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Abstract
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tropies. We also obtain a new derivation of the union bound.
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1 Introduction

Let X be an unknown discrete random variable X ∈ X with X finite or
countable, and with distribution P. This random variable could, for example,
represent an unknown key for a cryptosystem, or an unknown password. In
practice, the guessor is not all-powerful and can only ask atomic questions
(e.g., query keys/passwords) regarding singletons in X . We assume that a
sequence of questions of the form Is X = x? are posed until the first YES
answer determines the value of the random variable X.
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The problem of guessing has been investigated in the context of sequential
decoding [1] and source-channel coding ([2, 3, 12]) as well as in security
applications ([15, 6, 7, 11]). We provide an overview of previous work in
the last subsection. It is also possible to define guessing in the presence of
distortion or source uncertainty ([2, 12, 16]) but we do not pursue this any
further here.

While it is attractive to have a number of different guessors working in
parallel in trying to obtain the value of the random variable X, there are
also some pitfalls in making this approach flexible, in terms of participants
entering and leaving the group performing the attack and in terms of parti-
tioning the search space X . This can turn out to be complicated, since it is
quite likely that the computational power of each participant (thus the rate
at which they can implement the guessing mechanism) can vary a great deal.
These factors make the study of oblivious distributed guessing of interest.

However the model we are considering in this paper is also relevant to
distributed attacks mounted from independent nodes on the internet. As a
generic example, consider that independent attackers are probing different
nodes with password guesses, with the condition that the overall password
distribution of the probed notes all come from some probability distribution P
over the password search space. The goal of the attackers may be maximizing
the probability of success that at least one of them finds the password, or
minimizing the probability that the password is not found after some fixed
number of guesses, etc. Some of the results in this paper have been partially
presented in [5], but significant new results have also been obtained, namely
Theorems 2, 3 and 4.

1.1 Definitions and Notation

We provide some definitions in this section. A guessing strategy for identi-
fying X is a procedure for generating successive questions of the above type
until a YES answer is obtained. Formally, any such procedure can be repre-
sented by a function G : X → {1, 2, . . .} where G(k) equals the time index
of the question Is X = k?.

Note that functions G corresponding to valid guessing strategies cannot
be totally arbitrary. Clearly, G must be invertible on its range {1, 2, . . .}
since only one element may be probed at any given time. Moreover, since
we are assuming the answers to the queries Is X = k? are noiseless, it is
enough to consider guessing strategies which ask the above question exactly
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once for each k ≥ 1. This formally corresponds to the mapping G being
one-to-one and onto. Any function satisfying these two conditions will be
called a guessing function. Every guessing function defines a valid guessing
strategy and conversely.

Assuming that the guessor knows the probability distribution P (other-
wise see [16]), she is interested in minimizing the number of questions required
to determine X. This goal can be formalised in a number of ways, such as
minimizing a positive moment E[Gρ] (mostly ρ = 1 is of interest) where

E[Gρ] =
∑
x∈X

P(x)G(x)ρ =
∑
k≥1

kρP(G−1(k)).

The Rényi entropy of order α of X is a generalization of the Shannon entropy
defined by

Hα(X) =
log
(∑

X∈Y P(X)α
)

1− α
α ∈ [0, 1) ∪ (1,∞),

and obeys limα→1Hα(X) = H(X) as well as being strictly decreasing in α
unless the Y is uniform on its support.

Sometimes, a related random variable Y ∈ Y with some joint distribution
P(X, Y ) is available to the guessor, who then proceeds to guess the possible
values of X as above. In this case we use the notation

E[G(X|Y )] =
∑
y∈Y

P(Y )E[G(X|Y = y)]

for the expectation of a conditional guessing strategy.

1.2 Previous Work and Novelty of Our Results

Here we give a brief overview of previous work that is most relevant to the
focus of this paper.

The link between guessing and entropy was popularized by Massey [8].
The problem of bounding the expected number of guesses in terms of Renyi
entropies was investigated by Arikan in the context of sequential decoding [1].
Pliam independently investigated the relationship between entropy, guess-
work and security [15]. Feder and Merhav considered the relationship be-
tween predictability and entropy [10]. Pfister and Sullivan [14] and Malone
and Sullivan [9] also obtained results related to guesswork and entropies.
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The problem of a cipher with a guessing wiretapper, and the problem
of guessing subject to distortion was investigated by Merhav and Arikan
[2]. The problem of guessing under source uncertainty was investigated by
Sundaresan [16]. Hanawal and Sundaresan have also unified the work on
guessing exponents, using large deviations theory, in [18]. The problem of
multilevel guessing was investigated by Merhav, Roth and Arikan [12].

This paper obtains some new bounds on guessing attacks under novel
scenarios not previously considered, as well as discussing and comparing with
existing results by the author and others.

The paper is organised as follows. In Section 2, we state the problem we
are considering and define and analyze the guessing algorithm which mini-
mizes the expected number of guesses, in a distributed environment for the
case of a single attacker. Section 3 discusses the case of multiple attackers.
Section 4 concludes the paper.

2 Single Attacker Case

2.1 Single Unconstrained Attacker

Brute force predictability uses the idea of guessing every value of X one by
one in order of decreasing probability, when the distribution P(x) is known.
Previous results in this domain have been obtained by the author in [4] and
by Pliam in [15]. In [4] the following bound was proved.

Theorem 1. The expected number of guesses, for a user with the optimal
guessing sequence, E[G] obeys the upper bound

E[G] ≤ 1

2

[
N∑
k=1

√
pk

]2
+

1

2
=

2H1/2(X)+1

2
, (1)

2.1.1 Renyi Entropy of Some Unique Order Exactly Determines
Expected Number of Guesses

In this section we assume for notational simplicity that the optimal guessing
sequence is G(xk) = k, for k = 1, . . . ,M. This is equivalent to the condition

P(xk) ≥ P(xk+1), k ≥ 1. (2)
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With X as in the previous subsection, we first prove the bound below and
note that this bound can directly be obtained from the distribution of X:

Theorem 2. For any random variable X with finite range X the expected
number of guesses in the optimal guessing sequence satisfies

lnE[G(X)] ≤ (1− α∗)Hα∗(X)

where α∗ = min{αk | k = 1, 2, . . .M}, and where

αk =
ln k

lnP(xk)
+ 1,

and M =|X| . Further, α∗ = 0 if and only if the distribution P is uniform on
X , otherwise we have α∗ ∈ (0, 1). This bound can also be written as

E[G(X)] ≤
M∑
k=1

P(xk)
α∗ .

Proof: Consider the expectation E[G(X)] and note that

E[G(X)] =
M∑
k=1

k · P(xk)

≤
M∑
k=1

P(xk)
αk

provided k · P(xk) ≤ P(xk)
αk

which can be ensured with equality if we choose αk such that

k = P(xk)
αk−1 or αk =

ln k

lnP(xk)
+ 1,

for k = 1, 2, . . . ,M.
The extremal distribution within the class of distributions on M points

satisfying (1) which yields the maximum expected value E[G(X)] is the uni-
form distribution with P(xk) = 1/M for k = 1, 2, . . . ,M. For this distribu-
tion, αM = 0 and the upper bound yields E[G(X)] ≤M while we know that
E[G(X)] = (1 +M)/2.
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We claim that all the other distributions on M points satisfying (1) yield

α1 = 1, αk ∈ (0, 1) for k ≥ 2.

To prove the claim, consider an arbitrary distribution on M points satisfying
(1) and assume that α∗ = 0. This would imply that there exists a k such that

αk = 0 ⇔ ln k

lnP(xk)
= −1 ⇔ ln k = − lnP(xk)

⇔ P(xk) =
1

k
.

Since we’re considering distributions satisfying (1), the above equations imply
that we have the uniform distribution. We have hence proved that α∗ = 0
if and only if P is the uniform distribution. Moreover, it is obvious that
αk < 1 holds since P(xk) ∈ (0, 1) (⇒ lnP(xk) < 0) for nontrivial distributions
on M > 1 points. Now assume that we have α∗ < 0, for some distribution
on M points. This would imply that there is a k such that

ln k

lnP(xk)
< −1 ⇔ ln k > − lnP(xk)

⇔ k >
1

P(xk)
⇔ 1

k
< P(xk).

Equation (1) would then imply that P(xm) > 1
k

for m < k, or that

M∑
l=1

P(xl) ≥
k∑
l=1

P(xl) > k · (1/k) = 1,

which is a contradiction. We have thus proved that α∗ ∈ [0, 1) with α∗ = 0
if and only if P is uniform. 2

Note that this bound is not tight, since it is obtained by matching the
two sides of equation

M∑
k=1

k · P(xk) ≤
M∑
k=1

P(xk)
α∗

term by term. An exact expression for E[G(X)] in terms of the Rényi entropy
can be obtained by solving

M∑
k=1

k · P(xk) =
M∑
k=1

P(xk)
α∗
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for α∗ given P(·). It is not too hard to see that such a unique solution exists
since the right hand side is a continuous monotone decreasing function of α∗

which ranges between M (when α∗ = 0) and 1 (when α = 1) .The left hand
side, i.e., E[G(X)], is known to lie in [1,M ] and hence α∗ ∈ (0, 1). Moreover,
we know from Theorem 1 that the bound

M∑
k=1

k · P(xk) ≤
1

2

[
M∑
k=1

P(xk)
1/2

]2
+

1

2

holds for a class of distributions including monotone distributions (i.e., op-
timal guessing). Hence, we can conclude that α∗ ∈ (0, 1/2) will hold (for
M > 2). We have thus proved

Theorem 3. The equation

M∑
k=1

k · P(xk) =
M∑
k=1

P(xk)
α∗ (3)

has a unique solution α∗ ∈ (0, 1/2) and this implies that we have an equality
for the expectation E[G(X)] in terms of the Rényi entropy, viz.

lnE[G(X)] = (1− α∗)Hα∗(X)

Note that while an explicit analytic expression for α∗ is likely to remain
elusive, given a distribution P(·), it is computationally simple to compute
α∗ ∈ (0, 1/2) to whatever accuracy is desired by, e.g., the bisection method.

2.1.2 A New Derivation of the Union Bound

An important application of the uniform upper bound in section 2 is to use
it to derive a version of the union bound for the probability of error. This
will be addressed in this section.

We will show that the union bound on the probability of error Perror can be
interpreted as a bound on E[G(X|Y )] − 1 where X is the input to a noisy
communication channel and Y is its output. Note that it is straightforward
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to show that

Perror =
M∑
y=1

∑
m 6=y

PXY (m, y)

1 + Perror =
M∑
y=1

∑
m 6=y

2PXY (m, y) +
M∑
y=1

PXY (y, y)

≤
∑M

y=1

∑
m 6=y

σy(m)PXY (m, y) +
M∑
y=1

σy(y)PXY (y, y)

where σy : {1, · · · ,M} → {1, · · · ,M} is the permutation determined by the
conditional guessing scheme G(·|Y = y). This is equivalent to:

1 + Perror ≤ E[G(X|Y )].

Now we apply the bound in Theorem to the conditional case, by applying the
bound to each of the conditional distributions P(X|Y = y) while y ranges
over Y = {1, . . . ,M}, to obtain

E[G(X|Y )] =
M∑
y=1

PY (y)E[G(X|Y = y)]

≤
M∑
y=1

PY (y)

1

2

[
M∑
m=1

√
PX|Y (m|y)

]2
+

1

2


=

1

2
+ 1

2

∑M
y=1 PY (y)

M∑
m,m′=1

√
PX|Y (m|y)PX|Y (m′|y)

which becomes

E[G(X|Y )] ≤ 1 +
1

2

M∑
y=1

PY (y)
∑

1≤m 6=m′≤M

√
PX|Y (m|y)PX|Y (m′|y)

= 1 +
1

2

∑
1≤m 6=m′≤M

M∑
y=1

PY (y)
√

PX|Y (m|y)PX|Y (m′|y).
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We therefore obtain (using Perror ≤ E[G(X|Y )]− 1) that

Perror ≤
1

2

∑
1≤m 6=m′≤M

[
M∑
y=1

PY (y)
√

PX|Y (m|y)PX|Y (m′|y)

]

=
M∑
m=1

m−1∑
m′=1

[
M∑
y=1

PY (y)
√

PX|Y (m|y)PX|Y (m′|y)

]
.

Now, note that if the transmitted symbol is X = m, the sum
∑M

m=1

∑m−1
m′=1

can be rewritten
∑M

m=1

∑
m′∈E(m) where E(m) is the “error set” of m. We

therefore have

Perror ≤
M∑
m=1

∑
m′∈E(m)

[
M∑
y=1

PY (y)
√

PX|Y (m|y)PX|Y (m′|y)

]

=
M∑
m=1

∑
m′∈E(m)

[
M∑
y=1

√
PXY (m, y)PXY (m′, y)

]

which is a form of the union bound.

Theorem 4. The union bound of information theory may be written as

Perror ≤ E[G(X|Y )]− 1

where Y is the output of a noisy channel which is available to the decoder
and X is its input.

2.2 Memory Constrained Guessor Minimizing E[G]

If there are no constraints on time or memory, the optimal strategy is to
minimize the expected number of guesses E[G] and maximize the probability
of success at each time index by guessing every point in X in decreasing order
of probability.

We now want to consider the model of an attacker that is constrained,
either (a) in memory, or perhaps (b) in power. This leads in case (a) to an
attacker who can’t keep track of what guesses it has previously made, and
in case (b) to an attacker that can only make a predetermined number of
guesses. The question we want to answer is the following:
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Given P(x), how should the attacker choose a distribution Q(x) in order
to optimize some performance criterion, when all the attacker does (resp.
attackers do) is to draw random sequential guesses from Q(x)?

Let’s consider a single attacker who is memory constrained and won’t
keep track of past guesses, but knows the distribution P which the opponent
uses to draw a single value x from X according to P(x).

The guessor generates i.i.d. X1, X2, . . . , from X according to a distri-
bution Q(x) again with the goal of minimizing E[G]. Define G = min{k :
Xk = X} as a random variable which denotes the number of guesses be-
fore she is successful in exposing X. Note that G = k with probability∑N

x=1 P(x)(1−Q(x))k−1Q(x), where k ≥ 1, by a success-fail argument. This
is because

P(G = k) =
∑
x∈X

P(X = x)P(G = k | X = x)

=
∑
x∈X

P(x)Pr

(
k−1⋂
m=1

{Xm 6= x} and Xk = x

)
=

∑
x∈X

P(x)(1−Q(x))k−1Q(x).

Since the guessing scheme is randomized, it is possible to have an unbounded
number of guesses, hence

E[G] =
∞∑
k=1

k
∑
x∈X

P(x)(1−Q(x))k−1Q(x)

=
∑
x∈X

P(x)Q(x)
∞∑
k=1

k(1−Q(x))k−1

=
∑
x∈X

P(x)Q(x)

Q(x)2
=
∑
x∈X

P(x)

Q(x)

where we used the generating function identity
∞∑
k=0

kuk−1 =
∞∑
k=1

kuk−1 =
1

(1− u)2
. (4)

If we apply Lagrange multipliers with the Lagrangian

J = E[G] + λ(
∑
x∈X

Q(x)− 1) =
∑
x∈X

P(x)

Q(x)
+ λ(

∑
x∈X

Q(x)− 1),
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we can actually show that E[G] is minimized when we choose

Q(x) ∝
√
P(x),

quite an interesting result. This means that the distribution Q(x) should be
“flatter” than P(x). We have thus proved

Theorem 5. The distribution which minimizes the expected number of guesses
for a random variable with a nontrivial distribution P, i.e., 0 < P(x) < 1 for
all x ∈ X , when a single guessor draws her guesses from the distribution Q
is given by

Q(x) =

√
P(x)∑

z∈X

√
P(z)

This can be generalized to the case of multiple independent attackers
against one target, or against multiple targets, and we consider the first
problem in the rest of this paper.

Note that the Lagrange multipliers ensure that the solution for Q(x) in
Theorem 5 is a minimum, since the expression

∑
x P(x)/Q(x) is convex-

⋃
in (Q(x1), . . . ,Q(xN)) if we recall that the P(x) are given positive constants.
Differentiation of J with respect to Q(x) yields

∂J

∂Q(x)
= − P(x)

Q(x)2
+ λ = 0, ∀x ∈ X

which leads to the theorem above. Furthermore, note that if we choose
Q(x) = P(x) for all x ∈ X which may look like an attractive choice, we obtain
E[G] = N which is unexpectedly high. Let us now consider the optimal value
of the expectation which the guessor using Theorem 5 achieves. We obtain

E[G] =
∑
x∈X

P(x)

Q(x)
=
∑
z∈X

√
P(z)

∑
x∈X

P(x)√
P(x)

=

[∑
x∈X

√
P(x)

]2
= 2H1/2(X)

which provides another new operational definition of Rényi entropy of order
1/2 relating it exactly to oblivious guessing. If we compare this to Theorem 1,
we can see that the penalty paid for oblivious memory constrained guessing,
as opposed to using the optimal guessing sequence is roughly a factor of 2 in
the expectation.
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2.3 Power and Memory Constrained Guessor Mini-
mizing the Probability of Failure

Consider the case where the guesses are still i.i.d., drawn from Q(x) but the
guessor (maybe a sensor network node) decides ahead of time that she will
only use L ∈ N guesses. Again we need to find the best Q(x), but now
the appropriate criterion is minimizing the failure probability in L guesses,
namely,

Pfail(L) =
∑
x∈X

P(x)(1−Q(x))L

which yields the Lagrangian

J = Pfail(L) + λ(
∑
x∈X

Q(x)− 1)

=
∑
x∈X

P(x)(1−Q(x))L + λ(
∑
x∈X

Q(x)− 1),

which directly leads to the conditions

∂J

∂Q(x)
= −LP(x)(1−Q(x))L−1 + λ = 0, ∀x ∈ X

and since L is constant, we obtain after rearranging the equation above,

Q(x) = 1−
(

µ

P(x)

)1/(L−1)

for some positive constant µ = λ/L. The second derivative is

∂2J

∂Q(x)2
= L(L− 1)P(x)(1−Q(x))L−2

and if we once again assume the non-degeneracy condition 0 < Q(x) < 1 for
all x ∈ X we conclude that the second derivative is positive indicating that
the stationary point determined minimizes the probability Pfail(L). Note that
normalization requires that we have

∑
x∈X Q(x) = 1 which then yields

∑
x∈X

[
1−

(
µ

P(x)

)1/(L−1)
]

= 1
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or ∑
x∈X

(
µ

P(x)

)1/(L−1)

= |X | − 1

which can be satisfied by choosing µ as below,

µ =

(
|X | − 1∑

x∈X P(x)−1/(L−1)

)L−1
,

thus proving Theorem 6.

Theorem 6. If the attacker is restricted to L guesses, her optimal oblivious
strategy is to generate L i.i.d. guesses from the following distribution

Q(x) = 1−

[
|X | − 1∑

z∈X (P(x)/P(z))−1/(L−1)

]
, ∀x ∈ X

Note that in this case, a power sum related to the probability distribution
P(x) is also involved, however this is not a Rényi entropy since the exponent
−1/(L− 1) is negative. Neither is it related to any other kind of generalized
entropy in the literature. However, if we rewrite it as below

Q(x) = 1− P(x)−1/(L−1)
[

|X | − 1∑
x∈X P(x)−1/(L−1)

]
, ∀x ∈ X

we note that it is related to the weighted power means that are widely used
in mathematical analysis [13], namely

M [r]
n (a, w) =

(∑n
k=1wka

r
k∑n

k=1wi

)1/r

which are defined for real quantities r 6= 0 where a = (a1, . . . , an) and w =
(w1, . . . , wn). Thus we can write the above equation as

Q(x) = 1− P(x)−1/(L−1)(N − 1)(
M

[−L/(L−1)]
N (P,P)

)−L/(L−1)
where we define P = (P(x1), . . . ,P(xN)) with
X = {x1, . . . , xN}. The power means themselves are also related to the Shan-
non entropy in the sense that if we let (w1, . . . , wn) and (a1, . . . , an) be the
same finite probability distribution P then we have

lim
r→0

logM
[r]
N (P,P) = H(P).
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3 Multiple Guessors Case

We now want to consider the case of an attack that is more distributed,
perhaps attacking multiple targets, whose passwords are assumed to come
from the same distribution P(x). The question we want to answer is the
following:

Given P(x), how should the attackers choose a distribution Q(x) in order
to optimize some performance criterion, when all the attacker does (resp.
attackers do) is to draw random sequential guesses from Q(x)?

3.1 Multiple Memory Constrained Guessors Using Dis-
tributed Oblivious Guessing

We briefly discuss the case of v ≥ 2 guessors working in parallel, each drawing
from the same distribution Q(x), but not coordinating their guesses. First
we note that if the guessors use some distribution Q(x) and they collectively
work at a rate equal to v times the rate of the single guessor considered in
the subsection above, their performance will be within the bounds⌊

EQ[G]

v

⌋
≤ EQ[Gv] ≤

⌈
EQ[G]

v

⌉
where we have used the notation EQ[Gv] for the expected number of guesses
when v guessors each use Q(x). We now address the issue of optimizing the
distribution Q(x) once v is fixed, instead of using the Q from the subsection
above. From the rest of the subsection, we drop the subscript Q from the
expectations for simplicity of presentation. Note that we can write

P [Gv = k] = Pr[G ∈ [(k − 1)v + 1, kv] ∩ Z+]

which gives

E[Gv]=
∑
x∈X

P(x)Q(x)
∞∑
k=0

(1 + k)[(1−Q(x))v]k
v∑
j=1

(1−Q(x))j−1,

which can be simplified to

E[Gv] =
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∑
x∈X

P(x)Q(x)
∞∑
k=0

(1 + k)[(1−Q(x))v]k
[

1− (1−Q(x))v

Q(x)

]
,

if we use the sum of a finite geometric series. Using once again the generating
function identity in (4) yields

E[Gv] =∑
x∈X

P(x)Q(x) [1− (1−Q(x))v]−2
[

1− (1−Q(x))v

Q(x)

]
or

E[Gv] =
∑
x∈X

(
P(x)

1− (1−Q(x))v

)
.

Now we define the Lagrangian

Jv = E[Gv] + λ(
∑
x∈X

Q(x)− 1)

which upon differentiation gives

∂Jv
∂Q(x)

= −P(x)v(1−Q(x))v−1

(1− (1−Q(x))v)2
+ λ = 0, ∀x ∈ X

which indicates that the optimum distribution Q(x) satisfies

v(1−Q(x))v−1

(1− (1−Q(x))v)2
∝ 1

P(x)
.

Let’s define R(x) = 1−Q(x) which takes on values in (0, 1) (note that R is
not a probability distribution) which means that we have

(1−R(x)v)2

vR(x)v−1
∝ P(x).

If we now consider the function

f(u) =
(1− uv)2

vuv−1
(5)

defined on (0, 1) we can see that its derivative can be simplified to

f ′(u) = −2u(1− uv) + (v − 1)(1− uv)2

vuv
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which is clearly negative for integer v ≥ 2 thus f : (0, 1)→ R is a monotone
strictly decreasing one-to-one mapping and thus is invertible. We have thus
proved

Theorem 7. If v attackers are using distributed guessing their optimal obliv-
ious strategy is to independently generate their guesses according to the dis-
tribution

Q(x) ∝
[
1− f−1(P(x))

]
which can then be normalized. Note that obtaining the optimal distribution
here can be achieved by standard numerical methods.

4 Conclusions

The new results we obtained in this paper have provided a complement to
the existing results, and have applications in key guessing attacks in three
main scenarios.

1. Single, unrestricted attacker.

2. Single, constrained attacker.

3. Multiple distributed attackers.

In Theorems 2 and 3, we obtained a novel and explicit exact characteri-
zation of expected number of guesses for a single attacker in the unrestricted
attacker case in terms of Renyi entropy. Another new result obtained in the
paper is Theorem 4, an interesting derivation of the union bound which is
used widely in information theory, in terms of the expected number of guesses
in a conditional guessing scheme which takes the output of a communication
channel as its input.
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