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Abstract

Linicrypt (Carmer & Rosulek, Crypto 2016) refers to the class of algorithms that make calls
to a random oracle and otherwise manipulate values via fixed linear operations. We give a charac-
terization of collision-resistance and second-preimage resistance for a significant class of Linicrypt
programs (specifically, those that achieve domain separation on their random oracle queries via
nonces). Our characterization implies that collision-resistance and second-preimage resistance
are equivalent, in an asymptotic sense, for this class. Furthermore, there is a polynomial-time
procedure for determining whether such a Linicrypt program is collision/second-preimage resis-
tant.

1 Introduction

Collision resistance and second-preimage resistance are fundamental properties of hash functions,
and are the basis of security for hash-based signature schemes [10, 11, 4, 7], which are a promising
approach for post-quantum security.

We give a new way to reason about and characterize the collision resistance and second-preimage
resistance of a large, natural class of programs, in the random oracle model. Specifically, we charac-
terize these properties for the class of Linicrypt programs, introduced by Carmer & Rosulek [5].
Roughly speaking, a Linicrypt program is one where all intermediate values are field elements, and
the only operations possible are fixed linear combinations, sampling uniformly from the field, and
calling a random oracle (whose outputs are field elements). Many of the most practical crypto-
graphic constructions are captured by this model: hash-based signatures and block cipher modes,
to name a few.

Carmer & Rosulek showed that such programs admit an algebraic representations that is
amenable to reasoning about programs’ cryptographic properties. Specifically, they showed a
polynomial-time algorithm for deciding whether two Linicrypt programs induce computationally
indistinguishable distributions. They also demonstrated the feasibility of using a SAT solver to
automatically synthesize Linicrypt programs that satisfy given correctness & security constraints,
by successfully synthesizing secure Linicrypt constructions of garbled circuits.

Our work follows a similar path, showing that collision properties can also be characterized
cleanly in terms of the algebraic representation for Linicrypt programs. Our characterization holds
for programs in which distinct oracle queries have the form H(t1; ·), H(t2; ·), . . . for distinct nonces
ti.
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We introduce an algebraic property of Linicrypt programs called a collision structure, which
completely characterizes both second-preimage resistance and collision resistance. The presence of
a collision structure in a program P can be detected in polynomial time (in the size of P’s algebraic
representation).

Theorem 1 (Main Theorem). Let P be a deterministic Linicrypt program with distinct nonces,
making n oracle queries. Let F be the underlying field (and range of the random oracle). Then the
following are equivalent:

1. There is an adversary A making q oracle queries that finds collisions with probability more
than (q/n)2n/|F|.

2. There is an adversary A making q oracle queries that finds second preimages with probability
more than (q/n)n/|F|.

3. There is an adversary A making at most 2n oracle queries that finds second preimages with
probability 1.

4. P either has a collision structure or is degenerate. (See main text for definitions)

We emphasize that the theorem statement refers to standard security properties (i.e., secu-
rity against arbitrary, computationally unbounded algorithms that make only a polynomial number
of queries to the random oracle) of Linicrypt constructions. We are not in a heuristic model that
considers Linicrypt adversaries.

Our results show that second-preimage resistance and collision resistance are equivalent, in
an asymptotic sense (i.e., considering only whether a quantity is negligible or not). However,
as might be expected, it is quadratically easier to find collisions than second preimages, due to
birthday attacks. Our concrete bounds reflect this. In practice, reducing security to second-
preimage resistance rather than collision resistance can result in constructions with 50% smaller
parameters; e.g., [6, 8, 2].

Addendum July 2020: We thank Catherine Meadows for pointing out a bug in how we defined
the notion of a “degenerate” program (Definition 4). We have repaired the definition in this updated
version. The fix did not involve changing any theorem statements.

1.1 Related Work & Comparison

Bellare & Micciancio [1] discuss the collision resistance of the function H∗(x1, . . . , xn) = H(1;x1)⊕
· · ·⊕H(n;xn), where H is collision-resistant. Indeed, this function is naturally modeled in Linicrypt
over a field GF (2λ). They show that this function fails to be collision-resistant if n is allowed to
vary with the input (in particular, when n ≥ λ+ 1). Our characterization shows that an adversary
making q oracle queries breaks collision resistance with probability bounded by (q/n)2n/2λ since
the function lacks a “collision structure.” These two results are not in conflict, since our bound is
meaningless when n ≥ λ+ 1. In short, the Linicrypt model is best suited for programs whose only
dependence on the security parameter is the choice of field, but where (in particular) the number
of inputs and calls to H are fixed constants.

Another related work is that of Wagner [13], who gives an algorithm for a generalized birthday
problem. The problem (translated to our notation) is to find x1, . . . , xk such that H(x1) ⊕ · · · ⊕
H(xk) = 0. The case of k = 2 corresponds to the well-known birthday problem. One can see
that by generating a list Li of roughly 2λ/k candidates for each xi (i.e., so |L1 × · · · × Lk| ≥ 2λ),
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there is likely to exist some solution to the problem. Wagner’s focus is on the algorithmic aspect
of actually identifying the appropriate candidates. In Linicrypt, all adversaries are considered to
be computationally unbounded but bounded in the number of queries to the random oracle H.
As such, our results do not provide any upper/lower bounds on attack complexity (other than in
random oracle query complexity).

Black, Rogaway, and Shrimpton [3] categorize 64 ways to construct a compression function
(suitable for Merkle-Damg̊ard hashing) from an ideal cipher, building on prior work by Preneel,
Govaerts, and Vandewalle [12]. These constructions can be thought of as GF (2λ)-Linicrypt pro-
grams that use only XOR (e.g., linear combinations with coefficients of 0 or 1 only). However, the
reasoning is tied to the ideal cipher model rather than the random oracle model, as in Linicrypt
(see Section 5.3 for more information). We leave it as interesting future work to extend results in
Linicrypt to the ideal cipher model, and potentially re-derive the characterization of BRS from a
linear-algebraic perspective.

2 Preliminaries

We write scalar field elements as lowercase non-bold letters (e.g., v ∈ F). We write vectors as
lowercase bold letters (e.g., q ∈ Fn). We write matrices as uppercase bold letters (e.g., M ∈ Fn×m).
We write vector inner product as q · v, and matrix-vector multiplication as M × v or Mv.

2.1 Linicrypt

The Linicrypt model was introduced in [5]. We present a brief summary of the model and its
important properties.

A Linicrypt program (over field F) is one in which every intermediate value is an element of F,
and the program is a fixed, straight-line sequence of the following kinds of operations:

• Call a random oracle (whose inputs/outputs are field elements).

• Sample a random field element.

• Combinine existing values using a fixed linear combination.

The sequence of operations (including choice of arguments to the oracle, coefficients of linear com-
binations, etc) is entirely fixed. In particular, these cannot depend on intermediate values in the
computation.

The only source of cryptographic power in Linicrypt is the random oracle, whose outputs are F-
elements. We therefore require the size of the field |F| to be exponential in the security parameter
λ. Since the field depends on the security parameter, we sometimes write F = Fλ to make the
association explicit.

If the field depends on the security parameter, then the program does too (since it is parameter-
ized by specific coefficients of linear combinations). One can either consider a Linicrypt program to
be a non-uniform family of programs (one for each choice of field / security parameter), or one can
fix all coefficients in the program from F̃ which is a subfield of every Fλ (for example, a program
that uses only {0, 1} coefficients can be instantiated over any field GF (2λ)). Our treatment of
security is concrete (not asymptotic), so these distinctions are not important in this work.

We can reason about Linicrypt programs in the following algebraic way. Let P be such a
program, and let v1, . . . , vn denote all of its intermediate variables. Say the first k of them are
P’s input and the last l of them are P’s output. We say that vi is a base variable if vi is either
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an input variable, the result of a call to the oracle, or the result of sampling a field element. All
variables can therefore be expressed as a fixed linear combination of base variables.

Let vbase denote the vector of all base variables. For each variable vi, let ri denote the vector
such that vi = ri ·vbase. For example, for base variables, ri is a canonical basis vector (0s everywhere
except 1 in one component).

Suppose the output of P consists of vn−l+1, . . . , vn. Then the output matrix of P is defined

as: M
def
=

rn−l+1
...
rn

. This matrix captures the fact that P’s output can be expressed as M ×vbase.

Each oracle query in P is of the form “vi := H(t; vi1 , . . . , vim),” where t is a string (e.g., nonce)
and i1, . . . , im < i are indices, all fixed as part of P. For each such query we define an associated

oracle constraint c =

t,
ri1...
rim

 , ri
. In other words, an oracle constraint (t,Q,a) captures the

fact that if the oracle is queried as H(t;Q × vbase), then the response is a · vbase. When t is the
empty string, we often omit it from our notation and simply write H(·) instead of H(ε; ·).

The algebraic representation of P is P = (M , C), where M is the output matrix of P and C
is the set of all oracle constraints. Indeed, these two pieces of information completely characterize
the behavior of P (as established in [5]).

Example. In this work we focus on deterministic Linicrypt programs. One such example is given
below. Its base variables are (v1, . . . , v5, v7).

PH(v1, v2, v3):

v4 := H(foo; v1)
v5 := H(bar; v3)
v6 := v4 + v5 + v2
v7 := H(foo; v6)
v8 := v7 + v1
return (v8, v5)

⇒



v1
v2
v3
v4
v5
v6
v7
v8


=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 1





v1
v2
v3
v4
v5
v7



Hence, the algebraic representation of P is:

M =

[
1 0 0 0 0 1
0 0 0 0 1 0

]
; C =


(
foo, [1 0 0 0 0 0], [0 0 0 1 0 0]

)
,(

bar, [0 0 1 0 0 0], [0 0 0 0 1 0]
)
,(

foo, [0 1 0 1 1 0], [0 0 0 0 0 1]
)


2.2 Security Definitions

The Linicrypt model is meant to capture a special class of construction, but not adversaries. In
this work we characterize standard security definitions, against arbitrary (i.e., not necessarily
Linicrypt) adversaries. As in Impagliazzo’s “Minicrypt” [9] we consider computationally unbounded
adversaries that are bounded-query: they make only at most p(λ) queries to the random oracle, for
some polynomial p.
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Definition 2. Let P be a Linicrypt program over a family of fields F = (Fλ)λ. Then P is
(q, ε)-collision-resistant (in the random oracle model) if for all q-query adversaries A,
Pr[ColGame(P,A, λ) = 1] ≤ ε, where:

ColGame(P,A, λ):

instantiate a random oracle H : {0, 1}∗ × (Fλ)∗ → Fλ
(x,x′)← AH(λ)
return (x 6= x′) ∧ (PH(x) = PH(x′))

Definition 3. Let P be as above (with k inputs). P is (q, ε)-2nd-preimage-resistant (in the
random oracle model) if for all q-query adversaries A, Pr[2PIGame(P,A, λ) = 1] ≤ ε, where:

2PIGame(P,A, λ):

instantiate a random oracle H : {0, 1}∗ × (Fλ)∗ → Fλ
x← (Fλ)k

x′ ← AH(λ,x)
return (x 6= x′) ∧ (PH(x) = PH(x′))

3 Characterizing Collision-Resistance in Linicrypt

We now present our main technical result, which is a characterization of collision-resistance for
Linicrypt programs.

In order to simplify the notation, we present the results for the special case of Linicrypt
programs that make 1-ary calls to H. That is, every call to H is of the form H(t; v) for a single
v ∈ F (note that Linicrypt supports more general calls of the form H(t; v1, . . . , vk)). With this
simplification, every oracle constraint has the form (t, q,a) where q is a simple vector (rather than
a matrix as in the most general form).

This special case simplifies the notation required to express our theorems/proofs, but does not
gloss over any meaningful complexity. Later in Section 5.1 we discuss what minor changes are
necessary to extend these results to the unrestricted general case.

3.1 Easy Case: Degeneracy

Some Linicrypt programs allow easy collisions. Consider the program PH(x, y) = H(x + y). An
obvious collision in P is PH(x, y) = PH(x + c, y − c) for any c 6= 0. This program does not use
its inputs x or y individually, but depends only on x + y. Put differently, the program can be
written as the composition of a lossy linear function (x, y 7→ x+ y) and another Linicrypt program
(z 7→ H(z)). No program of this form can be collision-resistant, since it suffices to simply find a
collision in the lossy linear function.

Definition 4. Let P = (M , C) be a deterministic Linicrypt program with n base variables. In the
algebraic representation, P’s variables are associated with canonical basis vectors r1, . . . , rn (ri has
0s everywhere except a 1 in the ith component). We say that P is degenerate if

span(r1, . . . , rn) 6⊆ span
(
{q | (t, q,a) ∈ C} ∪ {a | (t, q,a) ∈ C} ∪ rows(M)

)
Lemma 5. If P is degenerate, then second preimages can be found with probability 1.
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Proof. The right-hand-side of the expression in Definition 4 considers all vectors in P’s algebraic
representation. These vectors are generally expressed in terms of the basis B = {r1, . . . , rn} =
{e1, . . . , ek} ∪ {a | (t, q,a) ∈ C}, representing the base variables in P with the ei’s being the input
of P in canonical-basis form. If P is degenerate, then the vectors in its algebraic representation do
not actually span this space.

Consider the matrix AP , for some Linicrypt program P, whose rows are comprised of each
vector in the set {q | (t, q,a) ∈ C} ∪ {a | (t, q,a) ∈ C} ∪ rows(M). We can consider AP × vbase for

P(x) on some given input x =


e1
e2
...
ek

 ·vbase. AP ×vbase then determines concrete values for queries,

answers, and outputs in P. If two distinct inputs x,x′ exist such that AP×vbase = AP×v′base then
certainly x′ is a preimage of P(x) as they both produce the same output — indeed, P (x′) even
makes the exact same queries to H! These instances arise exactly when AP × vbase−AP × v′base =
AP × (vbase − v′base) = 0 which occurs when the kernel of AP has dimension greater than 0.

If P is degenerate, then the span of the rows of AP does not contain all the basis vectors:
B 6⊆ span(rows(AP)). In this case, the matrix AP has a non-trivial kernel.

To find a concrete set of preimages for a degenerate linicrypt program P(x) we can consider the
projection BP of ker(AP) onto AP ’s input space. The projection can be constructed by embedding
the k × k identity matrix Ik×k into the k × n 0 matrix (where k is the number of input vectors to
P and n is the number of base vectors of P).

BP =
[
Ik×k 0

]
Then we may find a class of preimages degenerate(P) = BP · ker(AP). For each vector δ ∈
degenerate(P) we have that P(x) = P(x+ δ).

Applying this idea to the previous example PH(x, y) = H(x + y), we arrive at the matrices

AP =

[
1 1 0
0 0 1

]
, BP =

[
1 0 0
0 1 0

]
with BP · ker(AP) =

{
c ·
[

1
−1

]
: c ∈ F

}
as we would expect.

3.2 Running Example: An Interesting Second-Preimage Attack

Consider the example program below. In fact, it is the example from Section 2.1 but with the
nonces omitted and most intermediate variables unnamed:

PH(x, y, z):

w := H(x) +H(z) + y
return

(
H(w) + x, H(z)

)
Suppose we are given x, y, z and are asked to find a second preimage x′, y′, z′ with PH(x, y, z) =
PH(x′, y′, z′). Here is how to do it:

1. The second component of P’s output is H(z). Since we cannot hope to find a second preimage
directly in H, we must set z′ = z.

2. The key insight is to now set w′ 6= w arbitrarily (hence, why we gave this value a name). We
make a promise to choose x′, y′ so that w′ = H(x′) +H(z′) + y′.

3. To have a collision, we must have H(w′)+x′ = H(w)+x. Importantly, x′ is the only unknown
value in this expression, and it is possible to simply solve for x′.
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4. It is time to fulfill the promise that w′ = H(x′) +H(z′) + y′. Since w′, x′, z′ are already fixed,
we can solve for y′.

Note that we are guaranteed that (x, y, z) 6= (x′, y′, z′) since the two computations of P lead to
different intermediate values w 6= w′ (and P is deterministic).

Perspective. This example is representative of how second preimages can be computed in arbi-
trary Linicrypt programs. Given an input x for PH , we compute a second preimage x′ by focusing
on the oracle queries that PH(x) and PH(x′) will make:

1. Designate some of the oracle queries to take the same values in both PH(x) and PH(x′).
In our example, we decided that the oracle query H(z) would take the same values in both
computations.

2. Identify the first query that we will assign different values in the two computations. Set the
input to this query arbitrarily in PH(x′). In our example, we identify the H(w) query to take
on different values and set w′ 6= w arbitrarily.

3. Repeatedly make followup oracle queries as they become possible, while using linear algebra
to solve for other intermediate values. In our example, we call H(w′), which allows us to solve
for x′, which allows us to call H(x′), which allows us to solve for y′.

3.3 Collision Structures for Finding Second Preimages

We have given a rough outline of how (we claim) Linicrypt second preimages must be found. The
next step is to formalize what is required of P in terms of its algebraic representation.

In step 2 above, we identify a query whose input will be chosen arbitrarily. Suppose that query
corresponds to constraint (t, q,a). Since this is the first value that is fixed differently in PH(x)
and PH(x′), we must have q linearly independent of the vectors that are already fixed by step 1.
Otherwise it would not be possible to find two consistent values for this query.

In steps 2 and 3 above, we repeatedly query H, and we have written the attack outline to
suggest we never get “stuck.” One way we could get stuck is to make some query H(x′) for the
first time, when we have already fixed (either directly or indirectly) what H(x′) must be. If this
is the case, then we cannot succeed with probability better than 1/|Fλ|. To avoid this case, every
query we make in steps 2 & 3 of the outline must correspond to a constraint (t, q,a) where a is
linearly independent of the values that have already been fixed.

The following definition formalizes these algebraic intuitions:

Definition 6. Let P = (M , C) be a Linicrypt program. A collision structure for P is a tuple
(i∗; c1, . . . , cn), where:

1. c1, . . . , cn is an ordering of C, and we write ci = (ti, qi,ai).

2. qi∗ 6∈ span
(
{q1, . . . , qi∗−1} ∪ {a1, . . . ,ai∗−1} ∪ rows(M)

)
3. For j ≥ i∗: aj 6∈ span

(
{q1, . . . , qj} ∪ {a1, . . . ,aj−1} ∪ rows(M)

)
Connecting to the previous intuition, a collision-finding attack will let oracle queries c1, . . . , ci∗−1

be the same in both executions PH(x) and PH(x′). Then ci∗ is the first oracle query that the attack
fixes differently for the two executions. Property (2) of the definition ensures that it is possible to
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find 2 query values that are consistent with the previously fixed values. Property (3) captures the
fact that from this point forward, no query should be forced to result in an output value that has
already been fixed.

Running example. We now revisit the running example from before, to illustrate a collision
structure for it. The base variables of this program are x, y, z, H(x), H(z), H(w). Below is the
algebraic representation of this program, with the oracle constraints arranged to show a collision
structure (we do not write the empty nonces of the oracle constraints):

x y z H(x) H(z) H(w)

M =
[ 1 0 0 0 0 1 ]

0 0 0 0 1 0
q1 = [ 0 0 1 0 0 0 ]

H(z)
a1 = [ 0 0 0 0 1 0 ]

qi∗ = q2 = [ 0 1 0 1 1 0 ]
H(w) = H(y +H(x) +H(z))

ai∗ = a2 = [ 0 0 0 0 0 1 ]
q3 = [ 1 0 0 0 0 0 ]

H(x)
a3 = [ 0 0 0 1 0 0 ]

This ordering of queries is indeed a collision structure since:

• q2 is linearly independent of all vectors above it in this diagram.

• a2 is linearly independent of all vectors above it in this diagram.

• a3 is linearly independent of all vectors above it in this diagram.

Second-preimage-finding algorithm. In Figure 1 we give an algorithm that finds second
preimages by following the intuitive strategy above, from a given collision structure.

Lemma 7. If a collision structure (i∗; c1, . . . , cn) exists for P, and P is not degenerate, then the
second-preimage resistance of P is comprehensively broken. Specifically, let A refer to
FindSecondPreimage(P, (i∗; c1, . . . , cn), ·). Then:

Pr
[
2PIGame(P,A, λ) = 1

]
= 1

Proof. Given x, the goal is to compute a second preimage x′. The computation of PH(x′) has a
certain set of base variables v′, and it suffices to compute those instead since x′ = (e1 ·v′, . . . , ek ·v′).
The attack FindSecondPreimage fixes one linear constraint of v′ at a time, until v′ is completely
determined.

It suffices to show the following about the behavior of FindSecondPreimage:

1. It computes a different set of base variables v′ than those of PH(x).

2. It never adds incompatible (unsatisfiable) linear constraints on v′.

3. Values v′ are consistent with H. Namely, if (t, q,a) ∈ C, then H(t; q · v′) = a · v′.

4. By the end of the computation, enough constraints have been added to completely determine
v′.

Property 1 holds since qi∗ · v 6= qi∗ · v′ by design. Regarding property 2:
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FindSecondPreimage
(
P = (M , C), (i∗; c1, . . . , cn),x

)
:

compute v, the set of base variables in computation PH(x)
initialize an empty set of linear constraints on unknowns v′

add constraint Mv = Mv′

for i = 1 to i∗ − 1:
add constraints qi · v = qi · v′ and ai · v = ai · v′

choose a value v∗ ∈ Fλ arbitrarily, with v∗ 6= qi∗ · v
add constraint v∗ = qi∗ · v′

for i = i∗ to n:
if qi · v′ is not already uniquely determined by current constraints:

choose r ∈ Fλ arbitrarily and add constraint r = qi · v′
call s := H(ti, qi · v′) // qi · v′ guaranteed to be uniquely determined here
add constraint s = ai · v′

return (e1 · v′, . . . , ek · v′)

Figure 1: Method for computing second preimages

• The constraints on v′ that are added for M and in the first for-loop are self-consistent — by
construction they already have a valid solution in v.

• The constraint involving qi∗ is compatible with the previous constraints since qi∗ is linearly
independent of the previous constraint vectors {q1, . . . , qi∗−1} ∪ {a1, . . . ,ai∗−1} ∪ rows(M),
by the collision structure property.

• Similarly, a constraint involving qi for i ≥ i∗ (if-statement within last for-loop) is only added
in the case that qi is linearly independent of the previous constraint vectors.

• The constraint involving ai in the second for-loop is consistent since ai is linearly independent
of existing constraint vectors, again by the collision structure property.

Regarding property 3: for oracle constraints ci with i < i∗, consistency with H is ensured by
agreeing with the existing values v. For constraints ci with i ≥ i∗, consistency is guaranteed since
the second for-loop actually calls H to determine the consistent way to constrain ai · v′.

Property 4 follows from the fact that P is not degenerate. We can see that M × v′, q · v′, and
a · v′ are fixed/determined by the end of the computation, for all (t, q,a) ∈ C. Non-degeneracy
implies that the input of P (and hence all base variables) is uniquely determined.

3.4 Efficiently Finding Collision Structures

In this section we show that it is possible to efficiently determine whether a Linicrypt program has
a collision structure, by analyzing its algebraic representation. The algorithm for finding a collision
structure is given in Figure 2.

Lemma 8. FindColStruct(P) (Figure 2) outputs a collision structure for P if and only if one
exists. Furthermore, the running time of FindColStruct is polynomial (in the size of P’s algebraic
representation).
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FindColStruct(P = (M , C)):
LEFT := C
RIGHT := empty stack
V := {q | (t, q,a) ∈ C} ∪ {a | (t, q,a) ∈ C} ∪ rows(M), as a multi-set

// below: “V \ {a}” means “V with multiplicity of a reduced by 1”
while ∃(t, q,a) ∈ LEFT such that a 6∈ span(V \ {a}):

remove (t, q,a) from LEFT
push (t, q,a) to RIGHT
reduce multiplicity of q,a in V by 1

while ∃(t, q,a) ∈ RIGHT such that q ∈ span(V ):
remove (t, q,a) from RIGHT
add (t, q,a) to LEFT
increase multiplicity of q,a in V by 1

if RIGHT is nonempty:
set i∗ := |LEFT|+ 1
write LEFT = (c1, . . . , ci∗−1), where order doesn’t matter
write RIGHT = (ci∗ , . . . , cn) in reverse order of insertion
return (i∗; c1, . . . , cn)

else: return ⊥

Figure 2: Method for finding collision structures in a Linicrypt program.

Proof. Some useful invariants in FindColStruct are that at any time, LEFT ∪ RIGHT = C and V is
a multiset of the vectors appearing in rows(M) and LEFT. Note that FindColStruct works in two
phases: it starts with all oracle queries in LEFT and in the first phase moves some to RIGHT. In
the second phase, it moves some of the oracle queries back into LEFT.

(⇒) First, we argue that if FindColStruct(P) = (i∗; c1, . . . , cn) 6= ⊥, then this output is indeed
a collision structure. Write each oracle constraint ci as ci = (ti, qi,ai).

• At the time the second while-loop terminates, we must have qi∗ 6∈ span(V ) since otherwise
ci∗ would have been moved to LEFT. But V = {q1, . . . , qi∗−1} ∪ {a1, . . . ,ai∗−1} ∪ rows(M),
so this establishes one of the required properties of a collision structure.

• For j ≥ i∗, consider the time at which cj is about to be added to RIGHT in the first while-loop
(i.e., the point that the while loop body is entered). At that point, LEFT = {c1, . . . , cj}, so
V contains {q1, . . . , qj} ∪ {a1, . . . ,aj} ∪ rows(M). Since the while-loop condition is fulfilled,
we have

aj 6∈ span(V \ {aj}) = span
(
{q1, . . . , qj} ∪ {a1, . . . ,aj−1} ∪ rows(M)

)
which is the other condition required for a collision structure.

(⇐) For the other direction, suppose (i∗, c1, . . . , cn) is some collision structure for P. We will
show that the algorithm adds ci∗ , . . . , cn to RIGHT in the first phase, but does not move ci∗ back
to LEFT in the second phase. This implies that the algorithm terminates with |RIGHT| 6= ∅, so by
the previous reasoning it outputs some valid collision structure (perhaps different than the collision
structure we are assuming exists).
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The fact that ci∗ , . . . , cn are added to RIGHT in the first phase is essentially the converse of what

was shown above. For example, the collision structure property is that an 6∈ span
(
{q1, . . . , qn} ∪

{a1, . . . ,an−1} ∪ rows(M)
)

, implying that cn can trigger the while-loop and be added to RIGHT

immediately. Note that even if other constraints are added to RIGHT in this phase, it only makes
V smaller, so only causes the condition to check a smaller span than in the collision-property
definition. A simple inductive argument establishes that ci∗ , . . . , cn are eventually added to RIGHT.

Since {ci∗ , . . . , cn} ⊆ RIGHT after the first phase, we must have LEFT ⊆ {c1, . . . , ci∗−1} after the
first phase. We want to show that ci∗ is never placed back into LEFT. For the sake of contradiction,
suppose not. Define S to be a set of indices such that LEFT = {ci | i ∈ S} at the time ci∗ is about
to be moved into LEFT. Then qi∗ ∈ span(rows(M) ∪ {qi,ai | i ∈ S}). We can then write:

qi∗ =
∑
j∈S

αjqj +
∑
j∈S

βjaj + γM

For j > i∗, the constraint cj was previously in RIGHT and was moved back into LEFT. The only
way to be moved back into LEFT is for qj to be in the span of other vectors already in LEFT (and
hence already on the right-hand side of this expression). Hence, without loss of generality we can
remove the terms involving qj for j > i∗, to obtain:

qi∗ =
∑

j∈S\{i∗,...,n}

α′jqj +
∑
j∈S

β′jaj + γ ′M

Let j∗ be the highest j ∈ S for which β′j 6= 0. There are two cases.
Case j∗ < i∗: Then all of the nonzero terms qj ,aj on the right-hand side have subscript less

than i∗. This contradicts the fact (from the original collision structure) that qi∗ 6∈ span(rows(M)∪
{qj ,aj | j < i∗}).

Case j∗ > i∗: We can solve for aj∗ in the above expression, yielding:

aj∗ = − 1

β′j∗

 ∑
j∈S\{i∗,...,n}

α′jqj − qi∗ +
∑

j∈S\{j∗}

β′jaj + γ ′M


But now all nonzero qj and aj terms on the right-hand side have subscript less than j∗. This
contradicts the fact (from the original collision structure) that aj∗ 6∈ span({qj | j < j∗} ∪ {aj | j <
j∗} ∪ rows(M)).

In either case we have a contradiction to the claim that ci∗ is moved back into LEFT. Since the
algorithm terminates with at least ci∗ ∈ RIGHT, it outputs some valid collision structure.

3.5 Breaking Collision Resistance implies Collision Structure

So far our discussion has centered around the relationship between collision structures and second-
preimage resistance. We now show that if P fails to be even collision resistant (in the random
oracle model), then it has a collision structure. The main approach is to observe the oracle queries
made by an arbitrary attacker (who computes a collision), and “extract” a collision structure from
these queries.

The results in this subsection hold only for the following subclass of Linicrypt programs. In
Section 5.2 we discuss specifically why the results are restricted to this subclass.

Definition 9. Let P = (M , C) be a Linicrypt program, with C = {(t1, q1,a1), . . . ,
(tn, qn,an)}. If all of {t1, . . . , tn} are distinct then we say that P has distinct nonces.
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Lemma 10. Let P be a deterministic Linicrypt program with distinct nonces that makes n oracle
queries. Let A be an oracle program that makes at most N oracle queries. If

Pr[ColGame(P,A, λ) = 1] >

(
N

n

)2n

/|Fλ|

or if Pr[2PIGame(P,A, λ) = 1] >

(
N

n

)n
/|Fλ|

then P either has a collision structure or is degenerate.

Proof. Without loss of generality, we can assume the following about A:

• Let (x,x′) be the two preimages from the games (in 2PIGame A gets x as input and gives x′

as output; in ColGame A outputs both x and x′). We assume that AH has made the oracle
queries that PH(x) and PH(x′) will make. In ColGame this can be achieved by modifying A
to run these two computations as its last action. In 2PIGame this can be achieved by having
A run PH(x) as its first action and PH(x′) as its last action.

• A never repeats a query to H. This can be achieved by simple memoization. Note that when
A runs, say, PH(x′) as its last action, some of those oracle queries may have been made
previously.

• AH can actually output (v,v′), where v is the set of base variables in the computation of
PH(x), and v′ the base variables in PH(x′). This is because the base variables are computed
during the process of running PH(x) and PH(x′).

Note that the base variables have the following property. Let c = (t, q,a) be one of the oracle
constraints of P. Then the computation PH(x) (and hence AH as well) at some point makes an
oracle query H(t, q · v) and gets a response a · v.

From these assumptions, whenever A outputs a successful collision there exist well-defined
mappings T, T ′ : C → N such that:

• For every constraint c = (t, q,a) ∈ C, the T (c)th query made by AH is the one corresponding
to oracle constraint c in the computation of PH(x). In other words, it is the query in which
AH “decided” what q · v should be (and learned what a · v was as a result of the query).

• Similarly, the T ′(c)th query made by AH is the one corresponding to oracle constraint c in
the computation of PH(x′). This is the query in which q · v′ was determined.

How many possible mappings (T, T ′) are there ifAmakes N oracle queries? Let Ni be the number of
oracle queries that A makes which have nonce ti. Since the nonces are distinct, we have

∑
iNi ≤ N .

There are only Ni choices for how T or T ′ can map T (ci). Hence there are at most
∏n
i=1N

2
i possible

(T, T ′) mappings. However, in the 2PIGame, the mapping T is completely fixed since we assume A
performs the computation PH(x) as its first action. In that case, there are only

∏n
i=1Ni choices of

the mapping T ′. These products are maximized when each Ni = N/n, so we get an upper bound
of (N/n)2n possible (T, T ′) mappings in the ColGame and (N/n)n mappings in the 2PIGame.

Applying the pigeonhole principle and uniting both cases from the statement of the lemma
(collision game and second preimage game), there is a specific (T, T ′) such that:

Pr[AH outputs a valid collision while using mappings (T, T ′)] > 1/|Fλ|
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For the rest of the proof, we condition on the event that A computes a collision while using this
specific mapping (T, T ′). This is without loss of generality by making A, as its final action, output
⊥ if it observes that some different mapping is used. Hence we can view the association between
oracle calls of P and A as fixed a priori. That is, we can know in advance that a particular oracle
call of A will determine the value of q · v (or q · v′) for a specific q.

For some c ∈ C, if T (c) = T ′(c), then we call c convergent. In this case, PH(x) and PH(x′)
make the same c-query and receive the same output. In other words, under such a mapping T, T ′,
adversary AH will choose that q · v = q · v′. If T (c) 6= T ′(c), we call c divergent — PH(x) and
PH(x′) make different c-queries, i.e., q · v 6= q · v′.

If all c ∈ C are convergent, then two distinct inputs x and x′ cause P to make identical oracle
queries and give identical output. Hence P is degenerate, and we are done. We continue assuming
that some query is divergent, and will conclude that P has a collision structure.

Define finish(c) = max{T (c), T ′(c)}. Note that since P has distinct nonces, an oracle query
made by A cannot be associated with more than one c ∈ C. Hence finish is an injective function.

We obtain a collision structure for P as follows. Order the oracle constraints in C as (c1, . . . , cn),
where all of the convergent queries come first, followed by the divergent queries ordered by increasing
finish time. Let i∗ be the index of the divergent query with earliest finish time. Then:

• i∗ ≤ i ⇔ ci is divergent

• i∗ ≤ i < j ⇔ finish(i) < finish(j)

Claim 11. (i∗; c1, . . . , cn) is a collision structure for P.

In the following, we write each oracle constraint ci as ci = (ti, qi,ai).
For j < i∗, the query cj is convergent so we have qj · v = qj · v′ and aj · v = aj · v′. Since

the outputs of the two executions of P are also identical, we also have Mv = Mv′. Since ci∗ is
divergent, we have qi∗ · v 6= qi∗ · v′. From this we conclude that:

qi∗ 6∈ span
(
{q1, . . . , qi∗−1} ∪ {a1, . . . ,ai∗−1} ∪ rows(M)

)
.

This is the first property required of a collision structure.
It remains to show that for all i > i∗,

ai 6∈ span
(
{q1, . . . , qi} ∪ {a1, . . . ,ai−1} ∪ rows(M)

)
.

Suppose for contradiction that the above is false, and that we actually have:

ai =
∑
j≤i

αjqj +
∑
j<i

βjaj + γM

Focus on the moment when A has asked its finish(ci)th query and is awaiting the response from
H. By symmetry, suppose finish(ci) = T ′(ci), so that this query is on qi ·v′; the result of the query
will be assigned to ai · v′. At this moment:

• All queries cj for i∗ ≤ j < i are finished. This means that the oracle queries of AH have
already determined qj · v, aj · v, qj · v′, and aj · v′. Further, the queries (but not responses)
of oracle constraint ci have been fixed as well — these values are qi · v and qi · v′.

• ai · v has already been fixed, since this happened at time T (ci) < T ′(ci). But ai · v′ is about
to be chosen as a uniform field element.

13



Now consider the expression ai · (v′ − v):

ai · (v′ − v) =
∑
j≤i

αjqj · (v′ − v) +
∑
j<i

βjaj · (v′ − v) + γM(v′ − v)

For j < i∗ we know that query cj is convergent. This implies that qj ·(v′−v) = 0 and aj ·(v′−v) = 0.

We also know thatM(v′−v) = 0, in the case thatAH is successful generating a collision. Cancelling
these terms gives:

ai · (v′ − v) =
i∑

j=i∗

αjqj · (v′ − v) +
i−1∑
j=i∗

βjaj · (v′ − v)

Isolating ai · v′ gives:

ai · v′ = −ai · v +
i∑

j=i∗

αjqj · (v′ − v) +
i−1∑
j=i∗

βjaj · (v′ − v)

But all terms on the right-hand side have already been fixed, while the term on the left is chosen
uniformly in F. So equality holds with probability 1/|Fλ|. This contradicts the assumption that A
succeeds with strictly greater probability.

3.6 Putting Everything Together

Our main characterization shows that second-preimage resistance and collision resistance coincide
for this class of Linicrypt programs, in a very strong sense:

Theorem 12. Let P be a deterministic Linicrypt program with distinct nonces, making n oracle
queries. Then the following are equivalent:

1. There is an adversary A making N oracle queries such that

Pr[ColGame(P,A, λ) = 1] >

(
N

n

)2n

/|Fλ|.

2. There is an adversary A making N oracle queries such that

Pr[2PI(P,A, λ) = 1] >

(
N

n

)n
/|Fλ|.

3. There is an adversary A making at most 2n oracle queries such that

Pr[2PIGame(P,A, λ) = 1] = 1.

4. P either has a collision structure or is degenerate.

Corollary 13. The collision resistance (equivalently, second-preimage resistance) of deterministic,
distinct-nonce Linicrypt programs P can be decided in polynomial time (in the size of P’s algebraic
representation).

Proof. Using standard linear algebraic operations (e.g., Gaussian elimination), one can check P for
degeneracy or for the existence of a collision structure in polynomial time.
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4 A Simple Application

We can illustrate the use of our main theorem with a simple example application. Suppose we have
access to a random oracle which is compressing by a factor of 2-to-1. In the Linicrypt notation,
this would be an oracle that takes 2 field elements (and the oracle nonce) as input and produces
one field element as output — H : {0, 1}∗ × F2 → F. If we require a collision resistant function
that compresses by k-to-1 (for some fixed k), the following natural Merkle-Damg̊ard-style iterative
hash comes to mind:

PH(x1, x2, . . . , xk):

y1 := x1
y2 := H(2; y1, x2)
y3 := H(3; y2, x3)

...
yk := H(k; yk−1, xk)
return yk

The algebraic representation of this program is:

x2 x3 · · · xk y1 y2 y3 · · · yk−1 yk

M = [ 0 0 · · · 0 0 0 0 · · · 0 1 ]

Q2 =
[ 0 0 · · · 0 1 0 0 · · · 0 0 ]

1 0 · · · 0 0 0 0 · · · 0 0
a2 = [ 0 0 · · · 0 0 1 0 · · · 0 0 ]

Q3 =
[ 0 0 · · · 0 0 1 0 · · · 0 0 ]

0 1 · · · 0 0 0 0 · · · 0 0
a3 = [ 0 0 · · · 0 0 0 1 · · · 0 0 ]

...

Qk =
[ 0 0 · · · 0 0 0 0 · · · 1 0 ]

0 0 · · · 1 0 0 0 · · · 0 0
ak = [ 0 0 · · · 0 0 0 0 · · · 0 1 ]

We have numbered the oracle constraints so that constraint (i,Qi,ai) corresponds to the statement
“yi := H(i; yi−1, xi)” in P.

To determine whether this program is collision-resistant, we execute the FindColStruct algo-
rithm.Initially all oracle constraints start in the set LEFT, and RIGHT starts out empty. The first
loop in FindColStruct moves oracle constraints from LEFT to RIGHT whenever their ai value is
linearly independent of all other vectors appearing in LEFT (the multiset of vectors is represented
as the variable V in FindColStruct).

In this program, every ai vector is zeroes everywhere except for a 1 corresponding to the “yi”
column. Also note that ak is identical to M , and ai (for i < k) appears as the first row of Qi+1

(see the example with a2 and Q3 above). In other words, every ai is always in the span of other
vectors appearing in LEFT, so no oracle constraint will ever be added to RIGHT.

Hence, FindColStruct will terminate with RIGHT = ∅ and return ⊥. From our main characteri-
zation, this proves that the function is collision-resistant.
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5 Extensions, Limitations, Future Work

5.1 Generalizing to Higher Arity

For simplicity our results were proven for Linicrypt programs in which all oracle calls have arity
1. That is, H : {0, 1}∗ × F → F, and all oracle constraints have the form (t, q,a) where q is a
single row. This reflects a program that always queries the oracle as H(t; v) where v is a single
field element.

More generally, Linicrypt allows calls to H with multiple field elements as arguments. This
leads to oracle constraints of the form (t,Q,a) where Q is now a matrix. We briefly discuss the
changes necessary to support such programs. Basically, whenever the definitions (of degeneracy &
collision structure) or algorithms (to find a second preimage or to find a collision structure) refer
to q, the analogous condition should hold with respect to all rows of Q.

The generalized definition of degeneracy (Definition 4) is that:

span(e1, . . . , ek) 6⊆ span

 ⋃
(t,Q,a)∈C

rows(Q)

 ∪ {a | (t,Q,a) ∈ C} ∪ rows(M)


The generalized definition of collision structure (Definition 6) requires the following change:

2. rows(Qi∗) 6⊆ span
(

rows(Q1) ∪ · · · ∪ rows(Qi∗−1) ∪ {a1, . . . ,ai∗−1} ∪ rows(M)
)

3. For j ≥ i∗: aj 6∈ span
(

rows(Q1) ∪ · · · ∪ rows(Qj) ∪ {a1, . . . ,aj−1} ∪ rows(M)
)

Specifically, for item (2) it is enough if any row of Qi∗ is not in the given span.
In the FindSecondPreimage algorithm (Figure 1), there are times when the algorithm chooses

qj ·v′ arbitrarily. This happens when such a constraint would be linearly independent of the existing
constraints on v′. In the analogous generalized case, we might have only some of the rows of Qj

linearly independent of the existing constraints. In that case, some of the components of Qj × v′
are already fixed. We obviously cannot choose these arbitrarily — only the unconstrained positions
in Qj × v′ are fixed arbitrarily. One can verify that the algorithm only attempts to arbitrarily fix
some values if there is some row of Qj linearly independent with existing constraints on v′.

In the FindColStruct algorithm (Figure 2) we let V now contain Q-matrices as well as simple
a-vectors. Then we overload notation so that span(V ) considers the span of all of the rows of all
matrices/vectors in V . The second “while” condition is modified as follows:

while ∃(t,Q,a) ∈ RIGHT such that rows(Q) ⊆ span(V )

In other words, (t,Q,a) is moved from LEFTto RIGHTif all rows of Q are spanned by V .
With these modifications, all proofs in Section 3 go through with straight-forward modifica-

tions.

5.2 Why the Restriction to Distinct Nonces?

The main characterization holds for Linicrypt programs with distinct nonces. It is instructive to
understand why the results are limited in this way. Specifically, where do we use the property of
distinct nonces?

Suppose A breaks the collision-resistance of P. We observe the oracle queries made by A and
obtain a mapping between these queries and the ones made in PH(x) and PH(x′). When the
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nonces are distinct, a query made by A can only be associated with a unique oracle constraint
c ∈ C. When the nonces are not distinct, a single query of A can serve double-duty and correspond
to two oracle constraints of P. This indeed causes the argument to break down.

We illustrate with the two example Linicrypt programs:

PH1 (x, y) = H(2, H(1, x))−H(3, y)

PH2 (x, y) = H( H( x))−H( y)

The first has distinct nonces and is indeed collision resistant (it has no collision structure). The
second program is not collision-resistant, because PH2 (x,H(x)) = 0 for all x. In other words,
(x,H(x)) and (x′, H(x′)) constitute a collision.

When given inputs of this form, P2 makes duplicate queries — both H(H(x)) (the outermost H-
call) and H(y) receive the same argument. In our previous proofs, we would observe the adversary
making such a query, which would have to be associated with two distinct oracle constraints.

Another way of seeing what happens is that in the algebraic representation of P2, the base
variables H(x) and y correspond to independent vectors. In this case, the adversary’s choice of
inputs causes these vectors to coincide, and this has the effect of “collapsing” two oracle queries.

Interestingly, it is possible to give an ad-hoc argument that P2 is second-preimage resistant.
When x and y are chosen uniformly, this has the effect of keeping the vectors (in the algebraic
representation) corresponding to H(x) and y independent. We can then argue that the adversary
doesn’t make any oracle query that is associated with two distinct queries of P2, so the reasoning of
our main theorem also applies in this case. Hence, P2 demonstrates that our main characterization
is different for Linicrypt programs with non-distinct nonces.

5.3 Random Oracle vs Ideal Cipher

A natural application of collision resistance would be the constructions of collision-resistant hash
functions from an ideal cipher [12, 3]. It should be possible to use Linicrypt to reason about
constructions in the ideal cipher model, although it would require non-trivial modifications. We
could interpret E(k,m) asH(E, k,m) andD(k, c) asH(D, k, c). The constraint thatD(k,E(k,m)) =
m adds some extra structure that must be reflected in the algebraic representation. For example,
if a program P makes a query c = E(k,m), we must consider the adversary’s ability to make
this forward query but also its ability to make the corresponding backwards query D(k, c). Both
forward/backwards queries must be considered before deeming the pair of queries E(k,m) and
D(k, c) unreachable.

We do not foresee the transition to ideal cipher model to be particularly problematic. However,
the specific analysis of [3] shows several constructions of hash functions from ideal ciphers where
the round functions are not collision-resistant, and yet their use in a Merkle-Damg̊ard construction
gives a collision-resistant result. So far, the theory of Linicrypt is not developed enough to reason
about programs with looping constructs, as in an iterated hash function (despite the fact that such
reasoning happens to be tractable for the specific example in Section 4).
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