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Abstract: Neural Networks (NN) provide a powerful
method for machine learning training and inference. To
effectively train, it is desirable for multiple parties to
combine their data – however, doing so conflicts with
data privacy. In this work, we provide novel three-party
secure computation protocols for various NN building
blocks such as matrix multiplication, convolutions, Rec-
tified Linear Units, Maxpool, normalization and so on.
This enables us to construct three-party secure proto-
cols for training and inference of several NN architec-
tures such that no single party learns any information
about the data. Experimentally, we implement our sys-
tem over Amazon EC2 servers in different settings.
Our work advances the state-of-the-art of secure com-
putation for neural networks in three ways:

1. Scalability: We are the first work to provide neural
network training on Convolutional Neural Networks
(CNNs) that have an accuracy of > 99% on the
MNIST dataset;

2. Performance: For secure inference, our system out-
performs prior 2 and 3-server works (SecureML,
MiniONN, Chameleon, Gazelle) by 6×-113× (with
larger gains obtained in more complex networks).
Our total execution times are 2 − 4× faster than
even just the online times of these works. For se-
cure training, compared to the only prior work (Se-
cureML) that considered a much smaller fully con-
nected network, our protocols are 79× and 7× faster
than their 2 and 3-server protocols. In the WAN set-
ting, these improvements are more dramatic and we
obtain an improvement of 553×!

3. Security: Our protocols provide two kinds of secu-
rity: full security (privacy and correctness) against
one semi-honest corruption and the notion of pri-
vacy against one malicious corruption [Araki et
al. CCS’16]. All prior works only provide semi-
honest security and ours is the first system to pro-
vide any security against malicious adversaries for
the secure computation of complex algorithms such
as neural network inference and training.

Our gains come from a significant improvement in com-
munication through the elimination of expensive gar-
bled circuits and oblivious transfer protocols.
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1 Introduction
Neural networks (NN) have proven to be a very ef-

fective tool to produce predictive models that are widely
used in applications such as healthcare, image classifi-
cation, finance, and so on. The accuracy of these models
get better as the amount of training data increases [41].
Large amounts of training data can be obtained by pool-
ing in data from multiple contributors, but this data is
sensitive and cannot be revealed in the clear due to pro-
prietary reasons or compliance requirements [5, 15]. To
enable training of NN models with good accuracy, it is
highly desirable to securely train over data from multi-
ple contributors such that plaintext data is kept hidden
from the training entities.

In this work, we provide a solution for the above
problem in the N server model. We model the problem
as follows: a set ofM data owners wish to execute train-
ing over their joint data using N servers. First, these M
parties send “secret shares” of their input data to the N
servers. The servers collectively run an interactive pro-
tocol to train a neural network over the joint data to
produce a trained model that can be used for inference.
The security requirement is that no individual party or
server learns any information about any other party’s
training data. We call this the N-server model. We focus
on the setting of N = 3, while M can be arbitrary and
develop protocols specific for the N = 3 servers setting.
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Fig. 1. Architecture

The trained model can be kept hidden from any sin-
gle server/party and retained as secret shares between
the servers (or reconstructed to obtain the model in the
clear). Even if the model is retained as secret shares be-
tween the N servers, the inference/prediction can still
be executed using the trained model on any new in-
put – keeping the model, the new input, and the pre-
dicted output private from the other parties as well as
the servers. For example, a group of M hospitals, each
having sensitive patient data (such as heart rate read-
ings, blood group, sugar levels etc.) can use the above
architecture to train a model to run Machine Learning
as a Service (MLaaS) and help predict some disease or
irregular health behavior. The system can be set up such
that the patient’s sensitive input and predicted output
are only revealed to the patient, and remains hidden
from everyone else. The architecture is in Figure 1.

Secure multi-party computation (MPC) [8, 17, 25,
40] and specifically 3-party computation [6, 9, 10, 14,
18, 23, 28, 32] provide a generic solution for the above
problem. However, general purpose MPC/3PC work
over low-level circuits (either arithmetic or boolean) and
for complex tasks such as neural network training, this
leads to highly inefficient protocols that can take “for-
ever to execute” (also pointed out by [21, 26, 33, 36]).

1.1 Our Contributions

In this work, we build specialized protocols in the
3-server setting that are tailored to popular functions
in neural networks and improve the state-of-the-art
in confidential machine learning in three ways. First,
these protocols help us demonstrate for the first time
the practicality of MPC to broad class of NN training
algorithms including the rich class of Convolutional
Neural Networks (CNN). Our techniques are powerful
enough to train CNNs that produce an inference ac-
curacy of greater than 99% on the MNIST dataset [3].
In contrast, SecureML [33], the prior state-of-the-art
on secure NN training, considered only a much smaller
fully connected network that gave an accuracy of 93.4%

on MNIST dataset. Second, our protocols when evalu-
ated on benchmarks considered in prior works such as
[26, 30, 33, 36] outperforms by at least 6× and up to
533×. Third, while all prior works could only provide
security against semi-honest adversaries, our protocols
also give meaningful security against malicious adver-
saries, namely, privacy against malicious adversaries
(formalized by [6]). Below, we elaborate on each of
these points.

Scalability: Our main technical contribution is the con-
struction of efficient 3-party protocols for various func-
tions commonly used in machine learning algorithms
– linear layer and convolutions (that are essentially
matrix multiplications), Rectified Linear Unit (ReLU),
Maxpool, normalization and their derivatives1. These
protocols are compatible with each other and for a given
NN training or inference algorithm, these can be com-
bined efficiently to give the required secure computation
protocol. The modularity of our protocols allows us to
easily run experiments on a variety of neural networks
including a 4-layer LeNet CNN [27].

Performance. Computing neural networks requires
repeated computation of a mix of linear layers or convo-
lutions followed by non-linear activation functions such
as ReLU and Maxpool. All prior works [26, 30, 33] use
a secure computation protocol for arithmetic circuits
to compute the linear layers and Yao’s garbled cir-
cuits to compute the non-linear activations. These two
protocols are not very compatible with each and prior
works use interconversion protocols to switch between
arithmetic and garbled circuit encodings. Moreover,
as noted by prior works [6, 33], garbled circuits incur
a multiplicative overhead proportional to the security
parameter in communication and are a major source of
inefficiency. Our contribution is to construct new and
efficient protocols for non-linear functions such as ReLU
and Maxpool that completely avoid the use of garbled
circuits and give at least 8× improvement in com-
munication complexity. Furthermore, all our protocol
maintain the invariant that parties start with shares of
input over the ring Z264 (for system efficiency) and end
with shares of output over the same ring. Hence, these
protocols are inherently compatible with the protocol
for linear layers and we get rid of all interconversion
protocols as well. We discuss our concrete performance

1 We can also support other non-linear activation functions such
as Leaky ReLU or piecewise linear functions.
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improvements over prior works in Section 1.2.

Security. Our protocols provide two types of security.
First, they provide full security (privacy and correct-
ness) against the semi-honest corruption of a single
server and any subset of clients, i.e., no server (together
with any subset of clients) can learn any information
about the inputs of the honest clients when it follows
the protocol honestly2. Second, they provide privacy
against any single malicious server, a notion formalized
by Araki et al. [6]. Privacy against malicious server
informally guarantees that a malicious server cannot
learn anything about the inputs or outputs of the
honest clients even if it deviates arbitrarily from the
protocol specification (as long as the outputs of the
computation are not revealed to the adversary).

All our protocols are fundamentally information-
theoretically secure (i.e., adversaries can be computa-
tionally unbounded). Hence, for N = 3, as considered
in our work, single corruption is the best corruption
threshold that one could hope to achieve3 [19]. However,
in practice, we use pseudorandom functions to gener-
ate shared randomness as well as point-to-point secure
channels between all pairs of parties thereby relying on
computational assumptions for the implementation.

1.2 Experimental Results

To illustrate the generality and performance of our
protocols, we consider the following 3 neural networks
for the MNIST dataset – (A) a 3-layer DNN from Se-
cureML [33], (B) a 4-layer CNN from MiniONN [30]
and (C) a 4-layer LeNet network [27]. We evaluate our
protocols both on secure training and secure prediction
in the LAN/WAN settings and provide details below.

Secure Training. We train all the above networks
on the MNIST dataset [3]. The overall execution time
of our MPC protocol for Network A model over a LAN
network is roughly an hour. For our largest CNN (Net-
work C) our secure protocols execute in under 10 hours
to achieve > 98% accuracy and in under 30 hours to
achieve > 99% accuracy.

2 When the trained model is revealed to the adversary, we give
the standard guarantee that nothing is revealed about honest
clients’ inputs beyond the model.
3 Secure computation protocols that tolerate a collusion of two
servers (i.e., dishonest majority setting) require heavy public key
cryptographic tools such as oblivious transfer.

Comparison with prior work. We remark that this is
the first work that implements training for networks
B and C and these networks are much larger and
give much higher accuracy (> 98%) than network A
(93%) considered by prior work [33]. The only prior
work to consider secure training of neural networks
is SecureML [33] that provides computationally secure
protocols against a single semi-honest adversary in the
2-server and 3-server models for Network A. Compared
to their 2-server protocols, we give an improvement of
79× and 553× in the LAN and WAN settings, respec-
tively. They implement their 3-server protocol in the
LAN setting only, and our protocols outperform this by
7×. SecureML also split their protocols into an offline
(independent of data) and online phase. Even when
comparing their online time only with our total time,
we obtain a 2.8× improvement over their 3-server pro-
tocols. Our drastic improvements can be attributed to a
roughly 8× improvement in communication complexity
for computing non-linear functions and the elimination
of expensive oblivious transfer protocols from the of-
fline phase, which are another major source of overhead.

Secure Inference. Next, we consider the problem
of secure inference for the same networks when the
trained model is secret shared between the servers.
For the smallest network A, a single prediction takes
roughly 0.04s and 2.43s in the LAN and WAN settings,
respectively. For the largest network C, a single predic-
tion takes 0.23s in LAN and 4.08s in the WAN setting.
As is observed by previous works as well, doing batch
predictions is much faster in the amortized sense than
doing multiple predictions serially. For instance, for
network C, a batch of 128 predictions take only 10.82s
in the LAN and 30.45s in the WAN setting.
Comparison with prior work. There has been a large
effort on this problem, both in the 2-server [26, 30, 33]
and 3-server settings [36]. As our experiments show, the
total execution time of our protocols are 113× faster
than [33], 71.7× faster than MiniONN [30], 35.5× faster
than Chameleon [36] and 6.23× faster than Gazelle [26].
Our total execution times are also faster than just the
online execution times of these protocols and we obtain
improvements of 4.2× over SecureML, 44.15× over Min-
iONN, 17.9× over Chameleon and 2.5× over Gazelle.
These gains come from a 74.2×, 3.2× and 7.9× reduc-
tion in communication over MiniONN, Chameleon, and
Gazelle, respectively4.

4 [33] do not explicitly list their communication complexity.
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Concurrent and Independent Work. In concur-
rent and independent work, ABY3 [31] achieve similar
results but using techniques fundamentally different
from ours. They theoretically describe how to con-
vert their protocols to achieve malicious security and
provide implementation and experimental numbers for
semi-honest secure protocols. In contrast, our perfor-
mance numbers are for both semi-honest security as
well as malicious privacy. SecureNN protocols are ex-
tremely simple to implement giving them an advantage
in real world deployment (as they do not require the
heavy optimizations that are required when using gar-
bled circuits). A more detailed comparison is provided
in Section 7.

1.3 Organization of the paper

We begin with a high-level technical overview of our
protocols in Section 2. Next, we describe the security
model and the neural network training algorithms that
we use in Section 3. Section 4 contains our low-level 3-
server protocols that are used as building blocks in our
main protocols for various functionalities. In Section 5,
we describe protocols for all machine learning functions
such as matrix multiplication, convolution, ReLU (its
derivative), Maxpool (its derivative) and so on. We dis-
cuss theoretical efficiency of our protocols in Section 6.
Finally, we present a detailed evaluation of our exper-
iments in Section 7. We discuss related works in Ap-
pendix A, provide details on the number encoding and
network architectures in Appendix B, C, and provide
security proofs in Appendix D.

2 Technical Overview
Secure protocols for neural network algorithms gen-

erally follow the paradigm of executing arithmetic com-
putation, such as matrix multiplication and convolu-
tions, using Beaver triplets or homomorphic encryp-
tion and executing Boolean computation, such as ReLU,
Maxpool and its derivatives, using Yao’s garbled cir-
cuits. In order to make these protocols compatible with
each other, share conversion protocols are also used to
move from an arithmetic encoding (either arithmetic
sharing or homomorphic encryption ciphertext) to a
Boolean encoding (garbled encoding) and vice-versa.
The communication cost of securely evaluating Boolean
computations is prohibitive due to the use of Yao’s gar-

bled circuits that incur a multiplicative factor overhead
of 128 (the security parameter, κ). This is precisely
where our new protocols come to the rescue. We develop
new protocols for Boolean computation (such as ReLU,
Maxpool and its derivatives) that have much lesser com-
munication overhead (at least 8× better) than the cost
of converting to a Yao encoding and executing a garbled
circuit. We now present our techniques in more detail.

We denote the three servers by P0, P1 and P2. At
the start of any protocol, parties P0 and P1 hold 2-out-
of-2 additive secret shares of the inputs to the protocol.
All our protocols maintain the invariant that at the
end of the protocol P0 and P1 hold 2-out-of-2 shares
of the output. We stress that even though for all our
protocols only P0 and P1 hold the shares of the input
and the output, P2 also crucially takes part in the real
computation during the protocol. That is, P2 is not a
dummy party that only assists in the two-party protocol
between P0 and P1 by providing relevant randomness.

Non-linear activations. We first describe our main
ideas for computing the derivative of ReLU function,
that is ReLU′.
Function ReLU′. Note that ReLU′(x) is 1 if x ≥ 0 and
0 otherwise. First, we note that ReLU′(x) is closely re-
lated to the most-significant bit (MSB)5 of x in our rep-
resentation of values in Z264 . That is, ReLU′(x) is 1 iff
MSB(x) = 0. Hence, it suffices to compute the MSB(x).
Next, since computing LSB of a number is much eas-
ier than computing the MSB (as it does not require bit
extraction), we flip the problem to computing LSB as
follows: MSB(a) = LSB(2a) if we are working over an
odd ring6. For now, let us assume that we are working
over an odd ring and we later describe how we go from
even ring Z264 to an odd ring Z264−1.

At the start of the protocol, P0 and P1 hold shares of
a (over Z264−1), using which they locally compute shares
of y = 2a. Now, P2 would assist in computing the LSB of
y as follows: From now on, we denote LSB(y) = y[0]. The
first observation is that for three numbers u, v, w such
that u = v + w, u[0] = v[0] ⊕ w[0] if the addition does
not “wrap around” the ring and u[0] = u[0]⊕ v[0]⊕ 1 if
addition wraps around. The second observation is that
if x is a random number chosen by P2 and is unknown to
P0 and P1, then it is okay for P0, P1 to learn r = y + x.

5 MSB(x) is the leftmost bit in the 64-bit representation of x.
6 In a group of order n, we have MSB(x) = 1 iff x > n/2 iff
n > 2x−n > 0; if n is odd, then so is 2x−n and it follows that
MSB(x) = 1 iff LSB(2x) = 1.
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This is because the secret y is masked by random x.
Hence, P2 gives secret shares of x as well as shares of
x[0] to P0, P1 and they reconstruct r. Now, all that is
left is to figure out whether the addition y + x wraps
around the ring or not. For this, the third observation
is that this addition wraps around if and only if the final
sum is less than one of the individual values – that is, it
wraps around iff x > r. Thus, if we can compute shares
of x > r between P0 and P1, then we are done.

Next, we construct a protocol for comparison. We
first define a functionality called private compare (de-
noted by FPC). This three-party functionality assumes
that P0 and P1 each have a share of the bits of `−bit
value x (over field Zp) as well as a common number r
and a random bit β as input. It computes the bit (x > r)
(which is 1 if x > r and 0 otherwise) and XOR masks it
with the bit β. This output β ⊕ (x > r) is given to P2.
We implement this functionality by building on the tech-
niques of [20, 35] and provide a more efficient variant.
Note that this protocol requires parties to have shares
of bits of x over field Zp. These are provided to P0, P1
by P2. With these protocols, we are ready to compute
the ReLU′(·) function if P0 and P1 began with shares of
the input over an odd ring.

Now, we revisit the requirement of an odd ring.
As we explained above, all of this works, if we had
shares of a over an odd ring. Now, we could execute
our protocol over the ring ZN with N being odd. How-
ever doing so is fairly inefficient as matrix multiplication
over the ring Z264 (or Z232) is much faster. This is be-
cause (as observed in [33]), native implementation of
matrix multiplication over long (or int) automatically
implements the modulo operation over Z264 (or Z232)
and many libraries heavily optimize matrix multiplica-
tion over these rings, which give significant efficiency
improvements compared to operations over any other
ring. Hence, we provide a protocol that converts values
(6= L − 1) that are secret shared over ZL into shares
over ZL−1. This protocol also uses the private compare
protocol and may be of independent interest.

Finally, this design (and our protocol) enables us to
run our comparison protocol (the protocol that realizes
FPC above) over a small field Zp (we choose p = 67 con-
cretely) and this reduces the communication complexity
significantly. Using these protocols, we obtain our pro-
tocol for computing ReLU′(x) (the derivative of ReLU)
beginning with shares over Z264 .

Figure 2 shows the different secret sharing schemes
used in protocols in SecureNN. Specifically, it shows how
various secret sharing schemes are used in ReLU and
Private Compare protocols.

Fig. 2. Flow of different types of secret sharing schemes used in
(a) ReLU (b) Private Compare.

Other non-linear functions. In this work, we describe
protocols for ReLU, Maxpool, its derivative and nor-
malization or division. Maxpool, ReLU and division
are implemented using ReLU′ and multiplication. Sim-
ilar ideas can be used to obtain efficient protocols for
other non-linear activation functions such as PReLU,
LeakyReLU, piecewise linear functions (used to approx-
imate sigmoid) and their derivatives. We also construct
an efficient protocol for the derivative of Maxpool ex-
ploiting specific number-theoretic properties.

Matrix multiplication and Convolutions. An
information-theoretic matrix multiplication protocol
over shares when 3 parties are involved is straight-
forward using matrix-based Beaver multiplication
triplets [7] and is omitted from the discussion here.
For our implementation we use Beaver triplets gener-
ated using PRFs. Convolutions are implemented in a
very similar manner to matrix multiplication.

Privacy against malicious adversaries. Since our
protocols are fundamentally information-theoretic, it is
easy to show that all messages exchanged in the pro-
tocol are individually uniformly random. As noted by
Araki et al. [6], this property then suffices to show that
any two executions of the protocol with different inputs
are indistinguishable to the malicious adversary and
subsequently that the same protocols provide privacy
against malicious adversaries. This guarantees that a
malicious server cannot learn anything about clients’
inputs even if it deviates arbitrarily from the protocol.

3 Preliminaries
3.1 Threat Model and Security

In this work, we consider full semi-honest security
as well as privacy against malicious adversaries.
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Semi-honest Security. A semi-honest (also known
as honest-but-curious) adversary follows the protocol
specifications honestly but tries to learn information
from the protocol. We consider a semi-honest adversary
that corrupts a single server (and any number of clients)
and prove full security (i.e., privacy and correctness) of
our protocols in the simulation paradigm [12, 13, 25].
The universal composability framework [12] allows one
to guarantee the security of arbitrary composition of
different protocols. Hence, we can prove the security
of individual protocols and the security of end-to-end
neural network algorithms follows from the composi-
tion. Security is modeled by defining two interactions: a
real interaction where the parties execute a protocol in
the presence of an adversary A and the environment Z,
and an ideal interaction where parties send their inputs
to a trusted functionality F that conducts the desired
computation truthfully. Security requires that for every
adversary A in the real interaction, there is an adver-
sary S (called the simulator) in the ideal interaction,
such that no environment Z can distinguish between
real and ideal interactions. A protocol Π is said to se-
curely realize a functionality F if for every adversary A
in the real interaction, there is an adversary S in the
ideal interaction, such that no environment Z, on any
input, can tell apart the real interaction from the ideal
interaction, except with negligible probability (in the
security parameter κ).

Privacy against Malicious Adversary. A malicious
adversary can arbitrarily deviate from the protocol
specification. Araki et al. [6] formalized the notion of
privacy against malicious adversaries in the client-server
model. In this model, similar to our setting, the clients
secret share their inputs between the servers, the servers
run the secure computation to compute the shares of
the output. Hence, the servers running the secure com-
putation do not get to see the input or the output.
Intuitively, privacy against malicious server guarantees
that even a malicious adversary cannot break the pri-
vacy of inputs or outputs of the honest parties. This is
formalized using an indistinguishability-based argument
that says that for any two inputs of the honest parties,
the view of the adversary in the protocol is indistin-
guishable. For our protocols, we prove that they satisfy
privacy against a malicious adversary that corrupts any
one of the three servers. Even though this notion is
weaker than full simulation based malicious security (in
particular, this does not guarantee correctness in the

presence of malicious behavior), it does guarantee that
privacy is not compromised by malicious behavior.

3.2 Notation

In our protocols, we use additive secret sharing over
the three rings ZL, ZL−1, and Zp, where L = 2` and p

is a prime. Note that ZL−1 is a ring of odd size and Zp
is a field. Specifically, we use following the three types
of secret sharings in the following settings:
(A) Additive shares in ZL: Additive shares of a num-

ber in ring ZL. In this work L = 264.
(B) Additive shares in ZL−1: Additive shares of a

number in ring ZL−1.
(C) Additive shares of bits in Zp: Each bit of the

64-bit secret is additively shared in Zp. In this work
p = 67. In other words, each 64-bit number is shared
as a vector of 64 shares, with each share being a
value between 0 and 66 (inclusive).

We use 2-out-of-2 secret sharing and use 〈x〉t0 and 〈x〉t1
to denote the two shares of x over Zt – specifically, the
scheme generates r $←− Zt, sets 〈x〉t0 = r and 〈x〉t1 =
x − r (mod t). We use 〈x〉t to denote sharing of x over
Zt. The algorithm Sharet(x) generates the two shares of
x over Zt and algorithm Reconstt(x0, x1) reconstructs a
value x using x0 and x1 as the two shares (reconstruction
is simply x0 + x1 over Zt). For an `−bit integer x, we
use x[i] to denote the ith bit of x and {〈x[i]〉t}i∈[`] to
denote the shares of bits of x over Zt. For an m × n

matrix X, 〈X〉t0 and 〈X〉t1 denote the matrices that are
created by secret sharing the elements of X component-
wise (other matrix notation such as Reconstt(X0, X1) is
similarly defined component-wise).

3.3 Neural Networks

Our main focus in this work is on Deep and Con-
volutional Neural Network (DNN and CNN) training
algorithms. At a very high level, every layer in the
forward propagation comprises of a linear operation
(such as matrix multiplication in the case of fully con-
nected layers and convolution in the case of Convolu-
tional Neural Networks, where weights are multiplied
by the activation), followed by a (non-linear) activation
function f . One of the most popular activation func-
tions is the Rectified Linear Unit (ReLU) defined as
ReLU(x) = max(0, x). The backpropogation updates the
weights appropriately making use of derivative of the ac-
tivation function (in this case ReLU′(x), which is defined
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to be 1 if x > 0 and 0 otherwise) and matrix multipli-
cation. Cross entropy is used as the loss function and
stochastic gradient descent minimizes the loss.

A large class of networks can be represented using
the following functions: matrix multiplication, convolu-
tion, ReLU, MaxPool (defined as the maximum of a set
of values, usually in a sub-matrix), normalization (de-
fined as xi∑

xi
for a given set of values {x1, · · · , xn}) and

their derivatives. In this work, we consider three neural
networks for training - (A) a 3 layer DNN (same as the
neural network in [33]) that provides an inference accu-
racy of 93.4% on the MNIST dataset [3] (after training
for 15 epochs) (B) a 4-layer network from MiniONN [30]
and (C) a 4-layer LeNeT network that provides an in-
ference accuracy of > 99% on the same data set (after
training for 15 epochs). For inference, we additionally
consider a neural network from Chameleon [36]. More
details on these networks are presented in Section 7.3.

3.4 Protocols Structure

First, in Section 4, we provide protocols for “sup-
porting functionalities” that will be used as building
blocks to construct protocols for our main functionali-
ties. In Section 5, we provide protocols for realizing our
“main functionalities” that correspond to various neu-
ral network layers such as linear layer, convolution layer,
ReLU, and so on. These protocols along with their de-
pendencies are presented in Figure 3. In Section 5.7, we
outline how to put these main protocols together to ob-
tain protocols for a large class of neural networks. We
also provide overview of proofs of security and refer to
appendix for full proofs. In Appendix E, we argue that
all our protocols satisfy the privacy against a malicious
corruption of a single server in the client-server model
as defined by [6].

We assume that any pair of parties pre-share fresh
shares of 0. This is trivial to do – the two parties ex-
change a PRF key, k, and one party sets its share
to z0 = PRFk(ctr), while the other sets it share to
z1 = −PRFk(ctr), where ctr is a known counter value.
When we use the term “fresh share” of some value x, we
mean that the randomness used to generate the share
of x has not been used anywhere else in that or any
other protocol. We say “party Pi generates shares 〈x〉tj
for j ∈ {0, 1} and sends to Pj” to mean “party Pi gen-
erates (〈x〉t0, 〈x〉t1) ← Sharet(x) and sends 〈x〉tj to Pj for
j ∈ {0, 1}”.

In all our main protocols (Section 5), we maintain
the invariant that parties P0 and P1 begin with “fresh”

Fig. 3. Functionality dependence of protocols in SecureNN

shares of input value (over ZL) and output a “fresh”
share of the output value (again over ZL) at the end of
the protocol – this will enable us (as shown in Section
5.7) to arbitrarily compose our main protocols to ob-
tain protocols for a variety of neural networks. Party P2
takes the role of “assistant” in all protocols and has no
input to protocols. In the supporting protocols alone,
P2 sometimes receives an output.

4 Supporting Protocols
In this section, we describe various building blocks

to our main protocols. Some of these protocols devi-
ate from the invariant described above – i.e., P0 and
P1 do not necessarily begin/end protocols with shares
of input/output over ZL. Further, P2 receives output in
these protocols. Due to lack of space, the formal descrip-
tion of the functionalities realized by these protocols is
given in the full version [38]. We provide the proofs of
security for our protocols in Appendix D, E, and F. We
start with the simplest protocols (such as those for ma-
trix multiplication) and gradually build other protocols
that are used in the computation of non-linear functions.

4.1 Matrix Multiplication

Algorithm 1 describes our protocol for secure mul-
tiplication (functionality FMATMUL) where parties P0 and
P1 hold shares of X ∈ Zm×nL and Y ∈ Zn×vL and the
functionality outputs fresh shares of Z = X ·Y to P0, P1.
Intuition. Our protocol relies on standard crypto-
graphic technique for multiplication of using Beaver
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Algorithm 1 Mat. Mul. ΠMatMul({P0, P1}, P2):

Input: P0 & P1 hold (〈X〉L0 , 〈Y 〉L0 ) & (〈X〉L1 , 〈Y 〉L1 ) resp.
Output: P0 gets 〈X · Y 〉L0 and P1 gets 〈X · Y 〉L1 .
Common Randomness: P0 and P1 hold shares of zero

matrices over Zm×vL resp.; i.e., P0 holds 〈0m×v〉L0 =
U0 & P1 holds 〈0m×v〉L1 = U1

1: P2 picks random matrices A $←Zm×nL and B $←Zn×vL

and generates for j ∈ {0, 1}, 〈A〉Lj , 〈B〉Lj , 〈C〉Lj and
sends to Pj , where C = A ·B.

2: For j ∈ {0, 1}, Pj computes 〈E〉Lj = 〈X〉Lj − 〈A〉Lj
and 〈F 〉Lj = 〈Y 〉Lj − 〈B〉Lj .

3: P0 & P1 reconstruct E & F by exchanging shares.
4: For j ∈ {0, 1}, Pj outputs −jE · F + 〈X〉Lj · F + E ·
〈Y 〉Lj + 〈C〉Lj + Uj .

triplets [7] generalized to the matrix setting. P2 gen-
erates these triplet shares and sends to parties P0, P1.

4.2 Select Share

Algorithm 2 describes our 3-party protocol realizing
the select share functionality FSS, which is as follows:
Parties P0, P1 hold shares of x, y over ZL. They also hold
shares of a selection bit α ∈ {0, 1} over ZL (L = 264).
Parties P0, P1 get fresh shares of x if α = 0 and fresh
shares of y if α = 1 from the functionality.

Algorithm 2 SelectShare ΠSS({P0, P1}, P2):

Input: P0, P1 hold (〈α〉L0 , 〈x〉L0 , 〈y〉L0 ) and
(〈α〉L1 , 〈x〉L1 , 〈y〉L1 ), resp.

Output: P0, P1 get 〈z〉L0 and 〈z〉L1 , resp., where z =
(1− α)x+ αy.

Common Randomness: P0 and P1 hold shares of 0
over ZL denoted by u0 and u1.

1: For j ∈ {0, 1}, Pj compute 〈w〉Lj = 〈y〉Lj − 〈x〉Lj
2: P0, P1, P2 invoke ΠMatMul({P0, P1}, P2) with Pj , j ∈
{0, 1} having input (〈α〉Lj , 〈w〉Lj ) and P0, P1 learn
〈c〉L0 and 〈c〉L1 , resp.

3: For j ∈ {0, 1}, Pj outputs 〈z〉Lj = 〈x〉Lj + 〈c〉Lj + uj .

Intuition. We note that selecting between x and y can
be arithmetically expressed as (1−α) ·x+α · y = x+α ·
(y−x). We compute the latter expression in our protocol
using one call to ΠMatMul for multiplying α and (y − x).

4.3 Private Compare

Algorithm 3 describes our 3-party protocol realizing
the functionality FPC for comparison that is as follows:
The parties P0 and P1 holds shares of bits of `-bit in-
teger x in Zp (p = 67 and hence Zp is a Field), i.e.,
{〈x[i]〉p0}i∈[`] and {〈x[i]〉p1}i∈[`], respectively. P0, P1 also
hold an `-bit integer r and a bit β. At the end of the
protocol, P2 learns a bit β′ = β⊕ (x > r), where (x > r)
denotes the bit which is 1 when x > r over the integers
and 0 otherwise.

Algorithm 3 PrivateCompare ΠPC({P0, P1}, P2):
Input: P0, P1 hold {〈x[i]〉p0}i∈[`] and {〈x[i]〉p1}i∈[`], re-

spectively, a common input r (an ` bit integer) and
a common random bit β.

Output: P2 gets a bit β ⊕ (x > r).
Common Randomness: P0, P1 hold ` common ran-

dom values si ∈ Z∗p for all i ∈ [`] and a random
permutation π for ` elements. P0 and P1 addition-
ally hold ` common random values ui ∈ Z∗p.

1: Let t = r + 1 mod 2`.
2: For each j ∈ {0, 1}, Pj executes Steps 3–14:
3: for i = {`, `− 1, . . . , 1} do
4: if β = 0 then
5: 〈wi〉pj = 〈x[i]〉pj + jr[i]− 2r[i]〈x[i]〉pj

6: 〈ci〉pj = jr[i]− 〈x[i]〉pj + j +
∑̀

k=i+1
〈wk〉pj

7: else if β = 1 AND r 6= 2` − 1 then
8: 〈wi〉pj = 〈x[i]〉pj + jt[i]− 2t[i]〈x[i]〉pj

9: 〈ci〉pj = −jt[i] + 〈x[i]〉pj + j +
∑̀

k=i+1
〈wk〉pj

10: else
11: If i 6= 1, 〈ci〉pj = (1 − j)(ui + 1) − jui, else
〈ci〉pj = (−1)j · ui.

12: end if
13: end for
14: Send {〈di〉pj}i = π

({
si〈ci〉pj

}
i

)
to P2

15: For all i ∈ [`], P2 computes di =
Reconstp(〈di〉p0, 〈di〉

p
1) and sets β′ = 1 iff ∃i ∈ [`]

such that di = 0.
16: P2 outputs β′.

Intuition. Our starting point is the 2-party comparison
present in [20, 35]. We build on this to give a much
more efficient 3-party protocol. We want to compute
β′ = β ⊕ (x > r). That is, for β = 0, we compute x > r
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and for β = 1, we compute 1 ⊕ (x > r) ≡ (x ≤ r) ≡
(x < (r + 1)) over integers. We discuss the corner case
of r = 2` − 1 below. In this case, x ≤ r is always true.

Consider the case of β = 0. In this case, β′ = 1 iff
(x > r) or at the leftmost bit where x[i] 6= r[i], x[i] = 1.
We compute wi = x[i] ⊕ r[i] = x[i] + r[i] − 2x[i]r[i] and
c[i] = r[i]−x[i]+1+

∑`
k=i+1 wk. Since r is known to both

P0, P1, shares of both wi and ci can be computed locally.
Now, we can prove that ∃ i.ci = 0 iff x > r. Hence,
both P0, P1 send shares of ci to P2 who reconstructs ci
and looks for a 0. To ensure security against a corrupt
P2, we hide exact values of non-zero ci’s and position
of (a possible) 0 by multiplying with random si and
permuting these values by a common permutation π.
These si and π are common to both P0 and P1.

In the case when β = 1 and r 6= 2` − 1, we compute
(r + 1) > x using similar logic as above. In the corner
case of r = 2` − 1, both parties P0, P1 know that result
of x ≤ r ≡ (r + 1) > x over integers should be true.
Hence, they together pick shares of ci such that there
is exactly one 0. This is done by P0, P1 having common
values ui that they use to create a valid share of a 0
and ` − 1 shares of 1 (see Step 11). Note that for the
re-randomization using si’s to work, it is crucial that we
work over a field such as Zp.

4.4 Share Convert

Algorithm 4 describes our three-party protocol for
converting shares over ZL to ZL−1 realizing the func-
tionality FSC (again, L = 264). Here, parties P0, P1 hold
shares of 〈a〉L such that a 6= L−1. At the end of the pro-
tocol, P0, P1 hold fresh shares of same value over L− 1,
i.e., 〈a〉L−1. In this algorithm, κ := wrap(x, y, L) is 1
if x + y ≥ L over integers and 0 otherwise. That is, κ
denotes the wrap-around bit for the computation x+ y

mod L.
Intuition: Let θ = wrap(〈a〉L0 , 〈a〉L1 , L). Now, we note
that if θ = 1, i.e., if the original shares wrapped around
L, then we need to subtract 1, else original shares are
also valid shares of same value of L − 1. Hence, in the
protocol we compute shares of bit θ over L− 1 and sub-
tract from original shares locally. This protocol makes
use of novel modular arithmetic to securely compute
these shares of θ, an idea which is potentially of in-
dependent interest. We explain these relations in the
correctness proof below.

Lemma 1. Protocol ΠSC({P0, P1}, P2) in Algorithm 4
securely realizes FSC.

Proof. For correctness we need to prove that
ReconstL−1(〈y〉L−1

0 , 〈y〉L−1
1 ) = ReconstL(〈a〉L0 , 〈a〉L1 ) =

a. Looking at Step 11 of the protocol and
the intuition above, it suffices to prove that
ReconstL−1(〈θ〉L−1

0 , 〈θ〉L−1
1 ) = θ = wrap(〈a〉L0 , 〈a〉L1 , L).

First, by correctness of protocol ΠPC, η′ = η′′ ⊕ (x >

r − 1). Next, let η = ReconstL−1(〈η〉L−1
0 , 〈η〉L−1

1 ) =
η′⊕ η′′ = (x > r− 1). Next, note that x ≡ a+ r mod L.
Hence, wrap(a, r, L) = 0 iff x > r− 1. By the correctness
of wrap, following relations hold over the integers:

1. r = 〈r〉L0 + 〈r〉L1 − αL.
2. 〈ã〉Lj = 〈a〉Lj + 〈r〉Lj − βjL.
3. x = 〈ã〉L0 + 〈ã〉L1 − δL.
4. x = a+ r − (1− η)L.
5. Let θ be such that a = 〈a〉L0 + 〈a〉L1 − θL.

Computing, (1) − (2) − (3) + (4) + (5) gives us θ =
β0 +β1−α+ δ+ η− 1. This is exactly, what the parties
P0 and P1 calculate in Step 10. We prove security in
Appendix F. �

Algorithm 4 ShareConvert ΠSC({P0, P1}, P2):

Input: P0, P1 hold 〈a〉L0 and 〈a〉L1 , respectively such
that ReconstL(〈a〉L0 , 〈a〉L1 ) 6= L− 1.

Output: P0, P1 get 〈a〉L−1
0 and 〈a〉L−1

1 .
Common Randomness: P0, P1 hold a random bit

η′′, a random r ∈ ZL, shares 〈r〉L0 , 〈r〉L1 , α =
wrap(〈r〉L0 , 〈r〉L1 , L) and shares of 0 over ZL−1 de-
noted by u0 and u1.

1: For each j ∈ {0, 1}, Pj executes Steps 2–3
2: 〈ã〉Lj = 〈a〉Lj + 〈r〉Lj and βj = wrap(〈a〉Lj , 〈r〉Lj , L).
3: Send 〈ã〉Lj to P2.

4: P2 computes x = ReconstL(〈ã〉L0 , 〈ã〉L1 ) and δ =
wrap(〈ã〉L0 , 〈ã〉L1 , L).

5: P2 generates shares {〈x[i]〉pj}i∈[`] and 〈δ〉L−1
j for j ∈

{0, 1} and sends to Pj .

6: P0, P1, P2 invoke7ΠPC({P0, P1}, P2) with Pj , j ∈
{0, 1} having input

(
{〈x[i]〉pj}i∈[`], r − 1, η′′

)
and P2

learns η′.
7: For j ∈ {0, 1}, P2 generates 〈η′〉L−1

j and sends to
Pj .

8: For each j ∈ {0, 1}, Pj executes Steps 9–11
9: 〈η〉L−1

j = 〈η′〉L−1
j + (1− j)η′′ − 2η′′〈η′〉L−1

j

10: 〈θ〉L−1
j = βj + (1− j) · (−α− 1) + 〈δ〉L−1

j + 〈η〉L−1
j

11: Output 〈y〉L−1
j = 〈a〉Lj − 〈θ〉

L−1
j + uj (over L− 1)
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4.5 Compute MSB

Algorithm 5 describes our 3-party protocol realizing
the functionality FMSB that computes the most signifi-
cant bit8 (MSB) of a value a ∈ ZL−1. P0, P1 hold shares
of a over odd ring ZL−1 and end with shares of MSB(a)
over ZL.

Algorithm 5 ComputeMSB ΠMSB({P0, P1}, P2):

Input: P0, P1 hold 〈a〉L−1
0 and 〈a〉L−1

1 , respectively.
Output: P0, P1 get 〈MSB(a)〉L0 and 〈MSB(a)〉L1 .
Common Randomness: P0, P1 hold a random bit β

and random shares of 0 over L, denoted by u0 and
u1 resp.

1: P2 picks x
$← ZL−1. Next, P2 generates 〈x〉L−1

j ,
{〈x[i]〉pj}i, 〈x[0]〉Lj for j ∈ {0, 1} and sends to Pj .

2: For j ∈ {0, 1}, Pj computes 〈y〉L−1
j = 2〈a〉L−1

j and
〈r〉L−1

j = 〈y〉L−1
j + 〈x〉L−1

j .
3: P0, P1 reconstruct r by exchanging shares.
4: P0, P1, P2 call ΠPC({P0, P1}, P2) with Pj , j ∈ {0, 1}

having input
(
{〈x[i]〉pj}i∈[`], r, β

)
and P2 learns β′.

5: P2 generates 〈β′〉Lj and sends to Pj for j ∈ {0, 1}.
6: For j ∈ {0, 1}, Pj executes Steps 7–8
7: 〈γ〉Lj = 〈β′〉Lj + jβ − 2β〈β′〉Lj
8: 〈δ〉Lj = 〈x[0]〉Lj + jr[0]− 2r[0]〈x[0]〉Lj
9: P0, P1, P2 call ΠMatMul({P0, P1}, P2) with Pj , j ∈
{0, 1} having input (〈γ〉Lj , 〈δ〉Lj ) and Pj learns 〈θ〉Lj .

10: For j ∈ {0, 1}, Pj outputs 〈α〉Lj = 〈γ〉Lj + 〈δ〉Lj −
2〈θ〉Lj + uj .

Intuition: Note that when the shares of the private
input (say a) are over an odd ring (such as after us-
ing ΠSC), the MSB computation can be converted into
an LSB computation. More precisely, over an odd ring,
MSB(a) = LSB(y), where y = 2a. Now, P2 assists in
computation of shares of LSB(y) as follows: P2 picks
a random integer x ∈ ZL−1 and sends shares of x
over ZL−1 and shares of x[0] over ZL to P0, P1. Next,
P0, P1 compute shares of r = y + x and reconstruct r
by exchanging shares. We note that LSB(y) = y[0] =
r[0] ⊕ x[0] ⊕ wrap(y, x, L − 1) over an odd ring. Also,

7 In the corner case when r = 0, both P0 and P1 set the output
of ΠPC to be 1 and execute it. This is similar to the other corner
case discussed in Section 4.3.
8 Most significant bit of a number is defined as the value of the
leftmost bit in the bit representation.

Protocol Rounds Communication
MatMulm,n,v 2 2(2mn + 2nv + mv)`

MatMulm,n,v (with PRF) 2 (2mn + 2nv + mv)`

SelectShare 2 5`

PrivateCompare 1 2` log p

ShareConvert 4 4` log p + 6`

Compute MSB 5 4` log p + 13`

Table 1. Round & communication complexity of building blocks.

wrap(y, x, L− 1) = (x > r), which can be computed us-
ing comparison protocol ΠPC. To enable this, P2 also
secret shares {x[i]}i∈[`] over Zp. Steps 6-10 compute the
equation LSB(y) = y[0] = r[0] ⊕ x[0] ⊕ (x > r) by using
the arithmetic equation for xor computation (note that
x ⊕ r = x + r − 2xr; when one of x or y is public and
known to both P0 and P1, then this computation can
be done over the shares locally. When both are private
and kept as shares, this computation is done using one
call to multiplication (Step 9 in the protocol).).

4.6 Overheads of supporting protocols

The communication and round complexity of
our supporting protocols is provided in Table 1.
MatMulm,n,v denotes matrix multiplication of an m× n
matrix with an n × v matrix. The first row states the
complexity of MatMulm,n,v using secure Beaver triplets.
In our implementation, we generate the triplets using
PRFs as follows: P0 and P2 share a PRF key and use it
to generate 〈A〉L0 , 〈B〉L0 , 〈C〉L0 locally. Similarly, P1 and
P2 share a PRF key and use it to generate 〈A〉L1 , 〈B〉L1
locally. Now, P2 sets 〈C〉L1 = ReconstL(〈A〉L0 , 〈A〉L1 ) ·
ReconstL(〈B〉L0 , 〈B〉L1 ) − 〈C〉L0 and send to P1. This re-
duces the communication of multiplication by half. All
other complexities are for single elements and use this
optimized version of multiplication.

5 Main Protocols
In this section, we describe all our main protocols for

functionalities such as linear layer, derivative of ReLU,
ReLU, division needed for normalization during training,
Maxpool and its derivative. We maintain the invariant
that parties P0 and P1 begin with “fresh” shares of input
value (over ZL, L = 264 ) and output a “fresh” share
of the output value (again over ZL) at the end of the
protocol. Party P2 takes the role of “assistant” in all
protocols and has no input or output.
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5.1 Linear and Convolutional Layer

We note that a linear (or fully connected) layer in a
neural network is exactly a matrix multiplication. Simi-
larly, a convolutional layer can also be expressed as a
(larger) matrix multiplication. As an example the 2-
dimensional convolution of a 3× 3 input matrix X with
a kernel K of size 2×2 can be represented by the matrix
multiplication shown below.

Conv2d

([
x1 x2 x3
x4 x5 x6
x7 x8 x9

]
,

[
k1 k2
k3 k4

])
=

x1 x2 x4 x5
x2 x3 x5 x6
x4 x5 x7 x8
x5 x6 x8 x9

×
k1

k2
k3
k4


For a generalization, see e.g. [4] for an exposition

on convolutional layers. Hence both these layers can be
directly implemented using Algorithm 1 from Section 4.

5.2 Derivative of ReLU

Algorithm 6 describes our 3-party protocol for real-
izing the functionality FDReLU that computes the deriva-
tive of ReLU, denoted by ReLU′. Parties P0, P1 hold
secret shares of a over ring ZL and end up with secret
shares of ReLU′(a) over ZL. Note that ReLU′(a) = 1 if
MSB(a) = 0, else ReLU′(a) = 0.

Algorithm 6 ReLU′, ΠDReLU({P0, P1}, P2):

Input: P0, P1 hold 〈a〉L0 and 〈a〉L1 , respectively.
Output: P0, P1 get 〈ReLU′(a)〉L0 and 〈ReLU′(a)〉L1 .
Common Randomness: P0, P1 hold random shares of

0 over ZL, denoted by u0 and u1 resp.

1: For j ∈ {0, 1}, parties Pj computes 〈c〉Lj = 2〈a〉Lj .
2: P0, P1, P2 run ΠSC({P0, P1}, P2) with P0, P1 having

inputs 〈c〉Lj & 〈c〉L1 & P0, P1 learn 〈y〉L−1
0 & 〈y〉L−1

1 ,
resp.

3: P0, P1, P2 run ΠMSB({P0, P1}, P2) with Pj , j ∈
{0, 1} having input 〈y〉L−1

j & P0, P1 learn 〈α〉L0 &
〈α〉L1 , resp.

4: For j ∈ {0, 1}, Pj outputs 〈γ〉Lj = j − 〈α〉Lj + uj .

Intuition: As is clear from the function ReLU′ itself,
the protocol computes the shares of MSB(a) and flips
it to compute ReLU′(a). Recall that the protocol ΠMSB
expects shares of a over ZL−1. Hence, we need to convert
shares over ZL to fresh shares over ZL−1 of the same
value. Recall that for correctness of the share convert
protocol, we require that value is not equal to L − 1.
This is ensured by first computing shares of c = 2a and

then calling ΠSC. We ensure9 that ReLU′(a) = ReLU′(c)
by requiring that a ∈ [0, 2k) ∪ (2` − 2k, 2` − 1], where
k < `− 1.

5.3 ReLU

Algorithm 7 describes our 3-party protocol for re-
alizing the functionality FReLU that computes ReLU(a).
Parties P0, P1 hold secret shares of a over ring ZL and
end up with secret shares of ReLU(a) over ZL. Note
that ReLU(a) = a if MSB(a) = 0, else 0. That is,
ReLU(a) = ReLU′(a) · a.

Algorithm 7 ReLU, ΠReLU({P0, P1}, P2):

Input: P0, P1 hold 〈a〉L0 and 〈a〉L1 , respectively.
Output: P0, P1 get 〈ReLU(a)〉L0 and 〈ReLU(a)〉L1 .
Common Randomness: P0, P1 hold random shares of

0 over ZL, denoted by u0 and u1 resp.

1: P0, P1, P2 run ΠDReLU({P0, P1}, P2) with Pj , j ∈
{0, 1} having input 〈a〉Lj and P0, P1 learn 〈α〉L0 and
〈α〉L1 , resp.

2: P0, P1, P2 call ΠMatMul({P0, P1}, P2) with Pj , j ∈
{0, 1} having input (〈α〉Lj , 〈a〉Lj ) and P0, P1 learn 〈c〉L0
and 〈c〉L1 , resp.

3: For j ∈ {0, 1}, Pj outputs 〈c〉Lj + uj .

Intuition: Our protocol implements the above relation
by using one call each to ΠDReLU and ΠMatMul. Note that
ΠMatMul is invoked for multiplying two matrices of di-
mension 1× 1 (or just one integer multiplication).

5.4 Division

We discuss our 3-party protocol Algorithm 8 real-
izing the functionality FDIV. Parties P0, P1 hold shares
of x and y over ZL. At the end of the protocol, parties
P0, P1 hold shares of bx/yc over ZL when y 6= 0.
Intuition: Our protocol implements long division
where the quotient is computed bit-by-bit sequentially
starting from the most significant bit. In each iteration,
we compute the current dividend by subtracting the cor-
rect multiple of the divisor. Then we compare the cur-
rent dividend with a multiple of the divisor (2iy in round

9 This essentially means that the absolute value of a is not
very large, and in particular not larger than 2k. This is not a
limitation in any of the ML applications that we work with.
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Algorithm 8 Division: ΠDIV({P0, P1}, P2)

Input: P0, P1 hold (〈x〉L0 , 〈y〉L0 ) and (〈x〉L1 , 〈y〉L1 ), resp.
Output: P0, P1 get 〈x/y〉L0 and 〈x/y〉L1 .
Common Randomness: Pj , j ∈ {0, 1} hold ` shares 0

over ZL denoted by wi,0 and wi,1 for all i ∈ [`] resp.
They additionally also hold another share of 0 over
ZL, denoted by s0 and s1.

1: Set u` = 0 and for j ∈ {0, 1}, Pj holds 〈u`〉Lj
(through the common randomness).

2: for i = {`− 1, . . . , 0} do
3: Pj , j ∈ {0, 1} compute 〈zi〉Lj = 〈x〉Lj − 〈ui+1〉Lj −

2i〈y〉Lj + wi,j .
4: P0, P1, P2 run ΠDReLU({P0, P1}, P2) with Pj , j ∈
{0, 1} having input 〈zi〉Lj and P0, P1 learn 〈βi〉L0 and
〈βi〉L1 , resp.

5: P0, P1, P2 call FMATMUL({P0, P1}, P2) with Pj , j ∈
{0, 1} having input (〈βi〉Lj , 〈2iy〉Lj ) and P0, P1 learn
〈vi〉L0 and 〈vi〉L1 , resp.

6: Pj , j ∈ {0, 1} compute 〈ki〉Lj = 2i · 〈βi〉Lj .
7: For j ∈ {0, 1}, Pj computes 〈ui〉Lj = 〈ui+1〉Lj +
〈vi〉Lj .

8: end for
9: For j ∈ {0, 1}, Pj outputs 〈q〉Lj =

∑`−1
i=0 〈ki〉

L
j + sj .

i). Depending on the output of the comparison, ith bit
of the quotient is 0 or 1. This comparison can be writ-
ten as a comparison with 0 and hence can be computed
using a single call to ΠDReLU. We use this selection bit
to select between 0 and 2i for quotient and 0 and 2iy
for what to subtract from dividend. This selection can
be implemented using ΠMatMul (similar to ReLU compu-
tation). Hence, division protocol proceeds in iterations
and each iteration makes one call to ΠDReLU and one
call10 to ΠMatMul.

5.5 Maxpool

Algorithm 9 describes our 3-party protocol realizing
the functionality FMAXPOOL to compute the maximum of
n values. Parties P0, P1 hold shares of {xi}i∈[n] over ZL
and end up with fresh shares of max({xi}i∈[n]).
Intuition: The protocol implements the max algo-
rithm that runs in (n − 1) sequential steps. We start
with max1 = x1. In step i, we compute the shares of
maxi = max(x1, . . . , xi) as follows: We compute shares

10 Note that multiplication with 2i can be done locally.

of wi = xi − maxi−1. Then, we compute shares of
βi = ReLU′(wi) that is 1 if xi ≥ maxi−1 and 0 other-
wise. Next, we use ΠSS to select between maxi−1 and
xi using βi to compute maxi. Note, that in a similar
manner, we can also calculate the index of maximum
value, i.e. k such that xk = max({xi}i∈[n]). This is done
in steps 6&7. Computing the index of max value is re-
quired while doing prediction as well as to compute the
derivative of Maxpool activation function needed for
backpropagaton during training.

Algorithm 9 Maxpool ΠMP({P0, P1}, P2):

Input: P0, P1 hold {〈xi〉L0 }i∈[n] and {〈xi〉L1 }i∈[n], resp.
Output: P0, P1 get 〈z〉L0 and 〈z〉L1 , resp., where z =

Max({xi}i∈[n]).
Common Randomness: P0 and P1 hold two shares

of 0 over ZL denoted by u0 and u1 and v0 and v1.

1: For j ∈ {0, 1}, Pj sets 〈max1〉Lj = 〈x1〉Lj and
〈ind1〉Lj = j.

2: for i = {2, . . . , n} do
3: For j ∈ {0, 1}, Pj computes 〈wi〉Lj = 〈xi〉Lj −
〈maxi−1〉Lj

4: P0, P1, P2 call ΠDReLU({P0, P1}, P2) with Pj , j ∈
{0, 1} having input 〈wi〉Lj and P0, P1 learn 〈βi〉L0 and
〈βi〉L1 , resp.

5: P0, P1, P2 call ΠSS({P0, P1}, P2) with Pj , j ∈
{0, 1} having input (〈βi〉Lj , 〈maxi−1〉Lj , 〈xi〉Lj ) and
P0, P1 learn 〈maxi〉L0 and 〈maxi〉L1 , resp.

6: For j ∈ {0, 1}, Pj sets 〈ki〉Lj = j · i.
7: P0, P1, P2 call ΠSS({P0, P1}, P2) with Pj , j ∈
{0, 1} having input (〈βi〉Lj , 〈indi−1〉Lj , 〈ki〉Lj ) and
P0, P1 learn 〈indi〉L0 and 〈indi〉L1 , resp.

8: end for
9: For j ∈ {0, 1}, Pj outputs (〈maxn〉Lj + uj , 〈indn〉Lj +
vj).

5.6 Derivative of Maxpool

The derivative of the Maxpool function (functional-
ity FDMAXPOOL) is defined as the unit vector with a 1 only
in the position with the maximum value. Here, we de-
scribe the more efficient Algorithm 10 that works for the
special (and often-used) case of 2 × 2 Maxpool, where
n = 4. In general, this algorithm works when n divides
L. For the more general case, we provide an algorithm
in Appendix D.
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Algorithm 10 Efficient Derivative of n1×n2 Maxpool
Πn1xn2DMP({P0, P1}, P2) with n | L and n = n1n2:

Input: P0, P1 hold {〈xi〉L0 }i∈[n] and {〈xi〉L1 }i∈[n], resp.
Output: P0, P1 get {〈zi〉L0 }i∈[n] and {〈zi〉L1 }i∈[n], resp.,

where zi = 1, when xi = Max({xi}i∈[n]) and 0 oth-
erwise.

Common Randomness: P0 and P1 hold shares of 0
over ZnL denoted by U0 and U1 and a random r ∈ ZL.

1: P0, P1, P2 call FMAXPOOL with Pj , j ∈ {0, 1} having
input {〈xi〉Lj }i∈[n], to obtain 〈indn〉Lj resp. (from the
second part of FMAXPOOL’s output).

2: P0 sends 〈k〉L0 = 〈indn〉L0 + r to P2, while P1 sends
〈k〉L1 = 〈indn〉L1 to P2.

3: P2 computes t = ReconstL(〈k〉L0 , 〈k〉L1 ), computes
k = t mod n and creates shares of Ek, denoted by
〈E〉L0 and 〈E〉L1 , and sends the shares to P0 and P1
resp.

4: P0 and P1 locally “cyclic-shift” their shares
by g = r mod n. That is, let 〈E〉Lj =
(〈E0〉Lj , 〈E1〉Lj , · · · , 〈En−1〉Lj ). Pj computes
〈D〉Lj as (〈E(−g mod n)〉Lj , 〈E(1−g mod n)〉Lj , · · · ,
〈E(n−1−g mod n)〉Lj ).

5: Pj , j ∈ {0, 1} outputs 〈D〉Lj + Uj .

Intuition: The key observation behind this protocol
is that when n divides L (i.e., n | L), we have that
a mod n = (a mod L) mod n. The first step that P0 and
P1 run is ΠMP that gives them shares of the index ind ∈
[n] with the maximum value. These shares are over L
and must be converted into shares of the unit vector
Eind which is a length n vector with 1 in position ind
and 0 everywhere else. P0 and P1 share a random r ∈ Zn
and have P2 reconstruct k = (ind + r) mod n. P2 then
creates shares of Ek and sends the shares back to P0 and
P1 who “left-shift” these shares by r to obtain shares of
Eind. This works because a mod n = (a mod L) mod n

is true when n | L.

5.7 End-to-end Protocols

Our main protocols can be easily put together to
execute training on a wide class of neural networks. For
example, consider Network A, 3-layer neural network
from SecureML that consists of a fully connected layer,
followed by a ReLU, followed by another fully connected
layer, followed by another ReLU, followed by the func-
tion ASM(ui) = ReLU(ui)∑

ReLU(ui)
(for further details on this

network, we refer the reader to [33]). To implement this,

we first invoke ΠMatMul, followed by ΠReLU, then again
followed by ΠMatMul and ΠReLU and finally we invoke
ΠDIV to compute ASM(·)11. Backpropagaton is com-
puted by making calls to ΠMatMul as well and ΠDReLU
with appropriate dimensions12. Similarly, we can also
do a general convolutional neural network with other
activations such as Maxpool. We remark that we can
put together these protocols easily since our protocols
all maintain the invariant that parties begin with arith-
metic shares of inputs and complete the protocol with
arithmetic shares of the output.

6 Communication and Rounds
The round and communication complexity of our

main protocols are presented in Table 2. The function
Linearm,n,v denotes a matrix multiplication of dimen-
sion m × n with n × v. Conv2dm,i,f,o denotes a convo-
lutional layer with input m × m, i input channels, a
filter of size f × f , and o output channels. lD denotes
precision of bits. Maxpooln and DMPn denotes Maxpool
and its derivative over n elements. For ReLU and DMPn,
the overheads in addition to DReLU and Maxpooln re-
spectively are presented as these protocols are always
implemented together in a neural network. All commu-
nication is measured for `−bit inputs and p denotes the
field size (which is 67 in our case). All of the complexities
are presented using the optimized complexity of multi-
plication that used PRFs for correlated randomess.

Our gains mainly come from the secure evaluation
of non-linear functions such as ReLU and Maxpool and
their derivatives. Prior works such as SecureML [33],
MiniONN [30], Gazelle [26], etc took a garbled circuit-
based approach to evaluate these functions – i.e., after

Protocol Rounds Communication
Linearm,n,v 2 (2mn + 2nv + mv)`

Conv2dm,i,f,o 2 (2m2f2i + 2f2oi + m2o)`

DReLU 8 8` log p + 19`

ReLU (after DReLU) 2 5`

NORM(lD) or DIV(lD) 10lD (8` log p + 24`)lD

Maxpooln 9(n− 1) (8` log p + 29`)(n− 1)
DMPn (after Maxpool) 2 2(n + 1)`

Table 2. Round & communication complexity of main protocols.

11 ASM(·) consists of a summation and a division. Summation
is a local computation and does not require a protocol to be
computed.
12 We note that ΠDReLU is called as part of ΠReLU in forward
propagation and its value is stored for backpropagaton
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completion of an arithmetic (linear) computation such
as matrix multiplication, they ran a protocol to convert
shares of intermediary values into an encoding suitable
for garbled circuits. The non-linear function was then
evaluated using the garbled circuit after which shares
were once again converted back to be suitable for arith-
metic computation. This approach leads to a multiplica-
tive factor communication overhead proportional to the
security parameter κ, as garbled circuits require com-
municating encodings proportional to κ, for every bit
in the circuit. Overall, this leads to a communication
complexity > 768` for every `− bit input [21]. As shown
in [21], this cost of conversion to garbled circuits is 6κ`,
and all previous works incur this cost. In our approach,
we provide new protocols to compute such non-linear
activation functions, while continuing to retain arith-
metic shares of the output values. For example, the
ReLU protocol that we construct avoids paying κ mul-
tiplicative overhead and has communication complexity
of 8` log p+24`, which is approximately 88` (when p = 67
as is in our setting). This leads to > 8× improvement
in the communication complexity of the protocols for
non-linear functions.

7 Evaluation
7.1 System Details

We test our prototype by running experiments over
Amazon EC2 c4.8x large instances in two environments,
respectively modeling a LAN and WAN setting.

LAN setting. We use 3 Amazon EC2 c4.8xlarge
machines running Ubuntu in the same region. The
average bandwidth measured was 625MB/s and the
average ping time was 0.22ms.
WAN setting. In the WAN setting, we rent ma-
chines in different geographical regions with the
same machine specifications as in the LAN setting.
The average bandwidth measured was 40MB/s and
the average ping time was 58ms.
Our system is implemented in about 7400 lines of

C++ code with the use of standard libraries. We use the
Eigen Library [1] for faster matrix multiplications. The
ring is set to Z264 and we use the uint64_t native C++
datatype for all variables. Our source code is available at
https://www.github.com/snwagh/securenn-public.git.

Number encoding. Typical neural networks work over
floating point numbers. As observed by all prior works,

to make them compatible with efficient cryptographic
techniques, they must be encoded into fixed-point form.
We use the methodology from [33] to support fixed-
point arithmetic in an integer ring (described in Ap-
pendix B). The fixed-point numbers have 13 bits in their
fractional part (cleartext training to get accuracy num-
bers is also done with these parameters).

7.2 Summary of experiments

We develop a prototype of SecureNN. We test the
performance of our protocols by training 3 different neu-
ral networks over the MNIST dataset [3]. We also evalu-
ate SecureNN on secure inference benchmarks in Section
7.5. Finally, in Section 7.6, we present microbenchmarks
that measure the performance of various sub-protocols
implemented in SecureNN such as Linear Layer, Convo-
lutional Layer, ReLU and Maxpool (and its derivatives)
that enables the estimation of the performance cost of
other networks using the above functions.

For secure training, we run multiple iterations (10)
and take the average - for each iteration, we measured
the time for 10 forward-backward passes and used that
to extrapolate the numbers for 15 epochs (7000 itera-
tions). Secure inference timings are also averaged over
10 iterations. The learning rate is 2−5 in all experiments,
except in the SecureML [33] network, where we retain
their learning rate of 2−7. In all our experiments, we
report overall execution time (and do not split execu-
tion time into an offline, data independent phase, and
an online, data dependent phase) and treat the same
as online time as well. Our experiments show that our
total execution times are better than even just the on-
line times of previous works. If we split our work (e.g.,
triplet generation for multiplication) to an offline phase,
our online improvements would be even better.

7.3 Neural Networks

For benchmarking and comparison, we consider
four neural network architectures performing train-
ing/inference over the MNIST dataset [3] for hand-
written digit recognition13. Network-A is a 3-layer DNN
from [33], Network-B is a 4-layer CNN from [30, 31],
Network-C is a 4-layer CNN from [27], and Network-D

13 This dataset has 60,000 training samples of handwritten dig-
its. Each image is a 28-by-28 pixel square, with each pixel rep-
resented using 1 byte. The inference set contains 10,000 images.

https://www.github.com/snwagh/securenn-public.git
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is a 3-layer CNN from [31, 36]. We use these networks
for training as well as inference and describe them in
further detail in Appendix C.

7.4 Secure Training

We evaluate our protocols for secure training in
both the LAN and WAN settings over the networks
A, B, and C listed above. In many cases, the networks
we train, achieve more than 99% accuracy for inference
(on test dataset). We remark that we are the first work
to show the feasibility of secure training on large and
complex NNs such as CNNs that achieve high levels
of accuracy. We vary the epochs between 5 and 15 for
all networks except Network A which does not achieve
good accuracy for smaller epochs and vary the batch
size between 4 and 128 for networks B and C. Table 3
presents a summary of our results in the LAN/WAN
setting as a function of the number of epochs for train-
ing (batch size fixed to 128), while Table 4 presents the
results when the batch size is varied and the number of
epochs is fixed to 5.

Epochs Accuracy LAN (hours) WAN (hours)
A 15 93.4% 1.03 7.83

B
5 97.94% 5.8 17.99

10 98.05% 11.6 35.99
15 98.77% 17.4 53.98

C
5 98.15% 9.98 30.66

10 98.43% 19.96 61.33
15 99.15% 29.95 91.99

Table 3. Secure training execution times for batch size 128.

Batch size Accuracy LAN (hours) WAN (hours)

B
4 99.15% 9.98 112.71

16 98.99% 8.34 36.46
128 97.94% 5.8 17.99

C
4 99.01% 18.31 123.96

16 99.1% 13.43 46.2
128 98.15% 9.98 30.66

Table 4. Secure training execution times for 5 epochs.

Comparison with prior work. The only prior work
to consider neural network training was SecureML [33]
that considers Network A only. They give implementa-
tions for both 2 and 3-server settings on similar hard-
ware and network settings – we quote experimental
numbers from their paper. We provide a comparison of
our protocols with their work in Table 5. In the LAN

Framework LAN (hr) WAN (hr)

Offline Online Total Offline Online Total

A
SecureML 2PC 80.5 1.2 81.7 4277 59 4336
SecureML 3PC 4.15 2.87 7.02 - - -

SecureNN 0 1.03 1.03 0 7.83 7.83

Table 5. Training time comparison for Network A for batch size
128 and 15 epochs with SecureML [33].

Framework Runtime (s) Communication (MB)

Offline Online Total Offline Online Total

A
SecureML 4.7 0.18 4.88 - - -
SecureNN 0 0.043 0.043 0 2.1 2.1

B
MiniONN 3.58 5.74 9.32 20.9 636.6 657.5
Gazelle 0.481 0.33 0.81 47.5 22.5 70.0

SecureNN 0 0.13 0.13 0 8.86 8.86

C SecureNN 0 0.23 0.23 0 18.94 18.94

D

DeepSecure - - 9.67 - - 791
Chameleon 3PC 1.34 1.36 2.7 7.8 5.1 12.9

Gazelle 0.15 0.05 0.20 5.9 2.1 8.0
SecureNN 0 0.076 0.076 0 4.05 4.05

Table 6. Single image inference time comparison of various proto-
cols in the LAN setting.

setting, our protocol is roughly 6.8× faster than their 3
party protocol and 79× faster than their 2 party pro-
tocol. In the WAN setting, our improvements are even
more dramatic and we get an improvement of 553× over
the 2-party protocol14. Furthermore, SecureML split
their times into a slow (data independent) offline phase
and a faster (data dependent) online phase. Even com-
paring only their online time with our overall 3PC time,
we obtain an improvement of 1.16× over their 2PC and
a 2.7× improvement over their 3PC (their 3PC trades
off some offline cost with a larger online cost).

7.5 Secure Inference

We also evaluate our protocols for the task of se-
cure inference for the networks A, B, C and D. These

LAN (s) WAN (s) Comm (MB)

Batch size → 1 128 1 128 1 128

A 0.043 0.38 2.43 2.79 2.1 29

B 0.13 7.18 3.93 21.99 8.86 1066

C 0.23 10.82 4.08 30.45 18.94 1550

D 0.076 2.6 3.06 8.04 4.05 317.7

Table 7. Prediction timings for batch size 1 vs 128 for SecureNN
on Networks A-D over MNIST.

14 SecureML do not provide numbers for their 3-party protocol
in the WAN setting.
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networks can either be a result of secure training using
the 3PC protocol and are secret shared between P0 and
P1, or a trained model can be secret shared between P0
and P1 at the beginning of the protocol.
Comparison with prior work. A sequence of previ-
ous works have considered a single secure inference in
the LAN setting for various networks. Table 6 summa-
rizes our comparison with state-of-the-art secure infer-
ence protocols. Networks-A and B were considered in
SecureML [33], MiniONN [30], and Gazelle [26] using
different techniques for secure computation. All these
works used similar hardware and network settings as
our LAN experiments and we quote experimental num-
bers from the respective papers.

Each of these works split their computation into an
input independent offline phase and an input depen-
dent online phase. In our protocols, we do not do this
split and count all cost as online cost – hence, the of-
fline cost is 0. Our protocols in the 3PC setting achieve
roughly 3× improvement in small networks that have
a small number of non-linear operations (such as Net-
work D) and between 6×-113× improvements in some
larger networks. In fact, in most cases, especially for re-
alistic size networks, our total time is lower than the
online time of previous best protocols (ignoring the of-
fline time). We are the first to evaluate on Network C
(which is considerably larger in size) and the table shows
our runtime and communication. Finally, for network D,
we also compare our protocols with the 3PC protocols
in Chameleon [36]. This shows SecureNN improves on
prior work by about 35×.

In all cases, our performance gains can be attributed
to much better communication complexity of our pro-
tocols compared to previous works (see comparison in
Table 6). In particular, as mentioned before, we avoid
the use of garbled circuits for the non-linear activation
functions such as ReLU. In all previous works, garbled
circuits are the major factor in large communication.
Single vs Batch Prediction. Table 7 summarizes our
results for secure inference over different networks for 1
prediction and batch of 128 predictions in both the LAN
and WAN settings. Due to use of matrix-based Beaver
triplets for secure multiplication protocol in linear and
convolutional layers, and batching of communication,
the time for multiple predictions grows sub-linearly. Se-
cureML also did predictions for batch size 100 for Net-
work A and took 14s and 143s in the LAN and the
WAN settings, respectively. In contrast, we take only
0.38s and 2.79s for 128 predictions using 3PC protocol.
Comparison with ABY3 [31]. ABY3 considers a
similar set-up as SecureNN but develop different tech-

Protocol Dimension LAN (ms) WAN (ms) Comm. (MB)

Conv2dm,f,i,o

8, 5, 16, 50 3.8 28.4 0.42
28, 3, 1, 20 1.8 26.5 0.2
28, 5, 1, 20 2.8 27.5 0.33

MatMulm,n,v

1, 100, 1 0.33 25.2 0.0032
1, 500, 100 4.8 29.4 0.81
784, 128, 10 9.7 34.3 1.69

Maxpool
8× 8× 50, 4× 4 59.7 3062.2 2.23

24× 24× 16, 2× 2 61.1 672.6 5.14
24× 24× 20, 2× 2 62.6 685 6.43

DMP
8× 8× 50, 4× 4 1.9 51.6 0.18

24× 24× 16, 2× 2 4.8 54.2 0.52
24× 24× 20, 2× 2 4.9 55.2 0.65

DReLu
64× 16 11.2 161.9 0.68

128× 128 109.8 288.7 10.88
576× 20 71.5 232.9 7.65

ReLU
64× 16 0.42 25.3 0.04

128× 128 2.8 27.1 0.66
576× 20 2.5 26.6 0.46

Table 8. Microbenchmarks in LAN/WAN settings.

niques for matrix multiplication and non-linear oper-
ations. This results in protocols with different com-
munication complexity with performance depending on
the network architecture and hardware. For instance,
ABY3 requires 0.5MB of communication for inference
on Network-A (SecureNN requires 2.1MB) while it re-
quires 5.2MB of communication over Network-D (Se-
cureNN requires 4.05MB). It would be interesting to
see if their techniques can be combined with SecureNN
to achieve the best of both worlds.

7.6 Microbenchmarks

Table 8 presents microbenchmark timings for var-
ious ML functionality protocols varied across different
dimensions. All timings are average timings. The over-
heads for DMP and ReLU are additional over the costs of
Maxpool and DReLU respectively as these pairs of pro-
tocols are always used together in training.
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A Other Related Work
In recent years, privacy-preserving machine learn-

ing has received considerable research attention. We first
discuss the most closely related works that consider neu-
ral network inference and training, and then provide an
overview of other related works.
Neural Network Inference and Training. Perhaps
the first work to consider secure neural network predic-
tion was the work of Gilad-Barach et al. [24] who used
homomorphic encryption techniques to provide secure
prediction. For efficiency reasons, they approximated
non-linear functions, such as the ReLU activation func-
tion to a quadratic function. Since this approximation
results in loss in accuracy, there have been works that
approximate ReLU using higher degree polynomials [16],
but incur higher cost.

The work of SecureML [33] provided secure proto-
cols for neural network training and prediction with
non-linear activations, using a combination of arith-
metic and Yao’s garbled circuit techniques. They pro-
vided computational security against a single semi-
honest adversary in both the 2 and 3-server models. The
work of MiniONN [30] further optimized the protocols
of SecureML [33] (specifically reducing the offline cost
of matrix multiplications by increasing the online cost)
for the case of prediction in the 2-server model. They
also provided computational security against a semi-
honest adversary. Concurrently and independently to
this work, the works of Chameleon [36] and Gazelle [26]
provide secure inference protocols in the 3-server and 2-
server models, respectively. Chameleon remove expen-
sive oblivious transfer protocols (needed for secure mul-
tiplications) by using the third party as a dealer, while
Gazelle focusses on making the linear layers (such as
matrix multiplication and convolution) more communi-

cation efficient by providing specialized packing schemes
for additively homomorphic encryption schemes. Both
these works are also computationally secure against
one semi-honest adversary. All of the above proto-
cols [26, 30, 33, 36] use garbled circuits for non-linear
activations.

In contrast to all the above works, we provide pro-
tocols for non-linear activation functions by avoiding
garbled circuits and dramatically reduce their communi-
cation complexity. Additionally, protocols in SecureNN
enjoy information-theoretic security (barring computa-
tional assumptions for implementations) as well as pro-
vide privacy against malicious adversaries.
Other related works. Bost et al. [11] propose a num-
ber of building block functionalities to perform secure
inference for linear classifiers, decision trees and naive
bayes in the two-party setting. Later, [39] gave an im-
proved protocol for decision trees. Perhaps the first
work to consider secure training was that of Lindell
and Pinkas [29] who provided algorithms to execute
decision tree based training over shared data. Niko-
laenko et al. [34] implemented a secure matrix factor-
ization to train a movie recommender system. Shokri
and Smatikov [37] considered the problem of privacy
in neural network training when data is horizontally
partitioned. Here, the parties run the training on their
data individually, and exchange the changes in coeffi-
cients obtained during training – the goal is to mini-
mize leakage and provide privacy to users using various
techniques such as differential privacy [22].

B Arithmetic operations on
shared decimal numbers
In order for neural network algorithms to be com-

patible with cryptographic applications, they must typi-
cally be encoded into integer form (most neural network
algorithms work over floating point numbers). Now, dec-
imal arithmetic must be performed over these values in
an integer ring which requires careful detail. We fol-
low [33] and describe details below. We use fixed point
arithmetic to perform all computations. In other words,
all numbers are represented as integers in the native
C++ datatype uint64_t. We use a precision of lD = 13
bits for representing numbers. For instance, an integer
215 in this encoding corresponds to the float 4 and an
integer 264 − 213 corresponds to a float −1. Since we
use unsigned integers for encoding, ReLU(·) compares
its argument with 263. Such encoding is gaining popu-
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larity in the systems community with the introduction
of fixed-point data types [2].

To perform decimal arithmetic in an integer ring,
we use the same solution as is used in [33]. Addition
of two fixed point decimal numbers is straightforward.
To perform multiplication, we multiply the two decimal
numbers and truncate the last lD bits of the product.
Theorem 1 in [33] shows that this above truncation tech-
nique also works over shared secrets (2-out-of-2 shares)
i.e., the two parties can simply truncate their shares lo-
cally preserving correctness with an error of at most 1
bit with high probability. Denoting an arithmetic shift
by ΠAS(a, α), truncation of shares i.e., dividing shares
by a power of 2 is described in Algorithm 11. We refer
the reader to [33] for further details.

Algorithm 11 Truncate ΠTruncate({P0, P1}):

Input: P0 & P1 hold an positive integer α and 〈X〉L0 &
〈X〉L1 resp.

Output: P0 gets 〈X/2α〉L0 and P1 gets 〈X/2α〉L1 .

1: P0 computes ΠAS(〈X〉L0 , α).
2: P1 computes −ΠAS(−〈X〉L1 , α).

C Neural Networks
Network A. This is the Deep Neural Network

from [33] which is a 3-layer network comprising of only
fully connected (linear) layers and uses ReLU as the
activation function. During training of this network,
ASM(ui) = ReLU(ui)∑

ReLU(ui)
is applied to the output of the

last layer to convert the output values into a prob-
ability distribution before doing the backpropogation.
The backpropogation updates the weights appropriately
making use of derivative of the activation function (in
this case ReLU′(x), which is defined to be 1 if x > 0 and
0 otherwise) and matrix multiplication. This network,
after training for 15 epochs, has a prediction accuracy
of 93.4% as illustrated in [33].

Network B. Next is the Convolutional Neural Net-
work from [30]; while [30] used this network for pre-
diction, we use the network to train over the MNIST
dataset. This is a 4-layer convolutional neural network
that has the following structure. First is a 2-dimensional
convolutional layer with 1 input channel, 16 output
channels and a 5× 5 filter. The activation functions fol-
lowing this layer are ReLU, followed by a 2×2 Maxpool.

The second layer is a 2-dimensional convolutional layer
with 16 input channels, 16 output channels and another
5× 5 filter. The activation functions following this layer
are once again ReLU and a 2 × 2 Maxpool. The third
layer is an 256× 100 fully-connected layer. The next ac-
tivation function is ReLU. The final layer is a 100× 10
linear layer and this is normalized using ASM(·) to get
a probability distribution. The loss function is cross en-
tropy and stochastic gradient descent is used to mini-
mize loss. Backpropogation equations are computed ap-
propriately. We show that this network, after training
for 15 epochs, provides an inference accuracy of 98.77%
on the MNIST dataset.

Network C. Finally, we also run our protocols over
a (standard) LeNet network [27], which is a larger ver-
sion of the network from [30]. This is a 4-layer convo-
lutional neural network with similar structure as above
but more number of output channels and bigger lin-
ear layers. First layer is a 2-dimensional convolutional
layer with 1 input channel, 20 output channels and a
5× 5 filter. The activation functions following this layer
are ReLU, followed by a 2 × 2 Maxpool. The second
layer is a 2-dimensional convolutional layer with 20 in-
put channels, 50 output channels and another 5×5 filter.
The activation functions following this layer are once
again ReLU and a 2 × 2 Maxpool. The third layer is
an 800× 500 fully-connected layer. The next activation
function is ReLU. The final layer is a 500×10 linear layer
and this is normalized using ASM(·) to get a probability
distribution. We show that this network, after training
for 15 epochs, has a prediction accuracy of 99.15%.

Network D. In addition to these networks for
training, for the case of secure inference, we also consider
a network from Chameleon [36] for comparison in the 3-
party setting. This network’s structure is as follows: the
first layer is a 2-dimensional convolutional layer with a
5× 5 filter, stride of 2, and 5 output channels. The acti-
vation function next is ReLU. The second layer is a fully
connected layer from a vector of size 980 to a vector of
size 100. Next is another ReLU activation function. The
last layer is a fully connected layer from a vector of size
100 to a vector of size 10. Finally the arg max function
is used to pick among the 10 values for predicting the
digit. This network gives inference accuracy of 99%.

D Security Proofs
Here, we provide proofs of semi-honest simulation

based security for a subset of our protocols and defer
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the remaining to full version. If a protocol invokes an-
other sub-protocol for a functionality F , we prove the
security by replacing the sub-protocol invocation with
the corresponding functionality call. This refers to F-
hybrid model.

Private Compare

Lemma 2. Protocol ΠPC({P0, P1}, P2) in Algorithm 3
securely realizes FPC when p > `+ 2.

Proof. We first prove correctness of our protocol,
i.e., β′ = β ⊕ (x > r). Define x[i] as x[i] :=
Reconstp(〈x[i]〉p0, 〈x[i]〉p1) ∈ {0, 1} for all i ∈ [`]. We treat
x and r as ` bit integers and x > r tells if x is greater15

than r. Below, we do a case analysis on value of β.
Case β = 0. For correctness, we require β′ = (x > r).
For each i ∈ [`], define wi = Reconstp(〈wi〉p0, 〈wi〉

p
1). Note

that w[i] = x[i] + r[i] − 2r[i]x[i] = x[i] ⊕ r[i]. For each
i ∈ [`], define ci = Reconstp(〈ci〉p0, 〈ci〉

p
1). Note that c[i] =

r[i] − x[i] + 1 +
∑`
k=i+1 wk. Let i

∗ be such that for all
i > i∗, x[i] = r[i] and x[i∗] 6= r[i∗]. We claim that the
following holds:

– For all i > i∗, c[i] = 1. This is because both r[i]−x[i]
and

∑`
k=i+1 wk are 0.

– For i = i∗, if x[i] = 1, c[i] = 0, else c[i] = 2.
– For i < i∗, c[i] > 1. This is because r[i] − x[i] is

either 1 or −1 and
∑`
k=i+1 wk > 1. For this step,

we require that there is no wrap around modulo p,
which is guaranteed by p > `+ 2.

This proves that x > r iff there exists a i ∈ [`] such
that c[i] = 0. Finally, the last step of multiplying with
random non-zero si and permuting all the sici preserves
this characteristic. This condition is exactly what P2
checks.
Case β = 1. For correctness, we require β′ = 1 ⊕ (x >
r) = (x ≤ r). The last expression is equivalent to x <
(r + 1) when r 6= 2` − 1 and otherwise x ≤ r is always
true. Note that t = r + 1. Now, similar to logic above,
we compute t > x when r 6= 2` − 1. This condition is
easy to check since r is known to both P0 and P1.
When r = 2` − 1, we know that β′ = 1. Also, β′ = 1
iff there exists a unique i such that di is 0. Hence, the
parties create a vector starting with 1 followed by `− 1
zeroes. Scaling by si and permutation creates a uniform
vector with exactly one 0.

15 x > r iff the leftmost bit where x[i] 6= r[i], x[i] = 1.

Now we prove security of our protocol. First note
that P0 and P1 receive no messages in the protocol and
hence, our protocol is trivially secure against corruption
of P0 or P1. Now, we have to simulate the messages
seen by P2 given P2’s output, namely β′. To do this, if
β′ = 0, pick di

$←− Z∗p, for all i ∈ [`]. If β′ = 1, then pick

an i∗
$←− [`], set di∗ = 0 with all other di

$←− Z∗p. Now,
compute (〈di〉p0, 〈di〉

p
1) ← Sharep(di) and send 〈di〉pj for

all i ∈ [`], j ∈ {0, 1} as the message from Pj to P2. This
completes the simulation. To see that the simulation is
perfect, observe that whether or not ∃i∗, with di∗ = 0
depends only on β′. Additionally, when β′ = 1, the index
i∗ where di∗ = 0 is uniformly random in [`] due to the
random permutation π. Finally, the non-zero di values
are uniform over Z∗p since the si values are random in
Z∗p.

Compute MSB
Lemma 3. Protocol ΠMSB({P0, P1}, P2) in Algorithm 5
securely realizes FMSB in the (FPC,FMATMUL)-hybrid model.

Proof. First, we prove correctness of our protocol, i.e.,
α := ReconstL(〈α〉L0 , 〈α〉L1 ) = MSB(a). As already men-
tioned, over an odd ring, the MSB computation can be
reduced to LSB computation. More precisely, over an
odd ring, MSB(a) = LSB(y), where y = 2a. Hence, it
suffices to compute LSB(2a).

In the protocol, r = y + x(modL − 1). Hence,
LSB(y) = y[0] = r[0]⊕ x[0]⊕ wrap(y, x, L− 1). Next, we
note that wrap(y, x, L − 1) = (x > r). First, P0, P1, P2
compute x > r as follows. They invoke ΠPC and its
correctness ensures that P2 learns β′ = β ⊕ (x > r).
Next, P2 secret shares β′ to P0, P1. Note that γ =
β′ + β − 2ββ′ = β ⊕ β′ = (x > r) = wrap(y, x, L − 1).
Next, similarly, δ = r[0] ⊕ x[0]. Then, θ = γδ and
α = γ + δ − 2θ = γ ⊕ δ = LSB(y) = MSB(a).

Next, we prove security of our protocol. Parties P0
and P1 learn the following information: 2a + x (from
Step 3), 〈r〉L−1

j , {〈x[i]〉pj}i, 〈x[0]〉Bj (Step 1) and 〈β′〉Bj
(Step 5). However, these are all fresh shares of these
values and hence can be perfectly simulated by sending
random fresh share of 0. Finally, Pj outputs a fresh share
of MSB(a) as the share is randomized with uj . The only
information that P2 learns is bit β′. However, β′ = β ⊕
(r > c), where β is a random bit unknown to P2. Hence,
the distribution of β′ is uniformly random from P2’s
view and hence the information learned by P2 can be
perfectly simulated.
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Derivative of ReLU

Lemma 4. Protocol ΠDRELU({P0, P1}, P2) in Algo-
rithm 6 securely realizes FDReLU in the (FSC,FMSB)−hybrid
model for all a ∈ [0, 2k]∪ [2`−2k, 2`−1], where k < `−1.

Proof. First, we prove the correctness of our proto-
col when a ∈ [0, 2k) ∪ (2` − 2k, 2` − 1], where k <

` − 1, i.e., γ := ReconstL(〈γ〉L0 , 〈γ〉L1 ) = ReLU′(a) =
1 ⊕ MSB(a), where a is the value underlying the in-
put shares. Note that when a belongs to the range
[0, 2k] ∪ [2` − 2k, 2` − 1], where k < ` − 1, MSB(a) =
MSB(2a) = MSB(c). Also, it holds that 2a 6= L− 1, and
precondition of FSC is satisfied. From correctness of FSC,
y := ReconstL−1(〈y〉L−1

0 , 〈y〉L−1
1 ) = 2a. Next, from cor-

rectness of FMSB, α := ReconstL(〈α〉L0 , 〈α〉L1 ) = MSB(y) =
MSB(2a). Finally, γ = 1 − α = 1 −MSB(a) as required.
Also, note that 〈γ〉Lj are fresh shares of γ since both
parties locally add shares of 0 to randomize the shares.

For security, first see that P2 learns no informa-
tion from the protocol (as both FSC({P0, P1}, P2) and
FMSB({P0, P1}, P2) provide outputs only to P0 and P1).
Now, Pj , j ∈ {0, 1} only learns a fresh share of 2a (over
ZL−1) in Step 2 and a fresh share of α = MSB(2a)
in Step 3 and hence any information learned by either
party can be perfectly simulated through appropriate
shares of 0. Finally, Pj outputs a fresh share of ReLU′(a)
as the respective shares are randomized by uj .

ReLU

Lemma 5. Protocol ΠReLU({P0, P1}, P2) in Algorithm 7
securely realizes FReLU in the (FDReLU,FMATMUL)-hybrid
model.

Proof. First, we prove the correctness, i.e., c :=
ReconstL(〈c〉L0 , 〈c〉L1 ) = ReLU(a) = ReLU′(a) · a, where a
is the value underlying the input shares. It follows from
correctness16 of FDReLU that α := ReconstL(〈α〉L0 , 〈α〉L1 ) =
ReLU′(a). Now from the correctness of FMATMUL it follows
that c = α · a.

For security, see that P2 learns no information
from the protocol (as both FDReLU({P0, P1}, P2) and
FMATMUL({P0, P1}, P2) provide outputs only to P0 and
P1). Now, Pj , j ∈ {0, 1} only learns a fresh share of
α = ReLU′(a) in Step 1 and a fresh share of αa (over ZL)

16 When we instantiate the functionality FDReLU using protocol
ΠDReLU, we would ensure that the conditions on range of input
to ΠDReLU are met.

in Step 2 and hence any information learned by either
party can be perfectly simulated through appropriate
shares of 0. Finally, Pj outputs a fresh share of ReLU(a)
as the respective shares are randomized by uj .

E Privacy against malicious
adversary
In this section, we show that all our protocols de-

scribed in Sections 4 and 5 as well as protocols for gen-
eral neural networks obtained by putting these together
satisfy stronger security requirement than semi-honest
security, namely, privacy against a malicious server in
the client-server model (formalized by [6]). As was al-
ready pointed out by Araki et al. [6], this can only be
achieved when the servers receive no information about
the output of the protocol. Formally, we show that, for
any malicious server, for any two inputs of the honest
clients (holding the data) the view of the server is in-
distinguishable.

First, intuitively, we show that views are identical
with secure correlated randomness. This holds because
in all our protocol, the incoming messages to a server
are either a fresh share of a value or can be generated us-
ing a uniformly random value (e.g., incoming messages
of P2 in private-compare protocol). Thus, irrespective
of what the adversary sends in each round, the view of
a malicious server can be simulated using uniform ran-
domness and is completely independent of the inputs
being used by the clients.

Second, in the case when correlated randomness is
generated using shared PRF keys, to argue security
against malicious P0, we rely on security of the PRF
key shared between P1, P2 that is unknown to P0. Using
this, we show that incoming messages of P0 are compu-
tationally close to uniform. It is critical that to argue
security against a malicious P0 we do not rely on secu-
rity of PRF keys known to P0, i.e. shared keys between
P0, P1 or P0, P2. Hence, we do not need to use a ma-
licious secure coin-tossing protocol to generate secure
keys between an adversary and an honest server. We
only rely on the security of the PRF key shared between
two honest servers. Therefore, the exact same protocol
gives privacy against a single malicious server. Similar
arguments can be made to argue security against a ma-
licious P1 or malicious P2.
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F Remaining protocols and
security proofs
Here, we provide the proofs for the remaining pro-

tocols described in Section 4 and Section 5.

3-party Matrix Multiplication

Lemma 6. Protocol ΠMalMul({P0, P1}, P2) in Algo-
rithm 1 securely realizes FMATMUL.

Proof. Let Zj be the output of the party
Pj . For correctness we need to prove that
i.e. ReconstL(Z0, Z1) = X · Y . We calculate
Z0 + Z1 =

(
〈X〉L0 · F + E · 〈Y 〉L0 + 〈C〉L0 + U0

)
+(

−E · F + 〈X〉L1 · F + E · 〈Y 〉L1 + 〈C〉L1 + U1
)

= −E ·
F +X · F +E · Y +C = −(X −A) · (Y −B) +X · (Y −
B) + (X −A) · Y +A ·B = X · Y .

Security against corrupt P2 is easy to see since
it gets no message and only generates a fresh matrix
Beaver triplet of correct dimensions. Now, we prove se-
curity against corruption of either P0 or P1. Party P0 re-
ceives 〈A〉L0 , 〈B〉L0 , 〈C〉L0 and 〈E〉L1 , 〈F 〉L1 . We note that all
of these uniform random matrices because A,B are uni-
formly chosen and fresh shares are generated of A,B,C.
Also, the final output of Pj , j ∈ {0, 1} is a fresh random
share of X · Y (as they have each been randomized by
random matrix Uj) and contain no information about
X and Y .

Select Share

Lemma 7. Protocol ΠSS({P0, P1}, P2) in Algorithm 2
securely realizes FSS in the FMATMUL−hybrid model.

Proof. We first prove the correctness of our protocol,
i.e., z := ReconstL(〈z〉L0 , 〈z〉L1 ) is x when α = 0 and y

when α is 1. Note that w = y − x and from correctness
of FMATMUL, c = ReconstL(〈c〉L0 , 〈c〉L1 ) = α ·w = α · (y−x).
And finally, z = x + c = (1 − α) · x + α · y. Hence,
correctness holds.

To argue security, first observe that P2 learns no
information from the protocol (as FMATMUL({P0, P1}, P2)
provides outputs only to P0 and P1). On the other hand,
Pj , j ∈ {0, 1} only learn fresh shares of the outputs in
Step 2 and hence any information learned by either
party can be perfectly simulated through appropriate
shares of 0 (over ZL). Finally, Pj outputs a fresh share of
the output in Step 3 as they are randomized by uj .

Share Convert

Proof of Lemma 1: We have already seen correctness.
To see the security, first observe that the only informa-
tion that P2 sees is x = a + r (over ZL) and η′. Since
r

$←− ZL and is not observed by P2, we have that x is
uniform over ZL and so information sent to P2 can be
simulated by sampling x $←− ZL and sending shares of x
from Pj to P2 for j ∈ {0, 1}. Next, η′′ is a random bit
not observed by P2 and thus, η′ is a uniform random bit
to P2. Hence, η′ can be perfectly simulated.

Finally, the only information that P0 and P1 observe
are fresh shares of the following values: ∀i ∈ [`], x[i], δ,
and η′ that can be perfectly simulated by sharing 0. The
outputs of P0 and P1 are fresh shares of a over ZL−1 as
they are randomized using u0 and u1 respectively.

Division

Lemma 8. Protocol ΠDIV({P0, P1}, P2) in Algorithm 8
securely realizes FDIV in the (FDReLU,FMATMUL)−hybrid
model when y 6= 0.

Proof. We first prove the correctness of our protocol,
i.e., q := ReconstL(〈q〉L0 , 〈q〉L1 ) = bx/yc. Our protocol
mimics the standard long division algorithm and pro-
ceeds in ` iterations. In the ith iteration we compute
the q[i], the ith bit of q starting from the most signifi-
cant bit.

We will prove by induction and maintain the invari-
ant: βi = q[i], ki = 2iβi, ui = y ·

∑`−1
j=i kj . Assume that

invariant holds for i > m, then we will prove that it
holds for i = m. Note that zm = (x− um+1 − 2my). We
note that βm or q[m] is 1 iff x − um+1 > 2my, that is,
when ReLU′(zm) = 1. By correctness17 of FDReLU, βm =
ReconstL(〈βm〉L0 , 〈βm〉L1 ) = ReLU′(zm). Next by correct-
ness of FMATMUL, km = βm2m and vm = βm · 2my = kmy.
Hence, um = um+1 + vm = y ·

∑`−1
j=m kj .

To argue security, first observe that P2
learns no information from the protocol (as both
FDReLU({P0, P1}, P2) and FMATMUL({P0, P1}, P2) provide
outputs only to P0 and P1). Now, Pj , j ∈ {0, 1} only
learn fresh shares of the outputs in Step 4, 5 and 6
and hence any information learned by either party can
be perfectly simulated through appropriate shares of 0

17 When we instantiate the functionality FDReLU using protocol
ΠDReLU, we would ensure that the conditions of Lemma 4 are
met.
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(over ZL). Finally, Pj outputs a fresh share of the final
output in Step 9 as they are randomized by sj .

Maxpool

Lemma 9. Protocol ΠMP({P0, P1}, P2) in Algorithm 9
securely realizes FMAXPOOL in the (FDReLU,FSS)−hybrid
model.

Proof. We first prove the correctness of our protocol,
i.e., maxn := ReconstL(〈maxn〉L0 , 〈maxn〉L1 ) stores the
maximum value of the elements {xi}i∈[n] and
indn := ReconstL(〈indn〉L0 , 〈indn〉L1 ) stores the index of
maximum value.

We will prove this by induction and will main-
tain the invariant that maxi holds the value of
max(x1, . . . , xi) and indi holds a value of k s.t. maxi =
xk. It is easy to see that this holds for i = 1. Suppose
this holds for i = m−1. Then we will prove that it holds
for i = m. In Step 3, we calculate wm = xm −maxm−1.
By correctness 18 of FDReLU, βm = ReLU′(wm). That is,
βm = 1 iff xm > maxm−1. Next, by correctness of FSS,
maxm is maxm−1 if βm = 0 and xm otherwise. In Step 6,
we compute shares of km = m. In Step 7, by correctness
of FSS, indm = indm−1 if βm = 0 and m otherwise. This
proves correctness.

To argue security, first observe that P2 learns no in-
formation from the protocol (as FDReLU({P0, P1}, P2) and
FSS({P0, P1}, P2) provides outputs only to P0 and P1).
Now, Pj , j ∈ {0, 1} only learn fresh shares of the val-
ues βi,maxi, indi and hence any information learned by
either party can be perfectly simulated through appro-
priate shares of 0 (over ZL). Finally, Pj outputs a fresh
shares of the final output in Step 9 as the respective
shares are randomized by uj and vj .

Derivative of Maxpool

We provide a proof of correctness and security of
Algorithm 10 followed by the general case algorithm.

Lemma 10. Πn1×n2DMP({P0, P1}, P2) in Algorithm 10
securely realizes FDMAXPOOL in the FMAXPOOL−hybrid
model.

18 When we instantiate the functionality FDReLU using protocol
ΠDReLU, we would ensure that the conditions of Lemma 4 are
met.

Proof. Let k∗ be the index of the maximum value and
Er denote the unit vector with 1 in the rth position
and 0 everywhere else. For correctness, we show that
ReconstL(〈D〉L0 +U0, 〈D〉L1 +U1) = Ek∗ in Algorithm 10.

From the correctness of FMAXPOOL, we have that
P0 and P1 hold shares of indn (which is the in-
dex of the maximum value). P2 receives 〈indn〉L0 + r

and 〈indn〉L1 from P0 and P1 resp. and reconstructs
t = indn + r mod L and then computes k = t mod n.
P2 provides P0 and P1 with shares 〈E〉L0 and
〈E〉L1 that reconstruct to Ek. Now, observe that
k = ((indn + r) mod L) mod n. Let g = r mod n.
Since n | L, we have that k = (indn + g) mod n.
Now, let shares 〈E〉Lj = (〈E0〉Lj , 〈E1〉Lj , · · · , 〈En−1〉Lj ).
In this, 〈Ek〉L0 and 〈Ek〉L1 reconstruct to 1, while
all other k′ 6= k reconstruct to 0. Since 〈D〉Lj =
(〈E(−g mod n)〉Lj , 〈E(1−g mod n)〉Lj , · · · , 〈E(n−1−g mod n)〉Lj ),
〈D(k−g) mod n〉L0 and 〈D(k−g) mod n〉L1 alone will recon-
struct to 1 with all other indices reconstructing to 0.
Since (k − g) mod n = indn mod n, we have that 〈D〉L0
and 〈D〉L1 reconstruct to Ek∗ , hence proving the state-
ment.

To argue security, first observe that P0 and P1 ob-
tain shares of indn from the call to FMAXPOOL. Now, since
r is uniformly random in ZL, P2 learns no informa-
tion from shares 〈k〉L0 and 〈k〉L1 (which reconstruct to
indn + r). Finally, Pj , j ∈ {0, 1} only learn fresh shares
of the values E(indn+r) mod n and hence any informa-
tion learned by either party can be perfectly simulated
through appropriate shares of 0 (over ZL). Finally, Pj
outputs a fresh shares of the final output in Step 5 as
the shares are randomized by U0 and U1.

Derivative of Maxpool in the general case. We
first observe that this function can be computed using
steps similar to 6 & 7 from Algorithm 9. The idea is
for the parties to invoke FSS({P0, P1}, P2) sequentially
with shares of the unit vector representing the current
maximum. Let Ek, k ∈ [n] denote the unit vector of
length n with 1 in its kth position and 0 everywhere else.
E0 denotes the all zeroes vector. Details are presented
in Algorithm 12.

Lemma 11. Protocol ΠDMP({P0, P1}, P2) in Al-
gorithm 12 securely realizes FDMAXPOOL in the
(FDReLU,FSS)−hybrid model.

Proof. For correctness, we show that ReconstL(〈DMPn〉L0 +
U0, 〈DMPn〉L1 + U1) = Ek∗ in Algorithm 12. This proof
is nearly identical to the proof of correctness of Al-
gorithm 9. As before, we prove this by induction and
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Algorithm 12 Derivative of Maxpool
ΠDMP({P0, P1}, P2):

Input: P0, P1 hold {〈xi〉L0 }i∈[n] and {〈xi〉L1 }i∈[n], resp.
Output: P0, P1 get {〈zi〉L0 }i∈[n] and {〈zi〉L1 }i∈[n], resp.,

where zi = 1, when xi = Max({xi}i∈[n]) and 0 oth-
erwise.

Common Randomness: P0 and P1 hold shares of 0
over ZnL denoted by U0 and U1.

1: For j ∈ {0, 1}, Pj sets 〈max1〉Lj = 〈x1〉Lj and
〈DMP1〉Lj = Ej .

2: for i = {2, . . . , n} do
3: For j ∈ {0, 1}, Pj computes 〈wi〉Lj = 〈xi〉Lj −
〈maxi−1〉Lj

4: P0, P1, P2 call FDReLU({P0, P1}, P2) with Pj , j ∈
{0, 1} having input 〈wi〉Lj and P0, P1 learn 〈βi〉L0 and
〈βi〉L1 , resp.

5: P0, P1, P2 call FSS({P0, P1}, P2) with Pj , j ∈
{0, 1} having input (〈βi〉Lj , 〈maxi−1〉Lj , 〈xi〉Lj ) and
P0, P1 learn 〈maxi〉L0 and 〈maxi〉L1 , resp.

6: For j ∈ {0, 1}, Pj sets 〈Ki〉Lj = Ej·i.
7: P0, P1, P2 call FSS({P0, P1}, P2) with Pj , j ∈
{0, 1} having input (〈βi〉Lj , 〈DMPi−1〉Lj , 〈Ki〉Lj ) and
P0, P1 learn 〈DMPi〉L0 and 〈DMPi〉L1 , resp.

8: end for
9: For j ∈ {0, 1}, Pj outputs 〈DMPn〉Lj + Uj .

will maintain the invariant that maxi holds the value
of max(x1, . . . , xi) and now show that DMPi holds the
value Ek for k s.t. maxi = xk. It is easy to see that
this holds for i = 1. Suppose this holds for i = m − 1.
Then we will prove that it holds for i = m. Now, in
Step 3, we calculate wm = xm − maxm−1. By correct-
ness of FDReLU, βm = ReLU′(wm). That is, βm = 1 iff
xm > maxm−1. Next, by correctness of FSS, maxm is
maxm−1 if βm = 0 and xm otherwise. In Step 6, we
compute shares of km = Em. In Step 7, by correctness
of FSS, DMPm = DMPm−1 if βm = 0 and Em otherwise.
This proves correctness.

To argue security, first observe that P2 learns no in-
formation from the protocol (as FDReLU({P0, P1}, P2) and
FSS({P0, P1}, P2) provides outputs only to P0 and P1).
Now, Pj , j ∈ {0, 1} only learn fresh shares of the val-
ues βi,maxi,DMPi and hence any information learned
by either party can be perfectly simulated through ap-
propriate shares of 0 (over ZL). Finally, Pj outputs a
fresh shares of the final output in Step 9 as the shares
are randomized by U0 and U1.
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