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Abstract. Secure multiparty computation (MPC) addresses the challenge of evaluating
functions on secret inputs without compromising their privacy. A central question in multiparty
computation is to understand the amount of communication needed to securely evaluate
a circuit of size s. In this work, we revisit this fundamental question in the setting of
information-theoretically secure MPC in the correlated randomness model, where a trusted
dealer distributes correlated random coins, independent of the inputs, to all parties before
the start of the protocol. This setting is of strong theoretical interest, and has led to the most
practically efficient MPC protocols known to date.
While it is known that protocols with optimal communication (proportional to input plus
output size) can be obtained from the LWE assumption, and that protocols with sublinear
communication o(s) can be obtained from the DDH assumption, the question of constructing
protocols with o(s) communication remains wide open for the important case of information-
theoretic MPC in the correlated randomness model; all known protocols in this model require
O(s) communication in the online phase.
In this work, we exhibit the first generic multiparty computation protocol in the correlated
randomness model with communication sublinear in the circuit size, for a large class of
circuits. More precisely, we show the following: any size-s layered circuit (whose nodes can
be partitioned into layers so that any edge connects adjacent layers) can be evaluated with
O(s/log log s) communication. Our results holds for both boolean and arithmetic circuits, in
the honest-but-curious setting, and do not assume honest majority. For boolean circuits, we
extend our results to handle malicious corruption.

Keywords. multiparty computation, correlated randomness model, information-theoretic
security, sublinear communication

1 Introduction

Secure multiparty computation (MPC) allows n players with inputs (x1, · · · , xn) to jointly evaluate
a function f , while leaking no information on their own input beyond the output of the function. It
is a fundamental problem in cryptography, which has received a considerable attention since its
introduction in the seminal works of Yao [Yao86], and Goldreich, Micali, and Wigderson [GMW87b,
GMW87a] (GMW). One of the core questions in secure multiparty computation is to understand
the amount of communication needed to securely compute a function. For almost three decades after
the protocols of Yao and GMW, all known constructions of secure computation protocols required
a communication proportional to the circuit size of the function, and understanding whether this
was inherent was a major open problem.

Secure Computation with Sublinear Communication. In 2009, this situation changed with
the introduction by Gentry of the first fully-homomorphic encryption scheme [Gen09] (FHE), which
led to secure computation protocols with communication independent of the size of the function
(proportional only to its input size and its output size), under (a circular-security variant of) the
LWE assumption. This resolved the long-standing open problem of designing MPC protocols with
optimal (asymptotic) communication, although only under a specific assumption. More recently,
the circuit-size barrier was broken again under the DDH assumption in [BGI16], for a large class of
structured circuits1 and in the two-party case. However, while these results are of strong theoretical
interest, they require expensive computations.
1 The work of [BGI16] considered, as we will do in this work, boolean circuits which can be divided into
layers such as any edge connects adjacent layers. Such circuits are called layered boolean circuits.
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Secure Computation in the Correlated Randomness Model. While secure computation
(with no honest majority) is known to require computational assumptions, it was observed in several
works (e.g. [IPS08,DPSZ12]) that executing a pre-computation phase independent of the inputs to
the protocol, during which correlated random bits are distributed to the parties, allows to make the
online phase both information-theoretically secure and significantly more efficient, by removing any
expensive cryptographic operation from the online computation phase. These observations led to
the development of increasingly efficient secure computation protocols in the correlated randomness
model, e.g. [KOS16,DNNR17], which are currently considered the most practical secure computation
protocols. Yet, unlike computationally secure protocols, all known unconditionally secure protocols
in the correlated randomness model (with computation and storage polynomial in the circuit size)
require communication proportional to the circuit size of the function. Therefore, the major question
of understanding the communication required for multiparty computation remains wide open for
the important case of MPC in the correlated randomness model, which captures the best candidates
for practical secure computation. This is the question we address in this work: must MPC protocols
in the correlated randomness model inherently use a communication linear in the size of the circuit?
Or, in other words, can we get the best of both worlds: unconditional security with high practical
efficiency, and sublinear communication?

On the Communication of Secure Computation in the Correlated Randomness Model.
A partial answer to this question was given in [IKM+13], where the authors designed a one-time
truth-table protocol, which allows to evaluate any function f : {0, 1}n 7→ {0, 1}m with unconditional
security in the correlated randomness model, with optimal communication O(n+m). However, this
protocol requires storing an exponential number (in n) of correlated random bits (polynomial in
the size of the entire truth-table of f), which makes it practical only for boolean functions with
very small inputs. Furthermore, it was argued in [IKM+13] that reducing the amount of correlated
random coins from exponential to polynomial (in the input size) for any function f is unlikely to
be feasible, as it would imply an unexpected breakthrough for long-standing open problems related
to private information retrieval.

While this negative result does not rule out a sublinear-communication protocol with small
storage for circuits, this observation and the fact that all known protocols (with polynomial storage)
have communication proportional to the circuit size s of the function have been seen as indications
that breaking the circuit-size barrier for multiparty computation in the correlated randomness
model might be non-trivial. For instance, it was mentioned in [DZ13] that “the results and evidence
we know suggest that getting constant overhead [over the circuit size of the function] is the goal we
can realistically hope to achieve”. More recently in [DNPR16], the authors mentioned that “whether
we can have constant round protocols and/or communication complexity much smaller than the
size of the circuit and still be efficient (polynomial-time) in the circuit size of the function is a
long-standing open problem”.

In [DNPR16], the authors made progresses toward understanding why existing protocols have
been stuck at the circuit-size barrier, by identifying a property shared by all known efficient protocols
in the correlated randomness model, which states (informally) that they evaluate the function in a
“gate-by-gate” fashion, and require communication for every multiplication gate. They demonstrated
that all protocols following this approach (with passive security and dishonest majority) must
inherently have communication proportional to the circuit size of the function. They concluded
that improving the communication complexity of secure computation in the correlated randomness
model requires a fundamentally new approach, and mentioned that the main question left open in
their work is to find out whether their bound does hold for any protocol which is efficient in the
circuit size of the function. This is the problem we address in this work.

1.1 Our Contribution

In this paper, we construct for the first time protocols with polynomial storage and communication
sublinear in the circuit size, for a large class of circuit. Perhaps surprisingly, our results turn out to
be relatively simple to obtain; it appears however that this simple solution was missed in previous
works.
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Sublinear Protocol for Structured Circuits. We exhibit a generic secure computation protocol
in the correlated randomness model, with communication sublinear in the circuit size. More
specifically, we consider layered boolean circuits (LBC), whose nodes can be arranged into layers so
that any edge connects adjacent layers. We prove the following: for any N , there is an unconditionally
secure N -party protocol that evaluates an arbitrary LBC of size s with n inputs and m outputs,
with total communication

O

(
n+N ·

(
m+

s

log log s

))
,

sublinear in the size of the circuit, and polynomial storage O(s2/log log s), in the correlated
randomness model against semi-honest adversaries, with dishonest majority. While this requires an
arguably large storage, it can be reduced to being only slightly superlinear in s, namely

O

(
s · 2(log s)

1/c

log log s

)
,

at the cost of increasing the communication to O(n + N · (m + c · s/log log s)) (for an arbitrary
c = o(log log n)). Our protocol enjoys perfect security, computational complexity O(s log s/log log s+
n + m), and round complexity d/log log s, where d is the depth of the circuit. All the constants
involved are very small (in fact equal to one, up to low order terms), and the computation involves
solely searching lookup tables.

Extensions. We generalize our result to secure evaluation of arbitrary layered arithmetic circuits
(LAC) over any (possibly exponentially large) field F, by relying on a connection between MPC with
correlated randomness and the classical notion of private simultaneous message protocols [FKN94].
The resulting protocol for arithmetic circuits has costs comparable to the boolean version. Fur-
thermore, we show that all our results can be extended to the stronger function-independent
preprocessing model, where only a bound on the size of the circuit is known in the preprocessing
phase, and that the communication can be improved for “tall and narrow” circuits. Eventually,
using the techniques of [DNNR17,KOR+17], our protocols directly extend to the malicious setting
for boolean circuits, at an additive cost of N · κ bits of communication (for some statistical security
parameter κ), and a O(κ) overhead in computation and correlated randomness (more advanced
techniques from [DNNR17] can be used to make this overhead constant).

Static vs Adaptive Setting. While we focus for simplicity on the static setting in this work,
where the adversary decides before the protocol which parties to corrupt, our protocols can be
proven to also satisfy adaptive security in a relatively straightforward way. Indeed, when it must
reveal the input of a party which is being corrupted by the adversary, the simulator of our main
protocol (and its variants) can easily explain the view of the adversary as being consistent with
any input of its choice, by choosing the preprocessing material in an appropriate way. As the view
of the adversary will always consist of values perfectly masked by random coins generated in the
preprocessing phase, there will always be a choice of preprocessing material which “unmask” the
values known to the adversary to any value chosen by the simulator.

1.2 Our Method

Perhaps surprisingly, our method does not depart significantly from existing techniques in secure
computation. Our starting point is the one-time truth-table (OTTT) protocol of [IKM+13], which
has optimal communication but requires an exponential amount of data. It has been observed in
several works that using OTTT as an internal component in secure protocols can be used to reduce
their communication. For example, it was suggested to use OTTT to securely compute S-boxes in
AES in [DNNR17,KOR+17], as they can be efficiently represented as small lookup-tables. More
recently, the work of [DKS+17] developped methods to automatically create tradeoffs between
communication and computation in secure protocols, by relying on a compiler that transforms
high-level descriptions of a function into a lookup-table-based representation of the function. All
these works rely on the fact that, for functions that can be broken into small interconnected
lookup-tables, the protocol of [IKM+13] can be used to save some communication.
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Dividing Layered Boolean Circuits into Local Functions. In this work, we show that this
intuition can in fact be extended to arbitrary layered boolean circuit of size s, and that the savings
obtained this way lead to a protocol with o(s) communication. Our protocol builds upon a variant of
the result of [IKM+13], which states that every function can be securely evaluated in the correlated
randomness model with perfect security, optimal communication, and exponential storage. Our
variant relies on the observation that when evaluating local functions, where each output bit depends
on a number c of input bits, we can reduce the storage cost of the protocol of [IKM+13] from being
exponential in the input size to being only exponential in the locality parameter c. Indeed, consider
the task of securely evaluating a function with n input bits, and m output bits. The protocol
of [IKM+13] (called OTTT, for one-time truth table) requires the parties to store shares of (a shifted
version of) the truth table of the function, which has size m ·2n, exponential in the input size. When
the function is c-local, however, there is a better solution: the parties can store shares of (shifted
variants of) truth tables corresponding to each function mapping c input bits to a given output
bit, for a total storage cost of m · 2c. Some care must be taken, as doing straightfoward parallel
repetitions of the OTTT protocol for each subfunction would increase the communication from
O(n) to O(c ·m); we show that carefully avoiding redundancies in the secret-shared representation
of the input allows to bring this cost back to O(n). We formally state this result in a lemma, which
we call core lemma.

Given the core lemma, our result is obtained by breaking an arbitrary layered circuit into chunks,
each chunk containing some number k of consecutive layers. We observe that, as the underlying
directed graph of the circuit has indegree 2, each value associated to the last layer of a chunk can
be computed as a function of at most 2k values on the last layer of the previous chunk. Therefore,
computing all the values on the last layer of a chunk can be reduced to evaluating a 2k-local
function of the values on the last layer of the previous chunk. Using the core lemma, this can be
done using O(w · 22k) bits of preprocessing material, where w is the width of the input layer, with
a communication proportional to w only. If the circuit has size s, width w, and depth d, this means
that the circuit can be securely evaluated in a chunk-by-chunk fashion, with total communication
O((d/k) · w) = O(s/k), using O((d/k) · 22k) bits of correlated randomness; setting k ← log log s
gives the claimed result.2

Extending the Result to Arithmetic Circuit. The above method breaks down in the case of
arithmetic circuits over large order fields. While we can decompose an arbitrary LBC into polynomial-
size truth tables (by breaking it into interconnected functions operating on logarithmically many
inputs), this is not true anymore for arithmetic circuit over fields of exponential size, where even
a function with a single input will have an exponential-size truth table. We nevertheless obtain
a comparable result for arithmetic circuit, building upon a relation with the notion of private
simultaneous message (PSM) protocols [FKN94], which establishes that PSM protocols with some
additional decomposability property can be used to build two-party secure computation protocols
in the correlated randomness model. This link was indirectly established in [BIKK14], where a
connection was drawn both between PSM and PIR, and between MPC in the correlated randomness
and PIR. Building upon a recent PSM protocol of [LVW17] for multivariate polynomial evaluation,
we get an arithmetic analogue of the protocol of [IKM+13], which relies on the representation of
arithmetic functions as multivariate polynomials. From this protocol, we derive a new version of
our core lemma, tailored to the arithmetic setting, which directly leads to a secure computation
protocol with communication O(s/log log s) for layered arithmetic circuits over arbitrary fields.

We note that, while lookup-table-based secure computation protocols for boolean circuits have
been investigated, the extension of this approach to the arithmetic setting was (to our knowledge)
never observed before. As a minor side contribution of independent interest, we further observe that
our generalization to the arithmetic setting does in fact also provide some improvement over the
original TinyTable protocol [DNNR17] in the boolean setting: by replacing the lookup-table-based
representation of boolean gates by a multivariate-polynomial-based representation, we show that
the storage requirement of their protocol can be reduced by 25%.

2 We assume w · d = O(s) in this high level explanation for simplicity only, this is not a necessary condition
in the actual construction.
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On the Lower Bounds of [IKM+13, DNPR16]. It should be noted that our protocols do
not follow the standard gate-by-gate design of unconditionally secure protocols in the correlated
randomness model, hence our result does not contradict the lower bound of [DNPR16]. Moreover, our
results apply only to circuits, while the implausibility result of [IKM+13] assumes the existence of a
low-storage protocols for evaluating any function, which our results do not provide. Therefore, they
do not lead to unexpected breakthroughs for information-theoretic private information retrieval.

1.3 Related Work

The possibility of securely computing functions given access to a source of correlated random coins
was first studied in the work of Beaver for the (MPC-complete) oblivious-transfer functionality
in [Bea95], and later generalized to the commodity-based model, where multiple servers generate
correlated random coins in a honest majority setting in [Bea97]. The study of multiparty computation
in the preprocessing model, where the correlated-randomness coin-generation phase is implemented
with a computationally secure MPC protocol, was initiated in [Kil88,Bea92, IPS08]. These works
started a rich line of work on increasingly efficient MPC protocols in the preprocessing model [IPS09,
BDOZ11,NNOB12,DPSZ12,DZ13,DLT14,LOS14,FKOS15,BLN+15,DZ16,KOS16,DNNR17].

The quest for secure multiparty computation protocols with low-communication was initiated
in [BFKR91], which gave a protocol with optimal communication, albeit with exponential computa-
tion and only for a number of party linear in the input size. An optimal communication protocol
with exponential complexity was also given in [NN01]. The work of [BI05] gives a low-communication
protocol for constant-depth circuit, for a number of parties polylogarithmic in the circuit size. The
breakthrough result of Gentry [Gen09] led to optimal communication protocols in the computational
setting [DFH12,AJL+12] under the LWE assumption.3 More recently, computationally secure MPC
protocols with sublinear communication were achieved from the DDH assumption in [BGI16].

The study of low-communication protocols in the correlated randomness model was initiated
in [IKM+13], where a protocol with optimal communication and exponential storage complexity was
presented. The same paper showed that improving the storage requirement for all functions would
imply a breakthrough in information-theoretic PIR. The work of [BIKK14] reduces the storage
requirement for functions with n inputs to 2O(

√
n), at the cost of increasing the communication

complexity to 2O(
√
n). The work of [BIKO12] leads to low-communication protocols in the correlated

randomness model for the special case of depth-2 circuits with a layer of OR gates and a layer of gates
computing a sum modulo m, for composite m. All known protocols for evaluating arbitrary circuits
in the correlated randomness model (with polynomial computation and storage) use communication
linear in the circuit size. This limitation was formally studied recently in [DNPR16], where it was
shown that it is inherent in the setting of gate-by-gate protocols.

The idea of using truth-table representation to reduce the communication of secure computation
protocols first arose in [CDv88], and was developped in [IKM+13]. It was later used implicitely
in [KK13], to construct one-out-of-two oblivious transfer for short string from one-out-of-N oblivious
transfer, and in the works of [DNNR17,KOR+17,DKS+17] to evaluate circuits with an appropriate
structure.

On the Relation to [DNNR17]. At a late stage of our work on this paper, it was brought to our
attention that the main techniques underlying the proof of our core lemma – informally, breaking
a function into interconnected truth-tables, representing each outgoing wires from a table with
secret-shared values, and carefully avoiding all redundancies for wires which are used by several
tables – are already implicitely present in [DNNR17]. Indeed, [DNNR17] already explored the
possibility of breaking a circuit into small interconnected truth table, avoiding redundancies in the
secret-shared representation of the values associated to each wire, and envisionned the possibility of
generalizing this to larger tables. However, it appears that the authors of [DNNR17] have overlooked
the surprising potential consequences of these techniques, which we explore in this paper. Therefore,
our work can be seen as indentifying and abstracting out the technical ideas underlying our main
3 More precisely, the protocol needs to assume the circular security of an LWE-based encryption scheme;
alternatively, it can be based on the LWE assumption only, but the communication will grow with the
depth of the circuit.
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result (as well as providing additional contributions, such as the extension to the arithmetic setting),
but while the core lemma is new to our work, we cannot (and do not) claim the novelty of the
techniques used in its proof, which should be credited to [DNNR17]. Still, we believe that our result
remains interesting and surprising, and that it deserves to be explicitely presented.

1.4 On the Practical Efficiency of our Protocols

In spite of its theoretical nature, our result can in fact lead to concrete efficiency improvements
for secure multiparty computation. We focus for simplicity on the case of two-party computation,
and argue that our protocols can lead to improved efficiency, for useful types of computation. The
state-of-the-art protocol for secure two-party computation in the correlated randomness model is, to
our knowledge, the protocol of [DNNR17] (in both the passive setting and the active setting), which
also relies on an OTTT-based evaluation of a boolean circuit. In the online phase, the protocol
of [DNNR17] communicates 2 bits per AND gate (one from each player), and no bit at all for XOR
and NOT gates (we note that our protocols can be readily adapted to allow for free XOR and NOT
gates as well).

Concrete Efficiency. Using our protocol with k = 2, we get a two-party protocol which commu-
nicates on average a single bit per AND gate, improving over the protocol of [DNNR17] by 50%
in both the passive and the active setting, for arbitrary layered circuits. This comes at the cost
of storing 8 times more preprocessed data (a factor 22k/k = 8 for k = 2), and a factor 2k/k = 2
in computation (which comes from the need to search four-times larger lookup-tables). As noted
in [DNNR17], the limiting factor in a concrete implementation of TinyTable is the bandwidth,
hence we expect that an implementation of our protocol would result in concrete improvements
over [DNNR17] in the speed of the online phase.

On the Generality of Layered Boolean Circuits. Unlike [DNNR17], however, our construction
is restricted to layered boolean circuits. While this is a large class of circuits, and getting improved
secure computation protocols for this class was already seen as an interesting goal in previous
papers [BGI16], one might wonder whether this class captures useful circuits, ones that arise
naturally in some applications. We argue that it is the case, by providing a (non-exhaustive) list of
types of circuits that are well-suited for our protocols. We stress that this list is only for illustration
purpose; many more examples can be found.

– FFT circuit. The circuit for the fast Fourier transform, which is used in signal processing
and integer multiplication, and the circuit for permutation networks [Wak68], which allow to
compute arbitrary permutations of the input, have the exact same structure and are layered.
For these circuits, which occur naturally in many applications, our protocol leads to an online
communication of O(n log n/log log n) instead of O(n log n).

– Symmetric crypto primitives. It was already observed previously that any computation involving
large truth tables, such as block ciphers (e.g. AES), have the appropriate structure to be
evaluated efficiently with our approach. More generally, algorithms that proceed in sequences of
low-complexity rounds, where each round requires only the state of the previous round (and the
input), are naturally “layered by blocks”, which suffices for our result to apply. This structure is
common to many primitives in symmetric cryptography.

– Circuits for problems with a dynamic-programming algorithm. Dynamic programming algorithm
naturally proceed in stages, such that the computation at each stage depends on a (usually small)
state of values stored after the previous stage. Such dynamic programming algorithms arise for
example in various useful types of distance measures used in genetic computation, such as the
Smith-Waterman distance [SW81], or the Levenshtein distance [Lev66] and its variants (LCS,
weighted Levenshtein distance, etc). Privacy-preserving genomic computations are an important
application of secure computation, hence the secure computation of the aforementioned measures
(which are among the fundamental building blocks of computational biology) has been considered
at length (see e.g. [AKD03,SPO+06,JKS08,HEKM11,ALSZ13,CKL15]). The natural circuit
for computing Levenshtein and Smith-Waterman distances have size O(n2 log n), but can be
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computed with online communication O(n2) with our protocol (the log n shaving comes from
the high locality of dynamic programming algorithms; our result leads to better sublinearity
guarantee for very local computations).

1.5 On Implementing the Correlated Randomness Model

It is well known that the distribution of correlated random coins in the preprocessing phase can be
implemented by any genericMPC protocol. However, in our setting, generic approaches would require
a communication superlinear in the circuit size. We note that, for the specific case of generating
random shares of correlated strings, there are better (theoretical) solutions: under the learning with
error assumption, or under (variants of) the decisional Diffie-Hellman assumption in the two-party
case, the preprocessing phase of our protocols can be implemented with constant communication
poly(λ) (where λ is a security parameter), independent of the size of the circuit, resulting in protocols
with sublinear total communication O(s/log log s+ poly(λ)), and information-theoretically secure
online phase.

We briefly sketch how the preprocessing phase can be implemented with constant communication.
The main technical tool is a primitive known as homomorphic secret sharing [BGI16] (HSS);
the idea of using HSS to the implement preprocessing phase of MPC protocols was suggested
in [BGI17,BCG+17]. Informally, an HSS scheme for a class of functions F allows to secretly share an
input x between several parties, such that given its share, each party can locally compute an additive
share of f(x), for any f ∈ F . Given an HSS scheme for all circuits, the preprocessing phase can be
implemented as follows: we assume without loss of generality that the trusted dealer first samples a
long random string x, computes f(x) for some specified function f , and distributes random additive
shares of f(x) to the parties (e.g. in our protocol, f would output ≈ s/log log s shifted truth-tables).
To implement this preprocessing phase, the parties jointly and securely construct, using a general
purpose MPC protocol, an homomorphic secret sharing of a random PRF key K. Then, all parties
locally evaluate the function f ′ that takes some counter c, generates pseudorandom coins x from
this counter using the PRF with key K (e.g. by computing PRF(K, c), PRF(K, c+ 1), and so on),
and returns f(x). This way, with no further communication except for a one-time generation of the
sharing of K (which takes communication poly(λ), independently of s), the parties obtain correlated
(pseudo) random coins. An HSS scheme for all functions (and a PRF) can be constructed under
the LWE assumption [BGI15,JRS17]. With a more involved construction, a protocol can also be
obtained from DDH: under the DDH assumption, there exists an approximately-correct HSS scheme
for NC1 [BGI16], in the two-party setting. Noting that the preprocessing function is parallelizable
(in NC0) and that there exists PRFs in NC1 under the DDH assumption, we can implement the
previous strategy from DDH. The correlated random coins obtained this way are not all correct, but
the approximately-correct HSS scheme of [BGI16] allows the parties to make the error probability
arbitrarily small, and to detect when an output is erroneous. By setting the error parameter so
that, with overwhelming probability, a small (constant) number of correlated random coins will be
erroneous, and by introducing some redundancy in the coins generated this way, the parties can
simply reveal to each other which correlated coins are susceptible to be erroneous (indicating the
position of erroneous bits only requires O(log s) communication), and locally delete them. To prove
security in spite of this small leakage, we need to rely on slightly leakage-resilient PRF and HSS,
which can both be constructed from DDH-based primitives using standard approaches. We refer
the reader to the full version [BCG+18] of [BCG+17] for a detailed overview of this approach.

1.6 Organization

Section 2 introduces our notations, and recalls standard preliminaries on circuits. In section 3, we
summarize the contributions of this paper in the form of a list of theorems, formally state the core
lemma on which these theorems are based, and prove it. Section 4 builds upon the core lemma; it
introduces our main protocol and several variants, and proves its security. In Section 5, we discuss
the extension of our protocols to the malicious setting. Eventually, Section 6 lists some questions
left open by our work, that we believe to be of interest for future works.
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2 Preliminaries

Notations. Let k be an integer. We let {0, 1}k denote the set of bitstrings of length k. For two
strings (x, y) in {0, 1}k, we denote by x⊕ y their bitwise xor. Given a subset S of [k], x[S] denotes
the subsequence of the bits of x with indices from S. We use bold letters to denote vector; for a
vector x = (x1, · · · , xN ), x[S] denotes the vector (x1[S], · · · , xN [S]). For a matrix M , we denote
M |i,j its entry (i, j).

2.1 Circuits

Boolean Circuits. A boolean circuit C with n inputs and m outputs is a directed acyclic graph
with two types of nodes:

– The input nodes are labelled according to variables {x1, · · · , xn};
– The gates are labelled according to a base B of boolean functions.

In this work, we will focus on boolean circuits with indegree two (hence, B contains boolean
functions with domain {0, 1} or {0, 1}2). C contains m gates with no children, which are called
output gates. If there is a path between two nodes (v, v′), we say that v is an ancestor of v′.
The size size(C) of C is the number of its nodes; its depth depth(C) is the length of the longest
path from an input node to an output gate. The width of a circuit C = (V,E) is defined as
width(C) = max1≤i≤depth(C) #{v ∈ V | (0 ≤ depth(v) ≤ i) ∧ (∃w, (v, w) ∈ E ∧ depth(w) > i)}.

Layered Boolean Circuits. In this work, we will consider a special type of boolean circuits,
called layered boolean circuits (LBC). An LBC is a boolean circuit C whose nodes can be partitioned
into d = depth(C) layers (L1, · · · , Ld), such that any edge (u, v) of C satisfies u ∈ Li and v ∈ Li+1

for some i ≤ d− 1. Note that the width of a layered boolean circuit is also the maximal number of
non-output gates contained in any single layer. Evaluating a circuit C on input x ∈ {0, 1}n is done
by assigning the bits of x to the variables {x1, · · · , xn}, and then associating to each gate g of C
(seen as a boolean function) the bit obtained by evaluating g on the values associated to its parent
nodes. The output of C on input x, denoted C(x), is the bit-string associated to the output gates.

Arithmetic Circuits. We define arithmetic circuits over a field F comparably to boolean circuits,
as directed acyclic graphs with input nodes and arithmetic gates. Input nodes are labeled with
variables {x1, · · · , xn} over F, and the gates compute negation, addition, or multiplication over F.
Note that boolean circuits correspond to the special case of arithmetic circuits over the field F2; we
extend layered boolean circuits to layered arithmetic circuits (LAC) in a similar way.

2.2 One-Time Truth Tables

We recall the one-time truth-table protocol of [IKM+13], which is at the heart of our protocols.
It allows multiple parties to jointly evaluate a function f : X1 ×X2 × · · · ×XN 7→ Z, by sharing
between all parties a scrambled version of the truth table of f . We focus for simplicity on a scenario
where all parties receive the same output, but the protocol can be trivially generalized to a setting
where the parties receive different outputs. The protocol is represented on Figure 1; it has optimal
communication

∑
i log|Xi|+N · log|Z|, and exponential storage complexity |Z|·

∏
i|Xi| per party.

3 Theorems and Core Lemma

In this section, we formally introduce the theorems which we will prove in this work, state the core
lemma from which we will derive them, and prove it.

Network Model. We consider protocols involving N parties communicating over synchronous and
authenticated broadcast channel. Note that broadcasts channels can be unconditionally implemented
from (insecure) point-to-point channels in the correlated randomness model.
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Protocol OTTT

Functionality:
– Public parameters: an N -party functionality f : X1 ×X2 × · · · ×XN 7→ Z, where the (Xi,+)

and (Z,+) are groups.
– The parties (P1, · · · , PN ) hold respective inputs x = (x1, · · · , xN );
– Output: each party Pi learns z = f(x).

Preprocessing :
1. Sample r = (r1, · · · , rN )

$← X1×X2× · · · ×XN . Let M denote the truth-table of f permuted
with the shifts r, i.e., for any x ∈ X1 ×X2 × · · · ×XN , M |x+r= f(x).

2. Let (Mi)i≤N be a random (N -out-of-N) secret sharing of M . Output (ri,Mi) to each party
Pi.

Protocol(x) :
1. Each party Pi with input xi broadcasts ui ← xi + ri.
2. Each party Pi broadcasts zi ←Mi|u. All parties reconstruct z ←

∑N
i=1 zi.

Fig. 1. Protocol OTTT for evaluating an arbitrary N -party functionality f in the correlated randomness
model, against a passively corrupted majority

Functionalities. An N -party functionality F : X1×X2×· · ·×Xn 7→ Z1×Z2×· · ·×ZN specifies
a mapping from the N input of each party to N outputs (one for each party). Such functionalities
capture arbitrary non-reactive computation tasks. A useful special case of (randomized) N -party
functionalities are secret sharing functionalities for functions over an abelian group (G,+): a
protocol computes secret shares of a function g : G 7→ G if it computes the (randomized) N -party
functionality which, on input (x1, · · · , xN ) ∈ GN , outputs N uniformly random group elements
(z1, · · · , zN ) ∈ GN subject to

∑N
i=1 zi = g(

∑N
i=1 xi). This captures the situation where the parties

hold secret shares of an input to a (deterministic) function, and want to receive secret shares of the
output of the function.

3.1 Theorems

Following is a summary of the results that we obtain in the subsequent sections.

Theorem 1. For any N-party functionality f represented by a layered (boolean or arithmetic)
circuit C of size s with n inputs and m outputs, and for any integer k, there is a perfectly secure
protocol which realizes f in the preprocessing model against semi-honest parties, without honest
majority, with communication n+N · (m+ ds/ke) and storage n/N + (m+ ds/ke) · (22k + 1).

In the above theorem, “storage” refers to the number of correlated random coins stored by each
party at the end of the preprocessing phase (counted as a number of bits in the boolean case, and
as a number of field elements in the arithmetic case). This gives, setting k = log log s,

Corollary 2. There is a protocol that perfectly realizes any N -party functionality f (in the function-
dependent preprocessing model and against semi-honest parties, without honest majority) represented
by a layered (boolean or arithmetic) circuit C of size s with n inputs and m outputs, with communi-
cation O(n+N · (m+ s/log log s)) and polynomial storage.

Building on the same techniques, we can also obtain a comparable result in the stronger
function-independent correlated randomness model, where the correlated randomness is not allowed
to depend on the target functionality (but is only given a bound on its size):

Theorem 3. For any N-party functionality f represented by a layered (boolean or arithmetic)
circuit C of size s with n inputs and m outputs, and for any integer k, there is a perfectly
secure protocol which realizes f in the function-independent preprocessing model against semi-
honest parties, without honest majority, with communication n + N · (m + ds/ke) and storage
n/N + (m+ ds/ke) · (2k+22

k

+ 1).
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Setting k = log log log s gives us

Corollary 4. There is a protocol that perfectly realizes any N -party functionality f (in the function-
independent preprocessing model and against semi-honest parties, without honest majority) repre-
sented by a layered (boolean or arithmetic) circuit C of size s with n inputs and m outputs, with
communication O(n+N · (m+ s/log log log s)) and polynomial storage.

Finally, we can obtain a stronger sublinearity guarantee for “tall and narrow” layered circuits:

Theorem 5. For any N-party functionality f represented by a layered (boolean or arithmetic)
circuit C of size s and width w with n inputs and m outputs, and for any integer k, there is a perfectly
secure protocol which realizes f in the preprocessing model against semi-honest parties, without
honest majority, with communication n+N · (m+ ds/ke) and storage n/N +(m+ ds/ke) · (2w·k +1).

For example, setting k =
√

log s gives us

Corollary 6. There is a protocol that perfectly realizes any N -party functionality f (in the prepro-
cessing model and against semi-honest parties, without honest majority) represented by a “tall and
narrow” layered (boolean or arithmetic) circuit C of size s and width w = O(

√
log s) with n inputs

and m outputs, with communication O(n+N · (m+ s/
√

log s)) and polynomial storage.

Alternatively, we get a protocol with communication O(s/log s) for constant-width circuit (which
corresponds to the complexity class SC0). This can again be generalized to the stronger function-
independent correlated randomness model. In the next section, we proceed with the description of
our protocol. We first focus on the case of layered boolean circuits, and then discuss our extension
to the case of arithmetic circuits.

3.2 Core Lemma

In this section, we state and prove the core lemma which underlies our results.

Definition 7 (Local Function). A Function g : Fn2 7→ Fm2 is c-local (for some integer c ≤ n) if
on any input x ∈ Fn2 , any output bit of g(x) depends on at most c bits from x.

Lemma 8 (Core Lemma). For any c-local function g : Fn2 7→ Fm2 , there is an information-
theoretic semi-honest N -party secure computation protocol (with dishonest majority) in the correlated
randomness model for computing secret shares of g with total online communication N · n bits, and
correlated randomness m · 2c + n bits per party.

Before proving Lemma 8, it is instructive to compare its guarantees to the protocol obtained
by applying directly the one-time truth-table protocol of [IKM+13] to the N -party functionality
computing secret shares of g. Applying the OTTT protocol to the N -party functionality which
sums its entries (over F2) before evaluating g, we get a protocol with total communication N · n
and correlated randomness m · 2N ·n. However, it is straightforward to improve this protocol, by
applying the OTTT protocol to the 1-party functionality g, and letting the trusted dealer distribute
random shares of the shift r to all parties in the preprocessing phase: in the online phase, each
party broadcasts his share of the input x, masked with his share of the shift r; this allows all
parties to reconstruct x+ r. With this modification, the parties need only to store a share of the
one-dimensional truth-table of g, of size m · 2n.

Therefore, Lemma 8 can be seen as an generalization of the result of [IKM+13], which shifts the
exponential cost of the correlated randomness from the input size to the locality parameter of the
function. In the most general case, when c = n, we recover the result of [IKM+13] (for the special
case of the secret sharing functionalities, and up to an additive factor n); when c < n, however, this
leads to a protocol which uses a smaller amount of correlated randomness.

Proof. Let g : Fn2 7→ Fm2 be a c-local function. Without loss of generality, we assume that each
output bit of g depends on exactly c input bits. For j = 1 to m, we denote by Sj ⊂ [n] the size-c
subset of the bits of the input on which the j’th output bit depends. We denote by gj ← restrict(g, j)
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the following function: gj : Fc2 7→ F2 is the function which, for any x ∈ Fn2 , computes the j’th output
bit of g(x) when given the appropriate subset x[Sj ] of the bits of x as input.

We describe on Figure 2 the protocol Πlocal, which allows N parties holding shares of an input x
to securely compute (in the semi-honest model, with correlated randomness) shares of g(x), for
some c-local function g. Below, we prove that Πlocal satisfies all the properties of Lemma 8. It
follows immediately by inspection that the total communication of Πlocal is N · n bits, and that the
amount of preprocessing material stored by each party is m · 2c + n. We now turn our attention to
correctness and security.

Protocol Πlocal

Functionality:
– Public parameters: a c-local function g : Fn2 7→ Fm2 , and the m size-c subsets Sj ⊂ [n] of the

bits of the input on which the j’th output bit of g depends.
– Input: the parties (P1, · · · , PN ) hold random shares (x1, · · · , xN ) of an input x over Fn2 ;
– Output: the parties output uniformly random shares of g(x).

Πlocal.Preprocessing(g) :
1. Sample (r1, · · · , rN )

$← Fn2 × · · · × Fn2 . Set r ←
∑N
i=1 ri.

2. For j = 1 to m, let gj ← restrict(g, j).
3. Let Mj denote the truth-table of gj permuted with the shift r[Sj ], i.e., for any y ∈ Fc2,

Mj |y+r[Sj ]= gj(y). Note that Mj is of size 2c.
4. Let (M i

j)i≤N,j≤m be random (N -out-of-N) secret sharings of the Mj . Output (ri, (M
i
j)j≤m)

to each party Pi for i = 1 to N .
Πlocal.Protocol(g,x) :

1. Each party Pi with share xi broadcasts ui ← xi + ri. Let u←
∑N
i=1 ui.

2. Output: each party Pi outputs, for j = 1 to m, zi,j ←M i
j |u[Sj ].

Fig. 2. Protocol Πlocal for securely computing secret shares of a function g between N -party, with semi-honest
and information-theoretic security in the correlated randomness model.

Claim. The protocol Πlocal is correct.

Proof: for any j ∈ [m],

N∑
i=1

zi,j =

N∑
i=1

M i
j |u[Sj ]

= Mj |u[Sj ] by definition of the M i
j

= Mj |∑
i xi[Sj ]+ri[Sj ]

by definition of u

= Mj |x[Sj ]+r[Sj ]
= gj(x[Sj ]) by definition of Mj

= g(x)[j] by definition of gj .

We now turn our attention to security. We represent on Figure 3 the ideal secret-sharing
functionality for g. Note that the functionality explicitely allows the adversary to choose the output
of the corrupted parties; this is a standard (and minor) technicality of protocols whose output is
secret shared between the parties. An alternative is to let the functionality pick the output of all
parties at random; however, to realize this functionality, we would need to add a (simple) resharing
step at the end of the protocol Πlocal, which would add unnecessary communication to the protocol.

Claim. The protocol Πlocal implements the ideal functionality Flocal with perfect security against a
semi-honest corruption of a majority of the parties.

Proof: let H ⊂ [N ] denote the subset of honest parties, and let C ← [N ] \H denote the subset
of (passively) corrupted parties; the simulator Sim first sends (corrupt, C) to Flocal on behalf of the
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Ideal Functionality Flocal

The functionality is parametrized with the description of a function g : Fn2 7→ Fm2 , and the identities
of and adversary A and N parties P1, · · · , PN . The functionality aborts if it receives any incorrectly
formatted message.

1. On input a message (corrupt, C) with C ( [N ] from A , set H ← [N ] \ C and store (H,C).
2. On input a message (input, xi) from each party Pi for i ∈ [N ], store z ← g(

∑
i∈N xi) and send

ready to A .
3. On input a message (set-output, (zi)i∈C) from A , pick |H| uniformly random values (zi)i∈H ∈

(Fn2 )|H| under the constraint
∑
i∈H zi = z −

∑
i∈C zi.

4. On input a message (send, R) from A with R ∈ [N ], send zi to each party Pi with i ∈ R, and ⊥
to all other parties, then terminate.

Fig. 3. Ideal Functionality Flocal for the secure computation of secret shares of g(x) on an input x ∈ Fn2
shared between N parties.

ideal aversary A . Sim simulates the preprocessing phase by distributing uniformly random coins
(ri, (M

i
j)j≤m)i∈C to all corrupted parties. In the online phase, the simulator picks random ui in Fn2

for every i ∈ H, and broascasts them on behalf of the honest parties. When he receives (ui)i∈C ,
he computes for each i ∈ C xi ← ui − ri, and zi ← (M i

j |u[Sj ])j≤m ∈ Fm2 . He sends (input, xi) on
behalf of each corrupted party Pi to the ideal functionality Flocal, and wait until he receives ready
from Flocal. Then, he sends (set-output, (zi)i∈C) and (send, R) on behalf of A to Flocal, where R is
the set of parties that can obtain the output (which Sim can obtain by observing which corrupted
parties aborted early). It is immediate to see that the view of the environment (which consists of
the preprocessing material, the ui, and the outputs of the parties) in the ideal world with Sim is
perfecty distributed as its view in the real world. This concludes the proof of the core lemma.

4 A Sublinear Protocol for Layered Circuits

In this section, we prove Theorem 1, by exhibiting a generic secure multiparty computation protocol
in the correlated randomness model against passive corruption of a majority of the parties, for
any layered boolean circuit, with sublinear communication in the circuit size s. Informally, the
construction proceeds by breaking the layered circuit into chunks, each chunk containing k = k(s)
consecutive layers, for some function k. The parties will evaluate the circuit by computing shares of
the values carried by the wires leaving a chunk, given as input shares of the values carried by the
wires entering the chunk. As a chunk contains k layers and the directed graph of the circuit has
indegree 2, this task corresponds to the secure evaluation of (shares of) a 2k-local function, with
(approximately) w inputs and w outputs (where w is the width of the circuit). By the core lemma
(Lemma 8), this can be done with communication O(w) and using O(w · 22k) bits of correlated
randomness per party. After d/k chunk evaluations (d is the depth of the circuit), the parties end up
with shares of the values the output wires, which they can broadcast to reconstruct the output. The
total communication involved is O(dw/k) = O(s/k), with O(22

k ·s/k) bits of correlated randomness
per party.

4.1 Construction

Let C be a layered boolean circuit with n inputs and m outputs, of size s and depth d = d(n), with
layers (L1, · · · , Ld). For i = 1 to d, we let wi denote the width of the layer Li. We fix an arbitrary
ordering of the nodes.

Let k be an integer. We divide C into d′ = dd/ke chunks (chi)i≤d′ , each chunk containing
k consecutive layers (the last chunk contains less layers is k does not divide d). Let t ∈ [k] be
chosen so that the sum of the widths of the t’th layer of each chunk is bounded by ds/ke (such a t
necessarily exists, otherwise, we would get a contradiction: s =

∑d
i=1|Li|=

∑k
i=1(

∑d/k
j=1|Ljk+i|) >



On the Communication of MPC in the Correlated Randomness Model 13∑k
i=1ds/ke ≥ s). For i = 1 to d′, we denote ti the index of the t’th layer in chi; it holds that∑d′

i=1 wti ≤ ds/ke.
For i = 1 to d′, we let mi denote the number of output nodes between the layers Lti−1

and Lti
(
∑
imi = m). For any i ≤ d′, and j ≤ wti +mi, we denote ni,j the j’th node of the layer Lti ∈ chi

if j ≤ w, and the (j − w)’th output node between the layers Lti−1
and Lti otherwise. We associate

two sets to each ni,j : we let Ai,j denote the set of ancestors of ni,j which belong to Lti−1
(A1,j is

empty for all j ≤ wt1 +m1), and we let Ii,j denote the set of input nodes between the layers Lti−1

and Lti which are ancestors of ni,j . We let αi,j (resp. ιi,j) denote the size of the set Ai,j (resp. Ii,j).
We illustrate this construction on Figure 4. Observe that C has indegree 2, which implies that any
node ni,j of the t’th layer of a chunk can have at most 2k ancestors in the t’th layer of the previous
chunk, hence αi,j + ιi,j ≤ 2k.

(i− 1)’th
distinguished
layer

i’th
distinguished
layer

(i− 1)’th
chunk

i’th
chunk

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Ai,2

Ii,2

ni,2

Fig. 4. Illustration of the construction of the sets (Ai,j , Ii,j) for a node ni,j on a layered directed acyclic
graph. The index j is taken equal to 2 on this figure. The dashed edges denote the paths of the graph that
end at ni,2.

Our protocol proceeds by evaluating the circuit C on an input x (seen as a size-N vector
(x1, · · · , xN ) over {0, 1}n/N , where xj is the input of the party Pj) in a chunk-by-chunk fashion.
We say that the parties evaluate a chunk i when they compute (shares of) all the values associated
to the nodes of the layer Lti , as well as (shares of) all the values associated to the output nodes
between the layers Lti−1 and Lti . Each chunk will be evaluated during a round. We will denote by
yi,` the bitstring of the shares of the values on Lti computed by the party P` in the i’th round, and
yi =

⊕N
`=1 yi,` the reconstructed value. Similarly, we denote by zi,` the bitstring of the shares of

the values on the output wires between Lti−1
and Lti computed by the party P` in the i’th round,

and zi =
⊕N

`=1 zi,` the reconstructed output string. For simplicity, for any ` ≤ N , we denote by
y0,` an arbitrary dummy string (this is just to simplify the description of the protocol; as the A1,j

are empty, these strings will not have any effect on the protocol anyway).
For any i ≤ d′ and j ≤ wti +mi, we let fi,j denote the following function: on input the substring

x[Ii,j ] of the input string x, and the bitstring yi−1[Ai,j ] (whose bits form a substring of the values
in Lti−1

), fi,j outputs the value associated to the node ni,j . We let δi ← wti +mi denote the number
of functions fi,j for a fixed i. Finally, we denote by fi : Fwti+n2 7→ Fδi2 the following function: on
input the string yi−1 associated to the distinguished layer of the (i− 1)’th chunk and the input
string x, fi outputs (fi,j(x[Ii,j ], yi−1[Ai,j ]))j≤δi = (yi, zi). Observe that, by construction, fi is a
2k-local function (the j’th output bit of fi depends on αi,j + ιi,j ≤ 2k input bits). The full protocol
is represented on Figure 5.

4.2 Proof of Theorem 1

We now argue that the protocol Πsub satisfies all the properties outlined in Theorem 1.
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Protocol Πsub

Functionality:
– Public parameters: a layered boolean circuit C of size s and depth d, with n input gates and m

output gates, and an integer k.
– The parties (P1, · · · , PN ) hold respective inputs x = (x1, · · · , xN ) of length n/N (we assume

inputs of equal length for simplicity, but the protocol can be adapted to inputs of different
lengths in a straightfoward way);

– Output: all the parties learn C(x).
Πsub.Preprocessing(C) : for i = 1 to d′ = dd/ke, execute Πlocal.Preprocessing(fi).
Πsub.Protocol(C,x) :

– For i = 1 to d′, all parties execute Πlocal.Protocol(fi, (yi−1,x)) (using their shares of yi−1 and x;
note that y0 = by definition). Each party P` gets as output (yi,`, zi,`).

– Output: all the parties broadcast the zi,` for i = 1 to d′. All the parties reconstruct the output
z = (

∑
` zi,`)i≤d′ .

Fig. 5. Protocol Πsub for evaluating a layered boolean circuit C of size s and depth d, with n input gates
and m output gates, in the correlated randomness model against passive corruption of up to N − 1 parties.

Correctness. It follows immediately by inspection: by the correctness of Πlocal, the values yi,`
computed by the parties form shares of the outputs of the functions fi,j evaluated on the ancestors
(in Lti−1) of the nodes of layer Lti (and the ancestors in Lti−1 of the output nodes between the
layers Lti1 and Lti), as well as on the input nodes between the layers Lti1 and Lti . By definitions,
those values are exactly the values associated to the output nodes between the layers Lti1 and Lti
and the nodes in the layer Lti . From there, it immediately follows that the reconstructed outputs
(z1, · · · , zm) are correct.

Security. We prove that the protocol Πsub is perfectly secure against an adversary passively
corrupting a majority of the parties. The ideal functionality Fsub that Πsub must realize is straight-
forward; it is represented on Figure 6. The simulator Sim simply simulates Πsub in the Flocal hybrid
model, relying on the simulator for Πlocal to interface with the real protocol. As Πsub is a simple
sequential composition of executions of Πlocal, security follows immediately.

Ideal Functionality Fsub

The functionality is parametrized with the description of a circuit C : Fn2 7→ Fm2 , and the identities
of and adversary A and N parties P1, · · · , PN . The functionality aborts if it receives any incorrectly
formatted message.

1. On input a message (corrupt, C) with C ( [N ] from A , set H ← [N ] \ C and store (H,C).
2. On input a message (input, x`) from each party P` for ` ∈ [N ], store z ← C(x1, · · · , x`) and send

ready to A .
3. On input a message (send, R) from A with R ∈ [N ], send z to all parties P` with ` ∈ R, and ⊥ to

all other parties, then terminate.

Fig. 6. Ideal Functionality Fsub for the secure computation of secret shares of g(x) on an input x ∈ Fn2
shared between N parties.

Complexity. We now analyze the communication, storage, computation, and interaction of the
protocol Πsub. We first outline a straightforward optimization: observe that each execution of Πlocal

to evaluate (shares of) the output of one of the fi operates, in particular, on the input x (whose
length is n). Instead of using independent executions of Πlocal, where the input vector x ends up
being re-shared between the parties for each execution, the parties can share it only once in an
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“input sharing step”, before the execution of the first instance of Πlocal, and reuse these shares in
each execution. With this optimization, the parties exchange n bits in the input sharing step, and
N · (δi) bits during the i’th round of the circuit evaluation step, for i = 1 to d′ = dd/ke. Therefore,
the total number of bits exchanged is

n+N ·
d′∑
i=1

wti−1 +mi−1 ≤ n+N · (m+ ds/ke)

(note that the additive factor n would be n · d′ without the simple optimization outlined above).
The amount of correlated randomness stored by each party can be upper bounded by

n/N +

d′∑
i=1

δi∑
j=1

2αi,j+ιi,j ≤ n/N +

d′∑
i=1

δi∑
j=1

22
k

≤ n/N + (m+ ds/ke) · 22
k

,

where the first inequality comes from the fact that any node ni,j of the t’th layer of a chunk can
have at most 2k ancestors in the t’th layer of the previous chunk, which leads to the claimed total
storage. Eventually, the round complexity of the protocol is d′ + 1 = O(s/k), and the computation
performed by each party essentially boils down to performing m+ ds/ke searches in lookup tables
of size bounded by 22

k

, which takes time (m+ ds/ke) · 2k.

4.3 Extension to Layered Arithmetic Circuits

So far, our protocol does not readily extend to arithmetic circuits over (exponentially large) finite
fields. The main obstacle toward getting an arithmetic analogue of the protocol Πsub lies in the
generalization of the core lemma to the arithmetic setting: our proof of Lemma 8 relies on the
fact that we can use the OTTT protocol of [IKM+13] to evaluate functions with a “small enough”
truth-table. While in the boolean case, any functionality with c input bits has a truth table of size
2c, this is not true anymore for arithmetic functionalities over large fields, where even single-input
functions have truth table of exponential size. In addition, the standard conversion of arithmetic
circuits into boolean circuits would blow up the size too much: any size-s arithmetic circuit can
be securely evaluated (in the correlated randomness model) with communication O(s) (counting
the number of field elements), but the conversion to a boolean circuit will in general blow up the
circuit size by a log s factor, while our protocol only saves a factor log log s, and does therefore not
lead to a sublinear communication protocol for arithmetic circuits.

Nevertheless, we show that our protocol can be extended to the arithmetic setting, by exhibiting
a natural analogue of the OTTT protocol, tailored to arithmetic functions. Our starting point is the
recent work of [LVW17], on conditional disclosure of secret and private simultaneous message (PSM)
protocols. The authors of [LVW17] build an elegant PSM protocol for multivariate polynomial
evaluation. The protocol has the following features: Alice holds an n-variate polynomial P of degree
deg, Bob holds a vector of input x ∈ Fn, and both parties share a common random string. They
send a single simultaneous message to a third player, Charlie, with optimal communication (Alice’s
message has size O(

(
n+deg
deg

)
), Bob’s message has size O(n)). This allows Charlie to learn P (x), and

nothing more. The protocol works as follows:

– The shared randomness is r ∈ Fn and a random n-variate degree-deg polynomial R.
– Alice sends (x′, u)← (x + r, R(x + r)).
– Bob sends the polynomial Q(X) = P (X − r) +R(X).
– Charlie outputs Q(x′)− u.

The correctness follows immediately by inspection, and security follows by the argument of [LVW17,
Section 5.1]. The above PSM can be readily converted into a 2-player arithmetic analogue of the
OTTT protocol, which relies on a multivariate polynomial representation of an arithmetic circuit
(instead of a truth table representation). We represent on Figure 7 a variant of the protocol Πlocal,
tailored to the arithmetic setting (over an arbitrary field F). Each party sends n field elements
(which is essentially optimal), and stores O(

(
n+deg
deg

)
) field elements.

Using the above protocol, we immediately get a generalization of Lemma 8:
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Protocol POLY

Functionality:
– Public parameters: an arithmetic function f : Fn 7→ Fm of depth k over a finite field F, and

the m size-2k subsets Sj ∈ [n] of the coordinates of the input on which the j’th coordinate of
the output of f depends.

– The parties (P1, · · · , PN ) hold additive shares (x1, · · · ,xN ) of an input x ∈ Fn;
– Output: the parties output uniformly random shares of f(x).

Preprocessing :
1. Sample (r1, · · · , rN )

$← Fn × · · · × Fn. Set r ←
∑N
i=1 ri.

2. For j = 1 to m, let fj ← restrict(f, j).
3. For j = 1 to m, Let Pj(X) denote the normal-form of fj , seen as a 2k-variate polynomial of

degree 2k over F.
4. For j = 1 to m, let Qj(X)← P (X − r[Sj ]) denote the polynomial P shifted with r[Sj ].
5. For j = 1 to m, sample N − 1 uniformly random degree-2k n-variate polynomials

(Rij(X))i≤N−1, and set RNj (X) ← Qj(X) +
∑N−1
i=1 Rij(X). Output (ri, (R

i
j(X))j≤m) to

each party Pi.
Protocol(x) :

1. Each party Pi with share xi broadcasts ui ← xi + ri. Let u←
∑
i ui.

2. Each party Pi outputs, for j = 1 to m, zi,j ← Rij(u[Sj ]).

Fig. 7. Protocol POLY for evaluating an arithmetic function f over a finite field F in the correlated
randomness model, against a passively corrupted majority

Lemma 9. For any depth-k arithmetic circuit f : Fn 7→ Fm, there is an information-theoretic semi-
honest N -party secure computation protocol (with dishonest majority) in the correlated randomness
model for computing secret shares of f with total online communication N · n elements of F, and
correlated randomness m ·

(
2k+1

2k

)
+ n ≈ m · 22k+1

/
√
π2k + n elements of F per party.

Therefore, we get polynomial storage (in s) by setting k ← log log s, as before. This leads to a
protocol for arithmetic circuits of size s, with n inputs and m outputs, with polynomial storage
and total communication O(n+N · (m+ s/log log s)).

Reducing Storage in TinyTable. While the idea of using a multivariate-polynomial representa-
tion instead of a truth-table representation seems relatively natural and is the key to extend the
construction to the arithmetic setting, it was not explicitly observed before. Somewhat surprisingly,
we observe that even in the original (boolean) setting of the TinyTable paper [DNNR17] (which
uses truth-table representation at the gate level, for two-party evaluation of AND gates in boolean
circuits), replacing truth-tables by multivariate polynomials in normal form improves the construc-
tion: it reduces the storage of the parties by 25%. We sketch this observation below. The TinyTable
protocol maintains the following invariant: the parties know masked representation of all inputs to
some gate of the circuit, and will compute a masked representation of the output. Typically, for a
two-input AND gate, both parties will know u = x+ r and v = y + s, where x, y are the inputs to
the gate, and r, s are random masks. In addition, the parties hold random shares of the truth-table
of the function

Fr,s,t : (u, v)→ (u− r) · (v − s) + t,

where t is another fresh random coin. Observe that Fr,s,t(x+ r, y + s) = x · y + t, maintaining the
appropriate invariant. In the TinyTable paper, each party knows a share F0, F1 of the truth-table of
a function of this form, for each AND gate of the circuit, and the output is computed by broadcasting
F0(u, v), F1(u, v) and reconstructing w = F0(u, v)⊕ F1(u, v). This represent a total storage of 4s
bits per party (and 2s bits of communication), where s is the number of AND gates of the circuit.

Now, if we view instead Fr,s,t as a degree-2 polynomial in two variables, we have Fr,s,t =
uv + αu+ βv + γ for some appropriate (α, β, γ) = (−s,−r, t+ rs). Observe that to randomly share
Fr,s,t viewed as a multivariate polynomial, it suffices to share additively each of its coefficients
randomly; furthermore, the leading coefficient of Fr,s,t is always one. Hence, we can improve the
TinyTable AND gate evaluation protocol as follows: the parties receive shares (α0, β0, γ0) and
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(α1, β1, γ1) of (α, β, γ) (this is identical to giving a random degree-one bivariate polynomial R to
one party, and Fr,s,t +R to the other party; note that R needs only having degree one since it needs
not hide the leading coefficient of Fr,s,t, which is 1). Given public values u = x+ r and v = y + s,
the parties exchange w0 = α0u + β0v + γ0 and w1 = α1u + β1v + γ1, and publicly reconstruct
w = uv + w0 + w1. The communication and computation are essentially the same as in [DNNR17],
but the parties must now only store three bits per AND gate, hence 3s bits in total, reducing the
amount of storage required by the protocol by 25%.

4.4 Further Extensions

We sketch in this section how to extend our protocol to the case of function-independent correlated
randomness, and to the case of tall-and-narrow circuits.

Function-Independent Preprocessing. We introduce below a variant of the core lemma, tailored
to function-independent preprocessing. Theorem 3 follows immediately from this variant.

Lemma 10. For any c-local function g : Fn2 7→ Fm2 , there is an information-theoretic semi-honest N -
party secure computation protocol (with dishonest majority) in the function-independent correlated
randomness model for computing secret shares of g with total online communication N · n bits, and
correlated randomness m · 2c+2c + n bits per party.

Proof. To prove Lemma 10, we modify Πlocal as follows: instead of computing shares of the truth
table Mj of gj (which is of size 2c) permuted with the shift r[Sj ], we consider the list (Mj,q)q≤22c

of all possible truth tables, corresponding to a lexicographic ordering of all possible functions gj ,
each table being shifted with the same r[Sj ]. Each party Pi receives (ri, (M

i
j,q)q), which amounts to

n+ 2c · 22c bits of correlated randomness. In the online protocol Πlocal.Protocol, when the functions
gj are revealed, the parties locally drop all unnecessary shares of shifted truth tables, keeping only
the one corresponding to gj . The security analysis immediately follows from the analysis of Πlocal.

Tall-and-Narrow Circuits. For tall-and-narrow circuits, whose width w is small, the proof
follows by observing that in this situation the bound on the size of the sets Ai,j and Ii,j can be
refined to |Ai,j |+|Ii,j |≤ w · k, hence the fi,j have truth tables of size bounded by 2w·k. Theorem 5
follows immediately.

5 Malicious Setting

In the two-party case, combining our passively secure protocol Πsub with the techniques of [DNNR17]
directly implies the existence of a (statistical) unconditionally secure two-party protocol secure
against malicious adversaries, with communication O(n+m+ s

log log s + κ) for a layered boolean
circuit of size s, where κ is a statistical security parameter. Indeed, the protocol of [DNNR17] has a
structure similar to our protocol: it decomposes the circuit into tables, and distributes scrambled
version of these tables to the parties in the preprocessing phase. Each gate of the circuit is evaluated
using the OTTT protocol to obliviously select the output of the gate from its corresponding
scrambled truth-table.

To enhance this protocol to security against malicious adversaries, [DNNR17] uses a simple
and natural information-theoretic authentication procedure. Namely, for each entry b ∈ {0, 1} of a
table given to the first party (let us call it A), the trusted dealer additionaly generates two κ-bit
string (x0, x1), hands xb to A, and (x0, x1) to the other player B. This way, when A must send
the entry b of the table to B, she can authenticate b by sending it along with xb. B then retrieves
the corresponding value xb and checks that A honestly opened b; if A is dishonest, she will be
caught with probability 1− 2−κ. Note that the only local computation performed by the parties
are searches through lookup table, hence authenticating each entry this way suffices to guarantee
security of the entire protocol.

However, directly applying this approach would require transmitting κ bits per output of a table,
which would increase the total communication by a factor of κ. To avoid this overhead, the authors
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of [DNNR17] observe that it is not necessary to explicitely authenticate each entry sent by a party.
Instead, each time A reveals an entry b corresponding to some authentication string xb, she locally
updates a “global MAC key” ∆A ← ∆A ⊕ xb, where ∆A is set to 0 at the start of the protocol.
Simultaneously, when he receives an entry b from A, B retrieves the pair (x0, x1) corresponding to
this entry, and locally updates ΓB ← ΓB ⊕ xb, where ΓB is set to 0 at the start of the protocol.
The parties proceed symmetrically, with ∆B ,ΓA, when B sends an entry to A. At the end of the
protocol, A reveals ∆A and B reveals ∆B . If ∆B 6= ΓA, A aborts the protocol; B does the same if
∆A 6= ΓB. If both checks passed, the parties reconstruct the output. The analysis of [DNNR17]
shows that this guarantees that no party can cause its opponent to accept an incorrect output,
except with probability 2−κ. It increases the amount of preprocessed material by a factor κ,4 but
only adds 2κ bits to the total communication.

For completeness, we provide a full self-contained description of the maliciously-secure two-
party version of our protocol on Figure 8. We refer the reader to Theorem 1 of [DNNR17] for a
detailed proof of security against malicious adversaries; it is straightforward to adapt the proof
to our protocol (we note that, while [DNNR17] focuses on small tables implementing standard
two-input boolean gates, [DNNR17, Section 2.3] already observes that this mechanisms can be
directly generalized to protocols evaluating larger tables).

Extension to N Parties. While the work of [DNNR17] focused only on (maliciously secure) two-
party computation, it was subsequently observed in [KOR+17] that the techniques used in [DNNR17]
can be easily generalized to the multiparty setting, for an arbitrary number N of parties. We refer
the reader to [KOR+17] for more details; this directly gives:

Theorem 11. For any N -party functionality f represented by a layered boolean circuit C of size s
with n inputs and m outputs, and for any integer k and statistical security parameter κ, there is a
κ-secure protocol which realizes f in the preprocessing model against malicious adversaries with
adaptive corruption (of up to N − 1 parties), with communication n + N · (m + ds/ke + κ) and
correlated randomness n/N + (3κ+ 1) · (m+ ds/ke) · (22k + 1) per party.

6 Open Questions

While our work shows that a large class of circuits of size s can be securely evaluated in the correlated
randomness model using o(s) communication, many questions related to the communication of
MPC in the correlated randomness model remain open.

Question 1. Can our protocols be extended to arbitrary non-layered circuits?

It is immediate to extend our protocol to any circuit that is layered “by blocks” of depth c, in
the sense that no edge crosses more than c consecutive layers, for any c = o(log log s). However,
generalizing our result to all circuits remains an interesting open question.

Question 2. Can we achieve better sublinearity for unconditional MPC in the correlated randomness
model, in general or for specific circuits?

It is known that some specific functions can be evaluated in the correlated randomness model,
with stronger sublinearity guarantees than those obtained in this work. In particular, matrix
multiplication can be computed with communication linear in the size n2 of the matrices, while
the best known algorithm for multiplying matrices of size n requires O(nt) communication, with
t ≈ 2.3. The work of [BIKO12] also implies the existence of low-communication protocols in the
correlated randomness model, for N ≥ 3 parties, for specific types of constant-depth circuits. It
would be interesting to improve the sublinearity of our work, and to characterize the functions for
which better sublinearity can be achieved.
4 A technique to amortize this overhead, using a linear MAC scheme, is described in [DNNR17]; it applies
to our setting as well, and allows to remove this factor κ overhead in the storage complexity, but we
focus on the more naive approach in this work for simplicity.
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Protocol Πmal
sub

Functionality:
– Public parameters: a layered boolean circuit C of size s and depth d, with n input gates and m

output gates, and an integer k. We let κ denote a statistical security parameter.
– The parties (P1, P2) hold respective inputs x = (x1, x2) of length n/2.

Πmal
sub .Preprocessing :

– Sample ρ = (ρ1, ρ2)
$← ({0, 1}n/2)2 and for i = 1 to d′, sample δi bits ri = (ri,1, · · · , ri,δi) such

that ri,j is 0 if (i, j) corresponds to an output gate, and random otherwise (looking ahead, the
bits ri,j will be used to mask the output value of the function fi,j).

– For i = 1 to d′, for j = 1 to δi, let Mi,j denote the permuted truth table of fi,j with shifts
(ρ[Ii,j ], ri−1[Ai,j ]) and output masked with ri,j , i.e.:

Mi,j |(x⊕ρ)[Ii,j ],(y⊕ri−1)[Ai,j ]= fi,j(x[Ii,j ], y[Ai,j ])⊕ ri,j .

– For i = 1 to d′, for j = 1 to δi, sample a random truth-table R1
i,j over {0, 1}2

αi,j+ιi,j , and let
R2
i,j ← R1

i,j ⊕Mi,j .
– For ` = 1, 2, for i = 1 to d′, for j = 1 to δi, for q = 1 to 2αi,j+ιi,j , we denote R`i,j,q the q’th

entries of R`i,j . Sample 2 random κ-bit strings (s0`,i,j,q, s
1
`,i,j,q) (looking ahead, these values will

allow to authenticate the value R`i,j,q). To simplify notations, we denote by s′`,i,j,q the value

s′`,i,j,q ← sb3−`,i,j,q, with b = R3−`
i,j,q.

– For ` = 1, 2, output to P`(
ρ`, (R

`
i,j)i≤d′,j≤δi ,

(
s0`,i,j,q, s

1
`,i,j,q, s

′
`,i,j,q

)
i,j,q

)
.

Πmal
sub .Protocol(x) :

– Initialization: for ` = 1, 2, P` sets ∆` = Γ` = 0κ.
– Input Sharing: for ` = 1, 2, P` broadcasts u` ← x` ⊕ ρ`. Let u ← (u1, u2). Set v0 to be an

arbitrary dummy string.
– Circuit Evaluation: for i = 1 to d′,
• For ` = 1, 2, P` sets

vi,` ←
(
R`i,1|u[Ii,1],vi−1[Ai,1], · · · , R

`
i,δi |u[Ii,δi

],vi−1[Ai,δi
]

)
.

• For ` = 1, 2, P` broadcasts vi,`; let vi ←
⊕N

`=1 vi,`.
• For ` = 1, 2, P` sets qi,j to be the string (u[Ii,j ],vi−1[Ai,j ]), and sets

∆` ← ∆` ⊕ s′3−`,i,j,qi,j ,Γ` ← Γ` ⊕ s
vi,3−`,j
`,i,j,qi,j

.

– Verification of all opened bits: for ` = 1, 2, P` sends ∆` to P3−`, and P3−` checks that Γ3−` = ∆`.
– Output: For ` = 1, 2, P` broadcasts the δi-bit string vi,`,j for every i ≤ d′ and j > wti . All the

parties reconstruct z = (z1, · · · , zm) = (
⊕

` vi,`,j)i≤d′,j>wti .

Fig. 8. Two-party protocol Πmal
sub for evaluating a layered boolean circuit C of size s and depth d, with n

input gates and m output gates, in the correlated randomness model against active corruption of one of the
parties.



20 Geoffroy Couteau

Question 3. Can we achieve sublinear communication and linear storage at the same time?

Our protocols only achieve slightly superlinear storage; in the regime where the 1/log log s factor
would give non-trivial communication savings, this implies that a rather large storage is required.
Protocols for specific functions, such as matrix multiplication, achieve both sublinearity and linear
storage, but the question remains open for more general functions.
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