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Abstract. In a k-party CDS protocol, each party sends one message to
a referee (without seeing the other messages) such that the referee will
learn a secret held by the parties if and only if the inputs of the parties
satisfy some condition (e.g., if the inputs are all equal). This simple
primitive is used to construct attribute based encryption, symmetrically-
private information retrieval, priced oblivious transfer, and secret-sharing
schemes for any access structure. Motivated by these applications, CDS
protocols have been recently studied in many papers.
In this work, we study linear CDS protocols, where each of the messages
of the parties is a linear function of the secret and random elements
taken from some finite field. Linearity is an important property of CDS
protocols as many applications of CDS protocols required it.
Our main result is a construction of linear k-party CDS protocols for an
arbitrary function f : [N ]k → {0, 1} with messages of size O(N (k−1)/2).1

By a lower bound of Beimel et al. [TCC 2017], this message size is opti-
mal. We also consider functions with few inputs that return 1, and design
more efficient CDS protocols for them.
CDS protocols can be used to construct secret-sharing schemes for uni-
form access structures, where for some k all sets of size less than k
are unauthorized, all sets of size greater than k are authorized, and
each set of size k can be either authorized or unauthorized. We show
that our results imply that every k-uniform access structure with n
parties can be realized by a linear secret-sharing scheme with share

size min
{

(O(n/k))(k−1)/2, O(n · 2n/2)
}

. Furthermore, the linear k-party

CDS protocol with messages of size O(N (k−1)/2) was recently used by
Liu and Vaikuntanathan [STOC 2018] to construct a linear secret-sharing
scheme with share size O(20.999n) for any n-party access structure.
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1 Introduction

Conditional disclosure of secrets (CDS) protocols, introduced by Gertner, Ishai,
Kushilevitz, and Malkin [20], is a cryptographic primitive related to secret-

? The authors are supported by ISF grant 152/17 and by the Frankel center for com-
puter science.

1 A similar result was independently and in parallel proven by Liu et al. [27].
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sharing that has many applications. In a CDS protocol, there are k parties,
each one holds a private input xi and the same secret s, and a referee that holds
x1, . . . , xk but does know s. The goal is that the referee will learn s if and only
if the inputs x1, . . . , xk satisfy some condition specified by a function f , i.e.,
f(x1, . . . , xk) = 1. The challenge is that each party sends only one message to
the referee (without seeing the other messages). This simple primitive is used
to construct attribute based encryption [6, 29], symmetrically-private informa-
tion retrieval [20], priced oblivious transfer [1], secret-sharing for uniform access
structures [13, 3, 14], and secret-sharing for general access structures [25]. Moti-
vated by these applications, CDS protocols have been recently studied in many
papers [22, 19, 12, 4, 10, 26, 3, 27, 14].

In this work, we study linear CDS protocols, where the messages of the par-
ties are a linear function of the secret and random elements taken from some
finite field. Equivalently, a CDS protocol is linear if the reconstruction of the se-
cret by the referee from the messages is a linear mapping.2 In many applications
of CDS protocols, it is required that the protocol will be linear. For example,
it was shown by Attrapadung [6] and Wee [29] that linear 2-party CDS proto-
cols can be used to construct public-key (multi-user) attribute-based encryption.
Furthermore, using a construction of Cramer et al. [16] and the construction of
secret-sharing schemes of [25], linear k-party CDS protocols imply secure multi-
party computation (MPC) protocols secure against Q2 adversarial structures.3

The construction of Cramer et al. [16] requires a linear secret-sharing scheme,
i.e., they must use a linear k-party CDS.

Linear CDS protocols can be used to construct linear secret-sharing schemes
for uniform access structures, that is, access structures in which for some k
all sets of size less than k are unauthorized, all sets of size greater than k are
authorized, and each set of size k can be either authorized or unauthorized [13,
12, 3, 14]. Very recently, Liu et al. [25] used the optimal linear k-party CDS
protocols (constructed in our paper and in [27]) to construct linear secret-sharing
schemes with share size O(20.999n) for any n-party access structure. They also
used non-linear k-party CDS protocols to construct a non-linear secret-sharing
scheme with share size O(20.994n) for any n-party access structure. These are the
first major improvements in the share size of secret-sharing schemes for arbitrary
access structures since the first constructions of [23], whose share size is 2n.

CDS protocols share similarities with private simultaneous messages (PSM)
protocols, a primitive introduced by Feige, Kilian, and Naor [18] for two-input
functions, and generalized to k-input functions in [18, 21]. In a PSM protocol,
there are k parties, each one holds a private input xi; here the referee does not
hold x1, . . . , xk. The goal is that the referee will learn f(x1, . . . , xk), without
learning any additional information on x1, . . . , xk. As in CDS protocols, the
challenge is that each party sends only one message to the referee (without seeing

2 This equivalence is a special case of the equivalence for secret-sharing schemes. See [7]
for discussion on equivalent definitions of linear secret-sharing schemes.

3 An adversarial structure is Q2 if the union of any two sets that the adversary can
control is not the entire set of parties.
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the other messages). Intuitively, compared to CDS, PSM is a stronger model,
since in CDS the inputs are known to the referee and in PSM the referee should
not learn any information about the inputs. A PSM protocol for a function
f implies a CDS protocol for the function f [20]. PSM protocols for specific
functions are used in the construction of CDS protocols in our work and in [27].

1.1 Our Results

Our first result is a construction of linear k-party CDS protocols for an arbitrary
k-input function f : [M ]× [N ]k−1 → {0, 1} with total message size O(N (k−1)/2)
for every k > 2 and integers M,N . Notice that the message size is independent
of M , that is, the domain of inputs of one party can be very large without
affecting the message size. For example, this property is useful for the index

function where the size of the domain of the first party is 2N
k−1

and the size
of the domains of the other parties in N . By [10], the size of the messages in
linear CDS protocols for most k-input functions f : [M ] × [N ]k−1 → {0, 1} is
Ω(k−1 ·N (k−1)/2) (see details in Section 8), thus our construction is optimal (up
to a factor of k). Previously, this result was only known for k = 2 [19] (for the
case that M = N). For k > 2, in the best previously known linear CDS protocol
the size of the messages was O(Nk) [20].

Following [9, 12, 10], we also consider functions with few inputs that return
1. We consider k-input functions f such that |f−1(1)| ≤ Nγ for some 0 <
γ < (k + 1)/2 and construct a linear CDS protocol for them with message
size O(k3 ·Nγ(k−1)/(k+1) · logN). The same result holds for functions such that
|f−1(0)| ≤ Nγ . These results generalize the result of [11] that constructed a
CDS protocol for 2-input functions f such that |f−1(1)| ≤ Nγ for some constant
1 ≤ γ < 2 with message size Õ(Nγ/4). The results of [10] imply a lower bound
of Ω(k−1 ·Nγ(k−1)/2k) for the message size of linear CDS protocols for k-input
functions. We do not know if our construction for k-input functions with few
inputs that return 1 is optimal.

As discussed above, CDS protocols imply secret-sharing schemes for uniform
access structures. Thus, our results imply the existence of linear secret-sharing
schemes for uniform access structures as we next elaborate. Using a family of per-
fect hash functions and our CDS protocols, we show that every k-uniform access
structure with n parties can be realized by a linear secret-sharing scheme with
share size O(k · ek · log n · dn/ke(k−1)/2) (a similar transformation was presented
in [3]; our transformation is more efficient). Furthermore, using a transforma-
tion of [14], every k-uniform access structure with n parties can be realized
by a linear secret-sharing scheme with share size O(n · 2n/2); this protocol is
more efficient when k > 0.257n. Finally, our results imply that every k-uniform
access structure with nγ minimal authorized sets of size k can be realized by
a linear secret-sharing scheme in which the size of the share of each party is
O(k4 · ek · log2 n · dn/keγ(k−1)/(k+1)).
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1.2 Our Technique

We use the following paradigm to design multiparty linear CDS protocols; this
paradigm was implicitly used to design multiparty CDS protocols [27] and PSM
protocols [14]. We start with a CDS protocol for a constant number of parties
and use it to construct a CDS protocol for an arbitrary number of parties.

We demonstrate this idea by describing a linear k-party CDS protocol for
a k-input function f : [N ]k → {0, 1} with complexity O(N3k/4−1). Notice that
for k > 2 this construction already improves the best previously known upper
bound described in [20] of O(Nk) for linear CDS protocols. For simplicity of
the discussion, in this paragraph we only consider an even k (as explained in
the technical section we also show how to handle odd values of k). Given the
function f , we define a 2-input function g : [N ]k/2 × [N ]k/2 → {0, 1}, where
g((x1, . . . , xk/2), (xk/2+1, . . . , xk)) = f(x1, . . . , xk). By [19], there is a linear 2-

party CDS protocol for g with messages of size O(Nk/4). Denote the message
of the first and second party in the CDS protocol for g by m1(x1, . . . , xk/2) and
m2(xk/2+1, . . . , xk), respectively (these messages are also a function of the com-
mon randomness of the CDS protocol). We construct a k-party CDS protocol for
f , where the first k/2 parties (respectively, the last k/2 parties) use a k/2-party
PSM protocol to compute m1(x1, . . . , xk/2) (respectively, m2(xk/2+1, . . . , xk)).
The parties can use the PSM protocol of [18] to compute these functions; the
complexity of the protocol is O(N3k/4−1). The referee can reconstruct the mes-
sages m1(x1, . . . , xk/2) and m2(xk/2+1, . . . , xk) and use the linear reconstruction
function of the CDS protocol to reconstruct the secret. The problem is that the
resulting CDS protocol is not linear since the PSM protocol of [18] is not linear.
However, we can use the fact that in a CDS protocol the referee knows x1, . . . , xk
and construct a simplified version of the protocol of [18] that is linear.

We use the above approach to design a linear k-party CDS protocol with mes-
sages of size N (k−1)/2. We first construct a new linear 3-party CDS protocol for
3-input functions; this CDS protocol generalizes the linear 2-party CDS protocol
of [19]. To construct a CDS protocol for a k-input function f : [N ]k → {0, 1} (for
an odd k) we define a 3-input function g : [N ]× [N ](k−1)/2× [N ](k−1)/2 → {0, 1},
where g(x1, (x2, . . . , x(k−1)/2), (x(k+1)/2, . . . , xk)) = f(x1, . . . , xk); that is, we
partition the parties to three sets, where the size of the first set is 1 and the
sizes of the two other sets is (k − 1)/2. We use our 3-party CDS protocol for g,
and denote the messages in this protocol by m1,m2,m3; in this protocol each
message is of size at most N (k−1)/2. We then show that m2 and m3 can be
computed by efficient linear PSM protocols (where the referee knows the inputs
x2, . . . , x(k−1)/2 and x(k+1)/2, . . . , xk, respectively).

To summarize our approach, one can start with any linear CDS protocol for
a small number of parties and use a linear variant of the PSM protocol of [18], in
which the parties send messages enabling the referee to compute the messages of
the CDS protocol. However, this transformation does not necessary result in the
most efficient protocol. To construct an optimal linear k-party CDS protocol, we
design a specific 3-party CDS protocol, such that its messages can be computed
by efficient linear PSM protocols.
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Comparison to the protocol of [27]. In a work that was done indepen-
dently and in parallel to our work, Liu et al. [27] have also constructed k-party
linear CDS protocols for arbitrary k-input functions with total message size
O(k ·N (k−1)/2) for every k > 2. Their protocol is somewhat different than ours,
however it uses very similar ideas. We apply some optimizations in our protocol,
which reduces the total message size by a factor of k compared to the protocol
of [27]. Furthermore, the protocol of [27] is only described for odd values of k
(using our ideas it can be transformed to a protocol for even values of k).

1.3 Related Works

Gertner et al. [20] defined CDS protocols and used them to construct
symmetrically-private information retrieval protocols. They gave some construc-
tions of CDS protocols: (1) they showed that a PSM protocol for a function
implies a CDS protocol for the same function, and (2) they showed that a
span program (not necessarily monotone) computing a function f implies a lin-
ear CDS protocol for f . In particular, this gives a construction from formulas
and branching programs. Their result implies that for every k-input function
f : [N ]k → {0, 1} there exist a linear CDS protocol with messages of size O(Nk).

Beimel et al. [13] showed that for every 2-input function f : [N ]×[N ]→ {0, 1}
there exists a 2-party CDS protocol in which the size of the messages is O(N1/2).
Their protocol is not linear. Gay et al. [19] constructed a linear 2-party CDS
protocol for arbitrary 2-input functions with the same message size of O(N1/2).
Following the above results, Liu et al. [26] have shown that every 2-input function

has a non-linear 2-party CDS protocol with messages of size 2O(
√
logN log logN).

To construct this CDS protocol, they reduced it to a CDS protocol for the index
function and constructed a CDS protocol for the index function based on the
private information retrieval protocol of Dvir and Gopi [17]. Liu et al. [27] have
generalized their results to k-input functions, designing a non-linear k-party CDS
protocol with messages of size 2O(

√
k logN log(k logN)).

Gay et al. [19] proved lower and upper bounds on the size of the messages in
linear and non-linear 2-party CDS protocols for several functions with domain of
size N . For example, they proved a lower bound of Ω(

√
logN) and a matching

upper bound of O(
√

logN) on the messages size of linear CDS protocols for the
index function and a lower bound of Ω(

√
logN) and an upper bound of O(logN)

on the messages size of linear CDS protocols for the disjointness function (which
returns 1 if and only if the sets represented by the inputs are disjoint) and for
the inner-product function. They also proved a lower bound of Ω(log logN) for
any CDS protocol (possibly non-linear) for these functions. Applebaum et al. [4]
proved a lower bound of Ω(logN) for any CDS protocol (possibly non-linear)
for some (non-explicit) function. Applebaum et al. [5] proved a lower bound of
logN−3−o(1) for any CDS protocol (possibly non-linear) for the inner product
function. All the above lower bounds are for a one-bit secret.

Applebaum et al. [4] and Ambrona et al. [2] showed that if there is a linear
2-party CDS protocol for some function f with message size c and common
random string with size r, then there is a linear CDS protocol for the complement
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function f in which the message size and the common random string size is
linear in c and r. Applebaum et al. [4] also showed that if there is a 2-party CDS
protocol (possibly non-linear) for some function f with message size c, common
random string with size r, and an error of 2−κ (in the reconstruction and in the
privacy), then there is a CDS protocol for f in which the message size and the
common random string size are polynomial in c, r, and κ.

Another result shown in [4] is that for every 2-input function there exists a
linear CDS for secrets of ` bits, where ` is exponential in N2, in which the size
of the messages is O(` · logN). This gives an amortized message size of O(logN)

per each bit of the secret, much better than the message size of 2O(
√
logN log logN)

shown in [26]. Applebaum and Arkis [3] improved this result and extended it to
k-input functions; they showed that for every function f : [N ]k → {0, 1} there
exists a multi-linear CDS protocol for secrets of ` bits, where ` is exponential in
Nk, in which the size of each of the messages sent by the parties is 4`.

CDS protocols are closely related to secret-sharing schemes for uniform ac-
cess structures. Basically, k-party CDS protocols for functions f : [N ]k → {0, 1}
are equivalent to secret-sharing schemes for k-partite k-uniform access structures
with k · N parties, where a k-uniform access structure is k-partite if there is a
partition of the parties to k sets V1, . . . , Vk such that every authorized set of
size k contains exactly one party from each set Vi. Two-uniform access struc-
tures, called forbidden graph access structures, where first defined by Sun and
Shieh [28], and where further studied in [13, 12, 10, 3].

In particular, it was shown in [13] that there is a transformation from 2-party
CDS protocols to secret-sharing schemes for 2-uniform access structures with n
parties in which the share size is O(log n) times the message size in the CDS
protocol; this transformation preserves linearity. Furthermore, if the size of the
secret is increased, then the share size of the resulting scheme is only O(1) times
the message size in the CDS protocol; this transformation does not preserve
linearity (for a linear CDS, the resulting scheme would be multi-linear). In [3],
this transformation was generalized for any k, where the increase in the share size
is O(ek · log n) if one wants to preserve linearity and O(ek) without preserving
linearity. In this paper, we improve this transformation for short secrets, i.e.,
we transform k-party CDS protocols for a function with domain of size n/k to
secret-sharing schemes for k-uniform access structures with n parties.

2 Preliminaries

2.1 Conditional Disclosure of Secrets Protocols

In this section we define k-party conditional disclosure of secrets (CDS) proto-
cols, first presented in [20].

Definition 2.1 (Conditional Disclosure of Secrets Protocols – Syntax
and Correctness). Let f : X1 × · · · ×Xk → {0, 1} be some k-input function.
A CDS protocol P for f with domain of secrets S consists of:
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– A finite domain of common random strings R, and k finite message domains
M1, . . . ,Mk.

– Deterministic message computation functions Enc1, . . . ,Enck, where Enci :
Xi × S ×R→Mi for every i ∈ [k].

– A deterministic reconstruction function Dec : X1×· · ·×Xk×M1×· · ·×Mk →
{0, 1}.

We say that a CDS protocol P is correct (with respect to f) if for every
(x1, . . . , xk) ∈ X1 × · · · × Xk for which f(x1, . . . , xk) = 1, every secret s ∈ S,
and every common random string r ∈ R,

Dec(x1, . . . , xk,Enc1(x1, s, r), . . . ,Enck(xk, s, r)) = s.

The total message size of a CDS protocol P is the total size of the messages
sent by the parties, i.e.,

∑k
i=1 log |Mi|.

We define the privacy of CDS protocols with a simulator, i.e., given x1, . . . , xk
such that f(x1, . . . , xk) = 0, we can simulate the messages sent by the parties by
a simulator that has access only to x1, . . . , xk, such that one cannot distinguish
between the messages sent by the parties and the messages generated by the
simulator. That is, a CDS protocol is private if everything that can be learned
from it can be learned from x1, . . . , xk without knowing the secret.

Definition 2.2 (Conditional Disclosure of Secrets Protocols – Pri-
vacy). We say that a CDS protocol P is private (with respect to f) if there
exists a randomized function Sim, called the simulator, such that for every
(x1, . . . , xk) ∈ X1 × · · · × Xk for which f(x1, . . . , xk) = 0, every secret s ∈ S,
and every k messages (m1, . . . ,mk) ∈M1 × · · · ×Mk,

Pr[Sim(x1, . . . , xk) = (m1, . . . ,mk)]

= Pr[Enc1(x1, s, r) = m1, . . . ,Enck(xk, s, r) = mk],

where the first probability is over the randomness of the simulator S and the
second probability is over the choice of r from R with uniform distribution.

Informally, we say that a CDS protocol is linear if the reconstruction function
of the referee is a linear function.

Definition 2.3 (Linear Conditional Disclosure of Secrets Protocols).
We say that a CDS protocol is linear over a finite field F if

– S = F,
– There exists constants `, `1, . . . , `k such that R = F` and Mi = F`i for every
i ∈ [k], and

– For every x1, . . . , xk ∈ [N ] there exist field elements (αi,ji)i∈[k],ji∈[`i] ∈ F
such that

Dec(x1, . . . , xk,Enc1(x1, s, r), . . . ,Enck(xk, s, r)) =
∑

i∈[k],ji∈[`i]

αi,jimi,ji ,

where Enci(xi, s, r) = (mi,1, . . . ,mi,`i) for every i ∈ [k].
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Equivalently, we could have required that for every i ∈ [k] and every xi ∈ Xi

the function Enci(xi, s, r) is a linear function over F of the secret s and the field
elements in r = (r1, . . . , r`) (see [24, 7] for the equivalence).

2.2 Secret-Sharing Schemes

We next present the definition of secret-sharing schemes, similar to [8, 15].

Definition 2.4 (Secret-Sharing Schemes). Let P = {P1, . . . , Pn} be a set of
parties. A collection Γ ⊆ 2P is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure is a monotone collection Γ ⊆ 2P of non-empty subsets of
P . Sets in Γ are called authorized, and sets not in Γ are called unauthorized.
The family of minimal authorized subsets is denoted by minΓ .

A secret-sharing scheme Σ = 〈Π,µ〉 with domain of secrets K is a pair, where
µ is a probability distribution on some finite set R called the set of random strings
and Π is a mapping from K×R to a set of n-tuples K1×K2×· · ·×Kn, where Kj

is called the domain of shares of Pj. A dealer distributes a secret k ∈ K according
to Σ by first sampling a random string r ∈ R according to µ, computing a vector
of shares Π(k, r) = (s1, . . . , sn), and privately communicating each share sj to
party Pj. For a set A ⊆ P , we denote ΠA(k, r) as the restriction of Π(k, r) to
its A-entries (i.e., the shares of the parties in A).

Given a secret-sharing scheme, define the size of the secret as log |K|, the
share size of party Pj as log |Kj |, the max share size as max1≤j≤n log |Kj |, and
the total share size as

∑n
j=1 log |Kj |.

Let K be a finite set of secrets, where |K| ≥ 2. A secret-sharing scheme Σ =
〈Π,µ〉 with domain of secrets K realizes an access structure Γ if the following
two requirements hold:

Correctness. The secret k can be reconstructed by any authorized set of par-
ties. That is, for any set B = {Pi1 , . . . , Pi|B|} ∈ Γ , there exists a reconstruction
function ReconB : Ki1 × · · · ×Ki|B| → K such that for every secret k ∈ K and
every random string r ∈ R,

ReconB

(
ΠB(k, r)

)
= k.

Privacy. Every unauthorized set cannot learn anything about the secret from
its shares. Formally, for any set T /∈ Γ , every two secrets a, b ∈ K, and every
possible vector of shares 〈sj〉Pj∈T ,

Pr[ΠT (a, r) = 〈sj〉Pj∈T ] = Pr[ΠT (b, r) = 〈sj〉Pj∈T ],

where the probability is over the choice of r from R at random according to µ.

A scheme is linear if the mapping that the dealer uses to generate the shares
that are given to the parties is linear, as we formalize at the following definition.
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Definition 2.5 (Linear Secret-Sharing Schemes). Let Σ = 〈Π,µ〉 be a
secret-sharing scheme with domain of secrets K, where µ is a probability distri-
bution on a set R and Π is a mapping from K ×R to K1 ×K2 × · · · ×Kn. We
say that Σ is a linear secret-sharing scheme over a finite field F if K = F, the
sets R,K1, . . . ,Kn are vector spaces over F, Π is an F-linear mapping, and µ is
the uniform probability distribution over R.

3 Linear CDS Protocols for 2 and 3 Parties

We present linear 2-party and 3-party CDS protocols. The 3-party CDS protocol
will be used in Section 4 to construct k-party CDS protocols for k > 3. To avoid
confusions, in this section we denote the parties by Alice, Bob, and Charlie.

3.1 A Linear 2-Party CDS Protocol

As a warm up, we first describe a linear 2-party CDS protocol for any 2-input
function f : [M ] × [N ] → {0, 1} in which the total message size is N ; i.e.,
the message size does not depend on M . This protocol is part of the protocol
described in [19], and it is not the optimal protocol for 2 parties (in particular,
by [19] there exist a linear 2-party CDS protocol for any 2-input function f :
[N ]× [N ]→ {0, 1} in which the message size is O(N1/2)).

In the CDS protocol, the parties, Alice and Bob, hold the inputs x1 ∈ [M ]
and x2 ∈ [N ], respectively, and the common randomness is N uniform bits
r1, . . . , rN . We denote the secret by s ∈ {0, 1}. Alice sends to the referee the bit

s⊕
⊕

i2∈[N ],f(x1,i2)=0
ri2 ,

and Bob sends the bits r1, . . . , rx2−1, rx2+1, . . . , rN . The message size of the
protocol is 1 + (N − 1) = N .

The correctness of the above protocol follows from the fact that if f(x1, x2) =
1, then the bit rx2

is not part of the exclusive-or of the bit that Alice sends. The
referee gets all the bits r1, . . . , rN except for the bit rx2

, and in particular all the
bits among r1, . . . , rN that are part of the exclusive-or in s⊕

⊕
i2∈[N ],f(x1,i2)=0 ri2 .

Thus, the referee can reconstruct the secret. For the privacy, we observe that
if f(x1, x2) = 0, then the bit rx2

is part of the exclusive-or of the bit that
Alice sends, and since the referee does not get this bit from Bob, then it cannot
learn any information about the secret. Formally, a simulator independently
chooses N uniform bits s′, r′1, . . . , r

′
N−1 and outputs s′ as the message of Alice

and r′1, . . . , r
′
N−1 as the message of Bob.

3.2 A Linear 3-Party CDS Protocol

We adapt the above protocol and construct a linear 3-party CDS protocol P3

for any 3-input function f : [M ] × [N ] × [N ] → {0, 1} with message size O(N)
(again, the message size is independent of M).
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Protocol P3

The secret: A bit s ∈ {0, 1}.
Inputs: Alice, Bob, and Charlie hold the inputs x1 ∈ [M ] and x2, x3 ∈ [N ],
respectively.
Common randomness: The three parties hold the following random bits.

– r1, . . . , rN ∈ {0, 1}.
– q1, . . . , qN ∈ {0, 1}.

The protocol:

1. Alice sends to the referee the bits si3 = s⊕ qi3 ⊕
⊕

i2∈[N ],f(x1,i2,i3)=0 ri2
for every i3 ∈ [N ].

2. Bob sends to the referee the bits r1, . . . , rx2−1, rx2+1, . . . , rN .
3. Charlie sends to the referee the bit qx3 .
4. If f(x1, x2, x3) = 1, the referee computes

sx3 ⊕ qx3 ⊕
⊕

i2∈[N ],f(x1,i2,x3)=0
ri2 .

Fig. 1. A linear 3-party CDS protocol P3 for a 3-input function f : [M ]× [N ]× [N ]→
{0, 1}.

Lemma 3.1. Let f : [M ] × [N ] × [N ] → {0, 1} be a 3-input function. Then,
there is a linear 3-party CDS protocol for f with total message size O(N).

Proof. The linear CDS protocol for f , denoted by P3, is described in Figure 1. We
start with an informal description of the protocol. The parties, Alice, Bob, and
Charlie, hold the inputs x1 ∈ [M ] and x2, x3 ∈ [N ], respectively. The common
randomness is 2N bits r1, . . . , rN and q1, . . . , qN , and the secret is s ∈ {0, 1}.

For every possible value i3 ∈ [N ] of the input of Charlie, Alice sends to the
referee the bit si3 = s ⊕ qi3 ⊕

⊕
i2∈[N ],f(x1,i2,i3)=0 ri2 (i.e., the message that

Alice sends in the 2-party CDS protocol, masked by qi3). Bob sends the bits
r1, . . . , rx2−1, rx2+1, . . . , rN , and Charlie sends the bit qx3 .

Next, we prove the correctness of P3. If f(x1, x2, x3) = 1, then the bit rx2 is
not part of the exclusive-or in the bit sx3 that Alice sends, since it contains only
the bits ri2 for which f(x1, i2, x3) = 0. Thus, the referee, which gets the bit qx3

and all the bits r1, . . . , rN except for the bit rx2
, and in particular all the bits

among r1, . . . , rN that are part of the exclusive-or in sx3
, can reconstruct the

secret s, as described in P3.

Now, we prove that P3 is private by constructing a simulator whose output is
3 messages, such that the distribution on the messages of P3 and the distribution
on the messages of the simulator are the same. If f(x1, x2, x3) = 0, then the bit
rx2

is part of the exclusive-or in the bit sx3
, and, thus, the bit sx3

is uniformly
distributed given the messages of Bob and Charlie. Similarly, since the referee
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does not get the bits q1, . . . , qx3−1, qx3+1, . . . , qN , the distribution on the bits
si3 , for every i3 ∈ [N ] such that i3 6= x3, is uniform. Hence, the simulator
independently chooses 2N uniform bits s′1, . . . , s

′
N , r

′
1, . . . , r

′
N−1, q

′ and outputs
s′1, . . . , s

′
N as the message of Alice, r′1, . . . , r

′
N−1 as the message of Bob, and q′

as the message of Charlie.

Moreover, the protocol P3 is linear over F2, since for every x1 ∈ [M ] and
x2, x3 ∈ [N ] the reconstruction function of the referee is a linear combination of
the bits in the messages it gets. Finally, Alice sends N bits, Bob sends N−1 bits,
and Charlie sends one bit, so the massage size of P3 is N+(N−1)+1 = 2N . ut

4 Linear k-Party CDS Protocols

We use the protocol P3 to construct a k-party CDS protocol, for any integer k,
using the approach described in the introduction. First, in Section 4.1, we show
how to transform the 3-party CDS protocol P3 to a linear k-party CDS protocol
Pk for any k-input function f : [M ]× [N ]k−1 → {0, 1}, for an odd k > 3. Then,
in Section 4.2, we show how we can adapt the transformation for an even k > 3.

4.1 A Linear k-Party CDS Protocol for an Odd k

Informal Description of the Protocol. We consider a k-input function f :
[M ] × [N ]k−1 → {0, 1}, for some odd k, and k parties P1, . . . , Pk that hold the
inputs x1 ∈ [M ] and x2, . . . , xk ∈ [N ], respectively. Let k′ = (k − 1)/2, y1 =
x1, y2 = (x2, . . . , xk′+1), and y3 = (xk′+2, . . . , xk), and define a 3-input function
g : [M ] × [N ]k

′ × [N ]k
′ → {0, 1}, where g(x1, (x2, . . . , xk′+1), (xk′+2, . . . , xk)) =

f(x1, . . . , xk). That is, we partition the parties into three sets, where the first
set is S1 = {P1}, the second set is S2 = {P2, . . . , Pk′+1}, and the third set is
S3 = {Pk′+2, . . . , Pk}. Observe that |S2| = |S3| = k′.

We next describe a k-party CDS protocol Pk in which the parties P1, . . . , Pk
simulates the parties in the protocol P3 for the function g. In this simulation,
party P1 simulates Alice, the parties in S2 simulate Bob, and the parties in S3

simulate Charlie, as follows. We denote the simulated inputs in P3 by y1, y2, y3
and use h2, h3 ∈ [N ]k

′
as possible inputs of g in P3.

Simulating Alice. Party P1 sends the bits sh3
= s ⊕ qh3

⊕⊕
h2∈[N ]k′ ,f(x1,h2,h3)=0 rh2

, for every h3 = (ik′+2, . . . , ik) ∈ [N ]k
′

(exactly

as in P3).

Simulating Bob. The parties in S2 should send the bits rh2
, for every h2 =

(i2, . . . , ik′+1) ∈ [N ]k
′
, except for ry2 = rx2,...,xk′+1

. To do so, every party Pj ∈ S2

sends to the referee all the random bits rh2 for every h2 = (i2, . . . , ik′+1) ∈ [N ]k
′

such that ij 6= xj . Observe that h2 6= (x2, . . . , xk′+1) if and only if ij 6= xj for at
least one j. Thus, the parties in S2 send the bits that they should send.
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Simulating Charlie. The parties in S3 should send the bit qy3 . To do so, we share

every random bit qh3 , for every h3 ∈ [N ]k
′
, between the parties in S3 using a k′-

out-of-k′ secret-sharing scheme. That is, for every h3 = (ik′+2, . . . , ik) ∈ [N ]k
′
,

we choose k′ random bits qk
′+2
h3

, . . . , qkh3
and define qh3 = qk

′+2
h3
⊕· · ·⊕qkh3

. Every

party Pj ∈ S3 sends the bits qjh3
for every h3 = (ik′+2, . . . , ik) ∈ [N ]k

′
such that

ij = xj . Thus, the referee can reconstruct the bit qy3 = qxk′+2,...,xk
, and cannot

learn any information about the bits (qh3
)h3 6=y3 .

As explained above, the referee in Pk can compute the messages in P3, and,
thus, when g(y1, y2, y3) = 1 (i.e., when f(x1, . . . , xk) = 1), it can reconstruct the
secret s. The message size of every party is at most Nk′ = N (k−1)/2, and the
total massage size is Nk′ + k′ ·Nk′−1 · (N − 1) + k′ ·Nk′−1 = O(k ·N (k−1)/2).

Next, we show how to improve the total message size of the above protocol
by a factor of k, by improving the simulations of Bob and Charlie by the parties
in S2 and S3, respectively.

The improved simulation of the messages of Charlie is as follows. The common
random string will contain bits qjij ,...,ik , for every j ∈ {k′ + 2, . . . , k} and every

ij , . . . , ik ∈ [N ]. First, let qik′+2,...,ik =
⊕k

j=k′+2 q
j
ij ,...,ik

, for every ik′+2, . . . , ik ∈
[N ]. Party Pj , for every j ∈ {k′ + 2, . . . , k}, sends the random bits qjxj ,ij+1...,ik

, for

every ij+1, . . . , ik ∈ [N ]. The referee gets the bits qk
′+2
xk′+2,...,xk

, qk
′+3
xk′+3,...,xk

, . . . , qkxk
,

and thus can reconstruct qxk′+2,...,xk
. We will show that all other bits qik′+2,...,ik

remain random to the referee, and, thus, the privacy still holds.
The improved simulation of the messages of Bob is as follows. The common

random string contains the bits tij ,...,ik′+1
, for every j ∈ {3, . . . , k′ + 1} and every

ij , . . . , ik′+1 ∈ [N ] (in addition to all previously mentioned bits). Party P2 sends
the random bits ri2,...,ik′+1

, for every i2, i3, . . . , ik′+1 ∈ [N ] such that i2 6= x2 as
before. In addition it also sends the bits rx2,i3,...,ik′+1

, for every i3, . . . , ik′+1 ∈
[N ], masked by random bits, that is, it sends rx2,i3,...,ik′+1

⊕ ti3,...,ik′+1
, for ev-

ery i3, . . . , ik′+1 ∈ [N ]. Next, party P3 sends all the bits ti3,...,ik′+1
, for every

i3, i4, . . . , ik′+1 ∈ [N ] such that i3 6= x3. Given those bits, the referee can learn
all the bits ri2,i3,...,ik′+1

for which i2 6= x2, and all the bits ri2,i3,...,ik′+1
for which

i2 = x2 and i3 6= x3. We continue in the same manner until we get to the party
Pk′+1. That is, the party P3 additionally sends the bits tx3,i4...,ik′+1

⊕ ti4,...,ik′+1
,

for every i4, . . . , ik′+1 ∈ [N ], and so on. Finally, party Pk′+1 sends only the bits
tik′+1

, for every ik′+1 ∈ [N ] such that ik′+1 6= xk′+1.
The referee will learn only the bit qxk′+2,xk′+3...,xk

from the messages of the
parties that simulate Charlie, and all the bits ri2,...,ik′+1

, for every i2, . . . , ik′+1 ∈
[N ], except for rx2,...,xk′+1

, from the messages of the parties that simulate Bob.

The size of the messages sent by parties Pk′+2, . . . , Pk is Nk′−1 + Nk′−2 +
· · · + N + 1 < 2 · Nk′−1 = O(N (k−3)/2), and the size of the messages sent by
parties P2, . . . , Pk′+1 is Nk′+Nk′−1 + · · ·+N2 +N−1 < 2 ·Nk′ = O(N (k−1)/2).

Lemma 4.1. Let f : [M ]× [N ]k−1 → {0, 1} be a k-input function, for some odd
integer k > 3. Then, protocol Pk, described in Figure 2, is a linear k-party CDS
protocol for f with total message size O(N (k−1)/2).



Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 13

Protocol Pk for an Odd k

The secret: A bit s ∈ {0, 1}.
Inputs: P1, . . . , Pk hold the inputs x1 ∈ [M ] and x2, . . . , xk ∈ [N ], respec-
tively.
Common randomness: Let k′ = (k− 1)/2. The k parties hold the following
random bits.

– ri2,...,ik′+1
∈ {0, 1}, for every i2, . . . , ik′+1 ∈ [N ].

– tij ,...,ik′+1
∈ {0, 1}, for every j ∈ {3, . . . , k′ + 1} and ij , . . . , ik′+1 ∈ [N ].

– qjij ,...,ik ∈ {0, 1}, for every j ∈ {k′ + 2, . . . , k} and ij , . . . , ik ∈ [N ].

The protocol:

1. Define qik′+2,...,ik
=

⊕k
j=k′+2 q

j
ij ,...,ik

for every ik′+2, . . . , ik ∈ [N ].

(* Simulation of Alice *)
2. Party P1 sends to the referee the bits

sik′+2,...,ik
=

s⊕ qik′+2,...,ik
⊕

⊕
i2,...,ik′+1∈[N ],f(x1,i2,...,ik′+1,ik′+2,...,ik)=0

ri2,...,ik′+1

for every ik′+2, . . . , ik ∈ [N ].
(* Simulation of Bob *)

3. Party P2 sends to the referee the bits ri2,...,ik′+1
, for every i2, . . . , ik′+1 ∈

[N ] such that i2 6= x2, and the bits rx2,i3,...,ik′+1
⊕ ti3,...,ik′+1

, for every
i3, . . . , ik′+1 ∈ [N ].

4. For every j ∈ {3, . . . , k′}, party Pj sends to the referee the bits tij ,...,ik′+1
,

for every ij , . . . , ik′+1 ∈ [N ] such that ij 6= xj , and the bits txj ,ij+1...,ik′+1
⊕

tij+1,...,ik′+1
, for every ij+1, . . . , ik′+1 ∈ [N ].

5. Party Pk′+1 sends to the referee the bits tik′+1
, for every ik′+1 ∈ [N ] such

that ik′+1 6= xk′+1.
(* Simulation of Charlie *)

6. For every j ∈ {k′ + 2, . . . , k}, party Pj sends to the referee the bits
qjxj ,ij+1...,ik

, for every ij+1 . . . , ik ∈ [N ].

(* The Reconstruction of the Secret *)
7. If f(x1, . . . , xk) = 1, the referee computes

sxk′+2,...,xk ⊕ qxk′+2,...,xk⊕⊕
i2,...,ik′+1∈[N ],f(x1,i2,...,ik′+1,xk′+2,...,xk)=0

ri2,...,ik′+1
.

Fig. 2. A linear k-party CDS protocol Pk for a k-input function f : [M ] × [N ]k−1 →
{0, 1}, for an odd k.
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Proof. Recall that k′ = (k− 1)/2. We prove that protocol Pk is a CDS protocol
for f with message size as in the lemma. Let g : [M ]×[N ]k

′×[N ]k
′ → {0, 1} be the

3-input function where g(x1, (x2, . . . , xk′+1), (xk′+2, . . . , xk)) = f(x1, . . . , xk).
We first prove that in protocol Pk, the referee can compute the messages
that the referee gets in the protocol P3 for g, and, thus, it can compute s if
g(x1, (x2, . . . , xk′+1), (xk′+2, . . . , xk)) = 1, i.e., if f(x1, . . . , xk) = 1. We then
prove that if f(x1, . . . , xk) = 0, then the messages in Pk can be simulated since
they are uniformly distributed regardless of s.

Correctness. First, we show that the referee gets the bit qxk′+2,...,xk
. Observe

that the referee gets the bit qjxj ...,xk
from party Pj , for every j ∈ {k′ + 2, . . . , k}.

Thus, the referee can perform an exclusive-or between all these bits and recon-
struct the bit qxk′+2,...,xk

=
⊕k

j=k′+2 q
j
xj ,...,xk

.

Second, we show that the referee gets all the bits ri2,...,ik′+1
, for every

i2, . . . , ik′+1 ∈ [N ], except for the bit rx2,...,xk′+1
. Fix some (i2, . . . , ik′+1) 6=

(x2, . . . , xk′+1), and let ` ∈ {2, . . . , k′ + 1} be the first index for which i` 6= x`.
If ` = 2, then the referee gets the bit ri2,...,ik′+1

from party P2. Otherwise, the
referee gets the bit rx2,...,x`−1,i`,...ik′+1

⊕tx3,...,x`−1,i`,...ik′+1
from party P2, and for

every j ∈ {3, . . . , `− 1}, it gets the bit txj ,...,x`−1,i`,...ik′+1
⊕ txj+1,...,x`−1,i`,...ik′+1

from party Pj . Moreover, since i` 6= x`, the referee gets the bit ti`,...ik′+1
from

party P`. Thus, the referee can perform an exclusive-or between all the above
bits and reconstruct the bit ri2,...,ik′+1

.

Using the above two facts, we prove the correctness of Pk. The referee gets
sxk′+2,...,xk

, (ri2,...,ik′+1
)(i2,...,ik′+1) 6=(x2,...,xk′+1)

, and qxk′+2,...,xk
, i.e., the messages

it would get in the protocol P3 for the function g. Hence, if f(x1, . . . , xk) = 1,
then g(x1, (x2, . . . , xk′+1), (xk′+2, . . . , xk)) = 1 and the referee can reconstruct
the secret s since it would have reconstructed it in P3, as described in Pk.

Privacy. We prove that Pk is private by constructing a simulator. The sim-
ulator of Pk chooses independently uniform random bits as the messages sent
by the parties. We show that the output of the simulator is distributed as the
messages sent by the parties in the protocol Pk for f(x1, . . . , xk) = 0, i.e., we
show that in this case the messages in Pk are uniformly distributed.

First, the messages of parties Pk′+2, . . . , Pk contain random bits from the
common randomness and each bit is only sent by one of the parties, thus, the
messages sent by these parties are uniformly distributed. Next, the message of
party Pk′+1 is uniformly distributed, since it contains the random bits tik′+1

, for
every ik′+1 ∈ [N ] such that ik′+1 6= xk′+1. Given this message, the message of
party Pk′ is uniformly distributed, since it contains the random bits tik′ ,ik′+1

,
for every ik′ , ik′+1 ∈ [N ] such that ik′ 6= xk′ , and the bits txk′ ,ik′+1

⊕ tik′+1
which

contains the random bit txk′ ,ik′+1
, for every ik′+1 ∈ [N ]. We continue in the

same manner, and conclude that given the messages of parties P3, . . . , Pk′+1,
the message of party P2 is uniformly distributed, since it contains the ran-
dom bits ri2,...,ik′+1

, for every i2, . . . , ik′+1 ∈ [N ] such that i2 6= x2, and the
bits rx2,i3,...,ik′+1

⊕ ti3,...,ik′+1
, for every i3, . . . , ik′+1 ∈ [N ]. Thus, the messages
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of parties P2, . . . , Pk′+1 are uniformly distributed. Note that the messages of
P2, . . . , Pk′+1 and Pk′+2, . . . , Pk are independent.

We next argue that the message of P1 is uniformly distributed given the
messages of the other parties. We first prove that the bits qik′+2,...,ik , for
every (ik′+2, . . . , ik) 6= (xk′+2, . . . , xk), are uniformly distributed given the
messages of Pk′+2, . . . , Pk. Fix some (ik′+2, . . . , ik) 6= (xk′+2, . . . , xk), and let
` ∈ {k′ + 2, . . . , k} be the first index for which i` 6= x`, i.e., (ik′+2, . . . , ik) =
(xk′+2, . . . , x`−1, i`, . . . , ik). Thus, the referee does not get the bit q`i`,...ik from

party P`, and, thus, it cannot learn the bit qik′+2,...,ik , since q`i`,...ik is part of the

exclusive-or in the bit qik′+2,...,ik . In the above argument, we used q`i`,...ik only
for qxk′+2,...,x`−1,i`,...,ik , thus, the set of bits {qik′+2,...,ik}(ik′+2,...,ik)6=(xk′+2,...,xk)

are uniformly distributed given the messages of Pk′+2, . . . , Pk.
We next show that the referee does not learn the bit rx2,...,xk′+1

. The referee
gets the bit rx2,...,xk′+1

⊕ tx3,...,xk′+1
from party P2, and for every j ∈ {3, . . . , k′},

it gets the bit txj ,...,xk′+1
⊕ txj+1,...,ik′+1

from Pj . However, party Pk′+1 does not
send to the referee the bit txk′+1

, so it cannot learn the bit rx2,...,xk′+1
.

Now, we show that given the messages of parties P2, . . . , Pk, the message of
party P1 is uniformly distributed. Since f(x1, . . . , xk) = 0, the bit rxk′+2,...,xk

is part of the exclusive-or in the bit sxk′+2,...,xk
. As we have shown, the referee

does not get rxk′+2,...,xk
, so the bit sxk′+2,...,xk

is uniformly distributed. For every
(ik′+2, . . . , ik) 6= (xk′+2, . . . , xk), the bit qik′+2,...,ik is part of the exclusive-or in
the bit sik′+2,...,ik . As we have shown, the referee does not get qik′+2,...,ik , so the
bit sik′+2,...,ik is uniformly distributed. Thus, since for every ik′+2, . . . , ik ∈ [N ]
there is a unique random bit that is part of the exclusive-or in the bit sik′+2,...,ik

that cannot be learned by the referee, the bits (sik′+2,...,ik)ik′+2,...,ik∈[N ] are uni-
formly distributed and independent of each other and of the secret. Overall, the
messages sent by the parties are uniformly distributed.

Message size. The size of the message of party P1 is Nk′ , the sizes of the
messages of parties P2, . . . , Pk′+1 are Nk′ , Nk′−1, . . . , N2, N − 1, respectively,
and the sizes of the messages of parties Pk′+2, . . . , Pk are Nk′−1, Nk′−2, . . . , N, 1,
respectively. Thus, the total message size of Pk is Nk′ + (Nk′ + · · ·+N − 1) +
(Nk′−1 + · · ·+ 1) < Nk′ + 2 ·Nk′ + 2 ·Nk′−1 = O(N (k−1)/2). ut

4.2 A Linear k-Party CDS Protocol for an Even k

Next, we adopt the CDS protocol Pk to even values of k. Given a k-input function
f : [M ]× [N ]k−1 → {0, 1}, for an even k, and k parties P1, . . . , Pk that hold the
inputs x1 ∈ [M ] and x2, . . . , xk ∈ [N ], respectively, we define k′ = (k + 2)/2,
xk′ = (x1k′ , x

2
k′), where x1k′ , x

2
k′ ∈ [N1/2], and y1 = x1, y2 = (x2, . . . , xk′−1, x

1
k′),

and y3 = (x2k′ , xk′+1, . . . , xk). As before, we partition the parties into three
sets S1, S2, S3, but now we split the input of party Pk′ , and it will be in both
sets S2, S3, with half of its input in each of them. That is, S1 = {P1}, S2 =
{P2, . . . , Pk′}, and S3 = {Pk′ , . . . , Pk}. The protocol for an even k is the same
as the protocol for an odd k, where Pk′ participates in the simulations of Bob
and Charlie, in which it uses x1k′ and x2k′ , respectively.
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Protocol Pk for an Even k

The secret: A bit s ∈ {0, 1}.
Inputs: P1, . . . , Pk hold the inputs x1 ∈ [M ] and x2, . . . , xk ∈ [N ], respec-
tively.
Common randomness: Let k′ = (k+ 2)/2. The k parties hold the following
random bits.

– ri2,...,ik′−1,i
1
k′
∈ {0, 1}, for every i2, . . . , ik′−1 ∈ [N ] and i1k′ ∈ [N1/2].

– tij ,...,ik′−1,i
1
k′
∈ {0, 1}, for every j ∈ {3, . . . , k′}, ij , . . . , ik′−1 ∈ [N ], and

i1k′ ∈ [N1/2].

– qk
′

i2
k′ ,ik′+1,...,ik

∈ {0, 1}, for every i2k′ ∈ [N1/2] and ik′+1, . . . , ik ∈ [N ].

– qjij ,...,ik ∈ {0, 1}, for every j ∈ {k′ + 1, . . . , k} and ij , . . . , ik ∈ [N ].

The protocol:

1. Define qi2
k′ ,ik′+1,...,ik

= qk
′

i2
k′ ,ik′+1,...,ik

⊕
⊕k

j=k′+1 q
j
ij ,...,ik

for every i2k′ ∈

[N1/2] and ik′+1, . . . , ik ∈ [N ].
(* Simulation of Alice *)

2. Party P1 sends to the referee the bits

si2
k′ ,ik′+1...,ik

= s⊕ qi2
k′ ,ik′+1...,ik

⊕⊕
i2,...,ik′−1∈[N ],i1

k′∈[N
1/2],f(x1,i2,...,ik′−1,i

1
k′ ,i

2
k′ ,ik′+1,...,ik)=0

ri2,...,ik′−1,i
1
k′

for every i2k′ ∈ [N1/2] and ik′+1, . . . , ik ∈ [N ].
(* Simulation of Bob *)

3. Party P2 sends to the referee the bits ri2,...,ik′−1,i
1
k′

, for every

i2, . . . , ik′−1 ∈ [N ] such that i2 6= x2 and i1k′ ∈ [N1/2], and the bits
rx2,i3...,ik′−1,i

1
k′
⊕ ti3,...,ik′−1,i

1
k′

, for every i3, . . . , ik′−1 ∈ [N ] and i1k′ ∈
[N1/2].

4. For every j ∈ {3, . . . , k′ − 1}, party Pj sends to the referee the bits
tij ,...,ik′−1,i

1
k′

, for every ij , . . . , ik′−1 ∈ [N ] such that ij 6= xj and

i1k′ ∈ [N1/2], and the bits txj ,ij+1...,ik′−1,i
1
k′
⊕ tij+1,...,ik′−1,i

1
k′

, for every

ij+1, . . . , ik′−1 ∈ [N ] and i1k′ ∈ [N1/2].
5. Party Pk′ , which holds the input xk′ = (x1

k′ , x
2
k′), where x1

k′ , x
2
k′ ∈ [N1/2],

sends to the referee the bits ti1
k′

, for every i1k′ ∈ [N1/2] such that i1k′ 6= x1
k′ .

(* Simulation of Charlie *)

6. Party Pk′ sends to the referee the bits qk
′

x2
k′ ,ik′+1,...,ik

, for every

ik′+1, . . . , ik ∈ [N ].
7. For every j ∈ {k′ + 1, . . . , k}, party Pj sends to the referee the bits

qjxj ,ij+1,...,ik
, for every ij+1, . . . , ik ∈ [N ].

(* The Reconstruction of the Secret *)
8. If f(x1, . . . , xk) = 1, the referee computes

sx2
k′ ,xk′+1...,xk

⊕ qx2
k′ ,xk′+1,...,xk

⊕⊕
i2,...,ik′−1∈[N ],i1

k′∈[N
1/2],f(x1,i2,...,ik′−1,i

1
k′ ,x

2
k′ ,xk′+1,...,xk)=0

ri2,...,ik′−1,i
1
k′
.

Fig. 3. A linear k-party CDS protocol Pk for a k-input function f : [M ] × [N ]k−1 →
{0, 1}, for an even k.
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The protocol Pk for an even k described in Figure 3. The fact that now not
all the inputs have the same size does not change the correctness and the privacy
of the protocol. Moreover, the message size of protocol Pk for an even k is the
same as in protocol Pk for an odd k.

The above explanation together with Lemma 4.1 implies the following result.

Theorem 4.2. Let f : [M ] × [N ]k−1 → {0, 1} be a k-input function, for some
integer k > 2. Then, there is a linear k-party CDS protocol for f with total
message size O(N (k−1)/2).

5 Linear k-Party CDS Protocols for Unbalanced
Functions

We show how to construct linear k-party CDS protocols for k-input functions
with a small number of inputs that return 1 and for k-input functions with a
small number of inputs that return 0. We start by constructing a k-party linear
CDS protocol for k-input functions in which for every input xk there are most d
inputs (x1, . . . , xk−1) such that f(x1, . . . , xk−1, xk) = 1. Next, we use this CDS
protocol to construct a k-party linear CDS protocol for the desired functions.

First, let us present the following result from [10], which we are going to use
in our basic construction.

Definition 5.1 (Degree of an Input). Let f : [M ] × [N ]k−1 →
{0, 1} be a k-input function. The degree of an input xk ∈ [N ] is
|
{

(x1, . . . , xk−1) ∈ [M ]× [N ]k−2 : f(x1, . . . , xk−1, xk) = 1
}
|.

Claim 5.2 ([10]). Let f : [M ] × [N ] → {0, 1} be a 2-input function in which
the degree of every x2 ∈ [N ] is at most d ≤ M . Then, for a field F such that
|F| ≥ M , there are M linear subspaces V1, . . . , VM ⊆ Fd+1 of dimension d and
N vectors z1, . . . , zN ∈ Fd+1 such that for every x1 ∈ [M ] and every x2 ∈ [N ] it
holds that zx2 ∈ Vx1 if and only if f(x1, x2) = 1. Furthermore, for every i ∈ [M ],
the basis of Vi is v1, . . . ,vd, where vj = ej+1 − i · ej for every j ∈ [d].

These linear subspaces and vectors are used in [10] to construct the following
linear 2-party CDS protocol for 2-input functions f : [M ]×[N ]→ {0, 1} in which
the degree of every x2 ∈ [N ] is at most d. Alice and Bob, which hold the inputs
x1 ∈ [M ] and x2 ∈ [N ], respectively, send the messages v1·r, . . . ,vd·r and s+zx2 ·
r, respectively, where s ∈ F is the secret, r ∈ Fd+1 is the common randomness,
and v1, . . . ,vd are a basis of the linear subspace Vx1 . If f(x1, x2) = 1, then
zx2 ∈ Vx1

and there exist constants u1, . . . , ud such that u1·v1+· · ·+ud·vd = zx2 .
Thus, the referee can compute u1 · v1 · r + · · ·+ ud · vd · r = zx2 · r and unmask
the secret s from the message s + zx2 · r. Otherwise, if f(x1, x2) = 0, it can be
shown, given the messages of Alice, that the distribution on zx2 · r is uniform,
and, thus, the referee cannot reconstruct the secret. The total message size of
this CDS protocol is (d+ 1) log |F| and the size of the secret is log |F|.

We show how to use these ideas to construct a linear k-party CDS protocol
for k-input functions f : [N ]k → {0, 1} in which the degree of every input
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xk ∈ [N ] of the last party is at most d, in which the message size of each party
is O(d · k · logN). This result is non-trivial since we do not have any bound on
the degree of the inputs of the first k − 1 parties.

In the following protocol we simulate the above 2-party CDS protocol for
the 2-input function g : [N ]k−1 × [N ] → {0, 1}, where g((x1, . . . , xk−1), xk) =
f(x1, . . . , xk). The first k − 1 parties simulate Alice and the kth party simu-
lates Bob. For this simulation, we use properties of the basis of Vi as described
in Claim 5.2. The protocol in [10] does not need to use these properties.

Lemma 5.3. Let f : [N ]k → {0, 1} be a k-input function in which the degree
of every xk ∈ [N ] is at most d ≤ Nk−1. Then, there is a linear k-party CDS
protocol for f in which the message size of each of the first k − 1 parties is
O(d · k · logN) and the message size of the last party is O(k · logN).

Proof. Let F be the smallest finite field with a prime number of elements such
that |F| ≥ Nk−1, and define g : [N ]k−1 × [N ] → {0, 1} as the 2-input function
g((x1, . . . , xk−1), xk) = f(x1, . . . , xk), as above. Next, let V1,...,1, . . . , VN,...,N ⊆
Fd+1 and z1, . . . , zN ∈ Fd+1 be the Nk−1 subspaces of dimension d and N
vectors guarantied by Claim 5.2 for the function g. We represent the inputs of
P1, . . . , Pk−1 as an element in

{
0, . . . , Nk−1 − 1

}
, i.e., (x1, . . . , xk−1) = (x1 −

1)Nk−2 + (x2 − 1)Nk−3 + · · · + (xk−2 − 1)N + xk−1 − 1 ∈
{

0, . . . , Nk−1 − 1
}

.
Thus, the ith vector in the basis of Vx1,...,xk−1

is

vi = ei+1 − (x1, . . . , xk−1) · ei

= ei+1 − (x1 − 1)Nk−2 · ei − · · · − (xk−2 − 1)N · ei − (xk−1 − 1) · ei,

that is, vi is a sum of k − 1 vectors, where the jth vector is determined by
xj , i.e., the first vector is vi,1 = ei+1 − (x1 − 1)Nk−2 · ei and for every j ∈
{2, . . . , k − 1}, the jth vector is vi,j = −(xj − 1)Nk−j−1 · ei. To simulate Alice,

parties P1, . . . , Pk−1 should send vi · r for every i ∈ [d]. Since vi =
∑k−1
j=1 vi,j,

where Pj knows vi,j, party Pj can send vi,j ·r. However, this discloses additional
information to the referee, so we need to mask the messages of the parties.
Specifically, for every j ∈ {1, . . . , k − 1}, the message of party Pj is v1,j · r +

rj1, . . . ,vd,j · r + rjd, and the message of party Pk is s+ zxk
· r, where s ∈ F is the

secret and the common randomness is r ∈ Fd+1 and rji ∈ F, for every j ∈ [k− 1]
and i ∈ [d], such that r1i + · · ·+ rk−1i = 0 for every i ∈ [d].

First, we prove the correctness of the protocol. If f(x1, . . . , xk) = 1, then for
every i ∈ [d], the referee can compute vi · r = vi,1 · r + r1i + vi,2 · r + r2i + · · ·+
vi,k−1 · r + rk−1i from the messages it gets. Next, since zxk

∈ Vx1,...,xk−1
, there

exist constants u1, . . . , ud such that u1 ·v1 + · · ·+ud ·vd = zxk
. Thus, the referee

can compute u1 · v1 · r + · · ·+ ud · vd · r = zxk
· r and unmask the secret s from

the message s+ zxk
· r.

Now, we prove that the protocol is private, by constructing a simulator.
The simulator independently chooses uniform random elements from F as the
messages sent by the parties. We show that the messages sent by the parties in the
protocol are uniformly distributed. Since the vectors v1, . . . ,vd are independent,
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v1 ·r, . . . ,vd ·r are uniformly distributed. By [10], given the values v1 ·r, . . . ,vd ·r,
the message of party Pk is uniformly distributed when g((x1, . . . , xk−1), xk) = 0
(i.e., when f(x1, . . . , xk) = 0). Furthermore, each of the messages of parties
P1, . . . , Pk−1 contains d field elements, where the sum of the ith element from
each of these messages is vi · r. Since we mask the messages, the messages of
P1, . . . , Pk−2 are uniformly distributed, and the message of Pk−1 is the random
vector (v1 ·r, . . . ,vd ·r) minus the messages of P1, . . . , Pk−2, that is, the message
of Pk−1 is uniformly distributed as well.

The protocol is linear, since the reconstruction function of the referee is a
linear combination of the messages it gets. The total message size of the protocol
is (k − 1) ·O(d · k · logN) +O(k · logN) = O(k2 · d · logN). ut

Next, we show how to transform a k-party CDS protocol for such functions
to a k-party CDS protocol for k-input functions with a small number of inputs
that return 1. The transformation in Lemma 5.4 is general and can start from
any k-party CDS protocol for functions where the degree of every xk ∈ [N ] is
bounded. Moreover, if we start with a linear k-party CDS protocol, then the
resulting k-party CDS protocol is also linear.

Lemma 5.4. Let f : [N ]k → {0, 1} be a k-input function, in which there are
at most Nγ inputs (x1, . . . , xk) ∈ [N ]k such that f(x1, . . . , xk) = 1, for some
0 < γ < k, and assume that for every k-input function f ′ : [N ]k → {0, 1} such
that the degree of every xk ∈ [N ] is at most d ≤ Nk−1 there is a k-party CDS
protocol for f ′ with total message size c. Then, there is a k-party CDS protocol
for f with total message size k · c+O((Nγ/d)(k−1)/2).

Proof. Let Si be the set of all the inputs xi ∈ [N ] such that there are at most
d inputs (x1, . . . xi−1, xi+1, . . . , xk) ∈ [N ]k−1 for which f(x1, . . . , xk) = 1, for
every i ∈ [k]. By our assumption, there is a CDS protocol with message size c
for the restriction of f to the domain [N ]i−1 × Si × [N ]k−i, for every i ∈ [k] (by
reordering the parties, we can apply the assumption for every i ∈ [k]).

Next, the set [N ]\Si contains all the inputs xi ∈ [N ] such that there are more
than d inputs (x1, . . . xi−1, xi+1, . . . , xk) ∈ [N ]k−1 for which f(x1, . . . , xk) = 1,
and, thus, the number of inputs that return 1 of f is at least |[N ]\Si|·d. Therefore,
|[N ] \ Si| ≤ Nγ/d for every i ∈ [k]. We use the protocol Pk of Theorem 4.2 to
obtain a linear k-party CDS protocol with message size O((Nγ/d)(k−1)/2) for
the restriction of f to the domain ([N ] \ S1)× ([N ] \ S2)× · · · × ([N ] \ Sk).

If f(x1, . . . , xk) = 1, and xi ∈ Si for at least one i ∈ [k], then the referee can
reconstruct the secret from the messages it gets from the CDS protocol for the
restriction of f to the corresponding domain. If xi ∈ [N ] \ Si for every i ∈ [k],
then the referee can reconstruct the secret from the messages it gets from the
CDS protocol of Theorem 4.2. Otherwise, if f(x1, . . . , xk) = 0, then the referee
cannot learn any information on the secret, which follows by the privacy of each
of the independent CDS protocols we used.

Finally, if the CDS protocol with message size c we assume is linear, then the
resulting protocol is linear, since in that case it is consist of independent linear
protocols. The message size of the protocol is k · c+O((Nγ/d)(k−1)/2). ut
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We use the above transformation and our basic linear k-party CDS protocol
for inputs with bounded degree to construct a linear k-party CDS protocol for
k-input functions with a small number of inputs that return 1.

Theorem 5.5. Let f : [N ]k → {0, 1} be a k-input function in which there are
at most Nγ inputs (x1, . . . , xk) ∈ [N ]k such that f(x1, . . . , xk) = 1, for some
0 < γ < (k+ 1)/2. Then, there is a linear k-party CDS protocol for f with total
message size O(k3 ·Nγ(k−1)/(k+1) · logN).

Proof. By Lemma 5.3, for every k-input function f ′ : [N ]k → {0, 1} such that
the degree of every xk ∈ [N ] is at most d ≤ Nk−1, there is a linear k-party CDS
protocol for f ′ with total message size O(k2 · d · logN). Thus, by Lemma 5.4,
there is a linear k-party CDS protocol for f with total message size O(k3 ·
d · logN + (Nγ/d)(k−1)/2). To minimize this expression, we require that d =
(Nγ/d)(k−1)/2, that is, d = Nγ(k−1)/(k+1), and obtain a linear k-party CDS
protocol with message size O(k3 · d · logN) = O(k3 ·Nγ(k−1)/(k+1) · logN). ut

By a small modification in the first protocol as in [10], the same results hold
also for k-input functions with s small number of inputs that return 0.

Lemma 5.6. Let f : [N ]k → {0, 1} be a k-input function in which the degree of
every xk ∈ [N ] is at least Nk−1− d, for some d ≤ Nk−1. Then, there is a linear
k-party CDS protocol for f in which the message size of each of the first k − 1
parties is O(d · k · logN) and the message size of the last party is O(k · logN).

Theorem 5.7. Let f : [N ]k → {0, 1} be a k-input function in which there are
at most Nγ inputs (x1, . . . , xk) ∈ [N ]k such that f(x1, . . . , xk) = 0, for some
0 < γ < (k+ 1)/2. Then, there is a linear k-party CDS protocol for f with total
message size O(k3 ·Nγ(k−1)/(k+1) · logN).

Note that the above results are not implied by the closure of CDS protocols
to complement [4, 2] since the randomness in the protocols of Lemma 5.3 and
Theorem 5.5 is too big.

6 Linear k-Party CDS Protocols for Functions with
Inputs of Different Sizes

We use the protocol Pk to construct linear k-party CDS protocols for k-input
functions with inputs of different sizes; as in Pk, the message size in these pro-
tocols is independent of the largest input size. In the following three protocols,
we assume, by reordering the parties, that α1 ≥ αi for every i ∈ {2, . . . , k}.

Theorem 6.1. Let f : [Nα1 ]×[Nα2 ]×· · ·×[Nαk ]→ {0, 1} be a k-input function,
for some integer k > 2 and real numbers α1, . . . , αk > 0. Then, there is a linear

k-party CDS protocol for f with total message size O(2k/2 ·N
∑k

i=2 αi/2).
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Proof. We view f as a k′-input function f ′ : [Nα1 ]× {0, 1}k′−1 → {0, 1}, where

k′ = 1 +
∑k
i=2dαi logNe ≤ k + logN ·

∑k
i=2 αi, and

f ′(x1, x2,1, . . . , x2,dα2 logNe, . . . , xk,1, . . . , xk,dαk logNe)

= f(x1, (x2,1, . . . , x2,dα2 logNe), . . . , (xk,1, . . . , xk,dαk logNe)).

We execute the linear k′-party CDS protocol Pk′ promised by Theorem 4.2
for the k′-input function f ′, where party P1 simulates the first party, party P2

simulates the next dα2 logNe parties in the k′-party CDS protocol for f ′, party
P3 simulates the next dα3 logNe parties, and so on. Overall, since the message
size of the protocol is independent of the size of the input of the first party, we
get a linear k-party CDS protocol for the k-input function f with total message

size O(2(k
′−1)/2) = O(2(k+logN ·

∑k
i=2 αi)/2) = O(2k/2 ·N

∑k
i=2 αi/2). ut

We present alternative linear CDS protocols for k-input functions f : [Nα1 ]×
[Nα2 ] × · · · × [Nαk ] → {0, 1}, where for some parameters we remove the factor
of 2k/2 of the above protocol. We start with a linear k-party CDS protocol for
such k-input functions, for an odd k.

Theorem 6.2. Let f : [Nα1 ] × [Nα2 ] × · · · × [Nαk ] → {0, 1} be a k-input
function, for some odd integer k > 2 and real numbers α1, . . . , αk > 0.
Then, there is a linear k-party CDS protocol for f with total message size
O(minS⊂{2,...,k},|S|=(k−1)/2{N

∑
i∈S αi +N

∑
i∈{2,...,k}\S αi}).

Proof. Fix any set S ⊂ {2, . . . , k} such that |S| = (k − 1)/2 and define S1 =
{Pj : j ∈ S}. By renaming the parties, we assume that S1 =

{
P2, . . . , P(k+1)/2

}
.

We execute the linear k-party CDS protocol of Lemma 4.1 with the function
f . Recall that in Pk party P1 simulates Alice, the parties in

{
P2, . . . , P(k+1)/2

}
simulate Bob with an input from a domain of size N

∑
i∈S αi , and the parties in

{P2, . . . , Pk} \ S1 =
{
P(k+3)/2, . . . , Pk

}
simulate Charlie with an input from a

domain of size N
∑

i∈{2,...,k}\S αi . The message size of party P1 is N
∑

i∈{2,...,k}\S αi ,
the message size of parties P2, . . . , P(k+1)/2 is less than 2 · N

∑
i∈S αi , and the

message size of parties P(k+3)/2, . . . , Pk is less than 2 · N
∑

i∈{2,...,k}\S αi . Thus,

the total message size of the protocol is O(N
∑

i∈S αi + N
∑

i∈{2,...,k}\S αi). Since
we can choose any set S ⊂ {2, . . . , k} of size (k − 1)/2, the theorem follows. ut

In the above CDS protocol, either
∑
i∈S αi or

∑
i∈{2,...,k}\S αi is at least∑k

i=2 αi/2. So, the total message size in the CDS protocol of Theorem 6.2 can be
reduced by a factor of at most 2k/2 compared to the CDS protocol of Theorem 6.1
(for example, when

∑
i∈S αi =

∑
i∈{2,...,k}\S αi =

∑k
i=2 αi/2). However, there

are cases for which the total message size of the CDS protocol of Theorem 6.1
will be smaller than the total message size of the CDS protocol of Theorem 6.2
(for example, when α1, α2 �

∑k
i=3 αi).

Similarly to Theorem 6.2, we can construct a linear k-party CDS protocol for
k-input functions, for an even k. As this CDS protocol is similar to the previous
CDS protocol, we omit its details.
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Theorem 6.3. Let f : [Nα1 ] × [Nα2 ] × · · · × [Nαk ] → {0, 1} be
a k-input function, for some even integer k > 2 and real numbers
α1, . . . , αk > 0. Then, there is a linear k-party CDS protocol for f with
total message size O(minj∈{2,...,k},S⊂{2,...,k}\{j},|S|=(k−2)/2{Nαj/2+

∑
i∈S αi +

Nαj/2+
∑

i∈{2,...,k}\(S∪{j}) αi}).

7 Linear Secret-Sharing Schemes Realizing k-Uniform
Access Structures

7.1 General k-Uniform Access Structures

Recall that an access structure is k-uniform if all sets of size less than k are
unauthorized, all sets of size greater than k are authorized, and the access struc-
ture specifies which sets of size k are authorized. A k-uniform access structure
is k-partite if the parties can be partitioned into k sets V1, ..., Vk such that each
authorized set of size k contains exactly one party from each set Vi. Basically, k-
party CDS protocols are equivalent to secret-sharing schemes realizing k-partite
k-uniform access structures, see, e.g., [3, Lemma 4.2]. Furthermore, this equiva-
lence preserves linearity. Thus, our results imply the following theorem.

Corollary 7.1. Let Γ be a k-partite k-uniform access structure with partition
V1, ..., Vk, where |Vi| = N for every i ∈ [k]. Then, there is a linear secret-sharing
scheme realizing Γ in which the share size of every party is O(N (k−1)/2).

We next describe a secret-sharing scheme realizing k-uniform access structure
(not necessarily k-partite). To obtain this result, we use a generic transformation
from secret-sharing schemes realizing k-partite k-uniform access structures to
secret-sharing schemes realizing k-uniform access structure (not necessarily k-
partite). This transformation is similar to the transformation in [3], however,
for short secrets our transformation is more efficient. The transformation uses a
family of perfect hash functions.

Definition 7.2. A set of functions H = {hi : [n]→ [k] : i ∈ [`]} is a family of
perfect hash functions if for every set A ⊆ [n] such that |A| = k there exists
at least one index i ∈ [`] such that |hi(A)| = | {hi(a) : a ∈ A} | = k, i.e., hi
restricted to A is one-to-one.

It is known that if we sample ` = O(k ·ek · log n) random functions hi : [n]→
[k], then we get a family of perfect hash functions with high probability. In our
transformation we need that the outputs of every hi are evenly distributed. We
next supply a simple proof that such a family of perfect hash functions exists.

Claim 7.3. There exists a family of perfect hash functions H =
{hi : [n]→ [k] : i ∈ [`]}, where ` = O(k ·ek · log n), such that for every i ∈ [`] and
every b ∈ [k] it holds that

| {a ∈ [n] : hi(a) = b} | ≤ dn/ke. (1)
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Proof. We prove the existence of H using the probabilistic method. We can
assume that n/k is an integer (otherwise we add dummy elements to the domain).
We choose ` functions hi independently, where in each stage we choose a function
satisfying (1) with uniform distribution.

First, we fix a set A ∈ [n] of size k, and choose one function h satisfy-
ing (1) with uniform distribution. We give a lower bound on the probabil-
ity that |h(A)| = k. We can view the choice of such a function h as the
following process: Choose a random permutation π : [n] → [n] and define
h(a) = b if (b − 1) · n/k + 1 ≤ π(a) ≤ b · n/k (e.g., all elements such that
π(a) ≤ n/k are mapped to 1). Let B = π(A) = {π(a) : a ∈ A}. As π is a
permutation chosen with uniform distribution, the set B is a uniformly dis-
tributed set of size k. Thus, the probability that |h(A)| = k is the probability
that a uniformly distributed set B of size k contains exactly one element from
(b− 1) · n/k + 1, (b− 1) · n/k + 2, . . . , b · n/k, for every b ∈ [k]. The probability
of the latter event is

(n/k)k(
n
k

) ≥ (n/k)k

(e · n/k)k
= e−k.

We choose ` = ek ·(1+k·lnn) functions h1, . . . , h` satisfying (1) independently
with uniform distribution. Thus, the probability that every hi is not one-to-one

on a fixed A is at most (1−e−k)e
k·(1+k·lnn) ≤ e−(1+k·lnn) = 1/(e·nk) < 1/(e·

(
n
k

)
).

By the union bound, the probability that there exits a set A of size k such that
every hi is not one-to-one on A is less than 1/e. This implies that there exists
a family of perfect hash functions H of size ` = O(k · ek · log n) such that all
functions in H satisfy (1). ut

Next, we show how to transform a secret-sharing scheme realizing k-partite k-
uniform access structures to a secret-sharing scheme realizing general k-uniform
access structures. Moreover, if we start with a linear scheme, then the resulting
scheme is also linear.

Lemma 7.4. Let Γ be a k-uniform access structure with n parties. Assume that
for every k-partite k-uniform access structure Γ ′ with partition V1, ..., Vk, where
|Vi| ≤ N for every i ∈ [k], there is a secret-sharing scheme realizing Γ ′ in which
the share size of every party is c(k,N). Then, there is a secret-sharing scheme
realizing Γ in which the share size of every party is O(k · ek · log n · c(k, dn/ke)).

Proof. Given a partition V = (V1, ..., Vk) of the parties in Γ , we define the k-
partite k-uniform access structure ΓV ⊂ Γ , where a set A ∈ Γ is authorized in
ΓV if either |A| > k or A contains exactly one party from each set Vi.

We use ` partitions V1, . . . ,V` of the parties such that Γ = ∪`i=1ΓVi and
realize each ΓVi independently. On one hand, every set A ∈ Γ is authorized in
at least one ΓVi so the parties in A can reconstruct the secret. On the other
hand, every set A /∈ Γ is unauthorized in every ΓVi so the parties in A get no
information on the secret. The share size of each party in the resulting scheme
is ` times the size of the shares needed to realize ΓVi .
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We construct the ` partitions using the family of perfect hash functions H =
{hi : [n]→ [k] : i ∈ [`]}, for ` = O(k · ek · log n), guaranteed by Claim 7.3, where
Vi = (h−1i (1), . . . , h−1i (k)). Using this family of perfect hash functions, every set
in each partition is of size at most dn/ke. Moreover, by our assumption, there is
a scheme realizing ΓVi in which the share size of every party is c(k, dn/ke). This
results in a scheme with share size O(k · ek · log n · c(k, dn/ke)). ut

The above transformation combined with Corollary 7.1 immediately gives
the following result.

Theorem 7.5. Let Γ be a k-uniform access structure with n parties. Then,
there is a linear secret-sharing scheme realizing Γ in which the share size of
every party is O(k · ek · log n · dn/ke(k−1)/2).

When k > 0.257n, the above scheme is less efficient than trivial scheme with
share size 2n. We can use a transformation of [14] showing that if every n-input
function f : {0, 1}n → {0, 1} has a CDS protocol with messages of size c, then
any k-uniform access structure with n parties has a secret-sharing scheme with
share size O(c ·n). This transformation preserves linearity. Thus, our linear CDS
protocol implies a linear secret-sharing scheme realizing every k-uniform access
structure, in which the share size is independent of k.

Theorem 7.6. Let Γ be a k-uniform access structure with n parties. Then,
there is a linear secret-sharing scheme realizing Γ in which the share size of
every party is O(n · 2n/2).

7.2 Sparse and Dense k-Uniform Access Structures

By the equivalence between CDS and uniform access structures, we obtain re-
sults for sparse and dense k-partite k-uniform access structures, which follows
from Theorem 5.5 and Theorem 5.7.

Corollary 7.7. Let Γ be a k-partite k-uniform access structure with partition
V1, . . . , Vk, where |Vi| = N for every i ∈ [k]. If | {A ∈ Γ : |A| = k} | ≤ Nγ or
| {A ∈ Γ : |A| = k} | ≥ Nk − Nγ , for some 0 < γ < (k + 1)/2, then there is a
linear secret-sharing scheme realizing Γ in which the share size of every party is
O(k3 ·Nγ(k−1)/(k+1) · logN).

Using the transformation in Lemma 7.4, we can generalize the above result
to every sparse and dense k-uniform access structure (not necessarily k-partite).

Corollary 7.8. Let Γ be a k-uniform access structure with n parties. If
| {A ∈ Γ : |A| = k} | ≤ nγ or | {A ∈ Γ : |A| = k} | ≥

(
n
k

)
− nγ , for some 0 <

γ < (k + 1)/2, then there is a linear secret-sharing scheme realizing Γ in which
the share size of every party is O(k4 · ek · log2 n · dn/keγ(k−1)/(k+1)).

The above results should be compared to the trivial linear scheme realizing
sparse k-uniform access structures with n parties, in which we share the secret
independently for every minimal authorized set of size k; in this scheme the share
size of every party is O(nγ).
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8 Lower Bounds for Linear Schemes Realizing k-Uniform
Access Structures

In this section, we use results of [10] to prove lower bounds on the size of the
shares in linear secret-sharing schemes realizing k-uniform access structures and
on the size of the messages in linear k-party CDS protocols.

8.1 Lower Bounds on the Size of One Share and Implications to
CDS Protocols

First, we show lower bounds on the share size of at least one party in every linear
secret-sharing scheme realizing general k-partite k-uniform access structures.

Before we start, we need some notations and a lemma from [10]. We say that
the rank of an access structure Γ is r if the size of every minimal authorized set
in Γ is at most r. Furthermore, we say that ρq(Γ ) ≤ s if there exists a linear
secret-sharing scheme over Fq realizing Γ such that each share in the scheme
contains at most s field elements.

Lemma 8.1 ([10]). For every prime power q and integers s, r, n such that s >
log n, the number of access structures Γ with n parties, rank r, and ρq(Γ ) ≤ s

is at most 22rns
2·log q.

Theorem 8.2. For most k-partite k-uniform access structures Γ with partition
V1, . . . , Vk, where |Vi| = N for every i ∈ [k], the share size of at least one party
for sharing a one-bit secret in every linear secret-sharing scheme realizing Γ is
Ω(k−1 ·N (k−1)/2).

Proof. If we share a one-bit secret using a linear secret-sharing scheme over Fq
in which the largest share containing s field elements, then the size of the share
of at least one party is s · log q. For the share size of every party to be less than

k−1 ·N (k−1)/2, it must be that q ≤ 2k
−1·N(k−1)/2

(otherwise, every share contains
at least k−1 ·N (k−1)/2 bits), and, furthermore, s · log q ≤ k−1 ·N (k−1)/2.

We next bound the number of k-partite k-uniform access structures Γ that
can be realized by a secret-sharing scheme in which the share size of every party
is at most θ. Recall that in k-uniform access structures all sets of size k + 1 are
authorized, that is, its rank is at most k + 1.

By Lemma 8.1, the number of k-partite k-uniform access structures Γ
with k · N parties and ρq(Γ ) ≤ θ/ log q, is at most 22(k+1)·kN ·(θ/ log q)2·log q <

22(k+1)·kN ·θ2 . Since we are counting linear schemes, we need to sum the number
of the access structures that realized by linear schemes for every possible finite

field (there are at most 2k
−1·N(k−1)/2

such fields, because q ≤ 2k
−1·N(k−1)/2

). Con-
sider the access structures that realized by linear schemes in which the size of the
share of every party is θ < k−1 ·N (k−1)/2. The number of such access structures

is at most 2k
−1·N(k−1)/2 · 22(k+1)·kN ·θ2 = 2k

−1·N(k−1)/2+2(k+1)·kN ·θ2 .
On the other hand, the number of k-partite k-uniform access structures

Γ , where the size of every part is N , is 2N
k

. Thus, if half of the k-partite
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k-uniform access structures Γ , where the size of every part is N , have linear
secret-sharing schemes in which the share size of every party is at most θ, then

2k
−1·N(k−1)/2+2(k+1)·kN ·θ2 ≥ 1

2 ·2
Nk

, i.e., k−1 ·N (k−1)/2+2(k+1)·kN ·θ2 ≥ Nk−1,

so θ = Ω(k−1 ·N (k−1)/2). ut

By [3, Lemma 4.2], we get the following corollary for k-party CDS protocols.

Corollary 8.3. For most k-input functions f : [N ]k → {0, 1}, the message
size of at least one party in every linear k-party CDS protocol for f is Ω(k−1 ·
N (k−1)/2).

As we show in Theorem 4.2, this bound is tight up to a factor of k.

Sparse and Dense k-Uniform Access Structures.

Theorem 8.4. Let 0 ≤ γ ≤ k be some real number. There exists a k-partite
k-uniform access structure Γ with partition V1, . . . , Vk, where |Vi| = N for every
i ∈ [k] and | {A ∈ Γ : |A| = k} | ≤ Nγ , such that the share size of at least one
party for sharing a one-bit secret in every linear secret-sharing scheme realizing
Γ is Ω(k−1 ·Nγ(k−1)/2k). Furthermore, there exists a k-partite k-uniform access
structure Γ with partition V1, . . . , Vk, where |Vi| = N for every i ∈ [k] and
| {A ∈ Γ : |A| = k} | ≥ Nk − Nγ , such that the share size of at least one party
for sharing a one-bit secret in every linear secret-sharing scheme realizing Γ is
Ω(k−1 ·Nγ(k−1)/2k).

Proof. By Theorem 8.2, for every N there exists a k-partite k-uniform access
structure ΓN with N parties in every part such that the share size of at least one
party for sharing a one-bit secret in every linear secret-sharing scheme realizing
the access structure ΓN is Ω(k−1 · N (k−1)/2). We use this k-partite k-uniform
access structure (with fewer parties) to construct a sparse k-partite k-uniform
access structure Γ with N parties in every part. Let V1, . . . , Vk be disjoint sets of
parties of size N . For every i ∈ [k], we fix an arbitrary set of parties V ′i ⊂ Vi of
size N ′ = Nγ/k, and construct the k-partite k-uniform access structure ΓN ′ with
parties V ′1 ∪· · ·∪V ′k. We define Γ as the access structure with parties V1∪· · ·∪Vk
that contains all sets in ΓN ′ and all sets of size at least k + 1.

Since all minimal authorized sets of size k in Γ contain exactly one party
from each V ′i (for every i ∈ [k]), the number of minimal authorized sets of size
k is at most (N ′)k = (Nγ/k)k = Nγ . The share size of at least one party for
sharing a one-bit secret in every linear secret-sharing scheme realizing ΓN ′ (and,
hence, Γ ) is Ω(k−1 ·(Nγ/k)(k−1)/2) = Ω(k−1 ·Nγ(k−1)/2k) = Ω(k−1 ·Nγ/2−γ/2k).

To construct a dense k-partite k-uniform access structure with at least Nk−
Nγ minimal sets of size k that requires large shares in every linear scheme
realizing it, we use a similar construction, however, we add all sets of size k with
exactly k parties from different parts that contain at least one party in Vi \ V ′i
for some i ∈ [k]. Similar analysis implies that the resulting k-partite k-uniform
access structure has at least Nk −Nγ minimal authorized sets of size k and the
share size of at least one party for sharing a one-bit secret in every linear scheme
realizing this k-partite k-uniform access structure is Ω(k−1 ·Nγ(k−1)/2k). ut
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Again, by [3, Lemma 4.2], we get the following results.

Corollary 8.5. Let 0 ≤ γ ≤ k be some real number. There exists a k-input
function f : [N ]k → {0, 1} such that |{(x1, . . . , xk) : f(x1, . . . , xk) = 1}| ≤ Nγ ,
in which the message size of at least one party in every linear k-party CDS
protocol for f is Ω(k−1·Nγ(k−1)/2k). Furthermore, there exists a k-input function
f : [N ]k → {0, 1} such that |{(x1, . . . , xk) : f(x1, . . . , xk) = 0}| ≤ Nγ , in which
the message size of at least one party in every linear k-party CDS protocol for f
is Ω(k−1 ·Nγ(k−1)/2k).

8.2 Lower Bounds on the Total Share Size

Next, we show lower bounds on the total share size in every linear secret-sharing
scheme realizing k-uniform access structures.

Theorem 8.6. For most k-uniform access structures Γ with n parties, the to-
tal share size for sharing a one-bit secret in every linear secret-sharing scheme
realizing Γ is Ω(k−(k+3)/2 · n(k+1)/2).

Proof. If we share a one-bit secret using a linear secret-sharing scheme over Fq
with shares containing S field elements, then the total share size is S · log q.
For the total share size to be less than k−(k+3)/2 · n(k+1)/2, it must be that

q ≤ 2k
−(k+3)/2·n(k−1)/2

(otherwise, each share contains more than k−(k+3)/2 ·
n(k−1)/2 bits, and the total share size will be more than k−(k+3)/2 · n(k+1)/2),
and, furthermore, S · log q ≤ k−(k+3)/2 · n(k+1)/2.

Denote the parties in Γ by P . First, we count the number of linear schemes
realizing k-uniform access structures Γ over Fq with shares containing S field
elements. Let B be the set of size at most n/k containing all the parties such
that the share of each one of them containing more than k · S/n field elements.
The set P \ B contains all the parties such that the share of each one of them
containing at most k · S/n field elements. We can add parties to B such that
|B| = n/k, and the share of every party in P \B is still containing at most k ·S/n
field elements.

By Lemma 8.1, the number of k-uniform access structures over Fq with
parties in P \ B such that there exists linear schemes realizing them in
which the share of every party containing at most k · S/n field elements is

22(k+1)·n(1−1/k)·(kS/n)2·log q.
The number of sets with k parties that intersect B is the number of sets with

k parties in P minus the number of sets with k parties contained in P \B, i.e.,(
n
k

)
−
(
n(k−1)/k

k

)
> (1− (1− 1/k)k)

(
n
k

)
. Moreover, the number of possible choices

of the set B is
(
n
n/k

)
.

Thus, the number of k-uniform access structures Γ over Fq with
linear schemes realizing them in which the shares containing S

field elements is
(
n
n/k

)
· 2(1−(1−1/k)

k)(n
k) · 22(k+1)·n(1−1/k)·(kS/n)2·log q =

exp
(
O
(

(1− (1− 1/k)k)
(
n
k

)
+ k3·S2·log q

n

))
.
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Since we are counting linear schemes, we need to sum the number
of the access structures that realized by linear schemes for every possi-

ble finite field (there are at most 2k
−(k+3)/2·n(k−1)/2

such fields, because

q ≤ 2k
−(k+3)/2·n(k−1)/2

). Consider the access structures that realized by lin-
ear schemes with total share size at most S · log q = Θ < k−(k+3)/2 ·
n(k+1)/2 (so here S = Θ/ log q). The number of such schemes is at most

exp
(
O
(
k−(k+3)/2 · n(k−1)/2 + (1− (1− 1/k)k)

(
n
k

)
+ k3·Θ2

n

))
.

Additionally, the number of k-uniform access structures Γ with n parties is

2(n
k). Thus, if half of the k-uniform access structures Γ with n parties have linear

secret-sharing schemes in which the share size of every party is at most Θ, then

exp
(
O
(
k−(k+3)/2 · n(k−1)/2 + (1− (1− 1/k)k)

(
n
k

)
+ k3·Θ2

n

))
≥ exp

((
n
k

)
− 1
)
,

i.e., exp
(
O
(
k−(k+3)/2 · n(k−1)/2 + k3·Θ2

n

))
≥ exp

(
Ω
(

(1− 1/k)k
(
n
k

)))
≥

exp
(
Ω
(
nk

kk

))
, so we get that Θ = Ω(k−(k+3)/2 · n(k+1)/2). ut

As we show in Theorem 7.5, for a constant k this bound is tight up to a
logarithmic factor.

Sparse and Dense k-Uniform Access Structures.

Theorem 8.7. Let 1 ≤ γ ≤ k be some real number. There exists a k-uniform
access structure Γ with n parties and | {A ∈ Γ : |A| = k} | ≤ nγ , such that the
total share size for sharing a one-bit secret in every linear secret-sharing scheme
realizing Γ is Ω(k−(k+3)/2 · n(γ+1)/2). Furthermore, there exists a k-uniform
access structure Γ with n parties and | {A ∈ Γ : |A| = k} | ≥

(
n
k

)
− nγ , such that

the total share size for sharing a one-bit secret in every linear secret-sharing
scheme realizing Γ is Ω(k−(k+3)/2 · n(γ+1)/2).

Proof. By Theorem 8.6, for every n there exists a k-uniform access structure
with n parties such that the total share size for sharing a one-bit secret in every
linear secret-sharing scheme realizing it is Ω(k−(k+3)/2 · n(k+1)/2). Denote the
parties in Γ by P . We use this k-uniform access structure (with fewer parties)
to construct a sparse k-uniform access structure Γ with n parties. We partition
the parties of P to n′ = n(k−γ)/(k−1) disjoint sets of parties V1, . . . , Vn′ , where
|Vi| = n/n′ = n(γ−1)/(k−1) for every i ∈ [n′]. We construct a copy of a k-uniform
access structure from Theorem 8.6 with n/n′ = n(γ−1)/(k−1) parties among the
parties of Vi, and denote this k-uniform access structure by Γi, for every i ∈ [n′].
There are no authorized sets contain parties from different sets from V1, . . . , Vn′ .

Since every authorized set in this construction contains parties from the same

set Vi (for some i ∈ [n′]), the number of authorized sets is at most n′ ·
(
n/n′

k

)
≤ n′ ·

(n/n′)k = n(k−γ)/(k−1) · (n(γ−1)/(k−1))k = n(k−γ+kγ−k)/(k−1) = nγ(k−1)/(k−1) =
nγ . The total share size for sharing a one-bit secret in every linear secret-sharing
scheme realizing Γi (for every i ∈ [n′]) is Ω(k−(k+3)/2 · (n(γ−1)/(k−1))(k+1)/2) =
Ω(k−(k+3)/2 · n(γ−1)(k+1)/(2(k−1))) = Ω(k−(k+3)/2 · n(kγ+γ−k−1)/(2(k−1))). Thus,
the total share size for sharing a one-bit secret in every linear secret-sharing
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scheme realizing Γ is n′ · Ω(k−(k+3)/2 · n(kγ+γ−k−1)/(2(k−1))) = Ω(k−(k+3)/2 ·
n(k−γ)/(k−1)+(kγ+γ−k−1)/(2(k−1))) = Ω(k−(k+3)/2 · n(kγ−γ+k−1)/(2(k−1))) =
Ω(k−(k+3)/2 · n(γ+1)(k−1)/(2(k−1))) = Ω(k−(k+3)/2 · n(γ+1)/2).

To construct a dense k-uniform access structures with at least
(
n
k

)
− nγ au-

thorizes sets that requires large shares in every linear scheme realizing it, we use
a similar construction, however, we add all sets with exactly k parties, in which
not all the paries are in the same set Vi, for some i ∈ [n′]. Similar analysis implies
that the resulting k-uniform access structure has at least

(
n
k

)
− nγ authorizes

sets and the total share size for sharing a one-bit secret in every linear scheme
realizing this k-uniform access structure is Ω(k−(k+3)/2 · n(γ+1)/2). ut
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