
An Abstract Model of UTXO-based Cryptocurrencies with Scripts

Joachim Zahnentferner
Input Output HK

Hong Kong
Email: chimeric.ledgers@protonmail.com

Abstract

In [1], an abstract accounting model for UTXO-
based cryptocurrencies has been presented. However,
that model considered only the simplest kind of trans-
action (known in Bitcoin as pay-to-pubkey-hash) and
also abstracted away all aspects related to authoriza-
tion. This paper extends that model to the general
case where the transaction contains validator (a.k.a.
scriptPubKey) scripts and redeemer (a.k.a. scriptSig)
scripts, which together determine whether the transac-
tion’s fund transfers have been authorized.

1. Introduction

The Chimeric Ledgers paper [1] introduced abstract
models for UTXO-based transactions and account-
based transactions, as well as for ledgers that may
contain both kinds of transactions, but authorization
mechanisms were left aside. This paper is a short
addendum that extends the model for UTXO-based
cryptocurrencies with an abstract authorization mech-
anism that encompasses Bitcoin scripts.

The contributions of this paper are:

• Definition of an abstract model for UTXO-based
cryptocurrencies with authorization scripts;
• Discussions of the relation between this abstract

model and Bitcoin.

For the sake of self-containment, parts of sections
2 and 3 from the Chimeric Ledgers paper [1] are
reproduced here in a summarized form. Nevertheless,
readers unfamiliarized with the Chimeric Ledgers pa-
per are encouraged to read it first.

Reference implementations of all concepts
defined here are available in Scala (github.com/
input-output-hk/chimeric-ledgers-spec-scala) and

Haskell (github.com/input-output-hk/plutus-prototype/
tree/master/docs/model/UTxO.hsproj).

2. Preliminaries

In the formalism presented here, the technical
details of the underlying blockchain are disregarded,
because only the ledger of transactions (i.e. the data
stored in the blockchain) is of interest. A ledger is
assumed to be a list of transactions.

Definition 1. A ledger is a list of valid transactions:

Ledger
def
= List[Transaction]

Notations: A record data type with fields ϕ1, . . . , ϕn

of types T1, . . . , Tn is denoted (ϕ1 : T1, . . . , ϕn : Tn).
If t is a value of a record data type T and ϕ is the name
of a field of T , then t.ϕ denotes the value of ϕ for t. A
list λ of type List[T] is either the empty list [] or a list
e :: λ′ with head e of type T and tail λ′ of type List[T].
[e1, . . . , en] is an abbreviation for e1 : : . . . : :en : : [].
λ(i) denotes the i-th element of λ (with the head being
the 0-th element, by convention). The concatenation of
two lists λ1 and λ2 is denoted λ1 : : :λ2. The length of
a list λ is denoted |λ|. A list of integers from n to m,
including n and m, is denoted [n..m]. The standard
equality symbol (=) is used to state that two values
are equal. The definitional equality symbol (def

=) is used
to define the new constant or function symbol on the
left side. An anonymous function that takes a tuple as
argument may be denoted as (a1, . . . , an) ⇒ For
instance, the k-th projection of a tuple may be denoted
(a1, . . . , an)⇒ ak. A cryptographic collision-resistant
hash of an object c is denoted c#.

github.com/input-output-hk/chimeric-ledgers-spec-scala
github.com/input-output-hk/chimeric-ledgers-spec-scala
github.com/input-output-hk/plutus-prototype/tree/master/docs/model/UTxO.hsproj
github.com/input-output-hk/plutus-prototype/tree/master/docs/model/UTxO.hsproj

3. The Model without Scripts

The definitions for UTXO-based cryptocurrencies,
as presented in [1], are reproduced below without any
change. Explanatory commentary has been omitted
here, but can be found in [1].

Definition 2. The datatype for UTXO-based transac-
tions is defined as:

UtxoTx
def
= (inputs : Set[Input],

outputs : List[Output],

forge : Value, fee : Value)

The datatype for outputs is:

Output
def
= (address : Address, value : Value)

where value is the value1 of the output and address
is the address that owns it. The datatype for inputs is:

Input
def
= (id : Id, index : Int)

where id is the id of a previous transaction to which
this input refers, and index indicates which of the
referred transaction’s outputs should be spent.

Definition 3. The function tx : Input → Ledger →
Option[UtxoTx], when applied to an input i and a
ledger λ, retrieves a transaction t contained in λ such
that t# = i.id , if such a t exists. The function
out : Input → Ledger → Option[Output] returns
tx(i).get.inputs(i.index), if this exists. And finally,
the function value : Input→ Ledger→ Option[Value],
returns out(i, λ).get.value , if this exists.

Definition 4. The unspent outputs of a transaction can
be computed by applying the following function:

unspentOutputs : UtxoTx→ Set[Input]

unspentOutputs(t)
def
= (map

((o, i)⇒ Input(t#, i))

t.outputs.zipWithIndex

).toSet

where: zipWithIndex augments the outputs with
their respective indexes, the anonymous function maps
an output to a spendable input consisting of the transac-
tion’s hash and the output’s index, and toSet converts
the list to a set.

1. The types Address and Value are regarded here as aliases for
unbounded unsigned non-negative integers.

The outputs spent by a transaction are simply the
transaction’s inputs, and can be computed by applying
the following function:

spentOutputs : UtxoTx→ Set[Input]

spentOutputs(t)
def
= t.inputs

Definition 5. The set of unspent outputs of a ledger
can be computed by applying the following function:

unspentOutputs : Ledger→ Set[Input]

unspentOutputs([])
def
= ∅

unspentOutputs(t : :λ)
def
= unspentOutputs(λ)

− spentOutputs(t)

+ unspentOutputs(t)

Definition 6. A UTXO-based transaction t is valid for
a ledger λ iff the following two conditions hold:

all inputs refer to unspent outputs:

∀i ∈ t.inputs, i ∈ unspentOutputs(λ)

value is preserved:

t.forge+
∑

i∈t.inputs

value(i, λ).get = t.fee+
∑

o∈t.outputs

o.value

Definition 7. The UTXO-balance of an address a in
a valid transaction t w.r.t. a ledger λ is:

BUTXO : Address→ UtxoTx→ Ledger→ Value

BUTXO(a, t, λ)
def
=

∑
o∈t.outputs
o.address=a

o.value −
∑

i∈t.inputs
o′=out(i,λ).get

o′.address=a

o′.value

Definition 8. The UTXO-balance of an address a in
a ledger λ is:

BUTXO : Address→ Ledger→ Value

BUTXO(a, [])
def
= 0

BUTXO(a, t : :λ)
def
= BUTXO(a, λ) + BUTXO(a, t, λ)

4. Bitcoin Transactions

In contrast to the model presented in the previous
section, Bitcoin does not have a built-in notion of
address. An output declares not an address to which
it belongs, but rather a validator script that checks
whether an input trying to spend the output’s value

is authorized to do so. To prove that it indeed is
authorized, an input specifies a redeemer script. To be
faithful to Bitcoin, the definition of transaction could
be modified as shown below:

Definition 9. The datatype for Bitcoin-style UTXO-
based transactions is defined (as before) as:

BUtxoTx
def
= (inputs : Set[Input],

outputs : List[Output],

forge : Value, fee : Value)

The datatype for outputs is:

Output
def
= (validator : Script, value : Value)

where value is the value of the output and validator
is the script that checks that a redeemer is authorized
to spend it. The datatype for inputs is:

Input
def
= (id : Id, index : Int, redeemer : Script)

where id is the id of a previous transaction to which
this input refers, index indicates which of the referred
transaction’s outputs should be spent and redeemer is
the script that provides evidence of authorization to
spend the output.

Because the datatype for inputs is not just a ref-
erence to an output of a transaction anymore, the
definitions of unspent outputs (definitions 4 and 5)
would need to be changed as well. This issue is ignored
in this section, but addressed in the next section.

In Bitcoin, the scripts are sequences of operations
that manipulate a stack, which is initially empty.
Some operations execute built-in cryptographic func-
tions such as collision-resistant hashing and signature
checking. Some operations may fetch state information
from the ledger (e.g. block number) or from the
transaction (e.g. a modified representation of the trans-
action for the purpose of checking signatures). The
authorization succeeds if the execution of the redeemer
script followed by the execution of the validator script
leaves the boolean value true on the stack.

In an abstract model, the particularities of Bit-
coin’s scripting language can be left aside and the
redeemer and validator scripts can be assumed to
denote pure functions JredeemerK : State → R and
JvalidatorK : State→ R→ B where R is an arbitrary
type, B is the type of booleans and State is the type
for relevant state information about the ledger and

the current transaction2. It is then possible to define
validity as follows:

Definition 10. A bitcoin-style UTXO-based transac-
tion t is valid for a ledger λ iff the two conditions
of Definition 6 hold and additionally the following
conditions hold:

no output is double spent:

|t.inputs| = |t.ins.map(i⇒ (i.id , i.)|

all inputs validate:

∀i ∈ t.inputs,
Jout(i, λ).get.validatorK(s, Ji.redeemerK(s)) = true

where s is the current state, which may depend on, and
contain information about, λ and t.

In Definition 6, no explicit condition preventing
double spending was needed because two inputs that
try to spend the same output would be syntacti-
cally equal and, therefore, would occur only once in
t.inputs , since t.inputs is a Set[Input]. However, in
Definition 10, it is needed, because t.inputs may con-
tain two inputs that try to spend the same output and
differ from each other by having different3 redeemer
scripts.

Bitcoin’s script language contains built-in functions
for checking signatures, and the most common kind
of validator-redeemer scripts, known as pay-to-pubkey-
hash, simply check signatures. The redeemer script
provides a public key and a signature of (a modified
copy4) the transaction using the corresponding private
key. The validator script contains a hash of the public
key and it checks that this hash is equal to the hash
of the public key provided by the redeemer script and
verifies the signature.

It is the hash of the public key contained in the
validator script that is commonly referred to as an
address. However, this is just a convention and, in
general, it is possible to define validator and redeemer
scripts for which there is no natural notion of address.

2. For example, the state may contain the length of the current
ledger. With such information it is possible to write a validator script
that will allow an output to be spent before (or after) a certain “time”
(measured in ledger length).

3. Two scripts are considered equal iff they are syntactically equal.
4. Signing modified copies is necessary, otherwise the creation

of transactions would require solving a difficult fixpoint equation,
since the unmodified transaction depends on the signature of itself.
Modified copies are also useful to allow schemes such as anyone-
can-pay [2].

For instance, the validator of an input could simply
allow anyone to spend it, or allow no one to spend it.

The generality of Definition 9 makes it unclear to
whom an output belongs. Consequently, it is unclear
how to adapt the notion of balance defined in the previ-
ous section and ensure that wallets have a uniform way
of accounting outputs. Perhaps the most intuitive solu-
tion to this problem would be to associate ownership of
the output to the redeemer who is authorized to redeem
and spend it. However, as Example 1 illustrates, this is
problematic, because an output may be redeemable by
several different redeemer scripts and hence the final
owner of an output can only be known after it is spent.

Example 1. Consider the following transaction:

t
def
= BUtxoTx(∅, [Output(v, $1000)], $1000, $0)

where the function denoted by the validator script v is such
that:

JvK(s, r) def
= true

The output of this transaction can be spent by anyone
with any redeemer script.

The problem of outputs without addresses is
avoided in Bitcoin by considering outputs without
conventional addresses non-standard. By convention,
miners running a standard bitcoin client will not pro-
cess transactions that contain non-standard outputs.

Besides pay-to-pubkey-hash, a second type of
validator-redeemer script pair known as pay-to-script-
hash is recognized as standard. Here, one of the
components of the redeemer script is a serialized script;
and the validator contains a hash value. To validate the
expenditure, the validator script checks that the hash of
the serialized script is equal to the hash value contained
in the validator script, and then the serialized script is
de-serialized and executed using the other components
of the redeemer script as arguments. Interestingly, de-
serialization is not a standard operation in the Bitcoin
script language. There is no op-code that tells the
bitcoin script interpreter to de-serialize the serialized
script. It is an extra step that is done by convention
since the acceptance of BIP-16 [3] and had to be
hard-coded in the interpreter [4]. When the interpreter
recognizes a validator script of a particular shape,
it does the extra de-serialization step. As the BIP-
16 itself admits, “recognizing one ‘special’ form of
[validator script] and performing extra validation when
it is detected is ugly”.

Despite the ugliness, one positive aspect of pay-to-
script-hash outputs is that again there is a natural no-
tion of address: the hash of the serialized script, which

is included in the validator script. Another interesting
aspect is that the validator script does not reveal the
validation conditions; instead, it only presents the hash
of the serialized script, and it is the serialized script that
contains the validation conditions. Since the serialized
script becomes publicly known only when the output
is spent, the pay-to-script-hash approach provides, at
least temporarily, more privacy.

5. A Model with Scripts and Addresses

Recognizing the importance of addresses, this sec-
tion presents an abstract UTXO-model that, unlike Bit-
coin, has addresses as a built-in feature. Furthermore,
inspired by the advantages of pay-to-script-hash, but
wishing to avoid its “ugly” aspects, the model has both
the validator and redeemer scripts in the input. A new
datatype for output references is created in order to
properly define unspent outputs, now that inputs are
not just output references anymore.

Definition 11. The datatype for script-address UTXO-
based transactions is defined (as before) as:

SUtxoTx
def
= (inputs : Set[Input],

outputs : List[Output],

forge : Value, fee : Value)

The datatype for outputs is:

Output
def
= (address : Address, value : Value)

where value is the value of the output and address
is the address that owns it. The datatype for output
references is:

OutputRef
def
= (id : Id, index : Int)

where id is the id of a previous transaction to which
this input refers, index indicates which of the referred
transaction’s outputs should be spent. The datatype for
inputs is:

Input
def
= (outputRef : OutputRef,validator : Script,

redeemer : Script)

where validator is the script that checks that a re-
deemer is authorized to spend the output and redeemer
is the script that provides evidence of authorization to
spend the output.

The definitions of unspent outputs are adapted to
use output references instead of inputs.

Definition 12. The unspent outputs of a transaction
can be computed by applying the following function:

unspentOutputs : SUtxoTx→ Set[OutputRef]

unspentOutputs(t)
def
= (map

((o, i)⇒ OutputRef(t#, i))

t.outputs.zipWithIndex

).toSet

The outputs spent by a transaction are the output
references included in the transaction’s inputs, and can
be computed by applying the following function:

spentOutputs : SUtxoTx→ Set[OutputRef]

spentOutputs(t)
def
= t.inputs.map(i⇒ i.outputRef)

And, as before, the unspent outputs of a ledger can
be defined inductively.

Definition 13. The set of unspent outputs of a ledger
can be computed by applying the following function:

unspentOutputs : Ledger→ Set[OutputRef]

unspentOutputs([])
def
= ∅

unspentOutputs(t : :λ)
def
= unspentOutputs(λ)

− spentOutputs(t)

+ unspentOutputs(t)

To check the validity of a transaction, it is now
necessary to additionally check that the address is
equal to the hash of the validator script.

Definition 14. A script-address UTXO-based trans-
action t is valid for a ledger λ iff the conditions
of Definition 6 hold and additionally the following
conditions hold:

no output is double spent:

|t.inputs| = |t.ins.map(i⇒ i.outputRef)|

all inputs validate:

∀i ∈ t.inputs, Ji.validatorK(s, Ji.redeemerK(s)) = true

where s is the current state, which may depend on, and
contain information about, λ and t.

validator scripts hash to their output addresses:

∀i ∈ t.inputs, i.validator# = out(i, λ).get.address

Note that, in contrast to Bitcoin’s pay-to-script-hash
approach, here the validator script is not serialized.

With a sufficiently expressive scripting language, it
is possible to implement pay-to-pubkey-hash as a spe-
cial case of the pay-to-script-hash approach supported
by the model defined in this section. Therefore, it is
not necessary to define special input and output types
for pay-to-pubkey-hash. A concise abstract model is
desirable in theory. In practice, nevertheless, it may
be advantageous to handle pay-to-pubkey-hash outputs
and inputs as a special case, to save ledger space and
transaction processing time.

Acknowledgments: Manuel Chakravarty, Duncan
Coutts, Erik de Castro Lopo, Pablo Lamela Seijas,
Darryl McAdams and Simon Thompson provided feed-
back and discussions that were useful in the production
of this addendum.

References

[1] J. Zahnentferner, “Chimeric ledgers: Translating and
unifying utxo-based and account-based cryptocurren-
cies,” Cryptology ePrint Archive, Report 2018/262,
2018, https://eprint.iacr.org/2018/262.

[2] “OP_CHECKSIG,” Bitcoin Wiki, January 2018.
[Online]. Available: https://en.bitcoin.it/wiki/OP_
CHECKSIG

[3] G. Andresen, “Pay to script hash,” Bitcoin Improvement
Proposals, 2012. [Online]. Available: https://github.
com/bitcoin/bips/blob/master/bip-0016.mediawiki

[4] “Reference implementation of the bitcoin interpreter.”
[Online]. Available: https://github.com/bitcoin/bitcoin/
blob/595a7bab23bc21049526229054ea1fff1a29c0bf/
src/script/interpreter.cpp#L1375

-----BEGIN PGP MESSAGE-----

hQEMA3mYtjIcCbbOAQf/ci71Krwdlkd3ZzsoAkZdMKQYseQxI1YAxqEeshvnqcDJ
aCbKf5YXMdxEjumXW9EvTzjG8PnkLfviN9tpPWxmTujX0JcoiBkZ/CGSeO2msuhd
tC+W9xn5z0+Z7p4HZPRFfiZ4ZmlBow77JFRMcqqf/0G/eZ+7kkigECZzs9bBE4b+
kG3EFl268D69JVu6q1eiyybF6U9D8OmDK4kRA3LuPyzqrE8sfdUDW8U0AuSUIsfY
YW8Jy6TdgikEDq6NzSS6X/jcjBq03XM3HJvA78l2XIooNSFKyoXWcJHTe9J+zXHe
krtnsI8Q/5US/C3FK/fX77k2gIKNgO8lYZQrQztBLNLA7AGYfZvDVc7WGliw8UJn
wPlJR6DUuOLvo1laej70hYHvLqFQFoLjS0KzM77uaftXWpEIc+ETY4eD6mEthBnz
kLraN9ZRhu3u8yunuIpBrSIpX50EXKwOA/aUhTvuR8ZH9GEMVyL3tpqxNbUFbSTp
lXElcCeE7TkcORLpV8E/NzPFk2TlazRl8iHGepLR7vw1DT66H3xN4+qcI2FwtEs8
5rDKq6NDkhPKNC8IsYcdtmNzdy1CK2KbD3lBrEB3io1DvU2sD20a+NEsl8MeMknY
YW5GZ75y8W3YfL5/S0pVB6RqanpyZIHcq2P6wMYojpPhnPc500chOYGdLHeKwlJL
uEC3dE0Mg3LBtkBWQTiNXF/Nk02WS4YmTZJROI7oZnlGuoIZYDkj3r/WaJHTZd7K
7A7BhxJSiDbj5uC2F/cpBduHV6mtdpByv87wXWF1JMNFWcVow0x99gg1j/aCCToE
fjO1/sqpsxoo4jNqr9kREqpVYghoayxNy0fQYfew/aaP0p382gfKEbDeEhNfMV+f
Gq3MDJfGuUmfFyDnGLvr/fZu8o83elb446mwtBj+
=cj7k
-----END PGP MESSAGE-----

https://eprint.iacr.org/2018/262
https://en.bitcoin.it/wiki/OP_CHECKSIG
https://en.bitcoin.it/wiki/OP_CHECKSIG
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bitcoin/blob/595a7bab23bc21049526229054ea1fff1a29c0bf/src/script/interpreter.cpp#L1375
https://github.com/bitcoin/bitcoin/blob/595a7bab23bc21049526229054ea1fff1a29c0bf/src/script/interpreter.cpp#L1375
https://github.com/bitcoin/bitcoin/blob/595a7bab23bc21049526229054ea1fff1a29c0bf/src/script/interpreter.cpp#L1375

	Introduction
	Preliminaries
	The Model without Scripts
	Bitcoin Transactions
	A Model with Scripts and Addresses
	References

