
Tight Private Circuits: Achieving Probing Security with
the Least Refreshing

Sonia Beläıd1, Dahmun Goudarzi1,2, and Matthieu Rivain1

1 CryptoExperts, Paris, France
2 ENS, CNRS, INRIA and PSL Research University, Paris, France

{sonia.belaid,dahmun.goudarzi,matthieu.rivain}@cryptoexperts.com

Abstract. Masking is a common countermeasure to secure implementations against
side-channel attacks. In 2003, Ishai, Sahai, and Wagner introduced a formal security
model, named t-probing model, which is now widely used to theoretically reason on the
security of masked implementations. While many works have provided security proofs
for small masked components, called gadgets, within this model, no formal method al-
lowed to securely compose gadgets with a tight number of shares (namely, t + 1) until
recently. In 2016, Barthe et al. filled this gap with maskComp, a tool checking the security
of masking schemes composed of several gadgets. This tool can achieve provable security
with tight number of shares by inserting mask-refreshing gadgets at carefully selected
locations. However the method is not tight in the sense that there exists some composi-
tions of gadgets for which it cannot exhibit a flaw nor prove the security. As a result, it is
overconservative and might insert more refresh gadgets than actually needed to ensure
t-probing security. In this paper, we exhibit the first tool, referred to as tightPROVE,
able to clearly state whether a shared circuit composed of standard gadgets (addition,
multiplication, and refresh) is t-probing secure or not. Given such a composition, our
tool either produces a probing-security proof (valid at any order) or exhibits a security
flaw that directly implies a probing attack at a given order. Compared to maskComp,
tightPROVE can drastically reduce the number of required refresh gadgets to get a prob-
ing security proof, and thus the randomness requirement for some secure shared circuits.
We apply our method to a recent AES implementation secured with higher-order mask-
ing in bitslice and we show that we can save all the refresh gadgets involved in the s-box
layer, which results in an significant performance gain.

Keywords: Side-channel, Masking, Composition, Private Circuits

1 Introduction

Most cryptographic algorithms are assumed to be secure against the so-called black-box at-
tacks, where the adversary is restricted to the knowledge of inputs and outputs to recover
the secret key. However, the late nineties revealed a new class of attacks, referred to as side-
channel attacks, that exploit the physical leakages (e.g. temperature, power consumption) of
components which execute implementations of cryptographic algorithms. Many implementa-
tions of symmetric cryptographic algorithms have been broken so far [16, 6], raising the need
for concrete and efficient protection.

A sound and widely deployed approach to counteract side-channel attacks is the so-called
masking countermeasure that was simultaneously introduced in 1999 by Chari et al. [7] and
by Goubin and Patarin [12]. The idea is to split each key-dependent variable x of the imple-
mentation into d shares (xi)0≤i≤d−1 such that x = x0 ∗ · · · ∗ xd−1 for some law ∗ and any
strict subset of shares is uniformly distributed. The number of degrees-of-freedom d − 1 of
such a sharing is referred to as the masking order. When ∗ is the addition on a finite field of
characteristic two, the approach is referred to as Boolean masking, and when d is additionally
strictly greater than 2, the approach is referred to as higher-order Boolean masking. Chari et
al. showed that recombining d noisy shares to recover the secret is then exponentially complex

in d which makes the masking order a sound security parameter with respect to side-channel
attacks.

In order to design masking schemes and theoretically reason on their security, the commu-
nity has defined several leakage models. In the most realistic one, the noisy leakage model intro-
duced by Rivain and Prouff [18] as a specialization of the only computation leaks model [17], the
adversary gets a noisy function of each intermediate variable of the cryptographic computation.
Unfortunately, this model is not very convenient to build security proofs as it requires complex
mutual information computations. A second and widely used leakage model is the t-probing
model introduced by Ishai, Sahai, and Wagner [14] in which the adversary gets the exact values
of t chosen intermediate variables. As it manipulates exact values in a limited quantity, this
model is advantageously much more convenient for security proofs. In order to benefit from
the advantages of both models, Duc, Dziembowski, and Faust demonstrated in [11] a reduction
from the noisy leakage model to the t-probing model. In a nutshell, an implementation that is
secure in the t-probing model is also secure in the more realistic noisy leakage model for some
level of noise.

In their seminal work [14], Ishai et al. proposed a t-probing secure masking scheme for any
circuit based on d = 2t+1 shares. This scheme was extended by Rivain and Prouff in [19] with
the aim to derive a tight t-probing secure implementation of AES, where tightness means that
the t-probing security is obtained with the optimal number of d = t+ 1 shares. In particular,
they show that the so-called ISW multiplication gadget actually achieves tight probing security
provided that the two input sharings are mutually independent. In order to obtain tight security
for the full AES circuit, Rivain and Prouff suggested to insert refresh gadgets that renew the
randomness of sharings at carefully chosen locations [19]. But the proposed refresh gadget was
shown to introduce a flaw in the composition [9]. In 2016, Barthe et al. introduced new security
notions to fill this gap, namely the t-non interference and the t-strong non interference [2].
When these notions are met by a set of gadgets, one can easily reason on the probing security
of their composition. Informally, a gadget is t-non interfering (or t-NI) if and only if any set
of at most t intermediate variables can be perfectly simulated with at most t shares of each
input. Since t input shares are trivially independent from the input itself as long as t < d,
non-interference trivially implies probing security. While this notion was first defined in [2], it
was actually already met by most existing gadgets. One step further, a gadget is t-strong non
interfering (or t-SNI) if and only if any set of t intermediate variables among which tout are
output variables can be perfectly simulated with tint = t − tout shares of each input sharing.
This property makes it possible to compose any set of SNI gadgets since it stops the propagation
of dependencies. A concrete tool to build probing secure implementations from unprotected
implementations is provided [2] which was later called maskComp. Following this work, numerous
examples of globally probing secure schemes were proposed with a decomposition in identified
NI and SNI gadgets [20, 10, 3]. While these schemes achieve their security goals, each inserted
SNI refresh gadget increase the requirement of fresh randomness which is generally expensive
to generate. And up to now, no efficient method exists to check the probing security of any
given composition of gadgets. As a result, existing tools such as maskComp are overconservative
and might insert more refresh gadgets than necessary.

Nevertheless, some formal tools have been recently developed to evaluate the probing se-
curity of implementations at a given masking order. Among the most efficient ones, Barthe et
al. developed maskVerif [1] and Coron developed CheckMasks [8]. Both tools take as input
a shared circuit and return a formal security proof when no attack is found. But here again,
this evaluation is not tight and false negatives may occur and hence imply the addition of
unnecessary refresh gadgets. Moreover, while such tools are very convenient to evaluate the
security of concrete implementations, they suffer from an important limitation which is their
exponential complexity in the size of the circuit and consequently in the masking order. As
a result, these tools are impractical beyond a small number of shares (typically d = 5). In a
recent work, Bloem et al. [4] further developed a new tool to verify the security of masked
implementations subject to glitches, which is an important step towards provable and practical

security of hardware implementations. However this tool still suffers from the same efficiency
limitations as the previous ones.

Motivation and Contributions. The method of Barthe et al. [2] allows one to safely compose
t-NI and t-SNI gadgets and get probing security at any order. Nevertheless, it is not tight and
makes use of more refresh gadgets than required. In many contexts, randomness generation is
expensive and might be the bottleneck for masked implementations. For instance, Journault
and Standaert describe an AES encryption shared at the order d = 32 for which up to 92% of
the running time is spent on randomness generation [15]. In such a context, it is fundamental
to figure out whether the number of t-SNI refresh gadgets inserted by Barthe et al.’s tool
maskComp is actually minimal to achieve t-probing security. In this paper, we find out that it
is not and we provide a new method which exactly identifies the concrete probing attacks in a
Boolean shared circuit.

Let us take a simple example. We consider the small randomized circuit referred to as Circuit
1 and illustrated in Figure 1 with [⊕] a t-NI sharewise addition, [⊗] a t-SNI multiplication,
and two Boolean sharings [x1] and [x2]. Applying Barthe et al.’s tool maskComp on this circuit
automatically inserts a t-SNI refresh gadget in the cycle formed by gates [x1], [⊕], and [⊗] as
represented in Figure 2. However, it can be verified that for any masking order t, the initial
circuit is t-probing secure without any additional refresh gadget. Therefore, in the following,
this paper aims to refine the state-of-the-art method [2] to only insert refresh gadgets when
absolutely mandatory for the t-probing security.

[x1] [x2]

[⊕]

[⊗]

Fig. 1. Graph representation of Circuit 1.

[x1] [x2]

[⊕]

R

[⊗]

Fig. 2. Graph representation of Circuit 1 after
maskComp.

More specifically, our contributions can be summarized as follows:

(1.) We introduce formal definitions of the probing, non-interfering, and strong-non-interfering
security notions for shared circuits based on concrete security games. Although these defi-
nitions are no more than a reformulation of existing security notions, we believe that they
provide a simple and precise framework to reason about probing security.

(2.) From the introduced game-based definitions, we provide a reduction of the probing security
of a given standard shared circuit –i.e. a shared circuit composed of ISW multiplication
gadgets, sharewise addition gadgets and SNI refresh gadgets– to the probing security of a
simpler circuit of multiplicative depth 1 and for which the adversary is restricted to probe
the multiplication inputs (which are linear combinations of the circuit inputs).

(3.) We give an algebraic characterization of the final security game, which allows us to express
the probing security of any standard shared circuit in terms of linear algebra.

(4.) We show how to solve the latter problem with a new exact and proven method. Our method
takes the description of any standard shared circuit and either produces a probing-security
proof (valid at any order) or exhibits a probing attack (i.e. a set of t < d probes that reveal
information on the circuit d-shared input for some d). We provide a concrete tool, named
tightPROVE (for tight PRObing VErification), implementing our method in Sage.

(5.) We apply tightPROVE to the efficient implementation of the AES s-box developed by
Goudarzi and Rivain in [13]. Based on the previous state of the art, this s-box was
implemented using one SNI refresh gadget per multiplication gadget (to refresh one of
the operands), hence requiring a total of 32 refresh gadgets (which was later on con-
firmed by the maskComp tool). Our new method formally demonstrates that the same
d-shared implementation is actually t-probing secure with no refresh gadget for any d =
t + 1. We provide implementation results and a performance analysis: this new imple-
mentation achieves an asymptotic gain up to 43%. The code is provided on the website
https://github.com/CryptoExperts/tightPROVE.

(6.) We extend our results to larger circuits by establishing new compositional properties on
t-probing secure gadgets. In particular, these new composition properties well apply to the
case of SPN-based block ciphers. We also show that they apply to a wide range of Boolean
circuits with common gadgets and input sets.

Paper Organization. In Section 2, useful notions are introduced, security definitions for
composition are formalized through concrete security games, and some useful security results
are provided. Section 3 provides our security reduction for standard shared circuits. Section 4
then details our new method to exactly determine the probing security of a standard shared
circuit. It also gives an upper bound on the number of required refresh gadgets together with
an exhaustive method to make a standard shared circuit achieve tight probing security. In
Section 5, our new method is extended to apply to larger circuits, and in particular to SPN-
based block ciphers, with new compositional properties. Finally, Section 6 describes the new
tool tightPROVE we implemented to experiment our method on concrete circuits.

2 Formal Security Notions

2.1 Notations

In this paper, we denote by F2 the finite field with two elements and by Ji, jK the integer interval
Z ∩ [i, j] for any two integers i and j. For a finite set X , we denote by |X | the cardinality of
X and by x← X the action of picking x from X independently and uniformly at random. For
some (probabilistic) algorithm A, we further denote x← A(in) the action of running algorithm
A on some inputs in (with fresh uniform random tape) and setting x to the value returned by
A.

2.2 Basic Notions

A Boolean circuit is a directed acyclic graph whose vertices are input gates, output gates,
constant gates of fan-in 0 that output constant values, and operation gates of fan-in at most 2
and fan-out at most 1 and whose edges are wires. In this paper we consider Boolean circuits with
two types of operation gates: addition gates (computing an addition on F2) and multiplication
gates (computing a multiplication on F2). A randomized circuit is a Boolean circuit augmented
with random-bit gates of fan-in 0 that outputs a uniformly random bit.

A d-Boolean sharing of x ∈ F2 is a random tuple (x0, x1, . . . , xd−1) ∈ Fd2 satisfying x =∑d−1
i=0 xi. The sharing is said to be uniform if, for a given x, it is uniformly distributed over the

subspace of tuples satisfying x =
∑d−1
i=0 xi. A uniform sharing of x is such that any m-tuple of

its shares xi is uniformly distributed over Fm2 for any m ≤ d− 1. In the following, a d-Boolean
sharing of a given variable x is denoted by [x] when the sharing order d is clear from the
context. We further denote by Enc a probabilistic encoding algorithm that maps x ∈ F2 to a
fresh uniform sharing [x].

A d-shared circuit C is a randomized circuit working on d-shared variables. More specifically,
a d-shared circuit takes a set of n input sharings [x1], . . . , [xn] and computes a set of m output
sharings [y1], . . . , [ym] such that (y1, . . . , ym) = f(x1, . . . , xn) for some deterministic function

f . A probe on C refers to a wire index (for some given indexing of C’s wires). An evaluation of
C on input [x1], . . . , [xn] under a set of probes P refers to the distribution of the tuple of wires
pointed by the probes in P when the circuit is evaluated on [x1], . . . , [xn], which is denoted
by C([x1], . . . , [xn])P .

We consider a special kind of shared circuits which are composed of gadgets. A gadget
is a simple building block of a shared circuit that performs a given operation on its input
sharing(s). For instance, for some two-input operation ∗, a ∗-gadget takes two input sharings
[x1] and [x2] and it outputs a sharing [y] such that y = x1 ∗ x2. In the paper, we specifically
consider three types of gadgets, namely ISW-multiplication gadgets ([⊗]), ISW-refresh gadgets
([R]) and sharewise addition gadgets ([⊕]). The ISW-multiplication gadget, introduced in [14],
takes two d-sharings [a] and [b] as inputs and computes the output d-sharing [c] such that
c = a · b as follows:

1. for every 0 ≤ i < j ≤ d− 1, pick uniformly at random a value ri,j over F2;
2. for every 0 ≤ i < j ≤ d− 1, compute rj,i ← (ri,j + ai · bj) + aj · bi;
3. for every 0 ≤ i ≤ d− 1, compute ci ← ai · bi +

∑
j 6=i ri,j .

The ISW-refresh gadget is actually the ISW-multiplication gadget in which the second operand
[b] is set to the constant Boolean sharing (1, 0, . . . , 0). The output [c] is thus a fresh independent
sharing of a. Finally, a sharewise addition gadget computes a d-sharing [c] such that c = a+ b
by letting ci ← ai + bi for every 0 ≤ i ≤ d − 1. When called with a second operand equal
to the constant Boolean sharing (1, 0, . . . , 0), such a sharewise addition gadget computes the
complementary of its first operand c = a.

Definition 1. A standard shared circuit is a shared circuit exclusively composed of ISW-
multiplication gadgets, ISW-refresh gadgets, and sharewise addition gadgets as described above.

2.3 Game-Based Security Definitions

In the following, we recall the probing, non-interfering, and strong non-interfering security
notions introduced in [14, 2] and we formalize them through concrete security games. Each of
these games is defined for a given n-input d-shared circuit C and it opposes an adversary A,
which is a deterministic algorithm outputting a set of (plain) inputs x1, . . . , xn and a set of
probes P, to a simulator S, which aims at simulating the distribution C([x1], . . . , [xn])P .

Probing Security. We first recall the definition from [14]. Our game-based definition is then
given with a proposition to state the equivalence of both notions.

Definition 2 (from [14]). A circuit is t-probing secure if and only if any set of at most t
intermediate variables is independent from the secret.

Probing Security Game. The t-probing security game is built based on two experiments as
described in Figure 3. In both experiments, an adversary A outputs a set of probes P (indices
of circuit’s wires) such that |P| = t and n input values x1, . . . , xn ∈ F2.

In the first (real) experiment, referred to as ExpReal, the chosen input values x1, . . . , xn are
mapped into n sharings [x1], . . . , [xn] with encoding algorithm Enc. The resulting encodings are
given as inputs to the shared circuit C. The real experiment then outputs a random evaluation
C([x1], . . . , [xn])P of the chosen gates through a t-uple (v1, . . . , vt).

In the second experiment, referred to as ExpSim, the probing simulator S takes the (ad-
versary chosen) set of probes P and outputs a simulation of the evaluation C([x1], . . . , [xn])P ,
which is returned by the simulation experiment. The simulator wins the game if and only if
the two experiments return identical distributions.

Proposition 1. A shared circuit C is t-probing secure if and only if for every adversary A,
there exists a simulator S that wins the t-probing security game defined in Figure 3, i.e. the
random experiments ExpReal(A, C) and ExpSim(A,S, C) output identical distributions.

ExpReal(A, C):

1. (P, x1, . . . , xn)← A()
2. [x1]← Enc(x1), . . . , [xn]← Enc(xn)
3. (v1, . . . , vt)← C([x1], . . . , [xn])P
4. Return (v1, . . . , vt)

ExpSim(A,S, C):

1. (P, x1, . . . , xn)← A()
2. (v1, . . . , vt)← S(P)
3. Return (v1, . . . , vt)

Fig. 3. t-probing security game.

Proof. From right to left, if for every adversary A, there exists a simulator S that wins the t-
probing security game defined in Figure 3, then any set of probes is independent from the secret
as S has no knowledge of the secret inputs. Thus C is trivially t-probing secure by Definition 2.
From left to right, if the random experiments ExpReal(A, C) and ExpSim(A,S, C) do not output
identical distributions, then there exists a set of at most t intermediate variables which cannot
be perfectly simulated without the knowledge of the input secrets. As a consequence, the circuit
is not t-probing secure from Definition 2. �

A shared circuit C which is t-probing secure is referred to as a t-private circuit. It is not
hard to see that a d-shared circuit can only achieve t-probing security for d > t. When a
d-shared circuit achieves t-probing security with d = t+ 1, we call it a tight private circuit.

Non-Interfering Security. The non-interfering security notion is a little bit stronger ([2]).
Compared to the probing security notion, it additionally benefits from making the security
evaluation of composition of circuits easier. We recall its original definition from [2] before we
give an equivalent formal game-based definition.

Definition 3 (from [2]). A circuit is t-non-interfering (t-NI) if and only if any set of at
most t intermediate variables can be perfectly simulated from at most t shares of each input.

Non-Interfering Security Game. The t-non-interfering (t-NI) security game is built based on
two experiments as described in Figure 4. In both experiments, an adversary A outputs a set of
probes P (indices of circuit’s wires) such that |P| = t and n input sharings [x1], . . . , [xn] ∈ Fd2.

The first (real) experiment, referred to as ExpReal, simply returns an evaluation of C on
input sharings [x1], . . . , [xn] under the set of probes P.

The second experiment, referred to as ExpSim, is defined for a two-round simulator S =
(S1,S2). In the first round, the simulator S1 takes the (adversary chosen) set of probes P
and outputs n sets of indices I1, . . . , In ⊆ {1, . . . , d}, such that |I1| = · · · = |In| = t. In the
second round, in addition to the set of probes P, the simulator S2 receives the (adversary
chosen) input sharings restricted to the shares indexed by the sets I1, . . . , In, denoted [x1]I1 ,
. . . , [xn]In , and outputs a simulation of C([x1], . . . , [xn])P , which is returned by the simulation
experiment. The simulator wins the game if and only if the two experiments return identical
distributions.

Proposition 2. A shared circuit C is t-non-interfering secure if and only if for every adversary
A, there exists a simulator S that wins the t-non-interfering security game defined in Figure 4,
i.e. the random experiments ExpReal(A, C) and ExpSim(A,S, C) output identical distributions.

Proof. From right to left, if for every adversary A, there exists a simulator S that wins the
t-non interfering security game defined in Figure 3, then any set of probes can be perfectly
simulated from sets of at most t shares of each input. Thus C is trivially t-non-interfering from
Definition 3. From left to right, if the random experiments ExpReal(A, C) and ExpSim(A,S, C)
do not output identical distributions, then there exists a set of at most t intermediate variables
which cannot be perfectly simulated from sets Ij of input shares whose cardinalities are less
than t. As a consequence, the circuit is not t-non interfering secure from Definition 3. �

ExpReal(A, C):

1. (P, [x1], . . . , [xn])← A()
2. (v1, . . . , vt)← C([x1], . . . , [xn])P
3. Return (v1, . . . , vt)

ExpSim(A,S, C): ∗

1. (P, [x1], . . . , [xn])← A()
2. I1, . . . , In ← S1(P)
3. (v1, . . . , vt)← S2(P, [x1]I1 , . . . , [xn]In)
4. Return (v1, . . . , vt)

∗ For t-NI: |I1| = · · · = |In| = t.
For t-SNI: |I1| = · · · = |In| = |Pint| ≤ t.

Fig. 4. t-(S)NI security game.

Strong Non-Interfering Security. The strong non-interfering security is a stronger notion
than non-interfering security as it additionally guarantees the independence between input
and output sharings. The latter property is very convenient to securely compose gadgets with
related inputs.

Definition 4 (Strong non-interfering security from [2]). A circuit is t-strong non-interfering
(t-SNI) if and only if any set of at most t intermediate variables whose t1 on the internal vari-
ables (i.e. intermediate variables except the output’s ones) and t2 on output variables can be
perfectly simulated from at most t1 shares of each input.

Strong Non-Interfering Security Game. The t-strong-non-interfering (t-SNI) security game is
similar to the t-NI security game depicted in Figure 4. The only difference relies in the fact
that the first-round simulator S1 outputs n sets of indices I1, . . . , In ⊆ {1, . . . , d}, such that
|I1| = · · · = |In| = |Pint| ≤ t where Pint ⊆ P refers to the probes on internal wires, i.e. the
probes in P which do not point to outputs of C.

Proposition 3. A shared circuit C is t-strong-non-interfering secure if and only if for every
adversary A, there exists a simulator S that wins the t-SNI security game defined in Figure 4,
i.e. the random experiments ExpReal(A, C) and ExpSim(A,S, C) output identical distributions.

Proof. From right to left, if for every adversary A, there exists a simulator S that wins the
t-non interfering security game defined in Figure 3, then any set of probes can be perfectly
simulated from sets of at most |Pint| = t1 shares of each input. Thus C is trivially t-strong
non-interfering from Definition 4. From left to right, if the random experiments ExpReal(A, C)
and ExpSim(A,S, C) do not output identical distributions, then there exists a set of at most t
intermediate variables which cannot be perfectly simulated from sets Ij of input shares whose
cardinalities are less than t1. As a consequence, the circuit is not t-strong non interfering secure
from Definition 4. �

2.4 Useful Security Results

This section states a few useful security results. From the above definitions, it is not hard to
see that for any shared circuit C we have the following implications:

C is t-SNI ⇒ C is t-NI ⇒ C is t-probing secure

while the converses are not true. While the ISW-multiplication (and refresh) gadget defined
above was originally shown to achieve probing security, it actually achieves the more general
notion of strong non-interfering security as formally stated in the following theorem:

Theorem 1 ([2]). For any integers d and t such that t < d, the d-shared ISW-multiplication
gadget [⊗] and the d-shared ISW-refresh gadget [R] are both t-SNI.

The next lemma states a simple implication of the t-SNI notion (which up to our knowledge
has never been stated in the literature):

Lemma 1. Let C be a n-input (t+ 1)-shared t-SNI circuit. Then for every (x1, . . . , xn) ∈ Fn2 ,
an evaluation of C taking n uniform and independent (t + 1)-Boolean sharings [x1], . . . , [xn]
as input produces a sharing [y] (of some value y ∈ F2 function of x1, . . . , xn) which is uniform
and mutually independent of [x1], . . . , [xn].

Proof of Lemma 1 is available in Appendix A.

3 A Security Reduction

This section provides a reduction for the t-probing security of a standard (t+ 1)-shared circuit
C as defined in Section 2. Through a sequence of games we obtain a broad simplification of
the problem of verifying whether C is probing secure or not. At each step of our reduction,
a new game is introduced which is shown to be equivalent to the previous one, implying that
for any adversary A, there exists a simulator S that wins the new game if and only if the
circuit C is t-probing secure. We get a final game (see Game 3 hereafter) in which only the
inputs of the multiplication gadgets can be probed by the adversary and the circuit is flattened
into an (equivalent) circuit of multiplicative depth one. This allows us to express the probing
security property as a linear algebra problem, which can then be solved efficiently as we show
in Section 4.

In a nutshell, our Game 0 exactly fits the game-based definition of t-probing security given
in the previous section. Then, with Game 1, we prove that verifying the t-probing security of a
standard shared circuit C is exactly equivalent to verifying the t-probing security of the same
circuit C where the attacker A is restricted to probe inputs of refresh gadgets, pairs of inputs of
multiplication gadgets, and inputs and outputs of sharewise additions (i.e., no internal gadgets
variables). Game 2 then shows that verifying the t-probing security of a standard shared circuit
C with a restricted attacker A is equivalent to verifying the t-probing security of a functionally
equivalent circuit C ′ of multiplicative depth one where all the outputs of multiplication and
refresh gadgets in C are replaced by fresh input sharings of the same values in the rest of the
circuit. Finally, with Game 3, we show that we can even restrict the adversary to probe only
pairs (xi, yj) where xi (resp. yj) is the ith share of x (resp. the jth share of y) and such that
x and y are operands of the same multiplication in C. These three games are deeply detailed
hereafter and proofs of their consecutive equivalence are provided at each step. An overview is
displayed on Figure 5.

Game 0
t probes on a st.

shared circuit
Game 1 Game 2 Game 3

no probe on
internal variables

equivalent circuit of
multiplicative depth 1

probes only on
multiplications’ inputs

Fig. 5. Overview of the sequence of games.

Game 1. In a nutshell, our first game transition relies on the fact that each probe in a
t-SNI gadget can be replaced by 1 or 2 probes on the input sharing(s) of the gadget. In
particular, one probe on a refresh gadget is equivalent to revealing one input share, one probe
on a multiplication gadget is equivalent to revealing two input shares (one share per input
sharings). Formally, in the random experiments ExpReal(A, C) and ExpSim(A,S, C), the set

of probes P returned by A, noted P ′ in the following, has a different form explicitly defined
below.

Let us associate an index g to each gadget in the standard shared circuit and denote by
G the set of gadget indices. Let us further denote by Gr, Gm and Ga the index sets of refresh
gadgets, multiplication gadgets and addition gadgets, such that G = Gr ∪ Gm ∪ Ga. Then we
can denote by Ig and Jg the indices of circuit wires which are the shares of the (right and left)
input operands of gadget g ∈ G (where Jg = ∅ if gadget g is a refresh). Similarly, we denote
by Og the indices of circuit wires which represent the output of gadget g ∈ G. From these
notations, an admissible set of probes P ′ from the adversary in the new game is of the form

P ′ = P ′r ∪ P ′m ∪ P ′a

where

P ′r ⊆
⋃
g∈Gr

Ig

P ′m ⊆
⋃
g∈Gm

Ig × Jg

P ′a ⊆
⋃
g∈Ga

Ig
⋃
g∈Ga

Jg
⋃
g∈Ga

Og

and |P ′| = t. That is, each of the t elements of P ′ either is a pair of index in Ig × Jg for
a multiplication gadget g, or a single index in Ig for a refresh gadget g, or a single index in
Ig ∪ Jg ∪Og for an addition gadget. Note that in the latter case, the index can correspond to
any wire in the addition gadget (which is simply composed of t+ 1 addition gates).

Let tm be the number of probes on multiplication gadgets, i.e. tm = |P ′m|, and tar the
number of probes on refresh or addition gadgets, i.e. tar = |P ′a ∪P ′r|, so that tm + tar = t. The
evaluation C([x1], . . . , [xn])P′ then returns a q-tuple for q = 2tm + tar, which is composed of
the values taken by the wires of index i ∈ P ′a∪P ′r, and the values taken by the wires of index i
and j with (i, j) ∈ P ′m. The new experiments ExpReal1(A, C) and ExpSim1(A,S, C), carefully
written in Figure 6, each output a q-tuple and, as before, the simulator wins Game 1 if and
only if the associated distributions are identical.

ExpReal1(A, C):

1. (P ′, x1, . . . , xn)← A()
2. [x1]← Enc(x1), . . . , [xn]← Enc(xn)
3. (v1, . . . , vq)← C([x1], . . . , [xn])P′

4. Return (v1, . . . , vq)

ExpSim1(A,S, C):

1. (P ′, x1, . . . , xn)← A()
2. (v1, . . . , vq)← S(P ′)
3. Return (v1, . . . , vq)

Fig. 6. Game 1.

Proposition 4. A standard shared circuit C is t-probing secure if and only if for every adver-
sary A, there exists a simulator S that wins Game 1 defined above, i.e. the random experiments
ExpReal1(A, C) and ExpSim1(A,S, C) output identical distributions.

Proof. Basically, the proof is based on the fact that with the SNI property on the gadgets
in our circuit, each probe in a t-SNI gadget can be replaced by 1 or 2 probes on the input
sharing(s) of the gadget. The complete proof can be found in Appendix B.

Game 2. Our second game transition consists in replacing the circuit C by a functionally
equivalent circuit C ′ of multiplicative depth one and with an extended input. In a nutshell,

[x1] [x2] [x3]

[⊕] R

[⊗] [⊗]

[⊗] [⊗]

[v1]
[v2]

[v3]
[v4]

[v5] [v6]

Circuit C

[x1] [x2] [x3] [x4] [x5] [x6] [x7] [x8]

[v2]
q

[v3]
q

[v4]
q

[v5]
q

[v6]
q

[⊕] R

[⊗] [⊗][⊗] [⊗]

[v1]

Circuit C′

Fig. 7. Illustration of the Flatten transformation.

each output of a multiplication or a refresh gadget in C is replaced by a fresh new input shar-
ing of the same value in the rest of the circuit. The new circuit hence takes N input sharings
[x1], . . . , [xn], [xn+1], . . . , [xN], with N = n+|Gm|+|Gr|. The two circuits are functionally equiv-
alent in the sense that for every input (x1, . . . , xn) there exists an extension (xn+1, . . . , xN)
such that C([x1], . . . , [xn]) and C ′([x1], . . . , [xN]) have output sharings encoding the same val-
ues. This transformation is further referred to as Flatten in the following, and is illustrated on
Figure 7.

The resulting Game 2 is illustrated on Figure 8. Although the additional inputs xn+1, . . . ,
xN are deterministic functions of the original inputs x1, . . . , xn, we allow the adversary to
select the full extended input x1, . . . , xN for the sake of simplicity. This slight adversarial
power overhead does not affect the equivalence between the games.

ExpReal2(A, C):

1. C′ ← Flatten(C)
2. (P ′, x1, . . . , xN)← A()
3. [x1]← Enc(x1), . . . , [xN]← Enc(xN)
4. (v1, . . . , vq)← C′([x1], . . . , [xN])P′

5. Return (v1, . . . , vq)

ExpSim2(A,S, C):

1. C′ ← Flatten(C)
2. (P ′, x1, . . . , xN)← A()
3. (v1, . . . , vq)← S(P ′)
4. Return (v1, . . . , vq)

Fig. 8. Game 2.

Proposition 5. A standard shared circuit C is t-probing secure if and only if for every adver-
sary A, there exists a simulator S that wins Game 2 defined above, i.e. the random experiments
ExpReal2(A, C) and ExpSim2(A,S, C) output identical distributions.

Proof. Basically, the proof is based on the fact that the output encodings of a ISW multipli-
cation are completly independent of its inputs encodings. The complete proof can be found in
Appendix B.

Corollary 1. A standard shared circuit C is t-probing secure if and only if the standard shared
circuit Flatten(C) is t-probing secure.

Translation to linear algebra. At this point, the problem of deciding the t-probing security
of a Boolean standard shared circuit C has been equivalently reduced to the problem of deciding

the t-probing security of a circuit C ′ = Flatten(C) when the attacker is restricted to probes on
multiplication and refresh gadgets’ inputs, and intermediate variables of sharewise additions.
In order to further reduce it, we translate the current problem into a linear algebra problem.
In the following, we denote by xi,j the jth share of the ith input sharing [xi] so that

[xi] = (xi,0, xi,1, . . . , xi,t) ,

for every i ∈ J1, NK. Moreover, we denote by −→xj ∈ FN2 the vector composed of the jth share of
each input sharing:

−→xj = (x0,j , x1,j , . . . , xN,j) .

As a result of the Flatten transformation, each probed variable in the q-tuple (v1, . . . , vq) =
C([x1], . . . , [xN])P′ is a linear combination of the input sharings [x1], . . . , [xN]. Moreover,
since the addition gadgets are sharewise, for every k ∈ J1, qK, there is a single share index j
such that the probed variable vk only depends of the jth shares of the input sharings, giving:

vk = −→ak · −→xj , (1)

for some constant coefficient vector −→ak ∈ FN2 . Without loss of generality, we assume that the
tuple of probed variables is ordered w.r.t. the share index j corresponding to each vk (i.e.
starting from j = 0 up to j = t). Specifically, the q-tuple (v1, . . . , vq) is the concatenation of
t+ 1 vectors

−→v0 = M0 · −→x0 , −→v1 = M1 · −→x1 , . . . −→vt = Mt · −→xt , (2)

where the matrix Mj is composed of the row coefficient vectors −→ak for the probed variable
indices k corresponding to the share index j.

Lemma 2. For any (x1, . . . , xN) ∈ FN2 , the q-tuple of probed variables (v1, . . . , vq) = C([x1],
. . . , [xN])P′ can be perfectly simulated if and only if the Mj matrices satisfy

Im(MT
0) ∩ Im(MT

1) ∩ · · · ∩ Im(MT
t) = ∅ .

Moreover, if the Mj matrices are full-rank (which can be assumed without loss of generality),
then the above equation implies that (v1, . . . , vq) is uniformly distributed.

Proof. Without loss of generality we can assume that the Mj matrices are full-rank since other-
wise the probed variables v1, . . . , vq would be mutually linearly dependent and simulating them
would be equivalent to simulating any subset (vk)k∈K⊆J1,qK defining a free basis of (v1, . . . , vq),
and which would then induce full-rank matrices Mj .

Throughout this proof, we denote −→x = (x1, . . . , xN). We first show that a non-null inter-
section implies a non-uniform distribution of (v1, . . . , vq) which is statistically dependent on
−→x . Indeed, a non-null intersection implies that there exist a non-null vector −→w ∈ FN2 satisfying

−→w = −→u0 ·M0 = −→u1 ·M1 = · · · = −→ut ·Mt . (3)

for some (constant) vectors −→u0, . . . , −→ut . It follows that

t∑
j=0

−→uj · −→vj =

t∑
j=0

−→w · −→xj = −→w · −→x ,

which implies that the distribution of the q-tuple (v1, . . . , vq) = (−→v0 ‖ · · · ‖ −→vt) is non-uniform
and dependent on −→x .

We now show that a null intersection implies a uniform distribution (which can then be
easily simulated). The uniformity and mutual independence between the sharings [x1], . . . ,
[xN] implies that we can see −→x1, . . . , −→xt as t uniform and independent vectors on FN2 , and −→x0
as

−→x0 = −→x +−→x1 + · · ·+−→xt .

The joint distribution of −→v1 , . . . , −→vt is hence clearly uniform. Then each coordinate of −→v0 is the
result of the inner product −→r ·−→x0 where −→r is a row of M0. By assumption, there exists at least
one matrix Mj such that −→r /∈ Im(MT

j). It results that −→r · −→xj is a uniform random variable
independent of −→v1 , . . . , −→vt and the other coordinates of −→v0 (since M0 is full-rank). Since the
latter holds for all the coordinates of −→x0 we get overall uniformity of (−→v0 ‖ · · · ‖ −→vt) which
concludes the proof. �

Lemma 2 allows us to reduce the t-probing security of a standard shared circuit to a linear
algebra problem. If an adversary exists that can choose the set of probes P ′ such that the
transposes of induced matrices M1, . . . , Mt have intersecting images, then the distribution of
(v1, . . . , vq) depends on (x1, . . . , xN) and a perfect simulation is impossible (which means that
the circuit is not probing secure). Otherwise, the tuple (v1, . . . , vq) can always be simulated
by a uniform distribution and the circuit is probing secure. This statement is the basis of
our verification method depicted in the next section. But before introducing our verification
method, we can still simplify the probing security game as shown hereafter by using Lemma 2.

Game 3. In this last game, the adversary is restricted to probe the multiplication gadgets
only. Formally, A returns a set of probes P ′ = P ′r∪P ′m∪P ′a such that P ′r = ∅ and P ′a = ∅. Such
a set, denoted P ′′ is hence composed of t pairs of inputs from

⋃
g∈Gm Ig × Jg. The evaluation

C([x1], . . . , [xn])P′′ then returns a q-tuple for q = 2t. The new experiments ExpReal3(A, C) and
ExpSim3(A,S, C), displayed in Figure 6, each output a q-tuple and, as before, the simulator
wins Game 3 if and only if the associated distributions are identical.

ExpReal3(A, C):

1. C′ ← Flatten(C)
2. (P ′′, x1, . . . , xN)← A()
3. [x1]← Enc(x1), . . . , [xN]← Enc(xN)
4. (v1, . . . , vq)← C′([x1], . . . , [xN])P′′

5. Return (v1, . . . , vq)

ExpSim3(A,S, C):

1. C′ ← Flatten(C)
2. (P ′′, x1, . . . , xN)← A()
3. (v1, . . . , vq)← S(P ′′)
4. Return (v1, . . . , vq)

Fig. 9. Game 3.

Proposition 6. A standard shared circuit C is t-probing secure if and only if for every adver-
sary A, there exists a simulator S that wins Game 3 defined above, i.e. the random experiments
ExpReal3(A, C) and ExpSim3(A,S, C) output identical distributions.

Proof. Basically, the proof is based on the fact that probing a cross products ai · bj allows
you to gain informations on the two shares ai and bj . The complete proof can be found in
Appendix B.

4 Probing-Security Verification for Standard Shared Circuits

In this section, we describe a formal verification method that checks for any t ∈ N whether
a standard (t + 1)-shared circuit C achieves t-probing security for every t ∈ N. Specifically,
our tool tightPROVE either provides a formal proof that C is t-probing secure (where C is a
standard shared circuit with sharing order t+ 1), or it exhibits a probing attack against C for
the given t, namely it finds a set of probes P (indices of wires) in the (t+ 1)-shared instance of
C, such that |P| = t, for which the evaluation C([x1], . . . , [xn])P cannot be simulated without
some knowledge on the plain input (x1, . . . , xn).

4.1 Linear Algebra Formulation

As demonstrated in the previous section, the t-probing security game for a standard (t + 1)-
shared circuit C can be reduced to a game where an adversary selects a set of probes P ′′ solely
pointing to input shares of the multiplication gadgets of a flattened circuit C ′. In the following,
we will denote by m the number of multiplication gadgets in C (or equivalently in C ′) and by
g ∈ J1,mK the index of a multiplication gadget of C. We will further denote by [ag] and [bg]
the input sharings of the g-th multiplication gadget so that we have

[ag] = (−→ag · −→x0, . . . ,−→ag · −→xt) and [bg] = (
−→
bg · −→x0, . . . ,

−→
bg · −→xt) , (4)

for some constant coefficient vectors −→ag,
−→
bg ∈ FN2 , recalling that −→xj denotes the vector with the

jth share of each input sharing [x1], . . . , [xN]. In the following, the vectors {−→ag,
−→
bg}g are called

the operand vectors.
In Game 3, the adversary chooses t pairs of probes such that each pair points to one share

of [ag] and one share of [bg] for a multiplication gadget g. Without loss of generality, the set
of pairs output by the adversary can be relabeled as a set of triplet P = {(g, j1, j2)} where
g ∈ J1,mK is the index of a multiplication gadget, j1 and j2 are share indices. For any triplet

(g, j1, j2) ∈ P the two input shares −→ag · −→xj1 and
−→
bg · −→xj2 are added to the (2t)-tuple of probed

variables to be simulated. This set of triplets exactly defines a sequence of t+ 1 matrices M0,

. . . , Mt, defined iteratively by adding −→ag to the rows of Mj1 and
−→
bg to the rows of Mj2 for each

(g, j1, j2) ∈ P. Equivalently, the matrix Mj is defined as

Mj = rows({−→ag ; (g, j, ∗) ∈ P} ∪ {
−→
bg ; (g, ∗, j) ∈ P}) , (5)

for every j ∈ J0, tK where rows maps a set of vectors to the matrix with rows from this set.
Lemma 2 then implies that a probing attack on C consists of a set of probes P = {(g, j1, j2)}

such that the transposes of the induced Mj have intersecting images. Moreover, since the total
number of rows in these matrices is 2t, at least one of them has a single row −→w . In particular,
the image intersection can only be the span of this vector (which must match the row of all

single-row matrices) and this vector belongs to the set of operand vectors {−→ag,
−→
bg}g. In other

words, there exists a probing attack on C if and only if a choice of probes P = {(g, j1, j2)}
implies

Im(MT
0) ∩ Im(MT

1) ∩ · · · ∩ Im(MT
t) = 〈−→w 〉 . (6)

for some vector −→w ∈ {−→ag,
−→
bg}g. In that case we further say that there is a probing attack on

the operand vector −→w .
In the remainder of this section, we describe an efficient method that given a set of vector

operands {−→ag,
−→
bg}g (directly defined from a target circuit C) determines whether there exists

a parameter t and a set P = {(g, j1, j2)} (of cardinality t) for which (6) can be satisfied. We
prove that (1) if such sets P exist, our method returns one of these sets, (2) if no set is returned
by our method then the underlying circuit is t-probing secure for any sharing order (t+ 1).

4.2 Method Description

The proposed method loops over all the vector operands −→w ∈ {−→ag,
−→
bg}g and checks whether

there exists a probing attack on −→w (i.e. whether a set P can be constructed that satisfies (6)).

For each −→w ∈ {−→ag,
−→
bg}g the verification method is iterative. It starts from a set G1 ⊆ J1,mK

defined as
G1 = {g ; −→ag = −→w } ∪ {g ;

−→
bg = −→w } . (7)

Namely G1 contains the indices of all the multiplication gadgets that have −→w as vector operand.
Then the set of free vector operands O1 is defined as

O1 = {
−→
bg ; −→ag = −→w } ∪ {−→ag ;

−→
bg = −→w } . (8)

The terminology of free vector operand comes from the following intuition: if a probing ad-
versary spends one probe on gadget g ∈ G1 such that −→ag = −→w to add −→w to a matrix Mj (or

equivalently to get the share −→w · −→xj), then she can also add
−→
bg to another matrix Mj′ (or

equivalently get the share
−→
bg · −→xj′) for free. The adversary can then combine several free vec-

tor operands to make −→w ∈ Im(MT
j′) occur without directly adding −→w to Mj′ (or equivalently

without directly probing −→w · −→xj′). This is possible if and only if −→w ∈ 〈O1〉.
The free vector operands can also be combined with the operands of further multiplications

to generate a probing attack on −→w . To capture such higher-degree combinations, we define the
sequences of sets (Gi)i and (Oi)i as follows:

Gi+1 = {g ; −→ag ∈ −→w + 〈Oi〉} ∪ {g ;
−→
bg ∈ −→w + 〈Oi〉} , (9)

and
Oi+1 = {

−→
bg ; −→ag ∈ −→w + 〈Oi〉} ∪ {−→ag ;

−→
bg ∈ −→w + 〈Oi〉} . (10)

for every i ≥ 1. The rough idea of this iterative construction is the following: if at step i + 1
a probing adversary spends one probe on gadget g ∈ Gi+1 such that −→ag ∈ −→w + 〈Oi〉, then she
can add −→ag together with some free vector operands of previous steps to Mj in order to get
−→w ∈ Im(MT

j). Then she can also add
−→
bg to another matrix Mj′ , making

−→
bg a new free vector

operand of step i+ 1.

Based on these definitions, our method iterates the construction of the sets Gi and Oi. At
setp i, two possible stop conditions are tested:

1. if Gi = Gi−1, then there is no probing attack on −→w , the method stops the iteration on −→w
and continues with the next element in the set of vector operands;

2. if −→w ∈ 〈Oi〉, then there is a probing attack on −→w , the method stops and returns True (with
−→w and the sequence of sets (Gi,Oi)i as proof);

The method returns True if there exists a concrete probing attack on a vector −→w ∈ {−→ag,
−→
bg}g

for a certain sharing order t+1. Otherwise, it will eventually stop with vector operand −→w since
the number of multiplications is finite and since Gi ⊆ Gi+1 for every i ≥ 1. When all the possible
vector operands have been tested without finding a probing attack, the method returns False.
Algorithm 1 hereafter gives a pseudocode of our method where NextSets denotes the procedure
that computes (Gi+1,Oi+1) from (Gi,Oi) and is implemented in Section 6.

Algorithm 1 Search probing attack

Input: A set of vector operands {−→ag,
−→
bg}g

Output: True if there is probing attack on some −→w ∈ {−→ag,
−→
bg}g and False otherwise

1. for all −→w ∈ {−→ag,
−→
bg}g do

2. (G1,O1)← NextSets(∅, ∅, {−→ag,
−→
bg}g,−→w)

3. if −→w ∈ 〈O1〉 then return True

4. for i = 1 to m do
5. (Gi+1,Oi+1)← NextSets(Gi,Oi, {−→ag,

−→
bg}g,−→w)

6. if Gi+1 = Gi then break
7. if −→w ∈ 〈Oi〉 then return True

8. end for
9. end for

10. return False

In the rest of the section we first give some toy examples to illustrate our methods and
then provides a proof of its correctness.

[x1] = −→w 1 [x2] = −→w 2 [x3] = −→w 3

[⊕]
−→w 4

[⊕]

−→w 5

[⊗] [⊗] [⊗]

Fig. 10. Graph representation of a second Boolean circuit.

4.3 Toy Examples

Two examples are provided hereafter to illustrate our iterative method in the absence then in
the presence of a probing attack.

In the very simple example of Figure 1, two variables are manipulated in multiplications
in the circuit C: −→w 1 = −→x1 and −→w 2 = −→x1 + −→x2. The set of multiplications G is of cardinality
one since it only contains one multiplication (−→w 1,

−→w 2). Following the number of variables, the
method proceeds at most in two steps:

1. As depicted in Algorithm 1, the method first determines whether there exists a probing
attack on −→w 1. In this purpose, a first set G1 is built, such that G1 = (−→w 1,

−→w 2) and O1 = −→w 2.
Since G1 6= ∅ and −→w 1 6= −→w 2, then a second set must be built. However, there is no
multiplication left, that is G2 = G1 and so there is no attack on −→w 1.

2. The method then focuses on −→w 2. In this purpose, a dedicated set G1 is built, such that
G1 = (−→w 2,

−→w 1) and O1 = −→w 1. Since G1 6= ∅ and −→w 2 6= −→w 1, then a second set must be
built. However, there is no multiplication left, that is G2 = G1 and so there is no attack on
−→w 2 either. Since there is no input variable left, the method returns False, which means
that there is no possible probing attack on this circuit.

Figure 10 provides a second Boolean circuit. It manipulates five variables −→w i as operands
of multiplication gadgets: −→w 1 = −→x1, −→w 2 = −→x2, −→w 3 = −→x3, −→w 4 = −→x1 + −→x2, and −→w 5 = −→x2 + −→x3.
The set of multiplications G is of cardinality three with (−→w 1,

−→w 2), (−→w 4,
−→w 5), and (−→w 3,

−→w 4).
Following the number of variables, the method proceeds at most in five steps:

1. The method first determines whether there exists a probing attack on −→w 1. In this purpose,
a first set G1 is built, such that G1 = (−→w 1,

−→w 2) and O1 = −→w 2. Since G1 6= ∅ and −→w 1 6= −→w 2,
then a second set must be built. G2 = G1 ∪ {(−→w 4,

−→w 5), (−→w 4,
−→w 3)} since −→w 4 = −→w 1 + −→w 2.

However, −→w 1 /∈ O2(=< −→w 2,
−→w 3,
−→w 5 >), so a third set must be built. Since there is no

multiplication left, that is G3 = G2, there is no attack on −→w 1.
2. The method then focuses on −→w 2. In this purpose, a dedicated set G1 is built, such that
G1 = (−→w 2,

−→w 1) and O1 = −→w 1. Since G1 6= ∅ and −→w 2 6= −→w 1, then a second set must be built.
G2 = G1 ∪ {(−→w 4,

−→w 5), (−→w 4,
−→w 3)} since −→w 4 = −→w 2 + −→w 1. And in that case, −→w 2 ∈ O2(=<

−→w 1,
−→w 3,
−→w 5 >) since −→w 2 = −→w 3 +−→w 5. Thus the method returns True and there exists an

attack on −→w 2 = −→x2 for some masking order t.

4.4 Proof of Correctness

This section provides a proof of correctness of the method. This proof is organized in two
propositions which are based on some invariants in Algorithm 1. The first proposition shows
that if the method returns True for some operand vector −→w and corresponding sets (Gi,Oi)
then there exists a probing attack on −→w (i.e. a set P can be constructed that satisfies (6)). The
second proposition shows that if the method returns False then there exists no probing attack
for any −→w , namely the underlying circuit is t-probing secure as soon as masked variables are
masked with t+ 1 shares.

Proposition 7. For every i ∈ N, if −→w ∈ 〈Oi〉 then there exists t ∈ N and P = {(g, j1, j2)}
with |P| = t implying

⋂t
j=0 Im(MT

j) = −→w .

Proposition 8. Let i > 1 such that G1 ⊂ · · · ⊂ Gi−1 = Gi and −→w /∈ 〈Oi〉. Then for any t ∈ N
and P = {(g, j1, j2)} with |P| = t we have −→w /∈

⋂t
j=0 Im(MT

j).

Proofs of Propositions 7 and 8 are available in Appendix C.

4.5 Towards Efficient Construction of Tight t-Private Circuits

Our formal verification method exactly reveals all the t-probing attacks on standard shared
circuits. A sound countermeasure to counteract these attacks is the use of refresh gadgets. We
discuss here how to transform a flawed standard shared circuit into a t-private circuit with
exactly the minimum number of refresh gadgets.

In a first attempt, we easily show that refreshing the left operands of each multiplication
in C is enough to provide t-probing security.

Proposition 9. A standard shared circuit C augmented with t-SNI refresh gadgets operating
on the left operand of each multiplication gadget is t-probing secure.

In a second attempt, we need to slightly modify Algorithm 1 so that it conducts an analysis on
all the possible operands in order to return a complete list of the flawed ones. So far, it stops
at the first flaw. With such a list for a standard shared circuit, we can show that refreshing
only the flawed operands is enough to provide t-probing security.

Proposition 10. A standard shared circuit C augmented with t-SNI refresh gadgets operating
on each flawed operand, as revealed by our method, of its multiplication gadgets is t-probing
secure.

Proofs of these propositions are available in Appendix C.

Propositions 9 and 10 provide an upper bound of the required number of refresh gadgets
in a standard shared circuit to achieve probing security at any order t. If we denote by m
the number of multiplications in a standard shared circuit C and by o the number of flawed
operands returned by our method, then C is to be augmented of at most r = min(m, o) refresh
gadgets to achieve probing security at any order t. Given this upper bound, an iterative number
of refresh gadgets from 1 to r can be inserted at each location in C in order to exhibit a tight
private circuit with a minimum number of refresh gadgets.

5 Further Steps

Now that we are able to exactly determine the t-probing security of standard shared circuits,
a natural follow-up consists in studying the t-probing security of their composition. In a first
part, we establish several compositional properties, and then we show how they apply to the
widely deployed SPN-based block ciphers. We eventually discuss the extension of our results
to generic shared circuits.

5.1 Generic Composition

This section is dedicated to the statement of new compositional properties on tight private
circuits. In a first attempt, we show that the composition of a t-private circuit whose outputs
coincide with the outputs of t-SNI gadgets with another t-private circuit is still a t-private
circuit.

Proposition 11. Let us consider a standard shared circuit C composed of two sequential cir-
cuits:

– a t-probing secure circuit C1 whose outputs are all outputs of t-SNI gadgets,
– a t-probing secure circuit C2 whose inputs are C1’s outputs.

Then, C = C2 ◦ C1 is t-probing secure.

Proof. As the outputs of the first circuit C1 are the outputs t-SNI gadgets, we get from Lemma
1 that the input encodings of C1 and the input encodings of C2 are independent and uniformly
distributed. Then, the proof is straightforward from Proposition 5. Basically, the analysis of
C’s t-probing security can be equivalently reduced to the analysis of the t-probing security of
C ′ = Flatten(C) in which each output of a t-SNI gadget is replaced by a fresh new input sharing
of the corresponding value in the rest of the circuit, i.e. C2. As a consequence, C is t-probing
secure if and only if both C1 and C2 are t-probing secure, which is correct by assumption. �

In a second attempt, we establish the secure composition of a standard shared circuit
that implements a (shared) linear surjective transformation through several sharewise addition
gadgets, that we refer to as a t-linear surjective circuit, and a standard t-probing circuit.

Proposition 12. Let us consider a standard shared circuit C composed of two sequential cir-
cuits:

– a t-linear surjective circuit C1, exclusively composed of sharewise additions,
– a t-probing secure circuit C2 whose inputs are C1’s outputs.

Then, C = C2 ◦ C1 is t-probing secure.

Proof. We consider a standard shared circuit C with input −→x = (x1, . . . , xn) composed of a
t-linear surjective circuit C1 as input to a t-probing secure circuit C2. We denote by −→y =
(y1, . . . , yn′) the set of C1’s outputs, or equivalently the set of C2’s inputs. From Proposition 6,
the t-probing security of C can be reduced to the t-probing security of circuit C ′ = Flatten(C)
for probes restricted to the multiplications’ operands. In our context, C1 is exclusively composed
of sharewise additions, so the probes are restricted to C2. From Lemma 2, any set of probed
variables on C2’s multiplications operands (v1, . . . , vq) can be written as the concatenation of
the t+ 1 vectors

−→v0 = M0 · −→y0 , −→v1 = M1 · −→y1 , . . . −→vt = Mt · −→yt ,

where
Im(MT

0) ∩ Im(MT
1) ∩ · · · ∩ Im(MT

t) = ∅ . (11)

To achieve global t-probing security for C, we need to achieve a null intersection for matri-
ces that apply on C’s inputs instead of C2’s inputs. As C1 implements a linear surjective
transformation f , there exists a matrix Mf of rank n′ such that

∀ 0 ≤ i ≤ t, −→yi = Mf · −→xi .

As a consequence, any set of probes (v1, . . . , vq) in C ′ as defined in Game 3 can equivalently
be rewritten as the concatenation of the t+ 1 vectors

−→v0 = M0 ·Mf · −→x0 , −→v1 = M1 ·Mf · −→x1 , . . . −→vt = Mt ·Mf · −→xt .

By contradiction, let us assume that

Im(MT
f ·MT

0) ∩ Im(MT
f ·MT

1) ∩ · · · ∩ Im(MT
f ·MT

t) 6= ∅,

that is, there exists a non-null vector −→w such that

−→w ∈ Im(MT
f ·MT

0) ∩ Im(MT
f ·MT

1) ∩ · · · ∩ Im(MT
f ·MT

t).

Equivalently, there exists −→z0 ,−→z1 , . . . ,−→zt such that

−→w = MT
f ·MT

0 · −→z0 = MT
f ·MT

1 · −→z1 = . . . = MT
f ·MT

1 · −→zt .

From Equation (11), there exist at least two distinct indices i and j in {0, . . . , t}, such that

MT
i · −→zi 6= MT

j · −→zj .

As −→w = MT
f ·MT

i ·
−→zi = MT

f ·MT
j ·
−→zj , the difference MT

i ·
−→zi −MT

j ·
−→zj belongs to MT

f ’s kernel.

But from the surjective property of Mf , MT
f has full column rank n′, and thus a null kernel:

dim(Ker(MT
f)) = n′ − dim(Im(MT

f)) = 0.

As a consequence, MT
i ·
−→zi −MT

j ·
−→zj = 0 and since MT

i ·
−→zi 6= MT

j ·
−→zj we have a contradiction

which completes the proof. �

Eventually, we claim that two t-private circuits on independent encodings form a t-private
circuit as well.

Proposition 13. Let us consider a standard shared circuit C composed of two parallel t-
probing secure circuits which operate on independent input sharings. Then, C = C1‖C2 is
t-probing secure.

Proof. As the input sharings are independent, the result is straightforward from Lemma 2. �

5.2 Application to SPN-Based Block Ciphers

An SPN-based block cipher is a permutation which takes as inputs a key k in {0, 1}κ and a
plaintext p in {0, 1}n and outputs a ciphertext c in {0, 1}n, where n and κ are integers. As
illustrated in Figure 14 in Appendix D, it is defined by successive calls to a round function
and by an optional expansion algorithm KS. The round function is a combination of a non
linear permutation S and a linear permutation L.

Proposition 14. Let C be a standard shared circuit implementing an SPN block cipher as
pictured in Figure 14. And let CS and CKS be the standard shared (sub-)circuits implementing
S and KS respectively. If both conditions

1. CS’s and CKS’s outputs are t-SNI gadgets’ outputs,

2. CS and CKS are t-probing secure (for any sharing order t+ 1),

are fulfilled, then C is also t-probing secure.

Note that if S’s and KS’s outputs are not t-SNI gadgets’ outputs, then the linear surjective
circuit can be extended to the last t-SNI gadgets’ outputs of these circuits without loss of
generality.

Proof. As S and KS are t-probing secure, it follows from Proposition 13, that when imple-
mented in parallel on independent input encodings, their composition is t-probing secure as
well. Then, as the output of their composition matches the outputs of t-SNI gadgets, then
they can be sequentially composed with a t-probing secure circuit from Proposition 11. Fi-
nally, the composition of linear surjective circuits with t-probing secure circuits is ensured by
Proposition 12, which completes the proof.

5.3 Extension to Generic Shared Circuits

We discuss hereafter two straightforward extensions of our work. Namely some constraints on
gadgets that compose the standard shared circuits can be relaxed, and the considered circuit
can easily be extended to work on larger finite fields.

On Standard Shared Circuits. The method presented in this paper through Sections 3
and 4 aims to accurately establish the t-probing security of a standard shared circuit for any
sharing order t+ 1. Namely, it is restricted to Boolean shared circuits exclusively composed of
ISW-multiplication gadgets, ISW-refresh gadgets, and sharewise addition gadgets. While the
assumption on addition gadgets is quite natural, the restrictions made on the multiplication
and refresh gadgets can be relaxed. The reduction demonstrated in Section 3 only expects
the refresh gadgets to be t-SNI secure to ensure the equivalence between Game 1 and the
initial t-probing security game. Afterwards, t-probing security is equivalently evaluated on a
corresponding flattened circuit with probes on multiplications’ operands only. Therefore, there
is no restriction on the choice of refresh gadgets but their t-SNI security. While multiplication
gadgets are also expected to be t-SNI secure for the equivalence between Game 1 and the
initial t-probing security game to hold, this feature is not enough. To prove this equivalence,
multiplication gadgets are also expected to compute intermediate products between every share
of their first operand and every share of their second operand. Otherwise, our method could
still establish the probing security of a circuit, but not in a tight manner, meaning that security
under Game 3 would imply probing security but insecurity under Game 3 would not imply
insecurity w.r.t. the original probing insecurity notion. Our method would hence allowed false
negatives, as state-of-the-art methods currently do. Beyond the advantages of providing an
exact method, this restriction is not very constraining since not only the widely deployed ISW-
multiplication gadgets but also the large majority of existing multiplication gadgets achieve
this property.

On Circuits on Larger Fields. Since ISW-multiplication gadgets and ISW-refresh gadgets
can straightforwardly be extended to larger fields our reduction and verification method could
easily be extended to circuits working on larger fields.

6 Application

Following the results presented in previous sections, we developed a tool in sage, tightPROVE,
that takes as input a standard shared circuit and determines whether or not it is t-probing se-
cure with Algorithm 1. Specifically, the standard shared circuit given as input to tightPROVE is
expressed as a set of instructions (XOR, AND, NOT, REFRESH) with operands as indices of either
shared input values or shared outputs of previous instructions. Namely, the XOR instructions
are interpreted as sharewise addition gadgets of fan-in 2, the NOT instructions as sharewise
addition gadgets of fan-in 1 with the constant shared input (1, 0, . . . , 0), the AND instructions
as ISW-multiplication gadgets of fan-in 2, and the REFRESH instructions as ISW-refresh gad-
gets of fan-in 1. As an application, we experimented tightPROVE on several standard shared
circuits. First, we analyzed the t-probing security of the small examples of Section 4 as a sanity
check. Then, we investigated the t-probing security of the AES s-box circuit from [5] and com-
pared the result with what the maskComp tool produces. Additionally, we studied the impact
of our tool to practical implementations (for both the randomness usage and the performance
implications).

6.1 Application to Section 4 Examples

In order to have some sanity checks of our new method on simple standard shared circuits, we
applied tightPROVE to the examples given in Section 4, namely the standard shared circuits
depicted in Figure 1 and Figure 10. Specifically, we first translated the two standard shared
circuits into a list of instructions that is given to our tool. For each circuit, the first instruction
gives the number of shared inputs. Then, each of the following instruction matches one of the
four possible operations among XOR, AND, NOT, and REFRESH together with the indices of the
corresponding one or two operands. The output of each such operation is then represented by
the first unused index. At the end, from the generated list of instructions the tool derives a list

of pairs of operands, namely the inputs to the multiplications in the circuit. Finally, Algorithm
1 is evaluated on the obtained list of operands.

[x1] [x2]

[⊕]

[⊗]

→
;; 2

XOR 1 2

AND 1 3
→

list_comb = [1,3]

comb = 1

=> NO ATTACK (G2 = G1)

G: [[(1 ,3)], []]

O: [[3], []]

comb = 3

=> NO ATTACK (G2 = G1)

G: [[(1 ,3)], []]

O: [[1], []]

(’No attack found ’)

Fig. 11. New method applied on example 1.

The first example is based on a standard shared circuit that takes 2 shared inputs and then
performs two operations, namely a sharewise addition (XOR) and an ISW-multiplication (AND).
The AND instruction takes two inputs, namely the output of the XOR and one of the two inputs
of the circuit, which means that there is only two possible target vectors for an attack to be
mounted. They are displayed in the list list comb. For both these two vectors successively
displayed with variable comb, the tool generates their respective sets G1 and O1, as defined in
Section 4. Then since G2 is equal to G1 for both vectors, the tool outputs that no attack could
be found. The circuit is thus t-probing secure. The complete process is described in Figure 11.

The second example is based on a standard shared circuit that takes 3 shared inputs and
then performs 5 operations, namely 2 sharewise additions (XOR) and 3 ISW-multiplications
(AND). The three AND instructions take five distinct inputs, which means that there are five
possible target vectors for an attack to be mounted. For the two first target vectors, no attack
could be found as the tool expressed all the multiplications in the circuit with two sets G1
and G2 without finding any attack. For the third target vector, after the construction of G2
an attack was found as the target vector belonged to the span of the set O2. The complete
process is described in Figure 12. Moreover, we verified that by adding a refresh gadget on the
operand for which our tool finds an attack prior to the multiplication where it is used, the tool
is not able any more to find an attack on the new circuit for this example. The results can be
found in Figure 15 of Appendix E.

[x1] [x2] [x3]

[⊕] [⊕]

[⊗] [⊗] [⊗]

→

;; 3

XOR 1 2

XOR 2 3

AND 1 2

AND 4 5

AND 4 3

→

list_comb = [1,3,2,4,6]

comb = 1

=> NO ATTACK (G3 = G2)

G: [[(1 ,2)], [(3,6) ,(3,4)], []]

O: [[2], [6, 4], []]

comb = 3

=> NO ATTACK (G3 = G2)

G: [[(3 ,6) ,(3,4)], [(1,2)], []]

O: [[6, 4], [2], []]

comb = 2

=> ATTACK

G: [[(1 ,2)], [(3,6) ,(3,4)]]

O: [[1], [6, 4]]

(’Attack found: 2 in span [1,6,4]’)

Fig. 12. New method applied on example 2.

6.2 Application to AES s-box

At Eurocrypt 2017, Goudarzi and Rivain [13] proposed an efficient software implementation of
the s-box of the AES for higher-order masking. Based on the Boolean circuit of Boyar et al.[5],
their implementation evaluates the s-box on a state under bitsliced representation with only
32 AND gates. In order to be t-probing secure without doubling the number of shares in the
encoding of sensitive variables, a conservative choice was made to add a refresh gadget prior
to each multiplication. As explained in Section 1, a major drawback of such a conservative
approach is the performance overhead induced by the number of calls to refresh gadgets due
to the randomness usage.

In order to obtain efficient implementations of the AES s-box and to be tight on the number
of randomness requirement, we have applied our tool to the circuit of the s-box reordered by
Goudarzi and Rivain without any refreshing gadget. Interestingly, we obtained that no attack
can be found for any masking order. More precisely, the tool first identified 36 distinct target
vectors out of the 64 possible operands of multiplication gadgets (it can be easily checked on
the circuit found in Section 6 of [13]). For each of the 36 target vectors, the corresponding set
G1 is constructed. Then, for every variable the algorithm stops as the respective sets G2 are
always equal to the respective sets G1. The complete report of the tool results can be found in
Table 2 of Appendix F. In the first and third columns of Table 2, the expressions of the target
vectors as linear combinations of input variables or multiplications input are given and in the
second and fourth columns, the corresponding sets G1 are displayed, all in hexadecimal form.

To prove the security of the AES s-box circuit, our tool took only 427 ms. This speed is
mainly due to the fact that for each possible target variable, only the set G1 is computed. For
comparison, we looked at the time taken by the maskVerif tool of [1]. For a masking order
t = 2, maskVerif found no attack in 35.9 sec and for t = 3 in approximately 10 hours.

2 4 6 8 10

0.5

1

1.5

·105

t

cl
o
ck

cy
cl

es

[13] with TRNG-1

[13] withTRNG-2

Our implementation with TRNG-1

Our implementation with TRNG-2

Fig. 13. Timings of a t-probing secure AES s-box implementation.

For the sake of comparison, we also applied the maskComp tool on the same circuit. We
obtained that maskComp adds refresh gadgets prior to each multiplication in the circuit, trans-
forming it into a new t-NI secure circuit. Since our tool has shown that the circuit is t-probing
secure with no refresh gadgets, adding those refresh gadgets implies an overhead in the t-
probing security that can lead to less efficient practical implementations. As an illustration, we

have implemented the AES s-box circuit in bitslice for a generic masking order to see the im-
pact in performances between a full refresh approach (i.e. the conservative choice of Goudarzi
and Rivain and the result of maskComp) and a no refresh approach (our new tool). Each of
this two approaches produces a circuit that is at least t-probing secure for any masking order
t. Both produced circuit are securely composable with other circuits (for maskComp from the
proofs given in [2] and for our tool from the result of Section 5). To be consistent with the
state of the art, the randomness in our implementations can be obtained from a TRNG with
two different settings: a first setting with a free TRNG that outputs 32-bit of fresh randomness
every 10 clock cycles (as in [13]) and a second setting with a constrained TRNG that outputs
32-bit of fresh randomness every 80 clock cycles (as in [15]). The performance results can be
found in Table 1. For both approaches, the number of refresh gadgets used and the number of
randomness needed are displayed. Then, the timing in clock cycles for both settings are shown.
We can see that our tool allows to divide by 2 the number of required randomness and benefits
from an asymptotic gain of up to 43% in speed. The comparison of the timings for several
masking orders are depicted in Figure 13.

Nb. of Refresh Nb. of Random Timing (Set. 1) Timing (Set. 2)

[13] 32 32 t(t− 1) 408 t2 + 928 t + 1262 1864 t2 − 528 t + 1262

this paper 0 16 t(t− 1) 295.5 t2 + 905.5 t + 872 1069 t2 + 132 t + 872

Table 1. Performance results of the implementation AES s-box depending on the number of refresh
gadgets.

Acknowledgments

We would like to thank François-Xavier Standaert and Gaëtan Cassiers for their in-depth
review and helpful comments.

References

1. G. Barthe, S. Beläıd, F. Dupressoir, P.-A. Fouque, B. Grégoire, and P.-Y. Strub. Verified proofs of
higher-order masking. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 457–485. Springer, Heidelberg, Apr. 2015.

2. G. Barthe, S. Beläıd, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and R. Zucchini.
Strong non-interference and type-directed higher-order masking. In E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 16, pages 116–129. ACM Press, Oct.
2016.

3. G. Barthe, S. Beläıd, T. Espitau, P. Fouque, B. Grégoire, M. Rossi, and M. Tibouchi. Masking
the GLP lattice-based signature scheme at any order. In Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 354–384, 2018.

4. R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and J. Winter. Formal verification
of masked hardware implementations in the presence of glitches. In Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages
321–353, 2018.

5. J. Boyar, P. Matthews, and R. Peralta. Logic minimization techniques with applications to cryp-
tology. Journal of Cryptology, 26(2):280–312, Apr. 2013.

6. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage model. In M. Joye
and J.-J. Quisquater, editors, CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, Heidel-
berg, Aug. 2004.

7. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to counteract power-
analysis attacks. In M. J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 398–412.
Springer, Heidelberg, Aug. 1999.

8. J.-S. Coron. Formal verification of side-channel countermeasures via elementary circuit transfor-
mations. Cryptology ePrint Archive, Report 2017/879, 2017. http://eprint.iacr.org/2017/879.

9. J.-S. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel security and mask
refreshing. In S. Moriai, editor, FSE 2013, volume 8424 of LNCS, pages 410–424. Springer, Hei-
delberg, Mar. 2014.

10. J.-S. Coron, F. Rondepierre, and R. Zeitoun. High order masking of look-up tables with common
shares. Cryptology ePrint Archive, Report 2017/271, 2017. http://eprint.iacr.org/2017/271.

11. A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From probing attacks to noisy
leakage. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 423–440. Springer, Heidelberg, May 2014.

12. L. Goubin and J. Patarin. DES and differential power analysis (the “duplication” method). In
Çetin Kaya. Koç and C. Paar, editors, CHES’99, volume 1717 of LNCS, pages 158–172. Springer,
Heidelberg, Aug. 1999.

13. D. Goudarzi and M. Rivain. How fast can higher-order masking be in software? In J. Coron
and J. B. Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 567–597.
Springer, Heidelberg, May 2017.

14. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks.
In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 463–481. Springer, Heidelberg,
Aug. 2003.

15. A. Journault and F.-X. Standaert. Very high order masking: Efficient implementation and security
evaluation. In W. Fischer and N. Homma, editors, CHES 2017, volume 10529 of LNCS, pages
623–643. Springer, Heidelberg, Sept. 2017.

16. T. S. Messerges. Using second-order power analysis to attack DPA resistant software. In Çetin
Kaya. Koç and C. Paar, editors, CHES 2000, volume 1965 of LNCS, pages 238–251. Springer,
Heidelberg, Aug. 2000.

17. S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In M. Naor,
editor, TCC 2004, volume 2951 of LNCS, pages 278–296. Springer, Heidelberg, Feb. 2004.

18. E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security proof. In
T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 142–
159. Springer, Heidelberg, May 2013.

19. M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In S. Mangard and F.-X.
Standaert, editors, CHES 2010, volume 6225 of LNCS, pages 413–427. Springer, Heidelberg, Aug.
2010.

20. R. Zhang, S. Qiu, and Y. Zhou. Further improving efficiency of higher order masking schemes by
decreasing randomness complexity. IEEE Trans. Information Forensics and Security, 12(11):2590–
2598, 2017.

A Proof of Lemma 1

Proof. Let I ⊆ {0, 1, . . . , t} such that |I| = t. From Definition 3, consider an adversary A
which outputs a set of probes P matching the output shares [y]I . The t-SNI property implies
that there exists an algorithm S performing a perfect simulation of [y]I independently of
[x1], . . . , [xn], that is

P([x1], . . . , [xn], [y]I) = P([x1], . . . , [xn]) · P([y]I) . (12)

Moreover, since for a given y = f(x1, . . . , xn), the sharing [y] is perfectly defined by [y]I , the
above rewrites

P([x1], . . . , [xn], [y]) = P([x1], . . . , [xn]) · P([y]) , (13)

which implies the mutual independence between [y] and [x1], . . . , [xn].
Let us now show that [y] is a uniform sharing i.e. the t-tuple [y]I is uniformly distributed

over Ft2, for any I ⊆ {0, 1, . . . , t} such that |I| = t. We proceed by contradiction: we assume
that [y] is not a uniform sharing and then show that C cannot be t-SNI. If [y] is not a uniform
sharing, then the t-tuple [y]I is not uniformly distributed over Ft2. This implies that there exists
a set J ⊆ I with J 6= ∅ such that the sum

∑
i∈J yi is not uniformly distributed over F2. Then

for any y ∈ F2, we have ∑
i∈J0,tK\J

yi +
∑
i∈J

yi = y , (14)

which implies that both [y]J and [y]J0,tK\J are not uniformly distributed and statistically
dependent on y. This implies that the tuple [y]J cannot be perfectly simulated independently
of y which contradicts the t-SNI property. �

B Proof of Section 3

B.1 Proof of the reduction from Game 0 to Game 1

We first show:

∀A1, ∃S1 wins Game 1⇒ ∀A0, ∃S0 wins the t-probing security game (15)

Let us consider an adversary A0 that outputs some values x1, . . . , xn ∈ F2 and a set of probes
P. By definition, P can be partitioned into three subsets of probes, i.e. P = Pa ∪ Pr ∪ Pm,
where Pa represents the probes on addition gadgets, Pr the probes on refresh gadgets, and Pm
the probes on multiplication gadgets. Let us denote by P(g)

r ⊆ Pr (resp. P(g)
m ⊆ Pm) the set of

probes that point to the wires of the refresh gadget of index g ∈ Gr (resp. the multiplication
gadget of index g ∈ Gm). The t-SNI property of the refresh and multiplication gadgets (see
Definition 3) implies that:

– For every g ∈ Gr, there exists a simulator S(g)SNI that given the set of probes P(g)
r (on the

internal wires of gadget g), outputs a set of probes P ′r
(g) ⊆ Ig (on the input shares of

gadget g) such that |P ′r
(g)| = |P(g)

r |, and given the input shares pointed by P ′r
(g)

, outputs

a perfect simulation of the internal wires pointed by P(g)
r ;

– For every g ∈ Gm, there exists a simulator S(g)SNI that given the set of probes P(g)
m (on the

internal wires of gadget g), outputs a set of pairs of probes P ′m
(g) ⊆ Ig ×Jg (on the input

shares of each operand of gadget g) such that |P ′m
(g)| = |P(g)

m |, and given the input shares

pointed by P ′m
(g)

, outputs a perfect simulation of the internal wires pointed by P(g)
m ;

We define A1 as the adversary that returns the same values x1, . . . , xn ∈ F2 as A0 and the
set of probes P ′ = P ′a ∪ P ′r ∪ P ′m defined from P as:

P ′r =
⋃
g∈Gr

P ′r
(g)

, P ′m =
⋃
g∈Gm

P ′m
(g)

, P ′a = Pa,

where P ′r
(g)

and P ′m
(g)

denote the sets of probes defined by the simulators S(g)SNI on input P(g)
r

and P(g)
m respectively. From the left side of implication (15), there exists a simulator S1 that

wins Game 1 for the inputs (x1, . . . , xn) and the built set of probes P ′. We define the simulator
S0 as the simulator that computes P ′ from P as explained above and then call S1 to get a

perfect simulation of C([x1], . . . , [xn])P′ . Then S0 applies the simulator S(g)SNI to get a perfect

simulation of the internal wires pointed by P(g)
r (resp. P(g)

m) from the input shares pointed

by P ′r
(g)

(resp. P ′m
(g)

) which are obtained from the evaluation C([x1], . . . , [xn])P′ . This way
S0 obtains (and returns) a perfect simulation of C([x1], . . . , [xn])P and the two experiments
ExpReal(A0, C) and ExpSim(A0,S0, C) output identical distributions, which demonstrates the
implication (15).

Let us now show:

∀A0, ∃S0 wins the t-probing security game⇒ ∀A1, ∃S1 wins Game 1 (16)

By contraposition, we can equivalently show that

∃A1, ∀S1, S1 fails in Game 1

⇒ ∃A0, ∀S0, S0 fails in the t-probing security game (17)

Let us thus assume that an adversary A1 exists which outputs some values x1, . . . xn and a set
of probes P ′ = P ′a ∪ P ′r ∪ P ′m such that no algorithm S1 can output a perfect simulation of
C([x1], . . . , [xn])P′ . We show that we can then define an adversary A0 for which no simulator

S0 can win the t-probing security game. The adversary A0 outputs the same values x1, . . . xn
as A1 and the set of probes P = Pa ∪ Pr ∪ Pm such that

Pa = P ′a and Pr = P ′r (18)

We show in the following how to construct Pm so that no simulator S0 can output a perfect
simulation of C([x1], . . . , [xn])P .

If P ′m = ∅ then we have P = P ′ and the statement directly holds. Let us now consider
P ′m = {(i, j)}. From the left-side implication of 17, we get that no simulator S1 can perform a
perfect simulation of

(v1, . . . , vq) = C([x1], . . . , [xn])P′ , (19)

where q = t + 1. Without loss of generality we assume that v1 and v2 are the wires pointed
by the indices i and j. We can assume that there exists a simulator S0 computing a perfect
simulation of (v3, . . . , vq), i.e. the wires pointed by P ′a ∪ P ′r. (Otherwise we can simply define
A0 as returning the set of probes P ′a∪P ′r and (17) directly holds). We deduce that no simulator
can achieve a perfect simulation of (v1, v2) given (v3, . . . , vq). In a standard shared circuit, the
shares of the inputs of a multiplication gadget are linear combinations of the input shares [x1],
. . . , [xN] of the input of the circuit or the shares in output of refresh or multiplication gadgets.
We hence get that v1 and v2 can be expressed as

v1 = f1(x1, . . . , xN) + g1(v3, . . . , vq) + r1

v2 = f2(x1, . . . , xN) + g2(v3, . . . , vq) + r2

for some deterministic function f1, f2, g1, g2 and where

(r1, r2) ∈ {(0, 0), (0, r), (r, 0), (r, r)}

for some uniform random r over F2. (Note that r1 and r2 cannot be uniform independent
random elements of F2 otherwise the (v1, v2) could be straightforwardly simulated). We then
have four cases:

– For (r1, r2) = (0, 0), we have either f1 or f2 non constant (otherwise (v1, v2) could be
simulated). If f1 (resp. f2) is non constant, then v1 (resp. v2) cannot be simulated given
(v3, . . . , vq) and we define Pm = {i} (resp. Pm = {j}).

– For (r1, r2) = (0, r), we have f1 non constant (otherwise (v1, v2) could be simulated). Then
v1 cannot be simulated given (v3, . . . , vq) and we define Pm = {i}.

– For (r1, r2) = (r, 0), we have f2 non constant (otherwise (v1, v2) could be simulated). Then
v2 cannot be simulated given (v3, . . . , vq) and we define Pm = {j}.

– For (r1, r2) = (r, r), we have f1 + f2 non constant (otherwise (v1, v2) could be simulated).3

Then the product v1 · v2 satisfies

v1 · v2 =
(
[f1 + f2](x1, . . . , xN) + δ + r′

)
· r′

where δ = [g1+g2](v3, . . . , vq) is a constant given (v3, . . . , vq) and where r′ = v2 is a uniform
random element of F2. It is not hard to see that the distribution of v1·v2 cannot be simulated
without knowing [f1+f2](x1, . . . , xN). We then define Pm = {ψ(i, j)} where ψ(i, j) denotes
the index of the cross-product wi · wj computed in the target ISW-multiplication gadget,
with wi and wj denoting the wires indexed by i and j.

For the general case where P ′m contains more than one pair, we can proceed as above to
show that no S0 can simulate C([x1], . . . , [xn])P(1) where P(1) is obtained by replacing one pair
(i, j) from P ′ by a single index i, j or ψ(i, j) as described above. Then we reiterate the same
principle to show that no S0 can simulate C([x1], . . . , [xn])P(2) where P(2) is obtained from
P(1) by replacing one more pair (i, j) by a single index. And so on until the set of probes has
no more pairs but only t wire indices as in the original probing security game. �

3 Indeed if f1 = f2 then (v1, v2) can be simulated by (g1(· · ·) + r′, g2(· · ·) + r′) for some uniform
random r′.

B.2 Proof of the reduction from Game 1 to Game 2

Without loss of generality, we assume that the Flatten transformation does not change the
gadget indexing. We first show:

∀A2, ∃S2 wins Game 2⇒ ∀A1, ∃S1 wins Game 1 (⇔ C t-probing secure) (20)

For each adversary A1 returning (x1, . . . , xn) and P ′, we define A2 as the adversary that
returns the same choice of probes P ′ and the extended input (x1, . . . , xN) such that the n
first elements match the choice of A1 and the N − n matches the decoded outputs of the
corresponding multiplication and refresh gadgets. Then, by Lemma 1, the t-SNI property of
multiplication and refresh gadgets implies that each sharing in the output of these gadgets
is independent of the input sharings. Since all the probes in P ′ on multiplication and refresh
gadgets point to input shares only, the output of each such gadget can be replaced by a fresh
uniform sharing of the underlying plain value (which deterministically depends on x1, . . . ,
xn) without modifying the evaluation. We hence get that C([x1], . . . , [xn])P′ in Game 1 and
C ′([x1], . . . , [xN])P′ in Game 2 output identical distributions. We can then simply define S1
as the simulator S2 winning against the defined adversary A2. We thus get a simulator that
outputs the same distribution as ExpReal1 from which we get (20). Let us now show:

∀A1, ∃S1 wins Game 1 (⇔ C t-probing secure)⇒ ∀A2, ∃S2 wins Game 2 (21)

For each adversary A2 returning (x1, . . . , xN) and P ′, we define A1 as the adversary that
returns the same choice of probes P ′ and the truncated input with the n first elements of
(x1, . . . , xn). For the same reason as above, the evaluations C([x1], . . . , [xn])P′ in Game 1 and
C ′([x1], . . . , [xN])P′ in Game 2 then output identical distributions and we can simply define S2
as the simulator S1 winning against the defined adversary A1. We thus get a simulator that
outputs the same distribution as ExpReal2 from which we get (21). �

B.3 Proof of the reduction from Game 2 to Game 3

We first show:

∀A2, ∃S2 wins Game 2⇒ ∀A3, ∃S3 wins Game 3 (⇔ C t-probing secure) (22)

For each adversary A3 that returns a set of inputs (x1, . . . , xN) and a set probes P ′′, we define
an adversary A2 that outputs the same set of inputs and the same set of probes P ′′. By
assumption, there exists S2 that can perfectly simulate C ′([x1], . . . , [xN])P′′ and win Game 2.
As a consequence, the simulator S3 = S2 wins Game 3 as well. We now show:

∀A3, ∃S3 wins Game 3⇒ ∀A2, ∃S2 wins Game 2 (⇔ C t-probing secure) (23)

which is equivalent to show the contrapositive statement:

∃A2, ∀S2 fails Game 2⇒ ∃A3, ∀S3 fails Game 3 (⇔ C t-probing secure) (24)

We denote by (x1, . . . , xN) the set of inputs and by P ′ the set of probes returned by A2. As
previously, we denote P ′ = P ′a ∪P ′r ∪P ′m such that P ′a are the probes on addition gadgets, P ′r
are probes on refresh gadgets inputs, and P ′m are probes on pairs of inputs of multiplication
gadgets. We further denote by M0, . . . , Mt the induced matrices from the probes P ′ as defined
in Lemma 2. By assumption of the contrapositive statement (24), we have

Im(M0) ∩ Im(M1) ∩ · · · ∩ Im(Mt) 6= ∅ .

Moreover, we have q ≤ 2t implying that at least one Mj matrix has a single row and con-
sequently the above intersection is of dimension one i.e. it is defined as the span of a single
vector −→w ∈ FN2 :

Im(M0) ∩ Im(M1) ∩ · · · ∩ Im(Mt) = 〈−→w 〉 . (25)

Since −→w is the single row of at least one Mj matrix we have that −→w is directly induced by
a probed variable vk. In other words, a sharing (−→w · −→x0, . . . ,−→w · −→xt) appears in the circuit
(either as input of some gadget, or as output of an addition gadget). We now argue that this
sharing must appear in input of a multiplication gadget. Assume by contradiction that this
sharing does not appear in input of a multiplication gadget, then it appears in a refresh or an
addition gadget. Let us then denote by tar the number of matrices Mj that have −→w as row
(i.e. the jth share of the considered sharing has been probed). The remaining t− tar matrices
Mj have at least 2 rows (since otherwise their image does not include −→w). We deduce that
q ≥ tar + 2(t− tar) = 2t+ tar which is impossible since q ≤ 2t. We hence obtain that −→w must
be induced by a sharing (−→w · −→x0, . . . ,−→w · −→xt) in input of a multiplication gadget.

We can then define A3 as the adversary that outputs the same set of inputs than A2 and
a set of probes P ′′ defined according to P ′ as follows:

– for every pair (i1, i2) ∈ P ′m, include (i1, i2) to P ′′,
– for every probe i ∈ P ′a ∪P ′r, let j be the share index corresponding to the wire indexed by
i, then include the wire index of the multiplication input share −→w · −→xj .

It is not hard to see that the Mj matrices induced by the new set of probes P ′′ still satisfies
(25) which implies that no simulator S3 can produce a perfect simulation of C ′([x1], . . . , [xN])P′′ .
In other words, our contrapositive statement (24) holds which concludes the proof. �

C Proof of Propositions 7, 8, 9, and 10

Proof (Proposition 7). To prove this proposition, we demonstrate by induction the following
invariant:

Invariant: ∀s ∈ N, ∃ t ∈ N such that with t carefully chosen probes on multiplications from
Gi, we are able to get:

– r matrices Mj such that −→w ∈ Im(Mj), 0 ≤ j ≤ r − 1, where r = t+ 1− s;
– s matrices Mj such that 〈Oi〉 ⊆ Im(Mj), r ≤ j ≤ t.

We show that the invariant holds for i = 1. Let s ∈ N and let `1 = |O1|. If we place s probes
on each multiplication gadget g ∈ G1, we can have r = s · `1 matrices Mj = rows(−→w), and s
matrices Mj = rows(O1). We thus get the desired invariant with t = r+ s− 1 = s(`1 + 1)− 1.

We now show that the invariant holds for i + 1 if it holds for i. Let s ∈ N and let `i+1 =
|Oi+1|. By assumption, for s′ = s · (`i+1 + 1), there exists t′ such that with t′ carefully chosen
probes on multiplications from Gi, we are able to get:

– r′ matrices Mj such that −→w ∈ Im(Mj), 0 ≤ j ≤ r′ − 1, where r′ = t′ + 1− s′;
– s′ matrices Mj such that 〈Oi〉 ⊆ Im(Mj), r

′ ≤ j ≤ t′.

In what follows, the s′ last matrices are called the unfinished matrices. If we place s probes on
each multiplication gadget g ∈ Gi+1, we can add a vector operand from −→w + 〈Oi+1〉 to s · `i+1

of the unfinished matrices. We thus obtain s · `i+1 more matrices Mj such that −→w ∈ Im(Mj).
We can further add all the `i+1 operands from Oi+1 to the s remaining unfinished matrices.
We then get s matrices Mj such that 〈Oi+1〉 ⊆ Im(Mj), which show the inductive statement.

From the above invariant, we can easily demonstrate the proposition statement. Indeed if
we have −→w ∈ 〈Oi〉 for some i ∈ N then the invariant implies that for s = 1, there exists t ∈ N
and P = {(g, j1, j2)} such that −→w ∈ Im(Mj) for 0 ≤ j ≤ t and 〈Oi〉 ⊆ Im(Mt), implying
−→w ∈ Im(Mt) as well. We then get

⋂t
j=0 Im(Mj) = −→w . �

Proof (Proposition 8). Let us denote P = P1 ∪ P2 such that

P1 = {(g, j1, j2) ; g ∈ Gi} and P2 = {(g, j1, j2) ; g /∈ Gi}

with |P1| = t1 and |P2| = t2, with t1 + t2 = t. The set P1 provides at most t1 matrices
Mj such that −→w ∈ Im(Mj) plus t1 operand vectors from Oi to be distributed among the

remaining matrices. Then the set P2 provides 2t2 additional vectors from {−→ag,
−→
bg ; g /∈ Gi}

to be distributed among the remaining matrices. However none of these additional vectors
is included −→w + 〈Oi〉 which implies that at least two of them are necessary to produce one
additional matrix Mj such that −→w ∈ Im(Mj). We conclude that we can get at most t1 + t2 = t

matrices Mj such that −→w ∈ Im(Mj) which implies −→w /∈
⋂t
j=0 Im(Mj). �

Proof (Proof of Proposition 9). Let C be a standard shared circuit augmented with t-SNI
refresh gadgets operating on the left operand of each multiplication gadget. From Corollary 1,
the analysis of the t-probing security of C can be reduced to the analysis of the t-probing
security of Flatten(C). In the latter, each multiplication takes as its left operand a new fresh
encoding. Now let us assume that there exists a probing attack on C. We know from the linear
algebra formulation above that this attack is characterized by a vector −→w and a set of t + 1
matrices such that

Im(M0) ∩ Im(M1) ∩ · · · ∩ Im(Mt) = 〈−→w 〉 . (26)

We also know that there exists at least one index 0 ≤ i ≤ t, such that matrix Mi is completely
defined by the row vector −→w . Now let us assume that −→w represents a probe on the left operand
of a multiplication. Since this operand is a new fresh encoding that is used nowhere else, then
it cannot be recovered from the linear combination of other operands. As a consequence, all
the matrices must be defined by the same row vector −→w . But at most t probes are available

to target this last operand which is not enough to feed the t + 1 matrices and consequently
leads to a contradiction. Let us now assume that −→w represents a probe on the right operand of
a multiplication. In that case, probes on right operands (including probe −→w) can feed up to t
matrices in order to fulfill Equation (26). Without loss of generality, we assume these matrices
to be M0, . . .Mt−1. The last matrix Mt is then necessarily built from probes on left operands.
Since all of them are fresh encodings, then Im(Mt) cannot include −→w , which gives the second
contradiction and completes the proof. �

Proof (Proposition 10). Let us consider a standard shared circuit C augmented with t-SNI
refresh gadgets operating on each one of its α flawed operands. For each of these α flawed
operands represented by the vector −→w , there are a certain number β of sets of probes associated
to sets of matrices (M j

i)0≤i≤t for (1 ≤ j ≤ β) whose intersecting images are equal to −→w . In
each of these β sets of matrices, at least one matrix is exactly equal to −→w . Refreshing the
corresponding operand each time it is used in a multiplication makes it impossible to get a
matrix equal to −→w anymore in any of the β sets. As a consequence, all these sets of probes do
not lead to a probing attack anymore. Furthermore, since we only turned operands into fresh
encodings that are not reused, then this transformation do not lead to new probing attacks.

D SPN-based Block Ciphers

p

⊕
t-linear surjective circuit

S

L

⊕
t-linear surjective circuit

S

L

⊕

k

KS

KS

KS

.

c

t-linear surjective circuit

Fig. 14. Structure of an SPN-Based Block Cipher.

E Example 2 circuit with a refresh

[x1] [x2] [x3]

[⊕] [⊕]R

[⊗] [⊗] [⊗]

→

;; 3

XOR 1 2

XOR 2 3

REF 2

AND 1 6

AND 4 5

AND 4 3

→

list_comb = [3, 8, 6, 1, 4]

comb = 3

=> NO ATTACK (G3 = G2)

G: [[(3 ,6) ,(3,4)], [(1,8)], []]

O: [[6, 4], [8], []]

comb = 8

=> NO ATTACK (G2 = G1)

G: [[(1 ,8)], []]

O: [[1], []]

comb = 6

=> NO ATTACK (G2 = G1)

G: [[(3 ,6)], []]

O: [[3], []]

comb = 1

=> NO ATTACK (G2 = G1)

G: [[(1 ,8)], []]

O: [[8], []]

comb = 4

=> NO ATTACK (G2 = G1)

G: [[(3 ,4)], []]

O: [[3], []]

(’No attack found ’)

Fig. 15. New method applied on example 2 augmented with a refresh.

F Results for AES s-box

Table 2. Results for AES s-box circuit.

Target G1 Target G1
8E {(8E, 80), (96875, 8E)} C6 {(C6, 86), (418605, C6)}
72 {(9, 72), (C2D0B, 72)} 29B040 {(29B040, D9), (29B040, E7)}

3457E {(3457E, 1B040)} 21 {(21, 5F), (683645, 21)}
16875 {(16875, A0000)} 96875 {(96875, 8E), (96875, 80)}
C37B {(C37B, D835)} 44C37B {(44C37B, 41), (44C37B, 74)}
18605 {(18605, 36875)} 236875 {(5457E, 236875)}
D9 {(E7, D9), (29B040, D9)} 5F {(21, 5F), (683645, 5F)}

683645 {(683645, 5F), (683645, 21)} 5457E {(5457E, 87), (5457E, 236875), (5457E, F2)}
E7 {(E7, D9), (29B040, E7)} 86 {(C6, 86), (418605, 86)}

C2D0B {(C2D0B, 72), (C2D0B, 9)} 418605 {(418605, 86), (418605, C6)}
74 {(41, 74), (44C37B, 74)} D835 {(C37B, D835)}

A0000 {(16875, A0000)} 641B4E {(641B4E, 2D), (641B4E, 28)}
20D835 {(20D835, 59), (20D835, 69)} 28 {(28, 2D), (641B4E, 28)}
F2 {(87, F2), (5457E, F2)} 87 {(87, F2), (5457E, 87)}
69 {(69, 59), (20D835, 69)} 1B040 {(3457E, 1B040)}
9 {(9, 72), (C2D0B, 9)} 59 {(69, 59), (20D835, 59)}
2D {(28, 2D), (641B4E, 2D)} 80 {(8E, 80), (96875, 80)}
41 {(41, 74), (44C37B, 41)} 36875 {(18605, 36875)}

