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Abstract

We present an efficient key recovery attack on code based encryption schemes using
some quasi–dyadic alternant codes with extension degree 2. This attack permits to break
the proposal DAGS recently submitted to NIST.

keywords : Code-based Cryptography, McEliece encryption scheme, Key recovery attack,
Alternant codes, Quasi–dyadic codes, Schur product of codes.

Introduction

In 1978, in the seminal article [23], R. J. McEliece designed a public key encryption scheme
relying on the hardness of the bounded decoding problem [7], i.e. on the hardness of decoding
an arbitrary code. For a long time, this scheme was considered as unpractical because of the
huge size of the public keys compared to public key encryption schemes relying on algorithmic
number theoretic problems. Hence, for a long time, code based cryptography was considered
as a purely theoretic area with few perspectives of practical applications. The trend changed
in the last decade because of the progress of quantum computing and the increasing threat
of the existence in a near future of a quantum computer able to break usual cryptography
primitives based on number theoretic problems : integer factorisation and discrete logarithm
in finite fields or elliptic curves. An evidence for this change of trend is the recent call of
the National Institute for Standards and Technology (NIST). for post quantum cryptography.
The majority of the submissions to this call are based either on codes or on lattices.

After forty years of research on code based cryptography, one can identify two general
trends for instantiating McEliece’s scheme. The first one consists in using codes from proba-
bilistic constructions such as LDPC and MDPC codes [25, 1]. The other one consists in using
algebraic codes such as Goppa codes or more generally alternant codes.

Concerning McEliece instantiations based on algebraic codes, which include McEliece’s
original proposal based on binary Goppa codes, two approaches have been considered in order
to address the drawback of the large of pubic key sizes. On the one hand, some proposals
suggested to replace Goppa or alternant codes by more structured codes such as generalised
Reed–Solomon (GRS) codes [26], their low dimensional subcodes [6], or GRS codes to which
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various transformations have been applied [31, 2, 30]. It turns out that most of these proposals
have been subject to polynomial time key-recovery attacks [29, 32, 10, 14]. In addition,
proposals based on Goppa codes which are close to GRS codes, namely Goppa code with
a low extension degree m have been the target of some structural attacks [19, 13]. On the
other hand, many proposals suggest the use of codes with a non trivial automorphism group
[20, 5, 24, 28]. A part of these proposals have been either partially or completely broken
[27, 18, 17]. In particular, in the design of such proposal, precautions should be taken since
the knowledge of a non trivial automorphism group of the public code facilitates algebraic
attacks by significantly reducing the degrees and number of variables of the algebraic system
to solve to in order to recover the secret key.

Among the recent submissions to NIST call for post quantum cryptography, a proposal
called DAGS [3] is based on the use of quasi–dyadic (QD) generalised Srivastava codes with
extension degree m = 2. By quasi–dyadic we mean that the permutation group of the code
is of the form (Z/2Z)γ for some positive integer γ. Moreover, generalised Srivastava codes
form a proper subclass of alternant codes. DAGS proposal takes advantage of both usual
techniques to reduce the size of the keys. First, by using alternant codes which are close to
generalised Reed Solomon codes i.e. with an extension degree 2. Second, by using codes with
a large permutation group. In terms of security with respect to key recovery attacks, DAGS
parameters are chosen to be out of reach of the algebraic attacks [18, 17]. In addition, it
should be emphasised that the choice of alternant codes which are not Goppa codes permits
to be out of reach of the distinguisher by shortening and squaring used in [13].

Our contribution In this article, we present an attack breaking McEliece instantiations
based on alternant codes with extension degree 2 and a large permutation group. This at-
tack permits to recover the secret key in O

(
n
3+ 2q
|G|
)
operations in Fq, where G denotes the

permutation group and n the code length. The key step of the attack consists in computing
some specific code referred to as the norm trace code, from which the secret key can easily be
recovered. For this main step, we present two ways to proceed, the first approach is based
on a partial brute force search while the second one is based on the resolution of a bilinear
system. An analysis of the work factor of this attack using the first approach shows that
DAGS keys with respective estimated security levels 128, 192 and 256 bits can be broken with
respective approximate work factors 270, 280 and 258. For the second approach, we were not
able to provide a complexity analysis. However, its practical implementation using Magma [8]
is impressively efficient on some DAGS parameters. In particular, it permits to break claimed
256 bits security keys in less than one minute!

This attack is a novel and original manner to recover the structure of alternant codes by
jointly taking advantage the permutation group and the small size of the extension degree.
Even if some variant of the attack reposes on the resolution of a bilinear system, this system
has nothing to do with those of algebraic attacks of [18, 17, 19]. On the other hand, despite
this attack shares some common points with that of [13] where the computation of the norm
trace code is also an intermediary step, the way we obtain this norm trace code and the reasons
why it is possible to compute it are completely different. In particular, the keys we break in
the present article are out of reach of a distingusher by shortening and squaring and hence
our attack differs from filtration attacks as in [13, 11].
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Outline of the article This article is organised as follows. Prerequisites on algebraic codes
and quasi–dyadic codes are given in Section 1. In Section 2, we recall the definition of the
Schur product of codes and some of its properties. In Section 3, we introduce a fundamental
object for this attack called the conductor of a pair of codes. The description of the attack is
given in Section 4 and its complexity is discussed in Section 5. Finally, Section 6 is devoted
to the implementation of the attack and the presentation of experimental results.

1 Notation and prerequisites

1.1 Subfield subcodes and trace codes

Definition 1. Given a code C of length n over Fqm , its subfield subcode is the subcode of
vectors whose entries all lie in Fq, that is the code:

C ∩ Fnq .

The trace code is the image of the code by the component wise trace map

TrFqm/Fq(C )
def
=
{
TrFqm/Fq(c) | c ∈ C

}
.

Let us remind a classical and well–known result on subfield subcodes and trace codes.

Theorem 2 (Delsarte Theorem [16]). Let C ⊆ Fnqm be a code. Then

(C ∩ Fnq )⊥ = TrFqm/Fq(C
⊥).

1.2 Generalised Reed–Solomon codes and alternant codes

Notation 1. Let q be a power of prime and k a positive integer. We denote by Fq[z]<k the
vector space of polynomials over Fq whose degree is bounded from above by k. Let m be a
positive integer, we will consider codes over Fqm with their subfield subcodes over Fq. In § 2
and further, we will focus particularly on the case m = 2.

Definition 3 (Supports and multipliers). A vector x ∈ Fnqm whose entries are pairwise distinct
is called a support. A vector y ∈ Fnqm whose entries are all nonzero is referred to as a multiplier.

Definition 4 (Generalised Reed–Solomon codes). Let n be a positive integer, x ∈ Fnqm be a
support and y ∈ Fnqm be a multiplier. The generalised Reed–Solomon (GRS) code with support
x and multiplier y of dimension k is defined as

GRSk(x,y)
def
= {(y1f(x1), . . . , ynf(xn)) | f ∈ Fq[z]<k} .

When y = 1, then the code is a Reed–Solomon code and is denoted as RSk(x).

Definition 5 (Alternant code). Let m, n be positive integers such that n 6 qm. Let x ∈ Fnqm
be a support, y ∈ Fnqm be a multiplier and r be a positive integer. The alternant code of
support x, multiplier y and degree r over Fq is defined as

Ar(x,y)
def
= GRSr(x,y)⊥ ∩ Fnq .

The integer m is referred to as the extension degree of the alternant code.
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Proposition 6. In the context of Definition 5, we have

dim Ar(x,y) > n−mr.

Proof. See [22, Chapter 12].

Note that the dual of a GRS code is a GRS code too. This is explicited in Lemma 7 below.
Let us first introduce an additional notation.

Notation 2. Let x ⊆ Fnqm be a vector with distinct entries, we define the locator polynomial
πx ∈ Fqm [z] as

πx(z)
def
=

n−1∏
i=0

(z − xi).

Lemma 7. Let x,y ∈ Fnqm be a support and a multiplier of length n and k 6 n. Then

GRSk(x,y)⊥ = GRSn−k(x,y⊥),

where
y⊥

def
=

(
1

π′x(x1)y1
, . . . ,

1

π′x(xn)yn

)
,

and π′x denotes the derivative of the polynomial πx.

As a direct consequence of Lemma 7 and Definition 5, we get the following explicit de-
scription of an alternant code.

Ar(x,y) =

{(
1

π′x(xi)yi
f(xi)

)
i=1,...,n

∣∣∣∣∣ f ∈ Fqm [z]<n−r

}
∩ Fnq . (1)

Next, by duality and using Delsarte’s Theorem (Theorem 2), we have

Ar(x,y)⊥ = TrFqm/Fq
({

(yig(xi))i=1,...,n

∣∣∣ g ∈ Fqm [z]<r

})
, (2)

where TrFqm/Fq denotes the component wise trace map.

1.2.1 Decoding alternant codes

Alternant codes come with an efficient decoding algorithm. For instance, see [22, Chapter
12§9].

Fact 1. Given an alternant code Ar(x,y), there exists an efficient decoding algorithm cor-
recting up to t = b r2c errors. This decoding algorithm can be built from the knowledge of the
pair (x,y).

1.2.2 Fully non degenerated alternant codes

We conclude this subsection on alternant codes by a definition which is useful in the sequel.

Definition 8. An alternant code Ar(x,y) is said to be fully non degenerated if it satisfies the
two following conditions.

(i) A generator matrix of Ar(x,y) has no zero column.

(ii) Ar(x,y) 6= Ar+1(x,y).

It should be emphasised that, in general, an alternant code is fully non degenerated.
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1.3 Punctured and shortened codes

The notions of puncturing and shortening are classical ways to build new codes from existing
ones. We recall here their definition.

Definition 9. Let C be a code of length n and I ⊆ {1, . . . , n}. The puncturing of C at I is
defined as the code

PI (C )
def
= {(ci)i∈{1,...,n}\I | c ∈ C }.

Definition 10. Let C be a code of length n and I ⊆ {1, . . . , n}. The shortening of C at I is
defined as the code

SI (C )
def
= PI ({c ∈ C | ∀i ∈ I, ci = 0}) .

Let us finish by reminding the following classical result.

Notation 3. Let x ∈ Fnqm be a vector and I ⊆ {1, . . . , n}. Then, the vector xI denotes the
vector obtained from x be removing the entries whose indexes are in I.

Proposition 11. Let m, r be positive integers. Let x,y ∈ Fnqm be as in Definition 5. Let
I ⊆ {1, . . . , n}. Then

SI (Ar(x,y)) = Ar(xI ,yI).

Proof. See for instance [13, Proposition 9].

1.4 Quasi–dyadic codes, quasi-dyadic alternant codes

Quasi–dyadic (QD) codes are codes with a nontrivial permutation group which is isomorphic
to (Z/2Z)γ for some positive integer γ. Such a code has length n = n0s where s = 2γ . The
permutation group of the code is composed of permutations which are products of transpo-
sitions with disjoint supports. The example of interest in the present article is the case of
QD–alternant codes. In what follows, we explain how to create such QD–alternant codes.

Notation 4. From now on, q denotes a power of 2 and ` denotes the positive integer such
that q = 2`.

• Let G ⊂ Fqm be an additive subgroup with γ generators, i.e. G is an F2–vector subspace
of Fqm of dimension γ with an F2–basis a1, . . . , aγ . Clearly, as an additive group, G is
isomorphic to (Z/2Z)γ . The group G acts on Fqm by translation: for any a ∈ G, we
denote by τa the translation

τa :

{
Fqm −→ Fqm
x 7−→ x+ a

.

• Using the basis (a1, . . . , aγ), we fix an ordering in G as follows. Any element of G is a
linear combination u1a1 + · · · + uγaγ where the ui’s are elements of Z/2Z. Thus, any
element u1a1 + · · · + uγaγ ∈ G can be regarded as an element (u1, . . . , uγ) ∈ (Z/2Z)γ

and we sort them by lexicographic order. For instance, if γ = 3:

0 < a1 < a2 < a1 + a2 < a3 < a1 + a3 < a2 + a3 < a1 + a2 + a3.
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• Let n = 2γn0 for some positive n0 and such that n 6 qm. Let x ∈ Fnqm be a support
which splits into n0 blocks of 2γ elements of Fqm , each block being an orbit under the
action of G by translation on Fqm sorted using the previously described ordering. For
instance, suppose γ = 2, then such an x is of the form,

x = (t1, t1 + a1, t1 + a2, t1 + a1 + a2, . . . ,
. . . , tn0 , tn0 + a1, tn0 + a2, tn0 + a1 + a2),

(3)

where the ti’s are chosen to have disjoint orbits under the action of G by translation on
Fqm .

• Let y ∈ Fnqm be a multiplier which also splits into n0 blocks of length 2γ whose entries
are equal.

• Let r be a positive integer and consider the code Ar(x,y).

• The set of entries of x is globally invariant under the action of G by translation. In
particular, for any a ∈ G, the translation τa induces a permutation of the code Ar(x,y).
This permutation is a product of n2 transpositions with disjoint supports. We refer this
permutation to as σa. For instance, reconsidering the example (3), the permutations σa1
and σa1+a2 are respectively of the form

σa1 = (1, 2)(3, 4) · · · (n− 3, n− 2)(n− 1, n)

σa1+a2 = (1, 4)(2, 3) · · · (n− 3, n)(n− 2, n− 1).

The group of permutations {σa | a ∈ G} is isomorphic to G and hence to (Z/2Z)γ . Since
it is isomorphic to G and in order to limit the amount of notation, we also denote this
group of permutations by G.

Proposition 12. For any positive integer r, the code Ar(x,y) is quasi–dyadic.

Proof. See for instance [15, Chapter 5].

1.5 Invariant subcode of a quasi–dyadic code

Definition 13. Given a code C with a non–trivial permutation group G, we define the code
C G as the subcode of C :

C G
def
= {c ∈ C | ∀σ ∈ G, σ(c) = c}.

The invariant subcode has repeated entries since on any orbit of the support under the
action of G, the entries of a codeword are equal. This motivates an alternative definition of
the invariant code where repetitions have been removed.

Definition 14. In the context of Definition 13, let c ∈ Fnqm be a vector such that for any
σ ∈ G, σ(c) = c. We denote by c the vector obtained by keeping only one entry per orbit
under the action of G on the support. Next we define the invariant code with non repeated
entries as

C
G def

=
{
c | c ∈ C G

}
.

We are interested in the structure of invariant of QD alternant codes. To study this
structure, we first need to recall some basic notions of additive polynomials.

6



1.5.1 Additive polynomials

Definition 15. An additive polynomial P ∈ Fqm [z] is a polynomial whose monomials are all
of the form z2

i for i > 0. Such a polynomial satisfies P (a+b) = P (a)+P (b) for any a, b ∈ Fqm .

The zero locus of an additive polynomial in Fqm is an additive subgroup of Fqm and such
polynomials satisfy some interpolation properties.

Proposition 16. Let G ⊂ Fqm be an additive group of cardinality 2γ. There exists a unique
additive polynomial ψG ∈ Fqm [z] which is monic of degree 2γ and vanishes at any element of
G.

Proof. Let a1, . . . , aγ be a set of generators of G. The polynomial ψG can be constructed using
the so–called Moore determinant:

ψG(z)
def
=

∣∣∣∣∣∣∣
a1 · · · aγ
...

...
a2

γ−1

1 · · · a2
γ−1

γ

∣∣∣∣∣∣∣
−1

·

∣∣∣∣∣∣∣∣∣
a1 · · · aγ z
a21 · · · a2γ z2

...
...

...
a2

γ

1 · · · a2
γ

γ z2
γ

∣∣∣∣∣∣∣∣∣ .
See [21, Proposition 1.3.5] for further details.

Notation 5. From now on, given an additive subgroup G ⊆ Fqm , we always denote by ψG the
unique monic additive polynomial of degree |G| in Fqm [z] which vanishes on G.

1.5.2 Invariant of a quasi–dyadic alternant code

It turns out the invariant code of a QD alternant code (after puncturing repeated entries) is
an alternant code too. This relies on the following classical result of invariant theory for which
a simple proof can be found in [17].

Theorem 17. Let f ∈ Fqm [z] and G ⊂ Fqm be an additive subgroup. Suppose that for any
a ∈ G, f(z) = f(z+ a). Then, there exists h ∈ Fqm [z] such that f(z) = h(ψG(z)), where ψG is
the monic additive polynomial of degree |G| vanishing at any element of G.

This entails the following result on the structure of the invariant code of an alternant code.
We refer to Definition 14 for the notation in the following statement.

Theorem 18. Let C = Ar(x,y) be a QD–alternant code with permutation group G of order
2γ. Set r′ =

⌊
r
2γ

⌋
. Then,

C
G

= Ar′(ψG(x),y),

Proof. See [17] or [4].

1.6 McEliece encryption scheme

Here we remind how McEliece public key encryption scheme instantiated with alternant codes
works.

Public key A pair (G, t) where G ∈ Mk×n(Fq) is a generator matrix of an alternant code
Cpub = Ar(x,y) and t = b r2c is the number of errors one can correct.
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Secret key The pair (x,y) whose knowledge permits to decode.

Encryption A plain text m ∈ Fkq is encrypted as c = mG+e where e is a uniformly random
vector of Fnq of weight 6 t.

Decryption Using the decoding algorithm, compute mG from c. Then deduce m by Gaus-
sian elimination.

A key–recovery attack consists in recovering a pair (x′,y′) such that Cpub = Ar(x
′,y′).

1.7 DAGS

Among the schemes recently submitted to NIST, the submission DAGS [3] uses as a primitive
a McEliece encryption scheme based on QD generalised Srivastava codes. It is well known that
generalised Srivastava codes form a subclass of alternant codes [22, Chapter 12]. Therefore,
this proposal lies in the scope of the attack presented in what follows.

Parameters proposed in DAGS submission are listed in Table 1.

Name q m n n0 k k0 γ r0

DAGS_1 25 2 832 52 416 26 4 13

DAGS_3 26 2 1216 38 512 16 5 11

DAGS_5 26 2 2112 33 704 11 6 11

Table 1: Parameters proposed in DAGS.

Let us remind what parameters q,m, n, n0, k, k0, γ, r0 stand for:

• q denotes the size of the base field of the alternant code;

• m denotes the extension degree. Hence the GRS code above the alternant code is defined
over Fqm ;

• n denotes the length of the QD alternant code;

• n0 denotes the length of the invariant subcode, i.e. Ar(x,y)G , where G denotes the
permutation group.

• k denotes the dimension of the QD alternant code;

• k0 denotes the dimension of the invariant code;

• γ denotes the number of generators of G, i.e. G ' (Z/2Z)γ ;

• r0 denotes the degree of the invariant code, which is alternant according to Theorem 18.

Remark 1. The indexes 1, 3 and 5 in the parameters names correspond to security levels
according to NIST’s call. Level 1, corresponds to 128 bits security with a classical computer,
Level 3 to 192 bits security and Level 5 to 256 bits security.

In addition to the set of parameters of Table 1, we introduce self chosen smaller parameters
listed in Table 2. They do not correspond to claimed secure instantiations of the scheme but
permitted to test some of our assumptions by computer aided calculations.
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Name q m n n0 k k0 γ r0

DAGS_0 24 2 240 15 80 5 4 5

Table 2: Small scale parameters, not proposed in DAGS.

2 Schur products

From now on and unless otherwise specified, the extension degree m will be equal to 2. This
is the context of any proposed parameters in DAGS.

2.1 Product of vectors

The component wise product of two vectors in Fnq is denoted by

a ? b
def
= (a1b1, . . . , anbn).

Next, for any positive integer t we define a?t as

a?t
def
= a ? · · · ? a︸ ︷︷ ︸

t times

.

More generally, given a polynomial P ∈ Fq[z] we defined P (a) as the vector (P (a1), . . . , P (an)).
In particular, given a ∈ Fnq2 , we denote by Tr(a) and N(a) the vectors obtained by applying
respectively the trace and the norm map component by component:

Tr(a)
def
= (a1 + aq1, . . . , an + aqn)

N(a)
def
= (aq+1

1 , . . . , aq+1
n ).

Finally, the all one vector (1, . . . , 1), which is the unit vector of the algebra Fnq with operations
+ and ? is denoted by 1.

2.2 Schur product of codes

The Schur product of two codes A and B ⊆ Fnq is defined as

A ?B
def
= 〈a ? b | a ∈ A , b ∈ B〉Fq .

In particular, A ?2 denotes the square code of a code A : A ?2 def
= A ?A .

2.3 Schur products of GRS and alternant codes

The behaviour of GRS and of some alternant codes with respect to the Schur product is very
different from that of random codes. This provides a manner to distinguish GRS codes from
random ones and leads to a cryptanalysis of GRS based encryption schemes [32, 10, 14]. Some
alternant codes, namely Wild Goppa codes with extension degree 2 have been also subject to
a cryptanalysis based on Schur products computations [12, 13].

Here we remind an elementary but crucial result.
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Theorem 19. Let x ∈ Fnqm be a support and y,y′ ∈ Fnqm be multipliers. Let k, k′ be two
positive integers, then

GRSk(x,y) ?GRSk′(x,y′) = GRSk+k′−1(x,y ? y′).

Proof. See for instance [10, Proposition 6].

3 Conductors

In this section, we introduce a fundamental object in the attack to follow. This object was
already used in [11, 13] without being named. We chose here to call it conductor. The rationale
behind this terminology is explained in Remark 2.

Definition 20. Let C and D be two codes of length n over Fq. The conductor of D into C
is defined as the largest code Z ⊆ Fnq such that D ?Z ⊆ C . That is:

Cond(D ,C )
def
= {u ∈ Fnq | u ?D ⊆ C }.

Proposition 21. Let D ,C ⊆ Fnq be two codes, then

Cond(D ,C ) =
(
D ? C⊥

)⊥
.

Proof. See [11, 13].

Remark 2. The terminology conductor has been borrowed from number theory in which the
conductor of two subrings O,O′ of the ring of integers OK of a number field K is the largest
ideal P of OK such that P · O ⊆ O′.

3.1 Conductors of GRS codes

Before discussing the behaviour of conductors of alternant codes, let us start with GRS codes.

Proposition 22. Let x,y ∈ Fnqm be a support and a multiplier. Let k 6 k′ be two integers
less than n. Then,

Cond(GRSk(x,y),GRSk′(x,y)) = RSk′−k+1(x).

Proof. Let E denote the conductor. From Proposition 21 and Lemma 7,

E ⊥ = GRSk(x,y) ?GRSn−k′(x,y⊥) = GRSn−k′+k−1(x,y ? y⊥).

Note that
y ? y⊥ =

(
1

π′x(x1)
, . . . ,

1

π′x(xn)

)
.

Then, using Lemma 7 again, we get

E = GRSk′−k+1(x, (y ? y
⊥)
⊥

) = RSk′−k+1(x).
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Let us emphasize a very interesting aspect of Proposition 21. We considered the conductor
of a GRS code into another one having the same support and multiplier. The point is that
the conductor does not depend on y. Hence the computation of a conductor permits to
get rid of the multiplier and to obtain a much easier code to study : a Reed–Solomon code.

As we see further, when dealing with alternant codes, instead of getting a Reed–Solomon
code, the computation of some conductor provides a particular subfield subcode of a Reed–
Solomon code, which we called the norm–trace code. The next subsection is devoted to the
study of this object.

3.2 The norm–trace code

Notation 6. In what follows, we fix α ∈ Fq2 such that Tr(α) = 1. In particular, (1, α) form
an Fq–basis of Fq2 .

Definition 23 (Norm trace code). Let x ∈ Fnq2 be a support. The norm–trace code NT (x) ⊆
Fnq is defined as

NT (x)
def
= 〈1,Tr(x),Tr(αx),N(x)〉Fq .

The code NT (x) turns out to be a very peculiar alternant code since it is a subfield
subcode of a Reed–Solomon code.

Proposition 24. Let x ∈ Fnq2 be a support and n = q2. Then, for any q+ 1 < k < 2q+ 1, we
have

NT (x) = RSk(x) ∩ Fnq .

Proof. The case k = q + 2 is proved in [13, Proposition 33]. The proof of the general case is
very similar. We give it for the sake of convenience.

Inclusion “⊆” is obvious. Let us discuss the converse inclusion. The goal is to describe
polynomials h ∈ Fq2 [z]<k such that

∀x ∈ Fq2 , h(x) = h(x)q.

This is equivalent to
h ≡ hq mod (zq

2 − z).

Writing, h(z) =
k−1∑
i=0

hiz
i, this gives the system


h0 = hq0
hq = hq1
hq+1 = hqq+1

hi = 0, ∀i ∈ {2, . . . , k − 1} \ {q, q + 1}.

We deduce an Fq–basis of polynomials 1, zq + z, αqzq + αz, zq+1, which proves the result.

We finish this subsection with a heuristic extending Proposition 24 to the case where
n < q2. This heuristic is already discussed in [13], where computer aided experiments providing
evidences for it are given.

Heuristic 25. Let x ∈ Fnq2 be a support and n > 4q. Then, for any q + 1 < k < 2q + 1, we
have

NT (x) = RSk(x) ∩ Fnq .

11



3.3 Conductor of some alternant codes

When dealing with alternant codes, proving equalities becomes difficult. We can at least prove
the following theorem.

Theorem 26. Let x,y ∈ Fnq2 be a support and a multiplier. Let r′ > r be two positive integers.
Then,

RSr′−r+1(x) ∩ Fnq ⊆ Cond(Ar′(x,y),Ar(x,y)).

Proof. Consider the Schur product(
RSr′−r+1(x) ∩ Fnq

)
?Ar′(x,y)

=
(
RSr′−r+1(x) ∩ Fnq

)
? (GRSn−r′(x,y⊥) ∩ Fnq )

⊆ (RSr′−r+1(x) ?GRSn−r′(x,y⊥)) ∩ Fnq .

Next, using Theorem 19,(
RSr′−r+1(x) ∩ Fnq

)
?Ar′(x,y) ⊆ GRSn−r(x,y⊥) ∩ Fnq

⊆ Ar(x,y).

The last inclusion is a direct consequence of Lemma 7 and Definition 5.

Theorem 26 is not used as stated in the attack, we actually use a more general heuristic
which is discussed in the sequel.

Heuristic 27. In the context of Theorem 26. Suppose that n > 4q and q < r − r′ < 2q. Let
D be a subcode of Ar′(x,y) such that

(i) dim D · dim Ar(x,y)⊥ > n;

(ii) D 6⊂ Ar′+1(x,y);

(iii) a generator matrix of D has no zero column.

Then,
Cond(D ,Ar(x,y)) = NT (x).

Let us give some evidences for this heuristic. From Proposition 21,

Cond(D ,Ar(x,y)) =
(
D ?Ar(x,y)⊥

)⊥
.

Next, from (2), we have

Ar(x,y)⊥ = TrFq2/Fq(GRSr(x,y)).

Since D is a code over Fq and by the Fq–linearity of the trace map, we get

D ?Ar(x,y)⊥ = TrFq2/Fq (D ?GRSr(x,y)) .

Now, we use the fact that D is contained in Ar′(x,y) and hence, from (1) is a subset of a
GRS code. Namely,

D ⊂ GRSn−r′(x,y⊥), where y⊥ =

(
1

π′x(x1)y1
, . . . ,

1

π′x(xn)yn

)
.

12



Therefore, thanks to Theorem 19, we get

D ?Ar(x,y)⊥ ⊆ TrFq2/Fq
(
GRSn−r′+r−1(x,y ? y⊥)

)
. (4)

Here, let us note that D ? Ar(x,y)⊥ is spanned by dim D · dim Ar(x,y)⊥ generators which
are obtained by computing the Schur products of elements of a basis of D by elements of a
basis of Ar(x,y)⊥. By (i), the number of such generators exceeds n. For this reason, it is very
reasonable to hope that this Schur product will fill in the target code and hence that actually,

D ?Ar(x,y)⊥ = TrFq2/Fq
(
GRSn−r′+r−1(x,y ? y⊥)

)
.

Next, we have

y ? y⊥ =

(
1

π′x(x1)
, . . . ,

1

π′x(xn)

)
.

Therefore, using Lemma 7, we conclude that(
D ?Ar(x,y)⊥

)⊥
= RSr′−r+1(x) ∩ Fnq .

Using Heuristic 25, we get the result.

Remark 3. Assumption (ii) permits to avoid the situation where the conductor could be
the subfield subcode of a larger Reed–Solomon code. Assumption (iii) permits to avoid the
presence of words of weight 1 in the conductor which would not be elements of a Reed–Solomon
code.

Further discussion on the Heuristic In all our computer experiments, we never observed
any phenomenon contradicting this heuristic.

4 Presentation of the attack

4.1 Context

Remind that the extension degree is always m = 2. The public code is the QD alternant code

Cpub
def
= Ar(x,y),

with a permutation group G of cardinality |G| = 2γ . We remind the parameters listed in § 1.7.
The code has a length n = n02

γ , dimension k and is defined over a field Fq and q = 2` for
some positive integer `. The degree r of the alternant code is also a multiple of |G| = 2γ

and hence is of the form r = r02
γ . We suppose from now on that the lower bound on the

dimension k given by Proposition 6 is reached. Namely that k = n− 2r. This always holds in
the parameters proposed in [3]. We finally set k0 = k/2γ . In summary, we have the following
notation

n = n02
γ , k = k02

γ , r = r02
γ . (5)

13



4.2 Description of the attack

In § 4.4, we introduce a subcode D of codimension 2q
|G| of (Cpub)G . This subcode D is unknown,

while its knowledge of D permits to recover NT (x) as the conductor Cond(D ,Cpub). The
difficult part of the attack consists in guessing this unknown code D .

The attack is can be summarised as follows:

(1) Compute (Cpub)G ;

(2) Guess the subcode D of (Cpub)G of codimension 2q
|G| such that

Cond(D ,Cpub) = NT (x);

(3) Determine x from NT (x) and then y from x.

The difficult part is clearly the second one : how to guess D? We present two manners to
realise this guess.

• The first one consists in performing exhaustive search on subcodes of codimension 2q
|G|

of (Cpub)G .

• The second one consists in finding both D and NT (x) by solving a bilinear system
using Gröbner bases.

The first approach has an important cost but which remains significantly below the expected
security level of DAGS proposed parameters. For the second approach, we did not succeed to
get a relevant estimate of the work factor but its practical implementation permits to break
DAGS_1 in about 20 minutes and DAGS_5 in less than one minute (see § 6 for further details
on the implementation). We did not succeed to break DAGS_3 parameters using the second
approach. On the other hand the first approach would have a work factor of ≈ 280 for keys
with an expected security of 192 bits.

The remainder of this section is devoted to detail the different aspects of the attack.

4.3 Fundamental degree properties of the invariant subcode

A crucial statement for the attack is:

Theorem 28. Let s be an integer of the form s = 2γs0. Suppose that As0(ψG(x),y) is fully
non degenerated (see Definition 8 and § 1.5 for notation ψG, y and so on). Then,

(a) As(x,y)G ⊆ As+|G|−1(x,y);

(b) As(x,y)G 6⊆ As+|G|(x,y).

Remark 4. Note that the sequence of alternant codes for increasing degrees is decreasing:

As(x,y) ⊇ As+1(x,y) ⊇ · · · ⊇ As+|G|−1(x,y) ⊇ As+|G|(x,y).

Hence, the invariant code is contained in a smaller alternant code, corresponding to the eva-
luation of polynomials of lower degree.

14



Proof. From (1), we have

As(x,y) =

{(
1

yiπ′x(xi)
f(xi)

)
i=1,...,n

∣∣∣∣∣ f ∈ Fq2 [z]<n−s

}
∩ Fnq .

This code is obtained by evaluation of polynomials of degree up to

n− s− 1 = (2γ(n0 − s0)− 1).

Next, from Theorem 17, the invariant codewords of As(x,y) come from evaluations of poly-
nomials of the form h◦ψG . Such polynomials have a degree which is a multiple of degψG = 2γ

and hence their degree cannot exceed 2γ(n0−s0−1). Thus, they should lie in Fq2 [z]6n−s−|G| =
Fq2 [z]<n−s−|G|+1. This leads to

As(x,y)G ⊆

{(
1

yiπ′x(xi)
f(xi)

)
i=1,...,n

∣∣∣∣∣ f ∈ Fq2 [z]<n−s−|G|+1

}
∩ Fnq

⊆ As+|G|−1(x,y).

This proves (a).
To prove (b), note that the assumption on As0(ψG(x),y) asserts the existence of f ∈

Fq2 [z]<n0−s0 such that deg f = n0 − s0 − 1 and f(ψG(x)) ∈ Fn0
q . Thus, f(ψG(x)) ∈ Fnq and

deg(f ◦ψG) = n− s− |G|. Therefore f(ψ(x)) ∈ As(x,y)G and As(x,y)G contains an element
of As+|G|−1(x,y) which is not in As+|G|(x,y).

4.4 The subcode D

Definition 29. Suppose that |G| 6 q. We define the code D as

D
def
= Ar+q(x,y)G .

Remark 5. For parameters suggested in DAGS, we always have |G| 6 q, with strict equality
for DAGS_1 and DAGS_3 and equality for DAGS_5.

Remark 6. The case q < |G| which never holds in DAGS suggested parameters would be
particularly easy to treat. In such a situation, replacing possibly G by a subgroup, one can
suppose that |G| = 2q. Next, according to Theorem 28, and Heuristic 27, we have

Cond((Cpub)G ,Cpub) = NT (x),

which would provide a very simple manner to compute NT (x).

The following result is the key of the attack.

Theorem 30. Under Heuristics 25 and 27 and assuming that Ar+q(x,y)
G
is fully non de-

generated (see Definition 8), we have

Cond(D ,Cpub) = NT (x).

Proof. It is a direct consequence of Theorem 28 and Heuristic 27.

Proposition 31. The code D has codimension 6 2q
|G| = 2`−γ+1 in (Cpub)

G.
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Proof. Using Theorem 18, we know that D has the same dimension as Ar0+
q
|G|

(ψG(x),y).

This code has dimension > n0 − 2(r0 + q
|G|). Since dim (Cpub)G = k0 = n0 − 2r0, we get the

result.

Remark 7. Actually the codimension equals 2`−γ+1 almost all the time.

Example 1. • For DAGS_1, D = A240(x,y)G and the code has codimension 4 in (Cpub)G ;

• For DAGS_3, D = A416(x,y)G and the code has codimension 4 in (Cpub)G ;

• For DAGS_5, D = A768(x,y)G and the code has codimension 2 in (Cpub)G ;

When starting the attack, the code D is unknown. In the sequel, we present two manners
to recover it.

4.5 First approach, brute force search of D

A first way of getting D and then of obtaining NT (x) consists in enumerating all the subspaces
X ⊆ (Cpub)G of codimension 2q

|G| until we find one such that Cond(X ,Cpub) has dimension
4. Indeed, for an arbitrary X the conductor will have dimension 1 and be generated by 1,
while for X = D the conductor will be NT (x) which has dimension 4.

The number of subspaces to enumerate is in O(q2(2q/|G|)(k0−2q/|G|)) which is in general much
too large to make the attack practical. It is however possible to reduce the cost of brute force
attack as follows.

4.5.1 Using random subcodes of dimension 2

For any parameter set proposed in DAGS, the public code has a rate k/n less than 1/2.
Hence, its dual has rate larger than 1/2. Therefore, according to Heuristic 27, given a random
subcode D0 of D of dimension 2, then Cond(D0,Cpub) = NT (x) with a high probability.

Thus, one can proceed as follows

• Pick two independent vectors c, c′ ∈ (Cpub)G at random and computeCond(〈c, c′〉,Cpub);

• If the conductor has dimension 4, you probably found NT (x), then pursue the attack
as explained in § 4.7.

• Else, try again.

The probability that c, c′ ∈ D equals q−
4q
|G| . Therefore, one may have found NT (x) after

O(q
4q
|G| ) computations of conductors.

Example 2. The average number of computations of conductors will be

• O(q8) = O(240) for DAGS_1;

• O(q8) = O(248) for DAGS_3;

• O(q4) = O(224) for DAGS_5.
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4.5.2 Using shortened codes

Another manner consists in replacing the public code by one of its shortenings. For that, we
shorten Cpub = Ar(x,y) at a set of a = a02

γ positions which is a union of blocks, so that the
shortened code remains QD. We choose the integer a such that the invariant subcode of the
shortened code has dimension 2 + 2q

|G| and hence the shortening of D has dimension 2. Let I
be such a subset of positions. To determine SI (D), we can enumerate any subspace X of
dimension 2 of SI (Cpub) and compute Cond(X ,SI (Cpub)). In general, we get the trivial
code spanned by the all–one codeword 1. If the conductor has dimension 4 it is highly likely
that we found SI (D) and that the computed conductor equals NT (xI).

The number of such spaces we enumerate is in O(q
4q
|G| ). Hence the average number of

conductors we have to compute is in O(q
4q
|G| ), which is very similar to the cost of the previous

method based on random subcodes of dimension 2 in § 4.5.1.

4.6 Second approach, solving a bilinear system

An alternative approach to recover D and NT (x) consists in solving a bilinear system.
The idea is the following one. Since Tr(x) ∈ Cond(D ,Cpub) and, from Proposition 21,
Cond(D ,Cpub) = (D ? Cpub

⊥)
⊥, then

GD?Cpub
⊥ · Tr(x)> = 0,

where GD?Cpub
⊥ denotes a generator matrix of D ?Cpub

⊥. The above identity holds true when
replacing Tr(x) by Tr(βx) for any β ∈ Fq2 . Hence,

GD?Cpub
⊥ · x> = 0. (6)

The above identity provides the system we wish to solve. We have two type of unknowns :
the code D and the support vector x. Set c def

= 2q
|G| the codimension of D in (Cpub)G . For D ,

let us introduce (k0 − c)k0 formal variables U11, . . . , U1,c, . . . , Uk0−c,1, . . . , Uk0−c,c and set

U
def
=

 U11 · · · U1,c
...

...
Uk0−c,1 · · · Uk0−c,c

 and G(Uij)
def
=
(
Ik0−c | U

)
·Ginv,

where Ik0−c denotes the (k0−c)×(k0−c) identity matrix and Ginv denotes a k0×n0 generator
matrix of (Cpub)G . It is probable that D has a generator matrix of the form G(uij) for some
special values u11, . . . , uk0−c,c ∈ Fq. The case where D has no generator matrix of this form
is rare and can be addressed by choosing another generator matrix for (Cpub)G .

Now, let H be a parity–check matrix of Cpub. A generator matrix of D ? Cpub
⊥ can be

obtained by constructing a matrix whose rows list all the possible Schur products of one row
of a generator matrix of D by one row of a parity–check matrix of Cpub. Therefore, let R(Uij)
be a matrix with entries in Fq[U1,1, . . . , Uk0−c,c] whose rows list all the possible Schur products
of one row of G(Ui,j) and one row of H. Hence, there is a specialisation u11, . . . , uk0−c,c ∈ Fq
of the variables Uij such that R(uij) is a generator matrix of D ? Cpub

⊥.
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The second set of variables X1, . . . , Xn corresponds to the entries of x. Using (6), the
bilinear system we have to solve is nothing but

R(Uij) ·

X1
...
Xn

 = 0. (7)

4.6.1 Reducing the number of variables

Actually, it is possible to reduce the number of variables using three different tricks.

1. Since the code is QD, the vector x is a union of orbits under the action of the additive
group G. Therefore, one can introduce formal variables A1, . . . , Aγ corresponding to the
generators of G. Then, one can replace (X1, . . . , Xn) by

(T1, T1 +A1, . . . , T1 +A1 + · · ·+Aγ , T2, T2 +A1, . . . ). (8)

for some variables T1, . . . , Tn0 .

2. Without loss of generality and because of the 2–transitive action of the affine group on
Fq2 , one can suppose that the first entries of x are 0 and 1 respectively (see for instance
[13, Appendix A]). Therefore, in (8), one can replace T1 by 0 and A1 by 1.

3. Similarly to the approach of § 4.5, one can shorten the codes so that D has only dimension
2, which reduces the number of variables Uij to 2c and also reduces the length of the
support we seek and hence reduces the number of the variables Ti.

4.7 Finishing the attack

When the previous step of the attack is over, then, if we used the first approach based on a
brute force search of D , we know at least NT (x) or NT (xI) for some set I of positions.
If we used the second approach, then x is already computed, or at least xI for some set of
indexes I. Thus, there remains to be able to

(1) recover x from NT (x) or xI from NT (xI);

(2) recover y from x or yI from xI ;

(3) recover x,y from the knowledge of xI ,yI .

Let us treat these three questions.

4.7.1 Recovering x from NT (x)

Remind that the code NT (x) has dimension 4 over Fq and is spanned by 1,Tr(x),Tr(αx),N(x).
It is not difficult to prove that the same code after base field extension satisfies

NT (x)⊗ Fq2 = 〈1,x,x?q,x?(q+1)〉.

This code is peculiar in the sense that its square is smaller than the square of an arbitrary
code of dimension 4. Indeed, according to [9], the square of a random code of dimension 4 has
dimension 10 with a high probability, while:
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Lemma 32. If n > 2q + 2, then dim NT (x)?2 = 9.

Proof. Note first that

dimFq NT (x)?2 = dimFq2 (NT (x)?2)⊗ Fq2 = dimFq2 (NT (x)⊗ Fq2)?2.

Hence, let us study the square of NT (x)⊗ Fq2 ,

〈1,x,x?q,x?(q+1)〉?2 =

〈1,x,x?2,x?q,x?(q+1),x?(q+2),x?(2q),x?(2q+1),x?(2q+2)〉.

One can check that these vectors are independent when n > 2q + 2.

Remark 8. The previous lemma provides an additional test to check whether the code we
computed was actually NT (x) by simply computing its square.

Because of the 2–transitivity of the affine group on Fq2 , without loss of generality, one can
suppose that the first entry of x is 0 and the second one is 1 (see for instance [13, Appendix
A]). Therefore, after shortening NT (x) ⊗ Fq2 we get a code that we call S , which is of the
form

S
def
= S{1}

(
NT (x)⊗ Fq2

)
= 〈x,x?q,x?(q+1)〉Fq2 .

Next, a simple calculation shows that

S ∩S ?2 = 〈x?(q+1)〉.

Since, the second entry of x has been set to 1, we can deduce the value of x?(q+1).

Remark 9. Actually, both S and NT (x) have a basis defined over Fq, therefore, to get
〈x?(q+1)〉Fq it is sufficient to perform any computation on codes defined over Fq.

Now, finding x is easy: enumerate the affine subspace of NT (x) ⊗ Fq2 of vectors whose
first entry is 0 and second entry is 1 (or equivalently, the affine subspace of vectors of S
whose first entry equals 1). For any such vector c, compute c?(q+1). If c?(q+1) = x?(q+1), then
c equals either x or x?q. Since Ar(x,y) = Ar(x

?q,y?q) (see for instance [13, Lemma 39]),
taking x or x?q has no importance. Thus, without loss of generality, one can suppose x has
been found.

4.7.2 Recovering y from x

This is very classical calculation. The public code Cpub is alternant, and hence is well–known
to have a parity–check matrix defined over Fq2 of the form

Hpub =


y1 · · · yn
x1y1 · · · xnyn
...

...
xr−11 y1 · · · xr−1n yn

 .

Denote by Gpub a generator matrix of Cpub. Then, since the xi’s are known, then the y′is can
be computed by solving the linear system

Hpub ·G>pub = 0.
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4.7.3 Recovering x,y from xI ,yI

After a suitable reordering of the indexes, one can suppose that I = {s, s+ 1, . . . , n}. Hence,
the entries x1, . . . , xs−1 of x and y1, . . . , ys−1 are known. Let us explain how to compute xs, ys.
Set I ′ def

= I \ {s}. Thus, let G(I ′) be a generator matrix of Ar(xI′ ,yI′), which is nothing by
SI′ (Cpub). Using the notation of the previous section, we have

y1 · · · ys
x1y1 · · · xsys
...

...
xr−11 y1 · · · xr−1s ys

 ·G(I ′) = 0.

In the above identity, all the x′is and y′is are known but xs, ys. The entry ys can be found by
solving the linear system (

y1 · · · ys
)
·G(I ′) = 0.

Then, xs can be deduced by solving the linear system(
x1y1 · · · xsys

)
·G(I ′) = 0.

By this manner, we can iteratively recover the entries xs+1, . . . , xn and ys+1, . . . , yn. The only
constraint is that I should be small enough so that SI (Cpub) is nonzero. But this always
holds true for the choices of I we made in the previous sections.

4.8 Comparison with a previous attack

First, let us remind the attack on Wild Goppa codes over quadratic extensions [13]. This
attack concerns some subclass of alternant codes called wild Goppa codes. For such codes a
distinguisher exists which permits to compute a filtration of the public code. Hence, after
some computations, we obtain the subcode Ar+q+1(x,y) of the public code Ar(x,y). Then,
according to Heuristic 27, the computation of a conductor permits to get the code NT (x).
As soon as NT (x) is known, the recovery of the secret is easy. Note that, the use of the
techniques of § 4.7 can significantly simplifies the end of the attack of [13] which was rather
technical.

We emphasise that, out of the calculation of NT (x) by computing a conductor which
appears in our attack so that in [13], the two attacks remain very different. Indeed, the way
one gets a subcode whose conductor into the public code provides NT (x) is based in [13] on
a distinguisher which does not work for general alternant codes which are not Goppa codes.
In addition, in the present attack, the use of the permutation group is crucial, while it was
useless in [13].

5 Complexity of the attack

As explained earlier, we have not been able to provide a complexity analysis of the approach
based on polynomial system solving. In particular because the Macaulay matrix in degree 2
of the system turned out to have a surprisingly low rank, showing that this bilinear system
was far from being generic. Consequently, we limit our analysis to the first approach based
on performing a brute force search on the subcode D .

Since we look for approximate work factors, we will discuss an upper bound on the com-
plexity and not only a big O.
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5.1 Complexity of calculation of Schur products

A Schur product A ? B of two codes A ,B of length n and respective dimensions ka, kb is
computed as follows.

1. Take bases a1, . . . ,aka and b1, . . . , bkb of A and B respectively and construct a matrix
M whose rows are all the possible products ai ? bj , for 1 6 i 6 ka and 1 6 j 6 kb. This
matrix has kakb rows and n columns.

2. Perform Gaussian elimination to get a reduced echelon form of M .

The cost of the computation of a reduced echelon form of a s × n matrix is nsmin(n, s)
operations in the base field. The cost of the computation of the matrix M is the cost of kakb
Schur products of vectors, i.e. nkakb operations in the base field. This leads to an overall
calculation of the Schur product equal to

nkakb + nkakb min(n, kakb)

operations in the base field. When kakb > n, the cost of the Schur product can be reduced
using a probabilistic shortcut described in [11]. It consists in computing an n× n submatrix
of M by choosing some random subset of products ai ? bj . This permits to reduce the cost
of computing a generator matrix in row echelon form of A ?B to 2n3 operations in the base
field.

5.2 Cost of a single iteration of the brute force search

Computing the conductor Cond(X ,Cpub) consists in computing the code (X ? Cpub
⊥)
⊥.

Since our attack consists in computing such conductors for various X ’s, one can compute a
generator matrix of Cpub

⊥ once for good. Hence, one can suppose a generator matrix for Cpub
⊥

is known. Then, according to § 5.1, the calculation of a generator matrix of X ? Cpub
⊥ costs

at most 2n3 operations. Next, note that for most of the iterations, there is no need to deduce
a generator matrix in reduced echelon form of (X ? Cpub

⊥)
⊥, since it suffices to evaluate the

dimension of X ? Cpub
⊥, which is immediate from the generator matrix in reduced echelon

form. If the dimension of the code is not the expected one, namely n − dimD = n − 4, then
we skip to the next iteration.

Hence, the overall cost of a single iteration of the brute force search is bounded above by
2n3 operations in Fq.

5.3 Complexity of finding NT (x)

According to § 4.5, the average number of iterations of the brute force search is q2CodimD , that
is q

4q
|G| . Thus, we get an overall cost of the first step bounded above by

2n3q
4q
|G| operations in Fq.

Since, n = Θ(q2), we get a complexity in O(n
3+ 2q
|G| ) operations in Fq for the computation of

NT (x).
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5.4 Complexity of deducing x,y from NT (x)

The final part of the attack is negligible compared to the previous step. Indeed,

• the computation of NT (x)?2 costs O(n2) operations in Fq (because of Remark 9, one
can perform these computations over Fq) since the code has dimension 4;

• the computation of NT (x)?2 ∩NT (x) boils down to linear algebra and costs O(n3)
operations in Fq;

• The enumeration of the subset of NT (x) ⊗ Fq2 of elements whose first entry is 0 an
second one is 1 and computation of their norm costs O(q4n) = O(n3) operations in Fq2 .
Indeed the affine subspace of NT (x) ⊗ Fq2 which is enumerated has dimension 2 over
Fq2 and hence has q4 elements, while the computation of the component wise norm of a
vector costs O(n) operations assuming that the Frobenius z 7→ zq can be computed in
constant time in Fq2 .

• The recovery of y from x boils down to linear algebra and hence can also be done in
O(n3) operations in Fq2 . If we have to recover x,y from xI ,yI , it can be done iteratively
by solving a system of a constant number of equations, hence the cost of one iteration
is bounded by a O(n2) operations in Fq2 , thus the overall cost remains bounded above
by a O(n3) operations in Fq2 .

As a conclusion, the second part of the attack is negligible compared to the first one.
Hence, we have an approximate work factor of the form

2n3q
4q
|G| operations in Fq. (9)

5.5 Approximate work factors of the first variant of the attack on DAGS
parameters

We make the approximation that operations in Fq can be done in constant time. Indeed,
the base fields of the public keys of DAGS proposal are F32 and F64. For such a field, it is
reasonable to store a multiplication and inversion table.

Therefore, we list in Table 3 some approximate work factors for DAGS according to (9).
The second column recalls the security levels claimed in [3] for the best possible attack. The
last column gives the approximate work factors for the first variant of our attack.

Name Claimed security level Work factor of our attack

DAGS_1 128 bits ≈ 270

DAGS_3 192 bits ≈ 280

DAGS_5 256 bits ≈ 258

Table 3: Work factors of the first variant of the attack
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6 Implementation

Since the first variant of the attack had too important costs to be tested on our machines, we
made two different kind of tests. All the tests have been done using Magma [8] on an Intel R©

Xeon 2.27 GHz.

1. We tested the first variant of the attack on the toy parameters DAGS_0, in order to have
evidences that it works. We performed 20 tests, which succeeded in an average time of
2 hours.

2. We tested the second variant based on solving a bilinear system on DAGS_1, _3 and _5.
We have not been able to break DAGS_3 keys using this variant of the attack, on the
other hand about 100 tests have been performed for DAGS_1 and DAGS_5. The average
running time of the attack for DAGS_1 keys is about 19 minutes and for DAGS_5 keys is
about 35 seconds.

Name Claimed security level Average time
DAGS_1 128 bits 19 mn
DAGS_5 256 bits < 1 mn

Table 4: Average times for the second variant of the attack.
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