Formal Analysis of Distance Bounding with
Secure Hardware

Handan Kiling and Serge Vaudenay

EPFL, Lausanne, Switzerland

Abstract. A distance bounding (DB) protocol is a two-party authen-
tication protocol between a prover and a verifier which is based on the
distance between the prover and the verifier. It aims to defeat threats by
malicious provers who try to convince that they are closer to the verifier
or adversaries which seek to impersonate a far-away prover. All these
threats are covered in several security definitions and it is not possible
to have a single definition covering all. In this paper, we describe a new
DB model with three parties where the new party is named hardware. In
this model, called secure hardware model (SHM), the hardware is held
by the prover without being able to tamper with. We define an all-in-one
security model which covers all the threats of DB and an appropriate
privacy notion for SHM. In the end, we construct the most efficient (in
terms of computation by the prover-hardware and number of rounds)
and secure DB protocols achieving the optimal security bounds as well
as privacy.

Keywords: distance bounding, RFID, NFC, relay attack, tamper resistance,
terrorist fraud

1 Introduction

Distance bounding (DB) protocols are two-party (a prover and a verifier) authen-
tication protocols. A prover authenticates itself and proves that the distance be-
tween its location and the verifier’s location is less than a predetermined bound.
The verifier estimates the distance of the prover by computing the round trip
time of sending a challenge to the prover and receiving a response from the
prover. Brands and Chaum [6] first defined this notion as a solution to relay
attacks. However, it may also provide a solution for the following threats:

Mafia Fraud (MiM) [12] : A man-in-the-middle (MiM) adversary between a
verifier and a far-away honest prover makes the verifier accept the access of the
prover. Malicious and far-away provers who want to convince that they are close
to a verifier appear in the followings:

Distance Fraud (DF) : A malicious far-away prover tries to prove that he is close
enough to the verifier to make the verifier accept.

Distance Hijacking (DH) [11] : A far-away malicious prover takes advantage of
some honest and active provers who are close to the verifier to make the verifier
grant privileges to the far-away prover.

Terrorist fraud (TF) [12] : A far-away malicious prover, with the help of an
adversary, tries to make the verifier accept the access of the prover.

Clearly, the strongest security notion is the resistance to TF. So, if we can
construct a DB protocol that is secure against TF, then the DB protocol will
be secure against MiM, DF and DH. However, it is not possible to achieve the
TF-security because of a trivial attack: the malicious prover gives his secret
(key) to a close adversary, and the adversary authenticates on behalf of the
malicious prover by running the protocol. To achieve the TF-security, the trivial
attack is artificially excluded from the TF model in the literature by assuming
that malicious provers would never share their keys (in this paper, we call this
weaker version “TF’-security”). However, we cannot adapt TF’-security as an
all-in-one security notion because no connection between TF’-security and MiM,
DF or DH security can be established. Because of this disconnection, all DB
protocols require separate security analysis for each of them. The only public-
key DB protocols that are secure against all of them (MiM, DF, DH, TE’) are
ProProx [28], its variant eProProx [26] and TREAD [2]. Some important distance
bounding protocols [6, 8, 10, 15, 22, 24, 19] are all vulnerable to TF’. The protocol
by Bultel et al. [7] is TF’-secure thanks to a ‘cheat option’ (as explained below)
but it is not DH-secure since it aims for anonymity against verifier.

Moreover, the formal definition of TF’-security is controversial. The TF’-
security definition of Diirholz et al. [13] allows treatment of the partial disclosure
of the secret key. Essentially, the TF’ security in this definition implies that any
information forwarded to a close-by adversary would allow another adversary to
later pass, without a help of the prover, with the same probability, but through
a “cheat option” in the protocol. Fischlin and Onete [14] adapted the Swiss-
Knife protocol [20] to have this definition. However, it was proven that this
technique weakens Swiss-Knife for MiM-security [25]. Clearly, it is not reasonable
to weaken the most relevant security to protect it against the least relevant one.
There are also extractor based TF’-security definitions [5,28, 25] stronger than
the definition of Dirholz et al. model [13]. However, all TF’-security definitions
are constructed with the assumption that the malicious prover do not reveal any
secret key related information. This assumption is considered weak and not
realistic [1]. In short, none of the models in the literature fully covers TF.

Apparently, there is no way of achieving TF-security without hiding the
secret key from the prover. This intuitive idea has been noticed [23,9], but
never formally defined. A natural question to ask here is whether this idea really
prevents TF. The answer is “yes and no” because hiding the key is necessary
but not sufficient.

In a nutshell, state of the art DB results says that TF-security is not possible
in the existing models of DB and it could be possible by hiding the key but this
is not enough. However, it is still not formally noted how it can be achievable.

Therefore, in this paper, we define a new formal model where constructing TF-
secure protocols are possible.

Our formal model for DB, which we call secure hardware model (SHM),
provides a solution to all DB related problems that we mention. We denote the
two-algorithm (Prover and Verifier) DB corresponding to the classical DB in the
literature as “plain model” (PM) [6,13,4,5,27]. In the SHM, we have another
entity called “Hardware” that is always honest and only communicate with their
holder (the prover). Mainly, this hardware runs some part of the prover algorithm
honestly and neither a malicious prover nor an adversary can corrupt it. In the
real world, we can realize our new entity as e.g. tamper-resistant modules in
smart-cards. In more detail, our contribution in this paper is the following:

— We define a new type of DB with three algorithms (V, P, H): verifier, prover,
hardware. Then, we design a communication and adversarial model for three-
algorithm DB which we call secure hardware model (SHM). In SHM, it is
possible to have TF-secure DB protocols without excluding trivial attacks.
We give a new security definition in SHM for a three-algorithm DB. In this
security definition, achieving TF-security means achieving MiM, DF and
DH-security. So, we obtain an all-in-one definition.

— We obtain a convincing model for TF based on SHM. We show that the TF-
security of (V, P, H) in SHM is equivalent to the MiM-security of (V, H) in
PM where H in PM corresponds to the prover algorithm. This result implies
that P plays no role in security but only in the correctness of the
protocol to have TF-security.

— We establish security relations between PM and SHM. We show that the
MiM-security in SHM and the MiM-security in PM are equivalent where the
prover algorithm in PM is the union P¥ of the prover P and the hardware
H in SHM. Additionally, we show that a MiM-secure DB protocol in PM can
be converted into a fully-secure DB protocol in SHM. This result shows that
if we have only a MiM-secure DB protocol in PM, we can easily construct
an efficient DB protocol secure against all threats in SHM.

— We define a strong privacy notion of DB in SHM. Strong privacy in DB
requires that the adversary cannot identify a prover even after getting his
secret (e.g. by a corruption).

— We construct a symmetric DB protocol MiM-symDB which is the most
efficient optimally secure MiM-secure protocol in PM (in terms
of computation and number of rounds) among the protocols with
binary challenges and responses. Then, we convert it into a DB protocol
in SHM (Full-symDB#) and obtain the most efficient symmetric DB protocol
secure against all threats and achieving optimal security bounds.

— We also consider a secure and private public-key DB protocol in SHM. In-
stead of designing a new one we take advantage from existing public-key
DB’s Eff-pkDB and Simp-pkDB [19] to convert them into SHM. We slightly
modify Eff-pkDB to increase its efficiency in SHM, and we modify Simp-
pkDB such that its new version in SHM is secure and private.

We underline that the only assumption on the secure hardware is that
it is honest which means that it runs the specified algorithm only. By doing
so, we give a model here where the TF-security is achievable.

One may argue that our assumption on secure hardware is too strong for the
real world applications. For example, in the real world, if the secure hardware
is implemented using a tamper-resistant hardware, it is always possible that a
side-channel attack will break our assumption. However, we believe that relying
on our assumption is more reasonable than relying on some adversarial intention
(e.g., that the adversary never shares his secret). We can never prevent a TF-
adversary to share his secret-key, but we can construct a strong tamper-resistant
hardware which requires very expensive devices to be tampered. Besides, MiM-
security would be preserved even if the tamper resistance assumption is broken.

2 Definitions and Security in SHM

We first give the formal definitions of SHM and security in this model. Then, we
provide some security relations related to PM and SHM.

2.1 Definitions

Parties of a DB protocol are a prover and a verifier [6]. However, we define a
new version of it called three-algorithm (symmetric or public-key) DB where the
algorithms are prover, verifier, and hardware.

Definition 1 (Three-Algorithm Symmetric DB). Three-algorithm sym-
metric DB is a probabilistic polynomial-time (PPT) protocol. It consists of a
tuple (IC,V, P, B, H) where K is the key generation algorithm, P is the proving
algorithm, H is the hardware algorithm, V is the verifying algorithm and B is
the distance bound. The input of V. and H is K generated by K. P interacts
with H(K) and V(K). At the end of the protocol, V(K) outputs a final message
Outy € {0,1}. If Outy =1, then V accepts. If Outy = 0, then V rejects.

In symmetric DB, V' knows that it needs to use K (possibly resulting from
a prior identification protocol).

Definition 2 (Three-Algorithm Public key DB). Three-algorithm pub-
lic key distance bounding is a PPT protocol. It consists of a tuple
(Kp,Kv,V,P,B,H) where (Kp,Ky) are the key generation algorithms of P
and V, respectively. The output of Kp is a secret/public key pair (skp,pkp)
and the output of Ky is a secret/public key pair (sky,pky). V is the verifying
algorithm with the input (sky,pky), P is the proving algorithm with the input
(pkp, pky) and H is the hardware algorithm with the input (skp,pkp). B is the
distance bound. P interacts with H(skp,pkp) and V(sky,pky). At the end of
the protocol, V (sky, pky,) outputs a final message Outy € {0,1} and has pkp as
a private output. If Outy =1, then V accepts. If Outy = 0, then V rejects.

This definition assumes a priori identification of pky, for P.

Definition 3 (Correctness of DB). A public-key (resp. symmetric) DB pro-
tocol is correct if and only if under an honest execution, whenever the distance
between P and V is at most B, V always outputs Outy = 1 and pkp (resp. 0).

In all definitions below, verifiers, provers, and hardware are parties running
V', P and H, respectively. The parties can move and run their algorithms multiple
times. Each new execution of a party’s algorithm is an instance of this party.

Classical DB in the literature is very similar to three-algorithm DB with the
following differences: no H algorithm exists and the input of P in public-key
and symmetric DB is (skp, pkp, pky) and K, respectively. The plain model is
the model corresponding to the classical DB.

Plain Model (PM): Parties of PM are provers, verifiers and other actors.
— Honest parties run their assigned algorithms only.
— Verifiers are always honest. Provers are either malicious or honest.
Each instance of a party has a location.
A malicious party may run its instances concurrently, while an honest party
runs its instances only sequentially.
— Communication between instances has a latency proportional to the distance
(e.g., it travels at the speed of light).
The secure hardware model is the model corresponding to three-algorithm
DB: P, V and H.

Secure Hardware Model (SHM): Parties of SHM are provers, hardware,
verifiers and other actors. SHM includes all the characteristics of PM and the
additional ones:
— Secure hardware are honest parties.
— Each prover possesses its own secure hardware.
— The secure hardware of an honest prover can only communicate with its
prover and they are both at the same location.

In the rest of the paper, whenever we say “a distance bounding protocol in
SHM?” | it refers to the three-algorithm DB.

Remark that since secure hardware are honest parties, they always run their
assigned algorithms even if malicious provers hold them. They should be taken
as a subroutine of a prover algorithm running on a secure enclave where the
prover can never change or interfere it.

SHM and PM follow the communication model from [5,18]: instances can
only communicate by sending messages which are delivered with a delay propor-
tional to the distance, and malicious instances can prevent delivery or change
the destination of messages [28].

Now, we give our security definition for a DB protocol in SHM. The definition
covers distance fraud, mafia fraud (MiM), distance hijacking and terrorist fraud
which are the threat models in PM.

Definition 4 (Security in SHM). Consider a public-key DB. The game
consists of a verifier and provers Py, Py, ..., P, with their corresponding hard-
ware Hy, Ho, ..., Hy. It begins by running the key setup algorithm Ky outputting
(sky, pky,) for V' and Kp outputting (skp,,pkp,) for H;. The game consists of
instances of the verifier, provers, hardware and actors. V is a distinguished in-
stance of the wverifier. One prover (let’s denote P) is the target prover. The
winning condition of the game is V outputs Outy = 1 and privately pkp (public
key of P) if no close instance of P’s hardware exists during the execution of V.

— The DB protocol is MiM-secure if the winning probability is always negligible
whenever P is honest!.

— The DB protocol is DF-secure if the winning probability is always negligible
whenever there is no instance of any party close to V.

— The DB protocol is DH-secure if the winning probability is always negligi-
ble whenever all close instances are honest provers other than P and their
hardware.

— The DB protocol is TF-secure if the winning probability is always negligible.
The same security definition holds for a symmetric DB where we replace Ky

and Kp with K and skp, /pkp, with ;.

Without loss of generality, we can consider all other actors as adversaries.

It is clear that TF-security implies DF-security, MiM-security, and DH-
security. So, we have an all-in-one security notion in SHM. Hence, we say “se-
cure” instead of “TF-secure” in SHM.

Security in PM: The security in PM is almost the same as Definition 4 except
that in PM, we do not have hardware. In PM, there is always a trivial TF-attack
in which a malicious prover can give his secret key to another malicious party so
that the party authenticates the prover while it is far-away. So, TF-security is
not possible in PM. Clearly, this trivial attack is preventable in SHM if we can
assure that H never leaks K.

Note that we do not consider the weaker version of TF-security [13,20, 25]
(TF’-security) which artificially excludes trivial attack. So, when we refer to
TF-security in PM, we indeed refer to an impossible-to-achieve notion.

Notations:

Piym is a dummy prover algorithm in SHM which only relays the messages
between the outside world and H without even using any of its input. Remark
that if the prover who should run Py, is malicious, then it can still play with
its hardware or other parties maliciously.

PH g the algorithm which is constructed from joining P and H in SHM.
More precisely, P¥ runs P and instead of interacting with H, it executes the
same computation that H would do if P had interacted. Therefore, P is the
hardware algorithm H.

! Recall that it implies that H communicates with only P and that they are at the
same location.

“Challenge phase” is informally defined as the phase where V' comprehends
the proximity of P. In the challenge phase, V sends challenges and receives
responses from P. If all the responses are correct and arrive on time, then V'
decides that the distance between V' and P is less than the bound B.

2.2 Security Results

Some security implications in SHM and PM (see Figure 1): First, let us define
“Null conversion”. It is a transformation of a protocol DB’ with (K, V, P/, B) in
PM into another protocol DB with (K, V, P, B, H) in SHM where P and H are
described below:

P H(K)
ask key send K
receive K

run P/(K)

This conversion shows that if we have a counterexample protocol in PM
which is X-secure but not Y-secure (X,Y € {DF, DH, MiM, TF}), then the same
counterexample applies for its null conversion. Hence, any non-implication in
PM is correct for SHM as well.

We have already explained that TF-security implies DF, DH and MiM secu-
rity in SHM and PM. Now, we show the other relations between these security
notions. We give our counterexamples in PM for simplicity.

DH — DF: It is clear that DH-security implies DF-security in SHM and also
in PM. But, there is no such relation between DF /DH-security and MiM-security
as explained below.

DF - DH and DF - MiM: A simple counterexample for a DF-secure
protocol which is neither MiM nor DH-secure is an ‘echo’ protocol.

In an ‘echo’ protocol, the prover authenticates itself and then challenge phase
begins. P receives a challenge(s) from V and P responds with the challenge(s)
itself. If P replies with the same challenge(s), V' computes the elapsed time
between the sending the challenge and receiving the response. Thus, V' can decide
if the proximity of P is less than B. Clearly, this is DF-secure because P cannot
correctly reply before seeing the challenge. So, P cannot show itself closer than
its proximity. But, echo protocol is not DH and MiM-secure. It is not DH-secure
because a far-away and malicious prover can authenticate itself and let the close
and honest prover respond to the challenge(s). So, V' decides that the malicious
prover is close. It is not MiM-secure, because a MiM-adversary responds the
challenge(s) itself in the challenge phase and, in the rest, he relays the messages
between the (far-away) prover and the verifier.

MiM - DF and MiM -» DH: MiM-symDB in Section 3 (Figure 4) is
MiM-secure but not DF-secure. So, it is not DH-secure either.

DH —» MiM: We show a DB protocol which is DH secure in PM but not
MiM-secure in PM in Appendix A.

MiM - TF and DH - TF': Eff-pkDB [19], PrivDB [27] are MiM and DH
secure. However, they are not TF-secure (they are not even TF’-secure in PM).

The relations of security notions are the same for a DB in PM and in SHM.
However, since TF-security is not achievable for a DB in PM, actually, only the
relations between DH, DF and MiM are valid in PM which basically shows why
all-in-one security is not possible in PM.

Now, we give some security relations between a DB protocol in PM and SHM.

Theorem 1 (MiM in SHM = MiM in PM). Let DB =(K,V,P,B,H)
be a symmetric-key DB protocol in SHM. We define a DB protocol DB’ =
(K,V,P2 B)in PM. If DB is MiM-secure then DB’ is MiM-secure.

The same holds with public-key DB.

The proof is trivial by adding a hardware to every honest prover at the same
location: A MiM-game against DB’ becomes a MiM-game against DB.
Theorem 2 (MiM-security in PM with P/ < Security in SHM).
Let DB = (K,V,P,B,H) be a symmetric DB in SHM and and DB’ =
(K, V,PHL B) be a symmetric-key DB in PM where H in DB’ corresponds
H of DB. DB’ is MiM secure in PM if and only if DB is TF-secure in SHM.

Here, the prover algorithm of DB’ is just H because P = H.

Note that DB’ in Theorem 2 is not a correct DB protocol in general if
P # Py as the algorithm P disappeared. However, we can still consider MiM-
security for DB’ without correctness.

Proof. (=) Consider a TF-game in SHM. We run this game in PM by simulating
the secure hardware H of DB with the prover Pﬂm of DB’ and simulating the
prover P in SHM with an actor in PM (it is possible because P in SHM does
not have any secret key as an input). Then, we obtain MiM-game of DB’'.

(<) If A wins the MiM-game of DB’, then a TF adversary runs A and wins
the TF-game for DB. a

Remark that it is not possible to prove “MiM-security of DB’ =
(K,V,PH B) < security of DB = (K,V,P,B,H)” where P in DB’ is not
necessarily Py, because we could not simulate H and P in “=" case of the
proof in Theorem 2.

Theorem 2 clearly shows that hiding the key is necessary to have security
in DB. Because if H in DB does not hide the key, then the prover algorithm
of DB’ which is H does not hide as well. So, DB’ would not be MiM-secure.
However, hiding may not be enough as explained below:

We consider the algorithm P of DB which does the computations C =
{C1,C4,...,C} and where P does learn any key related information. So, all
computations in C are executed independently from the key. Assume that the
success probability of an adversary to break the TF-security of DB is at most
p. Then, thanks to Theorem 2, the success probability of a MiM-adversary A in
DB’ is at most p. In addition, assume that there exists C; € C and the success
probability of a TF-adversary in DB is p’ > p without C;. If such C; exists,

we can have another MiM-adversary A’ which runs P without C; 2 and wins
MiM-game with p’ > p. So, this contradicts with our assumption which says
that the success probability of a MiM-adversary can be at most p. As a result,
Theorem 2 actually shows that the TF-security is not possible in SHM if the
computations of P has an effect on p.

We agree that having a secure hardware running whole algorithm without its
prover’s effect on the security is a trivial solution to have TF-security. However,
here, we show that the other way around is not possible. We underline that
it does not mean that prover cannot do any computation to have TF-security.
For example, in our TF-secure protocols in Section 4, the prover algorithm in
SHM still executes some part of the algorithm P in PM but it does not have
any effect on the security of the protocol (as it can be seen in their security
proofs Theorem 8 and Theorem 10.)

Some more results of Theorem 2:

— We can conclude if DB’ = (K, V, P . B) is MiM-secure and correct DB
protocol, then we can construct a secure DB protocol DB = (K,V, P, B, H)
in SHM for any algorithm P. DB is further correct when P = Pgyp,.

— In order to prove security of DB = (K,V, P, B, H) in SHM, it is enough to
prove MiM-security of DB’ = (K,V, PH B) in PM.

— MiM security and security of a DB protocol DB = (IC,V, P, B, H)
in SHM are equivalent if P = Pg,,,, due to Theorem 1 and Theorem 2.
Note that this result may not hold without Py, -

In Figure 1, we give the security (non)-implications in SHM and PM. In
Figure 2, we give the same for SHM when the prover is Pgy,,. In this case, the
full security is equivalent to MiM-security.

S

MiM

TF DF

=<
<<

TF = MiM DH h DF

Fig. 1. Security implications of DB proto- Fig.2. Security implications in SHM
cols in PM and SHM. TF-security implies with the prover Pj,,,. TF-security and
all of them, DH-security implies DF secu- MiM security are equivalent in SHM with
rity and no relation exists between MiM Pg,,,. The relations between DF, DH
and DH (also DF). and MiM are the same as in Figure 1.

2.3 Privacy

In strong-privacy definition of PM, the adversary can corrupt the provers and
learn the secrets. However, the hardware in SHM is honest by nature. So, it

2 Remark that any adversary can compute the computations in C because they do not
require any secret.

cannot be corrupted. Hence, we define semi-strong privacy with no such corrup-
tion. Achieving semi-strong privacy in a DB protocol is good enough assuming
that the hardware is tamper-resistant. Nevertheless, we also allow corruption of
hardware in order to define the strong privacy notion.

Definition 5 (Privacy in SHM). The privacy game consists of a verifier,
provers Py, Py, ..., Py and their corresponding hardware { Hy, Hs, ..., H; }. We gen-
erate the secret/public key pairs of them with Ky and Kp for the verifier and
the hardware of provers. We pick b € {0,1} and start the game:

The adversary can create instances of the wverifier and any prover. It can
send/receive messages to/from instances of the verifier. It can corrupt any prover
and hardware which let it learn the current state of their memory. At some mo-
ment, it picks two provers Pj, P; as a challenge of the game. If b =0, we create
a virtual prover of P; with its hardware and if b =1, we create a virtual prover
of P; with its hardware. The adversary can communicate with the virtual prover
and its virtual hardware. It can also release a virtual prover, if it exists. In this
case, we remove the virtual prover from the game, anonymously. The game has
to have at most one virtual prover. In the end, the adversary outputs V. If b/ =,
the adversary wins. Otherwise, it loses.

We say a DB protocol in SHM is strong private if the advantage of the ad-
versary in this game is bounded by a negligible probability. We say a DB protocol
in SHM is semi-strong private if the advantage of the adversary in a version
of this game, where the corruption only lets the adversary communicate with the
hardware non-anonymously, is bounded by a negligible probability.

In semi-strong privacy, even though we do not allow corruption of hardware,
we let semi-strong corruption occur by allowing interaction with the secure hard-
ware. In SHM, we stress that when P interacts with its secure hardware, this
interaction remains private.

Hermans et al. [16] defined a similar game for the strong privacy of DB in
PM. In that game, no hardware exists, so the definition of semi-strong privacy
is not considered. Instead, the weak privacy notion exists where no corruption
on provers are allowed.

Note that we obtain a notion of strong privacy of DB = (K,V, P, B, H) in
SHM which is equivalent to the strong privacy of DB’ = (K,V, P2, B) in PM.

3 Optimal symmetric DB protocol in SHM

In this section, we show our new protocol MiM-symDB in PM which is only
MiM-secure (not DF, DH or TF-secure). We construct a DB at this level of
security because having MiM-security in PM is enough to achieve (full) security
in SHM as a result of Theorem 2. The security bounds of MiM-symDB is very
close to optimal security bounds [5] 3. Its conversion into SHM reaches the same

3 A security bound of a DB means an upper bound of the success probability of an
adversary.

10

bound as well. It is proved [5] that an optimal security bound in PM for a MiM-
adversary is (%)" given that challenges and responses are bits and the challenge
phase consists of n rounds. The same bound applies in SHM as well. We give
some details about optimal security bounds in DB protocols [5] in Appendix B.

We note that using other optimally MiM-secure DB protocols such as DB1,
DB2, DB3 [5] is reasonable as well to have fully secure DB protocols in SHM.
However, these protocols are also secure against DF or TF’ in PM which is an
overkill since we need only MiM-security. By constructing an optimal MiM-only
secure DB in PM, we can save some computations and rounds.

Notation: When we use H as a superscript in the name of a protocol, it shows
that it is in SHM.

V(K) P(K)
CllR=K C||[R=K
challenge phase

fori=0ton
e

¢; = C[i], start timer; —_— if ¢; # C[i], abort
stop timer; — otherwise, r; = RJ[i]

verification phase

. . Outy,
check timer; < 2B, r; = R[i]

Fig. 3. MiM-OTDB

MiM-OTDB: First, we describe our MiM-OTDB protocol which is MiM-secure
when it is executed only once. The prover P and the verifier V share a secret
key K = C||R. Here, the bits of C' correspond to the challenges and the bits
of R correspond to the responses. In the challenge phase, in each round ¢, V'
sends the challenge ¢; = C[i] to P and P sends the response r; = R[i] to V. If P
receives a challenge which is different from C[i], then P does not continue the
protocol. In the verification phase, V' checks if the responses are correct and on
time. (See Figure 3.)

MiM-symDB: The prover P and the verifier V share a secret key K. They
use a pseudo random function (PRF) f returning strings of 2n bits. P and
V' exchange the nonces Np, Ny € {0,1}*, respectively, where s is a security
parameter. Then, P and V' compute f(K, Np, Ny) which outputs C||R. Finally,
V and P run MiM-OTDB with using C||R as a key. (See Figure 4.)

V(K) P(K)

pick Nv € {0,1}° «— P pick Np € {0,1}*
N

C||R = f(K,Np,Ny) ————Y——— C||R = f(K,Np, Nv)

MiM-OTDB(C||R)

Fig. 4. MiM-symDB

11

We prove the following theorem by using a lemma in [18]. The lemma shows
that any message m sent by a party is independent from the messages seen by
another party at the time which is less than arrival time of m. This lemma is
correct in SHM as well.

Theorem 3 (MiM-security of MiM-symDB). If f is a secure PRF, then
the winning probability of a probabilistic polynomial time (PPT) adversary in a
MiM-game of MiM-symDB in PM is at most 2”% + 2,‘3% + 22% +Advprr(q+
q',t). For a PPT game, this is negligible.

Here, q is the number of prover instances, q' is the number of verifier in-
stances, t is the total complexity of the game and Advpgrr is the advantage for
distinguishing the output of f from the output of a random function with q + ¢’
queries and complezity t.

Proof. I : It is a MiM-game where P’s instances and V'’s instances with the
distinguished instance V play in PM. The winning probability in [is p.

I : We reduce Iy to Iy where the nonces of the prover instances and the
nonces of the verifier instances do not repeat. The probability that a prover (resp.
verifier) instance selects the same nonce with the one of the other prover (resp.
verifier) instances is bounded by g% (resp. %%) So, the winning probability
of I is at leastp—Qg—frl —QZ%.

Iy : We reduce I to I'; where V and the prover’s instances replace f(K,.,.)

2

by a random function. Clearly, the winning probability in I’ is at least p— 5% —
22% —Advprr(q+4,t).

In I, we have a game where at most one prover instance P seeing (Np, Ny)
pair with V and C||R is completely random meaning that it is independent from
Np and Ny. If P exists, it has to be far from V because of the winning condition
of MiM-game. Assuming that V and P see the same (Np, Ny), we look each
round 7 for the case where r; arrived on time. If r; arrived on time, thanks to the
lemma in [18], the response sent by P is independent from r; or the challenge
that P received is independent from c¢; sent by V. In any case, the adversary’s
probability to pass each round is % because the response r; has to be correct and
on time: the adversary guesses either 7; or ¢; (post-ask or pre-ask attack). There
may also be one round where the pre-ask strategy is done for a constant number
of rounds until it makes P abort. After abort, there is an additional opportunity
(in the last of these rounds) for the adversary to pass the round by guessing the
response. Therefore,

3 q2 q/2
p= 2n+1 + 2s+1 + 23+1

+ Advprr(q+ q',t).

O
Assuming that 2‘3% + 22% +Advprr(g+4¢',t) is negligible, the success prob-
ability of a MiM-adversary is zn% very close to the optimal security QL

MiM-symDB is more efficient than the existing optimally MiM-
secure protocols DB1, DB2, DB3 [5]. P in DB1, DB2, DB3 compute a

12

PRF function two times and some other mappings too. So, with parameter n, =
n, = 2 in common structure, for a given target security, we construct a nearly
optimal protocol, both in terms of number of round and computation complexity.

Theorem 4 (OT-MiM security of MiM-OTDB). Any MiM-game against
MiM-OTDB with only one instance of V(K) and one instance of P(K) has a
winning probability bounded by 2"% In short, MiM-OTDB is OT-MiM-secure
(one time MiM-secure) [27].

Proof. Using the last game in the proof of Theorem 3, we can show that MiM-
OTDB is OT-MiM-secure. ad

MiM-OTDB is the most efficient one-time MiM-secure protocol [27] since it
does not need any computation.
Adaptation of MiM-symDB to SHM (Full-symDB¥): We define Full-
symDBH with the tuple (K, V, Pgum, B, H) where B,V and K are as in MiM-
symDB, H is the same with P in MiM-symDB.

Theorem 5 (Security of Full-symDB¥). If f is a secure PRF, Full-
symDBY s secure in SHM.

Proof. The conversion of Full-symDB# in PM is (K, V, P . B) which is equal
to MiM-symDB. We know that MiM-symDB is MiM-secure since f is a secure
PRF. Hence, Full-symDB¥ with (K, V, Pyym, B.H) is secure thanks to Theorem
2. The security bound of Full-symDB¥# is the same as MiM-symDB’s. O

Full-symDB¥ is the first protocol that reaches the optimal secure bounds for
MiM, DH, DF and TF secure.

4 Optimal Public-key DB Protocols in SHM

In this section, we give two public key DB protocols in SHM: Full-pkDB1#
and Full-pkDB2%4 which is correct, private and secure. The first one is derived
from Simp-pkDB [19] in PM. We modify Simp-pkDB to make it private in SHM
because Simp-pkDB is not private in PM. The second one is derived from Eff-
pkDBP [19] in PM which is a variant of Eff-pkDB [19] with privacy protection.
We slightly modify Eff-pkDB? as well as Eff-pkDB to increase its efficiency. We
use these protocols because of their efficiency in PM.

Full-pkDB1%: This protocol is derived from Simp-pkDB [19]. However, Simp-
pkDB is not private. Therefore, we add an extra encryption process on the prover
side to achieve privacy. The details of Full-pkDB1¥ is as follows:

The input of the verifier V is its secret/public key pair (sky,pky) which
is generated from the key generation algorithm of an encryption scheme
(Enc’, Dec’). The input of H is the prover’s secret/public key pair (skp,pkp)
which is generated by the key generation algorithm of the encryption scheme

4 Full refers full security (MiM, DF, DH, TF) and privacy.

13

V (sky, pky) P(pkp, pky-) H(skp, pkp)
pkp, N

pkp, N = Dec, (ep) ep ep = Ency, (pkp, N) === N + {0,1}°

pick C||R € {0,1}?"

ey = Encpkp [T C||R||N = Decsp, (ev)

(CIIR[IN) _____ev |
Verify N

MiM-OTDB(C||R)

output pkp

Fig. 5. Full-pkDB1¥ . The double arrow shows the communication between P and H

(Enc, Dec). The input of P is (pkp, pky). H picks a nonce N from {0,1}* and
sends it to P along with pkp. Then, P encrypts pkp, N with pky and sends
the encryption ep to V. V learns pkp and N by decrypting ep with sky . Then,
it picks C||R from {0,1}?" and encrypts C||R||N with pkp. Next, it sends the
encryption ey to P and P relays it to H. H decrypts ey and learns C||R||N.
If N is the same nonce that it picked, it runs MiM-OTDB(C||R) with V. The
protocol is depicted in Figure 5.

The conversion of Full-pkDB1¥ into PM is called as “Simp-pkDBP”. Its
prover algorithm is PH(kP-Pkp) where P and H is from Full-pkDB17. Simp-
pkDB? is the same as Simp-pkDB except that the prover encrypts its public key
and the nonce, and the verifier learns the public key and the nonce via decryption.
Clearly, Simp-pkDBP? is MiM secure since Simp-pkDB is MiM-secure [19].

Theorem 6 (Security of Full-pkDB1). If the encryption scheme
(Enc,Dec) is IND-CCA secure and MiM-OTDB is OT-MiM-secure, Full-
pkDB1" is secure in SHM.

Proof. Consider DB = (Ky,Kp,V, Pﬂm, B) with V and H from Full-pkDB1#.
Actually, DB = Simp-pkDB. Using Theorem 2, Full-pkDB1# is secure because
DB = Simp-pkDB is MiM-secure [19] assuming that (Enc, Dec) is IND-CCA
secure and MiM-OTDB is OT-MiM-secure.

O

Full-pkDB1# achieves almost optimal security bounds because MiM-security
of Simp-pkDB is reduced to MiM-security of MiM-OTDB [19].

We see that Full-pkDB1 is secure without encryption. Actually, the encryp-
tion is only used for achieving privacy. So, if privacy is not a concern, we can use
Full-pkDB1# without the encryption and decryption. In this case, the verifier
has no secret/public key pair. This can be useful in practical applications.

We first prove that Simp-pkDBP? achieves weak privacy. This helps us to prove
Full-pkDB1# is semi-strong private in SHM.

Theorem 7 (Weak privacy of Simp-pkDBP). Assuming the encryption
scheme with (Enc’,Dec’) is IND-CCA secure and the encryption scheme with
(Enc,Dec) is IND-CCA and IK-CPA [3] secure, then Simp-pkDBP is weak pri-
vate in PM.

14

Proof. I'; is a game where p; is the probability that the adversary in I'; succeeds.

Iy : The adversary A plays the weak-privacy game in PM. The success prob-
ability of A is pg.

I'y : We reduce Iy to Iy where the verifiers do not decrypt (with Dec’) any
encryptions sent by the provers and the provers do not decrypt (with Dec) the
encryptions generated by the verifiers. Instead, they directly use the values inside
the encryption. Because of the correctness of both encryption schemes p; = py.

Iy : We reduce I} to I'; where all provers encrypt (with Enc’) a random value
instead of pkp, N and all verifiers encrypt (with Enc) a random value instead
of (C||R||N). Note that the change on ey is indistinguishable by an adversary
since it does not know skp because we prove here weak privacy. Thanks to the
IND-CCA security of the encryption schemes p; — ps is negligible.

I's : We reduce I to I's where the prover does not decrypt (with Dec) the
encryptions ey generated by the adversaries and it aborts. Since N has never
been used, the probability that A sends a valid encryption of N is negligible.
Therefore, p3 — ps is negligible. Remark that in I's, Decg, has never used.

Iy : We reduce I3 to I’y where the prover replaces pkp by a freshly generated
public-key (that V uses if ep is correctly forwarded). The only visible change from
I3 is that now ey is encrypted using a new key. Because of IK-CPA security of
the encryption scheme (with Enc, Dec), py — ps is negligible.

Now, in 4, no identity is used by the verifiers and the provers, so adversary
succeeds Iy with % probability. Therefore, py — % is negligible. a

Simp-pkDBP is not strong private due to the following attack: Assume that an
adversary corrupts a prover P and learns skp. Later, he can decrypt all ey sent
by the verifier with skp. If ey is sent to P, then it means the adversary learns the
challenges and responses. When these challenges and responses become known
during MiM-OTDB, the adversary can identify P.

Theorem 8 (Semi-strong privacy of Full-pkDB1%). Assuming that the
encryption scheme with (Enc’,Dec’) is IND-CCA secure and the encryption
scheme with (Enc, Dec) is IND-CCA and IK-CCA [3] secure, then Full-pkDB1%
is semi-strong private in SHM.

Proof. The proof works like in Theorem 7. We only let non-anonymous hardware
decrypt ey from the adversary with the right key through a CCA query in the
IK-CCA game. O

Full-pkDB2%: Eff-pkDB? [19] is the most efficient public-key DB protocol
which is secure against MiM, DF, DH and strong private. Briefly, in Eff-pkDBP,
after the prover transmits its public key via encryption, V' and P run a key agree-
ment protocol with the algorithms (Geny, Genp, Ay, , By, D). In the end, with
the agreed key, they run a symmetric DB protocol.

One of the assumptions in MiM-security of Eff-pkDB? is that the symmetric
DB is “one-time multi-verifier MiM-secure”® [19]. It is not possible to use

5 It is equivalent to MiM-security with one prover instance and multiple verifier’s
instances.

15

V (skv, pky,) P(pkp, pky,) H(skp, pkp)

Ny, ,pk
Ny « {0,1}° v, SRV, Np « D(1%),
e N p,pk
pkp, Np = Decsey, (), e = Encpy, (pkp, Np) SLZE
Cl|R = C||IR =
ANy (skvy, Py, , Pkp, Np) Bny, (skp, pkp, pky,, Np)

MiM-OTDB(C||R)

output pkp

Fig. 6. Full-pkDB2% . Double arrow shows the communication with H.

MiM-OTDB on current Eff-pkDB? as a symmetric DB because MiM-OTDB
does not fulfill the assumption. Hence, we modify Eff-pkDB? so that one time
MiM-security is enough. In this way, we are able to use MiM-OTDB as a
symmetric DB which does not require any computation.

We slightly change the verifier algorithm of Eff-pkDBP and convert Eff-
pkDBP? into SHM. We call this new version in SHM as Full-pkDB2¥ (in Fig-
ure 6). The description of Full-pkDB2¥ is as follows: The verifier V has the
secret/public key pair (sky,pky) = ((skv,,skv;,), (Pky,, pky,)) which has two
parts where the first part is generated from the key generation algorithm of an
encryption scheme and the second part is generated by Geny . H has the input
(skp, pkp) generated by Genp. The input of P is (pkp, pky). First, V picks a
nonce Ny from {0,1}* and sends it to P. Then, P relays it to H. Similarly,
H picks Np from the distribution D(1%) and gives it P. P encrypts Np and
pkp with pky,. Then, P sends the encryption e to V. V decrypts it with sky
and learns Np,pkp. H and V run the algorithms By, (skp, pkp, pky,, Np) and
Apy, (skyy, pky,, Pkp, Np) which output C||R, respectively. In the end, they run
MiM-OTDB using C||R as a secret key.

The conversion of Full-pkDB2¥ into PM is called as “our variant of Eff-
pkDBP”. In this variant, the prover algorithm is PH(kp:Pkr) where P and H
are from Full-pkDB2¥. The difference between the verifier algorithms of Eff-
pkDBP [19] and our variant of Eff-pkDBP? is the following: In Eff-pkDBP?, V' does
not select any nonce (equivalently, we can say that Ny is a constant) and the
algorithms Ay, and By, generate a one-time secret key to run a symmetric
DB protocol. Remember that we do this change in the verifier algorithm of Eff-
pkDBP to increase its efficiency in SHM since we can use MiM-OTDB with this
version.

Theorem 9 (Security of Full-pkDB27). If the key agreement protocol
(Geny, Genp, ANy, Bny, D) is D-AKA secure [19] (Appendiz C) for all fized
Ny € {0,1}* and MiM-OTDB is one time MiM-secure then Full-pkDB2" is
secure in SHM.

Proof. We prove it by wusing Theorem 2. Consider that DB =
(/CV,ICP,V,Pf B) with V and H from Full-pkDB2¥ is MiM-secure in

um?

16

PM. Actually, DB is our variant of Eff-pkDB. Using Theorem 2, Full-pkDB2#
is secure because our variant of EffpkDB is MiM-secure assuming that the key
agreement protocol (Geny,Genp, Ay, ,Bn,,D) is D-AKA secure for all fixed
Ny € {0,1}* and MiM-OTDB is one time MiM-secure. The MiM security
proof of our variant of Eff-pkDB is in Appendix A.

O

Full-pkDB2# achieves almost optimal security bounds because MiM-security
of our variant of Eff-pkDB is reduced to MiM-security of MiM-OTDB.

We see that Full-pkDB2# is secure without encryption. Actually, the en-
cryption is used for achieving privacy. So, if privacy is not a concern, we can use
Full-pkDB2# without the encryption and decryption.

Theorem 10 (Strong privacy of Full-pkDB2). Assuming that the key-
agreement protocol (Geny,Genp, Ay, ,Bn,,D) is D-AKAP secure [19] (Ap-
pendiz C) for all fited Ny € {0,1}" and the crypto system is IND-CCA secure,
Full-pkDB2Y is strong private in SHM.

Proof. We first show that our variant of Eff-pkDBP is strong private in PM.
Actually, the strong privacy proof of our variant of Eff-pkDB? is the same with
the proof of Eff-pkDB? (Theorem 7 of [19]) where first it reduces the privacy
game to the game where all the encryptions are random (the reduction showed
by using IND-CCA security) and then reduces to the game where the provers use
a random secret and public key pair with By, (the reduction showed by using
D-AKAP). Because of the equivalence of strong privacy of a DB in SHM and its
conversion in PM, we can conclude that Full-pkDB2¥ is strong private. a

The prover algorithms of Full-pkDB1# and Full-pkDB2 are not Py, but
it can be easily seen from the proofs of Theorem 6 and Theorem 9 that the
computations in these algorithms do not have any effect on the security (i.e., the
security of Full-pkDB1# and Full-pkDB1# do not need any security assumptions
on the encryption scheme with (Enc’, Dec’) which is used by P.)

5 Conclusion

In this paper, we defined a new DB with three algorithms and designed its
adversarial and communication model of SHM. According to our new model,
we define a new security definition. We showed that the trivial attack of TF is
preventable in our definition. By showing implications between different threat
models, we deduced that if a DB protocol achieves TF-security in SHM, then
it is secure against all other security notions. This result cannot be applied in
PM because TF-security is not possible. We also gave some security relations
between PM and SHM. One of the relations shows that we can construct a DB
protocol that is secure against all the threat models including TF in SHM, if
its conversion into PM is MiM-secure. This result is significant because it shows
that many MiM-secure DB protocols in the literature [5,25,4,6,17,19,27] can
be used to achieve higher security level in our model.

17

We constructed a new only MiM-secure symmetric key DB in PM called
MiM-symDB. It achieves optimal security bounds and it is the most efficient
DB achieving this. We did not need to achieve other security models with MiM-
symDB because MiM-security is enough to have a secure DB protocol in SHM by
using Pgym- In addition, we constructed another symmetric DB protocol MiM-
OTDB. It is MiM-secure when it is run at most one time. It does not require
any computation, so it is the most efficient one.

We also considered public key DB protocols in SHM. For this, we derived
protocols Full-pkDB1# and Full-pkDB2# from Eff-pkDB? and Simp-pkDB [19],
respectively. Full-pkDB1# was constructed through some modifications on Eff-
pkDBP? to be able to use computation free sub-protocol MiM-OTDB. We formally
proved that Full-pkDB1# is strong private and secure in SHM. By adding one
extra encryption, we added privacy to Simp-pkDB and constructed Full-pkDB2#
from its private version. We proved Full-pkDB2 is semi-strong private and
secure in SHM.

Compared to the previous models [1,13, 5] which do not have any practical
and secure solution against all the threats, SHM lets us construct more efficient
protocols while achieving the highest security.

References

1. G. Avoine, M. A. Bingol, S. Kardas, C. Lauradoux, and B. Martin. A formal
framework for analyzing RFID distance bounding protocols. Journal of Computer
Security—Special Issue on RFID System Security, 2010.

2. G. Avoine, X. Bultel, S. Gambs, D. Gérault, P. Lafourcade, C. Onete, and J.-
M. Robert. A terrorist-fraud resistant and extractor-free anonymous distance-
bounding protocol. In Proceedings of the 2017 ACM on Asia Conference on Com-
puter and Communications Security, pages 800-814. ACM, 2017.

3. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. In ASIACRYPT 2001, pages 566-582. Springer, 2001.

4. 1. Boureanu, A. Mitrokotsa, and S. Vaudenay. Secure and lightweight distance-
bounding. In Lightweight Cryptography for Security and Privacy, LNCS 8162,
pages 97-113. Springer, 2013.

5. I. Boureanu and S. Vaudenay. Optimal proximity proofs. In Inscrypt, LNCS 8957,
pages 170-190. Springer, 2014.

6. S. Brands and D. Chaum. Distance-bounding protocols (extended abstract). In
EUROCRYPT, LNCS 765, pages 344-359. Springer-Verlag, 1993.

7. X. Bultel, S. Gambs, D. Gérault, P. Lafourcade, C. Onete, and J.-M. Robert.
A prover-anonymous and terrorist-fraud resistant distance-bounding protocol. In
Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, pages 121-133. ACM, 2016.

8. L. Bussard and W. Bagga. Distance-bounding proof of knowledge to avoid real-
time attacks. In Security and Privacy in the Age of Ubiquitous Computing, IFIP
Advances in Information and Communication Technology Volume 181, pages 223—
238. Springer, 2005.

9. L. Bussard and Y. Roudier. Embedding distance-bounding protocols within intu-
itive interactions. In Security in Pervasive Computing, pages 143-156. Springer,
2004.

18

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

S. Capkun, L. Buttyan, and J.-P. Hubaux. Sector: secure tracking of node encoun-
ters in multi-hop wireless networks. In In ACM Workshop on Security of Ad Hoc
and Sensor Networks (SASN), pages 21-32, 2003.

C. Cremers, K. B. Rasmussen, B. Schmidt, and S. Capkun. Distance hijacking
attacks on distance bounding protocols. In Security and Privacy (SP), 2012 IEEE
Symposium on, pages 113-127. IEEE, 2012.

Y. Desmedt. Major security problems with the “unforgeable” (Feige-) Fiat-Shamir
proofs of identity and how to overcome them. In Congress on Computer and
Communication Security and Protection Securicom, pages 147-159. SEDEP Paris
France, 1988.

U. Diirholz, M. Fischlin, M. Kasper, and C. Onete. A formal approach to distance-
bounding RFID protocols. In Information Security, pages 47-62. Springer, 2011.
M. Fischlin and C. Onete. Terrorism in distance bounding: modeling terrorist-fraud
resistance. In Applied Cryptography and Network Security, LNCS 7954, pages 414—
431. Springer, 2013.

G. P. Hancke. A practical relay attack on iso 14443 proximity cards. Technical
report, University of Cambridge Computer Laboratory, 59:382-385, 2005.

J. Hermans, A. Pashalidis, F. Vercauteren, and B. Preneel. A new RFID privacy
model. In ESORICS, LNCS 6879, pages 568-587. Springer, 2011.

J. Hermans, R. Peeters, and C. Onete. Efficient, secure, private distance bounding
without key updates. In WiSec, Proceedings of the Sixth ACM Conference on
Security and Privacy in Wireless and Mobile Networks, pages 207-218, 2013.

H. Kiling and S. Vaudenay. Optimal proximity proofs revisited. In ACNS, pages
478-494. Springer, 2015.

H. Kiling and S. Vaudenay. Efficient public-key distance bounding protocol. In
Asiacrypt, 2016.

C. H. Kim, G. Avoine, F. Koeune, F.-X. Standaert, and O. Pereira. The swiss-knife
RFID distance bounding protocol. In Information Security and Cryptology-ICISC
2008, pages 98—115. Springer, 2008.

T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for
the security of cryptographic schemes. In Public Key Cryptography, pages 104-118.
Springer, 2001.

J. Reid, J. M. G. Nieto, T. Tang, and B. Senadji. Detecting relay attacks with
timing-based protocols. In Proceedings of the 2nd ACM symposium on Information,
computer and communications security, pages 204-213. ACM, 2007.

D. Singelee and B. Preneel. Location verification using secure distance bounding
protocols. In Mobile Adhoc and Sensor Systems Conference, 2005. IEEFE Interna-
tional Conference on, pages 7—pp. IEEE, 2005.

D. Singelée and B. Preneel. Distance bounding in noisy environments. In Security
and Privacy in Ad-hoc and Sensor Networks, LNCS 4572, pages 101-115. Springer,
2007.

S. Vaudenay. On modeling terrorist frauds. In Provable Security, LNCS 8209,
pages 1-20. Springer, 2013.

S. Vaudenay. On privacy for RFID. In Provable Security, pages 3—-20. Springer,
2015.

S. Vaudenay. Private and secure public-key distance bounding application to NFC
payment. In FC, LNCS 8975, 2015.

S. Vaudenay. Sound proof of proximity of knowledge. In Provable Security, pages
105-126. Springer, 2015.

19

A DH-secure but not MiM-secure DB protocol

V(skv, pky) P(skp, pkp, pky)
initialization phase
N « D(1™)
N, pk
A(sky, pky, pkp, N) — s i B(skp,pkp, pky, N) — s
pick m € {0,1}?" L —— a=s®m
P S —

challenge phase

fort=1ton
pick ¢; € {0,1}, start timer; S SN TP = Q2itc;—1
. i
stop timer; -—

verification phase
a=sdm,
. Outy,
check timer; < 2B, r; = A2i4c;—1

output pkp

Fig. 7. An example DB protocol in PM which is DH-secure but not MiM-secure

We modify the Eff-pkDB protocol [19] as in Figure 7. We let the prover send
the secret a before challenge phase. The rest is the same.

This protocol is still DH-secure because of the following proof sketch: Eff-
pkDB is DH secure as shown in [19]. In the proof, it has been shown that the
secret s; generated by P’ (close and honest) is independent from s generated
by malicious P. It shows that P does not know anything about s; just after
it is generated before a; is released. When we consider modified Eff-pkDB, we
observe that even if P sends m himself, a that P has and a; that P’ has will be
independent. Therefore, with the same arguments of DH-proof of Eff-pkDB, we
can show that modified Eff-pkDB is DH secure.

On the other hand, it is not MiM secure because an adversary knows the
responses beforehand.

When we convert it to SHM where P behaves as Py,.,, we have the same
security properties as well.

B Optimal Security in DB

In this section, we shortly overview the optimal security bounds of a DB in PM
given by Boureanu and Vaudenay [5]. A security bound of a DB means an upper
bound of the success probability of an adversary.

The optimal security in the common structure from [5] is defined for PM but
we can use it in SHM without any change. Roughly, we consider DB protocols
with a challenge phase consisting of n rounds in which the verifier sends a chal-
lenge in a set of n. elements and receives a response in a set of n, elements.
A DB protocol with parameters (n,n.,n,) is optimal if it has a security bound

20

matching the advantage of the generic attacks Pre-ask and Post-ask (defined
below).

Definition 6 (Common Structure [5]). 4 DB protocol (K, V, P, B) based on
common structure with parameters (ne,n.,n) consists of three phases which are
“nitialization phase’, ‘verification phase’ and between them ‘challenge phase’.
Here, n. is the cardinality of challenge set, n, is the cardinality of the response
set and n is the number of rounds in the challenge phase. In the challenge phase,
the verifier sends challenges to the prover and receives responses from the prover.
Here, the verifier measures the elapsed time between sending the challenge and
receiving the response in each round. Time is not used otherwise. If the elapsed
time is less than what needed for information to travel in a distance 2B 6, the
response is called “on time”. In the end of the verification phase, if each response
s correct and “on time”, the verifier outputs Out = 1. Otherwise, it outputs
Outy = 0.

There exist some unpreventable MiM-attacks which are independent of any
DB protocol using the common structure: pre-ask attack and post-ask attack [5].
The optimal security bounds of MiM were found [5] by showing these attacks
are optimal.

Both in pre-ask (Figure 8) and post-ask (Figure 9), the malicious actor relays
the messages between the prover and the verifier in the initialization and the
verification phase. In challenge phase, it does the following;:

V(K) P(K) [V(K) P(K)
Initialization Phase Initialization Phase
Challenge Phase Challenge Phase
fori=1ton fori=1ton
A ci A
¢ pick ¢f ———L o
— Lifd=q 7 pick 7}
7 T —
else: abort round i i
Verification Phase Verification Phase
Fig. 8. Pre-ask attack Fig. 9. Post-ask attack

— Pre-ask attack [5]: Any malicious actor close to a verifier can do the following
in each round 7 of the challenge phase: Before receiving a challenge ¢; from
the verifier, he guesses it and sends the guessed challenge ¢ to the far-
away prover. He does it early enough to receive a corresponding response
r} from the prover on time. Meanwhile, the malicious actor receives the

5 By abuse of notion, we thus measure time with a distance unit.

21

C

challenge ¢; from the verifier. If ¢; = ¢}, then the malicious actor just relays
r; = r;. Otherwise, he may not pass the round i, especially if P and V
authenticate the challenges during the veriﬁcation phase. The probability
that the adversary passes the round i is —-. So, the overall success probability
in the challenge phase of the adversary is (Lyn,

Post-ask attack [5]: Any adversary close to »“a verifier can do the following
in each round i of the challenge phase: He receives a challenge ¢; from the
verifier. Then, he picks a random response 7} and sends it to the verifier. At
the same time, he forwards ¢; to the prover. The adversary succeeds to pass
the round 7 with the probability - L So, the overall success probability in
the challenge phase of the adverbary is (- =)™

As a result, the optimal securlty "bound of MiM-security is
max((nir)",(nlc)). It means that a MiM-adversary cannot win MiM-
security game with probability more than the optimal security bound. Since
the same attacks apply to a DB protocol in SHM, we have the same bounds
in SHM as well.

MiM-security Proof of Our Variant of Eff-pkDB

Before giving the security proof of Full-pkDB1¥, we briefly explain D-AKA
(Decisional Authenticated Key Agreement) game which is defined in [19] for a
key agreement protocol with the algorithms (Geny,Genp, Ay, , By, , D). The
definition of D-AKA is recalled in Appendix C. Informally, in the D-AKA
security game, the adversary has access to oracles that run the algorithms
Any (skv, pky, ., .) and By, (skp, pk,,.,.) and tries to guess if the given secret
by the challenger is generated by the algorithms or selected randomly.

Definition 7 ((D-AKA) security).

2.

3.

Oal,.): Op(.):
return A(ska, pky,.,.) N’ + D(1™)
s' <+ B(skp, pkg,., N’)
return s', N’
Gi b d—aka
iven b € {0,1} and the oracles OA(.,.),Op(.), the game KA}, A 18

. Challenger executes

GenA(ln) — (SkA7 pkA)7

GenB(ln) - (SkB7 pkB)7

Op(pky) — (s0,N)

and picks s1 € {0,1}™. Then, he sends sp, N, pkg, pky to the adversary A.
A has access to the oracle Op(.) and O4(.,.) under the condition of not
querying the oracle O o with the input (pkg, N). Eventually, A outputs b'.

The advantage of the game is
d—aka d—aka d—aka
Adv(KAT A(n)) = Pr[KA A(n) =] — Pr[KAT Aln) = 1].

A KA protocol (GenA(I") Genp(1™), D, A, B) is D-AKA secure if for all PPT

algorithms A, Adv(KA{ A(n‘;) is negligible.

22

Definition 8 (D-AKAP privacy). Given b € {0,1} and the oracle Oa(.,.)
(defined in Definition 7), the game KAZ;&’;’;IJ is:

1. Challenger runs
Geng(1™) — (ska, pky),
GenB(ln) — (SkBNpkBl)
and gives pk 4, pkp, and skp, to A.
A selects sk, and pkg, and sends them to the challenger.
3. Challenger executes
D(1™") —- N,
B(skp,, pkg, , pk’y ™, N) = s.
Then, he sends s to the adversary A.
4. A has access to the oracle O4. Eventually, A outputs b'. (Remark that A
does not know N.)
5. The advantage of the game is

o

Adv(KAT 40"y = PrIKAG—he" = 1] — PriKA{ ke = 1],
A KA protocol (Geny(1™),Geng(1™), D, A, B) is D-AKAP private if for all
PPT algorithms A, Adv(KAg;la(’fL‘;p) 1s negligible.

As an example D-AKAP and D-AKA secure key agreement protocol
(Geny, Genp, ANy, BNy, D), we can give Nonce-DH [19] protocol. Genp
resp. Geny generate a secret/public keys: secret keys are skp resp. sky
which are in a prime order group G and public keys are pkp = ¢** resp.
pkyy = ¢V where g is a generator in G. The algorithm Ay, corresponds
to H(g,pkp,pky,pksY, Np||Ny) and the algorithm By, corresponds to
H(g,pkp, pky, pkis?, Np||Nv). Under the Gap Diffie-Hellman assumption [21]
and in the random oracle model, Nonce-DH is D-AKA and D-AKAP? [19].

V (skv , pky) P(pkp, pky)
N
Ny « {0,1}® v Np « D(1°),
Np.pkp
ClIR = C|IR =
ANV(Skvv pky . pkp, Np) BNV (skp, pkp, pky, Np)

MiM-OTDB(C||R)

output pkp

Fig. 10. Our variant of Eff-pkDB. Modified parts are shown bold.

As we explain in Section 4, we slightly change Eff-pkDB in order for efficiency.
Now, we show that the changes do not affect its MiM-security.

23

Theorem 11. If the key agreement protocol (Geny,Genp, Ay, By, D) is D-
AKA secure (Appendiz C) for all fived Ny € {0,1}° and MiM-OTDB is one
time MiM-secure then our variant of Eff-pkDB is MiM-secure in PM.

Proof. Ij) : The adversary plays MiM-game of our variant of Eff-pkDB in PM
with the prover instances and the verifier instances where one of them is the
distinguished verifier V.

I'l : We reduce I} to the game I'] where at most one prover instance and V
see the same pair (Np, Ny). Because of the D-AKA security, D(1%) guarantees
that the repetition of Np is negligible, and Ny is picked randomly. So, pj — p|,
is negligible.

I} : We reduce I to the game I'y. In I}, we simulate all prover instances
receiving the nonce Ny from V by picking a random C||R instead of generating
C||R from the algorithm By, . We simulate V receiving Np by using randomly
picked C||R. With the D-AKA assumption, we can show that p, —p] is negligible
[19].

Now, we have at most one distinguished pair ¥V and P which see (Ny, Np)
and they share a random secret C||R. Therefore, we are in one time MiM-game
of MiM-OTDB. Since it is one time MiM-secure, p), is negligible.

We deduce that our variant of Eff-pkDB is MiM-secure because pj is negli-
gible. ad

24

