.

5.2 Discussion

On a more general level, our experiments indicate that none of the ML metrics
we tested can be used as a reliable indicator of SCA performance when dealing
with imbalanced data. In the best case, machine learning metrics can serve as
an indicator of performance, where high value means the attack should be pos-
sible, while low value could indicate that the attack would be difficult or even
impossible. But as it can be seen from our results, those metrics are not reli-
able. Sometimes a small difference in the machine learning metric means a large
difference in the SCA metrics, but this cannot be said in general. We also see
situations where ML metrics indicate a significant difference in performance and
yet, SCA metrics show absolutely no difference. Finally, as the most intriguing
case, we also see that even lower values of machine learning metrics can actually
have higher values of SCA metrics. To conclude, we formally and experimentally
show that there is no clear connection between accuracy and GE/SR. Still, there
are general answers (or intuitions) we can give.
Q Can we use accuracy as a good estimate of the behavior of SCA metrics?
A The answer is no since our experiments clearly show that sometimes accuracy

can be used to infer about SCA success, but is often misleading. This is
also very important from the perspective where SCA community questions
whether a small difference in accuracy (or other machine learning metrics)
means anything for SCA. Unfortunately, our experiments show there is no

21

(a) Guessing entropy (GE) on DPAcontest
v4. (b) Success rate (SR) on DPAcontest v4.

(c) Guessing entropy (GE) on AES RD. (d) Success rate (SR) on AES RD.

(e) Guessing entropy (GE) on AES HD. (f) Success rate (SR) on AES HD.

Fig. 2: Guessing entropy and success rate for imbalanced and SMOTE on all
three datasets

22

definitive answer to that question. What is more, we see that we also cannot
use accuracy to compare the performance of two or more algorithms. We give
a detailed discussion about the differences between accuracy and SR/GE in
the following section.

Q If accuracy is not appropriate machine learning metric for SCA, can we use
some other ML metric?

A The answer seems to be no, again. We experimented with 7 different machine
learning metrics and none of them gave a good indication of SCA behavior
over different scenarios.

Q If we concluded that accuracy is not an appropriate measure, what sense does
it make to evaluate other ML metrics on the test set, since, still, accuracy is
used in the training/tuning phase?

A We modified our classifiers to use different machine learning metrics (as given
in Section 2.4) already in the training phase. The results are either compara-
ble or even worse than for accuracy. Naturally, we did not test exhaustively
all possible combinations, but the current answer seems to be that the other
ML metrics in the training phase do not solve the problem.

Q Can we design a new ML metric that would better fit SCA needs?
A Currently, the answer seems to be no. Simply put, using all the information

relevant for SCA would mean that we need to use SCA metrics in classifiers.
Anything else would mean that we need to extrapolate the behavior on the
basis of only partial information.

Q Since we said that using all relevant information for SCA means using SCA
metrics in ML classifiers, what are the obstacles there?

A Although there does not seem to be any design obstacles for this scenario,
there are many from the implementation perspective. SCA metrics are com-
putationally expensive on their own. Using them within machine learning
classifiers means that we need to do tuning and training with metrics that
are complex and slow to evaluate. Next, many machine learning algorithms
are actually much slower when required to output probabilities (e.g., SVM).
Consequently, this would mean that the computational complexity would
additionally increase. Finally, not all machine learning algorithms are even
capable of outputting probabilities. This can be circumvented by simply not
using such algorithms, but then we already impose some constraints on our
framework.

6 SMOTE and Other Classifiers

Our results showed how various balancing techniques, and especially SMOTE,
can help ML classifiers to achieve better results. Such results are usually not
characterized by an improved accuracy, but by an improved success rate and/or
guessing entropy. The question is whether such an improvement in performance

23

can be observed with only “standard” machine learning techniques, or other clas-
sifiers can benefit from it also. Here, we experiment with 2 types of deep learning:
multilayer perceptron (MLP) and Convolutional Neural Networks (CNN), and
with a standard technique in SCA community: template attack (TA) [2], its
pooled version (TA p.) [41], and stochastic attack (SA) [42].

The multilayer perceptron is a feed-forward neural network that maps sets
of inputs onto sets of appropriate outputs. MLP consists of multiple layers (at
least three) of nodes in a directed graph, where each layer is fully connected
to the next one and training of the network is done with the backpropagation
algorithm. If there is more than one hidden layer, we can already talk about
deep learning. We experiment with activation function [relu, tanh] and number
of hidden layers/nodes [(50, 10, 50), (50, 30, 20, 50), (50, 25, 10, 25, 50)].

CNNs are a specific type of neural networks which were first designed for 2-
dimensional convolutions as it was inspired by the biological processes of animals’
visual cortex [43]. We use computation nodes equipped with 32 NVIDIA GTX
1080 Ti graphics processing units (GPUs). Each of it has 11 Gigabytes of GPU
memory and the 3 584 of GPU cores. Specifically, we implement the experiment
with the Tensorflow [44] computing framework and PyTorch [45]. Here, we tested
a number of architectures given in related work [46,11,47] and we found the
best for our experiments the one from Maghrebi et al. [46]. Naturally, all the
architectures needed to be adjusted to the case that we use only 50 features.
The CNN we use consists of: a convolutional layer with 8 filters, activation size
of 16, and relu activation function, dropout, Max Pooling layer, convolutional
layer with 8 filters, activation size of 8, and tanh activation function, dropout,
and fully connected layer. Finally, we use the Softmax activation function in the
classification layer combined with the Categorical Cross Entropy loss function.
The learning rate is 0.0001, the optimizer is adam, batch size is 256, and the
number of epochs is 1 000.

Note that by design (pooled) template attack (and similarly, stochastic at-
tack) do not suffer from the problem of imbalanced classes per se. TA does not
rely on an optimization problem maximizing the accuracy as (most) “standard”
machine learning techniques, but on using the maximum likelihood principle
over each class. Accordingly, imbalancedness may only affect the performance
if some classes do not contain a sufficient amount of traces such that the prac-
tical estimation of probabilities (i.e., covariance matrices in case of the normal
assumption) pose statistical imprecision.

Since the AES HD dataset improves the most after using SMOTE (and due
to the lack of space), we provide the guessing entropy results here. See Ap-
pendix A for detailed results with different metrics and Appendix B for DPAv4
and AES RD datasets for guessing entropy.

For DPAcontest v4, when considering MLP, the results are similar to the
behavior observed with SVM/RF. The improvements after SMOTE, if any,
are quite small, which is to be expected since the results on the imbalanced
dataset are already very good and do not require further augmentation. The
worst behavior can be seen for SMOTE when augmenting the dataset with 1 000

24

measurements. The problem here is that the augmentation procedure does not
have enough information from the original dataset (when considering those rare
classes) to build high quality synthetic examples. Almost identical behavior can
be seen for the CNN experiments. When considering TA and TA pooled, we
see that SMOTE actually deteriorates the results significantly. Stochastic attack
works much worse after applying SMOTE than when considering imbalanced
datasets. We depict guessing entropy for MLP, CNN, TA, and pooled TA in
Figures 5a until 5d, respectively.

For the AES RD dataset we see that for MLP, SA, and CNN, SMOTE does
not bring (significant) improvements. Actually, the only improvement can be seen
for the case when using SMOTE on a training dataset of size 1 000. Differing
from the previous scenario, here we see that SMOTE also helps the smallest
dataset when using template attack and (in smaller extent) pooled template
attack. Detailed guessing entropy results for the AES RD dataset are depicted
in Figures 6a until 6d.

Finally, when considering AES HD, Figures 3a until 4b depict guessing en-
tropy for MLP, CNN, TA, and TA pooled. When considering MLP, we observe
significant improvements after SMOTE, where we are actually able to break im-
plementation even with the smallest training set size. At the same time, when
considering the imbalanced dataset, for the same result, not even the biggest
dataset was sufficient (which is 25 times larger). For CNN the improvements af-
ter SMOTE are also significant, reducing the number of required measurements
several times. As for the AES RD, similarly here we see that SMOTE also im-
proved the results for template attack when considering 1 000 measurements. For
other dataset sizes, as well as for pooled template attack, we see a deterioration
of results after SMOTE. When considering SA, we see that the results are worse
for the SMOTE scenario than for the imbalanced dataset.

(a) MLP (b) CNN

Fig. 3: Guessing entropy for imbalanced and SMOTE on AES HD, deep learning

25

After experimenting with 3 different classifier techniques in this section, we
can observe 3 distinct behaviors. For the first deep learning technique we consider
– MLP, we see that SMOTE is significantly helping, which puts this technique
in the same group with SVM and RF. We believe this is a natural (expected) be-
havior on the basis of the previous results. Although MLP belongs to a different
type of machine learning algorithms than SVM or RF, SMOTE was designed to
work well in a general case, so observing improvements after augmenting datasets
with it comes as no surprise. The second type of behavior is observed with CNN.
Here, SMOTE sometimes helps but, in other instances, actually decreases the
performance of CNN significantly. First, we note that CNN does have problems
with the imbalanced datasets, which can be observed here, but is also reported
in [11,47]. Still, in our imbalanced datasets, we see somewhat less of such a be-
havior than in the related work. The reason for that comes from the fact that
CNN is primarily intended to work with row measurements that usually have a
large number of features. Having a large number of features allows one to take
advantage of the deep network architecture and obtain a powerful classifier. Here,
we use only the 50 most important features (to be comparable to previous cases),
which forces our architecture to be shallow. Consequently, CNN is not able to
train a high-performing model, which is then not maximizing its performance by
setting all the measurements into the majority class. Although this sounds like a
positive behavior and even something that should be desired in an effort to alle-
viate the consequences of the imbalanced datasets, such models also generalize to
unseen data much less accurately, which results in a significantly lower classifier
performance. Indeed, by comparing the results for SVM/RF and CNN, we can
see that SVM/RF give better results, when considering both imbalanced and
SMOTE datasets. Still, imbalanced CNN is better than imbalanced SVM/RF in
some scenarios, e.g., the AES HD dataset. The third type of behavior happens
with SA, TA and TA pooled, where SMOTE is not beneficial, except in the case
when the training set is very small (i.e., 1 000 measurements).

Finally, we ask a question how far are the results obtained with SMOTE if
one compares it with a perfectly balanced dataset of the same size. To that end,
we construct a perfectly balanced dataset where each class has 195 examples
and compare it with SMOTE where the resulting classes consist of 195 mea-
surements. We consider here relatively small datasets, which is a consequence
of having only a small number of minority class representatives from which we
can build the perfectly balanced dataset. The results show that for DPAcon-
test v4, SVM performs much better for the perfectly balanced dataset than for
SMOTE dataset. At the same time, for instance, for GE there is no difference
when considering RF. For AES HD, the difference is again clearly visible, but
less pronounced when compared to DPAcontest v4. This behavior is expected
since perfectly balanced dataset must provide more information than the dataset
that was balanced with artificial examples. The advantage of perfectly balanced
dataset depends on the number of examples we have and on the level of noise, so
it is difficult to stipulate exactly how much is the advantage of perfectly balanced
datasets.

26

(a) Template attack (b) Template attack pooled

Fig. 4: Guessing entropy for imbalanced and SMOTE on AES HD, template
attack

7 Conclusions and Future Work

This paper explores the problem of highly imbalanced datasets and classification.
SCA offers realistic scenarios, where we encounter datasets with large amounts
of noise, with high imbalance (where some classes are on average 70 times more
represented than other classes). Additionally, SCA uses specific metrics to assess
the performance of classifiers where the end goal is to estimate the number of
measurements needed for a successful attack. We conducted a detailed analysis of
techniques that can help in imbalanced data scenarios and we show that SMOTE
is especially useful in a number of difficult (noisy) scenarios over a range of ML
techniques. We observe a significant discrepancy between ML metrics and SCA
metrics, which indicates that estimating the success of a potential side-channel
attack is a difficult task if we rely solely on ML metrics. In such scenarios,
accuracy is not a reliable metric to predict the ability of key recovery in SCA.

Further, we plan to investigate the last two questions from Section 5.2. De-
signing a new ML metric that reflects the SCA behavior better seems to be
very difficult (or even impossible), but using SCA metrics in the ML process is
possible. The main question is whether such an approach would offer reasonable
computational complexity.

References

1. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer (December 2006) ISBN 0-387-30857-1, http://www.

dpabook.org/.
2. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: CHES. Volume 2523 of

LNCS., Springer (August 2002) 13–28 San Francisco Bay (Redwood City), USA.
3. Heuser, A., Zohner, M.: Intelligent Machine Homicide - Breaking Cryptographic

Devices Using Support Vector Machines. In Schindler, W., Huss, S.A., eds.:
COSADE. Volume 7275 of LNCS., Springer (2012) 249–264

http://www.springer.com/
http://www.dpabook.org/
http://www.dpabook.org/

27

4. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Ma-
chine learning in side-channel analysis: a first study. Journal of Cryptographic
Engineering 1 (2011) 293–302 10.1007/s13389-011-0023-x.

5. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.: Template
Attacks vs. Machine Learning Revisited (and the Curse of Dimensionality in Side-
Channel Analysis). In: COSADE 2015, Berlin, Germany, 2015. Revised Selected
Papers. (2015) 20–33

6. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against
a masked AES - Reaching the limit of side-channel attacks with a learning model.
J. Cryptographic Engineering 5(2) (2015) 123–139

7. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A Machine Learn-
ing Approach Against a Masked AES. In: CARDIS. Lecture Notes in Computer
Science, Springer (November 2013) Berlin, Germany.

8. Picek, S., Heuser, A., Guilley, S.: Template attack versus Bayes classifier. Journal
of Cryptographic Engineering 7(4) (Nov 2017) 343–351

9. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). (May 2015) 106–111

10. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Lightweight ciphers and their side-
channel resilience. IEEE Transactions on Computers PP(99) (2017) 1–1

11. Cagli, E., Dumas, C., Prouff, E.: Convolutional Neural Networks with Data Aug-
mentation Against Jitter-Based Countermeasures - Profiling Attacks Without Pre-
processing. In: Cryptographic Hardware and Embedded Systems - CHES 2017 -
19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceed-
ings. (2017) 45–68

12. Picek, S., Heuser, A., Jovic, A., Ludwig, S.A., Guilley, S., Jakobovic, D., Mentens,
N.: Side-channel analysis and machine learning: A practical perspective. In: 2017
International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK,
USA, May 14-19, 2017. (2017) 4095–4102

13. Standaert, F.X., Malkin, T., Yung, M.: A Unified Framework for the Analysis of
Side-Channel Key Recovery Attacks. In: EUROCRYPT. Volume 5479 of LNCS.,
Springer (April 26-30 2009) 443–461 Cologne, Germany.

14. Doget, J., Prouff, E., Rivain, M., Standaert, F.X.: Univariate side channel attacks
and leakage modeling. J. Cryptographic Engineering 1(2) (2011) 123–144

15. Bhasin, S., Guilley, S., Flamant, F., Selmane, N., Danger, J.L.: Countering Early
Evaluation: An Approach Towards Robust Dual-Rail Precharge Logic. In: WESS,
ACM (oct 2010) DOI: 10.1145/1873548.1873554.

16. Standaert, F.X., Peeters, E., Quisquater, J.J.: On the masking countermeasure and
higher-order power analysis attacks. In: International Conference on Information
Technology: Coding and Computing (ITCC’05) - Volume II. Volume 1. (April 2005)
562–567 Vol. 1

17. TELECOM ParisTech SEN research group: DPA Contest (4th edition) (2013–2014)
http://www.DPAcontest.org/v4/.

18. Coron, J., Kizhvatov, I.: An Efficient Method for Random Delay Generation in
Embedded Software. In: Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland, September 6-9, 2009,
Proceedings. (2009) 156–170

19. Matthews, B.: Comparison of the predicted and observed secondary structure of
T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure
405(2) (1975) 442 – 451

http://www.DPAcontest.org/v4/

28

20. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psy-
chological Measurement 20(1) (1960) 37–46

21. Boughorbel, S., Jarray, F., El-Anbari, M.: Optimal classifier for imbalanced data
using Matthews Correlation Coefficient metric. PLOS ONE 12(6) (06 2017) 1–17

22. Jeni, L.A., Cohn, J.F., De La Torre, F.: Facing Imbalanced Data–
Recommendations for the Use of Performance Metrics. In: Proceedings of the 2013
Humaine Association Conference on Affective Computing and Intelligent Interac-
tion. ACII ’13, Washington, DC, USA, IEEE Computer Society (2013) 245–251

23. He, H., Garcia, E.A.: Learning from Imbalanced Data. IEEE Trans. on Knowl.
and Data Eng. 21(9) (September 2009) 1263–1284

24. Brier, É., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage
Model. In: CHES. Volume 3156 of LNCS., Springer (August 11–13 2004) 16–29
Cambridge, MA, USA.

25. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon,
N.: Mutual Information Analysis: a Comprehensive Study. J. Cryptology 24(2)
(2011) 269–291

26. Cooper, J., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.: Test Vector Leak-
age Assessment (TVLA) Methodology in Practice (Sept 24–26 2013) International
Cryptographic Module Conference (ICMC), Holiday Inn Gaithersburg, MD, USA.

27. Durvaux, F., Standaert, F.X.: From improved leakage detection to the detection
of points of interests in leakage traces. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Springer (2016) 240–262

28. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we Need Hun-
dreds of Classifiers to Solve Real World Classification Problems? Journal of Ma-
chine Learning Research 15 (2014) 3133–3181

29. Akbani, R., Kwek, S., Japkowicz, N.: Applying Support Vector Machines to Imbal-
anced Datasets. In Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi, D., eds.:
Machine Learning: ECML 2004, Berlin, Heidelberg, Springer Berlin Heidelberg
(2004) 39–50

30. Dittman, D.J., Khoshgoftaar, T.M., Napolitano, A.: The Effect of Data Sampling
When Using Random Forest on Imbalanced Bioinformatics Data. In: 2015 IEEE
International Conference on Information Reuse and Integration. (Aug 2015) 457–
463

31. Fan, R.E., Chen, P.H., Lin, C.J.: Working Set Selection Using Second Order Infor-
mation for Training Support Vector Machines. J. Mach. Learn. Res. 6 (December
2005) 1889–1918

32. Breiman, L.: Random Forests. Machine Learning 45(1) (2001) 5–32
33. Krawczyk, B.: Learning from imbalanced data: open challenges and future direc-

tions. Progress in Artificial Intelligence 5(4) (Nov 2016) 221–232
34. Longadge, R., Dongre, S.: Class Imbalance Problem in Data Mining Review. CoRR

abs/1305.1707 (2013)
35. Ertekin, S., Huang, J., Giles, C.L.: Active Learning for Class Imbalance Prob-

lem. In: Proceedings of the 30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’07, New York, NY,
USA, ACM (2007) 823–824

36. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic
minority over-sampling technique. J. Artif. Int. Res. 16(1) (June 2002) 321–357

37. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior of Several
Methods for Balancing Machine Learning Training Data. SIGKDD Explor. Newsl.
6(1) (June 2004) 20–29

http://icmc-2013.org/wp/

29

38. Wilson, D.L.: Asymptotic Properties of Nearest Neighbor Rules Using Edited
Data. IEEE Transactions on Systems, Man, and Cybernetics SMC-2(3) (July
1972) 408–421

39. James, G., Witten, D., Hastie, T., Tibsihrani, R.: An Introduction to Statistical
Learning. Springer Texts in Statistics. Springer New York Heidelbert Dordrecht
London (2001)

40. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011) 2825–2830

41. Choudary, O., Kuhn, M.G.: Efficient template attacks. In Francillon, A., Rohatgi,
P., eds.: Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Se-
lected Papers. Volume 8419 of LNCS., Springer (2013) 253–270

42. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side
Channel Cryptanalysis. In LNCS, ed.: CHES. Volume 3659 of LNCS., Springer
(Sept 2005) 30–46 Edinburgh, Scotland, UK.

43. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks 3361(10) (1995)

44. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015)
Software available from tensorflow.org.

45. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In:
NIPS-W. (2017)

46. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Security, Privacy, and Applied Cryptography
Engineering - 6th International Conference, SPACE 2016, Hyderabad, India, De-
cember 14-18, 2016, Proceedings. (2016) 3–26

47. Picek, S., Samiotis, I.P., Heuser, A., Kim, J., Bhasin, S., Legay, A.: On the per-
formance of convolutional neural networks for side-channel analysis. Cryptology
ePrint Archive, Report 2018/004 (2018) https://eprint.iacr.org/2018/004.

A Detailed Results for Different Classifiers and Balancing
Techniques

For all considered machine learning techniques we first run a tuning phase and
present results with the best obtained parameters. SVM – Support Vector Ma-
chines, RF – Random Forest, MLP – Multilayer Perceptron, CNN – Convo-
lutional Neural Networks, TA – template attack [2], TA p. – pooled template
attack [41], SA – stochastic attack [42].

https://eprint.iacr.org/2018/004

30

Table 7: DPAcontest v4 dataset. Values are given as percentages (ML metrics)
and number of traces (for GE/SR) on test set.

Method Tr. size Tuned ACC PRE REC F1 GE SR

Imbalanced classification results

SVM 1000 C=1,γ=1 52.5 44 52 47 3 8
SVM 10 000 C=1,γ=1 72.4 71 72 71 3 7
SVM 50 000 C=1,γ=1 70.9 71 71 70 3 7
RF 1 000 I=1000 69.1 69 69 68 5 11
RF 10 000 I=1000 74.8 75 75 74 5 11
RF 50 000 I=500 73.2 73 73 72 7 16
MLP 1 000 tanh, (50, 10, 50) 56.9 52 57 53 6 15
MLP 10 000 tanh, (50, 10, 50) 54.1 53 54 51 4 12
MLP 50 000 tanh, (50, 30, 20, 50) 61.1 61 61 60 4 11
CNN 1 000 [46] 65.1 62 61 62 3 12
CNN 10 000 [46] 38.8 35 36 38 3 9
CNN 50 000 [46] 62.4 61 61 61 4 10
TA 1 000 – 11.2 – – – – –
TA 10 000 – 13.4 – – – – –
TA 50 000 – 82.4 – – – 3 6
TA p. 1 000 – 64.7 – – – 3 9
TA p. 10 000 – 81.0 – – – 3 7
TA p. 50 000 – 81.6 – – – 3 6
SA 1 000 – 70.4 – – – 8 45
SA 10 000 – 82.0 – – – 3 56
SA 50 000 – 82.2 – – – 3 16

Class weight balancing

SVM 1000 C=1,γ=1 42.4 37 42 36 4 10
SVM 10 000 C=1, γ=1 73.1 74 73 73 3 6
SVM 50 000 C=1, γ=1 71.5 72 72 71 3 7
RF 10 00 I=1000 67.5 67 67 66 4 12
RF 10 000 I=1000 74.1 74 74 73 4 10
RF 50 000 I=1000 71.6 70 72 70 5 13

Random oversampling

SVM 1000 C=1, γ=1 49.4 43 49 44 4 9
SVM 10 000 C=1, γ=1 73.5 74 74 73 3 7
SVM 50 000 C=1, γ=1 70.7 71 71 70 3 8
RF 1 000 I=50 63.4 63 63 61 17 48
RF 10 000 I=1000 72.6 72 73 71 5 11
RF 50 000 I=1000 72.4 71 72 71 6 17

Random undersampling

SVM 1000 C=1, γ=1 34.6 34 35 28 10 30
SVM 10 000 C=1, γ=1 49 48 49 44 8 20
SVM 50 000 C=1, γ=1 63.1 62 63 61 4 12
RF 1 000 I=1000 44.7 47 44 37 6 17
RF 10 000 I=1000 62.2 66 62 61 4 13
RF 50 000 I=1000 74.4 75 74 74 4 12

SMOTE

SVM 1000 C=1, γ=1 46.4 39 46 41 4 10
SVM 10 000 C=1, γ=1 72.6 73 73 72 3 7
SVM 50 000 C=1, γ=1 70.5 71 71 70 3 8
RF 1 000 I=200 67.0 66 67 65 9 13
RF 10 000 I=500 72.2 72 72 72 6 23
RF 50 000 I=500 72.2 72 72 72 9 23
MLP 1 000 tanh, (50, 30, 20, 50) 57.8 53 58 53 7 17
MLP 10 000 relu, (50, 30, 20, 50) 63.9 63 64 62 3 7
MLP 50 000 tanh, (50, 30, 20, 50) 70.3 71 70 70 3 8
CNN 1 000 [46] 53.0 49 51 51 5 13
CNN 10 000 [46] 61.0 59 60 59 4 12
CNN 50 000 [46] 67.3 66 66 66 5 14
TA 1 000 – 0.4 – – – – –
TA 10 000 – 0.3 – – – – –
TA 50 000 – 27.5 – – – 13 600 –
TA p. 1 000 – 10.9 – – – 3 600 8 900
TA p. 10 000 – 15.2 – – – 1 400 3 300
TA p. 50 000 – 10.9 – – – 2 200 5 300
SA 1 000 – 3.6 – – – 2 478 4 528
SA 10 000 – 21.9 – – – 1 055 2 484
SA 50 000 – 10.9 – – – 1 438 3 582

SMOTE+ENN

SVM 1000 C=1, γ=1 36.3 28 36 27 20 62
SVM 10 000 C=1, γ=1 71.7 72 72 71 3 9
SVM 50 000 C=1, γ=1 68.4 69 68 68 3 9
RF 1 000 I=50 59.6 64 60 56 18 54
RF 10 000 I=500 73.2 74 73 73 6 17
RF 50 000 I=500 72.6 72 73 72 7 21

31

Table 8: AES RD dataset. Values are given as percentages (ML metrics) and
number of traces (for GE/SR) on test set.

Method Tr. size Tuned ACC PRE REC F1 GE SR

Imbalanced classification results

SVM 1000 C=.001,γ=.001 27.3 7 27 12 – –
SVM 10 000 C=.001,γ=.001 27.3 7 27 12 – –
SVM 25 000 C=.001,γ=.001 27.3 7 27 12 – –
RF 1 000 I=1000 25.1 21 25 19 – –
RF 10 000 I=1000 26.5 23 26 18 18 800 –
RF 25 000 I=1000 26.6 29 27 17 13 490 –
MLP 1 000 relu, (50, 25, 10, 25, 50) 25.5 16 26 16 – –
MLP 10 000 tanh, (50, 25, 10, 25, 50) 27.3 7 27 12 – –
MLP 25 000 tanh, (50, 10, 50) 27.2 11 27 12 – –
CNN 1 000 [46] 27.3 7 27 12 – –
CNN 10 000 [46] 25.3 12 24 15 – –
CNN 50 000 [46] 27.0 12 24 14 – –
TA 1 000 – 2.2 – – – – –
TA 10 000 – 0.6 – – – – –
TA 25 000 – 17.6 – – – – –
TA p. 1 000 – 12.9 – – – – –
TA p. 10 000 – 6.8 – – – 13 500 –
TA p. 25 000 – 5.3 – – – 8 900 20 700
SA 1 000 – 5.3 – – – – –
SA 10 000 – 2.4 – – – – –
SA 25 000 – 2.0 – – – – –

Class weight balancing

SVM 1000 C=1, γ=1 18.9 19 19 19 – –
SVM 10 000 C=.01, γ=.01 11.1 1 11 2 – –
SVM 25 000 C=.01, γ=.001 21.7 5 22 8 – –
RF 1 000 I=100 24.9 19 25 19 – –
RF 10 000 I=1000 27.1 24 27 16 18 660 –
RF 25 000 I=1000 27.0 24 27 15 12 980 –

Random oversampling

SVM 1000 C=1, γ=1 21.1 19 21 20 – –
SVM 10 000 C=1, γ=1 20.7 20 21 20 19 290 –
SVM 25 000 C=1, γ=1 19.8 21 20 20 7 177 19 210
RF 1 000 I=200 24.4 20 24 20 – –
RF 10 000 I=1000 26.2 21 26 19 17 360 –
RF 25 000 I=1000 26.3 25 26 19 7 173 20 650

Random undersampling

SVM 1000 C=1, γ=1 7.5 19 8 8 – –
SVM 10 000 C=1, γ=1 14.7 20 15 17 – –
SVM 25 000 C=1, γ=1 9.8 20 10 12 – –
RF 1 000 I=200 13.9 19 14 14 –
RF 10 000 I=200 14.2 20 14 16 –
RF 25 000 I=1000 11.3 20 11 14 10 500 22 400

SMOTE

SVM 1000 C=1, γ=1 22.0 20 22 21 – –
SVM 10 000 C=1, γ=1 21.5 20 21 21 – –
SVM 25 000 C=1, γ=1 21.3 21 21 21 10 320 –
RF 1 000 I=1000 20.2 20 20 20 – –
RF 10 000 I=1000 23.2 21 23 21 4 305 13 710
RF 25 000 I=1000 24.1 22 24 22 1 619 5 593
MLP 1 000 tanh, (50, 30, 20, 50) 14.9 20 15 16 – –
MLP 10 000 relu, (50, 30, 20, 50) 25.1 19 25 17 – –
MLP 25 000 relu, (50, 30, 20, 50) 26.9 21 27 13 – –
CNN 1 000 [46] 16.8 16 17 17 – –
CNN 10 000 [46] 18.9 17 17 17 – –
CNN 25 000 [46] 19.4 16 17 17 – –
TA 1 000 – 0.4 – – – – –
TA 10 000 – 25.0 – – – – –
TA 25 000 – 23.3 – – – – –
TA p. 1 000 – 0.4 – – – 23 300 –
TA p. 10 000 – 0.4 – – – – –
TA p. 25 000 – 0.4 – – – – –
SA 1 000 – 0.4 – – – – –
SA 10 000 – 0.4 – – – – –
SA 25 000 – 0.4 – – – – –

SMOTE+ENN

SVM 1000 C=1, γ=1 7.7 7 8 4 – –
SVM 10 000 C=1, γ=1 9.3 14 9 5 – –
SVM 25 000 C=1, γ=1 8.9 12 9 5 11 780 –
RF 1 000 I=500 7.3 5 7 4 – –
RF 10 000 I=1000 8.2 7 8 4 15 770 –
RF 25 000 I=1000 8.9 19 9 5 20 400 –

32

Table 9: AES HD dataset. Values are given as percentages (ML metrics) and
number of traces (for GE/SR) on test set.

Method Tr. size Tuned ACC PRE REC F1 GE SR

Imbalanced classification results

SVM 1000 C=.001,γ=.001 27.0 7 27 11 – –
SVM 10 000 C=.001,γ=.001 27.0 7 27 11 13 330 24 700
SVM 50 000 C=.001,γ=.001 27.0 7 27 11 17 680 –
RF 1 000 I=500 24.7 21 25 20 – –
RF 10 000 I=1000 26.0 19 26 18 16 620 –
RF 50 000 I=1000 26.0 23 26 18 13 560 24 380
MLP 1 000 tanh, (50, 30, 20, 50) 25.4 12.0 25 16 – –
MLP 10 000 tanh, (50, 10, 50) 27.0 12 27 12 – –
MLP 50 000 tanh, (50, 25, 10, 25, 50) 27.0 7 27 11 – –
CNN 1 000 [46] 25.1 9 26 11 –
CNN 10 000 [46] 27.0 7 27 11 12 500 22 900
CNN 50 000 [46] 27.0 7 27 12 12 600 23 000
TA 1 000 – 0.3 – – – – –
TA 10 000 – 6.6 – – – 22 900 –
TA 50 000 – 14.0 – – – 14 000
TA p. 1 000 – 12.8 – – – 11 000 22 300
TA p. 10 000 – 7.4 – – – 1 200 3 100
TA p. 50 000 – 5.6 – – – 700 1 600
SA 1 000 – 6.7 – – – – –
SA 10 000 – 4.6 – – – 21 963 –
SA 50 000 – 3.9 – – – 23 094 –

Class weight balancing

SVM 1000 C=.001, γ=1 0.4 0 0 0 – –
SVM 10 000 C=.01, γ=.001 11.0 1 11 2 – –
SVM 50 000 C=.01, γ=.001 0.3 0 0 0 – –
RF 1 000 I=200 25.1 21 25 19 – –
RF 10 000 I=1000 26.4 26 26 17 16 120 24 990
RF 50 000 I=1000 26.7 17 27 15 16 650 –

Random oversampling

SVM 1000 C=1, γ=1 11.6 20 12 12 6 653 20 160
SVM 10 000 C=1, γ=1 17.5 21 18 18 10 320 14 520
SVM 50 000 C=1, γ=1 9.9 19 10 12 9 986 21 820
RF 1 000 I=500 24.3 20 24 20 – –
RF 10 000 I=1000 25.4 21 25 20 12 530 24 960
RF 50 000 I=1000 25.9 21 26 19 16 190 –

Random undersampling

SVM 1000 C=1, γ=1 16.7 18 17 10 – –
SVM 10 000 C=1, γ=1 7.8 19 8 9 15 000 –
SVM 50 000 C=1, γ=1 10.6 19 11 12 1 800 4 900
RF 1 000 I=500 14.2 17 14 9 – –
RF 10 000 I=1000 10 20 10 12 – –
RF 50 000 I=1000 11.9 20 12 14 9 000 20 100

SMOTE

SVM 1000 C=1, γ=1 18.0 20 18 17 11 700 21 850
SVM 10 000 C=1, γ=1 23.0 21 23 19 9 170 20 450
SVM 50 000 C=1, γ=1 23.7 20 24 19 17 320 –
RF 1 000 I=500 17.6 20 18 18 8 328 19 700
RF 10 000 I=1000 16.7 20 17 17 2 877 7 943
RF 50 000 I=1000 14.0 20 14 14 4 771 12 030
MLP 1 000 tanh, (50, 30, 20, 50) 11.6 19 12 11 – –
MLP 10 000 relu, (50, 30, 20, 50) 15.3 21 15 16 7 400 16 200
MLP 50 000 tanh, (50, 30, 20, 50) 26.4 23 26 15 8 300 18 100
CNN 1 000 [46] 21.0 19 21 20 – –
CNN 10 000 [46] 21.1 19 21 20 4 800 11 400
CNN 50 000 [46] 23.2 22 23 23 8 600 19 200
TA 1 000 – 0.4 – – – – –
TA 10 000 – 0.4 – – – – –
TA 50 000 – 0.4 – – – – –
TA p. 1 000 – 0.4 – – – – –
TA p. 10 000 – 0.4 – – – – –
TA p. 50 000 – 0.3 – – – 19 500 –
SA 1 000 – 0.38 – – – – –
SA 10 000 – 0.41 – – – – –
SA 50 000 – 0.38 – – – – –

SMOTE+ENN

SVM 1000 C=1, γ=1 7.4 8 7 4 10 700 21 800
SVM 10 000 C=1, γ=1 6.2 3 6 4 10 390 22 410
SVM 50 000 C=1, γ=1 3.9 3 4 2 11 770 23 270
RF 1 000 I=500 8.9 3 9 4 – –
RF 10 00 I=1000 7.8 14 8 4 – –
RF 50 000 I=1000 7.8 3 8 4 – –

33

B Guessing Entropy for Deep Learning and TA

(a) MLP (b) CNN

(c) Template attack (d) Template attack pooled

Fig. 5: Guessing entropy for imbalanced and SMOTE on DPAcontest v4, deep
learning and template attack (pooled)

34

(a) MLP (b) CNN

(c) Template attack (d) Template attack pooled

Fig. 6: Guessing entropy for imbalanced and SMOTE on AES RD, deep learning
and template attack

	The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations
	Introduction
	Background
	Profiled SCA
	The Hamming Weight and Distance Models
	Attack Datasets
	Performance Metrics
	Classifiers

	Imbalanced Data and How to Handle It
	Handling Imbalanced Data
	Cost-Sensitive Learning by Class Weight Balancing
	Data Resampling Techniques

	ML metrics vs SCA metrics
	Empirical Computation of Accuracy and SR/GE
	Label Prediction vs Fixed Secret Key Prediction
	Global Accuracy vs Class Accuracies

	Experimental Validation and Discussion
	Results
	Discussion

	SMOTE and Other Classifiers
	Conclusions and Future Work
	Detailed Results for Different Classifiers and Balancing Techniques
	Guessing Entropy for Deep Learning and TA

