
Zero-Knowledge Protocols for Search Problems

Ben Berger Zvika Brakerski
Weizmann Institute of Science, Israel∗

Abstract

We consider natural ways to extend the notion of Zero-Knowledge (ZK) Proofs
beyond decision problems. Specifically, we consider search problems, and define zero-
knowledge proofs in this context as interactive protocols in which the prover can
establish the correctness of a solution to a given instance without the verifier learning
anything beyond the intended solution, even if it deviates from the protocol.

The goal of this work is to initiate a study of Search Zero-Knowledge (search-ZK),
the class of search problems for which such systems exist. This class trivially contains
search problems where the validity of a solution can be efficiently verified (using a
single message proof containing only the solution). A slightly less obvious, but still
straightforward, way to obtain zero-knowledge proofs for search problems is to let the
prover send a solution and prove in zero-knowledge that the instance-solution pair is
valid. However, there may be other ways to obtain such zero-knowledge proofs, and
they may be more advantageous.

In fact, we prove that there are search problems for which the aforementioned
approach fails, but still search zero-knowledge protocols exist. On the other hand, we
show sufficient conditions for search problems under which some form of zero-knowledge
can be obtained using the straightforward way.

1 Introduction

The notion of Zero-Knowledge Proofs (ZK-Proofs) introduced by Goldwasser, Micali and
Rackoff [20] is one of the most insightful and influential in the theory of computing. Its
tremendous impact came not only from having numerous applications (e.g. [12]) but maybe
more importantly from challenging the way we think about proofs and the communication
between the prover and the verifier. In a nutshell, a ZK-Proof is an interactive proof of some
statement, i.e. an interaction between a prover P and a verifier V with the prover attempting
to convince the verifier that some instance x belongs to a language L. In addition to the

∗{ben.berger,zvika.brakerski}@weizmann.ac.il. Supported by the Israel Science Foundation (Grant
No. 468/14), Binational Science Foundation (Grants No. 2016726, 2014276), and by the European Union
Horizon 2020 Research and Innovation Program via ERC Project REACT (Grant 756482) and via Project
PROMETHEUS (Grant 780701).

1

usual completeness and soundness, in the ZK scenario the prover wants to protect itself
from revealing “too much information” to the verifier. Surely the verifier needs to learn that
indeed x ∈ L, but nothing else beyond this fact should be revealed. Furthermore, even a
malicious verifier that does not follow the prescribed protocol should not be able to trick the
prover into revealing more information than intended. This intuitive statement is formalized
using the simulation paradigm, the existence of a simulator machine S that takes an input
x ∈ L and a possibly cheating verifier V ∗ and samples from the view of V ∗ in the interaction
(P, V ∗) (up to negligible statistical or computational distance). Since the view of the verifier
can essentially be produced (up to negligible distance) knowing only that x ∈ L, it clearly
does not reveal anything beyond this fact.

Our Results. In this work we consider a setting where again the prover is concerned about
revealing too much information to the verifier, but now in the context of search problems.
That is, the prover would like to assist the verifier in learning a solution y to an instance x of
some search problem, but would like to limit the verifier’s ability to learn anything beyond
the intended solution (or distribution of solutions).

While one’s first intuition of a search problem is of one where it is efficient to verify a
solution (i.e. searching for an NP witness), this is actually not the interesting setting here. In
fact, in this case the prover can just send the witness, and the verifier verifies locally, so no
additional information beyond the solution is revealed. One example one could consider is
the “isomorphic vertex problem”: given two graphs (G1, G2) and a vertex v1 in G1, find a
vertex v2 in G2 that corresponds to v1 under some isomorphism.

Our first contribution is to formalize the notion of zero knowledge interactive protocols
for search problems using the simulation paradigm, as follows. We require that the prover for
the interactive protocol is associated with a family of distributions {Yx}x over solutions for
each input x, intuitively corresponding to the distribution V is allowed to learn. We require
that the view of any verifier can be simulated given only a sample y drawn from Yx. To
reduce the number of free parameters in the definition we propose to associate Yx with the
distribution of solutions output by an interaction of an honest prover with an honest verifier
(note that importantly this refers to the distribution of solutions y output by the honest
verifier and not to the honest verifier’s entire view). Thus the zero-knowledge task becomes
to ensure that no verifier (including the honest verifier) learns anything except the honest
verifier’s prescribed output. In terms of soundness, we require that V either outputs some
valid solution for the search problem (if such exists), or rejects, except perhaps with small
probability, even when interacting with a malicious prover. The definition, a discussion and
an example protocol are provided in Section 3.

Intuitively one could think that in order to achieve search-ZK, the prover should first
sample a solution from Yx, send it to the verifier and then prove in decision-ZK the validity
of the solution (that is, that in a sense search-ZK is reducible to decision-ZK). In section
4 we formally define the class prefix-ZK of search problems that have search-ZK protocols
of the form described above. We show that prefix-ZK has a complete problem (which we
are unable to show for general search-ZK) and we explore whether it is possible to provide

2

a prefix-ZK protocol for any language in search-ZK or whether there are some cases where
other methods can achieve search-ZK but the aforementioned outline cannot. We show
conditions under which a given search-ZK protocol can be transformed into a prefix-ZK
one (for the same underlying search problem), but we also show that in general, perhaps
counter-intuitively, search-ZK contains problems that are not in prefix-ZK, so at least in
that sense the study of search-ZK may not be a derivative of the study of decision-ZK.
Interestingly, this separation follows from showing that search-PSPACE, the class of search
problems solvable by a deterministic poly-space Turing machine, does not contain search-IP,
the class of search problems solvable by an interactive protocol. This result may be of
independent interest, in light of the famous IP=PSPACE theorem [25].

Lastly, in Section 5, we discuss search-ZK protocols that are also pseudo-deterministic,
meaning that each instance is associated with some canonical solution that is output by
the prescribed protocol and the soundness requirement is that a malicious prover cannot
make the honest verifier output a solution that is not the canonical one (except with small
probability). The notion of pseudo-deterministic algorithms and protocols was presented by
Gat and Goldwasser [7] and further explored by Goldreich, Goldwasser, Grossman, Holden
and Ron [10,17–19,21]. One of the advantages of pseudo-deterministic protocols is that they
allow for soundness amplification for search problems. We show that the isomorphic vertex
problem has a pseudo-deterministic search-ZK protocol, suggesting that achieving strong
soundness together with strong privacy is possible in some interesting cases.

Related Notions. The first related notion is that of secure multiparty computation (MPC)
by Yao [26] and Goldreich, Micali and Wigderson [11]. For the purpose of this work, the
relevant setting is of secure two-party computation where two parties A,B with inputs xA, xB
wish to compute values yA, yB which depend on both inputs. The privacy requirement is
that each party does not learn more than its intended output. It would appear that setting
A = P , B = V , and defining FB appropriately to output what the verifier is allowed to learn,
should result in a search-ZK protocol. However, looking more closely, the complexity of an
MPC protocol scales with the complexity of the function FB, which in general scales with the
complexity of the prover’s functionality. If the prover’s functionality is not in NP, then MPC
cannot be used. MPC appears to be useful in the restricted case of computational search-ZK
for search problems that can be computed as a function of an NP witness. Our isomorphic
vertex problem falls into that category (with the NP witness being an isomorphism), however
for isomorphic vertex we have a statistical search-ZK protocol. For statistical search-ZK,
the MPC methodology does not seem to be useful, since information theoretically secure
two-party computation is not possible [3, 4].

Another related like of work is concerned with privacy of approximation algorithms,
initiated by Feigenbaum et al. [6] and Halevi et al. [22], and further studied by Beimel et
al. [1]. The setting in these works is quite different from ours. Their ideal setting is where a
solution to some search problem is posted without revealing the input (e.g. output a vertex
cover for some graph without revealing the edges of the graphs). The problem arises when
solving exactly is hard and an approximation algorithm is used instead. Their goal is to show

3

that the approximate solution does not reveal more information than the exact solution. Note
that in this setting there is no soundness requirement (in fact, a client cannot be convinced
that a solution is correct since it does not have the input).

Future Directions. Our work is far from being an exhaustive study of search-ZK, and we
hope to open the door for additional study. One direction of research is designing search-ZK
protocols for other problems of interest, and more importantly general approaches for search-
ZK for classes of problems. The question of whether search-ZK has complete problems in the
computational and statistical setting remains open. Another intriguing line of inquiry, which
may also be helpful for resolving the above, is whether we can translate the extensive body
of work on statistical ZK protocols [5, 14–16,23,24] into the search regime.

2 Preliminaries

In this section we go over standard definitions.

Definition 1 (Relations and Promise Problems).

• A relation is a subset R ⊆ {0, 1}∗ × {0, 1}∗. Given a relation R we denote by LR :=
{x | ∃y, (x, y) ∈ R} the set of instances of R. Given an instance x, we denote R (x) =
{y | (x, y) ∈ R}.

• A promise decision problem is a pair L = (LY ES, LNO) of sets LY ES, LNO ⊆ {0, 1}∗
where LY ES ∩ LNO = ∅. An element x ∈ LY ES is called a YES instance of L and an
element x ∈ LNO is called a NO instance of L. The goal of a solving procedure:

– If x ∈ LY ES output 1.

– If x ∈ LNO output 0.

• A promise search problem is a pair R = (RY ES, LNO) where RY ES ⊆ {0, 1}∗ × {0, 1}∗
is a relation, LNO ⊆ {0, 1}∗ is some set and LRY ES

∩ LNO = ∅. An element x ∈ LRY ES

is called a YES instance of R and an element x ∈ LNO is called a NO instance of R.
The goal of a solving procedure:

– If x ∈ LRY ES
output some y ∈ RY ES (x).

– If x ∈ LNO output ⊥.

Remark 2. We stress again that in a search problem, an instance can have many legal
solutions, and the solving procedure is required to output one of them.

Definition 3 (Karp and Levin Reductions for Promise Problems).

• Let L1 = (L1
Y ES, L

1
NO), L2 = (L2

Y ES, L
2
NO) be two promise decision problems. We say

that L1 is Karp-reducible to L2 if there is a deterministic polynomial time Turing
machine M such that:

4

– ∀x ∈ L1
Y ES ⇒M (x) ∈ L2

Y ES.

– ∀x ∈ L1
NO ⇒M (x) ∈ L2

NO.

• Let R1 = (R1
Y ES, L

1
NO) ,R2 = (R2

Y ES, L
2
NO) be two promise search problems. We say

that R1 is Levin-reducible to R2 if there are two deterministic polynomial time Turing
machines A,B such that:

– ∀x ∈ LR1
Y ES
⇒ A (x) ∈ LR2

Y ES
.

– ∀x ∈ L1
NO ⇒ A (x) ∈ L2

NO.

– ∀x ∈ LR1
Y ES

, z ∈ R2
Y ES (A (x))⇒ B (x, z) ∈ R1

Y ES (x).

The pair (A,B) is called the Levin-reduction between R1 and R2.

• We say that a Levin reducion (A,B) from R1 to R2 is solution preserving, if for any
x ∈ LR1

Y ES
, R1

Y ES (x) = R2
Y ES (A (x)), i.e. x and A (x) have the same set of solutions.

2.1 Interactive Protocols

We will omit the rigorous formal definition of an interactive protocol between two parties,
which can be found in standard text books (e.g. [8]), but will just go over conventional
notation. In these protocols we will have two interacting Turing machines, usually denoted
P and V , which perform a joint computation on a shared input, usually denoted x. The
following notation will be used:

• (P, V) (x). This can have two meanings - depending on the context:

– It can be written in a description of an implementation of some interactive protocol,
in which case it means that the interacting parties execute a sub-protocol on joint
input x according to the strategies P and V .

– In any other context, this denotes the output of V after its interaction with P on
the shared input x. That is, if the underlying problem is a decision problem then
this output is a bit, and if the underlying problem is a search problem then this is
the purported solution to the instance. Note that if V and/or P are randomized
machines, and if furthermore x is taken from some distribution, then (P, V) (x) is
a random variable, which is essentially a function of all the randomness involved.

• view
(P,V)
V (x) denotes the view of V of the interaction with P on input x. More precisely,

this is a concatenation of the input, the randomness of V and all the messages passed
between the machines in the interaction. For example, if there are k messages that are
passed in the interaction, and mi denotes the i’th message, then

view
(P,V)
V (x) = (x, rV ,m1, . . . ,mk)

where rV is the randomness of V .

5

Interactive proof systems for decision problems were introduced in [20]. In these protocols,
an efficient verifier interacts with a computationally unbounded prover that tries to convince
him of the validity of some statement. Altough these were originally defined for languages,
they can also be defined for promise problems:

Definition 4 (The class IP). We say that the promise decision problem L = (LY ES, LNO) ∈
IP if there is an interactive protocol (P, V) where V is a PPTM and P is (possibly)
computationally unbounded such that:

• Completeness: For every x ∈ LY ES, Pr [(P, V) (x) = 1] = 1.

• Soundness: For every x ∈ LNO and prover strategy P ∗, Pr [(P ∗, V) (x) = 1] ≤ 1
2
.

We will now define zero-knowledge protocols for decision problems, also introduced in [20].

Notational Convention In this work three types of zero knowledge classes are considered:
computational, statistical and perfect zero knowledge, denoted CZK, SZK and PZK
respectively. Most of the claims in this text apply to all three of these classes, and therefore
we use the abbreviation ZK whenever the statement or definition it appears in refers to
all three types of zero knowledge at the same time. For example, the statement “any ZK
protocol p1 admits a ZK protocol p2” expands to three different statements for each of the
zero-knowledge types considered.

Definition 5. We say a promise decision problem L = (LY ES, LNO) ∈ ZK if there is a
triplet (P, V, S) such that:

• (P, V) is an IP protocol for L.

• Zero knowledge: S is an expected PPTM and for any PPTM V ∗ and x ∈ LY ES,

view
(P,V ∗)
V ∗ (x) ≈ S (x, V ∗) .

Remark 6. The meaning of ‘view
(P,V ∗)
V ∗ (x) ≈ S (x, V ∗)’ depends on the type of zero knowledge

considered, as explained below:

• CZK: For any PPTM D,∣∣∣Pr
[
D
(
view

(P,V ∗)
V ∗ (x)

)
= 1
]
− Pr [D (S (x, V ∗)) = 1]

∣∣∣ = negl (|x|) .

• SZK: ∥∥∥view(P,V ∗)
V ∗ (x)− S (x, V ∗)

∥∥∥ = negl (|x|)

where ‖·‖ denotes statistical distance.

• PZK: ∥∥∥view(P,V ∗)
V ∗ (x)− S (x, V ∗)

∥∥∥ = 0

6

Remark 7. In the original definition of zero-knowledge proofs, given in [20], the zero knowledge
property required that for any V ∗ there exists a (possibly different) S∗ that simulates the view
of V ∗ in the original protocol. Here we chose to adopt the notion of a universal simulator : a
single algorithm that simulates the view of V ∗ when given as input a description of V ∗.

Remark 8. A stronger definition of zero-knowledge proofs was given in [13] where the verifier
is required to learn nothing from the protocol even when it has access to some external
auxilliary input. This stronger notion is particularly important when one wants to use a
zero-knowledge protocol as a subprotocol of another zero-knowledge protocol. Since the
results of this work do not require this stronger property we chose to work with the simpler
definition in order to facilitate the presentation.

Remark 9. Note that PZK ⊆ SZK ⊆ CZK.

3 Zero Knowledge Protocols for Search Problems

We start by defining the search counterpart of IP , which we call Search− IP . Similarly to
IP protocols, Search− IP protocols also feature an efficient verifier that interacts with a
computationally unbounded prover, but unlike the decisional case where the verifier outputs
a bit that represents his “decision”, here the verifier outputs a solution to the instance of
the search problem. The titles “verifier” and “prover” are slightly misleading since here, as
opposed to the decisional case, there is no statement that needs to be proved and verified
but rather an interactive computation in which the two parties come up with some solution
together (in a way that the verifier can not be fooled to output a solution that is not correct
but with small probability). Still we choose to refer to the two parties by these names as
their roles closely resemble the roles of the verifier and prover in IP protocols.

Definition 10. We say that the promise search problem R = (RY ES, LNO) ∈ Search− IP
if there is a pair (P, V) where V is a PPTM and P is (possibly) computationally unbounded
such that:

• “Completeness”: For any x ∈ LRY ES
, Pr [(P, V) (x) ∈ RY ES (x)] = 1.

• “Soundness”:

– For any x ∈ LNO and any P ∗, Pr [(P ∗, V) (x) = ⊥] ≥ 1
2
.

– For any x ∈ LRY ES
and any P ∗, Pr [(P ∗, V) (x) ∈ RY ES (x) ∪ {⊥}] ≥ 1

2
.

A few comments about this definition are due. Note that we require zero probability
of error when the two honest parties interact. That is, we require perfect completeness, a
requirement that we also have in the decisional definition. This choice complies with the
defintion of interactive proofs as formulated in [9] and is not very significant: we could have
also allowed small completeness error and most of the results of this thesis would still hold.
Furthermore, note that the soundness condition refers also to the case where x ∈ LRY ES

:
even if the instance has a solution, no prover strategy can make the verifier output a wrong

7

solution but with small probability. Another thing to note is that it is not clear how one can
reduce the soundness error. Repetition of the protocol can yield different solutions, and it
is not clear why one of these solutions should be favored more than another. Later in this
work we consider different ways to deal with this problem. On the other hand, note that
a search − IP protocol immediately gives rise to an IP protocol for the task of deciding
whether the given instance has a solution or not: the parties just need to run the original
protocol, in the end of which the verifier accepts if and only if the output is not ‘⊥’. This
protocol can be repeated (sequentially or in parallel) to reduce the soundness error.

We now turn to present zero knowledge protocols for search problems. These are Search−
IP protocols that apart from simply solving the search problem they also have a ‘zero
knowledge’ property: it is guaranteed that the verifier does not learn anything other than
the obtained solution, in the sense that given a solution, he could have simulated the entire
interaction with the prover. This is analogous to the decisional version of zero knowedge,
where the verifier is guaranteed not the learn anything but the validity of the proven statement
in the sense that given the bit 1 (i.e. given that the statement is true), he could have
simulated the entire interaction with the prover. What exactly do we mean by “given a
solution”? Our interpretation is given in the formal definition below:

Definition 11. We say that the promise search problem R = (RY ES, LNO) ∈ Search− ZK
if there is a triplet (P, V, S) such that

• (P, V) is a Search− IP protocol for R.

• Zero-knowledge: S is an expected PPTM and for any PPTM adversary V ∗ and
x ∈ LRY ES

:

view
(P,V ∗)
V ∗ (x) ≈ S (x, V ∗, (P, V) (x))

Our interpretation of the zero knowledge property is that whatever any (possibly malicious)
verifier can learn from the protocol (when run on an instance that has a solution) he could
have also learned when presented with a sample from the distribution of legal solutions that
corresponds to the protocol (when run by the honest parties). This is indeed a distribution
since a yes instance x can have many possible solutions, and the one that is output can
depend on the randomness. This is in contrast to the decisional version of zero knowledge
protocols, where any instance has only one possible solution - either yes or no. Later we will
show that if some search problem has a Search−ZK protocol that always outputs the same
solution for every yes instance x (i.e. |supp ((P, V) (x))| = 1) then in some sense the problem
has a decisional zero-knowledge protocol.

Remark 12. The distribution on solutions from which the simulator gets a sample in Definition
11 depends on the honest parties executing it. That is, the simulator gets a sample from
(P, V) (x) rather than from some other distribution on RY ES (x), which could be independent
from the protocol. We could have defined an implementation-independent notion, where
the search problem R is associated with a collection of distributions - each yes instance
x ∈ LRY ES

is paired with a distribution Yx of legal solutions for x, and the protocol would
have to satisfy the requirement that any poly-time verifier could have simulated its interaction

8

with the honest prover when given a sample from Yx. In this work we investigate the notion of
zero-knowledge protocols for search problems as defined in Definition 11, but it is interesting
to understand how things change when considering the other variant.

Remark 13. Like in the decisional case, the zero knowledge property can be either perfect,
statistical or computational so we really have three classes: Search− PZK, Search− SZK
and Search− CZK.

3.1 Perfect Zero Knowledge Protocols For Any Search Problem
With Efficiently Verifiable Solutions

The first thing to notice about Search− ZK protocols is that any search problem for which
the solutions can be verified by a deterministic poly-time Turing machine admits such a
protocol. In fact, any such search problem admits a Search− PZK protocol with a single
message that is sent by the prover - namely some arbitrary solution to the given instance.
Upon receiving the alleged solution the verifier checks its validity and then outputs it (or
outputs ⊥ if it was a fake solution). Completeness and soundness are clear, as the verifier
only accepts legal solutions, and zero knowledge is achieved by having the simulator output
the solution it is given (along with the input and the randomness for the verifier). As an
important example, Search−NP ⊆ Search− PZK, i.e. given any language L ∈ NP and
NP -relation for it RL, it holds that RL ∈ Search− PZK. This example can be extended
to MA which is the randomized counterpart of NP : formally, a language L ∈MA if there
exists a randomized poly-time verifier V such that if x ∈ L then there is some polynomially
bounded witness w = w (x) such that V (x,w) accepts with probability 1, and if x /∈ L
then for any w∗, V (x,w) = 1 with probability at most 1

2
. For any such verifier, the search

problem of finding a witness w that makes the verifier accept with probability at least 1
2

is
in Search− PZK with respect to the same protocol as described above, where the honest
prover sends an arbitrary witness that makes the verifier accept with probability 1.

3.2 An Example of a Search− PZK Protocol

Given two (undirected) graphs G1, G2 and two vertices v1 ∈ G1, v2 ∈ G2 we say that v1 is
isomorphic to v2 if there is an isomorphism between G1 and G2 that maps v1 to v2. Consider
the following search problem which we call Find−Isomorphic−V ertex: given two undirected
graphs G1, G2 on n vertices and some vertex v1 ∈ G1, find a vertex v2 ∈ G2 that is isomorphic
to v1, or output ⊥ if there is no such isomorphism. Note that it is not clear that this problem
has efficiently verifiable solutions. That is, given v2 ∈ G2, it is not clear how to verify that
v2 corresponds to v1 via some isomorphism between G1 and G2 without knowing what the
isomorphism is. We propose the following protocol for this problem that is inspired by the
original decisional zero knowledge protocol for the Graph-Isomorphism problem ([12]): given
input (G1, G2, v1):

9

P V
Choose some arbitrary
isomorphism π:G1 → G2

v2 := π (v1)−−−−−−−→
Pick a random
permutation ϕ : [n]→ [n]

H = ϕ (G1)−−−−−−−−→
u = ϕ (v1)−−−−−−→

randomly choose j ∈ {1, 2}
j←−

if j = 1, φ := ϕ
if j = 2, φ := ϕ ◦ π−1

φ−→
verify that φ is an isomorphism,
verify that φ (Gj) = H,φ (vj) = u
if verification succeeded, output v2

Lemma 14. The above protocol is a Search−PZK protocol for Find−Isomorphic−V ertex.

Proof. First, note that V can be implemented by a polynomial time machine, as required.
We will show completeness, soundness and perfect zero knowledge:

• Completeness: if G1 is isomorphic to G2 , and π is an isomorphism between them,
then indeed ϕ (G1) = ϕ ◦ π−1 (G2) = H and ϕ (v1) = ϕ ◦ π−1 (v2) = u. Hence w.p 1 V
outputs v2 as desired.

• Soundness: if G1 is not isomorphic to G2 then the graph H that the prover sends
can not be isomorphic to both G1 and G2 (since isomorphism between graphs is an
equivalence relation), and therefore with probability 1

2
V rejects. If on the other hand,

G1 is isomorphic to G2 but v2 is not isomorphic to v1, then, either H is not isomorphic
to one of G1, G2 in which case w.p 1

2
V rejects, or H is isomorphic to both, in which

case it can not be that both v1 and v2 are isomorphic to u (since this would imply that
v1 and v2 are isomorphic) and again V rejects w.p 1

2
.

• Zero-knowledge: Note that for any input (G1, G2, v1) that is a yes instance it holds
that |supp ((P, V) (x))| = |{v2}| = 1. We need to construct a simulator S for which

S ((G1, G2, v1) , V
∗, v2) and view

(P,V ∗)
V ∗ (G1, G2, v1) are identically distributed for any

verifier V ∗. The simulator S, given ((G1, G2, v1) , V
∗, v2) proceeds as follows:

– Choose random j ∈ {1, 2}.
– Chooses a random permutation ϕ : [n]→ [n].

10

– Choose randomness r for V ∗ and feed H := ϕ (Gj) and u := ϕ (vj) into V ∗.

– V ∗ outputs j∗ ∈ {1, 2}.
– If j∗ 6= j halt.

– otherwise output ((G1, G2, v1) , rV ∗ , v2, H, u, j
∗, ϕ).

S is indeed polynomial time, and conditioned on j∗ = j (which occurs with probability
1
2
), the output distribution of S is exactly view

(P,V ∗)
V ∗ (x).

Hence, Find− Isomorphic− V ertex ∈ Search− PZK.

Now, consider the language of all tuples (G1, G2, v1, v2) such that v1 ∈ G1, v2 ∈ G2 and v1
and v2 are isomorphic. The protocol that we showed above (discarding the first message of
the prover) is a decisional perfect zero knowledge protocol for that language. This shows that
the search problem of finding an isomorphic vertex is in fact a prefix-completion problem of
a language that has a (decisional) zero-knowledge protocol. Is this example a coincidence or
is it a general phenomenon? Is it true that every search problem that has a Search− ZK
protocol is in fact a prefix-completion problem of a ZK decision problem? This question is
addressed in the next section.

4 Prefix-Completion Problems

In this section we introduce a special sub-class of Search− ZK which we call Prefix− ZK
and investigate its properties. Loosely speaking, these are search problems that can be solved
in the following way: given an instance x, the prover sends a solution y and then proves
in zero knowledge that the pair (x, y) satisfies some predetermined property. It need not
necessarily be that (x, y) satisfies the property for any possible legal solution y, but there
must exist at least one such y. Furthermore, if y is not a legal solution then (x, y) should not
satisfy this property.

Definition 15 (The class Prefix − ZK). We say that a promise search problem R =

(RY ES, LNO) ∈ Prefix−ZK if there exists a promise decision problem L̂ =
(
L̂Y ES, L̂NO

)
∈

ZK such that

• L̂Y ES ⊆ RY ES.

• L̂NO = ((LRY ES
∪ LNO)× {0, 1}∗) \RY ES.

• For every x ∈ LRY ES
there is some y ∈ RY ES (x) such that (x, y) ∈ L̂Y ES.

• L̂Y ES is polynomially bounded - there is some polynomial p (·) such that if (x, y) ∈ L̂Y ES

then |y| ≤ p (|x|).

Remark 16. The condition bounding |y| is necessary since the verifier is a polynomial time
Turing machine and it should be able to read the solution y that the prover sends him.

11

Remark 17. Find− Isomorphic− V ertex ∈ Prefix− PZK.

The next lemma formalizes the intuition behind the definition of Prefix− ZK.

Lemma 18. Prefix− ZK ⊆ Search− ZK.

Proof. Let R = (RY ES, LNO) ∈ Prefix− ZK with respect to the promise decision problem

L̂ =
(
L̂Y ES, L̂NO

)
∈ ZK, and let

(
VL̂, PL̂, SL̂

)
be the ZK protocol for L̂. We construct the

following protocol (PR, VR, SR) for R and we will prove that it is a Search− ZK protocol.
Given input x:

PR VR
Choose an arbitrary y

such that (x, y) ∈ L̂Y ES.
y−→(

PL̂, VL̂
)

((x, y))
If previous step
accepted, output y.
Otherwise output ⊥.

The simulator SR works as follows: given (x, V ∗, y), print y and run SL̂ ((x, y) , V ∗). We
claim that (PR, VR, SR) is a Search− ZK protocol for R. We need to show completeness,
soundness and zero-knowledge.

• Completeness: suppose x is a yes instance. Then, by definition of L̂, there exists some
y such that (x, y) ∈ L̂Y ES, which PR sends. By the completeness of the ZK protocol

for L̂ it is guaranteed w.p 1 that the
(
PL̂, VL̂

)
((x, y)) sub protocol makes VR accept y.

• Soundness:

– Let x be a no instance and let P ∗R be any prover. The fact that it is a no instance

implies that for any string y, (x, y) ∈ L̂NO. Therefore, no matter what string y
P ∗R sends, we are guaranteed by the soundness of the

(
PL̂, VL̂

)
sub protocol that

VR will output ⊥ w.p at least 1
2
.

– Let x be a yes instance and let P ∗R be any prover. If P ∗R sends a non-solution y

then (x, y) ∈ L̂NO and the soundness of the
(
PL̂, VL̂

)
protocol will cause VR to

output ⊥ w.p at least 1
2
. If on the other hand he sends a correct solution y, then

there is no problem if VR accepts (note that in this case, the pair (x, y) is not

necessarily in the promise of L̂, i.e. it does not necessarily belong to L̂Y ES ∪ L̂NO).

• Zero-Knowledge: for any x ∈ LRY ES
and verifier V ∗ the fact that view

(PR,V ∗)
V ∗ (x) ≈

SR (x, V ∗, (PR, VR) (x)) follows immediately from the fact that view
(PL̂,V ∗)
V ∗ ((x, y)) ≈

SL̂ ((x, y) , V ∗).

12

Remark 19. Note that the solution y that PR sends in the first message can be taken from
any distribution on L̂Y ES (x) and the proof would still work. Thus Lemma 18 also holds if
Search− ZK is defined in an implementation-independent manner as described in Remark
12 (as long as for any x ∈ LRY ES

the corresponding solution distribution is supported only

on elements from L̂Y ES (x)).

4.1 A Complete Problem for Prefix−ZK Based on Any Complete
Problem for ZK

In this section we show that the existence of a complete problem for ZK, with respect to Karp
reductions, implies the existence of a complete problem for Prefix− ZK with respect to
solution-preserving Levin reductions. In particular, since SZK has a complete problem ([24])
so does Prefix− SZK. Let L∗ = (L∗Y ES, L

∗
NO) be a complete problem for ZK with respect

to Karp reductions. We define the ’General Prefix-Completion Problem’ R̂ =
(
R̂Y ES, L̂NO

)
,

as follows: the legal inputs consist of all tuples (M, 1t, x) where M is a deterministic Turing
machine and it is promised that for any string y, M (x, y) outputs after at most t steps a
string z which is guaranteed to belong either to L∗Y ES or to L∗NO. A string y is a solution
to the instance (M, 1t, x) if the output string z belongs to L∗Y ES. An instance (M, 1t, x) is
a no instance if for every string y, M (x, y) outputs after at most t steps a string z ∈ L∗NO.
We claim that R∗ ∈ Prefix−ZK. Indeed, the promise decision problem L′ =

(
L
′
Y ES, L

′
NO

)
where

L
′

Y ES =
{((

M, 1t, x
)
, y
)
|M (x, y) outputs a string z ∈ L∗Y ES after at most t steps

}
L
′

NO =
{((

M, 1t, x
)
, y
)
|M (x, y) outputs a string z ∈ L∗NO after at most t steps

}
satisifes the bullets in Definition 15, and it is in ZK, with the protocol for it consisting of
computing z from (M, 1t, x, y) and then running the original protocol for L∗ on z.

Lemma 20. Let R = (RY ES, LNO) be a promise search problem. The following are equivalent:

• R ∈ Prefix− ZK.

• There is a solution preserving Levin reduction from R to R̂.

Proof. Suppose R = (RY ES, LNO) ∈ Prefix−ZK with respect to L̃ =
(
L̃Y ES, L̃NO

)
∈ ZK,

and let p be the polynomial bounding L̃Y ES (i.e, (x, y) ∈ L̃Y ES implies |y| ≤ p (|x|)). Let M
be the Karp reduction machine from L̃ to L∗ and let’s denote its polynomial running time by
p∗ (·) (we know that such a reduction exists since L̃ ∈ ZK and L∗ is ZK-complete). Then
the Levin-reduction consists of the transformation algorithms A,B such that

A (x) =
(
M, 1p∗(|x|+p(|x|)), x

)
B (x, y) = y

13

Note that if x ∈ LRY ES
then there is some y such that (x, y) ∈ L̃Y ES which implies that

M (x, y) ∈ L∗Y ES and therefore A (x) =
(
M, 1p∗(|x|+p(|x|)), x

)
∈ LR̂Y ES

(note that the running
time of M on (x, y) is bounded by p∗ (|x|+ p (|x|)) . On the other hand, if x ∈ LNO then

for any y, (x, y) ∈ L̃NO which implies that M (x, y) ∈ L∗NO and so A (x) ∈ L̂NO. Finally,
this reduction is clearly solution preserving. We now turn to prove the other direction. We
showed before that R̂ ∈ Prefix − ZK with respect to L′ = (L′Y ES, L

′
NO) ∈ ZK. Let’s

assume that (A,B) is a solution preserving Levin reduction from R to R̂ and we need to
show that R ∈ Prefix− ZK. We denote A (x) = (Mx, 1

tx , x′) and

L̃Y ES = {(x, y) ∈ RY ES | (A (x) , y) ∈ L′Y ES}
L̃NO = ((LRY ES

∪ LNO)× {0, 1}∗) \RY ES

L̃ =
(
L̃Y ES, L̃NO

)
fulfills the requirements from Definition 15. It is left to prove that L̃ ∈ ZK:

on input (x, y) the parties simply execute the L′Y ES protocol on (A (x) , y), and the simulator
on input (x, y) simply runs the simulator of L′ on (A (x) , y).

• Completeness: follows immediately from the definition of L̃Y ES and the completeness
of the ZK protocol for L′.

• Soundness: let’s assume that (x, y) ∈ L̃NO. There are two cases:

– x ∈ LNO: in this case A (x) = (Mx, 1
tx , x′) ∈ L̂NO which implies (A (x) , y) ∈ L′NO

. Hence the protocol rejects w.p 1
2

due to the soundness of the L′ protocol.

– x ∈ LRY ES
but y /∈ RY ES (x). Therefore, since the Levin reduction is solution

preserving, y /∈ R∗Y ES (A (x)), which implies (A (x) , y) ∈ L′NO, and again this
implies that the protocol rejects w.p 1

2
.

• Zero knowledge: Follows immediately from the zero-knowledge of the ZK protocol for
L′.

4.2 The Relationship Between Search− ZK and Prefix− ZK
Does every Search− ZK protocol essentially amount to having the prover send the solution
and prove in zero knowledge that it really is a solution? Is it true that Search − ZK ⊆
Prefix − ZK? As we will see, it turns out that in general the answer to this question is
no. Nevertheless there are some conditions under which a Search − ZK protocol can be
transformed into a Prefix− ZK protocol. In the first part of this section we show results
that hold simultaneously for all three types of zero-knowledge (CZK, SZK, PZK). After
that we will give specific treatments of the computational and statistical settings.

We start by considering a special class of Search−ZK protocols, in which the prover sends
the solution at the first message of the interaction. It is tempting to conclude immediately

14

that in this case the language of instance-solution pairs is in ZK (implying that the search
problem is in Prefix−ZK) since what else could the prover be doing if not sending a solution
and proving (in zero knowledge) that it is a solution? The problem with this reasoning is that
it does not take into account the fact that the prover can be randomized and in particular
the solution it sends in the first message can be a random variable that is supported on more
than one element. In this case, the straight-forward protocol one would come up with to show
that the language of instance-solution pairs is in ZK (namely, given input (x, y), run the
original protocol on x and accept if the solution is y) does not work, as there is no real reason
to believe that the solution given in the input would equal the solution that the prover sends
in the first message. Nevertheless, we can consider a distributional variant of zero knowledge
under which the intuition above is correct.

Definition 21 (The class Dist − ZK). We say that a promise decision problem L =
(LY ES, LNO) ∈ Dist− ZK if there is a triplet (P, V, S) such that:

• (P, V) is an IP protocol for L.

• Distributional zero knowledge: S is an expected PPTM and there is a collection of
distributions on yes instances {Xk}∞k=1 such that every yes instance is in the support of
one of these distributions, and for any verifier V ∗ and k,

S (Xk, V
∗) ≈ view

(P,V ∗)
V ∗ (Xk)

We define Prefix−Dist−ZK like Prefix−ZK only that the decision problem L̂ from
that definition is required to be in Dist− ZK.

Lemma 22. Let R = (RY ES, LNO) ∈ Search − ZK with respect to (P, V, S) in which the
prover sends the solution in the first message of the protocol. Then R ∈ Prefix−Dist−ZK.

Proof. Denote L̂ =
(
L̂Y ES, L̂NO

)
where

L̂Y ES := {(x, y) | x ∈ LRY ES
, y ∈ supp ((P, V) (x))}

L̂NO := ((LRY ES
∪ LRNO

)× {0, 1}∗) \RY ES

The four bullets of Definition 15 are clearly statisfied, and it is left to show that L̂ ∈ Dist−ZK.
The protocol for L̂ is as follows: given input (x, y) the parties run the given Search− ZK
protocol on x, with the modification that the prover sends y in the first message (and not
an independent sample from (P, V) (x)). The verifier accepts if the Search− ZK protocol
succeeded. Soundness and perfect completeness follow immediately from the soundness and
perfect completeness of the Search − ZK protocol. We need to show distributional zero
knowledge. The simulator SL̂ ((x, y) , V ∗) runs S (x, V ∗, y), and for each x ∈ LRY ES

we define
the distribution Dx whose support is all the pairs (x, y) for y ∈ supp ((P, V) (x)) and

Pr [Dx = (x, y)] := Pr [(P, V) (x) = y] .

15

Since the Search− ZK protocol guarantees that for any x ∈ LRY ES
and any verifier V ∗ we

have
S (x, V ∗, (P, V) (x)) ≈ view

(P,V ∗)
V ∗ (x)

this implies that for any x ∈ LRY ES
and any verifier V ∗ we have

SL̂ (Dx, V
∗) ≈ view

(PL̂,V ∗)
V ∗ (Dx)

where PL̂ is the honest prover for L̂.

The relaxed notion of distributional zero knowledge was required for the proof of Lemma
22 since the prover could have sampled the solution from a distribution whose support contains
more than one element. The next lemma shows that if, for any yes instance x, the solution
(P, V) (x) is supported on one element then we can assume without loss of generality that
the prover sends it in the first message of the interaction and conclude that the underlying
search problem is indeed in Prefix − ZK. Intuitively, if the solution for each instance is
unique then in particular it does not depend on the verifier randomness and so the prover
knows it already in the beginning of the protocol.

Lemma 23. Let R = (RY ES, LNO) ∈ Search − ZK with respect to the protocol (P, V, S).
Assume that the protocol has the property that each yes instance has only one solution
that is output when the honest parties interact. That is, for any x ∈ LRY ES

we have
|supp ((P, V) (x))| = 1. Then R ∈ Prefix− ZK.

Proof. We define L̂ =
(
L̂Y ES, L̂NO

)
where

L̂Y ES = {(x, y) | x ∈ LRY ES
, y = (P, V) (x)}

L̂NO = ((LRY ES
∪ LNO)× {0, 1}∗) \RY ES

Note that the solutions y ∈ supp ((P, V) (x)) are polynomially bounded (since they are output

by the poly-time verifier) and in particular L̂Y ES is polynomially bounded. L satisfies the rest
of the bullets in Definition 15, and it is in ZK: given (x, y), the parties run the Search−ZK
protocol for R on x and the verifier accepts if the solution was y. Since |supp ((P, V) (x))| = 1,

it is guaranteed with probability 1 that on input (x, y) ∈ L̂Y ES the original Search− ZK
protocol outputs y when run on x with the honest prover. Thus we have perfect completeness.
If (x, y) ∈ L̂NO then in particular (x, y) /∈ RY ES and soundness follows from the soundness of
the Search− ZK protocol. As for zero knowledge - the simulator SL̂ on input (V ∗, (x, y))
runs S (x, V ∗, y).

Next we investigate the relationship between Search−ZK and Prefix−ZK specifically
in the computational and statistical settings.

16

4.2.1 The Computational Setting

Is it true that Search − CZK ⊆ Prefix − CZK? In this section we will investigate this
question and we start by characterizing Prefix− CZK.

Definition 24 (The class Search − PSPACE). We say that a promise search-problem
R = (RY ES, LNO) ∈ Search− PSPACE if there is a deterministic polynomial space Turing
machine M that solves R: for every x ∈ LRY ES

, M (x) ∈ RY ES (x) and for every x ∈ LNO,
M (x) = ⊥.

Definition 25 (The class Search − PSPACE (poly)). R ∈ Search − PSPACE (poly) if
R ∈ Search− PSPACE and there is a polynomial space deterministic Turing machine M
and a polynomial p (·) such that M solves R and for any x ∈ LRY ES

|M (x)| ≤ p (|x|).

Remark 26. Note that if R ∈ Search− PSPACE (poly) then every yes instance has at least
one polynomially bounded solution.

Lemma 27. Prefix− CZK ⊆ Search− PSPACE (poly).

Proof. Let R = (RY ES, LNO) ∈ Prefix− CZK with respect to L̂ =
(
L̂Y ES, L̂NO

)
∈ CZK.

In particular, L̂ ∈ IP and therefore L̂ ∈ PSPACE ([25]). We can therefore solve R in
polynomial space in the following way: given input x, we go over all the strings y of length at
most p (|x|) where p (·) is the polynomial from Definition 15, and decide in polynomial space

if (x, y) ∈ L̂Y ES. If there is some y for which (x, y) ∈ L̂Y ES, we output that y. Otherwise we
output ⊥. The algorithm we described indeed solves R: if x ∈ LRY ES

then there is some y of

length at most p (|x|) for which (x, y) ∈ L̂Y ES ⊆ RY ES and one of these strings y is output

by the algorithm . If on the other hand x ∈ LNO then for any y (x, y) ∈ L̂NO, and thus the
algorithm on x outputs ⊥.

Lemma 28. If one-way functions exist then Search− PSPACE (poly) ⊆ Prefix− CZK.

Proof. Let R = (RY ES, LNO) ∈ Search − PSPACE (poly) with respect to the determin-

istic poly-space Turing machine M and polynomial p (·). Denote L̂ =
(
L̂Y ES, L̂NO

)
for

L̂Y ES = {(x,M (x)) ∈ RY ES}, L̂NO = ((LRY ES
∪ LNO)× {0, 1}∗) \RY ES. L clearly satisfies

the requirements in the four bullets of Definition 15. We need to show that L ∈ CZK -
assuming the existence of one-way functions, it is enough to show that L ∈ IP ([2]), or
equivalently that L ∈ PSPACE. The following deterministic and poly-space algorithm
solves L: Given (x, y), run M on x and accept if M (x) = y.

The combination of Lemmas 27 and 28 give us

Theorem 29. If one-way functions exist then Prefix−CZK = Search−PSPACE (poly).

17

The characterization of Prefix−CZK hints at a possible path for proving that Search−
CZK ⊆ Prefix − CZK - show that any problem in Search − CZK has a deterministic
poly-space machine that solves it with polynomially bounded solutions. Now, it is tempting
to claim that Search − CZK ⊆ Search − PSPACE (poly) in the spirit of the proof that
IP ⊆ PSPACE, but it turns out that the idea behind that proof does not translate to the
realm of search problems.

Following is an informal sketch of the proof of IP ⊆ PSPACE: given an input x, the
computation tree that corresponds to the given protocol execution on x is considered. Each
node in the i’th level of the tree corresponds to the party whose turn it is to send the i’th
message, and each out-edge corresponds to a possible message that can be sent by that
party. A polynomial space machine can determine the prover strategy that maximizes the
verifier’s acceptance probability in the following recursive manner: first assign value 0 or
1 to each leaf depending on whether the computation path that leads to that leaf makes
the verifier accept or reject. Then assign each verifier node the average of the values of
its out-neighbors, according to the probability of choosing each out-message (a poly-space
machine can compute this probability by going over all possible coin tosses for the verifier),
and assign each prover node the maximum value among the values of its out-neighbors. The
value in the root corresponds to the maximum acceptance probability and so if that value is
1 the algorithm can conclude that the input was a yes instance, and if that value is at most 1

2

then the algorithm can conclude that the input was a no instance. In the case of interactive
protocols for search problems it is not clear how to mimic this procedure. Each computation
path (leaf) corresponds to some solution, but it is not possible to verify if that solution is
valid or not unless assuming a priory that a solution can be verified in polynomial space. The
soundness condition assures us that the output of the interaction between any prover P ∗and
the honest verifier on some x ∈ LRY ES

is either a solution or ⊥ w.p at least 1
2
, but nothing

more. Imagine the following scenario for example: take some yes intance x, a solution y1 for
it, a non-solution y2 and some prover P ∗ for which

Pr [(P ∗, V) (x) = y1] =
1

4

Pr [(P ∗, V) (x) = y2] =
1

2
− ε

Pr [(P ∗, V) (x) = ⊥] =
1

4
+ ε

this scenario complies with the soundness requirement, but why should a deterministic
machine choose y1 over y2 upon computing these probabilities?

Theorem 30. Search− IP * Search− PSPACE (poly).

The theorem is proven using a counterexample based on [10]. The version presented here
contains a modification due to a discussion with Grossman which allows to generalize the
counterexample to protocols with perfect completeness.

Proof. Consider the search problem R = {(x, y) | |y| = 5 |x| and K (y) > 2 |x|} where all
instances are legal (i.e. the promise is trivial) and K (z) denotes the Kolmogorov complexity

18

of z. Then R /∈ Search− PSPACE (poly) since otherwise, if M is the respective machine
solving R, each solution y would satisfy K (y) = |M |+|x| = O (1)+|x| which is a contradiction
to K (y) > 2 |x| (when |x| is large enough). We claim that R ∈ Search− IP . To show this,
we note that the the number of strings whose Kolmogorov complexity is at most 2 |x| is upper
bounded by 22|x|+1 − 1 (which is a bound on the number of Turing machines whose encoding

is of size at most 2 |x|). In particular, There exists a prefix a ∈ {0, 1}2|x|+1 such that for any

suffix b ∈ {0, 1}3|x|−1, the concatenation y=a ‖ b ∈ {0, 1}5|x| satisfies K (y) > 2 |x| and so
y is a solution to the instance x. We call such a prefix a ’good’. On the other hand, For
any prefix a ∈ {0, 1}2|x|+1, the fraction of such suffixes b for which K (a ‖ b) ≤ 2 |x| is upper

bounded by 22|x|+1

23|x|−1 <
1
2

(for |x| > 2). This suggests the following Search− IP protocol for R.
Given input x:

P V

choose a good a ∈ {0, 1}2|x|+1

a−→
sample a uniform

b← {0, 1}3|x|−1 and
output a ‖ b

The discussion above shows that this protocol has perfect completeness and soundness error
1
2
, and the theorem follows.

The Search − IP protocol presented above is also perfect zero-knowledge. Note that
the only information revealed by the prover is a part of the solution, hence it is clear that
no (possibly malicious) verifier can learn anything other than the solution when interacting
with the honest prover. A simulator for this protocol, upon receiving (x, V ∗, a ‖ b), simply
prints x, the randomness for V ∗ and a. Thus R ∈ Search − PZK and together with
R /∈ Search− PSPACE (poly) and Prefix− CZK ⊆ Search− PSPACE (poly) (Lemma
27) we get

Theorem 31. Search− PZK * Prefix− CZK.

Strengthening the Requirements - Zero Knowledge Protocols for Search Prob-
lems with Zero Error. The foregoing counter-example shows us that the definition of
Search−ZK as presented captures even uncomputable problems. Indeed, the analysis of the
example shows that it can not be solved by any deterministic Turing machine. We would like
to modify the definition of search zero knowledge so that such a phenomenon could not be
possible. As we will see next, one option is to not allow any soundness error in the protocol.
In other words, the soundness requirement from the honest verifier is:

1. For any x ∈ LNO and any P ∗, Pr [(P ∗, V) (x) = ⊥] = 1.

2. For any x ∈ LRY ES
and any P ∗, Pr [(P ∗, V) (x) ∈ RY ES (x) ∪ {⊥}] = 1.

19

This is very similar to the requirement in ZPP algorithms, which are randomized poly-time
algorithms for decision problems with the guarantee that whenever they output a solution
it is always correct, but they are allowed to output a ’don’t know’ symbol with some low
probability (⊥). In the same manner, a Search− IP protocol with perfect completeness and
perfect soundness guarantees that whenever the honest verifier outputs a solution, it really
is a legal solution. We denote the class of search problems having Search − IP protocols
with perfect soundness by ZP − Search− IP . The subclass of search problems that have
ZP − Search− IP protocols which also satisfy the zero-knowledge property (as in definition
11) is denoted by ZP − Search− ZK (as usual, ZK is replaced by CZK, SZK and PZK
depending on the quality of simulation). The following claim shows that ZP − Search−ZK
contains only computable problems.

Lemma 32. ZP − Search− IP ⊆ Search− PSPACE (poly).

Proof. Let R ∈ ZP − Search − IP with respect to the protocol (P, V). Given input x, a
Search − PSPACE(poly) machine can simulate the execution of the given protocol on x
between the honest verifier and any deterministic prover - it can iterate over all possible
coins for the honest verifier and all possible prover responses. The completeness property
guarantees that in one of the iterations some valid solution is output. Furthermore, the
soundness property guarantees that whenever a solution is output (in contrast to ⊥) then it
is valid. Hence, the machine can simply output the first solution it encounters.

Corollary 33. ZP − Search− CZK ⊆ Search− PSPACE (poly).

If we could prove the converse inclusion of Corollary 33 then we could conclude that
ZP − Search− CZK = Prefix− CZK, showing exactly which Search− CZK protocols
are in fact prefix-completion problems of CZK problems. Unfortunately, as we will show
next, it is very likely that the inclusion ZP − Search− IP ⊆ Search− PSPACE (poly) is
strict (which implies that the inclusion ZP − Search− CZK ⊆ Search− PSPACE (poly)
is strict), indicating that the zero error requirement is too strong. We will need the following
lemma:

Lemma 34. Let R ∈ ZP − Search− IP where the promise is trivial and every yes instance
has exactly one solution, i.e. |R (x)| = 1 for any x ∈ LR. Then the set R is an NP language.

Proof. Let R be as above and suppose that (P, V) is the ZP − Search− IP protocol for R.
The perfect soundness and completeness conditions imply that we can assume without loss of
generality that V is deterministic (by fixing its random tape to the all zero string for example)
- we are still guaranteed that if x is a yes instance then the legal solution will be output when
interacting with the honest prover P , and no prover P ∗ can make V output something other
than the solution, or ⊥. Since V is deterministic there is no need for interaction at all, since
the prover can anticipate all of the messages of V . That is, there is another protocol for R
with perfect completeness and soundness where, given input x, the prover sends the entire
transcript that would have been produced in the original protocol and the verifier simply
needs to verify consistency. Hence the set of pairs R is in NP : given (x, y), the prover can

20

send the message that corresponds to x in the protocol for R, and the verifier accepts if the
solution was y. If (x, y) ∈ R then y is the only legal solution for x and therefore the message
that the honest prover sends corresponds to the solution y. On the other hand, if (x, y) /∈ R
then the perfect soundness of the 1-round protocol for R guarantees that the verifier always
rejects regardless of the message he receives.

Theorem 35. If NP (PSPACE then ZP − Search− IP (Search− PSPACE (poly).

Proof. Assume towards contradiction that ZP − Search− IP = Search− PSPACE (poly)
and let L ∈ PSPACE. Let’s assume for now that L is a language of pairs (x, y), where
|x| = |y| and for any (x, y) , (x, y′) ∈ L it holds that y = y′. In other words, L is a length-
preserving function on a subset of {0, 1}∗. First we will show that L ∈ NP and after that we
will show that if NP (PSPACE then there is some L′ ∈ PSPACE\NP that is a length
preserving function, giving us the desired contradiction . To see that L ∈ NP , consider
the search problem R induced from L. That is, given x the goal is to find y such that
(x, y) ∈ L. The fact that L ∈ PSPACE clearly implies that R ∈ Search−PSPACE (poly),
since given x, a poly-space machine can go over all y of the same length as x and check if
(x, y) ∈ L. Therefore by our assumption, R ∈ ZP − Search − IP . Furthermore, observe
that each yes instance of R has only one solution (since L is a function). Therefore, by
Lemma 34, L = R ∈ NP . To summarize, we have shown that under the assumption
ZP − Search− IP = Search− PSPACE (poly), any PSPACE language that is a length-
presesrving function is also an NP language. It is left to show that if NP (PSPACE
then there is some language in PSPACE\NP that is a length-preserving function: given
L ∈ PSPACE\NP , take L′ = {(x, x) | x ∈ L}.

4.2.2 The Statistical Setting

In this section we show conditions under which a search problem that has a Search− SZK
protocol is “close to being” in Prefix− SZK, in the sense that the zero-knowledge property
that we are able to guarantee for the decision problem L̂ from the definition of Prefix−SZK
is weaker. Specifically we show that under some conditions a Search− SZK protocol can be
modified so as to output unique solutions for any yes instance. As we will see, this modification
preserves soundness and perfect completeness, but unfortunately the zero-knowledge property
gets weaker. Then we will use (a variant of) Lemma 23 to conclude that the search problem
is in some class which is a relaxation of Prefix− SZK. We define the classes HV − ZK,
Search − HV − ZK and Prefix − HV − ZK as follows (where HV stands for ‘honest
verifier’):

Definition 36 (HV−ZK). We say a promise decision problem L = (LY ES, LNO) ∈ HV−ZK
if there is a triplet (P, V, S) such that:

• (P, V) is an IP protocol for L.

• Honest verifier zero knowledge: S is an expected PPTM and for any x ∈ LY ES,

view
(P,V)
V (x) ≈ S (x, V) .

21

Definition 37 (Search − HV − ZK). We say that the promise search problem R =
(RY ES, LNO) ∈ Search−HV − ZK if there is a triplet (P, V, S) such that

• (P, V) is a Search− IP protocol for R.

• Honest verifier zero knowledge: S is an expected PPTM and for any x ∈ LRY ES
:

view
(P,V)
V (x) ≈ S (x, V, (P, V) (x))

Definition 38 (Prefix−HV −ZK). We say that R = (RY ES, LNO) ∈ Prefix−HV −ZK
if there exists a promise decision problem L̂ =

(
L̂Y ES, L̂NO

)
∈ HV − ZK such that

• L̂Y ES ⊆ RY ES.

• L̂NO = ((LRY ES
∪ LNO)× {0, 1}∗) \RY ES.

• For every x ∈ LRY ES
there is some y ∈ RY ES (x) such that (x, y) ∈ L̂Y ES.

• L̂Y ES is polynomially bounded.

First we notice that Lemmas 18 and 23 still hold when switching every appearance of ZK
with HV −ZK: this can be readily seen by noting that the simulators constructed in the proofs
are essentially the same simulators which are guaranteed by the assumptions in the lemmas.
Thus, if we show conditions under which a search problem R that has a Search − SZK
protocol also admits a Search−HV − SZK protocol that outputs unique solutions for any
yes instance, then in particular we can conclude that R ∈ Prefix−HV − SZK.

We will focus on public-coin Search− SZK protocols. These are protocols where every
verifier message is a uniformly-distributed string that is independent from the rest of the
messages, and the output of the protocol is a deterministic function of the transcript. That
is, the verifier does not utilize any randomness that was not sent to the prover in one of
the messages. Public-coin Search − SZK protocols that have perfect completeness have
the following property: any transcript that is generated from an interaction with the honest
prover corresponds to some legal solution, even if the verifier is not honest. To be more
formal, Let (P, V, S) be a public-coin Search− SZK protocol for some search problem R.
Let’s assume that the number of rounds in the protocol is m (|x|) and each message has
length q (|x|). Let’s also assume that the prover sends the first message. Hence each possible
transcript in the protocol has the following form:

(p1, v1, . . . , pm, vm)

where vi and pi are the i’th verifier and prover message (respectively), and for any i, vi
and pi are binary strings of length q (|x|). Each of the messages is a random variable that
depends on the verifier and prover randomness. When the honest verifier runs the protocol,
all the vi’s are uniform and independent, and the perfect completness property asserts that
for each of the 2m(|x|)q(|x|) possible message tuples that the verifier can send, and for each of

22

the possible honest prover message tuples (the amount of which can be much smaller than
2m(|x|)·q(|x|)), the resulting transcript corresponds to some solution that the honest verifier
outputs. In particular, even if a cheating verifier runs the protocol and sends messages that
are not uniform or independent, the resulting transcript still corresponds to some solution
as long as the prover runs his predescribed strategy. The cheating verifier can of course
decide to output something other than that solution. Now, recall that for any instance x
and verifier V ∗, view

(P,V ∗)
V ∗ (x) is the concatenation of the input x, the randomness of V ∗ and

the transcript produced by the interaction. We denote by sol the function that takes such
a view and outputs its corresponding solution. This function, as explained above, is well
defined when the view corresponds to a yes instance, and it is essentially the function which
is computed by the honest verifier after the final message in the transcript is transmitted.
Note that sol can be extended also to views that do not correspond to an interaction with
the honest prover: this is defined as the output computed by the honest verifier from this
view. Now, given some distribution on views D (such as the output of a simulator, or the real
view of the verifier) and a solution y ∈ supp ((P, V) (x)), we denote by [D | y] the induced
distribution conditioned on sol (D) = y. Formally, for any t

Pr [[D | y] = t] := Pr [D = t | sol (D) = y] .

The main result of this section is presented next:

Theorem 39. Let R = (RY ES, LNO) ∈ Search− SZK with respect to a public-coin protocol
(P, V, S) that has the following properties:

• For any x ∈ LRY ES
, sol (S (x, V, (P, V) (x))) = (P, V) (x) . I.e., the transcript output

by the simulator when run on the honest verifier always corresponds to the solution that
it started with.

• The first message in the protocol is sent by the prover, and that message contains the
solution that the honest verifier outputs when the prover is honest.

Then R ∈ Prefix−HV − SZK.

To prove this we will need to following lemma.

Lemma 40. Let (P, V, S) be a public coin Search − SZK protocol for a search problem
R = (RY ES, LNO), and let V ∗ be some verifier strategy for which:

• For any x ∈ LRY ES
, sol (S (x, V ∗, (P, V) (x))) and (P, V) (x) are identically distributed.

• For any x ∈ LRY ES
, sol

(
view

(P,V ∗)
V ∗ (x)

)
and (P, V) (x) are identically distributed.

Then for any x ∈ LRY ES
:∥∥∥S (x, V ∗, (P, V) (x))− view

(P,V ∗)
V ∗ (x)

∥∥∥
= Ey←(P,V)(x)

[∥∥∥[S (x, V ∗, (P, V) (x)) | y]−
[
view

(P,V ∗)
V ∗ (x) | y

]∥∥∥]
23

Proof. Let x ∈ LRY ES
. Denote

A := S (x, V ∗, (P, V) (x))

B := view
(P,V ∗)
V ∗ (x)

C := yx

We have:

‖A−B‖ =
∑
t

|Pr [A = t]− Pr [B = t]|

=
∑

y∈supp(yx)

Pr [yx = y]
∑

t:sol(t)=y

∣∣∣∣ Pr [A = t]

Pr [yx = y]
− Pr [B = t]

Pr [yx = y]

∣∣∣∣ (1)

Now, if sol (t) = y and A = t then
sol (A) = y

and therefore, recalling that sol (A) is distributed exactly like yx, we get

Pr [A = t]

Pr [yx = y]
=

Pr [A = t ∧ sol (A) = y]

Pr [sol (A) = y]

= Pr [A = t | sol (A) = y]

= Pr [[A | y] = t]

In a very similar manner we get

Pr [B = t]

Pr [yx = y]
= Pr [[B | y] = t]

Plugging in 1 we get

‖A−B‖ =
∑
y

Pr [yx = y]
∑

t:sol(t)=y

|Pr [[A | y] = t]− Pr [[B | y] = t]|

= Ey←(P,V)(x) [‖[A | y]− [B | y]‖]

as required.

We now turn to prove Theorem 39.

Proof. Let x ∈ LRY ES
. The first bullet in the theorem statement implies in particular that

sol (S (x, V, (P, V) (x))) is distributed exactly like (P, V) (x). Furthermore, by definition

sol
(
view

(P,V)
V (x)

)
is also distributed exactly like (P, V) (x). Hence, by Lemma 40,∥∥∥S (x, V, (P, V) (x))− view

(P,V)
V (x)

∥∥∥
= Ey←(P,V)(x)

[∥∥∥[S (x, V, (P, V) (x)) | y]−
[
view

(P,V)
V (x) | y

]∥∥∥] (2)

24

Let y = y (x) be any string and denote by Py the prover that sends y in the first message (a
specific deterministic y, in contrast to a sample from (P, V) (x) as in the original protocol)
and then acts exactly as P in the rest of the protocol. Clearly it holds that[

view
(P,V)
V (x) | y

]
= view

(Py ,V)
V (x)

Furthermore, the first bullet in the theorem statement implies that

[S (x, V, (P, V) (x)) | y] = S (x, V, y)

Plugging into (2) we get∥∥∥S (x, V, (P, V) (x))− view
(P,V)
V (x)

∥∥∥ = Ey←(P,V)(x)

[∥∥∥S (x, V, y)− view
(Py ,V)
V (x)

∥∥∥]
Denote

yx := arg min
y∈supp(P,V)(x)

∥∥∥S (x, V, y)− view
(Py ,V)
V (x)

∥∥∥
Now, since

∥∥∥S (x, V, (P, V) (x))− view
(P,V)
V (x)

∥∥∥ is negligible then by an averaging argu-

ment so is

∥∥∥∥[S (x, V, yx)]− view
(Pyx ,V)
V (x)

∥∥∥∥. Consider the new protocol (Pyx , V, S). We have

shown that it is zero-knowledge against the honest verifier. Furthermore, the soundness
and perfect completeness of the original protocol clearly imply the soundness and perfect
completeness of the new protocol. Thus (Pyx , V, S) is a public-coin Search −HV − SZK
protocol for R that outputs a unique solution for any yes instance. Hence, by (the variant
of) Lemma 23, R ∈ Prefix−HV − SZK.

5 Pseudo-deterministic Zero-Knowledge Protocols

Pseudo-deterministic protocols for search problems were introduced by [19]. Loosely speaking,
these are protocols for search problems between an efficient verifier and a computationally
unbounded prover that output some predetermined canonical solution with high probability.
Moreover, the soundness condition in these protocols requires that no malicious prover can
cause the verifier to output a solution other than the canonical one but with small probability.
Consequently these protocols can be repeated to reduce the soundness error, potentially
making them more suitable for applications. In this section we define pseudo-deterministic
zero knowledge protocols for search problems, where the verifier is guaranteed not to learn
anything else apart from the canonical solution. We show how these protocols relate to
previous notions introduced in this work and give an example of such a protocol for the
Find−Isomorphic−V ertex problem that was introduced in a previous section. We start with
the definition of pseudo-deterministic protocols as given in [19], with our usual modification
of requiring perfect completeness.

25

Definition 41 (The class PSD − IP). We say that the promise search problem R =
(RY ES, LNO) ∈ PSD − IP if there is a triplet (P, V, c) where V is a PPTM, P is computa-
tionally unbounded and c : LRY ES

→ {0, 1}∗ is a function such that:

• “Completeness”: For any x ∈ LRY ES
, Pr [(P, V) (x) = c (x)] = 1.

• “Soundness”:

– For any x ∈ LNO and any P ∗, Pr [(P ∗, V) (x) = ⊥] ≥ 1
2
.

– For any x ∈ LRY ES
and any P ∗, Pr [(P ∗, V) (x) ∈ {c (x) ,⊥}] ≥ 1

2
.

Remark 42. PSD − IP ⊆ Search− IP .

We turn to our definition of pseudo-deterministic zero knowledge protocols.

Definition 43 (The class PSD − ZK). We say that the promise search problem R =
(RY ES, LNO) ∈ PSD − ZK if there is a tuple (P, V, S, c) such that:

• (P, V, c) is a PSD − IP protocol for R.

• (P, V, S) is a Search− ZK protocol for R.

Remark 44. We define the class PSD −HV − ZK analagously.

Note that a PSD−IP protocol (P, V) satisifes |supp ((P, V) (x))| = 1 for any yes instance
x. Thus, by Lemma 23 we have:

Lemma 45. PSD − ZK ⊆ Prefix− ZK.

There is more to be said regarding the inclusion of Lemma 45. Recall that in the proof

of Lemma 23, the protocol for the promise problem L̂ =
(
L̂Y ES, L̂NO

)
from the definition

of Prefix− ZK consisted of, given input (x, y), running the given Search− ZK protocol
on x and accepting if its output was y. It was important for the soundness argument that
L̂NO contained no element (x′, y′) ∈ RY ES, since otherwise, some other prover could have,
in principle, caused the verifer to output y′ when running the given Search− ZK protocol
on x′, causing the protocol to accept a no instance with high probability. In the case that
the given Search− ZK protocol is pseudo-deterministic, no prover can cause the verifier to
output a solution that is not the canonical one and therefore soundness also holds when L̂NO

contains elements (x, y) ∈ RY ES such that y 6= c (x).

Definition 46 (The class Single− Prefix− ZK). We say that a promise search problem
R = (RY ES, LNO) ∈ Single − Prefix − ZK if there exists a promise decision problem

L̂ =
(
L̂Y ES, L̂NO

)
∈ ZK such that

• L̂Y ES ⊆ RY ES.

• L̂NO = ((LRY ES
∪ LNO)× {0, 1}∗) \LY ES.

26

• For every x ∈ LRY ES
there is a unique y ∈ RY ES (x) such that (x, y) ∈ L̂Y ES.

• L̂Y ES is polynomially bounded - there is some polynomial p (·) such that if (x, y) ∈ L̂Y ES

then |y| ≤ p (|x|).

Remark 47. We define Single− Prefix−HV − ZK accordingly.

The discussion above shows that PSD − ZK ⊆ Single − Prefix − ZK. In fact, the
reverse inclusion also holds and our proof of this fact is essentially identical to the proof of
18 (the only difference is that in the soundness argument here, one only needs to consider
the case that y 6= c (x)) and therefore we choose to omit it. Finally, we note that the entire
discussion above also holds when only considering honest verifier zero knowledge classes:

Theorem 48.

• PSD − ZK = Single− Prefix− ZK.

• PSD −HV − ZK = Single− Prefix−HV − ZK.

5.1 A Pseudo-Deterministic Statistical Zero Knowledge Protocol
for Find− Isomorphic− V ertex

Recall the decision problem Isomorphic − V ertex which is the language of all the tuples
(G1, G2, v1, v2) where G1, G2 are graphs on n vertices, v1, v2 are some vertices in G1, G2

respsectively and there is some isomorphism between G1 and G2 that matches v1 to v2.
We have shown previously that Find − Isomorphic − V ertex ∈ Search − PZK and
Isomorphic − V ertex ∈ PZK. The complement Isomorphic− V ertex is the language
of all tuples (G1, G2, v1, v2) where either G1, G2 are not isomorphic or they are but v1, v2 are
not.

Lemma 49. Isomorphic− V ertex ∈ HV − PZK.

Proof. The following protocol is a mild modification of the classic interactive proof for the
Graph−Non− Isomorphism problem from [12]: on input (G1, G2, v1, v2):

P V
randomly choose j ∈ {1, 2}
choose a random permutation
ϕ : [n]→ [n]

G′ = ϕ (Gj) , v
′ = ϕ (vj)←−−−−−−−−−−−−−−−−−

j′−→
accept iff j = j′

If G1 and G2 are not isomorphic then G′ can be isomorphic to only one of the input graphs,
and P can determine which one since he is computationally unbounded. Similarly he can

27

find out j from G′, v′ in the case that G1, G2 are isormorphic but v1 and v2 are not. Thus
we have shown that the above protocol has perfect completeness. If, on the other hand,
G1, G2 are isomorphic and v1, v2 are also isomorphic, then the pair G′, v′ does not contain
any information about j, implying that P can not do better than guessing. Hence the
protocol has soundness error 1

2
. To show honest verifier perfect zero knowledge, the simulator

S ((G1, G2, v1, v2) , V) randomly chooses j, a random perumatation ϕ, and outputs

((G1, G2, v1, v2) , j, ϕ, ϕ (Gj) , ϕ (vj) , j)

and it is clear that this output is identical to the view of the honest verifier in the protocol
when interacting with the honest prover on a yes instance.

In the next theorem we give an example of a pseudo-deterministic honest verifier perfect
zero knowledge protocol for Find− Isomorphic− V ertex. Intuitively, the solution to the
yes instance (G1, G2, v1) will be the lexicographically first vertex in G2 that is isomorphic to
v1, and the protocol will contain as sub-protocols the proofs of the facts that the solution
vertex is indeed isomorphic to v1 and that all the vertices that are lexicographically smaller
than the solution are not isomorphic to v1. We will see that the fact that each sub-protocol
is honest verifier perfect zero knowledge implies that the entire protocol is honest verifier
perfect zero knowledge.

Theorem 50. Find− Isomorphic− V ertex ∈ PSD −HV − PZK

Proof. Let (PI , VI , SI) and
(
PI , VI , SI

)
be the HV − PZK protocols for Isomorphic −

V ertex and Isomorphic− V ertex respectively. We construct the following protocol for
Find−Isomorphic−V ertex: on input (G1, G2, v1), where {u1, . . . , un} is the lexicographical
ordering of the vertices of G2:

P V
Determine uk, the
lexicographically first
vertex in G2 that
is isomorphic to v1.

uk−→(
PI , VI

)
(G1, G2, v1, u1)

...(
PI , VI

)
(G1, G2, v1, uk−1)

(PI , VI) (G1, G2, v1, uk)
output uk if all
the sub-protocols
succeeded and
otherwise output ⊥.

We will now prove that the protocol above is indeed a PSD − HV − PZK protocol.
Perfect completeness follows from the perfect completeness of the protocols (PI , VI) and

28

(
PI , VI

)
. As for soundness: if (G1, G2, v1) is a no instance then G1 and G2 are not isomorphic,

in which case (G1, G2, v1, uk) is a no instance of Isomorphic − V ertex implying that the
last sub-protocol fails w.p at least 1

2
. If (G1, G2, v1) is a yes instance but uk is not the

lexicographically first vertex in G2 that is isomorphic to v1 then clearly at least one of the
inputs of the sub-protocols is a no instance of the respective sub-protocol, and soundness
again follows from the soundness of that sub-protocol. It is left to prove honest verifier perfect
zero knowledge. Formally, we defined the view of the honest verifier as the concatenation of
the shared input, the verifier’s randomness and all messages exchanged. Note that for the
protocol above, this view is exactly

(
view

(PI ,VI)
V I

(G1, G2, v1, u1) , . . . , view
(PI ,VI)
V I

(G1, G2, v1, uk−1) , view
(PI ,VI)
VI

(G1, G2, v1, uk)

)
up to some permutation of the locations within the tuple. We will treat the tuple above as
the real view to facilitate the presentation. We construct the simulator S, that on input
(G1, G2, v1, V, uk) should produce a tuple which is identical to the above. Not suprisingly, S
simply outputs:(

SI

(
G1, G2, v1, u1, VI

)
, . . . , SI

(
G1, G2, v1, uk−1, VI

)
, SI (G1, G2, v1, uk, VI)

)
Now, each sub-view is independent from the rest and each sub-simulator output is independent
from the rest. Hence we can use Fact 2.3 from [24] to conclude that∥∥∥view(P,V)

V (G1, G2, v1)− S ((G1, G2, v1, V, uk))
∥∥∥

≤
k−1∑
i=1

∥∥∥∥view(PI ,VI)
V I

(G1, G2, v1, ui)− SI

(
G1, G2, v1, ui, VI

)∥∥∥∥
+
∥∥∥view(PI ,VI)

VI
(G1, G2, v1, uk)− SI (G1, G2, v1, uk, VI)

∥∥∥ = 0

as required.

In [14] it was proved that any honest verifier statistical zero knowledge proof can be
transformed into a statistical zero knowledge proof (that is zero knowledge against any possible
verifier), i.e. HV − SZK = SZK. In particular, the characterization PSD−HV − PZK =
Single−Prefix−HV −PZK implies that PSD−HV −PZK ⊆ PSD−SZK, giving us:

Theorem 51. Find− Isomorphic− V ertex ∈ PSD − SZK.

Acknowledgements. We thank Ofer Grossman and Oded Goldreich for helpful discussions.

29

References

[1] Amos Beimel, Paz Carmi, Kobbi Nissim, and Enav Weinreb. Private approximation
of search problems. In Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 119–128.
ACM, 2006.

[2] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian, Silvio
Micali, and Phillip Rogaway. Everything provable is provable in zero-knowledge. In Shafi
Goldwasser, editor, Advances in Cryptology - CRYPTO ’88, 8th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 21-25, 1988, Proceedings,
volume 403 of Lecture Notes in Computer Science, pages 37–56. Springer, 1988.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,
Illinois, USA, pages 1–10, 1988.

[4] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 11–19, 1988.

[5] Ivan Damg̊ard, Oded Goldreich, Tatsuaki Okamoto, and Avi Wigderson. Honest verifier
vs dishonest verifier in public coin zero-knowledge proofs. In Don Coppersmith, editor,
Advances in Cryptology - CRYPTO ’95, 15th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 27-31, 1995, Proceedings, volume 963 of Lecture
Notes in Computer Science, pages 325–338. Springer, 1995.

[6] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin Strauss, and Rebecca N.
Wright. Secure multiparty computation of approximations. In Fernando Orejas, Paul G.
Spirakis, and Jan van Leeuwen, editors, Automata, Languages and Programming, 28th
International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings,
volume 2076 of Lecture Notes in Computer Science, pages 927–938. Springer, 2001.

[7] Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and
their cryptographic applications. Electronic Colloquium on Computational Complexity
(ECCC), 18:136, 2011.

[8] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press, 2001.

[9] Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge
University Press, 2008.

[10] Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations
of pseudodeterministic algorithms. In Robert D. Kleinberg, editor, Innovations in

30

Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages
127–138. ACM, 2013.

[11] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

[12] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity for all languages in NP have zero-knowledge proof systems. J. ACM,
38(3):691–729, 1991.

[13] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1):1–32, 1994.

[14] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge. In Jeffrey Scott Vitter, editor,
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,
Dallas, Texas, USA, May 23-26, 1998, pages 399–408. ACM, 1998.

[15] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero knowledge be
made non-interactive? or on the relationship of SZK and NISZK. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume
1666 of Lecture Notes in Computer Science, pages 467–484. Springer, 1999.

[16] Oded Goldreich and Salil P. Vadhan. Comparing entropies in statistical zero knowledge
with applications to the structure of SZK. In Proceedings of the 14th Annual IEEE
Conference on Computational Complexity, Atlanta, Georgia, USA, May 4-6, 1999,
page 54. IEEE Computer Society, 1999.

[17] Shafi Goldwasser and Ofer Grossman. Perfect bipartite matching in pseudo-deterministic
RNC. Electronic Colloquium on Computational Complexity (ECCC), 22:208, 2015.

[18] Shafi Goldwasser and Ofer Grossman. Bipartite perfect matching in pseudo-deterministic
NC. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors,
44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 87:1–87:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[19] Shafi Goldwasser, Ofer Grossman, and Dhiraj Holden. Pseudo-deterministic proofs. In
Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference,
ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages
17:1–17:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[20] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

31

[21] Ofer Grossman. Finding primitive roots pseudo-deterministically. Electronic Colloquium
on Computational Complexity (ECCC), 22:207, 2015.

[22] Shai Halevi, Robert Krauthgamer, Eyal Kushilevitz, and Kobbi Nissim. Private approx-
imation of np-hard functions. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis
Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on Theory of Com-
puting, July 6-8, 2001, Heraklion, Crete, Greece, pages 550–559. ACM, 2001.

[23] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. In
Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages
649–658. ACM, 1996.

[24] Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J.
ACM, 50(2):196–249, 2003.

[25] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[26] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS,
pages 160–164, 1982.

32

	Introduction
	Preliminaries
	Interactive Protocols

	Zero Knowledge Protocols for Search Problems
	Perfect Zero Knowledge Protocols For Any Search Problem With Efficiently Verifiable Solutions
	An Example of a Search-PZK Protocol

	Prefix-Completion Problems
	A Complete Problem for Prefix-ZK Based on Any Complete Problem for ZK
	The Relationship Between Search-ZK and Prefix-ZK
	The Computational Setting
	The Statistical Setting

	Pseudo-deterministic Zero-Knowledge Protocols
	A Pseudo-Deterministic Statistical Zero Knowledge Protocol for Find-Isomorphic-Vertex

	References

