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Abstract

Classical NTRUEncrypt is one of the fastest known lattice-based encryption schemes.

Its counterpart, NTRUSign, also has many advantages, such as moderate key sizes, high

efficiency and potential of resisting attacks from quantum computers. However, like classical

NTRUEncrypt, the security of NTRUSign is also heuristic. Whether we can relate the

security of NTRUSign to the worst-case lattice problems like NTRUEncrypt is still an open

problem.

Our main contribution is that we propose a detailed construction of Collision Resistance

Preimage Sampleable Functions (CRPSF) over any cyclotomic field based on NTRU. By us-

ing GPV’s construction, we can give a provably secure NTRU Signature scheme (NTRUSign),

which is strongly existentially unforgeable under adaptive chosen-message attacks in the

(quantum) random oracle model. The security of CRPSF (NTRUSign) is reduced to the

corresponding ring small integer solution problem (Ring-SIS). More precisely, the security

of our scheme is based on the worst-case approximate shortest independent vectors problem

(SIVPγ) over ideal lattices. For any fixed cyclotomic field, we give a probabilistic polynomial

time (PPT) key generation algorithm which shows how to extend the secret key of NTRUEn-

crypt to the secret key of NTRUSign. This algorithm is important for constructions of many

cryptographic primitives based on NTRU, for example, CRPSF, NTRUSign, identity-based

encryption and identity-based signature.

We also delve back into former construction of NTRUEncrypt, give a much tighter reduc-

tion from decision dual-Ring-LWE problem (where the secret is chosen form the codifferent

ideal) to decision primal-Ring-LWE problem (where the secret is chosen form the ring of

integers) and give a provably secure NTRUEncrypt over any cyclotomic ring. Some useful

results about q-ary lattices, regularity and uniformity of distribution of the public keys of

NTRUEncrypt are also extended to more general algebraic fields.

Keywords: NTRU, Ideal lattice, Canonical embedding, Algebraic fields, CRPSF, Ring-

LWE, Ring-SIS

∗Corresponding author

1



1 Introduction

Cryptographic primitives based on NTRU can be traced back to 1996, when the first

NTRUEncrypt was devised by Hoffstein, Pipher and Silverman in [19]. NTRUEncrypt is

one of the fastest known lattice-based cryptosystems as testified by its inclusion in the IEEE

P1363 standard and regarded as an alternative to RSA and ECC, due to its moderate key

sizes, remarkable performance and potential capacity of resistance to quantum computer-

s. Properties like high efficiency and resistance to quantum attacks also hold for other

NTRU-based cryptographic primitives, such as identity-based encryption (IBE) [11], fully

homomorphic encryption [3, 25], digital signatures [18] and identity-based signature (IBS)

[41]. Meanwhile, a batch of cryptanalysis works were proposed aiming at NTRU family

[1, 5, 6, 8, 12–14, 21–23, 38].

Like classical NTRUEncrypt, the security of early NTRU Signature schemes is also heuris-

tic and lacks a solid mathematical proof. The first construction of NTRU Signature Scheme

(NSS) was discussed in [20], but it succumbed to attacks showed in [15, 17]. The com-

monly used and discussed NTRU signature scheme is NTRUSign, which was first proposed

in [18]. Also, it went through a break-and-repair development history [12, 21, 23, 29, 30].

Construction of provably secure NTRUEncrypt has a relatively short development histo-

ry [38−40, 42, 43] and till now, we can construct provably secure NTRUEncrypt over any

cyclotomic field [40]. However, to our knowledge, the only provably secure NTRU Signa-

ture scheme was proposed in [39]. The NTRUSign constructed by Stehlé and Steinfeld is

over power-of-two cyclotomic fields. They improved their results in [38] and used a novel

technique to bound the Dedekind Zeta function over power-of-two cyclotomic fields. Then

they estimated the running time of the traditional key generation algorithm of NTRUSign

by relating it to the Dedekind Zeta function. In fact, the same algorithm was also the key

generation algorithm of a kind of CRPSF over powers-of-2 cyclotomic rings, thus they con-

structed the first provably secure CRPSF [16] over power-of-two cyclotomic fields based on

NTRU. Then, by using GPV’s construction, they gave the first provably secure NTRUSign.

As far as we know, CRPSF constructed in [39] was the first one which constructed in rings

and used the hardness of worst-case ideal lattice problems over corresponding cyclotomic

fields.

CRPSF is an important cryptographic primitive proposed in [16]. It is a collection of

functions with some special properties. The functions are surjective, many-to-one, one-way

and collision-resistant trapdoor functions with uniform outputs. The trapdoor inversion algo-

rithm samples from among all the preimages of an image under an appropriate distribution.

Meanwhile, for any fixed function f and image y, the conditional probability that sampling

a particular preimage x (given f(x) = y) by some domain sampling algorithm is negligible.

Thanks to these excellent properties, we can design many cryptographic primitives based on

CRPSF as showed in [16], for example, signatures, IBE and IBS.

It is easy to see that the CRPSF and NTRUSign constructed in [39] are lack of flexibilities—

only powers-of-2 cyclotomic rings can be used. Also, in this particular rings, there are sub-

fields attacks [1, 6, 23] when the dimension n is large. Meanwhile, due to the good algebraic
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structures, hard lattice problems may become easier [9] when using quantum computers.

Moreover, as stressed in [27], “powers of 2 are sparsely distributed and the desired con-

crete security level for an application may call for a ring dimension much smaller than the

next-largest power of 2. Restricting to powers of 2 could lead to key sizes and run-times

that are at least twice as large as necessary.”. A natural open problem given in [39] is that

whether their constructions can be extended to more general algebraic fields. Meanwhile, a

theoretical study of the security of NTRUEncrypt and NTRUSign over more general fields is

meaningful, due to their high efficiency, earlier industrial standardization and possibility of

becoming new standards via the call of post-quantum cryptography by NIST ( for example

NTRU Prime and FALCON) in the post quantum world. These are also main motivations

of our research.

1.1 Our contributions

In this paper, we give concrete constructions of CRPSF and provably secure NTRUSign

over any cyclotomic field. Our initial purpose is to research the theoretical securities of

NTRU schemes, especially NTRUSign, over general rings. More details are as follows.

For any fixed cyclotomic field, we first theoretically analyze the key generation algorithm

of NTRUSign and give an absolute lower bound of success probability of this important

algorithm. This is the main obstacle which constrains the security analysis of classical

NTRUSign, since their key generation algorithms are all heuristic. This useful algorithm

extends a secret key of NTRUEncrypt into a secret key of NTRUSign. It is also standard for

many cryptographic primitive constructions based on NTRU, such as CRPSF, NTURSign,

IBE and IBS. We use the canonical embedding and basis-embedding norms used in [40] to

overcome the technological dependence on the form of cyclotomic rings.

Based on the above PPT key generation algorithm, we then construct a provably secure

CRPSF over any cyclotomic field. Then, by [16], we can construct a provably secure N-

TRUSign, which is strongly existentially unforgeable under adaptive chosen-message attacks

in the (quantum [44]) random oracle model. The security of CRPSF and NTRUSign follows

from the hardness of corresponding Ring-SIS problems. We further give a detailed construc-

tion of provably secure claw-free CRPSF whose security depends on corresponding Ring-ISIS

problems as [16].

We also revisit NTRUEncrypt [40]. We give a tight reduction from decision dual-Ring-

LWE problem to decision primal-Ring-LWE problem over any cyclotomic field. This result

shows that, under canonical embedding, reduction from decision dual-Ring-LWE problem

to decision primal-Ring-LWE problem over general cyclotomic fields is as simple as that

over powers-of-2 cyclotomic fields [10]. We then give a provably secure NTRUEncrypt over

cyclotomic rings and eliminate the requirement of q = 1 mod l for K = Q(ζl) with ζl a

primitive l-th root of unity. Meanwhile, results about q-ary lattices are generalized to any

algebraic fields, so we can reobtain the regularity results (a ring-based leftover hash lemma)

showed in [36]. Also, the uniformity of the distribution of the public key of NTRUEncrypt

is generalized to more general number fields.
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1.2 Technique Overview

In this subsection, we give a technique overview about our results. Although the main

ideas of our NTRUEncrypt, CRPSF and NTRUSign follow Stehlé and Steinfeld’s routes,

there are also many differences. Techniques used in [40] are also vital.

The discussions of q-ary lattices, regularity results and construction of NTRUEncrypt

are essentially the same as [40], so we just give a very simple overview. The hardness

results of Ring-LWE showed in [34] guarantee the security of the corresponding modified

NTRUEncrypts. The only slight difference is the requirement of Gaussian parameter σ.

Reductions from decision dual-Ring-LWE problem to decision primal-Ring-LWE problem

are simple, we prove that, in cyclotomic field K = Q(ζl), we can transfer a dual-Ring-LWE

sample to a primal-Ring-LWE problem by multiplying l. This reduction is almost as tight as

that over powers-of-2 cyclotomic fields [10]. The reason why we constrain our NTRUEncrypt

schemes in cyclotomic fields is that we want to use the powerful basis of R = OK . These

good bases, together with canonical embedding and basis-coefficient norm, make it possible

to bound the decryption error by using the same method for any cyclotomic field. We don’t

know if there is such a good basis for general algebraic fields. If a number field K admits

such a basis for R, we can design our NTRUEncrypt in K by using similar techniques and

our improved results about q-ary lattices in this paper.

For NTRUSign, techniques described in [18] and [39] are vital. They showed how to

extend a secret key of NTRUEncrypt to a secret key of NTRUSign. The key generation

algorithm described as follows:

Input: n, q ∈ Z+, σ > 0.

Output: A key pair (sk, pk) ∈ R2×2 ×R×q .

1. Sample f from DR,σ, if (f mod q) /∈ R×q , resample.

2. Sample g from DR,σ, if (g mod q) /∈ R×q , resample.

3. If ||f || ≥
√
nσ or ||g|| ≥

√
nσ, restart.

4. If (f, g) 6= R, restart.

5. Compute Fq, Gq ∈ R such that f ·Gq − g ·Fq = q, e.g., using a Hermite Normal Form

algorithm in [7].

6. Use Babai rounding nearest plane algorithm to approximate (Fq, Gq) in the lattice

spanned by (f, g), let r(f, g) be the output, set (F,G) = (Fq, Gq) − r(f, g) for some

r ∈ R.

7. If ||(F,G)|| > nσ
√
l, restart.

8. Return secret key sk =

[
f g

F G

]
and public key pk = h = g · f−1 ∈ R×q .

Here, R is the ring of integers of K = Q(ζl), n = ϕ(l) and R×q is the set of invertible

elements of Rq = R/(qR). Elements f and g can be regarded as the secret key of traditional

NTRUEncrypt. Discrete Gaussian distribution (DR,σ) could insure that elements f and g

are short. In fact, the secret key generated by this algorithm is a short basis of the NTRU
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lattice Λqh = {(x, y) ∈ R2 : y = hx mod qR}, since Λqh = SpanR{(f, g), (F,G)}. We want to

follow the routine of [16], that is to say, a short enough ‘trapdoor’ basis of Λqh is necessary.

This explains the meaning of Step 5 and 6. Meanwhile, Babai’s algorithm ensures that Step

7 would pass (this algorithm would not restart in Step 7) with high probability. We can

quantify the quality of secret key by using Gaussian heuristic, which implies that try to find

the secret key only with h is equivalent to solve the SVPγ problem over Λqh with γ ≤ Õ(n2).

This is a very hard problem, though in the particular lattice Λqh.

The most annoying part is Step 4. We prove that, for appropriate choices of parameters,

the probability that Step 4 does not cause a restart is ≈ 1
ζK(2) , where ζK(2) is the Dedekind

Zeta function over K. Meanwhile, ζK(2)’s have an absolute upper bound for all cyclotomic

fields. Overall, we get that the key generation algorithm is a PPT algorithm, as desired.

The construction of CRPSF is as follows.

1. TrapGen(1n, q, σ): By running the key generation algorithm described above, we get

a public key h = g · f−1 ∈ (Rq)
× and a private key sk =

[
f g

F G

]
. The key h defines

function fh(z) = fh((z1, z2)) = hz1 − z2 ∈ Rq with domain Dn = {z ∈ R2 : ||z|| <
s
√

2n} and range Rn = Rq. The trapdoor string for fh is sk.

2. SampleDom(1n, q, s): Sample z ←↩ DR2,s, if ||z|| ≥ s ·
√

2n, resample.

3. SamplePre(sk, t): To find a preimage in Dn for a target t ∈ Rn = Rq under fh

by using the trapdoor sk, sample z ←↩ DΛqh+c,s with Λqh = {(z1, z2) ∈ R2 : z2 =

hz1 mod qR} and c = (1, h− t). Return z.

Regularity result over any fixed cyclotomic field guarantees the uniformity of outputs of

our CRPSF. Discrete Gaussian sampler [33] makes it possible that we can sample a preimage

of any image with trapdoor basis by using SamplePre algorithm for appropriate parameters.

Meanwhile, note that for any fixed function fh and any image t, the preimages of t form the

set Λqh+c for c = (1, h− t), thus the properties of discrete Gaussian distribution ensure that

our design fulfils the requirement of minimum entropy. The collision resistance follows from

the hardness of corresponding Ring-SIS problem, even with some additional rejections in this

key generation algorithm. Once we get a CRPSF, we can give a provably secure NTRUSign

which is strongly existentially unforgeable under adaptive chosen-message attacks, by using

the constructions in [16] directly.

Construction of Claw-free CRPSF is almost the same as that of CRPSF. The TrapGen

algorithm produces (h, sk) as above, as well as a uniform w ←↩ U(Rq). It outputs a pair

of functions fh(z) = hz1 − z2 mod qR and fh,w(z) = hz1 − z2 + w mod qR. The domain,

range and the SampleDom algorithm are the same as above. The SamplePre algorithm for

fh(SamplePrefh) is also as above, but the SamplePre algorithm for fh,w(SamplePrefh,w)

is that for a target t ∈ Rq, set t′ = t − w ∈ Rq, then run SamplePrefh for target t′. The

output z of SamplePrefh(sk, t′) is the required output of SamplePrefh,w(sk, t). Claw-

freeness is based on the hardness of corresponding Ring-ISIS problems. We give a brief

reduction from Ring-SIS to Ring-ISIS by using the regularity results. So, security of claw-

free CRPSF is also guaranteed by the hardness of worst-case lattice problems.
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Like NTRUEncrypt, we constrain our construction of CRPSF (NTRUSign) in cyclotomic

fields so that we can use the good basis of R (the powerful basis) and R∨ (the decoding basis).

These good bases and canonical embedding help us to bound the key generation algorithm

(estimate of norms) and get tighter lower bounds of the modulus q and security parameter

γ (SIVPγ) by using the same method for any cyclotomic field.

Though it may be a little redundant, we still stress that our CRPSF has two crucial

properties for security in cryptographic applications as stated in [16]. First, the output is

statistically close to uniform over the range. Second, the SamplePre algorithm does not

just find an arbitrary preimage of t, but actually samples from among all its preimages under

a discrete Gaussian over Λqh. These properties imply that there are two (nearly) equivalent

ways of choosing a pair (z, t = fh(z)): either choose z from the input distribution and

compute t = fh(z), or choose t uniformly at random and sample z from f−1
h (t). These

properties make CRPSF ‘as good as’ trapdoor permutations in certain applications.

In our constructions, the modulus q is Õ(n8) and the security parameter γ is also Õ(n8).

Like provably secure NTRUEncrypt, they are too large for practice. This is a common short-

coming for provably secure NTRU families. Though our construction may be less efficient, it

provides an important support for designing NTRUSign over general cyclotomic rings with

relative small parameters (with no provably secure guarantee, but the key generation algo-

rithm is PPT by our results) and analyzing the security from the view of attacks. How to

reduce the magnitudes of parameters and improve the efficiency of the schemes are important

and meaningful open problems.

1.3 Organization

In Section 2, we introduce some notations and basic results that will be used in our dis-

cussion. In Section 3, we shall give a new series of relevant results about some kinds of q-ary

lattices and regularity in any algebraic fields. We will also discuss the generalized construc-

tion the NTRUEncrypt. In Section 4, we mainly analyze the key generation algorithm of

CRPSF and NTRUSign. Detailed construction of CRPSF is put in Section 5. In Section 6,

we will discuss the NTRU signature scheme.

2 Preliminaries

In this section, we introduce some background results and notations.

2.1 Notations

Throughout this paper, we set l̂ = l when l is odd and l̂ = l
2 when l is even for some

positive integer l. Function ϕ(n) stands for the Euler totient function. We use [n] to denote

the set {1, 2, · · · , n}. We usually use || · || to represent the l2 norm over an Euclidean space

Rn or Cn. For any matrix M ∈ Cn×n, symbols si(M) stand for its singular values for i ∈ [n].

We shall arrange the singular values by their magnitudes, i.e. s1(M) ≥ · · · ≥ sn(M). For two
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random variables X and Y , ∆(X,Y ) stands for their statistical distance. As usual, E(X)

and V ar(X) stand for the expectation and the variance of a random variable X. When we

write X ←↩ ξ, we mean that the random variable X obeys to a distribution ξ. If S is a finite

set, then |S| is its cardinality and U(S) is the uniform distribution over S. Symbols Z+ and

R+ stand for the sets of positive integers and positive reals. Symbol log x represents log2 x

for x ∈ R+.

2.2 Algebraic Fields, Space H and Geometry

Through out this paper, we consider the algebraic fields, especially the cyclotomic fields.

Assume [K : Q] = n := r1 + 2r2 for some r1, r2 ∈ Z+, there are n embeddings from K to

C, the number of real embeddings is r1 and the number of complex embeddings is 2r2. We

define the canonical embedding σ on K, who maps x ∈ K to (σ1(x), · · · , σn(x)) ∈ H, where

H is a kind of Minkowski space in algebraic number theory. Here we order the σi and define

H = {(x1, · · · , xn) ∈ Rr1 × C2r2 : xn+1−i = xr1+i, ∀i ∈ [r2]}. H is isomorphic to Rn as an

inner product space via the orthonormal basis hi∈[n] defined as follows. Assume ej ∈ Cn be

the vector with 1 in its j-th coordinate and 0 elsewhere, i be an imaginary number which

satisfies i2 = −1. We then set hj = ej for 1 ≤ j ≤ r1, hr1+j = 1√
2
(er1+j + en+1−j) and

hn+1−j = i√
2
(er1+j − en+1−j) for 1 ≤ j ≤ r2. Moreover, σ(K) ⊆ H ∼= KR := K ⊗Q R.

Let’s denote ψ : K 7→ Rn be the composite of the above isomorphism from H to Rn and

the canonical embedding. Then, for any x ∈ K, we have ψ(x) = U · σ(x) with U =Ir1 0 0

0 1√
2
Ir2

1√
2
Jr2

0 1√
2·iJr2 − 1√

2·iIr2

, where Ir1 =


1

. . .

1


r1×r1

and Jr2 =


1

. .
.

1


r2×r2

.

For any element x ∈ K, we can define the `p norm of x by ||x||p = ||σ(x)||p for p <

∞ and ||x||∞ = maxi∈[n] |σi(x)|. It is easy to verify that ||ψ(x)|| = ||σ(x)||. Because

multiplications in H of embedded elements is component-wise, for any x, y ∈ K, we have

||x ·y||p ≤ ||x||∞ · ||y||p for p ∈ {1, · · · ,∞}. The trace and norm of x ∈ K is defined as usual,

i.e. Tr(x) := TrK/Q(x) =
∑n
i=1 σi(x) and N(x) := NK/Q(x) =

∏n
i=1 σi(x). Also note that

Tr(x · y) =
∑n
i=1 σi(x)σi(y) =< σ(x), σ(y) >, so Tr(x · y) is a symmetric bilinear form akin

to the inner product of embeddings of x and y.

The discriminant ∆K of K is a measure of the geometry sparsity of its ring of integers.

Let α1, · · · , αn represent a Z basis of R, we can define ∆K = |(σi(αj))1≤i,j≤n|2, here | · |
represents the determinant of a matrix. In particular, the discriminant of the l-th cyclotomic

number field is

∆K = (−1)
n
2 ·

(
l∏

p|l p
1
p−1

)n
≤ nn,

where p runs over all prime factors of l and n = ϕ(l). An integral ideal I ⊆ R is a usual

ideal defined in the ring R and a fractional ideal J ⊆ K is a set such that dJ ⊆ R is an

integral ideal for some d ∈ R. It is well known that both I and J admit Z-basis and we

can require d ∈ Z. One can regard integral ideals as special cases of fractional ideals. For

any two fractional ideals I and J , the sum I + J is the set of all a+ b for a ∈ I and b ∈ J ,
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and the product ideal I · J is the set of all finite sums of terms a · b for a ∈ I and b ∈ J .

Multiplication extends to fractional ideals in the obvious way and the set of fractional ideals

forms a group under multiplication. Every fractional ideal can be represented as the quotient

of two coprime integral ideals and has an inverse ideal, written I−1, such that I · I−1 = R.

The norm of an integral ideal is its index as an additive subgroup of R and the norm of a

fractional ideal J = A/B is defined as N(J) = N(A)
N(B) , where A and B are coprime integral

ideals of R.

Assume K = Q(α) with n = [K : Q], then for any positive prime q, the ideal qR has a

prime ideal decomposition of the form qR =
∏g
i=1 q

ei
i . More precisely, assume that Φ(x) is the

minimum polynomial of α over Q, q - |R/Z[α]| and Φ(x) =
∏g
i=1 Φei

i (x) mod q. Each Φi(x)

is a monic irreducible polynomial in Zq[x] with deg(Φi(x)) = fi. We have qi = (q,Φi(α))R

and the norm of qi is qfi . We also have
∑g
i=1 ei · fi = n. When K/Q is a Galois extension,

we have e1 = · · · = eg and fi = · · · = fg, i.e. e · f · g = n.

When K = Q(ζ) is a cyclotomic field, where ζ = ζl is a primitive l-th root of unity with

minimal polynomial Φl(x) =
∏
i|l(x

i−1)µ( li ) of degree n = ϕ(l), we have [K : Q] = n = ϕ(l),

and K ∼= Q[x]/Φl(x). Let q ∈ Z be a prime, then the factorization of the ideal qR is as

follows. Let d ≥ 0 be the largest integer such that qd divides l, let e = ϕ(qd) and let f ≥ 1

be the multiplicative order of q modulo l/qd. Then qR =
∏g
i=1 q

e
i , where qi are g = n/(e · f)

different prime ideals, each of norm qf.

2.3 Lattice and Discretization

We define a lattice as a discrete additive subgroup of H and we only deal with full-

rank lattices. Assume B = {b1, · · · , bn} is a basis of a lattice Λ, we have Λ = L(B) =

{
∑n
i=1 zibi : zi ∈ Z}. The determinant of a lattice L(B) is defined as |det(B)|, which is

independent of the choice of basis B. The minimum distance λ1(Λ) of a lattice is the length

of a shortest nonzero lattice vector. We usually use the l2 norm, i.e. λ1(Λ) = min06=x∈Λ ||x||.
The dual lattice of Λ ⊆ H is defined as Λ∨ = {y ∈ H : ∀ x ∈ Λ, < x,y >=

∑n
i=1 xi ·yi ∈ Z}.

This is actually the complex conjugate of the dual lattice as usually defined in Cn. All of

the properties of the dual lattice that we use also hold for the conjugate dual. It is easy

to see that (Λ∨)∨ = Λ. If B = {bi} ⊆ H is a basis of a lattice, its dual basis D = {dj}
is characterized by < bi,dj >= δij , where δij is the Kronecker delta. It is obvious that

L(D) = L(B)∨.

For any fractional ideal I of K, we can represent I as Zβ1 + · · ·+ Zβn for some βi ∈ K,

i = 1, · · · , n. Then σ(I) is a lattice of H, and we call σ(I) an ideal lattice and identify

I with this lattice and associate with I all the usual lattice quantities. By our definition

in Subsection 2.2, it is easy to verify that I = Zβ1 + · · · + Zβn ⇐⇒ σ(I) = Zσ(β1) +

· · ·Zσ(βn) ⇐⇒ ψ(I) = Zψ(β1) + · · · + Zψ(βn). Therefore, our definition of lattices in H

is equivalent to that in Rn. We have |∆K | = det(σ(R))2, the squared determinant of the

lattice σ(R). We also have det(σ(I)) = N(I) ·
√
|∆k|. The following lemma [26] gives upper

and lower bounds on the minimum distance of an ideal lattice in l2 norm and l∞ norm.
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Lemma 2.1. For any fractional ideal I in a number field K of degree n,

√
n ·N 1

n (I) ≤ λ1(I) ≤
√
n ·N 1

n (I) · |∆K |
1

2n

and

N
1
n (I) ≤ λ∞1 (I) ≤ N

1
n (I) · |∆K |

1
2n .

For any fractional ideal I in K, its dual is defined as I∨ = {a ∈ K : Tr(aI) ⊆ Z}. It is

easy to verify (I∨)∨ = I, I∨ is a fractional ideal and I∨ embeds under σ as the dual lattice

of I as defined before. In fact, an ideal of K and its inverse are related by multiplication

with the dual ideal R∨: I∨ = I−1 ·R∨. The factor R∨ is often called the codifferent, and its

inverse (R∨)−1-the different, which is in fact an ideal in R.

One of the most famous lattice problems is SVP. Given a lattice basis B, one try to find

a shortest vector in Λ\{0}, where Λ = L(B). The relaxed problem SVPγ is asking for a

nonzero lattice vector that is no longer than γ times the length of a solution of SVP. By

restricting SVP to the ideal lattice, we obtain Ideal-SVP. No polynomial quantum algorithm

is known to solve the worst-case SVPγ problem for γ ≤ poly(n). The (Ideal-SIVPγ) SIVPγ

problem is that given a basis of a lattice Λ of dimension n, try to find n linear independent

vectors x1, · · · , xn ∈ Λ such that max1≤i≤n ||xi|| ≤ γ · λn(Λ).

Roughly speaking, discretization is to convert a continuous Gaussian into a discrete

Gaussian-like distribution. Given a lattice Λ = L(B), a point x ∈ H and a point c ∈ H

representing a lattice coset Λ + c, we want to discretize x to a point y ∈ Λ + c, written

y = bxeΛ+c. Here b·e denote some kinds of discretization operations. In our application-

s, we will use the following simple method to discretize errors. Assume B = (b1, · · · , bn),

we first compute c − x =
∑n
i=1 ai · bi mod Λ for some coefficients ai ∈ [− 1

2 ,
1
2 ) and set

f =
∑n
i=1 ai · bi. Then, output y = f +x. The results (representative elements of Λ + c) of

this process depends on the basis B of Λ we choose. In our applications, we only set B to

be the powerful basis defined in Subection 2.4 when Λ = R. There are also many different

methods to discretize errors. For more details, one can refer to [27].

2.4 Basis for R and R∨

In our application, we hope that the matrices whose columns are consisted of the basis of

R or R∨ have smaller s1 and larger sn. So, for cyclotomic field K = Q(ζl), we introduce the

powerful basis of R and the decoding basis of R∨ as in [27]. We set τ be the automorphism

of K that maps ζl to ζ−1
l = ζl−1

l , under the canonical embedding it corresponds to complex

conjugation σ(τ(a)) = σ(a).

Definition 2.2. The Powerful basis −→p of K = Q(ζl) and R = Z[ζl] is defined as follows:

• For a prime power l, define −→p to be the power basis (ζjl )(j∈{0,1,··· ,n−1}), treated as a

vector over R ⊆ K.

• For l having prime-power factorization l =
∏
lk =

∏
pαkk , define −→p = ⊗k−→pk, the tensor

product of the power basis −→pk of each Kk = Q(ζlk).

The Decoding basis of R∨ is
−→
d = τ(−→p )∨, the dual of the conjugate of the powerful basis −→p .

9



Also note that τ(−→p ) is a Z-basis of R. Different bases of R (or R∨) are connected by some

unimodular matrice, hence the spectral norm (i.e. the s1) may have different magnitudes.

The following lemma comes from [27], which shows the estimates of s1(σ(−→p )) and sn(σ(−→p )).

Here, function rad(n) represents the radical of a positive integer n, i.e. for n = pα1
1 · · · p

αk
k

with different primes pi, rad(n) =
∏k
i=1 pi.

Lemma 2.3. We have s1(σ(−→p )) =
√
l̂, sn(σ(−→p )) =

√
l

rad(l) , ||σ(−→p )i||∞ = 1 and ||σ(−→p )i|| =
√
n for all i = 1, · · · , n.

We can also give the estimates of s1(σ(
−→
d )) and sn(σ(

−→
d )). Assume that σ(−→p ) = T ,

Lemma 2.3 shows that s1(T ) =
√
l̂ and sn(T ) =

√
l

rad(l) . By the definitions of
−→
d and the

dual ideal, an easy computation shows that σ(
−→
d ) = (T ∗)−1. Hence we have sn(σ(

−→
d )) = 1√

l̂
,

s1(σ(
−→
d )) =

√
rad(l)
l . Moreover, one can similarly deduce that ||σ(

−→
d )i|| ≤

√
rad(l)
l for all

i = 1, 2, · · · , n. The following definition is also useful [40].

Definition 2.4. Given a basis B of a fractional ideal J , for any x ∈ J with x = x1b1 +

· · · + xnbn, the B-coefficient embedding of x is defined as the vector (x1, · · · , xn) and the

B-coefficient embedding norm of x is defined as ||x||cB = (
∑n
i=1 x

2
i )

1
2 .

If we represent x ∈ R (or R∨) with respect to the powerful basis (or decoding basis), we

have √
l

rad(l)
· ||x||cσ(−→p ) ≤ ||σ(x)|| ≤

√
l̂ · ||x||cσ(−→p ), for x ∈ R, (1)

and

1√
l̂
· ||x||c

σ(
−→
d )
≤ ||σ(x)|| ≤

√
rad(l)

l
· ||x||c

σ(
−→
d )
, for x ∈ R∨. (2)

When we write x mod qR∨, we use the representative element of the coset x + qR∨ as∑n
i=1 xi

−→
d i with xi ∈ [− q2 ,

q
2 ). Similarly, for element x ∈ R, if we write x mod qR, we use

the representative element of the coset x + qR as
∑n
i=1 xi

−→p i with xi ∈ [− q2 ,
q
2 ). From now

on, we only use the decoding basis of R∨ and the powerful basis of R.

2.5 Gaussian Distributions

For s > 0, c ∈ H, which is taken to be s = 1 or c = 0 when omitted, we define the

Gaussian function ρs,c : H → (0, 1] as ρs,c(x) = e−π
||x−c||2

s2 . By normalizing this function we

obtain the continuous Gaussian probability distribution Ds,c of parameter s, whose density

is given by s−n · ρs,c(x). Let σ = (σ1, · · · , σn) ∈ (R+)
n

be a vector, we can define the

elliptical Gaussian distributions in the basis {hi}i≤n as follows: a sample from Dr is given

by
∑
i∈[n] xihi, where xi are chosen independently from the Gaussian distribution Dσi over

R. Note that, if we define a map ϕ : H → Rn by ϕ(
∑
i∈[n] xihi) = (x1, · · · , xn), which

is the isomorphism from H to Rn as we explained in Subsection 2.2, then Dσ is also an

10



elliptical Gaussian distribution over Rn. This means that Gaussians over H are equivalent

to Gaussians over Rn.

For a lattice Λ ⊆ H, σ > 0 and c ∈ H, we define the lattice (discrete) Gaussian distri-

bution of support Λ, deviation σ and center c by DΛ,σ,c(x) =
ρσ,c(x)
ρσ,c(Λ) , for any x ∈ Λ. It

is easy to check that DΛ,σ,c = DΛ−c,σ. Meanwhile, we have DΛ,σ,c = Dϕ(Λ),σ,ϕ(c), since

e
−π ||x−c||2

σ2∑
y∈Λ e

−π ||y−c||2
σ2

= e
−π ||ϕ(x)−ϕ(c)||2

σ2∑
ϕ(y)∈ϕ(Λ) e

−π ||ϕ(y)−ϕ(c)||2
σ2

for any x ∈ Λ. So, discrete Gaussians over H

are also equivalent to discrete Gaussians over Rn.

For δ > 0, we define the smoothing parameter ηδ(Λ) as the smallest σ > 0 such that

ρ 1
σ

(Λ∨ \ 0) ≤ δ. It was shown that we can efficiently sample from a distribution, which is

within a negligible statistical distance from a not too narrow discrete Gaussian [16, 33]. It

was further shown that we can actually sample the discrete Gaussian precisely for suitable

parameters [4]. Here we use B̃ to represent the Gram-Schmidt orthogonalization of B and

regard the columns of B as a set of vectors. For B = (b1, · · · , bn), define ||B|| = maxi ||bi||.
Note that we have ||B|| ≥ ||B̃||.

Theorem 2.5. There is a probabilistic polynomial time algorithm that, given a basis B of

an n-dimensional lattice Λ = L(B), a standard deviation σ ≥ ||B̃|| ·
√

ln(2n+4)
π , and a c ∈ H,

outputs a sample distributed according to DΛ+c,σ.

We will use following lemmas from [28], [32], [2], [16] and [35].

Lemma 2.6. For any full-rank lattice Λ and positive real ε > 0, we have ηε(Λ) ≤
√

ln (2n(1+ 1
ε ))

π ·
λn(Λ).

Lemma 2.7. For any full-rank lattice Λ, c ∈ H, ε ∈ (0, 1) and σ ≥ ηε(Λ), we have

Prb←↩DΛ,σ,c [|| b− c|| ≥ σ
√
n] ≤ 1+ε

1−ε · 2
−n.

Lemma 2.8. For any full-rank lattice Λ and any positive real ε > 0, we have ηε(Λ) ≤√
ln (2n(1+ 1

ε ))

π · 1
λ∞1 (Λ∨) .

Lemma 2.9. Let Bn denote the Euclidean unit open ball. Then for any lattice Λ, σ > 0

and c ≥ σ√
2π

, we have

ρσ(Λ\(c
√
nBn)) < (

c

σ
·
√

2πe · e−π
c2

σ2 )n · ρσ(Λ).

Hence, Prx←↩DΛ,σ
(||x|| ≥

√
n · σ) < 2−2n.

Lemma 2.10. Let Λ
′ ⊆ Λ be full-rank lattices. For any c ∈ H, ε ∈ (0, 1/2) and σ ≥ ηε(Λ

′
),

we have ∆(DΛ,σ,c mod Λ
′
, U(Λ/Λ

′
)) ≤ 2ε.

Lemma 2.11. For any full-rank lattice Λ ⊆ H, c ∈ H, ε ∈ (0, 1), σ ≥ 2 · ηε(Λ) and b ∈ Λ,

we have DΛ,σ,c(b) ≤ 1+ε
1−ε · 2

−n.

We also need the following adapted result on one-dimensional projections of discrete

Gaussians, which is proposed in [39]. It is helpful for us to estimate the norm of x−1 with

x←↩ DR,σ.
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Lemma 2.12. For any full-rank lattice Λ ⊆ H (or Rn), c ∈ H (or Rn), δ ∈ (0, 1), t ≥
√

2π,

unit vector u ∈ H (or Rn) and σ ≥ t√
2π
· ηδ(Λ), we have

Prx←↩DΛ,σ,c(| < x− c,u > | ≤ σ

t
) ≤ 1 + δ

1− δ
·
√

2π

t
· e

1
2−

π
t2 ≤ 1 + δ

1− δ
·
√

2πe

t
.

Similarly, if σ ≥ ηδ(Λ), we have

Prx←↩DΛ,σ,c(| < x− c,u > | ≥ tσ) ≤ 1 + δ

1− δ
· t ·
√

2πe · e−πt
2

.

Now we can give a lower bound of ||x−1|| for x←↩ DR,σ with R the ring of integers of a

cyclotomic field K.

Lemma 2.13. Let K be a cyclotomic field with [K : Q] = n := 2r, R = OK , δ ∈ (0, 1),

t ≥
√

2π and σ ≥ t√
2π
· ηδ(R), we have

Prx←↩DR,σ (||x−1|| ≥
√

2n · t
σ

) ≤ 1 + δ

1− δ
· n ·
√

2πe

2t
.

Proof. Let ψ : K 7→ Rn be the composition of σ and the isomorphism from H to Rn

as proposed in Subsection 2.2. Notice that Re(σk(x)) = Re(σn+1−k(x)) and Im(σk(x)) =

−Im(σn+1−k(x)) for any x ∈ K and k ∈ [r]. So, we have

ψ(x) =

(
1√
2
· Ir 1√

2
· Jr

1√
2·i · Jr − 1√

2·i · Ir

)
· σ(x) =



√
2 · Re(σ1(x))

...√
2 · Re(σr(x))

−
√

2 · Im(σr+1(x))
...

−
√

2 · Im(σn(x))


,

where Jr =


1

. .
.

1


r×r

. By definition, x ←↩ DR,σ is equivalent to ψ(x) ←↩ Dψ(R),σ.

So, by using Lemma 2.12 with u = ek and k ∈ [r], we get

Pr[|Re(σk(x))| ≤ σ√
2 · t

] ≤ 1 + δ

1− δ
·
√

2πe

t
.

Therefore, for any k ∈ [r], we have

Pr[|σk(x)| ≤ σ√
2 · t

] ≤ Pr[|Re(σk(x))| ≤ σ√
2 · t

] ≤ 1 + δ

1− δ
·
√

2πe

t

which implies that

Pr[|σk(x−1)| ≥
√

2 · t
σ

] ≤ 1 + δ

1− δ
·
√

2πe

t
.

Note that |σk(x)| = |σn+1−k(x)|, we can conclude the desired result by taking the union

bound.
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2.6 Ring-SIS and Ring-LWE Problems

In this subsection, we state some hard lattice problems we need. We first introduce the

small integer solution problem over algebraic number fields. The definitions are as follows.

Definition 2.14. Let R be the ring of integers of K, q,m be positive integers and β be a

real number.

• The ring small integer solution problem (R-SISq,m,β) is: given a1, · · · , am ∈ Rq chosen

independently from the uniform distribution, find z = (z1, · · · , zm) ∈ Rm such that∑m
i=1 aizi = 0 mod qR and 0 < ||z|| ≤ β.

• The (constrained) ring inhomogeneous small integer solution problem (R-ISIS×q,m,β) is:

given ai ←↩ U(R×q ) for i = 1, · · · ,m and u←↩ U(Rq), find z = (z1, · · · , zm) ∈ Rm such

that
∑m
i=1 aizi = u mod qR and ||z|| ≤ β.

For appropriate parameters, the following theorem shows that the Ring-SIS problem is

hard [24].

Theorem 2.15. For ε = ε(n) = n−ω(1) ∈ (0, 1), there is a probabilistic polynomial time

reduction from solving Ideal-SIVP
γ·

√
ln(2n(1+ 1

ε
))

π

with high probability in polynomial time in

the worst case to solving R-SISq,m,β with non-negligible probability in polynomial time, for

any m, q, β, γ such that γ ≥ β
√
n · ω(

√
log n), q ≥ β

√
n · ω(log n) and m,β, log q ≤ poly(n).

We also need to introduce the Ring-LWE problem. Let T = KR/qR
∨.

Definition 2.16. For s ∈ R∨q and an error distribution ψ over KR, the Ring-LWE distribu-

tion A∨s,ψ over Rq×T is sampled by independently choosing a uniformly random a←↩ U(Rq)

and an error term e←↩ ψ, and outputting (a, b = a · s+ e mod qR∨).

Definition 2.17. Let Ψ be a family of distributions over KR. The average-case decision

Ring-LWE problem, denoted D-RLWE∨q,Ψ, is to distinguish (with non-negligible advantage)

between independent samples from A∨s,ψ for a random choice of (s, ψ) ←↩ U(R∨q ) × Ψ, and

the same number of uniformly random and independent samples from Rq × T.

In [34], a reduction from SIVPγ to decision Ring-LWE over any algebraic number field is

given.

Theorem 2.18. Let K be an algebraic number field and R = OK , [K : Q] = n. Assume

α ∈ (0, 1) such that α ≤
√

logn
n , and let q ≥ 2 be an integer such that αq ≥ ω(1). Then

there is a polynomial time quantum reduction from Ideal-SIVPγ to D-RLWE∨q,Dq·ξ , where

ξ = α · ( nk
log(nk) )

1
4 with k the number of samples to be used and γ = ω(

√
n·logn
α ).

3 Improved Provably Secure NTRUEncrypt

Provably secure NTRUEncrypt was first introduced by Stehlé and Steinfeld [38] over

powers-of-2 cyclotomic rings. They proved that for suitable choices of secret keys of classical

NTRUEncrypt, the public key would become statistically close to the uniform distribution.
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Hence, they could tweak classical NTRUEncrypt slightly and give a worst-case hardness

reduction. Recently, provably secure NTRUEncrypt was generalized to any cyclotomic field

[40]. In this section, we shall discuss this scheme further and give some generalized results

which will be also very useful for designing of many cryptographic primitives, such as the

following CRPSF.

3.1 Analysis of q-ary Lattices

In this subsection, we assume that K = Q(α) is an algebraic field, [K : Q] = n and

R = OK . Let Φ(x) be the minimum polynomial of α over Q, q is a prime such that

q - |R/Z[α]| and q - ∆K . Meanwhile, we assume that the prime ideal decomposition of qR is

known (in this setting, we can compute the prime ideal decomposition of qR conveniently,

see Theorem 4.8.13. of [7] ). All the proofs in this subsection are essentially the same as

those in [40], so we put them in Appendix A.

Notice that for general K, R may not be isomorphic to Z[x]/(Φ(x)) and R usually has no

power basis. These are quite different from the cases in cyclotomic fields. While, we have the

following prime ideal decomposition [7]. For any fixed prime q - |R/Z[α]| and q - ∆K , we have

Φ(x) = Φ1(x) · · ·Φg(x) mod q with deg(Φi(x)) = fi for i ∈ [g]. Here, Φi(x) is irreducible

polynomial in Zq[x] and Φi(x) 6= Φj(x) for any i 6= j ∈ [g]. Meanwhile, we have qR = q1 · · · qg
with qi = (q,Φi(α))R and N(qi) = qfi for i = 1, · · · , g. In particular, we have

∑g
i=1 fi = n

and the isomorphism Rq ∼= R/q1 × · · · × R/qg ∼= Z[x]/(q,Φ1(x)) × · · · × Z[x]/(q,Φg(x)) ∼=
Zq[x]/(Φ1(x)) × Zq[x]/(Φg(x)) ∼= Zq[x]/(Φ(x)). Zq[x] is a principal ideal domain, hence Rq

is a principal ideal ring. For any proper ideal I ⊆ Rq, we can write I = (f(x))Rq, where

f(x) contains at least one polynomials of Φi(x), i.e. f(x) =
∏
i∈S Φi(x) for some non-empty

S ⊆ {1, 2, · · · , g}. This is because that Φ2
i (x) · Rq = Φi(x) · Rq for any i ∈ [g]. In fact,

on the one hand, we obviously have Φ2
i (x) · Rq ⊆ Φi(x) · Rq. On the other hand, note

that Φi(x) is prime to
∏
k 6=i Φk(x), we have Φi(x) · r1(x) +

∏
k 6=i Φk(x) · r2(x) = 1 for some

r1(x), r2(x) ∈ Zq[x]/(Φ(x)). Hence, we get Φi(x) · (Φi(x) · r1(x) − 1) = 0 in Zq[x]/(Φ(x)),

which implies that Φi(x) · Rq ⊆ Φ2
i (x) · Rq. We will also use IS to represent the ideal∏

i∈S Φi(α)Rq of Rq. Let a ∈ (Rq)
m, the definitions of the q-ary lattices we need are as

followings [40]:

a⊥(I) = {(t1, · · · , tm) ∈ Jm :

m∑
i=1

ti · ai = 0 mod qR},

L(a, I) = {(t1, · · · , tm) ∈ (R∨)m : ∃ s ∈ R∨, ∀i, ti = ai · s mod qJ∨} = R∨ · a+ qJ∨.

Here, R∨ · a = {t · a = (ta1, · · · , tam) : t ∈ R∨}. We also define a⊥ and L(a) as a⊥(Rq)

and L(a, Rq). As in [40], a⊥(I) and L(a, I) have the following dual relations and its proof

is independent of the form of algebraic number field.

Lemma 3.1. Let a⊥(I) and L(a, I) be defined above, then we have a⊥(I) = q · (L(a, I))∨

and L(a, I) = q · (a⊥(I))∨.1

1The dual M∨ of a lattice M ⊆ Km is defined as the set of all x ∈ Km such that Tr(x·v) :=
∑m

j=1 Tr(xj ·vj) ∈ Z
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Let IS =
∏
i∈S Φi(α)Rq ⊆ Rq and JS =

∏
i∈S qi ⊆ R for S ⊆ {1, 2, · · · , g}. We have

qR ⊆ JS ⊆ R and IS = JS/qR. Further, J−1
S =

∏
i∈S q

−1
i and J∨S =

∏
i∈S q

−1
i R∨. The next

lemma shows that for a ←↩ U((R×q )m), the lattice L(a, IS) is extremely unlikely to contain

unusually short vectors for the infinity norm.

Lemma 3.2. Set q ≥ 2 to be a prime such that q - ∆K and q - |R/Z(α)|. Let m ≥ 2 and ε >

0, assume Φ(x) =
∏g
i=1 Φi(x) with deg(Φi(x)) = fi and IS =

∏
i∈S Φi(α)Rq for some S ⊆ [g],

then we have λ∞1 (L(a, IS)) ≥ B with B = qβ

|∆K |
1
n

, where β = (1− 1
m )(1−

∑
i∈S fi
n )− ε, except

with probability p ≤ 22mn+(m+1)gq−εmn over the uniformly random choice of a ∈ (R×q )m.

Remark 3.3. When K = Q(ζl) is a cyclotomic field and q = 1 mod l, this lemma is the

same as Lemma 3.4 in [40].

The following lemma is a direct consequence of Lemmata 2.8, 2.10, 3.1 and 3.2, which

will be used to estimate the distribution of public keys of NTRUEncrypt.

Lemma 3.4. Let K = Q(α) be an algebraic field, R = OK , m ≥ 2, q is a positive prime

such that q - ∆K and q - |R/Z[α]|. Assume that the prime ideal decomposition of qR

in R is qR = P1 · · ·Pg. Set δ ∈ (0, 1
2 ), ε > 0, S ⊆ [g], c ∈ Rm and t ←↩ DRm,σ,c,

where σ ≥ |∆K |
1
n

√
ln(2mn(1+ 1

δ ))

π · q
∑
i∈S fi
n + 1

m−
∑
i∈S fi
mn +ε. Then for all except a fraction of

22mn+(m+1)gq−εmn of a ∈ (R×q )m, we have

∆
(
t mod a⊥(IS); U(Rm/a⊥(IS))

)
≤ 2δ.

Let χ be some distribution overRq and denote Dχ the distribution of the tuple (a1, · · · , am,∑m
i=1 tiai) ∈ (R×q )m × Rq, where ai ←↩ U(R×q ) are chosen independently and ti ←↩ χ for all

i = 1, 2, · · · ,m. The regularity of the generalized knapsack function (t1, · · · , tm)→
∑m
i=1 tiai

is the statistical distance between Dχ and U((R×q )m × Rq). We can deduce the following

result by taking S = φ and c = 0 in Lemma 3.4.

Theorem 3.5. Let K = Q(α) be an algebraic field, R = OK , m ≥ 2, q is a positive prime

such that q - ∆K and q - |R/Z[α]|, δ ∈ (0, 1
2 ), the prime ideal decomposition of qR in R

is qR = P1 · · ·Pg, ε > 0 and ai ←↩ U(R×q ) for all i ∈ [m]. Assume t ←↩ DRm,σ with

σ ≥ |∆K |
1
n

√
ln(2mn(1+ 1

δ ))

π · q 1
m+ε. Then we have

∆

(
(a1, · · · , am,

m∑
i=1

tiai); U((R×q )m ×Rq)

)
≤ 2δ + 22mn+(m+1)gq−εmn.

Remark 3.6. By taking IS = Rq in Lemma 3.2, we can reobtain Lemma 5.2 of [36], as

well as the above regularity result. The proofs are almost same. But in [36], they use the

isomorphism R/qR ∼= R∨/qR∨ so that they do not to require q - |R/Z(α)|. However, the same

method may not work when treating general ideal IS of Rq since we use the decomposition

which was mentioned above Lemma 3.1. Meanwhile, for primes q||R/Z(α)|, the prime ideal

decomposition of qR may be very complicated. So, we just remove this case for simplicity.

For more details, one can refer to Section 6 of [7].

for all v ∈M .
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3.2 Construction of NTRUEncrypts

The key generation algorithm of the NTRUEncrypts is as follows.

Input: n, q ∈ Z+, p ∈ R×q , σ ∈ R+.

Output: A key pair (sk, pk) ∈ R×q ×R×q .

• Sample f
′

from DR,σ; let f = p · f ′ + 1; if (f mod qR) /∈ R×q , resample.

• Sample g from DR,σ; if (g mod qR) /∈ R×q , resample.

• Return secret key sk = f and public key pk = h = pg/f ∈ R×q .

Notice that as long as σ ≥ ||B̃|| ·
√

log n for any basis B of R, we can sample an element in

polynomial time to obey the distribution DR,σ by using Theorem 2.5. The following lemma

shows that the key generation algorithm can terminate with executing in expected time.

We must remark that in the proof of Lemma 3.7, Lemma 3.8 and Lemma 3.9, we use the

property λ1(I) = λn(I) for some ideal I ⊆ R, so that we could use Lemma 2.6 with suitable

parameters. This property is not true for general fields. If not so, we have to bound the

magnitude of λn, which may be very difficult. There are many fields satisfy this requirement,

for example, cyclotomic fields, extensions of cyclotomic fields. We do not know which are

the necessary and sufficient conditions about judging whether a kind of fields satisfies this

requirement or not. Also, for simplicity, we assume that K is Galois over Q, so all the fi’s

are equal. Otherwise, the conditions of these lemmata should be changed- -just replacing

the f with the maximum (or minimum) value of these fi’s.

Lemma 3.7. Let K and q satisfy the conditions discussed above, set σ ≥ |∆K |
1

2n ·
√
n ·√

ln (2n(1+ 1
ε ))

π · q
f
n for an arbitrary ε ∈ (0, 1

2 ). Let a ∈ R and p ∈ R×q . Then

Prf ′←↩DR,σ [(p · f
′
+ a mod qR) /∈ R×q ] ≤ g(

1

qf
+ 2ε) ≤ n(

1

q
+ 2ε).

The following lemma bounds the length of the secret keys, which is very useful for us to

analyze the decryption error.

Lemma 3.8. Let K and q satisfy the conditions discussed above, set σ ≥
√

2 ln (6n)
π · |∆K |

1
2n ·

√
n · q

f
n . Then with probability ≥ 1− 23−n, the secret key f, g satisfy ||f || ≤ 2

√
n · σ · ||p||∞

and ||g|| ≤
√
n · σ.

The last lemma of this subsection estimates the statistical distance between the distri-

bution of public keys and the uniform distribution on R×q . We denote by D×σ,z the discrete

Gaussian DR,σ restricted to R×q + z.

Lemma 3.9. Let 0 < ε, n ≥ 5, q ≥ 8n and σ ≥ |∆K |
1
n ·
√
n+ f · bnεc ·

√
ln (8nq)

π · q 1
2 +(1+ f

2 )ε.

Let p ∈ R×q , yi ∈ Rq and zi = −yi · p−1 mod qR for i ∈ {1, 2}. Then

∆

[
y1 + p ·D×σ,z1
y2 + p ·D×σ,z2

mod qR, U(R×q )

]
≤ 28n

qbεnc
.

Remark 3.10. In the case K = Q(ζl) and q = 1 mod l, this lemma is equivalent to Lemma

13 of [40].
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In the following of this subsection, we constrain K = Q(ζl) to be a cyclotomic field.

It is obvious that till now, we can give a provably secure NTRUEncrypt in R∨ as [40].

However, we choose to design our schemes in the polynomial ring Rq ∼= Zq[x]/(Φl(x)), so

that the schemes may enjoy the high computation speed over polynomial rings and become

more ‘practical’ than using the transformation given in Remark 1 of [40]. The requirement

q = 1 mod l can also be removed.

In fact, the definition of the decision Ring-LWE problem is the so called decision dual-

Ring-LWE problem [36], since the secret s is chosen from the dual ideal R∨ of R. We can

also define the decision primal-Ring-LWE problem as in [36].

Definition 3.11. Let k = Q(ζl) and R = OK , Ψ be a set of error distributions on H and

q ≥ 2. For s ∈ Rq and ψ ∈ Ψ, the Primal-Ring-LWE distribution As,ψ over Rq × KR/qR

is sampled by independently choosing a uniformly random a ←↩ U(Rq) and an error term

e←↩ ψ, and outputting (a, b = a·s+e mod qR). The average-case decision Primal-Ring-LWE

problem, denoted by D-RLWEq,Ψ, is to distinguish (with non-negligible advantage) between

independent samples from As,ψ for a random choice of (s, ψ) ←↩ U(Rq) × Ψ, and the same

number of uniformly random and independent samples from Rq ×KR/qR.

We have the following hardness results about the decision Primal-Ring-LWE problems.

Its proof is a combination of results showed in [27, 36].

Theorem 3.12. Let K be the l-th cyclotomic number field with dimension n = ϕ(l) and

R = OK be its ring of integers. Let α = α(n) ∈ (0, 1) such that α ≤
√

logn
n , and let

q = q(n) ≥ 2 be an odd prime such that (q, l) = 1 and α · q ≥ ω(1). Then there is a

polynomial-time quantum reduction from Ideal-SIVPγ for any γ = ω(
√
n·logn
α ) over any ideal

lattices in K to the problem of solving D-RLWEq,ψ given only k samples, where ψ is the

Gaussian distribution Dξ·q with ξ = l · α · ( nk
log (nk) )

1
4 .

Proof. By Theorem 2.13 of [36], for any s ∈ R∨q and t ∈ (R∨)−1 such that tR∨ + qR = R,

the map (a, b) 7→ (a, t · b) transforms A∨s,Dα to At·s,Dr with r = (|σ1(t)| · α, · · · , |σn(t)| · α),

and U(Rq ×KR/qR
∨) to U(Rq ×KR/qR).

Let g =
∏
p|l(1 − ζp), then we have g ∈ R, R∨ = g

l · R and gR + qR = R for any prime

q such that (q, l) = 1 [27]. Hence (R∨)−1 = l
g ·R. By taking t = l, we get a transformation

from A∨s,Dq·ξ′ with ξ′ = α ·( nk
log (nk) )

1
4 to Al·s,ψ and from U(Rq×KR/qR

∨) to U(Rq×KR/qR).

Combining Theorem 2.18, we get the result as desired.

Remark 3.13. One can see the reduction loss from D-RLWE∨ to D-RLWE in cyclotomic

fields is much smaller than that in general algebraic number fields, in which cases we may

choose a t ∈ (R∨)−1 such that ||t|| ≤
√
n · q 3

4 (See Theorem 3.1 and Corollary 3.2 of [36]).

Big reduction loss is also the main reason that [40] designed their schemes in R∨. Also note

that [42, 43] used the hardness results showed in [10]. However, methods used in [10] to get a

hardness result of primal Ring-LWE problems rely heavily on the form of polynomial Φl(x).

Remark 3.14. It is well known that when l = 2k for some positive integer k, reduction form

D-RLWE∨ to D-RLWE is very convenient and simple [10]. Meanwhile, multiplications are
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very efficient due to NTT algorithms in these special fields. So, in applications, we usually

choose powers-of-2 cyclotomic fields. Theorem 3.12 is simple but meaningful, which shows

that reductions from D-RLWE∨ to D-RLWE in general cyclotomic fields are also convenient

and simple as cases in powers-of-2 cyclotomic fields.

We can modify the sample (a, b) of primal Ring-LWE distribution to the set Rq×Rq. We

discretize the error, by taking e←↩ bDqξeR. The decision version of primal Ring-LWE prob-

lem becomes to distinguish between the modified distribution of As,bDqξeR and the uniform

samples from Rq × Rq. Notice that by using the same method proposed in [27, 40], we can

change the secret s to obey the error’s distribution, i.e. s←↩ bDqξeR. At last, if we restrict

a ∈ R×q , the hardness of this problem does not decrease. We use symbol A×s,Dqξ to denote

the distribution of (a, b) obtained by choosing a ←↩ U(R×q ), s ←↩ bDqξeR, e ←↩ bDqξeR and

setting b = a · s + e mod qR. We will use the symbol R-DLWE×q,Dqξ to denote the problem

of distinguishing the samples chosen from A×s,Dqξ and U(R×q ×Rq).
We set the plain-text space to be P = R/pR. Denote χ = bDqξeR with ξ = l·α·( nk

log (nk) )
1
4 ,

where k = O(1) is some positive integer. We will use the powerful basis for element x ∈ R.

The NTRUEncrpyt scheme, denoted by NTRUEncrypt(n, q, p, σ), is as follows.

Key generation: Use the algorithm describe in Subsection 4.1, return sk = f ∈ R×q with

f = 1 mod pR, and pk = h = pg · f−1 ∈ R×q .

Encryption: Given a message m ∈ P, sample s, e←↩ χ and return c = hs+ pe+m ∈ Rq.

Decryption: Given a cipher-text c and the secret key f , compute c1 = f · c. Then return

m = (c1 mod qR) mod pR.

One may have notice that if l is a prime power, then the computations of our NTRU-

Encrypts are just the same as those in polynomial rings Zq[x]/(Φl(x)), since in this cases,

the powerful basis is the power basis. The analysis of decryption process and the security

reduction are standard. So, we only state the results and put the proofs in Appendix B. For

more details, one can also refer to [40].

Theorem 3.15. Let l be a positive integer, n = ϕ(l) ≥ 5, and K = Q(ζl). Let q ≥ 8n

be a positive prime of size poly(n) such that q - ∆K and the prime ideal decomposition of

qR in R is qR = P1 · · ·Pg with f · g = n. Assume that α ∈ (0, 1) satisfies αq ≥ ω(1) and

α ≤
√

logn
n . Let ξ = l · α · ( nk

log (nk) )
1
4 with k = O(1), ε ∈ (0, 1

2 ) and p ∈ R×q . Moreover,

let σ ≥ n
3
2 ·
√

ln (8nq) · q 1
2 +(1+ f

2 )ε and 3
√
n · σ · (

√
n · l̂ +

√
n · q · ξ) · ||p||2∞ < q

2 . Then if

there exists an IND-CPA attack against NTRUEncrypt(n, q, p, σ) that runs in time poly(n)

with advantage 1
poly(n) , there exists a poly(n)-time algorithm solving γ-Ideal-SIVP on any

ideal lattice of K with γ = Õ(
√
n
α ). Moreover, the decryption algorithm succeeds to regain the

correct message with probability 1− e−Ω(n) over the choice of the encryption randomness.

Remark 3.16. The hardness result of Ring-LWE problem we use is relative tight, while

the error estimate is somewhat looser, since we consider the general l and use the simplest

discretization to give a union bound. Different methods of error discretization may save the

some factors on q and γ [39, 40, 42, 43]. However, even in the most special cases (l = 2k),
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the efficiency of provably secure variant of NTRUEncrypt may not be satisfactory [5, 39]. So

we don’t aim to analyze the errors by using complicated methods. Setting q = 1 mod l and p

to be a integer, we have q = [Õ(n6.5), Õ(n7.5)] (due to the factor rad(l)
l ) and γ ≤ Õ(n8).

4 A Useful Key Generation Algorithm

In this section, we shall introduce a useful key generation algorithm as in [39] and give a

detailed analysis. In fact, this is a method about how to convert a secret key of NTRUEncrypt

to a secret key of NTRUSign. This key generation algorithm is standard in the construction of

many cryptographic primitives based on NTRU. For example, Collision Resistance Preimage

Sampleable Functions and NTRU signatures [39], identity-based encryptions [11], identity-

based signatures [41] and so on. We assume K/Q is a Galois extension with K an algebraic

field such that [K : Q] = n, if we do not give some special assumptions.

4.1 Useful Lemmata for Dedekind Zeta Function

In this subsection, we introduce some lemmata we need to analyze the key generation

algorithm of CRPSF.

For any ideal I ∈ R, we assume that it has the prime ideal decomposition of the form

(P1 · · ·Pg)e with Pi having norm N(Pi) = pf for all i = 1, · · · , g. Here, one also have

e · f · g = n. The Möbius function of I is defined as following:

µ(I) =


1, if I = R,

(−1)g, if I = P1 · · ·Pg,

0, otherwise.

The Dedekind zeta function of the ring R is defined by ζK(s) =
∑
I⊆R

1
Ns(I) for any complex

number s, where I runs over all non-zero integral ideals of R. For Re(s) > 1, it is convergent

and we have

ζK(s) =
∑
I⊆R

N(I)−s =
∏
P

(1−N(P)−s)−1,

where P runs over all prime ideals of R. Moreover,

ζ−1
K (s) =

∏
P

(1−N(P)−s) =
∑
I⊆R

µ(I) ·N(I)−s.

Recall that, for any prime number p ∈ Z, the ideal pR ramifies in K if and only if p|∆K .

For a fixed p with prime ideal decomposition of the form (P1 · · ·Pg)e, g is the number of

different prime ideals that divides pR, it is also the number of distinct irreducible factors

of Φ(x) (the minimum polynomial of α over Q, K = Q(α)) over Zp[x]. Therefore, we have

g ≤ min (n, p). Moreover, e, f, g depend only on p and K. When p - ∆K , we have e = 1,

g = n
f .

The following lemma shows an estimate of ζK(s). In order to prove this lemma, we need

some results about the sum
∑
p≤x

1
p for x ≥ 2 and prime p. In [31], an accurate estimation
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is given, which states that for x ≥ 2, one has∑
p≤x

1

p
= ln lnx+A+ r(x).

Here, |r(x)| < 2(5 ln 2 + 3) · (lnx)−1 and A = γ +
∑
p{ln (1− 1

p ) + 1
p} = 0.26149721 · · · with

γ the Euler constant.

Lemma 4.1. Let [K : Q] = n ≥ 200 with |∆K | = pα1
1 · · · p

αt
t , assume L(s) =

∏t
i=1(1 −

p
−sn
ei·gi
i )−gi for s > 1. Then we have ζK(1 + ε) ≤ L(1 + ε) · e

2
ε(1−ε) ·n

1−ε
, for any ε ∈ (0, 1), and

ζK(2) ≤ L(2) · e6.1.

Proof. Notice that
∏
p|∆K

∏
P|p(1 − N(P)−s)−1 =

∏t
i=1(1 − p

−sn
ei·gi
i )−gi = L(s). By the

definition of Dedekind Zeta function, we have

ζK(s) =
∏
P

(1− 1

N(P)s
)−1 =

∏
p

∏
P|p

(1− 1

N(P)s
)−1 = L(s) ·

∏
p-∆K

∏
P|p

(1− 1

N(P)s
)−1.

For any prime p - ∆K and s > 1, we have∏
P|p

(1− 1

N(P)s
)−1 = (1− p−

ns
g )−g ≤ (1− p−

ns
min (n,p) )−min (n,p).

Hence, we get

ζK(s) ≤ L(s) ·
∏

p≤n,p-∆K

(1− p−
ns
p )−p ·

∏
p>n,p-∆K

(1− p−s)−n.

We first deal with the case s = 2, where we have

ζK(2) ≤ L(2) ·
∏

p≤n,p-∆K

(1− p−
2n
p )−p ·

∏
p>n,p-∆K

(1− p−2)−n.

By using the inequality ln(1− x) ≥ −x− x2 for x ∈ [0, 1
2 ], we get

ζK(2) ≤ L(2) ·
∏

p≤n,p-∆K

(1− p−
2n
p )−p ·

∏
p>n,p-∆K

(1− p−2)−n

= L(2) · exp(−p
∑

p-∆K ,2≤p≤n2

ln(1− p−4)− p
∑

p-∆K ,
n
2<p≤n

ln(1− p−2)

− n
∑

p-∆K ,p>n

ln(1− p−2))

≤ L(2) · exp(
∑

p-∆K ,2≤p≤n2

(p−3 + p−7) +
∑

p-∆K ,
n
2<p≤n

(p−1 + p−3)

+ n
∑

p-∆K ,p>n

(p−2 + p−4)).

We now estimate these sums separately. One can easily check that
∑
p-∆K ,p>n

p−4 ≤∫∞
n
x−4dx = 1

3n3 ,
∑
p-∆K ,p>n

p−2 ≤
∫∞
n
x−2dx = 1

n ,
∑
p-∆K ,2≤p≤n2

p−7 ≤
∫ n

2

1
x−7dx ≤ 1

6
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and
∑
p-∆K ,p≤n p

−3 ≤
∫ n

1
x−3dx ≤ 1

2 . To estimate the sum
∑
p-∆K ,

n
2<p≤n

1
p , we have

∑
p-∆K ,

n
2<p≤n

1

p
≤

∑
n
2<p≤n

1

p
=
∑
p≤n

1

p
−
∑
p≤n2

1

p

= ln lnn− ln ln
n

2
+ r(n)− r(n

2
)

= ln (1 +
ln 2

lnn− ln 2
) + r(n)− r(n

2
) < 5.4,

where we have used the facts that ln (1 + ln 2
lnn−ln 2 ) < 0.15 and |r(n) − r(n2 )| < 2(5 ln 2 +

3)( 1
lnn + 1

lnn−ln 2 ) < 5.25 for n ≥ 200. Hence, we get ζK(2) ≤ L(2) · e6.1.

Now we consider the case s = 1 + ε for ε ∈ (0, 1). Similarly, we have

ζK(1 + ε) ≤ L(1 + ε) ·
∏

p-∆K ,2≤p≤n

(1− p−
(1+ε)n
p )−p ·

∏
p>n,p-∆K

(1− p−(1+ε))−n

≤ L(1 + ε) · exp(
∑

p-∆K ,2≤p≤n

(p1− (1+ε)n
p + p1− 2(1+ε)n

p )

+ n ·
∑

p>n,p-∆K

(p−(1+ε) + p−2(1+ε))).

We can estimate these sums by using similar method, i.e.
∑
p-∆K ,2≤p≤n(p1− (1+ε)n

p +p1− 2(1+ε)n
p ) ≤

2
∫ n

2
x−εdx ≤ 2

1−εn
1−ε and n ·

∑
p>n,p-∆K

(p−(1+ε) + p−2(1+ε)) ≤ 2n ·
∫∞
n
x−1−εdx ≤ 2

εn
1−ε.

This gives the claimed bound on ζK(1 + ε).

Remark 4.2. We can relax the condition of n to n ≥ 3. In this situation, we have∑
p-∆K ,

n
2<p≤n

1
p < 45 and ζK(2) ≤ L(2) · e47. In the cases n = 256, n = 512 and n = 1024,

we have ζK(2) ≤ L(2) · e5.81, ζK(2) ≤ L(2) · e5.2 and ζK(2) ≤ L(2) · e4.8.

Remark 4.3. The value of L(2) depends on the field discriminant ∆K . A trivial bound

for L(s) is ( |∆K |
ϕ(|∆K |) )n. In the case of cyclotomic field K = Q(ζl), the bound of L(s) is

( l
ϕ(l) )ϕ(l) ≈ (log log l)l for sufficient large l. This upper bound is pretty bad, but it is enough

for us to deduce Lemma 4.6. In our application, we hope there is an absolute upper bound

for L(2). In fact, in the case of cyclotomic fields, we can give an absolute upper bound for

L(2). Concrete estimates can be found in Appendix C.

Next, we shall give an upper bound of the number of integral ideals whose norms are no

more than N .

Lemma 4.4. Let N ≥ 1, ε ∈ (0, 1) and L(s) defined as in Lemma 4.1. The number H(N)

of ideals I ⊆ R satisfying N(I) ≤ N is bounded as H(N) ≤ L(1 + ε) · e
2

ε(1−ε) ·n
1−ε
·N1+ε.

Proof. For k ≥ 1, let M(k) denote the number of ideals of R of norm exactly k. Then for

s > 1, we have ζK(s) =
∑
I⊆R N(I)−s =

∑
k≥1M(k)k−s ≥

∑
k≤N M(k)k−s. By noticing

that
∑
k≤N M(k)k−s ≥

∑
k≤N M(k)N−s = H(N)N−s, we obtain that H(N) ≤ ζK(s) ·Ns.

By Lemma 4.1, we get the result we need.
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We want to bound the probability that two elements f and g of R chosen from some

discrete Gaussian distributions are co-prime, i.e. (f, g) = R. The argument follows the

strategy of [39], which is an adapted version of [37]. The following lemma states a fact

proved in the proof of Lemma 2.9 and Lemma 4.4 of [28].

Lemma 4.5. For any full-rank lattice Λ ⊆ H, c ∈ H, δ ∈ (0, 1) and σ ≥ ηδ(Λ), we have

ρσ,c(Λ) = σn

det(Λ) (1 + ε) with |ε| ≤ δ. As a consequence, we have
ρσ,c(Λ)
ρσ(Λ) ∈

[
1−δ
1+δ , 1

]
.

Lemma 4.6. Assume that K is a cyclotomic field with R = OK , σ ≥ 64n5.7 log n. Then we

have

Pr
f,g←↩DR,σ

[(f, g) 6= R] ≤ 1− 1

ζK(2)
+ 2−n

for n ≥ 500.

Proof. For f, g ←↩ DR,σ, we have

Pr[(f, g) 6= R] ≤ Pr[(f, g) 6= R and ||f ||, ||g|| 6= 0] + Pr[||f || = 0 or ||g|| = 0].

By Lemma 4.5, for any σ ≥ ηδ(R) with some δ ∈ (0, 1
2 ), we have that ρσ(R) = σn√

|∆K |
·(1+ε)

with |ε| ≤ δ. Taking δ = 2−2n, we have DR,σ(0) = 1
ρσ(R) ∈ [

√
|∆K |

σn(1+2−2n) ,

√
|∆K |

σn(1−2−2n) ], since

σ ≥ η2−2n(R). Therefore,

Pr[(f, g) 6= R] ≤ Pr[(f, g) 6= R and ||f ||, ||g|| 6= 0] + 2−3n logn.

Let A denote the event {||f || 6= 0, ||g|| 6= 0 and (f, g) 6= R} and B denote the event that

occurs with probability

p = DT
R2,σ(R2 \

⋃
prime I⊆R

I × I),

where DT
R,σ(J) = DR,σ(J)−DR,σ(0) for any J ⊆ K, and the distribution DR2,σ denote the

pair (f, g) ∈ R2, where f and g are sampled from DR,σ independently. Notice that (f, g) 6= R

implies that there is a prime ideal I of R such that fR ⊆ I and gR ⊆ I, since R is a Dedekind

domain. By using the inclusion-exclusion principle, we have Pr[(f, g) 6= R and ||f ||, ||g|| 6=
0] ≤ 1− p and p =

∑
I⊆R µ(I) ·DT

R,σ(I × I).

Therefore, we have

|p− ζK(2)−1| = |
∑
I⊆R

µ(I) ·DT
R,σ(I)2 −

∑
I⊆R

µ(I) · 1

N(I)2
|

≤
∑
I⊆R

|DT
R,σ(I)2 − 1

N(I)2
|

=
∑
I⊆R

|(DR,σ(I)−DR,σ(0))2 − 1

N(I)2
|.

Recall that for any ideal I, λn(I) = λ1(I) ≤ n ·N 1
n (I). By Lemma 2.6, we have ηδ(I) ≤

n ·
√

ln (2n(1+ 1
δ ))

π ·N 1
n (I) := Bδ ·N

1
n (I). We split the above sum into three parts, depending

on the magnitude of N(I). We shall take δ = 2−2n.
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Case 1: Assume σ ≥ Bδ · N
1
n (I), this is equivalent to N(I) ≤ ( σ

Bδ
)n := C1. Then Lemma

4.5 implies that DR,σ(I) = 1
N(I) ·

1+ε1
1+ε2

for |ε1|, |ε2| ≤ 2−2n. This is equivalent to say

1

N2(I)
· (1− 2−2n

1 + 2−2n
)2 ≤ D2

R,σ(I) ≤ 1

N2(I)
· (1 + 2−2n

1− 2−2n
)2.

This, together with DR,σ(0) ∈ [

√
|∆K |

σn(1+2−2n) ,

√
|∆K |

σn(1−2−2n) ], means that

|(DR,σ(I)−DR,σ(0))2 − 1

N2(I)
| ≤ |D2

R,σ(I)− 1

N2(I)
|+ 2 ·DR,σ(I) ·DR,σ(0) +D2

R,σ(0)

≤ 1

N2(I)
· 23−2n

1− 2−2n
+

2
√
|∆K |

N(I) · σn
· 1 + 2−2n

(1− 2−2n)2

+
|∆K |
σ2n

· 1

(1− 2−2n)2
.

Note that σn ≥ N(I) ·Bn2−2n ≥ N(I) · (n
√

n
4 )n, we have

1

N2(I)
· 23−2n

1− 2−2n
+

2
√
|∆K |

N(I) · σn
· 1 + 2−2n

(1− 2−2n)2
≤ 2−2n+5

N2(I)

for n ≥ 16. Therefore,∑
I⊆R

N(I)≤C1

|(DT
R,σ(I))2 − 1

N2(I)
| ≤

∑
I⊆R

N(I)≤C1

(
2−2n+5

N2(I)
+
|∆K |
σ2n

· 1

(1− 2−2n)2
)

≤ 2−2n+5 · ζK(2) +H(C1) · |∆K |
σ2n

· 1

(1− 2−2n)2
.

Note that for cyclotomic field K, there is an absolute upper bound of L(2) (See Appendix

C). Similarly, we can also get an absolute upper bound of L(1.1). Together with Lem-

ma 4.1, we have L(1.1), ζK(2) ≤ 212. Then, by taking ε = 0.1 in Lemma 4.4, we have∑
I⊆R

N(I)≤C1

|(DT
R,σ(I))2 − 1

N2(I) | ≤ 2−2n+18 for n ≥ 500.

Case 2: Assume N(I) ≥ (σ
√
n)n := C2. Notice that λ1(I) ≥

√
n · N 1

n (I) for any fractional

ideal I, then ρσ(I\{0}) = ρσ(I\
√
n ·N 1

n (I)Bn). Hence Lemma 2.9 implies that

DI,σ(I\{0}) =
ρσ(I\{0})
ρσ(I)

≤ (
N

1
n (I)

σ
·
√

2πe · e−π
N

2
n (I)

σ2 )n.

Therefore, we get DT
R,σ(I) = ρσ(I\{0})

ρσ(R) = ρσ(I\{0})
ρσ(I) · ρσ(I)

ρσ(R) ≤ (N
1
n (I)
σ ·

√
2πe · e−π

N
2
n (I)

σ2 )n. One

can check that the condition N(I) ≥ (σ
√
n)n insures (N

1
n (I)
σ ·

√
2πe · e−π

N
2
n (I)

σ2 )n ≤
√

2
N(I) for
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n ≥ 500. Overall, we have∑
I⊆R

N(I)≥C2

|(DT
R,σ(I))2 − 1

N2(I)
| ≤

∑
I⊆R

N(I)≥C2

1

N2(I)

≤
∑

k>bC2c

H(k)−H(k − 1)

k2

=
∑

k>bC2c

H(k)

k2
−

∑
k≥bC2c

H(k)

(k + 1)2

≤
∑

k>bC2c

H(k)(
1

k2
− 1

(k + 1)2
).

We use Lemma 4.4 by taking ε = 0.1 and have H(k) ≤ L(1.1) ·e 200
9 ·n

0.9 ·k1.1 ≤ L(1.1) ·217.3n ·
k1.1 for n ≥ 500. Therefore, we get∑

I⊆R
N(I)≥C2

|(DT
R,σ(I))2 − 1

N2(I)
| ≤ L(1.1) · 217.3n

∑
k≥C2

2k + 1

k0.9(k + 1)2
.

Since 2k+1
k0.9(k+1)2 ≤ 2

k1.9 , we have
∑
k≥C2

2k+1
k0.9(k+1)2 ≤ 20

9 C
−0.9
2 . Overall, we deduce that∑

I⊆R
N(I)≥C2

|(DT
R,σ(I))2 − 1

N2(I)
| ≤ 20

9
L(1.1) · 217.3n · 1

(σ
√
n)0.9n

≤ 2−10n,

for n ≥ 500.

Case 3: Assume now ( σ
Bδ

)n < N(I) < (σ
√
n)n. Let k = dN(I)

1
n

σ/Bδ
e ≥ 1, then we have I ⊆ 1

k I,

DT
R,σ(I) ≤ DT

R,σ( 1
k I ∩R) and ηδ(

1
k I) = 1

kηδ(I) ≤ σ. Hence, we get

DT
R,σ(I) ≤ DT

R,σ(
1

k
I ∩R) ≤ DR,σ(

1

k
I)

=
ρσ( 1

k I)

ρσ(R)
≤ kn

N(I)
· 1 + 2−2n

1− 2−2n

by Lemma 4.5. Notice that Bδ
σ ·N(I)

1
n ≤ k ≤ 2Bδ

σ ·N(I)
1
n , we deduce that

−(
Bδ
σ

)2n ≤ DT
R,σ(I)2 − 1

N(I)2
≤ (

2Bδ
σ

)2n · (1 + 2−2n

1− 2−2n
)2 − 1

N(I)2
.

Therefore, we get |DT
R,σ(I)2 − 1

N(I)2 | ≤ ( 2Bδ
σ )2n · ( 1+2−2n

1−2−2n )2. Overall, we have

∑
C1<N(I)<C2

|DT
R,σ(I)2 − 1

N(I)2
| ≤

∑
C1<N(I)<C2

(
2Bδ
σ

)2n · (1 + 2−2n

1− 2−2n
)2

≤ H((σ
√
n)n) · (2Bδ

σ
)2n · (1 + 2−2n

1− 2−2n
)2.

We still take ε = 0.1 in Lemma 4.4 and get∑
C1<N(I)<C2

|DT
R,σ(I)2 − 1

N(I)2
| ≤ L(1.1) · 217.3n · (σ

√
n)1.1n · (2Bδ

σ
)2n · (1 + 2−2n

1− 2−2n
)2. (3)
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Since Bδ ≤ n1.5
√

2
and σ ≥ 64n5.7 log n, we have

∑
C1<N(I)<C2

|DT
R,σ(I)2 − 1

N(I)2 | ≤ 2−1.2n for

n ≥ 500.

In a summary, we have deduce that |p− ζK(2)−1| ≤ 2−n. We get the claimed result.

Remark 4.7. The value of σ in this lemma seems a little large. It is essentially decided by

the limitations in Case 3. For n ≥ 1000, one can relax the condition of σ to σ ≥ 64n5 log n.

In fact, if we discuss this problem in the sense that n goes to infinity, we can set σ ≥ n4.1 and

ε = 0.1 in Case 3, then (3) becomes ≤ C ·218.3n ·n3.65n ·σ−0.9n ≤ C ·218.3n ·n−0.04n ≤ 2−1.2n

as required. We can also set σ ≥ 8n3.6 log n and take ε = log logn
logn in Case 3. Then, (3)

becomes ≤ C ·L(1 + ε) · e
4n

log logn · 2n ·n3n+0.5n(1+ε) ·σ−n(1−ε), since e
2n1−ε
ε(1−ε) ≤ e

4n
log logn , and we

can get
∑
C1<N(I)<C2

|DT
R,σ(I)2 − 1

N(I)2 | ≤ 1
2ζK(2) for sufficient large n. Therefore, we have

Prf,g←↩DR,σ [(f, g) 6= R] ≤ 1− 1
2ζK(2) + 2−n as in [39].

Remark 4.8. In [1], a sample experiment has been tested in the field Q(ζ2k). Their result

shows that in applications, the probability of (f, g) = R for f, g ←↩ DR,σ is far more larger

than the estimate we get. More preciously, they numerically approximated ζ−1
K (2) for K =

Q[x]/(xn + 1) for n = 128 and n = 256 by computing the first 222 terms of the Dirichlet

series of the Dedekind Zeta function for K and then evaluated the truncated series at 2. In

both cases they get a density ≈ 0.75. Though the elements are sampled a little different from

the uniform distribution, their experiments indicate that 3
4 is a good approximation of the

actual probability of coprimality.

In many applications (for example the NTRUSign schemes over different rings, some

identity-based schemes [11, 41] and the following CRPSF we construct), one of the checks

in the corresponding key generation algorithms is to judge wether (f, g) = R. Though the

setting of Gaussian parameters could not reach the requirements of Lemma 4.6 (usually much

smaller than the requirements of Lemma 4.6), the corresponding key generation algorithms

are still PPT in practice. These, together with Remark 4.8, show that the probability that

f, g are co-prime may be much higher than the theoretical estimate of Lemma 4.6.

4.2 NTRU Lattice

Now, let us describe some properties of the NTRU lattice over cyclotomic fields. To avoid

confusion, we shall speak of the rank of R-modules and of K-vector spaces when K 6= Q and

restrict the term of dimension to Z-modules and Q-vector spaces as in [1]. We are interested

in the R modules in K2. The dimension of a lattice Λ is the dimension over Q of the Q vector

space it spans. The rank of an R module M ⊆ K2 is defined as the rank over K of the K

vector space it spans. It is obvious that the rank of an R module M is not necessarily equal

to the size of a minimal set of R generators of M . The inner product of K can be extend in

a coefficient-wise manner to vectors of K2: < (x1, y1), (x2, y2) >=< x1, x2 > + < y1, y2 >.

Therefore, we can view any discrete R module M ⊆ K2 as a lattice.

The NTRU lattice is defined as Λqh = {(x, y) ∈ R2 : y = hx mod qR}, where h =

g · f−1 mod qR and f, g ←↩ DR,σ for some σ > 0. We require f, g ∈ R×q for convenience.

Usually, the NTRU problem over R is finding out a nonzero vector (x, y) such that ||(x, y)|| ≤
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τ for some target norm τ . In many cases, solving the NTRU problem for some τ > σ is

enough to break NTRU-like cryptosystems. The NTRU lattice has dimension 2n, rank 2

and volume qn · Vol2(R) = qn · |∆K |. In fact, if α1, · · · , αn is a Z basis of R, one can check

that the set {(α1, h · α1), · · · , (αn, h · αn); (0, q · α1), · · · , (0, q · αn)} is a Z basis of Λqh and

the set {(1, h), (0, q)} is a set of R generators of Λqh. Lemma 3.9 shows that for approximate

parameters, h ≈ U(R×q ). Thus the Gaussian heuristic predicts the shortest vectors of Λqh
have norm |∆K |

1
2n ·

√
nq
eπ , which implies that whenever σ < |∆K |

1
2n ·

√
q

2eπ , the lattice Λqh
admits a unusually short vector.

In our applications, the following lemma is also useful.

Lemma 4.9. Let f, g ∈ R×q such that (f, g) = R. Assume fGq − gFq = q for some

Fq, Gq ∈ R, then we have

Λqh = SpanR{(f, g), (Fq, Gq)}.

Proof. Note that Λqh = SpanR{(1, h), (0, q)} and by coprimality, such Fq, Gq exist. Assume

that M = SpanR{(f, g), (Fq, Gq)}, we shall prove this lemma by showing Λqh ⊆ M and

M ⊆ Λqh.

For any (x, y) ∈ M , ∃r1, r2 ∈ R such that (x, y) = (r1f + r2Fq, r1g + r2Gq). Since

gFq = fGq mod qR, we have Gq = hFq mod qR. Hence, r1g+r2Gq = h(r1f+r2Fq) mod qR.

Therefore, M ⊆ Λqh.

On the other hand, f(Fq, Gq)−Fq(f, g) = (0, q) ∈M and g(Fq, Gq)−Gq(f, g) = (−q, 0) ∈
M imply qR2 ⊆M . Meanwhile, by noticing that f−1(f, g) = (1, h) mod q for f−1 ∈ Rq such

that f · f−1 = 1 mod qR, we have Λqh ⊆M . The proof is finished.

4.3 The Key Generation Algorithm

In this subsection, we assume K = Q(ζl) is a cyclotomic field with R = OK and n = ϕ(l).

Now we propose the key generation algorithm as in [39] and give a detailed analysis. The

key generation algorithm is as follows:

Input: n, q ∈ Z+, σ > 0.

Output: A key pair (sk, pk) ∈ R2×2 ×R×q .

1. Sample f from DR,σ, if (f mod q) /∈ R×q , resample.

2. Sample g from DR,σ, if (g mod q) /∈ R×q , resample.

3. If ||f || ≥
√
nσ or ||g|| ≥

√
nσ, restart.

4. If (f, g) 6= R, restart.

5. Compute Fq, Gq ∈ R such that f ·Gq − g · Fq = q, e.g., using a Hermite Normal Form

algorithm in [7].

6. Use Babai rounding nearest plane algorithm to approximate (Fq, Gq) in the lattice

spanned by(f, g), let r(f, g) be the output, set (F,G) = (Fq, Gq) − r(f, g) for some

r ∈ R.

7. If ||(F,G)|| > nσ
√
l, restart.
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8. Return secret key sk =

[
f g

F G

]
and public key pk = h = g · f−1 ∈ R×q .

It is easy to check that Λqh = SpanR{(f, g), (F,G)} and the lattice Λ = SpanR{(f, g)}
is a sublattice of Λqh. The proofs of lemmata in this subsection are essentially the same

as those in [39], the differences are that we use the powerful basis of R and the canonical

embedding, other than the power basis and the coefficient embedding, to get uniform results

in any cyclotomic field. We put the proofs in Appendix D.

Now we give a lemma which is helpful to bound the rejection probability of Step 7 in this

key generation algorithm.

Lemma 4.10. Let σ ≥ 8n3.6 log n. Then, as n grows to infinity,

Prf,g←↩DR,σ (||(F,G)||2 > n2lσ2

2
+
q2ω(n3)

σ2
|(f, g) = R) = o(1),

where (F,G) is obtained as in Step 5 and 6.

We can now analyze the rejection probability of the key generation algorithm.

Lemma 4.11. Let q ≥ 64nζK(2) be a prime such that q - ∆K and the prime ideal de-

composition of qR in R is qR = P1 · · ·Pg. Assume σ ≥ max{8n3.6 log n, ω(n ln0.5 n) ·
q

1
g , ω(n

1
4 q

1
2 l−

1
4 )}, then the key generation algorithm terminates in polynomial time for suf-

ficient large n.

Finally, we conclude the following theorem.

Theorem 4.12. Let K be a cyclotomic field, R = OK , q ≥ 64nζK(2) be a prime such that

q - ∆K and the prime ideal decomposition of qR in R is qR = P1 · · ·Pg such that f · g = n,

ε > 0 be an arbitrary positive number. Assume that σ ≥ max{8n3.6 log n, ω(n ln0.5 n) ·
q

1
g , ω(n0.25q0.5l−0.25)}. Then the key generation algorithm proposed in this subsection ter-

minates in polynomial time, and the output matrix

[
f g

F G

]
is an R basis of Λqh for h =

g · f−1 mod qR. Meanwhile, if σ ≥ n
3
2

√
ln (8nq) · q 1

2 +(1+ f
2 )ε, the distribution of h is reject-

ed with probability c < 1 for some absolute constant c from a distribution whose statistical

distance from U(R×q ) is ≤ 28n

qbεnc
.

5 Collision Resistance Preimage Sampleable Functions

In [16], a general cryptographic primitive called Collision Resistance Preimage Sampleable

Functions is introduced. In this section, we shall give a detailed construction of CRPSF over

cyclotomic fields based on the strategy of [39].

5.1 Basic Definitions

First, we recall the definition of CRPSF.
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Definition 5.1. A collection of collision-resistant preimage sampleable functions, when given

a security parameter n, is specified by three PPT algorithms (TrapGen, SampleDom,

SamplePre) such that

1. Generating a function with trapdoor: TrapGen(1n) outputs (a, t), where a is the de-

scription of an efficiently-computable function fa : Dn 7→ Rn (for some efficiently-

recognizable domain Dn and range Rn depending on n), and t is some trapdoor in-

formation for fa. In the following, we fix some pair (a, t) returned by TrapGen(1n).

Note that the following properties need only hold for a probability negligibly closed to 1

over the choice of (a, t) outputted by TrapGen(1n).

2. Domain sampling with uniform outputs: SampleDom(1n) samples an x from some

(possibly non-uniform) distribution over Dn for which the distribution of fa(x) is uni-

form over Rn.

3. Preimage sampling with trapdoor: for every y ∈ Rn, SamplePre(t, y) samples from

the conditional distribution of x←↩ SampleDom(1n), given fa(x) = y.

4. One-wayness without trapdoor: for any PPT adversary A, the probability A(1n, a, y) ∈
f−1
a (y) ⊆ Dn is negligible, where the probability is taken over the choice of a, the target

value y ←↩ U(Rn) and the random coins of A.

5. Preimage min-entropy: for any y ∈ Rn, the conditional min-entropy of x←↩ SampleDom

(1n) given fa(x) = y is at least ω(log n).

6. Collision resistance without trapdoor: for any probabilistic polynomial time adversary

A, the probability that A(1n, y) outputs distinct x1, x2 such that fa(x1) = fa(x2) is

negligible, where the probability is taken over the choice of a and A’s random coins.

When a collection of functions (TrapGen, SampleDom, SamplePre) satisfies the

properties of 1-4 Definition 5.1, we call it one-way preimage sampleable functions (PSFs).

In fact, as pointed in [16], properties 5 and 6 of Definition 5.1 implies property 4.

For if not, then given a function fa, one can find a collision as follows: choose an x ←
SampleDom(1n), and obtain a preimage x′ of fa(x) from the adversarial inverter. Then

because x has large min-entropy given fa(x), we have x 6= x′ with overwhelming probability,

so x and x′ form a collision. Therefore, in constructions, we only need to prove a scheme

satisfy the properties 1, 2, 3, 5, 6 of Definition 5.1.

5.2 Detailed Constructions of CRPSF over Cyclotomic Fields

In this subsection, we give a concrete construction of CRPSF. It is essentially the same

with the construction proposed in [39]. We use NTRUCRPSF(n, q, σ, s) to represent the

corresponding CRPSF. The detailed construction is as follows.

1. TrapGen(1n, q, σ): By running the key generation algorithm in Subsection 4.3, we get

a public key h = g · f−1 ∈ (Rq)
× and a private key sk =

[
f g

F G

]
. The key h defines

function fh(z) = fh((z1, z2)) = hz1 − z2 ∈ Rq with domain Dn = {z ∈ R2 : ||z|| <
s ·
√

2n} and range Rn = Rq. The trapdoor string for fh is sk.
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2. SampleDom(1n, q, s): Sample z ←↩ DR2,s, if ||z|| ≥ s ·
√

2n, resample.

3. SamplePre(sk, t): To find a preimage in Dn for a target t ∈ Rn = Rq under fh

by using the trapdoor sk, sample z ←↩ DΛqh+c,s with Λqh = {(z1, z2) ∈ R2 : z2 =

hz1 mod qR} and c = (1, h− t). Return z.

Notice that for approximate σ and s, Theorem 4.12 shows that TrapGen is a PPT algo-

rithm, Theorem 2.5 implies that SampleDom and SamplePre are also PPT algorithms.

The following theorem shows that for approximate parameters, the three algorithms form a

valid CRPSF. Its proof is put in Appendix E.

Theorem 5.2. Assume σ ≥ max{8n3.6 log n, ω(n ln0.5 n)·q
1
g , ω(n0.25q0.5l−0.25), n

3
2

√
ln(8nq)·

q
1
2 +ε} for some ε ∈ (0, 1

2 ) and s ≥ n
3
2 · σ · ω(log n). Then the NTRUCRPSF(n, q, σ, s) is a

CRPSF as defined in Definition 5.1 against ploy(n) time adversaries, assuming the hardness

of the worst-case Ideal-SIVPγ over K against poly(n) time adversaries, with γ = Õ(n · s).

5.3 Claw-free CRPSF

We can also define and construct a kind of claw-free pairs of trapdoor functions as in

[16]. A collection of claw-free pairs of one-way/collision-resistent PSFs is defined similar to

Definition 5.1, but with the following differences: TrapGen outputs a pair a, a′ describing

functions fa, fa′ : Dn 7→ Rn (respectively), and their respective trapdoors t, t′. The preimage

sampler works the same way for both fa (given t) and fa′ (given t′). Then the hardness

condition is that no PPT adversary A, given a, a′, can find a pair x, x′ ∈ Dn such that

fa(x) = fa′(x
′). Each function fa, fa′ may itself also be collision-resistant in the usual way.

Constructing a collection of claw-free pairs of trapdoor functions is very similar. For

simplicity, we only describe the differences. The TrapGen algorithm produces (h, sk) as

above, as well as a uniform w ←↩ U(Rq). It outputs a pair of functions fh(z) = hz1 −
z2 mod qR and fh,w(z) = hz1 − z2 + w mod qR. The domain, range and the SampleDom

algorithm are the same as above. The SamplePre algorithm for fh(SamplePrefh) is

also as above, but the SamplePre algorithm for fh,w(SamplePrefh,w) is that for a target

t ∈ Rq, set t′ = t − w ∈ Rq, then run SamplePrefh for target t′. The output z of

SamplePrefh(sk, t′) is the required output of SamplePrefh,w(sk, t).

It is easy to check that the constructed Claw-free CRPSF satisfies the requirements

1, 2, 3, 5, 6 of Definition 5.1 by using the same proof procedure of Theorem 5.2. Claw-freeness

is based on the average-case hardness of R-ISIS×q,2,β with β = 2
√

2n · s. Suppose that an

adversary A can find a claw (z, z′) ∈ D2
n for fh and fh,w efficiently, we can construct a PPT

algorithm to solve R-ISIS×q,2,β . For an R-ISIS× instance (a1, a2, u), we set h = a−1
2 · a1 ∈ R×q

and w = a−1
2 · u mod qR. Then we call A to get a claw (z, z′) ∈ D2

n for fh and fh,w. Note

that we get hz1 − z2 = hz′1 − z′2 + w mod qR, hence, a1(z1 − z′1) + a2(z′2 − z2) = u mod qR.

Meanwhile, ||(z1 − z′1, z′2 − z2)|| ≤ 2
√

2n · s, it is a valid solution for R-ISIS×q,2,β .

There is a trivial reduction from R-SISq,m,β+
√
mn·s to R-ISIS×q,m,β for β ≥

√
mn · s,

by using Theorem 3.5. Suppose that we have an R-ISIS×q,m,β oracle O, the reduction is as

follows. For an R-SISq,m,β instance (a1, · · · , am), if (a1, · · · , am) /∈ (R×q )m, abort. Otherwise,
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we choose t ←↩ DRm,s for appropriate s and sent (a1, · · · , am;u =
∑m
i=1 ai · ti mod qR) to

the oracle O. Theorem 3.5 implies that ∆((a1, · · · , αm;
∑m
i=1 ai · ti), U((R×q )m×Rq)) ≤ 2δ+

24mnq−εmn for t←↩ DRm,s, where s ≥ n ·
√

ln (2mn(1+ 1
δ ))

π ·q 1
m+ε for some δ ∈ (0, 1

2 ) and ε > 0.

Thus for appropriate parameters, O shall output a valid solution z to R-ISISq,m,β for some β

that admits solutions. Then, for appropriate parameters, Lemma 2.11 shows the probability

that t = z is negligible. Meanwhile, by Lemma 2.7, ||t−z|| ≤ ||t||+ ||z|| ≤ β+
√
mn · s with

overwhelming probability. We have proved the claim.

In our application, we will set β =
√
mn · s. Overall, combing the fact ηε(R

m) ≤
√
m · n,

Theorem 2.5 and Theorem 5.2, we get the following theorem.

Theorem 5.3. Assume σ ≥ max{8n3.6 log n, ω(n ln0.5 n)·q
1
g , ω(n0.25·q0.5·l−0.25), n

3
2

√
ln(8nq)·

q
1
2 +ε} for some ε ∈ (0, 1

2 ) and s ≥ n
3
2 · σ · ω(log n). Then the constructed Claw-free

NTRUCRPSF(n, q, σ, s) is a Claw-free CRPSF as defined against ploy(n) time adversaries,

assuming the hardness of the worst-case Ideal-SIVPγ over K against poly(n) time adver-

saries, with γ = Õ(n · s).

Remark 5.4. Note that we can set s ≈ Õ(n
3
2 ·σ), q ≈ Õ(β ·

√
n) and β ≈ Õ(s ·

√
n). Hence,

by our choice of parameters in Theorem 5.2 and Theorem 5.3, we both have s = Õ(n7),

q = Õ(n8) and γ = Õ(n8). Combining Remark 4.7, the same estimate of s, q, γ is true for

any n ≥ 1000 (i.e. σ ≥ n4.1).

6 NTRU Signatures over Cyclotomic Fields

In this section, we describe the NTRU signatures over any cyclotomic field.

In [16], a method of constructing signature schemes through the collision-resistant preim-

age sampleable functions is proposed. Moreover, the constructed signature scheme is strongly

existentially unforgeable under adaptive chosen-message attacks. We shall use the Proba-

bilistic Full-Domain Hash scheme constructed in [16]. The parameter k is the randomizer

length, we can set k = n for simplicity. In fact, any k = ω(log n) will suffice for asymptotic

security. In this section, H : {0, 1}∗ 7→ Rn is a random oracle. Given a CRPSF(TrapGen,

SampleDom, SamplePre), the detailed construction of signature schemes is as follows.

• SigKeyGen(1n): let (a, t)←TrapGen(1n). The verification key is a and the signing

key is t.

• Sign(t,m): choose r ←↩ U({0, 1}k), let σ =SamplePre(t,H(m||r)) and output (r, σ).

• Verify(a,m, (r, σ)): if σ ∈ Dn, r ∈ {0, 1}k and fa(σ) = H(m||r), accept. Else, reject.

Proposition 6.1. The signature scheme above is strongly existentially unforgeable under

adaptive chosen-message attack.

Since we have constructed the NTRUCRPSF, we can use the NTRUCRPSF to design

a NTRU signature over any cyclotomic field. Note that applying the construction above

directly to our NTRUCRPSF, the signature of a message m is (σ1, σ2) ∈ R2 and a randomizer

r ∈ {0, 1}k satisfying hσ1 − σ2 = H(m||r). As observed in [39], we can reduce the signature
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length by eliminating the σ2 from the signature, since it can be easily recovered from the

remaining information. Given a NTRUCRPSF(TrapGen, SampleDom, SamplePre), the

NTRUSign(n, q, σ, s, k) is as follows.

• SigKeyGen(1n, q, σ, k): run TrapGen(1n, q, σ) of NTRUCRPSF(n, q, σ, s) to get a

verification key h ∈ R×q and a signing key sk for the function fh : Dn 7→ Rn. Here,

Dn = {(z1, z2) ∈ R2 : ||(z1, z2)|| <
√

2n · s}, Rn = Rq and fh((z1, z2)) = hz1 −
z2 mod qR. Return the secret sk and public key pk = h.

• Sign(sk,m): choose r ←↩ U({0, 1}k), let (σ1, σ2) ←SamplePre(sk,H(m, r)). Return

(r, σ1).

• Verify(pk,m, (r, σ1)): Compute t = H(m, r) and σ2 = hσ1 − t mod qR. If (σ1, σ2) ∈
Dn and r ∈ {0, 1}k, accept. Otherwise, reject.

Theorem 6.2. Let ε, n, q, σ and s satisfy the condition in Theorem 5.2 and k = ω(log n).

Then, under the random oracle model and the hardness assumption of the worst-case Ideal-

SIVPγ over K with γ = Õ(n · s), the NTRUSign(n, q, σ, s, k) defined above is strongly exis-

tentially unforgeable against adaptive chosen message attack.
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[1] Martin Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched ntru

assumptions. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology

– CRYPTO 2016, pages 153–178, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[2] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers.

Mathematische Annalen, 296(1):625–635, 1993.

[3] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security for a

ring-based fully homomorphic encryption scheme. In Martijn Stam, editor, Cryptography

and Coding, pages 45–64, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[4] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
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A Missing Proofs in Section 3

Proof of Lemma 3.1: We only need to prove a⊥(I) = q(L(a, I))∨, since the other equality

can be easily deduced by taking dual in both side of the equation a⊥(I) = q(L(a, I))∨.

We start with showing that a⊥(I) ⊆ q(L(a, I))∨. For any t ∈ a⊥(I) and z ∈ L(a, I), we

only need to show
∑m
i=1 Tr(ti · zi) = 0 mod qZ. Note that zi = ai · s+ q · z′i for some z

′

i ∈ J∨,

we have
m∑
i=1

Tr(ti · zi) = Tr(s ·
m∑
i=1

ti · ai) + q ·
m∑
i=1

Tr(ti · z
′

i).

By the definition,
∑m
i=1 ti · ai = q · r for some r ∈ R. Thus

∑m
i=1 Tr(ti · zi) ∈ qZ.

To complete the proof, we will show q(L(a, I))∨ ⊆ a⊥(I). For any x ∈ (L(a, I))∨, we

need to show q · xi ∈ J for all i ∈ [m] and
∑m
i=1 qxi · ai ∈ qR. Note that q(J∨)m ⊆ L(a, I),

we can take v(i) be the vectors in L(a, I) such that the i-th coordinate is q · s′ with s
′ ∈ J∨

and 0 elsewhere. We have Tr(x · v(i)) = Tr(xi · q · s
′
) ∈ Z, hence q · xi ∈ J . Note that ∀

t ∈ L(a, I),
∑m
i=1 Tr(xi · ti) ∈ Z. We write ti as ai · s+ q · t′i with t

′

i ∈ J∨, then

m∑
i=1

Tr(xi · ti) = Tr(s ·
m∑
i=1

ai · xi) +

m∑
i=1

Tr(qxi · t
′

i),

the latter sum is in Z, hence Tr(s ·
∑m
i=1 ai · xi) ∈ Z and we get

∑m
i=1 ai · xi ∈ R. Therefore

we have proved a⊥(I) = q(L(a, I))∨. We finish the proof.

Proof of Lemma 3.2: Let p denote the probability, over the randomness of a, that L(a, IS)

contains a non-zero vector t of infinity norm < B = qβ

|∆K |
1
n

. Recall that, t ∈ L(a, IS) if and

only if there is an s ∈ R∨ such that ti = ai · s mod qJ∨S for all i ∈ [m]. Meanwhile, for any

s ∈ R∨, all the elements of the coset s + qJ∨S satisfy the equation ti = ai · s mod qJ∨S for

the same ti. We give an upper bound of p by the union bound, summing the probabilities

p(t, s) = Pra[ ti = ai · s mod qJ∨S , ∀i ∈ [m]] over all possible values of t of infinity norm

< B and s ∈ R∨/(qJ∨S ). Since the {ai}mi=1 are independent, we have p(t, s) =
∏
i≤m pi(ti, s),

where pi(ti, s) = Prai [ti = ai · s mod qJ∨S ]. So, we have

p ≤
∑

t ∈ (J∨S )m

∀i, 0 < ||ti||∞ < B

∑
s∈R∨/qJ∨S

m∏
i=1

Prai [ti = ai · s mod qJ∨S ].

Note that qJ∨S = q
∏
i∈S q

−1
i R∨ = q ·

∏
i∈S q

−1
i · R · R∨ =

∏
i∈S′ qi · R∨, where S

′
= [g] \ S.

We have an isomorphism between J∨S /qJ
∨
S and J∨S /(qi1R

∨)⊕ · · · ⊕ J∨S /(qi|S′ |R
∨).

We claim that for the case pi(ti, s) 6= 0, there must be a set S′′ ⊆ S′ such that s, ti ∈∏
i∈S′′ qiR

∨ and s, ti /∈ qjR
∨ for all j ∈ S′ \ S′′. Otherwise, there are some j ∈ S′ such

that either s = 0 mod qjR
∨ and ti 6= 0 mod qjR

∨, or s 6= 0 mod qjR
∨ and ti = 0 mod qjR

∨.

In both cases, we have pi(ti, s) = 0, since ai ∈ R×q . Then, for j ∈ S′′, we have ti =

ai · s = 0 mod qjR
∨, regardless of the value of ai ∈ R×q . For any j ∈ S′ \ S′′, we have

ti = ai · s 6= 0 mod qjR
∨, the value of ai is unique, since s 6= 0 mod qjR

∨ and ai ∈ R×q . For

j ∈ [g]\S′, the value of ai can be arbitrary. Hence, overall, we get pi(ti, s) =

∏
j∈S∪S′′ (q

fj−1)∏g
j=1(qfj−1)

=
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∏
j∈S′\S′′ (q

fj − 1)−1. Set h =
∏
i∈S′′ qiR

∨ with S
′′ ⊆ S

′
and define a set D = {d : 1 ≤ d ≤

dS′ and ∃S′′ ⊆ S′ s.t. d =
∑
i∈S′′ fi}, where dS′ =

∑
i∈S′ fi. Then, we can rewrite the sum’s

conditions by

p ≤
∑
d∈D

∑
S
′′
⊆ S
′∑

i∈S′′
fi = d

h :=
∏
i∈S′′

qiR
∨

∑
s ∈ R∨/(qJ∨S )

s ∈ h

∑
t ∈ (J∨S )m

∀i, 0 < ||ti||∞ < B

ti ∈ h

m∏
i=1

∏
j∈S′\S′′

(qfj − 1)−1.

Let N(B, d) denote the number of t ∈ J∨S such that ||t||∞ < B and t ∈ h. We consider

two cases for N(B, d) depending on the magnitudes of d.

Case 1: Suppose that d ≥ β · n. Since t ∈ h =
∏
i∈S′′ qiR

∨, h is a fractional ideal, we have

(t) = tR∨ ⊆ h and (t) is a full-rank R-submodule of h. Hence, |N(t)| = N((t)) ≥ N(h) ≥
N(
∏
i∈S′′ qi · R∨) = (

∏
i∈S′′ N(qi))N(R∨) = qd · |∆K |−1. Thus |N(t)| ≥ qd

|∆K | . We conclude

that ||t||∞ ≥ 1√
n
||t|| ≥ |N 1

n (t)| ≥ q
d
n

|∆K |
1
n
≥ qβ

|∆K |
1
n

= B.

Case 2: Suppose now that d < β · n. Define B(l, c) = {x ∈ H : ||x − c||∞ < l}. Note

that σ(h) is a lattice of H, we get N(B, d) is at most the number of points of σ(h) in

the region B(B, 0). Let λ =
λ∞1 (h)

2 , then for any two elements v1 and v2 ∈ h, we have

B(λ,v1) ∩ B(λ,v2) = φ. For any v ∈ B(B, 0), we also have B(λ,v) ⊆ B(B + λ, 0).

Therefore, N(B, d) ≤ vol(B(B+λ,0))
vol(B(λ,0)) = (Bλ + 1)n ≤ (2qβ−

d
n + 1)n ≤ 22nqnβ−d, where we have

used the fact that λ∞1 (h) ≥ q
d
n

|∆K |
1
n

.

We claim that the number of s ∈ R∨/(qJ∨S ) and s ∈ h is qd
′

, where d
′

=
∑
i∈S′\S′′ fi. In

fact, if s satisfies the above conditions, s ∈ h/(qJ∨S ). Using a kind of isomorphism relation

which states that for any fractional ideals a, b and integral ideal c with b ⊆ a, ac/bc ∼= a/b,

we have

h/(qJ∨S ) =
∏
i∈S′′

qiR
∨/(

∏
i∈S′

qiR
∨) ∼= R/(

∏
i∈(S′\S′′ )

qi)

by setting a = R, b =
∏
i∈S′\S′′ qi and c =

∏
i∈S′′ qiR

∨. Hence, we have |h/(qJ∨S )| =

|R/(
∏
i∈(S′\S′′ ) qi)| = qd

′

. Using the above N(B, d)-bounds and the fact that the number of

subsets of S
′

is ≤ 2|S
′|, setting P =

∏m
i=1

∏
j∈S′\S′′ (q

fj −1)−1, we can rewrite the inequality

of p as

p ≤

 ∑
d∈D and d<β·n

+
∑

β·n≤d and d∈D

 ∑
S
′′
⊆ S
′∑

i∈S′′
fi = d

h =
∏
i∈S′′

qiR
∨

∑
s ∈ R∨/(qJ∨S )

s ∈ h

∑
t ∈ (J∨S )m

∀i, 0 < ||ti||∞ < B

ti ∈ h

P
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Therefore, we have

p ≤
∑

d∈D and d<β·n

∑
S
′′
⊆ S
′∑

i∈S′′
fi = d

h =
∏
i∈S′′

qiR
∨

∑
s ∈ R∨/(qJ∨S )

s ∈ h

∑
t ∈ (J∨S )m

∀i, 0 < ||ti||∞ < B

ti ∈ h

P

≤ 2|S
′
| max
d<β·n

qd
′

Nm(B, d)
∏

j∈S′\S′′
(qfi − 1)−m

= 2|S
′
| max
d<β·n

∏
j∈S′\S′′ q

fj∏
j∈S′\S′′ (q

fj − 1)m
·Nm(B, d)

= 2|S
′
| max
d<β·n

∏
j∈S′\S′′

(1 +
1

qfj − 1
)

Nm(B, d)∏
j∈S′\S′′ (q

fj − 1)(m−1)

≤ max
d<β·n

2|S
′
|+2mn

∏
j∈S′\S′′

(1 +
1

qfj − 1
) · qmnβ−md ·

∏
j∈S′\S′′

(
2

qfj
)m−1

≤ 2|S
′
|+2mn · qmnβ ·

∏
j∈S′

(1 +
1

qfj − 1
)(

2

qfj
)m−1

≤ 2|S
′
|(1+m)+2mn · qmnβ+(1−m)

∑
j∈S′ fj

≤ 22mn+(m+1)g · q−mnε.

We finish the proof.

Proof of Lemma 3.7: Thanks to the Chinese Remainder Theorem, we only need to bound

the probability that p · f ′ + a ∈ qi is no more than 1
qf

+ 2ε, for any i ≤ g. By Lemma 2.1

and the properties of ideal lattices, we have λ1(qi) = λn(qi) ≤
√
nN(qi)

1
n (
√
|∆K |)

1
n . By

Lemma 2.6 and 2.10, we know that f
′

mod qi is within distance 2ε to uniformity on R/qi,

so we have f
′

= −a/p mod qi with probability ≤ 1
qf

+ 2ε as we need.

Proof of Lemma 3.8: Set ε = 1
3n−1 . Note that λn(R) = λ1(R) ≤

√
n · (

√
|∆K |)

1
n . By

Lemma 2.6, we have ηε(R) ≤
√

2 ln (6n)
π ·

√
n · |∆K |

1
2n . Hence, Prx←↩DR,σ (||x|| ≥

√
n · σ) ≤

3n
3n−22−n. Meanwhile, σ satisfies the condition in Lemma 3.7, so we get

Prg←↩DR,σ (||g|| ≥
√
n · σ | g ∈ R×q ) =

Prg←↩DR,σ (||g|| ≥
√
n · σ and g ∈ R×q )

Prg←↩DR,σ (g ∈ R×q )

≤
Prg←↩DR,σ (||g|| ≥

√
n · σ)

Prg←↩DR,σ (g ∈ R×q )

≤ 3n

3n− 2
· 2−n · 1

1− n( 1
q + 2ε)

≤ 23−n.

Hence, we have ||f ′ ||, ||g|| ≤
√
n · σ with probability ≥ 1 − 23−n. Then we conclude that

||f || ≤ 1 + ||p||∞ · ||f
′ || ≤ 2

√
n · σ · ||p||∞ with the same probability.

Proof of Lemma 3.9: For a ∈ R×q , we define Pra = Prf1,f2
[(y1 + pf1)/(y2 + pf2) = a],

where fi ←↩ D×σ,zi . It is suffice to show that |Pra− (qf−1)−g| ≤ 22n+5q−bεnc · (qf−1)−g =: ε′

except a fraction ≤ 27nq−2nε of a ∈ R×q . Note that a1f1 +a2f2 = a1z1 +a2z2 is equivalent to
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(y1 + pf1)/(y2 + pf2) = −a2/a1 in R×q . Meanwhile, −a2/a1 ←↩ U(R×q ) when a ←↩ U(R×q )2,

so we get Pra := Prf1,f2
[a1f1 + a2f2 = a1z1 + a2z2] = Pr−a2/a1

for a ∈ (R×q )2.

The set of solutions (f1, f2) ∈ R2, fi ←↩ D×σ,zi , to the equation a1f1 + a2f2 = a1z1 +

a2z2 mod qR is z + a⊥×, where z = (z1, z2) and a⊥× = a⊥ ∩ (R×q + qR)2. Therefore

Pra =
DR2,σ(z + a⊥×)

DR,σ(z1 +R×q + qR) ·DR,σ(z2 +R×q + qR)
.

Note that a ∈ (R×q )2, we know for any t ∈ a⊥, t2 = −t1 a1

a2
mod qR, so t1 and t2 are in the

same ideal I of Rq. It follows that a⊥× = a⊥ \ (∪I⊆Rqa⊥(I)) = a⊥ \ (∪S⊆[g],S 6=φa
⊥(IS)).

Similarly, we have R×q + qR = R \ (∪S⊆[g],S 6=φ(IS + qR)). Using the inclusion-exclusion

principal, we get

DR2,σ(z + a⊥×) =
∑
S⊆[g]

(−1)|S| ·DR2,σ(z + a⊥(IS)), (4)

DR,σ(zi +R×q + qR) =
∑
S⊆[g]

(−1)|S| ·DR,σ(zi + IS + qR), ∀ i ∈ {1, 2}. (5)

In the rest of the proof, we show that, except for a fraction ≤ 27nq−2nε of a ∈ (R×q )2:

DR2,σ(z + a⊥×) = (1 + δ0) · (qf − 1)g

q2n
,

DR,σ(zi +R×q + qR) = (1 + δi) ·
(qf − 1)g

qn
, ∀ i ∈ {1, 2},

where |δi| ≤ 22n+2q−bεnc for i ∈ {0, 1, 2}. These imply that |Pra − (qf − 1)−g| ≤ ε′.
Handling (4): When |S| ≤ εn, we apply Lemma 3.4 with m = 2 and δ = q−n−fbεnc. Note

that qR2 ⊆ a⊥(IS) ⊆ R2, we have |R2/a⊥(IS)| = |R2/(qR2)|
|a⊥(IS)/(qR2)| . Meanwhile, |R2/(qR2)| =

q2n and |a⊥(IS)/(qR2)| = |IS | = qn−f|S|, since |Rq|/|IS | = |Rq/IS | = qf|S|. Therefore for all

except a fraction ≤ 27n

q2nε of a ∈ (R×q )2,∣∣∣DR2,σ(z + a⊥(IS))− q−n−f|S|
∣∣∣ = |DR2,σ,−z(a⊥(IS))− q−n−f|S|| ≤ 2δ.

When |S| > εn, we can choose S
′ ⊆ S with |S′ | = bεnc. Then we have a⊥(IS) ⊆

a⊥(IS′ ) and hence DR2,σ,−z(a⊥(IS)) ≤ DR2,σ,−z(a⊥(IS′ )). Using the result proven above,

we conclude that DR2,σ,−z(a⊥(IS)) ≤ 2δ + q−n−fbεnc. Overall, we get∣∣∣∣DR2,σ(z + a⊥×)− (qf − 1)g

q2n

∣∣∣∣ =

∣∣∣∣∣DR2,σ(z + a⊥×)−
g∑
k=0

(−1)k
(
g
k

)
q−n−fk

∣∣∣∣∣
≤ 2g+1δ + 2

g∑
k=dεne

(
g
k

)
q−n−fbεnc

≤ 2g+1(δ + q−n−fbεnc)

for all except a fraction ≤ 27n

q2nε of a ∈ (R×q )2, since the are 2g choices of S. The δ0 satisfies

|δ0| ≤ q2n

(qf−1)g
2g+1(δ + q−n−fbεnc) = ( qf

qf−1
)g · 2g+2 · q−fbεnc ≤ 22g+2q−fbεnc ≤ 22n+2q−bεnc as

required.
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Handling (5): Note that for any S ∈ [g], det(IS + qR) = |R/JS | ·
√
|∆K | = qf|S| ·

√
|∆K |,

where JS is the ideal of R such that JS/(qR) = IS . By Minkowski’s Theorem, we have

λ1(IS+qR) = λn(IS+qR) ≤ |∆K |
1

2n ·
√
n ·q

f|S|
n . Lemma 2.6 implies that σ > ηδ(IS+qR) for

any |S| ≤ g
2 with δ = q−

n
2 . Therefore, Lemma 2.10 shows that |DR,σ,−zi(IS +qR)−q−f|S|| ≤

2δ. For the case |S| > g
2 , we can choose S

′ ⊆ S with |S| ≤ g
2 . Using the same argument

above, we get DR,σ,−zi(I
′

S + qR) ≤ DR,σ,−zi(IS + qR) ≤ 2δ + q−
f·g
2 . Therefore,∣∣∣∣DR,σ(zi +R×q + qR)− (qf − 1)g

qn

∣∣∣∣ =

∣∣∣∣∣DR,σ(zi +R×q + qR)−
g∑
k=0

(−1)k
(
g
k

)
q−fk

∣∣∣∣∣
≤ 2g+1δ + 2

g∑
k= g

2

(
g
k

)
q−

n
2

≤ 2g+1(δ + q−
n
2 )

which leads to the desired bound on δi, i = 1, 2.

B Proof of Theorem 3.15

We first show the following lemmata. Note that in general, we require that q · α ≥ ω(1).

Lemma B.1. For x←↩ χ, we have Pr[||x|| ≥ (

√
n·l̂
2 +

√
n · q · ξ)] ≤ e−Ω(n).

Proof. Note that x = bx′eR for some x′ ←↩ Ds with s = q · ξ. Meanwhile, we have

E(et·||x
′||2) = (

√
π

π−t·s2 )n for any x′ ←↩ Ds and 0 < t < π
s2 . Therefore, by taking t = 3π

4s2

and using the Markov’s inequality, we get Pr[||x′|| >
√
n · s ·

√
4

3π ] ≤ en·(ln 2−1) = e−Ω(n).

By our definition, we also have x =
∑n
k=1bx′ke ·

−→p k, where x′ =
∑n
k=1 x

′
k ·
−→p k. Then,

||x− x′|| ≤
√
n·l̂
2 , which implies that ||x|| ≤ ||x′||+

√
n·l̂
2 . We get the claimed result.

Lemma B.2. We have ||f · c||c∞ ≤ 3
√
n · σ · (

√
n · l̂ +

√
n · q · ξ) · ||p||2∞ with probability

≥ 1− e−Ω(n).

Proof. Note that f · c = pgs + pfe + fm, we have ||f · c||c∞ ≤ ||f · c||c ≤ C1 · ||f · c|| ≤
C1 · (||pgs|| + ||pfe|| + ||fm||), where C1 =

√
rad(l)
l . Meanwhile, we have ||pgs|| ≤ ||p||∞ ·

||g|| · ||s|| ≤ ||p||∞ ·
√
n · σ · (

√
n·l̂
2 +

√
n · q · ξ) and ||pfe|| ≤ ||p||2∞ · 2

√
n · σ · (

√
n·l̂
2 +

√
n · q · ξ)

with probability ≥ 1 − e−Ω(n). Since m ∈ Rp, by reducing modulo the p · σ(−→p k)’s, we can

represent m as
∑n
k=1 εk · p ·

−→p k with εk ∈ (− 1
2 ,

1
2 ]. Therefore, we have ||fm|| ≤ ||f || · ||m|| ≤

2
√
n ·σ · ||p||2∞ ·

√
n·l̂
2 . Overall, we conclude that ||f ·c||c∞ ≤ 3

√
n ·σ · (

√
n · l̂+

√
n ·q ·ξ) · ||p||2∞

with probability ≥ 1− e−Ω(n), since C1 ≤ 1.

Lemma B.2 means that we can decrypt successfully whenever 3
√
n · σ · (

√
n · l̂+

√
n · q ·

ξ) · ||p||2∞ < q
2 . The CPA security can be proved easily through the same process as Lemma

16 of [40] by using Lemma 3.9 and Theorem 3.12.
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C Absolute Upper Bound of L(2) over Cyclotomic Fields

For cyclotomic field K = Q(ζl) with l = pk, we have L(2) = p2

p2−1 < 2. For general

cyclotomic fields K = Q(ζl) with l = pα1
1 · · · p

αt
t and n = ϕ(l), assume p1 < · · · < pt,

then L(2) =
∏t
i=1(1 − p−2·fi

i )−gi , where fi is the order of pi mod l/pαii and gi =
ϕ(l/p

αi
i )

fi
.

Meanwhile, ei · fi · gi = n, where ei = ϕ(pαii ).

Case 1: (fi ≥ 2 for all i = 1, · · · , t). Note that gi ≤ min{pi, n}, we have

L(2) =

t∏
i=1

(1− p−2·fi
i )−gi = exp(−gi

t∑
i=1

ln(1− p−2·fi
i ))

≤ exp(−pi
t∑
i=1

ln(1− p−4
i ))

≤ exp(

t∑
i=1

(p−3
i + p−7

i )) ≤ e 1
2 + 1

6 .

That is to say, in this case, there is an absolute upper bound e
1
2 + 1

6 for L(2).

Case 2: (There are some i such that fi = 1). In fact, in this annoying case, there is

exactly one i ∈ [t] such that fi = 1. It is t. Then, we have

L(2) ≤ e 1
2 + 1

6 · (1 +
1

p2
t − 1

)gt ,

where gt = ϕ(pα1
1 · · · p

αt−1

t−1 ). We set K = pα1
1 · · · p

αt−1

t−1 . Note that, in this case, pt =

1 mod pα1
1 · · · p

αt−1

t−1 , i.e. pt = N · K + 1 for some N ≥ 1. Therefore, (1 + 1
p2
t−1

)gt =

(1 + 1
N2·K2+2N ·K )ϕ(K) < (1 + 1

ϕ(K) )ϕ(K) < e, where we have used that the function (1 + 1
x )x

is a monotone increasing function and limx→∞(1 + 1
x )x = e. Hence, in this case, an absolute

upper bound for L(2) is e1+ 1
2 + 1

6 .

D Missing Proofs in Subsection 4.3

Proof of Lemma 4.10: Let (Fq, Gq) = (Fq, Gq)
∗ + (Fq, Gq)

pro, here (Fq, Gq)
∗ denotes

the projection of (Fq, Gq) orthogonally to the plain SpanK{(f, g)} = SpanQ{(f · −→p 1, g ·
−→p 1), · · · , (f ·−→p n, g·−→p n)} and (Fq, Gq)

pro denotes the projection of (Fq, Gq) into SpanK{(f, g)}.
Then, (F,G) = (Fq, Gq) − r(f, g) := (Fq, Gq)

∗ + (ef , eg) for some r ∈ R and ||(F,G)||2 =

||(Fq, Gq)∗||2 + ||(ef , eg)||2.

We first bound ||(Fq, Gq)∗||. Note that ||(Fq, Gq)∗|| ≤ minr∈K ||(Fq, Gq)−r(f, g)||, taking

r = f−1Fq (here f−1 is the inverse of f in K) shows that ||(Fq, Gq)∗|| ≤ ||(0, qf−1)|| =

q||f−1||. Here, we have used the fact Gq = qf−1 + g(f−1Fq). By using Lemma 2.13 with

t = ω(n)√
2

, we have

Prf←↩DR,σ (||f−1|| ≥ ω(n
3
2 )

σ
) ≤ o(1).

This remains the case when conditioning on (f, g) = R, since the probability that (f, g) = R

is bounded from below by a constant. Overall, we have ||(Fq, Gq)∗|| ≤ q·ω(n
3
2 )

σ holds except

with probability ≤ o(1).
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To bound ||(ef , eg)||, note that ||(ef , eg)|| ≤
√
nl
2 · ||(f, g)||. By using Lemma 2.7, we can

deduce that Prf,g←↩DR,σ (||(f, g)|| ≤
√

2nσ) ≥ 1 − 22−n. For the same reason as above, this

remains the case when conditioning on (f, g) = R. Overall, we get ||(ef , eg)|| ≤ n
√
l√

2
σ except

with probability ≤ o(1). The proof is finished.

Proof of Lemma 4.11: We only need to bound the rejection probability of the algorithm by

1− c for an absolute constant c for sufficient large n. For i ∈ {3, 4, 7}, we use pi to represent

the rejection probability in Step i, i.e.

• p3 is the probability that ||f || ≥
√
nσ or ||g|| ≥

√
nσ with f, g ←↩ D×R,σ.

• p4 is the probability that (f, g) 6= R and ||f ||, ||g|| <
√
nσ with f, g ←↩ D×R,σ.

• p7 is the probability that ||(F,G)|| > nσ
√
l, (f, g) = R and ||f ||, ||g|| <

√
nσ with

f, g ←↩ D×R,σ.

For i ∈ {3, 4, 7}, we define p′i as pi except that f and g are independently sampled from

DR,σ rather than D×R,σ. Let p denote the rejeciton probability in Step 1, then, by the union

bound, we have the rejection probability of Step 1 and 2 is ≤ 2p. Hence, for i ∈ {3, 4, 7}, we

have pi ≤ p′i
1−2p .

By Lemma 3.7 and the choice of σ, we have p ≤ 1
32ζk(2) for sufficient large n. Lemma 2.9

imply that p′3 ≤ 21−2n. The choice of σ and Lemma 4.6 shows that p′4 ≤ 1− 1
2ζK(2) + o(1).

Finally, Lemma 4.10 implies p′7 = o(1). Therefore, for sufficient large n, we have p′3+p′4+p′7 ≤
1− 1

4ζK(2) . The total rejection probability satisfies p3 + p4 + p7 ≤ p′3+p′4+p′7
1−2p ≤ 1− 1

8ζK(2) , as

required.

E Proof of Theorem 5.2

The sets Dn and Rn are obviously recognizable. Note that η2−2n(R2) ≤
√

ln(4n(1+22n))
π ·

λn(R2) and λn(R2) = λ1(R2) ≤
√

2n · det
1

2n (R2) =
√

2n · (|∆K |)
1

2n ≤
√

2 · n, we have s ≥
η2−2n(R2) and Theorem 2.5 implies that such a z can be efficiently sampled in SampleDom.

Further, Lemma 2.9 shows that ||z|| < s ·
√

2n with probability 1− 2−4n.

To show property 2 of Definition 5.1, we apply Theorem 3.5 with δ = n−ω(1) to con-

clude that except for a fraction ≤ 27n · q−2nε of (a1, a2) ←↩ U((R×q )2), we have ∆(a1z1 −
a2z2;U(Rq)) ≤ 2δ with (z1, z2) ←↩ DR2,s. Since the map f : x 7→ a−1

2 x is a bijection

of Rq to itself, we have ∆(a1a
−1
2 z1 − z2;U(Rq)) = ∆(a1z1 − a2z2;U(Rq)) ≤ 2δ. More-

over, when a1, a2 ←↩ U(R×q ) are chosen independently, h = a−1
2 a1 ←↩ U(R×q ). We have

∆(hz1 − z2;U(Rq)) ≤ 2δ with (z1, z2) ←↩ DR2,s, except for a fraction of ≤ 27n · q−2εn of

h ∈ R×q . Finally, by Theorem 4.12, the h generated by TrapGen is obtained by rejec-

tion with constant rejection probability c < 1 from a distribution within statistical distance

28nq−bεnc of U(R×q ). It follows that ∆(hz1 − z2;U(Rq)) ≤ 2δ with (z1, z2) ←↩ DR2,a except

with probability ≤ 1
1−c · (2

7nq−2εn + 28nq−bεnc) = q−Ω(n) over the choice of the public key

h, as required.

To show properties 3 and 5 of Definition 5.1, we first observe that, for any fixed t ∈ Rq,
the conditional distribution of z ←↩ DR2,s, given fh(z) = hz1 − z2 = t ∈ Rq, is exactly
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ρs(z)
ρs(Λ

q
h+c)

= DΛqh+c,s(z) with c = (1, h − t). Second, sample a vector z ←↩ DΛqh+c,s is

equivalent to sample a vector z′ ←↩ DΛqh,s,−c and add a vector c. One of Z-bases of Λqh is

(f, g)−→p 1, · · · , (f, g)−→p n; (F,G)−→p 1, · · · , (F,G)−→p n. Moreover, since for any i ∈ [n], we have

||−→p i||∞ = 1, ||(f, g)−→p i|| ≤ ||−→p i||∞ · ||(f, g)|| <
√

2n ·σ and ||(F,G)−→p i|| ≤ n ·σ ·
√
l. Theorem

2.5 implies we can efficiently get a sample from DΛqh+c,s for any s ≥ n
3
2 · σ · ω(log n).

This proved the property 3. Note that η2−2n(Λqh) ≤
√

ln(2n(1+22n))
π ·

√
2n · det

1
2n (Λqh) ≤

n1.5 · q 1
2 · ln0.5 n ≤ s for n ≥ 500. Lemma 2.11 indicates that DΛqh,s,−c(x) ≤ 1+2−2n

1−2−2n · 2−2n

for any x ∈ Λqh. Property 5 is also satisfied except with probability q−Ω(n) over the choice

of the public key h by Theorem 4.12 and the proof of property 2.

At the end, we show property 6 of Definition 5.1. Let A be a collision-finding algorithm

for NTRUCRPSF with running time poly(n) and has advantage δ = 1
poly(n) over the choice of

the public key h and the randomness of A. By Theorem 4.12, the success probability of A over

the the choice of h←↩ U(R×q ) and the randomness of A is at least δ′ = (1−c)δ−28nq−bεnc =
1

poly(n) . We construct an algorithm for R-SISq,2,β with β = 2
√

2n · s. It works as follows:

on input (a1, a2) ←↩ U(R2
q), if (a1, a2) /∈ (R×q )2, aborts. Otherwise, B calls A on input

h = a−1
2 a1. If A succeeds, it outputs (z1, z2) 6= (z′1, z

′
2) with ||(z1, z2)||, ||(z′1, z′2)|| <

√
2n · s

such that a1(z1−z′1)+a2(z′2−z2) = 0 mod qR. Then B outputs w = (z1−z′1, z′2−z2). Note

that w is a valid solution of R-SISq,2,β . Condition on (a1, a2) ∈ (R×q )2, the distribution of h

given to A is U(R×q ) and thus A succeeds with probability ≥ δ′. Since (a1, a2) ∈ (R×q )2 with

probability ≥ 1− 2n
q , it follows that B succeeds with probability ≥ (1− 2n

q )δ′ = 1
poly(n) .
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