
From FE Combiners to Secure MPC and Back

Prabhanjan Ananth∗ Saikrishna Badrinarayanan† Aayush Jain†

Nathan Manohar† Amit Sahai†

Abstract

Cryptographic combiners allow one to combine many candidates for a cryptographic prim-
itive, possibly based on different computational assumptions, into another candidate with the
guarantee that the resulting candidate is secure as long as at least one of the original candi-
dates is secure. While the original motivation of cryptographic combiners was to reduce trust
on existing candidates, in this work, we study a rather surprising implication of combiners to
constructing secure multiparty computation protocols. Specifically, we initiate the study of
functional encryption combiners and show its connection to secure multiparty computation.

Functional encryption (FE) has incredible applications towards computing on encrypted
data. However, constructing the most general form of this primitive has remained elusive.
Although some candidate constructions exist, they rely on nonstandard assumptions, and thus,
their security has been questioned. An FE combiner attempts to make use of these candidates
while minimizing the trust placed on any individual FE candidate. Informally, an FE combiner
takes in a set of FE candidates and outputs a secure FE scheme if at least one of the candidates
is secure.

Another fundamental area in cryptography is secure multi-party computation (MPC), which
has been extensively studied for several decades. In this work, we initiate a formal study of the
relationship between functional encryption (FE) combiners and secure multi-party computation
(MPC). In particular, we show implications in both directions between these primitives. As a
consequence of these implications, we obtain the following main results.

• A two-round semi-honest MPC protocol in the plain model secure against up to n − 1
corruptions with communication complexity proportional only to the depth of the circuit
being computed assuming learning with errors (LWE). Prior two round protocols based
on standard assumptions that achieved this communication complexity required trust as-
sumptions, namely, a common reference string.

• A functional encryption combiner based on pseudorandom generators (PRGs) in NC1. This
is a weak assumption as such PRGs are implied by many concrete intractability problems
commonly used in cryptography, such as ones related to factoring, discrete logarithm, and
lattice problems [AIK05]. Previous constructions of FE combiners, implicit in [AJS17],

∗MIT. prabhanjan@csail.mit.edu.
†UCLA and Center for Encrypted Functionalities. {saikrishna, aayushjain, nmanohar, sahai}@cs.ucla.edu.

Research supported in part by a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants
1619348, 1228984, 1136174, and 1065276, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty
Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is
based upon work supported by the Defense Advanced Research Projects Agency through the ARL under Contract
W911NF-15-C-0205. The views expressed are those of the authors and do not reflect the official policy or position of
the Department of Defense, the National Science Foundation, or the U.S. Government.

1

were known only from LWE. Using this result, we build a universal construction of func-
tional encryption: an explicit construction of functional encryption based only on the
assumptions that functional encryption exists and PRGs in NC1.

1 Introduction

The foundations of several cryptographic primitives rely upon computational assumptions. The
last few decades have seen the birth of many assumptions, such as factoring, quadratic residuos-
ity, decisional Diffie-Hellman, learning with errors, and many more. Understanding the security
of these assumptions is still very much an active research area. Despite years of research, very
little is known in terms of how different cryptographic assumptions compare with each other.
For instance, its not known whether decisional Diffie-Hellman is a weaker or a stronger assump-
tion than learning with errors. This leads us to the following unsatisfactory scenario: suppose
a cryptographic primitive (say, public key encryption) has many candidate constructions based
on different assumptions, and we want to pick the most secure candidate. In this scenario, it is
unclear which one we should pick.

Cryptographic Combiners. The notion of cryptographic combiners was introduced to
resolve this dilemma. Given many candidates of a cryptographic primitive, possibly based on
different assumptions, a cryptographic combiner churns these candidates into another candidate
construction for the same primitive with the guarantee that the resulting construction is secure
as long as at least one of the original candidates are secure. For instance, a combiner for public
key encryption can be used to transform two candidates based on decisional Diffie-Hellman and
learning with errors into a different public-key encryption candidate that is secure as long as
either decisional Diffie-Hellman or learning with errors is secure.

While combiners were originally introduced to reduce trust on existing cryptographic con-
structions, in this work, we study a rather surprising implication from combiners to secure
multi-party computation. Secure multi-party computation [Yao86, GMW87, BOGW88], one of
the fundamental notions in cryptography, allows many parties, who don’t necessarily trust each
other, to come together and compute a function on their private inputs. We consider the prim-
itive of functional encryption and study the implications of functional encryption combiners to
secure multi-party computation. But first, we recall the notion of functional encryption.

Functional Encryption. Functional encryption (FE), introduced by [SW05, BSW11, O’N10],
is one of the core primitives in the area of computing on encrypted data. This notion allows
an authority to generate and distribute constrained keys associated with functions f1, . . . , fq,
called functional keys, which can be used to learn the values f1(x), . . . , fq(x) given an en-
cryption of x. Intuitively, the security notion states that the functional keys associated with
f1, . . . , fq and an encryption of x reveal nothing beyond the values f1(x), . . . , fq(x). While this
notion is interesting on its own, several works have studied its connections to other areas in
cryptography and beyond, including reusable garbled circuits [GKP+13], indistinguishability
obfuscation [AJ15, BV15, AJS15, LPST16b, LPST16a], adaptive garbling [HJO+16], verifiable
random functions [GHKW17, Bit17, BGJS17], deniable encryption [GKW17], hardness o1f Nash
equilibrium [GPS16, GPSZ17], and many more.

Currently, we know how to construct only restricted versions1 of functional encryption
from well studied cryptographic assumptions. However, constructing the most general form
of functional encryption has been an active research area and has intensified over the past few

1For instance, we can restrict the adversary to only ask for one functional key in the security experiment. A
functional encryption scheme satisfying this property can be based on public key encryption schemes [SS10, GVW12]
(or one-way functions if one can settle for the secret key version).

2

years given its implication to indistinguishability obfuscation [AJ15, BV15]. All the candi-
dates [GGHZ14, Lin16, LV16, AS17, Lin17, LT17] we know so far are either based on assump-
tions pertaining to the tool of graded encodings [BS03, GGH13], or on other new and relatively
unstudied assumptions [AJKS18, LM18, Agr18]. Recent cryptanalytic attacks [CHL+15, HJ15,
CLLT15, CJL16, CGH+15] on assumptions related to graded encodings have prompted scrutiny
of the security of schemes that use this tool as the building block. Given this, we should hope
to minimize the trust we place on any individual FE candidate. The notion of a functional en-
cryption combiner achieves this purpose. Roughly speaking, a functional encryption combiner
allows for combining many functional encryption candidates in such a way that the resulting
FE candidate is secure as long as any one of the initial FE candidates is secure. In other words,
a functional encryption combiner says that it suffices to place trust collectively on multiple FE
candidates, instead of placing trust on any specific FE candidate.

Our Work. We initiate a systematic study of functional encryption combiners. In particular,
we study implications from FE combiners to secure multi-party computation (and vice versa),
and by doing so, we achieve interesting consequences that were previously unknown. We detail
our contributions next.

1.1 Our Contributions

Our results can be classified into two parts. The first part shows how to translate constructions
of functional encryption combiners into secure MPC protocols. The second part studies the
other direction.

From combiners for single-key FE to secure MPC: Our first result shows how to
construct a passively secure multi-party computation protocol that is both round-optimal (two
rounds) and communication efficient (depends only on circuit depth). Recall that in a passively
secure MPC protocol, corrupted parties follow the instructions of the protocol, but try to learn
about honest party inputs from their combined view of the protocol execution. Moreover,
our resulting protocol is in the plain model and can tolerate all but one corruption2. Prior
round-optimal passively-secure MPC protocols were either communication inefficient, that is
communication complexity was proportional to circuit size [GS17, BGI+18, BL18, GS18], based
on strong assumptions such as indistinguishability obfuscation [DHRW16] or were based on trust
assumptions [CM15, MW16, PS16, BP16, BHP17] (for instance, a common reference string).
Subsequent to our work3, [QWW18] (FOCS’18) matched our result under the same assumption;
they use the new primitive of laconic function evaluation to achieve their result instead of FE
combiners. We prove the following theorem.

Theorem 1 (Informal). Consider an n-party functionality f computable by a poly-sized cir-
cuit of depth d, for any n ≥ 2. Assuming LWE, there is a construction of a passively secure
(semi-honest) n-party computation protocol for f in the plain model secure against n − 1 cor-
ruptions. The number of rounds in this protocol is 2, and the communication complexity is
poly(λ, n, d, Lin, Lout), where Lin is the input length of this circuit computing f , Lout is its
output length and λ is the security parameter.

We summarize the state of art in the Table 1.1.
Central to proving the above theorem is a transformation from a functional encryption

combiner to passively secure MPC. We only require a combiner for functional encryption schemes
where the adversary only receives one functional key. We require the functional encryption

2Unless otherwise specified, we only consider MPC protocols tolerating all but one corruption.
3We note that [QWW18] explicitly write that our work “previously got such result using functional-encryption

combiners” (emphasis added).

3

Communication
Complexity

Assumptions Model

[CM15, MW16, PS16,
BP16]

poly(λ, n, d, Lin, Lout) LWE CRS

[DHRW16] poly(λ, n, d, Lin, Lout)
piO and lossy en-
cryption

Plain

[GS17] poly(λ, n, |f |) Bilinear maps Plain

[BL18, GS18] poly(λ, n, |f |) Two-round OT Plain

Our Work, poly(λ, n, d, Lin, Lout) LWE Plain
(subsequently [QWW18])

Figure 1: State of the art in terms of communication complexity of two-round passively secure n-
party protocols in the all-but-one corruption model. We denote by |f | and d the size and depth of
the circuit representing the MPC functionality f , respectively. Moreover, Lin and Lout, respectively,
denote the input and output lengths of the circuit. CRS stands for common reference string and
piO stands for probabilistic indistinguishability obfuscation [CLTV15].

combiner to have some structural properties. Namely, the functional key for f associated with
the combined candidate needs to be of the form (f, sk1

f , . . . , sk
n
f), where (i) decomposability: skif

is produced by the ith FE candidate and, (ii) succinctness: the length of skif is poly(λ, d, Lout),
where d is the depth of the circuit computing f and Lout is its output length. As part of the
succinctness property, we also require that the encryption complexity is poly(λ, d, Lin), where
Lin is the length of the message to be encrypted. We show how to construct such an FE combiner
assuming LWE.

An intermediate tool we use in this implication is a communication inefficient passively secure
MPC protocol. By communication inefficient, we mean that the communication complexity is
proportional to the size of the circuit representing f . We note that such protocols [GS17, BL18,
GS18] exist in the literature4 based on just the assumption of round-optimal passively secure
oblivious transfer.

Lemma 1 (Informal). Consider a n-party functionality f , for any n ≥ 2. There is a pas-
sively secure n-party computation protocol for f in two rounds with communication complexity
poly(λ, n, d, Lin, Lout) secure against n− 1 corruptions, where d is the depth of circuit comput-
ing f , Lin is the input length of the circuit and Lout is its output length. Moreover, we assume
(i) a decomposable and succinct functional encryption combiner and (ii) a communication in-
efficient (as defined above) two-round secure n-party computation protocol secure against n− 1
corruptions.

By plugging in the recent round-optimal secure MPC protocols [GS17, BL18, GS18] that can
be based on two-round oblivious transfer, which in turn can be based on learning with er-
rors [PVW08], and our new decomposable and succinct FE combiner from LWE, we get Theo-
rem 1. We note that MPC with malicious security requires at least 4 rounds [GMPP16, ACJ17,
BHP17, BGJ+18, HHPV18], and thus, we do not consider MPC with malicious security in this
work.

4These protocols are inherently communication inefficient. The reason is that they present a compiler that turns
any arbitrary interactive MPC protocol into a two-round MPC protocol. The communication complexity in the
resulting two-round MPC protocol is at least the computational complexity of the original MPC protocol. However,
the computational complexity of the resulting protocol has to be proportional to the size of the circuit representing
the functionality f .

4

From secure MPC to combiners for unbounded-key FE: In the other direction,
we show how to transform existing secure multi-party computation protocols into constructions
of functional encryption combiners. However, we note that the FE combiners we construct
from MPC here do not satisfy decomposability or succinctness. In particular, we show how
to transform specific constant round passively secure MPC protocols based on low degree ran-
domized encodings [BMR90] into functional encryption combiners. By instantiating low degree
randomized encodings from pseudorandom generators in NC1, we get the following result.

Theorem 2 (Informal). Assuming pseudorandom generators in NC1, there is a construction of
a combiner for unbounded-key functional encryption.

By unbounded-key functional encryption, we mean that there is no a priori bound on the
number of functional keys the adversary can request in the security experiment. We note that
such pseudorandom generators in NC1 are implied by most concrete intractability assumptions
commonly used in cryptography, such as ones related to factoring, discrete logarithm, and
lattice problems [AIK05]. Furthermore, such PRGs are also implied by the existence of one-way
permutations in NC1 or one-way functions in NC1 with efficiently computable entropy [AIK05].

Next, we present a generic reduction that can transform two-round passively secure MPC
protocols into functional encryption combiners. For this transformation to hold, the MPC
protocol must satisfy two properties: (i) delayed function-dependence: the first round of the
MPC protocol should be independent of the functionality being securely computed and (ii)
reusability: the first round can be reused by the parties to securely compute many functionalities
(but on the same inputs fixed by the first round).

Theorem 3 (Informal). Assuming a delayed function-dependent and reusable round-optimal
secure MPC protocol, there is a construction of an unbounded-key decomposable functional en-
cryption combiner.

We then observe that existing two-round secure MPC protocols [MW16, PS16, BP16], based
on learning with errors, already satisfy delayed function-dependence and reusability. We note
that it is not necessary for the round-optimal protocols to be in the plain model (indeed, the
protocols [MW16, PS16, BP16] are in the common reference string (CRS) model).

Prior to this work, the only polynomial hardness assumption known to imply an FE combiner
was the learning with errors assumption [AJS17]5. While Theorem 2 already gives a construction
of a functional encryption combiner from learning with errors (pseudorandom generators in NC1

can be based on learning with errors [BPR12]), the functional encryption combiner constructed
in Theorem 3 arguably provides a more efficient transformation. In particular, the efficiency of
the functional keys in the combined scheme from Theorem 3 is linear in the efficiency of the
functional keys in the FE candidates. However, the efficiency in the combined scheme from
Theorem 2 degrades polynomially in the efficiency of the original FE candidates. Furthermore,
the FE combiner from Theorem 3 is decomposable, a property needed by an FE combiner as a
building block in the proof of Theorem 1. On the other hand, the FE combiner from Theorem 2 is
inherently not decomposable, since it is based on an “onion-layered” approach – this means that
the keys generated with respect to one FE candidate make oracle calls to other FE candidates
(see [HKN+05] for a related discussion on black-box combiners). Furthermore, the FE combiner
from Theorem 3 makes only black-box use of the underlying FE candidates, whereas the FE
combiner from Theorem 2 is inherently non-black-box.

In terms of techniques, we introduce mechanisms to emulate a MPC protocol using functional
encryption candidates. This is remiscient of “MPC-in-the-head” paradigm introduced by Ishai et
al. [IKOS07] and more relevant to the context of FE is the work of Gorbunov et al. [GVW12] who

5Note that [AJS17] required sub-exponential hardness only for constructing iO combiners, not for constructing
FE combiners.

5

used information-theoretic MPC protocols to construct single-key FE. However, we encounter
new challenges to implement the “MPC-in-the-head” paradigm in our context.

Universal Functional Encryption: We strengthen our constructions of FE combiners
by showing how to transform them into combiners that also work when the insecure candidates
don’t necessarily satisfy correctness (of course, we still require that the secure candidate is cor-
rect). Such combiners are called robust combiners. To do this, we present correctness amplifica-
tion theorems based on previous works on indistinguishability obfuscation [BV16, AJS17] and, in
particular, our correctness amplification assumes only one-way functions (unlike [BV16, BV17]).
Robust combiners have been useful in universal constructions [AJN+16, AJS17]. Roughly speak-
ing, a universal construction of FE is a concrete construction of FE that is secure as long as any
secure and correct construction exists. We show how to build universal functional encryption
from robust FE combiners.

Theorem 4 (Universal Functional Encryption). Assuming pseudorandom generators in NC1,
there is a universal unbounded-key functional encryption scheme.

Our construction will be parameterized by T , where T is an upper bound on the running time of
all the algorithms associated with the secure candidate. This was a feature even in the universal
iO construction of [AJN+16].

Related Work: The notion of combiners has been studied in the context of many cryp-
tographic primitives. Asmuth and Blakely [AB81] studied combiners for encryption schemes.
Levin proposed a universal construction of one-way functions [Lev87]. Later, a systematic
study of combiners and their relation to universal constructions was proposed by Harnik et
al. [HKN+05] (also relevant are the constructions in [Her05, Her09]). Recently, Ananth et
al. [AJN+16] designed universal constructions of indistinguishability obfuscation (iO). Concur-
rently, Fishclin et al. also proposed combiners in the context of program obfuscation [FHNS16].
Ananth et al. [AJS17] then proposed the concept of transforming combiners that transforms
many candidates of a primitive X, with at least one of them being secure and, into a secure
candidate of primitive Y . In particular, they construct iO-to-functional encryption transforming
combiners.

Subsequent to our work, [QWW18] (FOCS’18) matched our result by also achieving a
two-round semi-honest MPC protocol in the plain model with depth-proportional communi-
cation complexity assuming LWE, using laconic function evaluation instead of FE combiners.
[QWW18]’s protocol consists of pre-processing, online, and post-processing phases. Addition-
ally, they note that the computation complexity of the online phase is also independent of the
size of the function being computed. After seeing their work, we observe that our protocol also
satisfies this property. In particular, in the construction in Section 5, steps 1 − 3 in round 1
can be made the preprocessing phase. The resulting protocol will now have online computation
complexity independent of the size of the function being computed.

1.2 Technical Overview

We begin by tackling the problem of constructing secure multi-party computation with depth-
proportional communication complexity, i.e, proportional only to the depth of the circuit being
securely computed, starting from a functional encryption combiner.

Round-Optimal MPC with Depth-Proportional Communication: Let’s start
by recalling prior known two-round secure MPC protocols [MW16, PS16, BP16] with depth-
proportional communication in the CRS model. The basic template is as follows: in the first

6

round, the ith party broadcasts an encryption of its input xi. These ciphertexts are computed
with respect to public keys that are derived from the CRS. All the n parties then homomorphi-
cally compute on the encryptions of (x1, . . . , xn) to obtain a ciphertext of f(x1, . . . , xn), where
f is the function they wish to securely compute. The resulting ciphertext is then partially de-
crypted, and every party broadcasts its partially decrypted value in the second round. These
values can be combined to recover the output of the functionality.

One could imagine getting rid of the CRS in the above protocol using the recent round-
optimal MPC protocols in the plain model [GS17, BL18]. If this were possible, then it would
yield a round-optimal MPC in the plain model that has depth-proportional communication
complexity. However, the issue is that the messages in the first round of [MW16, PS16, BP16]
are computed as functions of the CRS and thus, such an approach would inherently require
three rounds.

To overcome this, we introduce a mechanism to parallelize the evaluation and the encryption
processes. The output of the evaluation in our approach is the output of the functionality and
not a partially decrypted value, as was the case in [MW16, PS16, BP16], and thus, we save one
round. To implement this high level idea, we use a functional encryption combiner. Before we
describe the high level template, we require that the underlying functional encryption combiner
satisfies the decomposability property: Suppose we have FE candidates FE1, . . . ,FEn. Then, a
functional key for a circuit C in the combined scheme is just a concatenation of the functional
keys for C, (skC1 , . . . , sk

C
n), where skCi is computed with respect to the ith FE candidate.

The template of our depth-proportional communication secure MPC construction from an
FE combiner satisfying this decomposability property is in Figure 1.2. As an intermediate tool,
we use a size-proportional communication secure MPC protocol (henceforth, also referred to as a
communication inefficient protocol). By this, we mean that the communication complexity of the
secure MPC protocol grows polynomially with the size of the circuit being securely computed.

Our Approach

Goal: t-round depth-proportional communication secure MPC from t-round size-
proportional communication secure MPC using decomposable FE combiners.

• Suppose the input of the ith party is xi and f is the function to be securely computed.
All the parties execute the t-round (communication-inefficient) MPC protocol to obtain
an encryption of (x1, . . . , xn) with respect to the combined FE scheme.

• Simultaneously, the ith party computes the functional key of f with respect to the ith

candidate and sends it to everyone.

Figure 2: Our approach to construct round-optimal depth-proportional communication secure MPC from

decomposable functional encryption combiners.

At the end of second round, every party has an encryption of (x1, . . . , xn) with respect to
the combined candidate and functional keys for f with respect to every candidate. From the
decomposability property, this is equivalent to generating a functional key for f with respect
to the combined candidate. Each party can separately execute the FE combiner decryption
algorithm to obtain f(x1, . . . , xn), as desired. Here, we crucially rely on the fact that all the FE
candidates are correct. This completes the high level description of the template.

In the first bullet in Figure 1.2, we instantiate the secure MPC protocol with size-proportional
communication with [GS17, BL18, GS18]. The works of [GS17, BL18, GS18] are two-round

7

protocols in the plain model and by suitably instantiating the FE combiners (described later),
our approach yields a two-round MPC protocol with depth-proportional communication.

To argue security of our MPC protocol, the idea is to start with the assumption of a secure
FE scheme and instantiate all the candidates using the same FE scheme. If the adversary
corrupts all but the jth party, this means that he can obtain all the master secret keys of the
FE scheme except the jth one. This is effectively the same as all except the jth candidate being
broken. At this point, we can use the security of the jth FE scheme to argue the security of the
MPC protocol. This shows that the above template yields a secure two-round MPC protocol
assuming a secure FE scheme.

Note that we also assume a two-round (communication-inefficient) MPC protocol. Without
showing that our protocol has depth-proportional communication, the above protocol doesn’t
achieve anything new. Indeed, it is unclear why our protocol should have depth-proportional
communication. There are two sources of concern: (i) we are still using a communication
inefficient MPC protocol and, (ii) the functional key of f could be proportional to the size of
the circuit computing f . Suppose we had a secure (magical) FE scheme satisfying the following
two properties: (1) the encryption complexity of this FE scheme is proportional only to the
depth of f , and (2) the functional key of f is of the form (f, aux), where |aux| only depends
on the depth of the circuit computing f . We claim that this would immediately show that
our protocol has communication complexity proportional only to the depth. Concern (i) is
addressed by the fact the communication-inefficient MPC protocol is used only to evaluate the
encryption circuit of the underlying FE scheme. Since the underlying FE scheme is succinct, the
size of the encryption circuit only depends on the depth of the functionality f . Therefore, the
communication complexity of the communication-inefficient MPC protocol does not affect our
construction. Concern (ii) is handled by the fact that the parties only have to send the “aux”
part of the function keys to the other parties, which is only proportional to the depth of f .

We next observe that the functional encryption scheme of Goldwasser et al. [GKP+13] can
be used to satisfy both properties (1) and (2). We recall the functional encryption construction
of Goldwasser et al.: the building blocks in this construction are attribute based encryption
(ABE) for circuits, fully homomorphic encryption (FHE), and garbling schemes.

• To encrypt a message x, first encrypt x using a (leveled) FHE scheme. Suppose the
maximum output length of the functions for which we generate functional keys is Lout.
Generate poly(Lout) ABE encryptions of the FHE ciphertext, for some fixed polynomial
poly, along with wire keys of a garbled circuit. The garbled circuit is associated with the
FHE decryption circuit.

• A functional key of f consists of poly(Lout) ABE keys associated with the circuit that
computes the FHE evaluation of f .

If we instantiate the ABE scheme with the scheme of Boneh et al. [BGG+14] and the leveled
FHE scheme with any of the schemes proposed in [GSW13, BGV14], we achieve both properties
(1) and (2) described above. The schemes of [BGG+14] and [GSW13, BGV14] have encryption
complexity proportional only to the depth of the circuit. In terms of the structure of the
functional key, we note that the ABE scheme of [BGG+14] satisfies this nice property: you can
express the ABE key of a function f as (f, aux), where |aux| is a polynomial in depth and Lout.
This can be used to argue that the above FE scheme satisfies property (2).

Thus starting from an FE combiner, we have constructed a communication-efficient two-
round MPC. We note that the FE combiner is required to satisfy simulation security in order
to prove that the resulting MPC is simulation secure. The security proof of the resulting MPC
directly follows from the simulation security of the FE combiner and the simulation security of
the underlying communication inefficient MPC.

Next, we show how to construct such an FE combiner.

8

Constructing the FE combiner: As in the works of [AJN+16, AJS17], we view the FE
candidates as analogous to parties in a secure MPC protocol. Suppose we want to construct an
FE combiner for n candidates. We start with a two-round (semi-honest) secure n-party MPC
protocol in the plain model. To encrypt a message x, first additively secret share x into shares
(x1, . . . , xn). Compute the first round messages of all the parties, where the ith party’s input is
xi. Finally, for every i ∈ [n], encrypt the first round messages of all the parties along with the
local state of the ith party using ith FE candidate. All the n encryptions will form the ciphertext
corresponding to the FE combiner scheme.

To generate a functional key for f , we generate n functional keys with each key associated
with an FE candidate. The ith functional key computes the next message function of the ith

party. In this context, we define the next message function to be a deterministic algorithm that
takes as input the state of the party along with the messages received so far and produces the
next message. Moreover, the MPC functionality associated with the next message function is
as follows: it takes as input n shares of x, reconstructs x, and computes f(x). The functional
key of f corresponding to the FE combiner is the collection of all these n functional keys.

The decryption in the FE combiner scheme proceeds by recovering the first and second round
messages of all the parties. The reconstruction algorithm of the secure MPC protocol is then
executed to recover the output of the functionality. An issue here is that the reconstruction part
need not be publicly computable. Meaning that it might not be possible to recover the output
of the functionality from the transcript of the protocol alone. This can be resolved by revealing
the local state of one of the parties to the FE evaluator who can then use this to recover the
output. We implement this by considering an (n+1)-party MPC protocol with the FE evaluator
corresponding to one of the parties in the MPC protocol.

Without restricting ourselves to a specific type of two-round secure MPC protocols, the
above template could be ill defined for two reasons:

• Function-Dependence: The first round messages of the MPC protocol we start off with
could depend on the functionality being securely computed. This means that the FE en-
cryptor needs to be aware of the function f when it is encrypting the message x. Hence,
we need to enforce a delayed function-dependence property on the underlying MPC pro-
tocol. Roughly, this property states that the first round messages of the MPC protocol
are independent of the functionality being securely computed.

• Reusability: Suppose we wish to construct a collusion-resistant FE combiner, meaning that
the FE combiner is secure even if the adversary obtains multiple functional keys during
the security experiment. Even if one of the candidates is secure in the collusion-resistant
setting, the above template doesn’t necessarily yield a collusion-resistant FE combiner.
This is because the first round MPC messages are “reused” across different FE evaluations.
The security of MPC, as is, doesn’t necessarily guarantee any security if the first round
messages are reused for secure computation of multiple functionalities. Hence, we need to
enforce a corresponding reusability property on the underlying MPC protocol to make it
work in the collusion resistant setting.

Once we start with a delayed function-dependent and reusable secure MPC protocol, we can
implement an FE combiner using the above template. We observe that the schemes of [MW16,
PS16, BP16] are both delayed function-dependent and reusable. As a corollary, we obtain an
FE combiner based on learning with errors.

We note that this would give an FE combiner that satisfies indistinguishability security. This
is inherent since collusion-resistant FE that is also simulation secure was shown to be impos-
sible [AGVW13]. Thus, for our application of communication efficient MPC, we construct a
simulation secure FE combiner in the single-key setting (i.e., the adversary can only submit one
function query) starting from a threshold fully homomorphic encryption scheme.

9

FE Combiner from Weaker Assumptions: The above constructions and previous
constructions of FE combiners [AJS17] relied on the learning with errors assumption. However,
it would be interesting to try to construct an FE combiner from weaker assumptions. Our first
observation is that there is a simple construction of an FE combiner for two FE candidates.
In this case, one can simply “nest” the two candidates. That is, if the candidates are denoted
FE1 and FE2, we encrypt a message x by first encrypting x under FE1 and then encrypting the
resulting ciphertext under FE2. To construct a function key for f , we first construct the function
key SK1 for f using FE1 and then construct the function key SK2 for the decryption circuit of
FE1, with SK1 hardcoded as the function key, using FE2. SK2 is then the function key for f in
the nested scheme. In fact, this nested approach works to combine any constant d number of
candidates. However, this approach does not scale polynomially in the number of candidates,
and therefore, does not give us an FE combiner for a polynomial number of candidates.

Using the above observation, we note that we can evaluate circuits over a constant number
of inputs. In particular, we can evaluate constant-sized products. If we could compute the
sum of various constant-sized products, then we could compute constant-degree polynomials,
which would allow us to apply known bootstrapping techniques to go from FE for constant
degree polynomials to FE for arbitrary functions via randomized encodings. Such randomized
encodings can be constructed assuming a PRG in NC1 [AIK05]. But how do we go about
computing the sums of constant degree polynomials? To reason about this, we will view this
as an MPC problem, where each FE candidate is associated with a party. Given an input x,
we bitwise secret share x amongst all the parties. This effectively gives us an MPC problem
where each party/candidate has a secret input (their share of x). For simplicity, let’s consider
the case where each candidate is given a single bit (the ith candidate is given the bit xi). As an
example, suppose we wished to evaluate the polynomial

x2
1 + x1x2 + x1x3 + x2x3.

Using the simple nested combiner for two candidates, we could evaluate each monomial and then
sum the resulting monomial evaluations to compute the polynomial. However, this approach
is flawed, since it will leak the values of each of the monomials, whereas functional encryption
requires only the value of the polynomial to be computable and nothing else. We resolve this
issue by masking each of the monomial evaluations by secret shares of 0 such that summing
all these values gives the correct polynomial evaluation, but the individual computed monomial
evaluations hide the true values of the monomials. To illustrate this, for the above polynomial,
candidate 1 has its secret input in 3 monomials x2

1, x1x2, and x1x3. We secret share 0 across 3
shares. Let Share1,1,Share1,2,Share1,3 denote these values, where

Share1,1 + Share1,2 + Share1,3 = 0.

Similarly, candidates 2 and 3 have their secret inputs in 2 monomials: x1x2, x2x3 for candidate
2 and x1x3, x2x3 for candidate 3. We secret share 0 across 2 shares for each of these candidates.
These shares are denoted Share2,1,Share2,2 for candidate 2 and Share3,1,Share3,2 for candidate
3. We then place a total ordering on the monomials of the polynomial in order to assign the
shares to the monomials. Suppose our ordering was

x2
1 < x1x2 < x1x3 < x2x3.

Then, we would see that x2
1 was the first monomial containing x1 and assign Share1,1 to this

monomial. For x1x2, we see that it is the second monomial containing x1 and the first monomial
containing x2. Therefore, we assign the shares Share1,2 and Share2,1 to the monomial x1x2. In a
similar manner, we assign the shares Share1,3,Share3,1 to x1x3 and the shares Share2,2,Share3,2

to x2x3. When generating the function key to evaluate the monomial x2
1, we actually give out a

function key that evaluates x2
1 + Share1,1. Similarly, when generating a function key to evaluate

the monomial x1x2, we actually give out a function key that evaluates x1x2 +Share1,2 +Share2,1.

10

By proceeding in this manner, we have made it so that each monomial evaluation hides the
actual monomial value, but the sum of the monomial evaluations gives the polynomial value.
However, this approach still raises several concerns: (i) how can we ensure that our secret
sharing procedure hides intermediate sums of monomials, and (ii) how can we coordinate the
randomness needed to generate the secret shares amongst the various monomials. To illustrate
the first issue, suppose that the polynomial to evaluate was x1 + x2. In this instance, we would
not add any secret shares, which would reveal x1 and x2. Fortunately, the first issue is not an
issue at all, since such problematic polynomials will not occur. This is because we begin by
secret sharing the bits of the input x amongst the candidates. Therefore, every monomial will
be broken into the sum of new monomials, such that each candidate contains a private bit in
one of these new monomials. Since one of the candidates is secure, the secret sharing amongst
the monomials with bits corresponding to the secure candidate ensures that nothing except the
actual polynomial evaluation can be learned. To solve issue (ii), we utilize a PRF and generate
a random PRF key for each candidate. This PRF key is then used to generate the secret shares
of 0 associated with that candidate.

Organization: We begin by defining the notion of functional encryption and secure multi-
party computation in Section 2. In Section 3, we define the notion of a functional encryption
combiner. In Section 4, we show how to build a decomposable FE combiner that will be used
as a building block in the construction of our round-optimal and communication efficient MPC
protocol and how to instantiate it from [GKP+13]. In Section 5, we give the construction of our
round-optimal and communication efficient MPC protocol. In Section 6, we show how to build
an FE combiner assuming the existence of a PRG in NC1. In Section 7, we demonstrate how to
convert a delayed function-dependent and reusable round-optimal secure MPC protocol into an
FE combiner. Finally, in Section 8, we show how to convert an FE combiner into a robust FE
combiner and build a universal functional encryption scheme.

2 Preliminaries

We denote the security parameter by λ. For an integer n ∈ N, we use [n] to denote the set
{1, 2, . . . , n}. We use D0

∼=c D1 to denote that two distributions D0,D1 are computationally
indistinguishable. We use negl(λ) to denote a function that is negligible in λ. We use x← A to
denote that x is the output of a randomized algorithm A, where the randomness of A is sampled
from the uniform distribution.

2.1 Functional Encryption

We define the notion of a (secret key) functional encryption candidate and a (secret key) func-
tional encryption scheme. A functional encryption candidate is associated with the correctness
requirement, while a secure functional encryption scheme is associated with both correctness
and security.

Syntax of a Functional Encryption Candidate/Scheme. A functional encryption
(FE) candidate/scheme FE for a class of circuits C = {Cλ}λ∈N consists of four polynomial time
algorithms (Setup,Enc,KeyGen,Dec) defined as follows. Let Xλ be the input space of the circuit
class Cλ and let Yλ be the output space of Cλ. We refer to Xλ and Yλ as the input and output
space of the candidate/scheme, respectively.

11

• Setup, MSK← FE.Setup(1λ): It takes as input the security parameter λ and outputs the
master secret key MSK.

• Encryption, CT← FE.Enc(MSK,m): It takes as input the master secret key MSK and a
message m ∈ Xλ and outputs CT, an encryption of m.

• Key Generation, SKC ← FE.KeyGen (MSK, C): It takes as input the master secret key
MSK and a circuit C ∈ Cλ and outputs a function key SKC .

• Decryption, y ← FE.Dec (SKC ,CT): It takes as input a function secret key SKC , a
ciphertext CT and outputs a value y ∈ Yλ.

Throughout this work, we will only be concerned with uniform algorithms. That is, (Setup,Enc,
KeyGen,Dec) can be represented as Turing machines (or equivalently uniform circuits).

We describe the properties associated with the above candidate.

Approximate Correctness.

Definition 1 (Approximate Correctness). A functional encryption candidate FE = (Setup,
KeyGen,Enc,Dec) is said to be α-correct if it satisfies the following property: for every C :
Xλ → Yλ ∈ Cλ,m ∈ Xλ it holds that:

Pr

MSK← FE.Setup(1λ)
CT← FE.Enc(MSK,m)

SKC ← FE.KeyGen(MSK, C)
C(m)← FE.Dec(SKC ,CT)

 ≥ α,
where the probability is taken over the coins of the algorithms.

We refer to FE candidates that satisfy the above definition of correctness with α = 1−negl(λ)
for a negligible function negl(·) as (almost) correct candidates.

Except for Section 8, we will only deal with correct candidates. Unless explicitly stated
otherwise, all FE candidates throughout this paper satisfy (almost) correctness.

We refer the reader to Appendix A.1 for the indistinguishability and simulation based secu-
rity definitions.

Collusions. We can parameterize the FE candidate by the number of function secret key
queries that the adversary can make in the security experiment. If the adversary can only submit
an a priori upper bounded q secret key queries, we say that the scheme is q-key or q-collusion
secure. We say that the functional encryption scheme unbounded-key or unbounded-collusion
secure if the adversary can make an unbounded (polynomial) number of function secret key
queries. In this work, unless otherwise stated, we will allow the adversary to make an arbitrary
polynomial number of function secret key queries.

Succinctness.

Definition 2 (Succinctness). A functional encryption candidate FE = (Setup,Enc,KeyGen,Dec)
for a circuit class C containing circuits that take inputs of length `in, outputs strings of length
`out bits and are of depth at most d is said to be succinct if the following holds: For any circuit
C ∈ C,

12

• Let MSK ← FE.Setup(1λ). The size of the circuit FE.Enc(MSK, ·) < poly(λ, d, `in, `out) for
some polynomial poly.

• The function key SKC ← FE.KeyGen(MSK, C) is of the form (C, aux) where |aux| ≤
poly(λ, d, `out) for some polynomial poly.

In general, an FE candidate/scheme need not satisfy succinctness. However, we will need
to utilize succinct FE candidates when constructing depth-proportional communication MPC
(Section 4 and Section 5). In such cases, we will explicitly state that the FE candidates are
succinct.

FE Candidates vs. FE Schemes. As defined above, an FE scheme must satisfy both
correctness and security, while an FE candidate is simply the set of algorithms. Unless otherwise
specified, we will be dealing with FE candidates that satisfy correctness. We will only refer to
FE constructions as FE schemes if it is known that the construction satisfies both correctness
and security.

2.2 Secure Multi-Party Computation

The syntax and security definitions for secure multi-party computation can be found in
Appendix A. Since we are dealing throughout this paper with the efficiency of MPC protocols,
we give the definition of a succinct MPC protocol below.

Definition 3 (Succinct MPC protocol). Consider an n-party semi-honest secure MPC protocol
Π for a functionality f , represented by a polynomial-sized circuit C. We define the communica-
tion complexity of Π to be the total length of all the messages exchanged in the protocol.

We define Π to be succinct if the communication complexity of Π is poly(λ, d, n), where λ is
the security parameter and d is the depth of the circuit C.

2.3 Additional Preliminaries

In this work, we will also make occasional use of threshold leveled fully homomorphic encryp-
tion [AJLA+12, MW16, BGG+17] and garbling schemes [Yao86, BHR12]. Formal definitions of
these primitives can be found in Appendix A.

3 FE Combiners: Definition

In this section, we give a formal definition of an FE combiner. Intuitively, an FE combiner
FEComb takes n FE candidates, FE1, . . . ,FEn and compiles them into a new FE candidate with
the property that FEComb is a secure FE scheme provided that at least one of the n FE candi-
dates is a secure FE scheme.

Syntax of a Functional Encryption Combiner. A functional encryption combiner
FEComb for a class of circuits C = {Cλ}λ∈N consists of four polynomial time algorithms (Setup,Enc,
KeyGen,Dec) defined as follows. Let Xλ be the input space of the circuit class Cλ and let Yλ be
the output space of Cλ. We refer to Xλ and Yλ as the input and output space of the combiner,
respectively. Furthermore, let FE1, . . . ,FEn denote the descriptions of n FE candidates.

• Setup, FEComb.Setup(1λ, {FEi}i∈[n]): It takes as input the security parameter λ and the
descriptions of n FE candidates {FEi}i∈[n] and outputs the master secret key MSK.

13

• Encryption, FEComb.Enc(MSK, {FEi}i∈[n],m): It takes as input the master secret key
MSK, the descriptions of n FE candidates {FEi}i∈[n], and a message m ∈ Xλ and outputs
CT, an encryption of m.

• Key Generation, FEComb.Keygen
(
MSK, {FEi}i∈[n], C

)
: It takes as input the master

secret key MSK, the descriptions of n FE candidates {FEi}i∈[n], and a circuit C ∈ Cλ and
outputs a function key SKC .

• Decryption, FEComb.Dec
(
{FEi}i∈[n],SKC ,CT

)
: It is a deterministic algorithm that

takes as input the descriptions of n FE candidates {FEi}i∈[n], a function secret key SKC ,
and a ciphertext CT and outputs a value y ∈ Yλ.

Remark 1. In the formal definition above, we have included {FEi}i∈[n], the descriptions of the
FE candidates, as input to all the algorithms of FEComb. For notational simplicity, we will
often forgo these inputs and assume that they are implicit.

We now define the properties associated with an FE combiner. The three properties are
correctness, polynomial slowdown, and security. Correctness is analogous to that of an FE
candidate, provided that the n input FE candidates are all valid FE candidates. Polynomial
slowdown says that the running times of all the algorithms of FEComb are polynomial in λ and
n. Finally, security intuitively says that if at least one of the FE candidates is also secure, then
FEComb is a secure FE scheme. We provide the formal definitions below.

Correctness.

Definition 4 (Correctness). Suppose {FEi}i∈[n] are correct FE candidates. We say that an FE
combiner is correct if for every circuit C : Xλ → Yλ ∈ Cλ, and message m ∈ Xλ it holds that:

Pr

MSK← FEComb.Setup(1λ, {FEi}i∈[n])
CT← FEComb.Enc(MSK, {FEi}i∈[n],m)

SKC ← FEComb.Keygen(MSK, {FEi}i∈[n], C)
C(m)← FEComb.Dec({FEi}i∈[n],SKC ,CT)

 ≥ 1− negl(λ),

where the probability is taken over the coins of the algorithms and negl(λ) is a negligible function
in λ.

Polynomial Slowdown.

Definition 5 (Polynomial Slowdown). An FE combiner FEComb satisfies polynomial slow-
down if on all inputs, the running times of FEComb.Setup,FEComb.Enc,FEComb.Keygen, and
FEComb.Dec are at most poly(λ, n), where n is the number of FE candidates that are being
combined.

IND-Security.

Definition 6 (IND-Secure FE Combiner). An FE combiner FEComb is selectively secure if for
any set {FEi}i∈[n] of correct FE candidates, it satisfies Definition 16, where the descriptions of
{FEi}i∈[n] are public and implicit in all invocations of the algorithms of FEComb, if at least one
of the FE candidates FE1, . . . ,FEn also satisfies Definition 16.

Note that Definition 16 is the IND-security definition for FE. Unless otherwise specified,
when we say a secure FE combiner, we refer to one that satisfies IND-security.

14

Simulation Security. Similarly to FE candidates, we can also consider a different notion
of security called (single-key) simulation security.

Definition 7. An FE combiner FEComb is single-key simulation secure if for any set {FEi}i∈[n]

of correct FE candidates, it satisfies Definition 17, where the descriptions of {FEi}i∈[n] are public
and implicit in all invocations of the algorithms of FEComb, if at least one of the FE candidates
FE1, . . . ,FEn also satisfies Definition 17.

Note that Definition 17 is the simulation security definition for FE.

Succinctness. Similarly to FE candidates, we can also define the notion of a succinct FE
combiner. An FE combiner is not required to satisfy succinctness, but we will utilize a succinct
FE combiner when construction low communication MPC (Section 4 and Section 5).

Definition 8. An FE combiner FEComb = (Setup,Enc,KeyGen,Dec) for a circuit class C con-
taining circuits that take inputs of length `in, outputs strings of length `out bits and are of depth
at most d is succinct if for every set of succinct FE candidates FE1, . . . ,FEn, the following holds:
For any circuit C ∈ C,

• Let MSK← FEComb.Setup(1λ, {FEi}i∈[n]). The size of the circuit FEComb.Enc(MSK, ·) ≤
poly(λ, d, `in, `out, n) for some polynomial poly.

• The function key SKC ← FEComb.KeyGen(MSK, C) is of the form (C, aux) where |aux| ≤
poly(λ, d, `out, n) for some polynomial poly.

Robust FE Combiners and Universal FE.

Remark 2. We also define the notion of a robust FE combiner. An FE combiner FEComb
is robust if it is an FE combiner that satisfies the three properties (correctness, polynomial
slowdown, and security) associated with an FE combiner when given any set of FE candidates
{FEi}i∈[n], provided that one is a correct and secure FE candidate. No restriction is placed on
the other FE candidates. In particular, they need not satisfy correctness at all.

Robust FE combiners can be used to build a universal functional encryption scheme defined
below.

Definition 9 (T -Universal Functional Encryption). We say that an explicit Turing machine
Πuniv = (Πuniv.Setup,Πuniv.Enc,Πuniv.KeyGen,Πuniv.Dec) is a universal functional encryption scheme
parametrized by T if Πuniv is a correct and secure FE scheme assuming the existence a correct
and secure FE scheme with runtime < T .

4 Succinct Single-Key Simulation Secure Decomposable
FE Combiner

In this section, we define and construct a succinct single-key simulation secure decomposable FE
combiner (DFEComb for short) that will be useful later for our communication-efficient MPC
result. Such a combiner is an FE combiner that satisfies succinctness, a stronger single-key
simulation notion of security (defined below), and the following decomposability property.

15

Decomposability.

Definition 10 (Decomposability). An FE combiner FEComb = (Setup,Enc,KeyGen,Dec) is
said to be decomposable if Setup runs MSKi ← FEi.Setup(1λ) for each FE candidate FEi and
outputs MSK = {MSKi}i∈[n] and KeyGen operates according to the following two steps.

1. It first runs a deterministic subroutine Partition that, on input a circuit C and the number
of candidates 1n, outputs (C1, . . . , Cn), where each Ci is a circuit of depth polynomial in
the depth of C.

2. It then runs SKi ← FEi.KeyGen(MSKi, Ci) and outputs SKC = {SKi}i∈[n] That is, it
generates a functional key for Ci using the ith candidate and outputs the union of all these
functional keys as the function key for C.

When dealing with decomposable FE combiners, we will often make reference to the algo-
rithm Partition used in the first step of KeyGen. We will include this algorithm as an additional
algorithm for such combiners.

Such a notion of decomposability is natural when we consider the connection between FE
combiners and MPC. In particular, in MPC, each party generates messages and broadcasts
them to the other parties. When relating FE combiners to MPC, it will be useful to associate
each FE candidate to a party in the MPC protocol. Decomposability of the FE combiner
intuitively allows each party to generate a functional key corresponding to their FE candidate
and broadcast it to the other parties. Once each party has acquired all the functional keys from
the other parties, the decomposability property ensures that each party possesses the functional
key for the FE combiner.

Single-key Simulation Security for Decomposable FE combiners: We require
decomposable FE combiners to satisfy a stronger single-key simulation security definition than
Definition 7. Essentially, this notion allows the adversary to choose a set I containing all but one
of the FE candidates and then receive the master secret keys associated with these candidates.
This is in contrast to the weaker single-key simulation security definition (Definition 7), where
the adversary received no master secret key information. Formally, single-key simulation security
for decomposable FE combiners is defined by the computational indistinguishability of the real
and ideal experiments defined below.

RealExptA(1λ, 1d, 1n, C)

1. Compute DFEComb.Setup(1λ, 1d, 1n) →
MSK = {MSKi}i∈[n]

2. Compute DFEComb.Keygen(MSK, C) →
SKC = (SK1, ..,SKn)

3. A0(1λ, 1d, 1n, C) → (I, z0). Here, I ⊂ [n]
of size n− 1.

4. A1({MSKi}i∈I ,SKC , z0)→ (m, z1)
5. DFEComb.Enc(MSK,m)→ CT
6. A2(CT,SKC , z1)→ α
7. Output α

IdealExptA,Sim(1λ, 1d, 1n, C)

1. Compute DFEComb.Setup(1λ, 1d, 1n) →
MSK = {MSKi}i∈[n]

2. Compute DFEComb.Keygen(MSK, C) →
SKC = (SK1, ..,SKn)

3. A0(1λ, 1d, 1n, C) → (I, z0). Here, I ⊂ [n]
of size n− 1.

4. A1({MSKi}i∈I ,SKC , z0)→ (m, z1)
5. Sim(MSK,SKC , C, C(m))→ C̃T
6. A2(CT,SKC , z1)→ α
7. Output α

Definition 11. (Single-Key Simulation Security of Decomposable FE Combiner) A single-key
simulation-secure decomposable FE combiner scheme DFEComb for a class of circuits C is said

16

to be secure if there exists an algorithm DFEComb.Sim such that the following holds: for a
sufficiently large security parameter λ, for every circuit C ∈ C, correct FE candidates {FEi}i∈[n]

with at least one guaranteed to be secure, PPT non-uniform adversary A = (A0, A1, A2):

|Pr[1← RealExptA(1λ, 1d, 1n, C)]− Pr[1← IdealExptA,Sim(1λ, 1d, 1n, C)]| ≤ negl(λ).

4.1 Construction of a DFE Combiner from LWE

In this section, we give our construction of a succinct single-key simulation secure decompos-
able FE combiner DFEComb from LWE. For the construction let, TFHE = (Setup,Enc,Eval,
PartDec,FinDec) denote a threshold homomorphic encryption scheme. Let FE1, . . . ,FEn be n
FE candidates. For simplicity of the exposition, all the algorithms of DFEComb implicitly get
the description of the candidates as input. We show the following result.

Theorem 5. Assuming TFHE is a secure threshold (leveled) homomorphic encryption scheme,
there exists a succinct single-key simulation secure decomposable FE combiner.

Corollary 1. Assuming LWE, there exists a succinct single-key simulation secure decomposable
FE combiner.

Construction. Since we are constructing a succinct FE combiner, the combiner and FE
candidates will be instantiated for circuit classes with bounded depth. To make this clear, we
input the depth of the circuit class to the setup algorithm in the construction. Additionally, we
include Partition in the list of algorithms for DFEComb as we will reference it later.

• DFEComb.Setup(1λ, 1d, 1n) : It runs FEi.Setup(1λ, 1d
′
)→ MSKi for all i ∈ [n] and outputs

MSK = {MSKi}i∈[n].

Here, d′ is the depth of the circuit TFHE.PartDec(·,TFHE.Eval(·, ·)) that evaluates a
TFHE ciphertext using a circuit of depth d, and then computes a partial decryption. Note
that, d′ = poly(λ, d) due to compactness of TFHE.

• DFEComb.Enc(MSK,m) : It executes the setup of TFHE; TFHE.Setup(1λ, 1d, 1n) → (fpk,
fsk1, . . . , fskn).

Then, it proceeds as follows:

– Compute TFHE.Enc(fpk,m)→ CTfhe

– For all i ∈ [n], sample ri
$←− {0, 1}`fhe . Here, `fhe is the length of the randomness

required by the PartDec algorithm.

– Compute CTi ← FEi.Enc (MSKi, (fpk,CTfhe, fski, ri)).

– Output CT = {CTi}i∈[n].

• DFEComb.Partition(C) : Consider the circuit FC that takes as input four strings from
implicit domains of the form (fpk′,CT′fhe,SK

′, r′) and computes

p← TFHE.PartDec
(
SK′,TFHE.Eval

(
fpk′,CT′fhe, C

)
; r′
)
.

The partition function outputs (FC , . . . , FC).

• DFEComb.Keygen(MSK, C) : The key generation algorithm first computes (C1, . . . , Cn)←
DFEComb.Partition(C). Then, it computes (Ci,SKi) ← FEi.KeyGen(MSKi, Ci) for i ∈ [n].
It outputs SK = (C, {SKi}i∈[n]).

17

• DFEComb.Dec(SK,CT) : The decryption algorithm first parses SK as (C, {SKi}i∈[n]) and
CT as {CTi}i∈[n]. Then, it computes pi ← FEi.Dec(SKi,CTi). Finally, it outputs
TFHE.FinDec(p1, . . . , pn).

Lemma 2. The FE combiner construction above satisfies correctness, polynomial slowdown,
and decomposability.

The correctness and efficiency of the combiner follow immediately from the construction
and the correctness and efficiency of the FE candidates and TFHE. Decomposability follows
immediately from the construction.

Lemma 3. The FE combiner construction above satisfies succinctness.

Let’s denote |m| to be `in. Let’s first bound the size of the encryption circuit. The ciphertext
contains encryptions of fpk,CTfhe, fski, ri using the candidate i. If each candidate FEi satisfies
the efficiency requirement, then the size of the circuit computing each FE candidate ciphertext
is just polyi(λ, d, `in, `out) for some polynomial polyi as it only depends on the following.

• The depth and output length of TFHE.PartDec(TFHE.Eval(·, C); ·), which is poly(λ, d, `in, `out)
since the algorithms of TFHE are efficient.

• The length of CTfhe, fpk, fski, ri, which is also poly(λ, d, `in, `out) due to the compactness
and efficiency of TFHE.

• The length of the output of C, which is `out.

The size of the circuit that computes TFHE.Enc is bounded by some polynomial poly(λ, d, `in)
due to the compactness property of the TFHE scheme. Thus, the total size of the FE com-
biner encryption circuit is bounded by some polynomial poly(n, λ, d, `in, `out). Furthermore,
|{SKi}i∈[n]| < poly(n, λ, d, `out) since each of the underlying FE candidates are succinct.

Theorem 6. The FE combiner construction above satisfies the single-key simulation security
definition for a decomposable FE combiner (Definition 11).

This is the last step towards proving Theorem 5. We give a description of the simulator in
Figure 3.

We now prove security via a sequence of hybrid experiments by arguing that every pair of
consecutive hybrids is computationally indistinguishable. The first hybrid, Hyb0, corresponds
to the real experiment, while the last hybrid, Hyb3, corresponds to the simulated experiment.
We will use red, underlined text to denote the differences between consecutive hybrids.

Hyb0 : This hybrid is the real experiment. Namely,

1. For every i ∈ [n], run FEi.Setup(1λ, 1d
′
)→ MSKi.

2. Compute DFEComb.Keygen(MSK, C)→ SKC = (SK1, . . . ,SKn).

3. A0(1λ, 1d, 1n, C)→ (I, z0).

4. A1({MSKi}i∈I ,SKC , z0)→ (m, z1).

5. Run TFHE.Setup(1λ, 1d, 1n)→ (fpk, fsk1, . . . , fskn).

6. Compute TFHE.Enc(fpk,m)→ CTfhe.

7. For all i ∈ [n], sample ri
$←− {0, 1}`fhe . Here, `fhe is the length of the randomness required

by PartDec algorithm.

18

Input: Master secret key MSK = (MSK1, ..,MSKn), functional key SKC = {SKi}i∈[n], circuit C,
value C(m), set of insecure candidates I = [n] \ i∗.

• Run TFHE.Setup(1λ, 1d, 1n)→ (fpk, fsk1, . . . , fskn)

• Compute TFHE.Enc(fpk, 0)→ CTfhe

• For all i ∈ I, sample ri
$←− {0, 1}`fhe . Here, `fhe is the length of the randomness required by

PartDec algorithm.

• Let TFHE.Sim(TFHE.Eval(C,CTfhe), {fski}i∈I , C(m))→ pi∗

• Compute CTi ← FEi.Enc (MSKi, (fpk,CTfhe, fski, ri)) for all i ∈ I.

• Compute CTi∗ ← FEi∗ .Sim(MSKi∗ , C,SKi∗ , pi∗)

• Output CT = {CTi}i∈[n].

Figure 3: Simulator of DFEComb

8. Compute CTi ← FEi.Enc (MSKi, (fpk,CTfhe, fski, ri)).

9. Output CT = {CTi}i∈[n].

10. A2(CT,SKC , z1)→ α.

11. Output α.

Hyb1 : This hybrid is exactly the same as the previous one except that now, the output
ciphertext of the secure candidate FE1 (without loss of generality, assume that FE1 is a secure
candidate and I = [2, n] for the rest of the hybrids) is simulated using the correct TFHE partial
decryption p1 (defined below).

1. For every i ∈ [n], run FEi.Setup(1λ, 1d
′
)→ MSKi.

2. Compute DFEComb.Keygen(MSK, C)→ SKC = (SK1, . . . ,SKn).

3. A0(1λ, 1d, 1n, C)→ (I, z0).

4. A1({MSKi}i∈I ,SKC , z0)→ (m, z1).

5. Run TFHE.Setup(1λ, 1d, 1n)→ (fpk, fsk1, . . . , fskn).

6. Compute TFHE.Enc(fpk,m)→ CTfhe.

7. For all i ∈ [n], sample ri
$←− {0, 1}`fhe . Here, `fhe is the length of the randomness required

by PartDec algorithm.

8. Let TFHE.PartDec(TFHE.Eval(CTfhe, C), fsk1; r1)→ p1.

9. Compute CTi ← FEi.Enc (MSKi, (fpk,CTfhe, fski, ri)) for all i ∈ [2, n].

10. Compute CT1 ← FE1.Sim(MSK1, C,SK1, p1) .

11. Output CT = {CTi}i∈[n].

19

12. A2(CT,SKC , z1)→ α.

13. Output α.

Hyb2 : This hybrid is exactly the same as the previous one except that now, the TFHE partial
decryption is simulated using secret keys fsk2, . . . , fskn.

1. For every i ∈ [n], run FEi.Setup(1λ, 1d
′
)→ MSKi.

2. Compute DFEComb.Keygen(MSK, C)→ SKC = (SK1, . . . ,SKn).

3. A0(1λ, 1d, 1n, C)→ (I, z0).

4. A1({MSKi}i∈I ,SKC , z0)→ (m, z1).

5. Run TFHE.Setup(1λ, 1d, 1n)→ (fpk, fsk1, . . . , fskn).

6. Compute TFHE.Enc(fpk,m)→ CTfhe

7. For all i ∈ [n], sample ri
$←− {0, 1}`fhe . Here, `fhe is the length of the randomness required

by PartDec algorithm.

8. Let TFHE.Sim(TFHE.Eval(C,CTfhe), {fski}i∈[2,n], C(m))→ p1.

9. Compute CTi ← FEi.Enc (MSKi, (fpk,CTfhe, fski, ri)) for all i ∈ [2, n].

10. Compute CT1 ← FE1.Sim(MSK1, C,SK1, p1) .

11. Output CT = {CTi}i∈[n].

12. A2(CT,SKC , z1)→ α.

13. Output α.

Hyb3 : This hybrid is exactly the same as the previous one except that now, CTfhe is set as
encryption of 0.

1. For every i ∈ [n], run FEi.Setup(1λ, 1d
′
)→ MSKi.

2. Compute DFEComb.Keygen(MSK, C)→ SKC = (SK1, . . . ,SKn).

3. A0(1λ, 1d, 1n, C)→ (I, z0).

4. A1({MSKi}i∈I ,SKC , z0)→ (m, z1).

5. Run TFHE.Setup(1λ, 1d, 1n)→ (fpk, fsk1, . . . , fskn).

6. Compute TFHE.Enc(fpk, 0)→ CTfhe.

7. For all i ∈ [n], sample ri
$←− {0, 1}`fhe . Here, `fhe is the length of the randomness required

by PartDec algorithm.

8. Let TFHE.Sim(TFHE.Eval(C,CTfhe), {fski}i∈[2,n], C(m))→ p1.

9. Compute CTi ← FEi.Enc (MSKi, (fpk,CTfhe, fski, ri)) for all i ∈ [2, n].

10. Compute CT1 ← FE1.Sim(MSK1, C,SK1, p1) .

11. Output CT = {CTi}i∈[n].

12. A2(CT,SKC , z1)→ α.

20

13. Output α.

Lemma 4. Assuming FE1 is single-key simulation-secure, Hyb0 is indistinguishable to Hyb1.

Proof. The only difference between the two hybrids is the way CT1 is generated. In Hyb0, it
is generated honestly while in Hyb1, it is simulated using the correct output p1. We sketch
the reduction here. The reduction generates TFHE parameters and the functional encryption
keys for all candidates in [2, n]. Then, it generates the value p1 correctly and gives p1 to the
challenger. The challenger either sends a simulated FE1 ciphertext or the actual ciphertext.
This ciphertext is forwarded to the adversary. The reduction outputs whatever the adversary
outputs.

Lemma 5. Assuming TFHE is a secure threshold (leveled) homomorphic encryption scheme,
Hyb1 is indistinguishable to Hyb2.

Proof. The only difference between the two hybrids is the way p1 is generated. In Hyb1, it is
generated honestly while in Hyb2, it is simulated using the secret keys fsk2, . . . , fskn and the
output C(m). We sketch the reduction here. The adversary sends [2, n] to the reduction. The
reduction sends it to the challenger and gets (fpk, fsk2, . . . , fskn) from the challenger. Then,
the reduction generates CTfhe using the message m sent by the adversary. The reduction also
generates FEi keys and interacts with the adversary using this information. It sends C(m) to the
challenger. It either receives the actual p1 or a simulated p1 from the challenger. This response
is then used to interact with the adversary. It outputs whatever the adversary outputs.

Lemma 6. Assuming TFHE is a secure threshold (leveled) homomorphic encryption scheme,
Hyb2 is indistinguishable to Hyb3.

Proof. The only difference between the two hybrids is the way CTfhe is generated. In Hyb2, it is
generated honestly while in Hyb3, it is generated as an encryption of 0. Note that both hybrids
are independent of fsk1. Indistinguishability follows from the semantic security of TFHE.

Instantiation: We have given a construction of a succinct single-key simulation secure de-
composable FE combiner. We note that we can potentially instantiate all the candidates using
the same scheme.

In particular, the FE construction in [GKP+13] can be made to satisfy these requirements.
The candidate in [GKP+13] is based on any leveled FHE scheme, garbling scheme, and attribute-
based encryption (ABE) scheme for circuits. In order for the FE candidate to satisfy succinct-
ness, the underlying ABE scheme must also be succinct. This can be done by instantiating the
ABE scheme with [BGG+14, GVW15] and the leveled FHE scheme with [GSW13, BGV14] as
described in the technical overview. All these results are based on LWE. Therefore, we arrive
at the following lemma.

Lemma 7. The FE construction in [GKP+13] is succinct according to Definition 2.

Combining the above lemma and Theorem 5, we get the following corollary:

Corollary 2. Assuming LWE, there exists a single-key simulation secure succinct FE scheme.

Remark: At first glance, it might seem weird that we want to instantiate all the candidates
using the same scheme, seemingly defeating the purpose of an FE combiner. However, looking
ahead to the application to MPC, we associate each FE candidate with a party in the MPC
protocol. There, the adversary might corrupt an arbitrary set of parties, which would translate
to insecure FE candidates. Therefore, by instantiating all the candidates with the same (secure)
scheme, we guarantee that the honest parties’ inputs remain secure. More details on this are
provided in the next section.

21

5 Round Optimal MPC with Depth-Proportional Com-
munication from an FE Combiner

In this section, using any succinct single-key simulation secure decomposable FE combiner (see
Section 4), we show how to compile any two round semi-honest secure MPC protocol into one
where the communication complexity is proportional only to the depth of the circuit being
evaluated.

Let Comm.Compl(π) denote the communication complexity of any protocol π. Let λ denote
the security parameter, n denote the number of parties, and ` denote the size of the input to
each party. Formally, we show the following theorem:

Theorem 7. Assuming the existence of

• A succinct single-key single-ciphertext simulation secure decomposable FE combiner (AND)

• Succinct FE candidates (AND)

• A two round semi-honest MPC in the plain model (that may not be communication effi-
cient) that is secure against up to all but one corruption,

there exists a two round semi-honest MPC protocol π in the plain model that is secure against
up to all but one corruption for any boolean circuit C, where the communication complex-
ity of the protocol π is independent of the size of the circuit. That is, Comm.Compl(π) =
poly(Depth(C), n, `, λ).

We know how to construct a succinct single-key simulation secure decomposable FE combiner
based on the learning with errors (LWE) assumption (see Section 4). Further, from Lemma 7,
we know that the construction in [GKP+13] is a succinct FE candidate. Also, two round semi-
honest MPC protocols secure against up to all but one corruption can be based on the LWE
assumption [GS18, BL18, PVW08]6. Instantiating the primitives in the above theorem, we get
the following corollary:

Corollary 3. Assuming LWE, there exists a two round semi-honest MPC protocol π in the
plain model that is secure against up to all but one corruption for any boolean circuit C with
Comm.Compl(π) = poly(Depth(C), n, `, λ).

Furthermore, if we allow our protocol to have a preprocessing phase, we can obtain a two
round semi-honest MPC protocol with depth-proportional communication complexity and with
the computational complexity of each party in the online phase independent of the size of the
circuit, matching the result of [QWW18]. By simply making steps 1 − 3 in round 1 of our
construction the preprocessing phase, we arrive at the following corollary:

Corollary 4. Assuming LWE, there exists a two round semi-honest MPC protocol π in the
plain model that is secure against up to all but one corruption for any boolean circuit C with
Comm.Compl(π) = poly(Depth(C), n, `, λ) and with the computational complexity of the online
phase poly(Depth(C), n, `, λ).

5.1 Construction

Notation:

• Consider n parties P1, . . . ,Pn with inputs x1, . . . , xn, respectively, who wish to evaluate a
boolean circuit C on their joint inputs. Let λ denote the security parameter and without
loss of generality, let’s assume |xi| = λ for all i ∈ [n]. Also, let’s denote the randomness of

each party Pi as ri = (rSetupi , rEnci , rSHi , rKeyGeni).

6[GS18, BL18] showed how to construct two round semi-honest MPC in the plain model from any two round
semi-honest OT in the plain model and [PVW08] show that the latter can be constructed from LWE.

22

• Let DFEComb = (DFEComb.Setup,DFEComb.Enc,DFEComb.Keygen,
DFEComb.Dec,DFEComb.Partition) be a succinct single-key simulation secure decompos-
able FE combiner (see Section 4) for n FE candidates FE1, . . . ,FEn.

• Let πSH be a two round semi-honest secure MPC protocol (not necessarily communication
efficient). Let (πSH.Round1, π

SH.Round2) denote the algorithms used by any party to com-
pute the messages in each of the two rounds and πSH.Out denote the algorithm to compute
the final output. Further, let πSH.Sim = (πSH.Sim1, π

SH.Sim2) denote the simulator for
this protocol - that is, πSH.Simi is the simulator’s algorithm to compute the ith round’s
messages.

Protocol. We now describe the construction of our protocol π with depth-proportional com-
munication complexity.

• Round 1: Each party Pi does the following:

1. Generate MSKi ← FEi.Setup(1λ) using randomness rSetupi .

2. Compute (C1, . . . , Cn)← DFEComb.Partition(1λ, C).

3. Compute SKi = FEi.KeyGen(MSKi, Ci) using randomness rKeyGeni .

4. Participate in an execution of protocol πSH with the remaining (n− 1) parties using
input yi = (xi,MSKi, r

Enc
i) and randomness rSHi to compute the deterministic cir-

cuit CCT defined in Figure 4. That is, compute the first round message msg1,i ←
πSH.Round1(yi; r

SH
i).

5. Output (msg1,i,SKi).

• Round 2: Each party Pi does the following:

1. Let τ1 denote the transcript of protocol πSH after round 1.

2. Compute the second round message msg2,i ← πSH.Round2(yi, τ1; rSHi) where yi =

(xi,MSKi, r
Enc
i).

3. Output (msg2,i).

• Output Computation: Each party Pi does the following:

1. Let τ2 denote the transcript of protocol πSH after round 2.

2. Compute the output of πSH as CT← πSH.Out(yi, τ2; rSHi).

3. Let SKC = (SK1, . . . ,SKn).

4. Output DFEComb.Dec(SKC ,CT).

Input: {(xi,MSKi, r
Enc
i)}ni=1

– Let MSK = (MSK1, . . . ,MSKn), x = (x1, . . . , xn) and r = (rEnc1 , . . . , rEncn).

– Output DFEComb.Enc(MSK, x) using randomness r.

Figure 4: Circuit CCT

23

Correctness and Efficiency: Correctness follows immediately from the construction. In
particular, at the end of the protocol, each party possesses CT, an encryption of x = (x1, . . . , xn)
under the FE combiner, and SKC , the function key for C. This ciphertext can then be decrypted
using SKC to yield C(x), as desired.

Now, let’s analyze the communication complexity of the protocol. First, observe that each
circuit C that is of depth d and outputs a single bit is partitioned into n circuits C1, . . . , Cn by
running the DFEComb.Partition algorithm. The circuit Ci just computes a partial decryption of
TFHE.Eval(C, ·). Now, even though C is a boolean circuit, the output length of Ci might not be
1. However, this is not an issue for us. Indeed, observe that from the compactness of the TFHE
scheme, the length of the partial decryption is just poly(λ, d) for some fixed polynomial poly for
all circuits C with depth d and output length 1. Thus, the size of the output length of Ci for
all i ∈ [n] is at most poly(λ, d) bits. Thus, from Section 4, we know that |SKi| = poly(d, n, λ)
and |CT| = poly(d, n, λ). Recall that CT is the ciphertext that is the output of the protocol πSH

(computed during decryption). In fact, from Section 4, we also know that the size of the circuit
computing the ciphertext CT is also bounded by poly(d, n, λ). Then, for the protocol πSH recall
that the input is yi = (xi,MSKi, r

Enc
i) and so |yi| = poly(λ, d) for some polynomial. Therefore,

for each party Pi, |msg1,i| = poly(d, n, λ) and |msg2,i| = poly(d, n, λ).
Therefore, in our two round protocol π, in each round the size of the message sent by any

party is poly(n, d, λ). Thus, Comm.Compl(π) = poly(n, d, λ).
The above analysis was for circuits with boolean output. For circuits that output multi-bit

strings, the communication complexity of our MPC protocol π is bounded by poly(n, d, λ) · `out,
where `out is the output length of the circuit. This follows immediately by viewing the multi-bit
output circuit as `out different boolean circuits and running in parallel.

5.2 Security Proof

We will first describe the simulator and then show that the real and ideal worlds are indistin-
guishable. Suppose the adversary corrupts a set of k parties (denoted by Corr) with k < n. At
a very high level, the simulator does the following: simulate the underlying semi-honest MPC
protocol whose output - the FE combiner ciphertext - is computed using the simulator of the
FE combiner. Below, we formally describe the simulator.

Description of the Simulator: The simulator Sim gets as input
({mi, ri}Pi∈Corr, C({mi}i∈[n]), C) and does the following:

• Round 1:

1. Compute (C1, . . . , Cn)← DFEComb.Partition(1λ, C).

2. For each corrupt party Pi, parse ri = (rSetupi , rEnci , rSHi , rKeyGeni). Generate MSKi ←
FEi.Setup(1λ) and SKi = FEi.KeyGen(MSKi, Ci) using randomness rSetupi , rKeyGeni re-
spectively.

3. For each honest party Pj , compute MSKj ← FEj .Setup(1λ) and SKj = FEj .KeyGen(MSKj ,
Cj) using uniformly generated randomness.

4. Pick one honest party Pj∗ /∈ Corr at random amongst the set of honest parties and let
I denote the set of indices of all parties except Pj∗ .

5. Compute CT∗ = DFEComb.Sim({MSKi}i∈[n], {SKi}i∈[n], C, C({mi}i∈[n]), I).

6. Compute msg1 ← πSH.Sim1(CT∗, {mi,MSKi, r
Enc
i }Pi∈Corr, {rSHi }Pi∈Corr). where

{rSHi }Pi∈Corr is the randomness of all the parties. Here, msg1 denotes the set of the
first round messages of all the honest parties.

7. Output (msg1, {SKj}Pj∈[n]/Corr).

24

• Round 2:

1. Compute msg2 ← πSH.Sim2(CT∗, {mi,MSKi, r
Enc
i }Pi∈Corr, {rSHi }Pi∈Corr) as the second

round message of πSH. Here, msg2 denotes the set of the first round messages of all
the honest parties.

2. Output (msg2).

Hybrids. We will now complete the proof of Theorem 7 via a sequence of computationally
indistinguishable hybrids Hyb0,Hyb1,Hyb2 where Hyb0 corresponds to the real world and Hyb2

corresponds to the ideal world.

Hyb0 - Real World: In this hybrid, consider a simulator SimHyb that plays the role of the
honest parties. This corresponds to the real world experiment.

Hyb1 - Simulate MPC: In this hybrid, SimHyb computes the messages of πSH using the sim-
ulator. That is, SimHyb does the following:

• Round 1:

1. Compute (C1, . . . , Cn)← DFEComb.Partition(1λ, C).

2. For each corrupt party Pi, parse ri = (rSetupi , rEnci , rSHi , rKeyGeni). Generate MSKi ←
FEi.Setup(1λ) and SKi = FEi.KeyGen(MSKi, Ci) using randomness rSetupi , rKeyGeni re-
spectively.

3. For each honest party Pj , compute MSKj ← FEj .Setup(1λ) and SKj = FEj .KeyGen(MSKj ,
Cj) using uniformly generated randomness.

4. Compute CT∗ = DFEComb.Enc({MSKi}i∈[n], {mi}i∈[n]) using randomness {rEnci }i∈[n],
which are picked uniformly at random for the honest parties.

5. Compute msg1 ← πSH.Sim1(CT∗, {mi,MSKi, r
Enc
i }Pi∈Corr, {rSHi }Pi∈Corr). where {rSHi }Pi∈Corr

is the randomness of all the parties.

6. Output (msg1, {SKj}Pj∈[n]/Corr).

• Round 2:

1. Compute msg2 ← πSH.Sim2(CT∗, {mi,MSKi, r
Enc
i }Pi∈Corr, {rSHi }Pi∈Corr) as the second

round message of πSH.

2. Output (msg2)
.

Hyb2 - Simulate FE: In this hybrid, SimHyb does the following differently:

• Pick one honest party Pj∗ at random and let I denote the set of indices of all parties
except Pj∗ .

• Compute CT∗ = DFEComb.Sim({MSKi}i∈[n], {SKi}i∈[n], C, C({mi}i∈[n]), I).

This corresponds to the ideal world.

We will now show the indistinguishability of consecutive hybrids.

Lemma 8. Assuming πSH is a semi-honest MPC protocol secure against up to all but one
corruption, Hyb0 is computationally indistinguishable from Hyb1.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with
non-negligible probability. We will use A to construct an adversary ASH that breaks the security
of the MPC protocol πSH, which is a contradiction.

25

The adversary ASH interacts with the adversary A as in Hyb0. ASH corrupts a set of parties
Corr and for each Pi ∈ Corr, ASH receives (mi) from A. ASH interacts with the challenger
CSH in an MPC protocol πSH with (n) parties to compute circuit CCT defined in Figure 4 and
corrupts the same set of parties. In this protocol, for each corrupt party Pi, ASH picks random
rSetupi , rEnci , rKeyGeni and computes MSKi = FEi.Setup(1λ) using randomness rSetupi . Each corrupt
party uses input (mi,MSKi, r

Enc
i) . ASH sends the input of each corrupt party to CSH and

receives its randomness rSHi . Then, in the interaction with A, for each corrupt party Pi, ASH

sends randomness rSetupi , rEnci , rSHi , rKeyGeni .
In the interaction with the challenger, ASH receives messages (msg1,msg2) for rounds 1 and 2

of protocol πSH for each honest party Pj from the challenger CSH. ASH sets these as the messages
(msg1,j ,msg2,j) in its interaction with A. The rest of the experiment with A (i.e generating SKj
for each honest Pj) is performed exactly as in Hyb0.

Notice that when the challenger CSH sends honestly generates messages for the honest parties
(real world), the experiment between ASH and A corresponds exactly to Hyb0 and when the
challenger CSH sends simulated messages for the honest parties (ideal world), the experiment
corresponds exactly to Hyb1. Thus, if A can distinguish between the two hybrids with non-
negligible probability, ASH can use the same guess to break the security of the MPC protocol
πSH with non-negligible probability which is a contradiction.

Lemma 9. Assuming DFEComb is a succinct single-key simulation secure decomposable FE
combiner scheme, Hyb1 is computationally indistinguishable from Hyb2.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with
non-negligible probability. We will use A to construct an adversary ADFEComb that breaks the
security of the succinct simulation secure decomposable FE combiner DFEComb which is a
contradiction.

The adversary ADFEComb interacts with the adversary A as in Hyb1. For each i ∈ Corr,

ADFEComb receives (mi, r
Setup
i , rEnci , rSHi , rKeyGeni) fromA. Then, ADFEComb computes (C1, . . . , Cn)←

DFEComb.Partition(1λ, C).

For each honest party Pj , ADFEComb picks (mj , r
Setup
j , rEncj , rKeyGenj) randomly

and computes MSKj ← FEj .Setup(1λ), SKj ← FEj .KeyGen(MSKj , Cj) using randomness

rSetupj and rKeyGenj respectively. Then, ADFEComb picks an honest party Pj at random. Let I
denote the set of indices of all parties except Pj∗ . interacts with the challenger CDFEComb and
sends the following tuple: ({mi,MSKi,SKi, r

Enc
i , C, C(m1, . . . ,mn)}i∈[n], I). ADFEComb receives

back a ciphertext CT from CDFEComb that is either honestly generated or simulated. It sets this
as the ciphertext CT∗ in its interaction with A. The rest of the experiment with A is performed
exactly as in Hyb1.

Notice that when the challenger CDFEComb sends an honestly generated ciphertext, the ex-
periment between ADFEComb and A corresponds exactly to Hyb1 and when the challenger CSH
sends a simulated ciphertext, the experiment corresponds exactly to Hyb2. Thus, if A can dis-
tinguish between the two hybrids with non-negligible probability, ADFEComb can use the same
guess to break the security of the scheme DFEComb with non-negligible probability which is a
contradiction.

6 Construction of an FE Combiner from Weaker Assump-
tions

In this section, we employ a tool extensively used in the secure multi-party computation lit-
erature, namely, randomized encodings to construct an FE combiner. Roughly speaking, a
randomized encoding is a mechanism to “efficiently” encode a function f and an input x such

26

that the encoding reveals f(x) and nothing more. A randomized encoding scheme is said to be
low degree if the encoding algorithm can be represented as a low degree polynomial. Low degree
randomized encodings have been used to achieve constant-round secure multi-party computa-
tion [BMR90]. We show how to use this tool to obtain functional encryption combiners. The
underlying assumption used to instantiate the low degree randomized encoding is the existence
of a PRG in NC1. Formally, we show the following theorem.

Theorem 8. Assuming the existence of a PRG in NC1, there exists an unbounded-key FE
combiner for polynomial-sized circuits.

6.1 Degree-d Randomizing Polynomials

At the heart of our FE combiner construction are constant degree randomizing polynomials
schemes. Such randomizing polynomials schemes can be defined as follows.

Definition 12. A degree-d randomizing polynomials scheme, RP = (Encode,Decode), for a
class of circuits C over some field F consists of the following polynomial time algorithms:

• Encoding, Encode(1λ, C, x; r) : On input the security parameter λ, a circuit C, an input

x and some randomness r, Encode outputs an encoding of C ∈ C and x, denoted Ĉ, x.
We require that Ĉ, x = (p1(x, r), ..., p`(x, r)), where each pi is a degree d homogenous
polynomial over F dependent only on C.

• Decoding, Decode(Ĉ, x) : On input an encoding of C and x, Ĉ, x, Decode outputs the
decoded value α.

A randomizing polynomials scheme, RP, is required to satisfy the following properties:

• Correctness: For every λ ∈ N, circuit C ∈ C and input x, C(x) = Decode(Encode(1λ, C, x)).

• Security: For every PPT adversary A, large enough λ ∈ N, circuit C ∈ C and input x,
there exists a simulator SimRP such that:

{Encode(1λ, C, x)} ≈ {SimRP(1λ, |C|, C(x))}

Theorem 9 ([AIK05]). Assuming the existence of a PRG in NC1, there exist constant degree
randomizing polynomials schemes for polynomial-sized circuits.

6.2 d-Nested FE

Another tool used in our construction is d-nested FE. d-nested FE is a new FE candidate that
can be created easily from d FE candidates by simply encrypting in sequence using the d FE
candidates. Intuitively, this new FE candidate will be secure as long as one of the d candidates
is secure since an adversary should be unable to break the encryption of the secure candidate.
d-nested FE can be viewed as an FE combiner that can only handle a constant number of FE
candidates since the runtime of its algorithms may depend exponentially on d. We present the
definition of d-nested FE below.

Definition 13 (d-nested FE). Let FE1, ...,FEd be d correct FE candidates. We define another
FE candidate FES, where S = [1, .., d], as follows:

• Setup(1λ): It computes MSKi ← FEi.Setup(1λ) for all i ∈ [n] and outputs MSK =
{MSKi}i∈[n] as the master secret key for FES.

• Enc(MSK = {MSK1, ..,MSKd},m) : It first computes CT1 = FE1.Enc(MSK1,m) and then
recursively computes CTi+1 = FEi+1.Enc(MSKi+1,CTi) for i ∈ [d − 1]. It outputs CTd as
the ciphertext.

27

• KeyGen(MSK = {MSK1, ..,MSKd}, C) : On input the master secret key MSK and a circuit
C ∈ C, it first computes SK1 = FE1.KeyGen(MSK1, C) and sets G1 = FE1.Dec(SK1, ·) as a
circuit. Then it recursively computes SKi+1 = FEi+1.KeyGen(MSKi+1, Gi) for i ∈ [d − 1]
where circuit Gi = FEi.Dec(SKi, ·). It outputs SKd as the function secret key for the circuit
C.

• Dec(SKd,CTd) : It outputs FEd.Dec(SKd,CTd).

Theorem 10. For constant d, FES, defined by Definition 13, is an FE candidate. Moreover, if
at least one of the d FE candidates is secure, then FES is also secure (it is an FE scheme).

Proof. We observe that if d is a constant, the scheme described above is efficient if the underlying
candidates are efficient. Correctness of FES follows immediately from the construction and the
correctness of the underlying FE candidates.

Suppose that one of the FE candidates, say FEj , is secure. Suppose that FES is not secure;
that is, there exists an adversary A that can break the security of FES . Then, consider the
following adversary A′ that breaks the security of FEj . A′ runs A and simulates the challenger.
A′ first runs FEi.Setup(1λ) for all i ∈ [n] \ {j} to obtain MSKi’s. When A submits a challenge
message pair (m0,m1), A′ computes CTj−1,0 and CTj−1,1 by encrypting m0 and m1, respectively
by repeated encryption under FE1, . . . ,FEj−1. It then submits these two ciphertexts as its
messages to its challenger and receives a ciphertext, CTj . It then encrypts this ciphertext using
FEj+1, . . . ,FEd to obtain CTd, which it gives to A as the ciphertext. When A asks for a function
key for a circuit C, A′ runs FES .KeyGen on C until it needs to run the keygen algorithm for
FEj . Here, it queries its challenger for the appropriate function key and then uses this response
to continue generating SKC . It then gives the resulting function key SKC to A. When A
terminates, A′ outputs the same response. Note that A′ simulates the security game for A
perfectly and therefore wins whenever A wins, contradicting the security of FEj . Therefore, it
follows that FES is a secure FE scheme.

6.3 Construction

We are now ready to prove Theorem 8. At a high level, the construction works as follows. For a
circuit C, we use a constant degree randomizing polynomials scheme to obtain polynomials pα
corresponding to C. Since C(x) can be obtained from the evaluations of these polynomials on
(x, r) for randomness r, it suffices to be able to generate function keys for degree-d homogeneous
polynomials. Additionally, since only one of the FE candidates is guaranteed to be secure, we
need a means of ensuring that no information is leaked even if all but one FE candidate is
broken. This is accomplished by bitwise secret sharing the input x, with one share per FE
candidate. We then make the observation that degree-d homogeneous polynomials in the bits
of x remain degree d homogeneous polynomials when expressed as polynomials in the shares of
the bits of x. Furthermore, we observe that the number of subsets S ⊆ [n] of size at most d
is polynomial in n. We make the ciphertext for x consist of a set of ciphertexts, one for each
subset S, and generate them using the d-nested FE candidates, FES . Each of these ciphertexts
contains the shares of x corresponding to the FE candidates used by FES . Since every monomial
in the polynomials has degree d, we can map each monomial to a corresponding set S such that
it is possible to evaluate the monomial using the contents of the ciphertext corresponding to
S. By masking the monomial evaluations with secret shares of 0, as described in the technical
overview, we are able to ensure that only the value of the polynomial is learned.

We now formally describe the construction. First, we provide some notation that will be
used throughout the construction.

28

Notation:

• Let PRF be a pseudorandom function that outputs in the range {0, 1}λ.

• Let E be any λ-bit CPA-secure secret-key encryption scheme with message space {0, 1}.
• Let `x = `x(λ) denote the length of the messages and let `E = `E(λ) denote the length of

the encryption key for the scheme E.

• Let RP denote a degree d randomizing polynomials scheme over F2 for the circuit class C,
the class of all polynomial-sized boolean circuits with input space {0, 1}`x .

• Let FE1, . . . ,FEn denote n FE candidates. In the following construction, we assume that
the descriptions {FEi}i∈[n] are implicit in all the algorithms of FEComb.

Construction:

• FEComb.Setup(1λ) : On input the security parameter, it runs MSKi ← FEi.Setup(1λ) for
i ∈ [n] and E.SK← E.Setup(1λ). It outputs MSK = (MSK1, ..,MSKn,E.SK).

• FEComb.Enc(MSK, x ∈ {0, 1}`x) : It executes the following steps.

– First, randomly secret share x amongst n shares using bitwise additive secret sharing.
That is, for each xi for i ∈ [`x], xi = Σj∈[n]xi,j where xi,j is jth share of xi.

– Then, sample n distinct PRF keys Ki for i ∈ [n] uniformly at random.

– For each subset S ⊆ [n] of size at most d, compute

CTS = FES .Enc
(
{MSKj}j∈S , ({xi,j ,Kj}i∈[`x],j∈S , 0

`E , 0)
)
.

– Output CT = {CTS}S⊆[n],1≤|S|≤d.

• FEComb.KeyGen(MSK, C) : Generate tagC ← {0, 1}λ uniformly at random. Let p1, .., pN
denote the randomizing polynomials corresponding to the circuit C determined by the
encoding function of RP. For each polynomial pα, do the following:

– Let pα = pα(x1, .., x`x , r1, .., r`r) where `r is the length of the randomness taken by
RP.Encode. Define new variables xi = Σj∈[n]xi,j for i ∈ [`x] and ri = Σj∈[n]ri,j for
i ∈ [`r]. Let p′α be the degree d polynomial obtained by computing pα as a polynomial
over the variables xi,j and ri,j .

– For each polynomial p′α do the following.

∗ Generate tagp′α ← {0, 1}
λ uniformly at random (and distinct for each polynomial).

∗ Let Mα be the number of monomials occurring in p′α. For every j ∈ [n], denote
by Mα,j the number of monomials depending on variables of the form xi′,j or ri′,j
for some i′. Viewing the xi′,j ’s and ri′,j ’s as the jth party’s shares of the xi’s and
ri’s, Mα,j is the number of monomials in p′α that contain a share corresponding
to the jth party.

∗ Let there be a total ordering on the monomials of p′α. For all monomials mα,k

for k ∈ [Mα] of p′α, let Smα,k denote the set of size less than or equal to d
consisting of the parties whose shares of variables lie in mα,k. That is, if mα,k =
xi1,j1xi2,j2 . . . rid,jd , then Smα,k = {j1, j2, . . . , jd}.

∗ For this ordering, let V (p′α, j,mα,k) denote the number of monomials (less than or
equal to mα,k) that have a variable of the form xi′,j or ri′,j (a share corresponding
to the jth party).

29

∗ For every monomial mα,k occuring inside p′α, first generate a ciphertext cmα,k by
running

E.Enc(E.SK, βmα,k),

where βmα,k is a bit chosen uniformly at random. Then, compute

SKp′α,mα,k ← FESmα,k .KeyGen({MSKj}j∈Smα,k , Hp′α,mα,k
),

where circuit Hp′α,mα,k
is described in Figure 5. Here FES for any subset S ⊆ [d],

is the |S|−nested FE scheme.

Hp′α,mα,k

Input: Shares of input {xi,j}i∈[`x],j∈Smα,k , PRF keys {Kj}j∈Smα,k , a string s ∈ {0, 1}`E ,

and a bit b
Hardwired: Polynomial p′α, monomial mα,k, ciphertext cmα,k , tags tagC ∈ {0, 1}λ and

tagp′α ∈ {0, 1}
λ

· If b 6= 0, output E.Dec(s, cmα,k). Otherwise, do the following.

· Set ri′,j = PRF1(Kj , i
′ ||tagC) for i′ ∈ [`r] and j ∈ Smα,k . Here PRF1 denotes the output

of the PRF truncated to one bit.

· Compute monomial mα,k by substituting values of {xi,j}i∈[`x] and {ri′,j}i′∈[`r]. Let this
value be stored as uα,k.

· For all j ∈ Smα,k , compute an additive secret sharing of 0 consisting of Mα,j shares using
the randomness PRF(Kj , tagp′α). Denote these shares as (Shareα,j,1, ..,Shareα,j,Mα,j).

· Output uα,k + Σj∈Smα,kShareα,j,V (p′α,j,mα,k)

Figure 5: Description of the Monomial Evaluation Circuit.

– Output SKC = (C, {SKp′α,mα,k}), where the set is the set of function keys for each
monomial mα,k of each polynomial p′α.

• FEComb.Dec(SKC ,CT) : Using C, derive p′α for all α ∈ [N] and each of its monomials mα,k

for k ∈ [Mα]. For all function keys SKp′α,mα,k ∈ SKC , compute

vp′α,mα,k = FESmα,k .Dec(SKp′α,mα,k ,CT).

Compute

vp′α =
∑

k∈[Mα]

vp′α,mα,k

for all α ∈ [N]. Run RP.Decode((vp′1 , . . . , vp′N)) and output the result.

Correctness: To see that the above construction satisfies correctness, let {FEi}i∈[n] be n FE

candidates, let C : {0, 1}`x(λ) → Yλ ∈ Cλ be any circuit and let x ∈ {0, 1}`x(λ) be any message.
Suppose we run FEComb.Setup(1λ) to obtain the master secret key MSK, then encrypt x by

running FEComb.Enc(MSK, x) to obtain CT, and then generate a function key SKC by running
FEComb.Keygen(MSK, C). Then, if we run FEComb.Dec(SKC ,CT), we note the following. By
the correctness of the underlying FE candidates, the values vp′α,mα,k will be

uα,k + Σj∈Smα,kShareα,j,V (p′α,j,mα,k).

30

Then,

vp′α =
∑

k∈[Mα]

vp′α,mα,k =
∑

k∈[Mα]

uα,k

is the value of the polynomial pα on input x with randomness

ri =
∑
j∈[n]

PRF1(Kj , i||tagC)

for i ∈ [`r]. Since the pα’s are the polynomials corresponding to C, by the correctness of RP, it
follows that RP.Decode((p1(x; r), . . . , pN (x; r))) = C(x) as desired.

Polynomial Slowdown: All the algorithms of FEComb run in time poly(λ, n). This follows
immediately from the efficiency of the FE candidates, RP, and E and the fact that all subsets
S ⊆ [n] of size at most d is poly(n) since d is a constant.

6.4 Security Proof

For simplicity, we will consider the case where the adversary submits a single message pair and
only queries a single function key. This proof naturally extends to multiple message pairs and
multiple function keys via standard hybrid techniques (repeat the series of hybrids for each func-
tion key sequentially to argue indistinguishability for a polynomial number of function keys and
then flip each message pair one at a time to argue indistinguishability for a polynomial number
of message pairs). We show that any PPT adversary A will only succeed in the FE selective
security game (Definition 16) with negligible probability. We will show this via a sequence of
hybrids. Assume that the γth FE candidate, FEγ is secure.

Hyb0: This hybrid corresponds to the real security game where the challenger sets the bit b
to 0.

Hyb1: This hybrid is the same as Hyb0 except that when generating cmα,k , the challenger
sets βmα,k to be

uα,k + Σj∈Smα,kShareα,j,V (p′α,j,mα,k),

the value obtained by running Hp′α,mα,k
on {xi,j}i∈[`x],j∈Smα,k , {Kj}j∈Smα,k , E.SK, and 0. Note

that the challenger knows these values because A must submit x and the challenger generates
the encryption of x prior to generating the function key SKC .

Hyb2: This hybrid is the same as Hyb1 except that when encrypting x, whenever the chal-
lenger generates CTS for a subset S that contains γ, the challenger does so by setting

CTS = FES .Enc
(
{MSKj}j∈S , ({xi,j ,Kj}i∈[`x],j∈S ,E.SK, 1)

)
.

That is, the 0`E term is replaced with E.SK, the secret key for E, and the last bit is switched to
1 when generating ciphertexts for subsets S that contain γ.

Hyb3: This hybrid is the same as Hyb2 except that when encrypting x, whenever the chal-
lenger generates CTS for a subset S that contains γ, the challenger replaces Kγ , the PRF key
for the γth party, with the all 0 string.

Hyb4: This hybrid is the same as Hyb3 except that when setting βmα,k ’s, the additive se-
cret sharing of 0 consisting of Mα,γ shares is computed using uniformly sampled randomness

31

rather than PRF(Kγ , tagp′α) and the randomness shares ri′,γ corresponding to the γth party are
generated uniformly at random, as opposed to using PRF1(Kγ , i

′||tagC). That is, every eval-
uation output of the PRF that used Kγ as the PRF key is replaced by a uniformly random value.

Hyb5: This hybrid is the same as Hyb4 except that when encrypting the xi,γ ’s, (the shares
of x corresponding to the γth party), the challenger instead encrypts new values x′i,γ , sampled
uniformly at random.

Hyb6: This hybrid is the same as Hyb5 except the challenger now uses the randomizing poly-
nomials simulator, SimRP, to generate the values of the polynomials. That is, when generating
a function key for a circuit C, the challenger first runs

SimRP(1λ, |C|, C(x))

to obtain vp′α , the values for all the randomizing polynomials. The challenger then proceeds
with the key generation as before, except when computing the βmα,k value for a monomial mα,k

where γ ∈ Smα,k . Let Mα denote the set containing all monomials of p′α. Let Mα,γ denote
the set of all monomials of p′α that contain a variable of the form xi′,γ or ri′,γ for some i′. In
this hybrid, the challenger first sets βmα,k for all mα,k 6∈ Mα,γ as before. Then, the challenger
computes

v′p′α = vp′α −
∑

mα,k∈Mα\Mα,γ

βmα,k .

The challenger then secret shares the value v′p′α uniformly at random amongst |Mα,γ | shares
and sets each of the βmα,k values for the monomials mα,k ∈Mα,γ to be such that∑

mα,k∈Mα,γ

βmα,k = v′p′α .

Lemma 10. If E is a λ-bit CPA-secure secret-key encryption scheme, then Hyb0 and Hyb1 are
computationally indistinguishable.

Proof. Suppose there exists an adversary A that can distinguish between these two hybrids.
Then, we construct an adversary A′ that can break the security game of E. Since A can distin-
guish between Hyb0 and Hyb1 and since there are at most a polynomial number of monomials
mα,k, we can construct a sequence of hybrids that correspond to switching the values βmα,k
one at a time. It follows that A must be able to distinguish between two of these neighboring
hybrids. WLOG, say A distinguishes between the sequential hybrids where the βmα′,k′ value
is changed. Then, A′ runs as follows. It runs A and plays the role of the challenger. When-
ever, it would have to generate a ciphertext by running E.Enc, it instead queries its challenger
on the message to receive the ciphertext. When it wants to encrypt the value corresponding
to mα′,k′ , it submits the message pair (β0

mα′,k′
, β1
mα′,k′

) to its challenger where the first com-

ponent is the unchanged (randomly sampled) value and the second component is the changed
(monomial evaluation) value corresponding to Hyb0 and Hyb1, respectively. It then uses the
ciphertext it receives from its challenger. When A outputs, A′ outputs the same response. Note
that A′ simulates A on these two neighboring hybrids perfectly and so A′ will distinguish with
nonnegligible advantage, contradicting the security of E. Therefore, Hyb0 and Hyb1 must be
indistinguishable.

Lemma 11. If FEγ is a selectively-secure FE scheme, then Hyb1 and Hyb2 are computationally
indistinguishable.

Proof. Suppose there exists an adversary A that can distinguish between these two hybrids.
Then, we construct an adversary A′ that can break the security game of FEγ . A′ runs A

32

and simulates the role of the challenger. Whenever, it needs to encrypt using FEγ .Enc, it
computes the messages m1 and m2 that it would want to encrypt were it simulating Hyb1 or
Hyb2, respectively. It then submits (m1,m2) as a message pair to its challenger and receives a
ciphertext, CT, which it uses to continue its simulation. Note that A′ can submit all its message
queries prior to submitting any function queries. Whenever it would need to run FEγ .KeyGen
on a circuit C, it submits C as a function query and uses the response of its challenger to
continue the simulation. When A terminates, A′ outputs the same value as A. Note that
A′ simulates both Hyb1 and Hyb2 exactly and is an admissible adversary since all computable
function evaluations are identical across hybrids, so A′ wins if A wins, contradicting the security
of FEγ .

Lemma 12. If FEγ is a selectively-secure FE scheme, then Hyb2 and Hyb3 are computationally
indistinguishable.

Proof. This follows from an analogous proof as that of Lemma 11.

Lemma 13. If PRF is a pseudorandom function, then Hyb3 and Hyb4 are computationally
indistinguishable.

Proof. Suppose there exists an adversary A that can distinguish between these two hybrids.
Then, we construct an adversary A′ that can break the pseudorandomness property of PRF. A′
simply runs A and simulates the challenger. Whenever A′ would run PRF(Kγ , ·) on some input
t in Hyb3 or generate a uniformly random value in Hyb4, A′ instead queries its oracle on t and
uses this value as its output. If A thinks it is seeing Hyb3, A′ outputs that its oracle is the PRF
and if A thinks it is seeing Hyb4, A′ outputs that its oracle is a truly random function. Note that
A′ simulates these hybrids exactly, so A′ will win with nonnegligible advantage, contradicting
the pseudorandomness of PRF.

Lemma 14. If FEγ is a selectively-secure FE scheme, then Hyb4 and Hyb5 are computationally
indistinguishable.

Proof. This follows from an analogous proof as that of Lemma 11.

Lemma 15. If RP is a secure randomizing polynomials scheme, then Hyb5 and Hyb6 are com-
putationally indistinguishable.

Proof. Suppose there exists an adversary A that can distinguish between these two hybrids.
Then, we construct an adversary A′ that can break the security of RP. A′ runs A and simulates
the role of the challenger. When it needs to generate a function key for a circuit C, it queries
its challenger of circuit C and input x (specified by A). It then receives values vp′α for all poly-
nomials. A′ sets the βmα,k values as follows. Let Mα denote the set containing all monomials
of p′α. Let Mα,γ denote the set of all monomials of p′α that contain a variable of the form xi′,γ
or ri′,γ for some i′. A′ first sets βmα,k for all mα,k 6∈ Mα,γ as specified by both Hyb5 and Hyb6.
Then, A′ computes

v′p′α = vp′α −
∑

mα,k∈Mα\Mα,γ

βmα,k .

A′ then secret shares the value v′p′α uniformly at random amongst |Mα,γ | shares and sets each
of the βmα,k values for the monomials mα,k ∈Mα,γ to be such that∑

mα,k∈Mα,γ

βmα,k = v′p′α .

When A terminates, if A guesses that the game is Hyb5, then A′ outputs that it is using the real
encoding function. If A guesses that the game is Hyb6, then A′ outputs that its challenger is the

33

simulator. Note that A′ simulates these hybrids exactly. This follows from the fact that all the
βmα,k values for mα,k ∈Mα,γ are masked by uniformly random secret shares of 0. Therefore, the
values of these βmα,k ’s look like a uniformly random secret share of v′p′α , their intended sum and

Hyb5 is simulated exactly. If A′’s challenger is using the simulated encoding, then A′ simulates
Hyb6 exactly. So, it follows that A′ could break the security of RP, a contradiction.

So, it follows that Hyb0 and Hyb6 are computationally indistinguishable. Moreover, Hyb6 is in-
dependent of x and depends only on C(x). Therefore, by an analogous sequence of hybrids, this
time with the challenge bit b = 1, it follows that the real game with b = 1 is also indistinguish-
able from Hyb6. So, it follows that the two real games are computationally indistinguishable,
completing the proof.

7 From MPC to FE Combiners

In this section, we show how to build an FE combiner from any semi-honest MPC protocol π
that satisfies a property called delayed function-dependence. Informally, we say that an MPC
protocol is delayed function-dependent if the messages of all the rounds except the last one can
be generated independently of the function being evaluated. Formally, let π denote a k round
semi-honest MPC protocol for computing a function f between n parties P1, . . . ,Pn using inputs
x1, . . . , xn, respectively. For each i ∈ [k], let πSH.Roundi denote the algorithm used by each party
to compute its message for round i. Let Sim = (Sim1,Sim2) denote the simulator for π where
Sim1 is used to generate the first (k− 1) rounds of the adversary’s view and Sim2 generates the
last round’s view.

Definition 14 (Delayed Function-Dependent). Protocol π is said to be delayed function-dependent
if, for every function f and all inputs (x1, . . . , xn):

• Correctness: For each party Pj, for each i ∈ [k− 1], algorithm πSH.Roundi only takes as
input (xj , τ, |f |) where τ is the transcript of π up to round (i − 1). In particular, it does
not take as input the function f being computed.

• Security: Let A denote the set of corrupted parties. Algorithm Sim1 only takes as in-
put (|f |, {xi}Pi∈A). In particular, it does not take as input the function f or the output
f(x1, . . . , xn).

We observe that several MPC protocols in literature [MW16, PS16, BP16] are, in fact, delayed
function-dependent.

Using any delayed function-dependent MPC protocol, we are able to construct an FE combiner.
Formally, we show the following theorem:

Theorem 11. Given any delayed function-dependent semi-honest MPC protocol π secure against
all but one corruption, there exists a bounded-collusion secure decomposable FE combiner.

Furthermore, we can construct an unbounded-collusion secure (unbounded-key) FE combiner
if the delayed function-dependent MPC protocol π additionally satisfies the following reusability
property. Consider n parties with inputs x1, . . . , xn. Run the first (k−1) rounds of the protocol
π to generate a transcript τ . Informally, reusability requires that the parties should be able to
reuse this same transcript τ to securely evaluate an unbounded number of functions f1, . . . , f`.
That is, for each function fi, they can just run the last round of π using transcript τ to compute
the output and the transcript τ along with the set of outputs should not reveal any party’s
input. (beyond what can be learned from the given information). Formally, consider a k round
delayed function-dependent semi-honest MPC protocol π between n parties P1, . . . ,Pn using
inputs x1, . . . , xn respectively. We first list some notation.

34

• Let Viewk−1
A ({xi}i∈[n]) denote the view of a set of parties {Pi}i∈A after the first (k − 1)

rounds of an execution of π.

• Let ViewkA({xi, statei}i∈[n], τ) denote the view of a set of parties {Pi}i∈A in the last round
of an execution of π where τ is the transcript after (k − 1) rounds and for each party Pi,
its input is xi and its state is statei.

• Also, let’s assume that the size of any function is bounded by p(λ) for some polynomial p.

Definition 15 (Delayed Function-Dependent and Reusable). Protocol π is said to be reusable
if, for all A ⊂ [n] with |A| ≤ (n−1), there exists a PPT simulator Sim = (Sim1,Sim2) such that
for every PPT distinguisher D, there exists a negligible function µ(·) such that for all sufficiently
large λ ∈ N, the advantage of D is

AdvReusD =∣∣∣Pr[ExptReusD (1λ, {xi}i∈[n],A, 0) = 1]− Pr[ExptReusD (1λ, {xi}i∈[n],A, 1) = 1]
∣∣∣

≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptReusD (1λ, {xi}i∈[n],A, b) is defined below:

ExptReusD (1λ, {xi}i∈[n],A, b):
1. If b = 0, Challenger runs the first (k − 1) rounds of π amongst n parties P1, . . . ,Pn with

inputs x1, . . . , xn. Let statei denote the state of party Pi after (k − 1) rounds. Challenger
outputs Viewk−1

A (x1, . . . , xn).

2. If b = 1, Challenger outputs Sim1(p(λ), {xi}i∈A).

3. Challenger presents D with an oracle Ob that takes as input a function f and does the
following:

(a) If b = 0, execute the last round of protocol π for function f and output
ViewkA({xi, statei}i∈[n], τ).7

(b) If b = 1, output (Sim2(f(x1, . . . , xn), {xi}i∈A)).

We show how to construct an unbounded-collusion secure FE combiner from such an MPC
protocol. Formally, we show the following theorem:

Theorem 12. Given any delayed function-dependent and reusable semi-honest MPC protocol
π secure against all but one corruption, there exists an unbounded-collusion secure decomposable
FE combiner.

The two round semi-honest MPC protocol of Mukherjee and Wichs [MW16] based on the
Learning With Errors (LWE) assumption is both delayed function-dependent and reusable. As
a corollary of Theorem 12, we get:

Corollary 5. Assuming LWE holds, there exists an unbounded-collusion secure decomposable
FE combiner.

The above corollary gives us a construction of an FE combiner from LWE that differs from
the one in [AJS17].

7.1 Construction

We first list some notation for the construction.

7For simplicity, we assume that the function produces the same output for all parties and hence don’t include the
output along with the view.

35

Primitives and Notation Used:

• Let the n candidates be FE1, . . . ,FEn. Let the message space of the FE combiner be the
set of all λ-bit strings.

• Let π denote any k = poly(λ) round semi-honest delayed function-dependent MPC protocol
amongst (n+1) parties where each party uses inputs of length λ. Let p(λ) denote the sum
of the length of the transcript of the protocol and the internal state of any party after the
first (k− 1) rounds and let q(λ) denote the length of the message sent by any party in the
last round.

• In the above protocol π, let Final.Roundπ(·) denote the algorithm used by any party to com-
pute its message in the last round and Final.Outputπ(·) denote the algorithm to compute
the final output after the end of the k rounds. Final.Roundπ takes as input the transcript
up to (k − 1) rounds and the internal state of the party. Similarly, Final.Outputπ takes as
input the entire transcript of the protocol and the internal state of the party.

• Finally, let Sym = (Sym.Setup,Sym.Enc,Sym.Dec) denote any symmetric key encryption
scheme with pseudorandom ciphertexts that encrypts messages of length q(λ) using keys of
length p(λ) to generate ciphertexts of length `(λ). Here, p(·), q(·), `(·) are all polynomials.
We know that such a scheme can be built assuming one way functions e.g. using weak
pseudorandom functions by defining Sym.Enc(K,m; r) = (r,PRFK(r)⊕m) (see [Gol04] for
more details).

Scheme:
We now describe the construction of our FE Combiner scheme FEComb.

FEComb.Setup(1λ): The setup algorithm does the following:

1. For each i ∈ [n], generate MSKi ← FEi.Setup(1λ).

2. Output MSK = (MSK1, . . . ,MSKn).

FEComb.Enc(MSK, x): Given input the master secret key MSK and a message x, the encryption
algorithm does the following:

1. Choose λ-bit random strings s1, . . . , sn−1 and set sn = (x⊕ s1 ⊕ . . .⊕ sn−1).

2. Consider (n + 1) parties P1, . . . ,Pn+1 where for all i ∈ [n], Pi has input si and Pn+1 has
no input. Run the first (k − 1) rounds of protocol π amongst these parties. (Recall that
this can be done independently of the function being computed)

3. After round (k − 1), let τx denote the transcript of the protocol and for each i ∈ [n + 1],
let statei denote the state of party Pi.

4. For each i ∈ [n], compute CTi = FEi.Enc(MSKi, (τx, statei, 0)). Set CTn+1 = (τx, staten+1).

5. Output CT = (CT1, . . . ,CTn+1).

FEComb.Keygen(MSK, C): The setup algorithm does the following:

1. For each i ∈ [n], choose a random string Sym.CTi of length `(λ) and generate SKi ←
FEi.KeyGen(MSKi, Ci) where the circuit Ci is defined in Figure 6.

2. Output SKC = (SK1, . . . ,SKn).

FEComb.Dec(SKC ,CT): Given input a function secret key SKC and a ciphertext CT, the de-
cryption algorithm does the following:

36

Input: (τx, statei, β)
Hardwired: Sym.CTi

• If β = 1, set k = (τx, statei) and output Sym.Dec(k, Sym.CTi).

• Else, consider the party Pi that takes part in the MPC protocol π with n other parties to compute
the circuit C. After (k−1) rounds, let τx be the transcript of the protocol and statei be Pi’s internal
state. Output Final.Roundπ(τx, statei).

Figure 6: Circuit Ci

1. Parse SKC = (SK1, . . . ,SKn) and CT = (CT1, . . . ,CTn,CTn+1).

2. For each i ∈ [n], compute outi = FEi.Dec(SKi,CTi).

3. Parse CTn+1 = (τx, staten+1).

4. Now, consider τx to be the transcript after (k−1) rounds of executing protocol π amongst
n parties, (out1, . . . , outn) to be the messages of n parties in the last round and staten+1

to be the state of the other remaining party and compute its output.

5. That is, set trans = (τx, out1, . . . , outn) and output Final.Outputπ(trans, staten+1).

Correctness and Decomposability: We observe that the correctness, polynomial slowdown,
and decomposability properties follow by inspection.

7.2 Security Proof

In this section, we formally prove Theorem 11. The proof of Theorem 12 directly follows.

For the proof, let (Sim1
π(·),Sim2

π(·)) denote the simulator of the protocol π. Sim1
π generates

the messages of the first (k − 1) rounds, while Sim2
π generates the last round message of the

honest parties. Note that Sim1
π only takes as input the adversary’s input, while Sim2

π also takes
as input the output of the function.

To ease the exposition, let’s consider the case where the adversary makes only one function
key query. For an a priori bounded number of function key queries, we do the standard trick of
repeating the scheme in parallel the bound number of times. We show that any PPT adversary
A succeeds in the selective security game (Definition 16) with only negligible probability. We
will show this via a sequence of hybrids Hyb0, . . . ,Hyb4. Let’s say that candidate j is secure.

Hyb0 : This hybrid corresponds to the real security game where the challenger picks a bit
b ∈ {0, 1} uniformly at random and computes FEComb.Enc(MSK, xb). Let’s denote the challenge
ciphertext by CT∗ = (CT∗1, . . . ,CT

∗
n+1).

Hyb1 : In this hybrid, in the ciphertext generation step, the challenger picks s1, . . . , sj−1, sj+1,
. . . , sn uniformly at random and computes sj = (xb ⊕ s1 ⊕ . . .⊕ sj−1 ⊕ sj+1 ⊕ . . .⊕ sn).

Hyb2 : In this hybrid, the challenger first picks a key Sym.SK ← Sym.Setup(1λ). Then, for
the function secret key query C made by the adversary, in order to generate the component
SKj , the challenger does the following:

• Recall the values (τxb , statej) that were used to compute one of the components of the
challenge ciphertext as follows: CT∗j = FEj .Enc(MSKj , (τxb , statej , 0))).

37

• Now, consider a party Pj that takes part in the MPC protocol π with n other parties and
let τxb be the transcript of the protocol, statej be Pj ’s internal state after (k − 1) rounds.

• Compute the value Sym.CTj ← Sym.Enc(Sym.SK,Final.Roundπ(τxb , statej)).

• The rest of the procedure is exactly as in Hyb0. That is, generate SKj ← FEj .KeyGen(MSKj ,
Cj) where the circuit Cj is defined in Figure 6 (with the hardwired value Sym.CTj de-
scribed above and replacing the index in the figure from i to j).

Hyb3 : In this hybrid, the challenger generates the jth component of the challenge ciphertext
CT∗j as follows: CT∗j = FEj .Enc(MSKj , (Sym.SK, 1)).

Hyb4 : In this hybrid, the challenger computes the messages of party Pj (corresponding to
the jth candidate) in the challenge ciphertext and all the function secret keys using the simulator
Simπ of the MPC protocol π. More precisely, the challenger does the following:

• In the challenge ciphertext generation phase, sj is picked randomly and no longer set to
be (xb ⊕ s1 ⊕ . . .⊕ sj−1 ⊕ sj+1 ⊕ . . .⊕ sn).

• In the challenge ciphertext generation phase, to generate the transcript msgxb , compute

the messages of party Pj by running the algorithm Sim1
π. That is, treat the other n parties

as corrupt parties with inputs s1, . . . , sn,⊥ (except party Pj) and compute Pj ’s message
as Sim1

π(|C|, s1, . . . , sj−1, sj+1, . . . , sn,⊥).

• Then, for the function secret key query C, compute Sym.CTj ← Sym.Enc(Sym.SK,
Sim2

π(s1, . . . , sj−1, sj+1, . . . , sn,⊥, C(xb)) where C(xb) is the output of the protocol π ex-
ecuted by the n+ 1 parties.

We will now argue that every pair of consecutive hybrids are computationally indistinguish-
able and finally, show that any PPT adversary has negligible advantage in Hyb4.

Lemma 16. Hyb0 is identical to Hyb1.

Proof. Since the only difference between the two hybrids is that in Hyb0, sn is computed as
(xb ⊕ s1 ⊕ . . .⊕ sn−1) while in Hyb1, sj is computed as (xb ⊕ s1 ⊕ . . .⊕ sj−1 ⊕ sj+1 ⊕ . . .⊕ sn),
it is easy to observe that they are identical.

Lemma 17. Assuming the pseuduorandom ciphertexts property of Sym, Hyb1 is computationally
indistinguishable from Hyb2.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with
non-negligible probability. We will use A to construct an adversary ASym that breaks the
pseudorandom ciphertexts property of Sym which is a contradiction.

The adversary ASym interacts with the adversary A as in Hyb1. Then, on receiving the
challenge message pair (x0, x1) and function secret key query C, to compute the function secret
key, ASym first sends the tuple (τxb , statej) to the challenger CSym of the scheme Sym. It receives
a string which is either an encryption of this tuple using the scheme Sym or a uniformly random
string. Then, ASym sets this string to be the value Sym.CTj hardwired in the circuit Cj and
continues interacting with the adversary A exactly as in Hyb1. Notice that when the challenger
CSym sends an actual ciphertext, the experiment between ASym and A corresponds exactly to
Hyb2 and when the challenger CSym sends a uniformly random string, the experiment corre-
sponds exactly to Hyb1. Thus, if A can distinguish between the two hybrids with non-negligible
probability, ASym can use the same guess to break the pseudorandom ciphertexts property of
the scheme Sym with non-negligible probability which is a contradiction.

38

Lemma 18. Assuming the security of the FE candidate FEj, Hyb2 is computationally indistin-
guishable from Hyb3.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with
non-negligible probability. We will use A to construct an adversary AFE that breaks the security
of the candidate FEj which is a contradiction.

The adversary AFE interacts with the adversary A as in Hyb2. Then, on receiving the
challenge message pair (x0, x1) and function secret key query C, AFE first sends the pair of
tuples ((τxb , statej , 0), (Sym.SK, 1)) as the challenge message pair along with function key query
Cj (see Figure 6) to the challenger CFE of the FE candidate FEi. Note that the function evaluates
to the same value on both messages. From CFE, AFE receives a ciphertext which is set as the
value CT∗j and a function secret key which is set as the value SKj in its interaction with A.
Then, AFE continues interacting with the adversary A exactly as in Hyb2.

Notice that when the challenger CFE encrypts the message (τxb , statej , 0), the experiment
between AFE and A corresponds exactly to Hyb2 and when the challenger CFE encrypts the
message (Sym.SK, 1), the experiment corresponds exactly to Hyb3. Thus, if A can distinguish
between the two hybrids with non-negligible probability, AFE can use the same guess to break
the security of the candidate FEj with non-negligible probability which is a contradiction.

Lemma 19. Assuming the security of the semi-honest delayed function-dependent MPC pro-
tocol π, Hyb3 is computationally indistinguishable from Hyb4.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with
non-negligible probability. We will use A to construct an adversary Aπ that breaks the security
of the MPC protocol π which is a contradiction.

The adversary Aπ interacts with the adversary A as in Hyb3 and receives the challenge mes-
sage pair (x0, x1) and function secret key query C. Then, AFE interacts with the challenger in an
MPC protocol π with (n+ 1) parties where it corrupts parties P1, . . . ,Pj−1, . . . ,Pj+1, . . . ,Pn+1.
It receives a random input si for each party from A and interacts in the protocol receiving
messages for party Pj from the challenger Cπ. Aπ continues interacting with A exactly as in
Hyb3.

Notice that when the challenger Cπ sends honestly generates messages for party Pj (real
world), the experiment between Aπ and A corresponds exactly to Hyb3 and when the challenger
Cπ sends simulated messages for party Pj (ideal world), the experiment corresponds exactly
to Hyb4. Thus, if A can distinguish between the two hybrids with non-negligible probability,
Aπ can use the same guess to break the security of the MPC protocol π with non-negligible
probability which is a contradiction.

Lemma 20. The adversary’s advantage in Hyb4 is negligible.

Proof. Observe that the bit b is not used at all by the challenger in this hybrid and hence, any
PPT adversary’s advantage is negligible.

Remark: Note that the proof of Theorem 12 directly follows. That is, to achieve unbounded
collusion security, we will now rely on the reusability security property of the underlying MPC
protocol.

8 From an FE Combiner to a Robust FE Combiner

The FE combiners constructed previously are not robust. By this, we mean that the construc-
tions provide no guarantee of correctness or security if any of the underlying FE candidates do
not satisfy correctness. However, determining the correctness of FE candidates may be difficult
since a candidate FE may be correct with overwhelming probability on certain message, circuit

39

pairs (m,C) and not others. With no worst-case guarantees, it can be challenging to reason
about the correctness of an FE candidate especially if the function space C is say all poly-sized
circuits, where sampling uniformly over the space is difficult.

We can mitigate this issue by making our FE combiners robust. A robust FE combiner is an
FE combiner that satisfies correctness and security provided that at least one FE candidate, FEi,
satisfies both correctness and security. No restrictions are placed on the other FE candidates.
In particular, they may satisfy neither correctness nor security. In this section, we show how to
transform any FE combiner into a robust FE combiner. Formally, we show the following.

Theorem 13. If there exists an FE combiner, then there exists a robust FE combiner.

Combining Theorem 13 with Theorem 8, we obtain the following corollary.

Corollary 6. Assuming the existence of a PRG in NC1, there exists an unbounded-key robust
FE combiner.

This is done, at a high level, via the following steps.

1. Transform each FE candidate FEi into a new FE candidate FE′i such that

(a) If FEi is correct and secure, then FE′i is also correct and secure.

(b) If FE′i is correct for any fixed message, circuit pair (m,C) with probability α, then it is
at least α′-correct for all other message, circuit pairs (m′, C ′) where α′ = α− negl(λ).

2. Fix a message m and a circuit C and test each candidate repeatedly on (m,C) to determine
if each candidate is α-correct for α ≥ 1− 1

λ . Discard those that are not.

3. Using standard techniques of BPP correctness amplification, transform the α-correct can-
didates into (almost) correct candidates.

4. Instantiate constructions of FE combiners from previous sections with these (almost) cor-
rect candidates.

8.1 FE Candidate Transformation

In this section, we describe the transformation described in step 1 in the construction overview
in Section 8. The idea is to use a universal circuit Um for a message m that takes as input the
description of a circuit C and evaluates to C(m). By encrypting a garbled circuit corresponding
to Um, we are able to transform correctness for a message, circuit pair (m,C) to correctness for
a message, circuit pair where the message is a garbled circuit and the function is the evaluation
circuit with the appropriate labels. We can then leverage the security of garbling scheme to
argue that correctness of the new FE candidate cannot differ greatly between different message,
circuit pairs. Note that in our transformation, security of the transformed FE scheme follows
from the security of the original FE scheme and correctness of the garbling scheme. In particular,
security of the garbling scheme is not necessary to argue security of the transformed FE scheme.
We now formally describe the transformation.

Let FE be an arbitrary FE candidate. Let GC = (Gen,GrbC,GrbI,EvalGC) be a garbling
scheme. Then, consider the following FE candidate FE′.

• Setup′(1λ): Run FE.Setup(1λ) to obtain MSK and Gen(1λ) to obtain gcsk. Set MSK′ =
(MSK, gcsk).

• Enc′(MSK′,m): Parse MSK′ as (MSK, gcsk). Let Um denote the universal circuit that takes
as input a description 〈C〉 of a circuit C ∈ C and outputs C(m). Let b be a uniformly
random bit. Output

(FE.Enc(MSK,GrbC(gcsk, Um(·)⊕ b)), b)

40

as the ciphertext.

• KeyGen′(MSK′, C): Parse MSK′ as (MSK, gcsk). Run GrbI(gcsk) to obtain ~k, the garbled

circuit labels. Let ~k(C) denote the labels corresponding to 〈C〉. Output

FE.KeyGen(MSK,EvalGC(·, ~k(C)))

as SKC .

• Dec′(SKC ,CT
′): Parse CT′ as (CT, b). Output

FE.Dec(SKC ,CT)⊕ b.

Theorem 14. If FE is a correct and secure FE candidate and GC is a garbling scheme, then
FE′ is also correct and secure.

Proof. Correctness follows immediately from the correctness of FE and GC. In particular, fix
any message m and circuit C. Let CT denote the encryption of m and SKC denote the function
key for C. Then,

FE′.Dec(SKC ,CT) = EvalGC(GrbC(gcsk, Um(·)⊕ b), ~k(C))⊕ b
= Um(〈C〉)⊕ b⊕ b = C(m).

For security, suppose there exists an adversary A that can win at the indistinguishability
security game for FE′. Then, consider the adversary A′ that breaks the security of FE. A′ runs
A and plays the role of the challenger. When A submits a message pair (m0,m1), A′ runs
Gen(1λ) to obtain gcsk. Then, it obtains m′0 = GrbC(gcsk, Um0 ⊕ b) and similarly for m′1 for
a uniformly sampled bit b. It then submits (m′0,m

′
1) to its challenger to receive CT and gives

(CT, b) to A. Whenever, A requests a function key for a circuit C, A′ runs GrbI(gcsk) to obtain
~k and then requests a function key to its challenger for the circuit EvalGC(·, ~k(C)). It gives the
resulting function key to A. When A outputs a response, A′ outputs the same response. Note
that A′ simulates the security game for A perfectly and wins whenever A wins. Therefore, A′
is a distinguisher for FE, contradicting the security of FE.

Theorem 15. Let FE′ be the result of applying the above transformation to an FE candidate
FE and let GC be a garbling scheme. For a message, circuit pair (m,C), let

Pr[Corr(m,C)] = Pr

MSK← FE′.Setup(1λ)
CT← FE′.Enc(MSK,m)

SKC ← FE′.KeyGen(MSK, C)
C(m)← FE′.Dec(SKC ,CT)

denote the probability of correctness when FE′ is run on (m,C). Then, for any two message,
circuit pairs (m0, C0) and (m1, C1),

|Pr[Corr(m0, C0)]− Pr[Corr(m1, C1)]| ≤ negl(λ).

Proof. We will show this via a series of experiments. Fix any message, circuit pair (m,C).

Expt0(1
λ,m,C):

1. Run MSK′ ← FE′.Setup(1λ).

2. Run CT′ ← FE′.Enc(MSK′,m).

3. Run SKC ← FE′.KeyGen(MSK′, C).

4. If FE′.Dec(SKC ,CT
′) = C(m), output 1. Else, output 0.

41

Expt1(1
λ,m,C):

1. Run (MSK, gcsk)← FE′.Setup(1λ).

2. Sample a uniformly random bit b. Let C ′ denote the circuit Um(·)⊕ b.
3. Run SimGC(1λ, φ(C ′), C(m)⊕ b) to obtain (Ĉ ′, k1, . . . , k`).

4. Set CT = FE.Enc(MSK, Ĉ ′).

5. Set SKC = FE.KeyGen(MSK,EvalGC(·, (k1, . . . , k`))).

6. If FE.Dec(SKC ,CT)⊕ b = C(m), output 1. Else, output 0.

Expt2(1
λ,m,C):

1. Run (MSK, gcsk)← FE′.Setup(1λ).

2. Sample a uniformly random bit b′. Let φ(C ′) denote the topology of the circuit Um(·)⊕ b.
This is independent of m and b.

3. Run SimGC(1λ, φ(C ′), b′) to obtain (Ĉ ′, k1, . . . , k`).

4. Set CT = FE.Enc(MSK, Ĉ ′).

5. Set SKC = FE.KeyGen(MSK,EvalGC(·, (k1, . . . , k`))).

6. If FE.Dec(SKC ,CT) = b′, output 1. Else, output 0.

Lemma 21. ∣∣Pr
[
Expt0(1λ,m,C) = 1

]
− Pr

[
Expt1(1λ,m,C) = 1

]∣∣ ≤ negl(λ).

Proof. Suppose the above did not hold. Then, consider the following adversary A that breaks
the security of GC. A samples a random bit b and submits its challenge circuit to be Um(·)⊕ b
and its challenge input to be 〈C〉. It receives a garbled circuit Ĉ ′ and wire keys k1, . . . , k`.

A runs FE.Setup(1λ) to obtain MSK. It then sets CT = FE.Enc(MSK, Ĉ ′). It additionally sets
SKC = FE.KeyGen(MSK,EvalGC(·, (k1, . . . , k`))). It then checks if FE.Dec(SKC ,CT)⊕b = C(m).
If it does, it outputs 1. Otherwise, it outputs 0. Note that if A’s challenger is using the garbling
scheme, then A runs Expt0(1λ,m,C). On the other hand, if A’s challenger is using the garbled
circuit simulator, then A runs Expt1(1λ,m,C). So, if the lemma did not hold, A would break
the security of GC.

Lemma 22. ∣∣Pr
[
Expt1(1λ,m,C) = 1

]
− Pr

[
Expt2(1λ,m,C) = 1

]∣∣ ≤ negl(λ).

Proof. This follows immediately from the definitions of the experiments. Note that these two
experiments are functionally equivalent, since the distributions of a random bit b′ and C(m)⊕ b
for a random bit b are identical. Additionally, FE.Dec(SKC ,CT) ⊕ b = C(m) if and only if
FE.Dec(SKC ,CT) = C(m)⊕ b, which is distributed the same as a random bit b′. Therefore, the
lemma holds.

Now, note that Expt2(1λ,m,C) is independent of the message, circuit pair (m,C) since it
depends only on the topology of the circuit Um(·)⊕ b, which is the same regardless of m. Since
Expt0(1λ,m,C) is 1 with the same probability as the probability statement in the theorem, it
follows from the above lemmas that for any message, circuit pairs (m0, C0) and (m1, C1), that∣∣Pr

[
Expt0(1λ,m0, C0) = 1

]
− Pr

[
Expt2(1λ,m0, C0) = 1

]∣∣ ≤ negl(λ)

and ∣∣Pr
[
Expt0(1λ,m1, C1) = 1

]
− Pr

[
Expt2(1λ,m1, C1) = 1

]∣∣ ≤ negl(λ)

42

and ∣∣Pr
[
Expt2(1λ,m0, C0) = 1

]
− Pr

[
Expt2(1λ,m1, C1) = 1

]∣∣ ≤ negl(λ)

and so the theorem holds.

8.2 Proof of Theorem 13

Using the FE candidate transformation described in Section 8.1, we can now show Theorem 13.
Given FE candidates {FEi}i with the guarantee that at least one is correct and secure, run the
FE transformation from Section 8.1 to obtain new FE candidates {FE′i}i. Next, fix an arbitrary
message m and circuit C and test for correctness on (m,C) a total of λ2 times. If the FE
candidate is not correct on any of the tests, discard it. By a Chernoff bound, all remaining
candidates will be α-correct for α ≥ 1 − 1/λ with overwhelming probability. Note that since
the secure FE candidate must be (almost) correct, it will not be discarded with overwhelming
probability. Next, use standard techniques of BPP amplification (repeat in parallel a poly(λ)
number of times and take a majority vote) to transform all the remaining FE candidates into
(almost) correct candidates. This follows from [AJN+16]. Finally, instantiate the FE combiner
construction from Section 6 to obtain a robust FE combiner.

Universal Functional Encryption: Robust FE combiners are closely related to the
notion of universal functional encryption. Universal functional encryption is a construction of
functional encryption satisfying the following simple guarantee. If there exists a Turing Machine
with running time bounded by some T (n) = poly(n) that implements a correct and secure FE
scheme, then the universal functional encryption construction is itself a correct and secure FE
scheme. Using the existence of a robust FE combiner (Theorem 13) and the results of [AJN+16],
we observe the following.

Theorem 16. Assuming the existence of a robust FE combiner, there exists a universal func-
tional encryption scheme.

Using the above theorem and Corollary 6, we arrive at the following corollary.

Corollary 7. Assuming the existence of a PRG in NC1, there exists a universal unbounded-key
functional encryption scheme.

References

[AB81] C.A. Asmuth and G.R. Blakley. An efficient algorithm for constructing a cryp-
tosystem which is harder to break than two other cryptosystems. Computers and
Mathematics with Applications, 1981.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
Selective to Adaptive Security in Functional Encryption. In CRYPTO, 2015.

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. In Annual International Cryptology
Conference, pages 468–499. Springer, 2017.

[Agr18] Shweta Agrawal. New Methods for Indistinguishability Obfuscation: Bootstrapping
and Instantiation. Cryptology ePrint Archive, Report 2018/633, 2018. https:

//eprint.iacr.org/2018/633.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional Encryption: New Perspectives and Lower Bounds. In CRYPTO, 2013.

43

https://eprint.iacr.org/2018/633
https://eprint.iacr.org/2018/633

[AIK05] B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing
polynomials and their applications (extended abstract). In CCC, June 2005.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability Obfuscation from
Compact Functional Encryption. In CRYPTO, 2015.

[AJKS18] Prabhanjan Ananth, Aayush Jain, Dakshita Khurana, and Amit Sahai. Indistin-
guishability Obfuscation Without Multilinear Maps: iO from LWE, Bilinear Maps,
and Weak Pseudorandomness. Cryptology ePrint Archive, Report 2018/615, 2018.
https://eprint.iacr.org/2018/615.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty Computation with Low Communication,
Computation and Interaction via Threshold FHE. In EUROCRYPT, 2012.

[AJN+16] Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai, and Eylon Yogev. Uni-
versal Constructions and Robust Combiners for Indistinguishability Obfuscation
and Witness Encryption. In CRYPTO, 2016.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability Obfusca-
tion from Functional Encryption for Simple Functions. Cryptology ePrint Archive,
Report 2015/730, 2015.

[AJS17] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Robust Transforming Com-
biners from Indistinguishability Obfuscation to Functional Encryption. In EURO-
CRYPT, 2017.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption
and indistinguishability obfuscation from degree-5 multilinear maps. In EURO-
CRYPT, 2017.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
EUROCRYPT, 2014.

[BGG+17] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Pe-
ter M.R. Rasmussen, and Amit Sahai. Threshold Cryptosystems From Threshold
Fully Homomorphic Encryption. IACR Cryptology ePrint Archive, 2017, 2017.

[BGI+18] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Founda-
tions of homomorphic secret sharing. In LIPIcs-Leibniz International Proceedings in
Informatics, volume 94. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dak-
shita Khurana, and Amit Sahai. Promise Zero Knowledge and Its Applications
to Round Optimal MPC. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, pages 459–487, Cham, 2018. Springer
International Publishing.

[BGJS17] Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. A note
on VRFs from Verifiable Functional Encryption. IACR Cryptology ePrint Archive,
2017:51, 2017.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully Ho-
momorphic Encryption Without Bootstrapping. ACM Trans. Comput. Theory,
6(3):13:1–13:36, July 2014.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four Round Secure
Computation Without Setup. In Theory of Cryptography, 2017.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of Garbled
Circuits. In CCS, 2012.

44

https://eprint.iacr.org/2018/615

[Bit17] Nir Bitansky. Verifiable random functions from non-interactive witness-
indistinguishable proofs. In TCC, 2017.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round MPC from k-round OT via garbled
interactive circuits. EUROCRYPT, 2018.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols. In STOC, 1990.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In STOC, 1988.

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key FHE
with short ciphertexts. In CRYPTO, pages 190–213. Springer, 2016.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In EUROCRYPT, 2012.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324(1):71–90, 2003.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Theory of Cryptography, pages 253–273. Springer, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In FOCS, 2015.

[BV16] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation: from
approximate to exact. In Theory of Cryptography Conference, pages 67–95. Springer,
2016.

[BV17] Nir Bitansky and Vinod Vaikuntanathan. A note on perfect correctness by deran-
domization. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 592–606. Springer, 2017.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrede Lepoint, Hemanta K
Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing
without low-level zeroes: New MMAP attacks and their limitations. In CRYPTO,
2015.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the Multilinear Map over the Integers. In EUROCRYPT, 2015.

[CJL16] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An Algorithm for CSPR
Problems and Cryptanalysis of the GGH Multilinear Map without an encoding of
zero. Technical report, Cryptology ePrint Archive, Report 2016/139, 2016.

[CLLT15] Jean-Sebastien Coron, Moon Sung Lee, Tancrede Lepoint, and Mehdi Tibouchi.
Cryptanalysis of GGH15 Multilinear Maps. Cryptology ePrint Archive, Report
2015/1037, 2015.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In Theory of Cryptography Conference,
pages 468–497. Springer, 2015.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE
from learning with errors. In CRYPTO, 2015.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D Rothblum, and Daniel Wichs. Spooky encryp-
tion and its applications. In Annual Cryptology Conference, pages 93–122. Springer,
2016.

[FHNS16] Marc Fischlin, Amir Herzberg, Hod Bin Noon, and Haya Shulman. Obfuscation
Combiners. In CRYPTO, 2016.

45

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In EUROCRYPT, pages 1–17, 2013.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional
encryption without obfuscation. IACR Cryptology ePrint Archive, 2014:666, 2014.

[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic
approach to constructing and proving verifiable random functions. In TCC, pages
537–566. Springer, 2017.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption.
In STOC, 2013.

[GKW17] Shafi Goldwasser, Saleet Klein, and Daniel Wichs. The Edited Truth. In TCC,
pages 305–340. Springer, 2017.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou.
The exact round complexity of secure computation. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 448–476.
Springer, 2016.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game.
In STOC, pages 218–229. ACM, 1987.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the cryp-
tographic hardness of finding a nash equilibrium. In CRYPTO, 2016.

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Break-
ing the sub-exponential barrier in obfustopia. In EUROCRYPT, 2017.

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC
from bilinear maps. FOCS, 2017.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-Round Multiparty Secure Compu-
tation from Minimal Assumptions. EUROCRYPT, 2018.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption from
Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-
Based. In CRYPTO, 2013.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In CRYPTO, 2012.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate Encryption
for Circuits from LWE. In CRYPTO, 2015.

[Her05] Amir Herzberg. On Tolerant Cryptographic Constructions. In CT-RSA, 2005.

[Her09] Amir Herzberg. Folklore, practice and theory of robust combiners. Journal of
Computer Security, 17(2):159–189, 2009.

[HHPV18] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan
Venkitasubramaniam. Round-Optimal Secure Multi-Party Computation. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO
2018, pages 488–520, Cham, 2018. Springer International Publishing.

[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH Map. IACR Cryptology ePrint
Archive, 2015:301, 2015.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and
Daniel Wichs. Adaptively secure garbled circuits from one-way functions. In
CRYPTO, 2016.

46

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On Robust
Combiners for Oblivious Transfer and Other Primitives. In EUROCRYPT, 2005.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pages 21–30. ACM, 2007.

[Lev87] Leonid A. Levin. One-way functions and pseudorandom generators. Combinatorica,
1987.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In EUROCRYPT, 2016.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In CRYPTO, 2017.

[LM18] Huijia Lin and Christian Matt. Pseudo Flawed-Smudging Generators and Their
Application to Indistinguishability Obfuscation. Cryptology ePrint Archive, Report
2018/646, 2018. https://eprint.iacr.org/2018/646.

[LP09] Yehuda Lindell and Benny Pinkas. A Proof of Security of Yao’s Protocol for Two-
Party Computation. J. Cryptol., 22(2):161–188, April 2009.

[LPST16a] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability ob-
fuscation with non-trivial efficiency. In PKC, 2016.

[LPST16b] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing
randomized encodings and applications. In TCC, 2016.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps
and block-wise local PRGs. In CRYPTO, 2017.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In FOCS, 2016.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via
multi-key FHE. In EUROCRYPT, 2016.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In TCC,
2016.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In CRYPTO, 2008.

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic Function Evaluation
and Applications. Cryptology ePrint Archive, Report 2018/409, 2018. https:

//eprint.iacr.org/2018/409.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption
with public keys. In CCS, pages 463–472. ACM, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
2005.

[Yao86] Andrew Chi-Chih Yao. How to Generate and Exchange Secrets (Extended Ab-
stract). In FOCS, pages 162–167, 1986.

A Additional Preliminaries

A.1 Functional Encryption: Security Definitions

IND-Security. We recall indistinguishability-based selective security for FE. This security
notion is modeled as a game between a challenger C and an adversary A where the adversary

47

https://eprint.iacr.org/2018/646
https://eprint.iacr.org/2018/409
https://eprint.iacr.org/2018/409

can request functional keys and ciphertexts from C. Specifically, A can submit function queries
C and C responds with the corresponding functional keys. A can also submit message queries
of the form (x0, x1) and receives an encryption of messages xb for some bit b ∈ {0, 1}. The
adversary A wins the game if she can guess b with probability significantly more than 1/2 and
if for all function queries C and message queries (x0, x1), C(x0) = C(x1). That is to say, any
function evaluation that is computable by A gives the same value regardless of b. It is required
that the adversary must declare the challenge messages at the beginning of the game.

Definition 16 (IND-secure FE). A secret-key FE scheme FE for a class of circuits C = {Cλ}λ∈[N]

and message space X = {Xλ}λ∈[N] is selectively secure if for any PPT adversary A, there exists
a negligible function µ(·) such that for all sufficiently large λ ∈ N, the advantage of A is

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1]− Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptFEA (1λ, b) is defined below:

1. Challenge message queries: A submits message queries,{
(xi0, x

i
1)
}

with xi0, x
i
1 ∈ Xλ to the challenger C.

2. C computes MSK ← FE.Setup(1λ) and then computes CTi ← FE.Enc(MSK, xib) for all i.
The challenger C then sends {CTi} to the adversary A.

3. Function queries: The following is repeated an at most polynomial number of times: A
submits a function query C ∈ Cλ to C. The challenger C computes SKC ← FE.KeyGen(
MSK, C) and sends it to A.

4. If there exists a function query C and challenge message queries (xi0, x
i
1) such that C(xi0) 6=

C(xi1), then the output of the experiment is set to ⊥. Otherwise, the output of the experi-
ment is set to b′, where b′ is the output of A.

Adaptive Security. The above security notion is referred to as selective security in the
literature. One can consider a stronger notion of security, called adaptive security, where the
adversary can interleave the challenge messages and the function queries in any arbitrary order.
Analogous to Definition 16, we can define an adaptively secure FE scheme. In this paper, we
only deal with selectively secure FE schemes. However, the security of these schemes can be
upgraded to adaptive with no additional cost [ABSV15].

Simulation Security. We can also consider a different notion of security, called (single-key)
simulation security.

Definition 17. (SIM-Security) Let FE denote a functional encryption scheme for a circuit class
C. For every PPT adversary A = (A1,A2) and a PPT simulator Sim, consider the following two
experiments:

ExprealFE,A(1λ) ExpidealFE,A,Sim(1λ)

{FE.Setup(1λ)→ MSK} {FE.Setup(1λ)→ MSK}
A1 → (C, stateA1) A1 → (C, stateA1)
{SKC ← FE.KeyGen(MSK, C)} {SKC ← FE.KeyGen(MSK, C)}
A2(stateA1 ,SKC)→ (m, stateA2) A2(stateA1 ,SKC)→ (m, stateA2)
FE.Enc(MSK,m)→ CT Sim(MSK, C,SKC , C(m))→ C̃T

48

Output (CT, stateA2) Output (C̃T, stateA2)

The scheme is said to be (single-key) SIM-secure if there exists a PPT simulator Sim such that
for all PPT adversaries (A1,A2), the outcomes of the two experiments are computationally in-
distinguishable:

{ExprealFE,A(1λ)}λ∈N ≈c {ExpidealFE,A,Sim(1λ)}λ∈N

A.2 Secure Multi-Party Computation

We now provide the necessary background on secure multi-party computation. We first present
the syntax and then the security definition.

Syntax. We define a secure multi-party computation protocol Π for n parties P1, . . . , Pn as-
sociated with an n-party functionality f : {0, 1}`1 × · · · × {0, 1}`n → {0, 1}`y1 × · · · × {0, 1}`yn .
We let `i denote the length of the ith party’s input and `yi denote the length of the ith party’s
output. In any given execution of the protocol, the ith party receives as input xi ∈ {0, 1}`i and
maintains a state statei. All the parties jointly compute the functionality f(x1, . . . , xn) by fol-
lowing the protocol. The protocol proceeds in rounds and in each round, every party broadcasts
a message to the other parties. In the end, party Pi outputs outi. The protocol is said to be cor-
rect if the joint distribution (out1, . . . , outn) is statistically close to (y1, . . . , yn) = f(x1, . . . , xn).

Semi-Honest Adversaries. We consider weaker adversarial models where the adversaries
follow the instructions of the protocol. That is, they receive their inputs from the environment,
behave as prescribed by the protocol, and, finally, output their view of the protocol. Such types
of adversaries are referred to as semi-honest adversaries.

We define semi-honest security below. Denote RealΠf,S(x1, . . . , xn) to be the joint distribution
over the outputs of all the parties along with the views of the parties indexed by the set S.

Definition 18 (Semi-Honest Security). Consider an n-party functionality f as defined above.
Fix a set of inputs (x1, . . . , xn), where xi ∈ {0, 1}`i and let ri be the randomness of the ith

party. Let Π be a n-party protocol implementing f . We say that Π satisfies security against
semi-honest adversaries if for every subset of parties S, there exists a PPT simulator Sim
such that:

{ ({yi}i/∈S ,Sim ({yi}i∈S , {xi}i∈S)) } ,∼=c

{
RealΠf,S(x1, . . . , xn)

}
,

where yi is the ith output of f(x1, . . . , xn). In particular, we say that Π is semi-honest secure.

A.3 Threshold Leveled Fully Homomorphic Encryption

The following definition of threshold homomorphic encryption is adapted from [AJLA+12,
MW16, BGG+17]. A threshold homomorphic encryption scheme is a tuple of PPT algorithms
TFHE = (TFHE.Setup,TFHE.Enc,TFHE.Eval,TFHE.PartDec,TFHE.FinDec) satisfying the fol-
lowing specifications:

• Setup, Setup(1λ, 1d, 1n): It takes as input the security parameter λ, a circuit depth d, and
the number of parties n. It outputs a public key fpk and secret key shares fsk1, . . . , fskn.

• Encryption, Enc(fpk, µ): It takes as input a public key fpk and a single bit plaintext
µ ∈ {0, 1} and outputs a ciphertext CT.

49

• Evaluation, Eval(C,CT1, . . . ,CTk): It takes as input a boolean circuit C : {0, 1}k →
{0, 1} ∈ Cλ of depth ≤ d and ciphertexts CT1, . . . ,CTk encrypted under the same public
key. It outputs an evaluation ciphertext CT. We shall assume that the ciphertext also
contains fpk.

• Partial Decryption, pi ← PartDec(fski,CT): It takes as input a secret key share fski and
a ciphertext CT. It outputs a partial decryption pi related to the party i.

• Final Decyrption, FinDec(B): It is a deterministic algorithm that takes as input a set
B = {pi}i∈[n]. It outputs a plaintext µ̂ ∈ {0, 1,⊥}.

Definition 19 (TFHE). A TFHE scheme is required to satisfy the following properties for all
parameters (fpk, fsk1, . . . , fskN)← Setup(1λ, 1d, 1n), any plaintexts µ1, . . . , µk ∈ {0, 1}, and any
boolean circuit C : {0, 1}k → {0, 1} ∈ Cλ of depth ≤ d.

Correctness of Encryption. Let CT = Enc(fpk, µ1) and B = {PartDec(fski,CT)}i∈[n]. With
all but negligible probability in λ over the coins of Setup, Enc, and PartDec, FinDec(B) =
µ1.

Correctness of Evaluation. Let CTi = Enc(fpk, µi) for 1 ≤ i ≤ k, ĈT = Eval(C,CT1, . . . ,CTk),

and B = {PartDec(fski, ĈT,)}i∈[n]. With all but negligible probability in λ over the coins
of Setup, Enc, and PartDec, FinDec(B) = C(µ1, . . . , µk).

Compactness of Ciphertexts. There exists a polynomial, poly, such that |CT| ≤ poly(λ, d)
for any ciphertext CT generated from the algorithms of TFHE.

Semantic Security of Encryption. Any PPT adversary A has only negligible advantage as
a function of λ over the coins of all the algorithms in the following game:

1. Run Setup(1λ, 1d, 1n)→ (fpk, fsk1, .., fskn). The adversary is given fpk.

2. The adversary outputs a set S ⊂ [n] of size n− 1.

3. The adversary receives {fski}i∈S along with Enc(fpk, b)→ CT for a random b ∈ {0, 1}.
4. The adversary outputs b′ and wins if b = b′.

Simulation Security. Let CTi = Enc(fpk, µi) for 1 ≤ i ≤ k, ĈT = Eval(C,CT1, . . . ,CTk), and

pi = PartDec(fski, ĈT,) for all i ∈ [n]. There exists a PPT algorithm Sim such that for any

subset S of the form [n]\ i∗, Sim(ĈT, {fsk}S , C(µ1, .., µk))→ p′i∗ the following distributions
are statistically close (in the security parameter):

(pi, fpk,CT1, ..,CTk, {fski}i∈[n]) ≈ (p′i∗ , fpk,CT1, ..,CTk, {fski}i∈[n]).

A.4 Garbling Schemes

We recall the definition of garbling schemes [Yao86, BHR12].

Definition 20 (Garbling Schemes [Yao86, BHR12]). A garbling scheme GC = (Gen,GrbI,GrbC,
EvalGC) defined for a class of circuits C consists of the following polynomial time algorithms:

• Setup, Gen(1λ): On input security parameter λ, it generates the secret parameters gcsk.

• Generation of Garbling Keys, GrbI(gcsk): On input secret parameters gcsk, it generates

the wire keys ~k = (k1, . . . ,k`), where ki = (k0
i , k

1
i).

• Garbled Circuit Generation, GrbC(gcsk, C): On input secret parameters gcsk and cir-

cuit C ∈ C, it generates the garbled circuit Ĉ.

50

• Evaluation, EvalGC(Ĉ, (kx1
1 , . . . , kx``)): On input garbled circuit Ĉ, wire keys (kx1

1 , . . . , kx``),
it generates the output out.

It satisfies the following properties:

• Correctness: For every circuit C ∈ C with input length `, x ∈ {0, 1}`, for every security
parameter λ ∈ N, it should hold that:

Pr

gcsk← Gen(1λ),

((k0
1, k

1
1), . . . , (k0

` , k
1
`))← GrbI(gcsk),

Ĉ ← GrbC(gcsk, C)

C(x)← EvalGC(Ĉ, (kx1
1 , . . . , kx``))

 ≥ 1− negl(λ)

• Security: There exists a PPT simulator SimGC such that the following holds for every
circuit C ∈ C of input length `, x ∈ {0, 1}`,(

Ĉ, kx1
1 , . . . , kx``

)
∼=c SimGC(1λ, φ(C), C(x)),

where:

– gcsk← Gen(1λ)

– ((k0
1, k

1
1), . . . , (k0

` , k
1
`))← GrbI(gcsk)

– Ĉ ← GrbC(gcsk, C)

– φ(C) is the topology of C.

Theorem 17 ([Yao86, LP09, BHR12]). Assuming the existence of one-way functions, there
exists a secure garbling scheme GC.

51

	Introduction
	Our Contributions
	Technical Overview

	Preliminaries
	Functional Encryption
	Secure Multi-Party Computation
	Additional Preliminaries

	FE Combiners: Definition
	Succinct Single-Key Simulation Secure Decomposable FE Combiner
	Construction of a DFE Combiner from LWE

	Round Optimal MPC with Depth-Proportional Communication from an FE Combiner
	Construction
	Security Proof

	Construction of an FE Combiner from Weaker Assumptions
	Degree-d Randomizing Polynomials
	d-Nested FE
	Construction
	Security Proof

	From MPC to FE Combiners
	Construction
	Security Proof

	From an FE Combiner to a Robust FE Combiner
	FE Candidate Transformation
	Proof of [thm:robustfe]Theorem 13

	Additional Preliminaries
	Functional Encryption: Security Definitions
	Secure Multi-Party Computation
	Threshold Leveled Fully Homomorphic Encryption
	Garbling Schemes

