
Crash-tolerant Consensus in Directed Graph Revisited∗

Ashish Choudhury† Gayathri Garimella‡ Arpita Patra§ Divya Ravi¶ Pratik Sarkar‖

Abstract

Fault-tolerant distributed consensus is a fundamental problem in secure distributed computing. In this
work, we consider the problem of distributed consensus in directed graphs tolerating crash failures.
Tseng and Vaidya (PODC’15) presented necessary and sufficient condition for the existence of consen-
sus protocols in directed graphs. We improve the round and communication complexity of their protocol.
Moreover, we prove that our protocol requires the optimal number of communication rounds, required
by any protocol belonging to a restricted class of crash-tolerant consensus protocols in directed graphs.

Keywords: Directed graph, Consensus, Crash failure, Round complexity.

1 Introduction

Fault-tolerant reliable consensus [11, 6, 7] is a fundamental problem in distributed computing. Informally, a
consensus protocol allows a set of n mutually distrusting parties, each with some private input, to agree on a
common output. This is ensured even in the presence of a computationally unbounded centralized adversary,
who may corrupt any f out of the n parties and try to prevent the remaining parties from achieving consen-
sus. Since its inception [11], the problem has been widely studied in the literature and several interesting
results have been obtained regarding the possibility, feasibility and optimality of reliable consensus (see
[10, 2, 8, 13] and their references for the exhaustive list of work done in this area). However, all these results
are derived assuming the underlying communication network to be a complete undirected graph, where the
parties are assumed to be directly connected with each other by pair-wise private and authentic channels.
There are scenarios, where such undirected graphs may not be available. For example, in a typical wireless
network, the communication links may support only uni-directional communication. In a radio network,
a base station can communicate to the receiving nodes, but communication in the other direction may not
be possible. Further, it may be the case that a node is connected to some other node “indirectly” via inter-
mediate nodes. Thus in a practical network like the Internet it is hard to ensure that every user is directly
connected with every other user by a dedicated channel. This scenario can be appropriately modelled by
a more generic incomplete directed graph. We are interested in the consensus problem in such arbitrary
directed graphs.
∗A preliminary version of this paper got published as a brief announcement in DISC 2017.
†International Institute of Information Technology, Bangalore India. Email: ashish.choudhury@iiitb.ac.in.

Financial support from Infosys foundation acknowledged.
‡International Institute of Information Technology, Bangalore India. Email: AnnapurnaGayathri.Garimella@iiitb.org.
§Department of Computer Science and Automation, Indian Institute of Science, Bangalore India. Email:

arpita@csa.iisc.ernet.in.
¶Department of Computer Science and Automation, Indian Institute of Science, Bangalore India. Email:

divya.ravi@csa.iisc.ernet.in.
‖Department of Computer Science and Automation, Indian Institute of Science, Bangalore India. Email:

pratik.sarkar@csa.iisc.ernet.in.

1

In a series of beautiful work [14, 15, 16], the possibility of consensus protocols in arbitrary directed
graphs is studied, where necessary and sufficient conditions are presented for the existence of consensus
protocols. Separate conditions are derived for the fail-stop and Byzantine adversary model. The fail-stop
model is a weaker adversary model and assumes that the adversary can crash any f nodes during the execu-
tion of a protocol. The more stronger Byzantine adversary model assumes that the adversary has full control
over the set of f nodes under its control, which can be forced to behave in any arbitrary fashion during the
protocol execution. In this work, we revisit the crash-tolerant version of the consensus problem in arbitrary
directed graphs; specifically we look into the round complexity of crash-tolerant consensus protocols in
arbitrary directed graphs. We stress that even though the fail-stop model is a weaker adversary model, it is
practically motivated. For instance, in a typical distributed system, the chances that some of the “compo-
nents” of the system stop working are more compared to some of the components behaving erratically. More
specifically, it is relatively simpler for an attacker to crash a system and make it stop working completely,
compared to taking full control of it and make it behave in an erroneous fashion. Hence studying the round
complexity of consensus protocols in arbitrary directed networks against fail-stop corruption is practically
motivated.

Existing Results for Crash-tolerant Consensus in Directed Graphs: The necessary (and sufficient) con-
dition for the existence of crash-tolerant consensus protocol in directed graphs is presented in [14] and this
is not a straight-forward extension of the necessary condition for the existence of crash-tolerant consensus in
undirected1 graphs. Informally, in directed graphs the necessary condition demands that even if an arbitrary
set of f nodes crashes, there should still exist a special node in the graph, called source, which should have
a directed path to every other node in the remaining graph (see Section 2 for the formal definition of source
node and other related terms). The authors in [14] proved the sufficiency of their necessity condition by
presenting two consensus protocols, one for the binary and the other for the multi-valued case.2

The protocols of [14] are significantly different from the traditional consensus protocols developed for
undirected graphs. Specially they belong to a special class of consensus protocols, based on “flooding”. In
more detail, the protocols consist of several “phases”, each consisting of d rounds of “send-receive-update”,
where d is called the crash-tolerant diameter of a directed graph. Informally, d is the maximum distance
of any node from a potential source in the graph. Thus any given potential source can propagate its value
to all remaining nodes in a single phase within the d rounds of flooding. In a round every node (including
the source) broadcasts its value to its neighbours. At the end of the round, each node “updates” its value, by
locally applying an update function to the received values. In the subsequent round, nodes broadcast their
updated value. Now, two types of update function applied are a min function for a min phase and a max
function for a max phase. The min function requires nodes to update their value by taking the minimum
of all the received values (including its own value) and symmetrically in the max function nodes update by
taking the maximum of all the received values. In [14], it was also shown that the usage of two different
types of update function is necessary to achieve consensus for anonymous directed graphs.

The binary consensus protocol of [14] requires 2f + 2 alternate min-max phases, each with d rounds.
The round complexity of the protocol is (2f + 2) · d rounds and the communication complexity is O(nfd)
bits (the number of neighbours of a node is O(n)). In [14] the authors claimed that their binary consen-
sus protocol based on min-max strategy cannot be extended trivially to the multi-valued case. Hence they
present a different multi-valued consensus protocol, which in essence runs their binary consensus protocol
K times, when the inputs are in the set {0, . . . ,K}. The idea is to run an instance of the min-max based
binary consensus for each candidate k ∈ {0, . . . ,K} to verify if some source node has a value k and if so,

1In undirected graphs, f +1 node connectivity is both and necessary and sufficient for the existence of crash-tolerant consensus.
2In the binary consensus problem, the inputs of each node is a binary value. On the other hand in the multi-valued case, the

inputs belong to a publicly known domain.

2

then try to reach agreement on this value k. The protocol requires (2f + 2) · d ·K rounds of communication
and the communication complexity is O(nfdK logK) bits since a node has to communicate logK bits to
every neighbour in a round. Clearly the protocol has exponential round and communication complexity, as
K = 2logK .

Our Motivation and Results: In this work, we revisit the consensus protocols of [14] based on min-max
strategy. Our main motivation is to improve the round and communication complexity of their protocols
because the number of communication rounds and the amount of communication done in each round are
crucial resources in a distributed protocol. We consider the binary consensus protocol of [14] and observe
that if instead of d, we allow d + 1 rounds of communication in each of the phases, then it is possible to
achieve consensus with just f+2 alternate min-max phases, thus making the round complexity (f+2)(d+1).
We then show an optimization of our protocol, where we allow only d rounds in the first and the last phase,
thus reducing the round complexity to (f + 2)(d + 1) − 2. Interestingly, we show that our protocol works
even for the multi-valued case, with no modifications what so ever. Hence, unlike [14], the round com-
plexity of our multi-valued consensus protocol is independent of K. The communication complexity of our
protocol is O(nfd logK) bits and for significantly large values of K our protocol improves upon the round
and communication complexity of the multi-valued consensus protocols of [14]. Moreover, we improve the
number of rounds for the binary consensus, for every f, d ≥ 2.

We also address the problem of lower bound on the minimum number of rounds required by any crash-
tolerant consensus protocol in a directed graph, based on min-max strategy and derive three interesting lower
bounds. We first consider the case, where only f+1 min-max phases are allowed in the protocol and with no
restriction on the number of communication rounds in each phase. We show that it is impossible to achieve
crash-tolerant consensus within f + 1 phases. Next we consider min-max based consensus protocols with
at least d rounds in each phase. For such protocols, we show that it is impossible to achieve consensus
in general with (f + 2)(d + 1) − 3 rounds in total. This further shows that our min-max based protocol
with (f + 2)(d+ 1)− 2 rounds is round optimal. Finally we consider min-max based consensus protocols
with exactly d rounds of communication in each phase. Note that the consensus protocols of [14] belong to
this class. For several values of f and d, we show that the minimum number of phases required to achieve
consensus in this case is 2f + 2, thus showing that the binary consensus protocol of [14] has the optimal
number of communication rounds.

All the above lower bounds are derived by presenting non-trivial directed graphs and corresponding
adversary strategies, which ensure that consensus is not achieved till sufficient number of min-max phases
are allowed in the underlying protocol. We stress that different graphs and adversary strategies are required
to derive the lower bound for different cases. Even though the lower bounds are for a restricted class of
protocols (namely the one based on min-max strategy), to the best of our knowledge, these are the first (non-
trivial) lower bounds on the round complexity of consensus protocols in directed graphs. More importantly,
the lower bounds establish that our protocol is the best in terms of the round complexity if one is interested
to design consensus protocols based on min-max strategy. Hence to obtain further improvements in the
round complexity, a different approach (other than the min-max based strategy) is required.

Informal Discussion on Our Protocol: Our starting point is the binary consensus protocol of [14] with
2f + 2 phases, each with d rounds. The correctness of their protocol is based on the guaranteed occurrence
of two consecutive crash-free phases, among the 2f + 2 alternate min-max phases, within which consensus
is shown to be achieved. We observe that if instead of d rounds, we allow d + 1 rounds in each phase then
consensus can be achieved if we either have two consecutive crash-free phases or a crashed phase followed
by a crash-free phase, provided only one node crashes during the crashed phase. The base of our observation
is the following: if during the crashed phase the single node to be crashed is a non-source node, then it is
equivalent to having two consecutive crash-free phases (with source node(s) being unaltered) and so con-

3

sensus will be achieved within these two phases. On the other hand, if during the crashed phase the single
node to be crashed is a source node, then at least one of new source nodes will be at a distance of one from
the crashed source (this observation lies at the heart of our protocol). If the crashed source node sends its
value to one of the new source node before crashing, there will be still d rounds left for this new source
node in the crashed phase to further propagate the crashed source node’s value in the remaining graph. So
in essence, we still get the effect of two consecutive crash-free phases. We further show that with f + 2
alternate min-max phases, there always exist either two crash-free phases or a crashed phase with a single
crash, followed by a crash-free phase, irrespective of the way adversary crashes the f nodes.

Moving from the binary case to the multi-valued case, we find that the above ideas are applicable even
for the multi-valued case. For simplicity, we consider the case when there are two crash-free phases and
without loss of generality, let these be a min phase followed by a max phase. Let λmin be the least value
among the source nodes at the beginning of crash-free min phase. If the non-source nodes have their value
greater than or equal to λmin at the beginning of this phase, then clearly consensus will be achieved at the
end of this min phase itself; this is because each node will update their value to λmin at the end of the min
phase. On the other hand, if some non-source node has a value smaller than λmin at the beginning of the
crash-free min phase, then consensus will not be achieved in this phase. However, at the end of this min
phase, the modified values of all the nodes (both source as well as non-source) is upper bounded by λmin;
moreover all the source nodes will have λmin as their modified value. Hence in the next crash-free phase
which is a max phase, the value λmin of the source nodes will be the maximum value in the graph and hence
consensus will be achieved at the end of the crash-free max phase3. The above argument also works for the
case when there is a crashed phase followed by a crash-free phase, where it is guaranteed that exactly one
node crashes during the crashed phase.

Related Work: In [5], possibility of approximate crash-tolerant consensus in dynamic directed graphs
is studied; informally in an approximate consensus protocol, the fault-free nodes are supposed to produce
outputs within a certain constant ε of each other, where ε > 0. On contrary, we are interested in the exact
consensus, where ε = 0. As mentioned earlier, most of the literature on consensus considers a complete
graph, where parties are connected by pair-wise reliable channels and where the graph is assumed to be
static. However, there are few works which consider different variations of this model. For example, [3]
considers undirected graphs and shows that all-pair reliable communication is not necessary to achieve con-
sensus against Byzantine adversary, provided nodes can use some authentication mechanism. In [1], Byzan-
tine consensus in unknown networks is considered, where the underlying network remains fully connected.
[4, 9] considers fault-free, approximate consensus protocols where there are no faults, but the underlying
graph is partially connected and dynamic. In [12], the authors consider edge corruptions, where edges may
get Byzantine corrupted, but nodes remain fault-free. All these variations of consensus is different from the
setting considered in this paper and so these results are incomparable to ours. Hence we do not consider
these works for further discussion.

Future directions: Our protocol as well as the protocols of [14, 15] are based on min-max strategy. It
will be interesting to explore other classes of consensus protocols, based on the combination of different
strategies. One could also explore a combination of different update functions in each phase, instead of the
same update function being used throughout a phase. We explored only exact consensus in the synchronous
communication setting against crash faults. Finding lower bounds on the round complexity of consensus
protocols (both exact and approximate) in directed graphs against Byzantine adversary is left as a very
interesting and challenging open problem.

3This argument also shows that the binary consensus protocol of [14] with 2f + 2 alternate min-max phases will work for the
multi-valued case as well, with no modifications; this is because there will be always two consecutive crash-free phases.

4

2 Preliminaries, Definitions and Notations

We consider a distributed synchronous network modelled as a simple directed graph G = (V,E) where V
represents the set of n nodes {v1, v2, . . . , vn} and E represents the set of directed edges between the nodes
in V. The communication network is assumed to be static; i.e. edges and nodes are not allowed to be inserted
or deleted dynamically. Node vi can communicate to node vj if and only if the directed edge (vi, vj) ∈ E.
Moreover we assume that each node can send messages to itself. For a node v ∈ V, the set N+

v denotes
the set of “outgoing neighbours” of v in G. That is, N+

v = {vj |(v, vj) ∈ E}. Thus, v can “directly” send
messages to the nodes in the set N+

v . The set N−v denotes the set of “incoming neighbours” of v in G. That
is, N−v = {vj |(vj , v) ∈ E}. Thus, the nodes in N−v can “directly” send messages to the node v. The network
is assumed to be synchronous where all the nodes are synchronised and there exists a known upper bound
on message delay. Any protocol in such a network is assumed to proceed as a sequence of rounds, where in
every round, each node sends messages to its outgoing neighbours, receives messages sent by its incoming
neighbours in that round, followed by local computation. We assume a computationally unbounded adaptive
adversary A, which can corrupt any f nodes in G in a fail-stop fashion, where a corrupted node can crash
at any point of time during the execution of a protocol; however till the node crashes, it honestly follows
the instructions of the underlying protocol. We also assume that if a node crashes during a round, then an
arbitrary subset of its outgoing messages for that round are delivered to the corresponding neighbours, as
decided by A. We next define the consensus problem.

Definition 2.1 (Multi-valued Crash-Tolerant Consensus [14]). Let Π be a synchronous protocol for the
n nodes in G, where each node vi ∈ V has an input ini ∈ {0, . . . ,K} and each party has an output
outi ∈ {0, . . . ,K}, where K is publicly known. Then Π is called a crash-tolerant consensus protocol
tolerating A if the following holds: (1) Agreement: All fault-free nodes should have the same output. That
is, for every fault-free nodes vi, vj ∈ V, the condition outi = outj holds. (2) Validity: the output at any
fault-free node must be some node’s input. That is outi ∈ {in1, . . . , inn} should hold. (3) Termination:
every fault-free node eventually decides on an output.

We next recall few definitions from [14].

Definition 2.2 (Reduced Graph [14]). Given a directed graph G = (V,E) and a subset F ⊂ V, the reduced
graph induced by F is GF = (VF,EF), where VF = V− F and EF = E \ {(vi, vj)|vi ∈ F or vj ∈ F}.

Definition 2.3 (Crash-tolerant Node Connectivity [14]). A graph G = (V,E) is said to satisfy k crash-
tolerant node connectivity if for any F ⊂ V with |F| ≤ k, there is at least one node s ∈ V \ F that has a
directed path to all the nodes in the corresponding reduced graph GF.

Definition 2.4 (Source of a Reduced Graph [14]). Let G = (V,E) be a graph and let F ⊂ V, with GF
being the corresponding reduced graph. Then a node vs in GF is called the source of GF if there exists a
directed path from vs to all the nodes in GF.

For a reduced graph GF, we denote by SGF the set of source nodes. The necessity condition for the existence
of crash-tolerant consensus in a directed graph is given in Theorem 2.5.

Theorem 2.5 (Necessary Condition for Crash-Tolerant Consensus [14]). Crash-tolerant consensus tol-
erating A is possible in a directed graph G only if G has f crash-tolerant node connectivity.

We end this section with the definition of crash-tolerant diameter d of a directed graph. Informally it denotes
the maximum number of rounds over all possible reduced graphs induced by various subsets of size atmost
f , within which the message of a potential source node can reach all the remaining nodes in a reduced graph.

5

Definition 2.6 (Crash-tolerant Diameter [14]). A spanning tree in a directed graph G = (V,E) is said
to be a rooted spanning tree rooted at a node vr ∈ V if vr has a directed path to all the nodes in V. Let
tree(vr,G) denote the set of rooted spanning trees, rooted at vr. We define height(vr,G) as the minimum
height of all the trees T ∈ tree(vr,G). That is:

height(vr,G) = min
T ∈ tree(vr,G)

(height of T).

The crash-tolerant diameter d is defined as follows:

d = max
F ⊂ V, |F| ≤ f

max
vs ∈ SGF

(height(vs,GF)).

Note that in a directed graph with n nodes, d is always upper bounded by n.

2.1 Some Properties of Graphs with f Crash-Tolerant Node Connectivity

In this section we state few properties of reduced graphs which will be used in the rest of the paper. In
the rest of this section we consider an arbitrary directed graph G = (V,E) which has f crash-tolerant
node connectivity. Moreover we consider a scenario where during the execution of an arbitrary protocol,
A crashes a subset of nodes F ⊂ V, where |F| ≤ f . The corresponding reduced graph is denoted as
GF = (VF,EF). If A further crashes additional |T| nodes in GF, with |F ∪ T| ≤ f , then the corresponding
reduced graph is denoted as GF′ = (VF′ ,EF′), where F′ = F ∪ T denotes the set of nodes, crashed by A
so far. We use the notation GF → GF′ to denote the transition when the additional nodes in T get crashed.
The set SGF and SGF′

will denote the set of source nodes for GF and GF′ respectively. Note that both SGF

and SGF′
will be non-empty, as we are assuming G to have f crash-tolerant node connectivity. Due to space

constraints, the proofs of the following properties are available in Appendix A.
The following proposition states that if a node has a directed path to a source node in a reduced graph

then the node also is a source node of the reduced graph.

Proposition 2.7. If a node vi ∈ VF has a directed path to any node vj ∈ SGF in GF, then vi ∈ SGF .

As an immediate corollary of the above we get the following:

Corollary 2.8. Let vi, vj ∈ SGF with vi 6= vj . Then all intermediate nodes along any directed path4 between
vi and vj also belong to SGF .

We next claim that during the execution of a protocol, a non-source node in a reduced graph cannot become
a source node in the next reduced graph, as long as there exists at least one source node in the old reduced
graph that is not crashed by the adversary.

Claim 2.9. Consider an arbitrary vi ∈ VF, such that vi /∈ SGF . Moreover let vi ∈ VF′ (i.e. node vi is not
crashed during the transition GF → GF′). Let there exist at least one node, say vj ∈ SGF that is not crashed
by the adversary during the transition GF → GF′ (i.e. vj 6∈ T). Then vi /∈ SGF′

.

Based on the above claim, we next claim that during the execution of a protocol, the source set remains
intact in reduced graphs, unless some subset of nodes within the source set crashes.

Claim 2.10. If during the transition GF → GF′ T ∩ SGF = ∅, then SGF = SGF′
.

Finally we claim that if a source node of GF crashes during the transition GF → GF′ , then at least one of
the outgoing neighbours of this crashed source node will be the source for the next reduced graph.

Claim 2.11. Let T = {vs}, where vs ∈ SGF (i.e. during GF → GF′ the only node to crash is vs). Then
N+
vs ∩ SGF′

6= ∅, where N+
vs denotes the set of outgoing neighbours of vs in the reduced graph GF.

4Note that a directed path will exist from vi to vj and from vj to vi in GF as both vi and vj are source nodes.

6

3 Multi-valued Consensus Protocol Based on Min-Max Strategy

Let G = (V,E) be a directed graph where |V| = n, such that G has f crash-tolerant node connectivity. We
present a multi-valued crash-tolerant consensus protocol called MinMax (see Figure 1) toleratingA. Similar
to the consensus protocols of [14], the algorithm is based on min-max strategy, consisting of f + 2 phases,
with even numbered phases being a min phase while odd numbered phases being a max phase. Each phase
further consists of d+ 1 rounds, where d denotes the crash-tolerant diameter of G.

Protocol MinMax(G)

The input of the ith node is ini where ini ∈ [0,K]. For i = 1, . . . , n, each node vi executes the following code:

• Repeat for phase p = 1 to f + 2:

– If p mod 2 = 0 then repeat the following steps d+ 1 times (Min Phase):

- Send ini to all the nodes in N+
vi .

- Receive values from the nodes ina N−
vi .

- Set ini to the minimum of all the values received.

– Else repeat the following steps d+ 1 times (Max Phase):

- Send ini to all the nodes in N+
vi .

- Receive values from the nodes in N−
vi .

- Set ini to the maximum of all values received.

• Output outi := ini and terminate.

aWe assume that each node can communicate to itself. Hence vi also sends its value to itself and receives the same.

Figure 1: Multi-valued crash-tolerant consensus based on min-max strategy

We now prove the properties of MinMax. We first claim that irrespective of the strategy followed by A
during the execution of MinMax, there always exist either two consecutive crash-free phases or a crashed
phase with a single crash, followed by a crash-free phase. Formally, let ki denote the total number of crashes
that occur during the ith phase of MinMax, where k1 + . . .+ kf+2 ≤ f and each ki ∈ {0, . . . , f}. Then we
have the following lemma.

Lemma 3.1. Irrespective of the strategy followed byA during MinMax, there exists at least one subsequence
ki−1ki such that either ki−1 = 0, ki = 0 or ki−1 = 1, ki = 0, where i ∈ {2, . . . f + 2}.

Proof. We prove the lemma using strong induction, over the values of f .

1. Consider the base case where, f = 1 and the number of phases are f + 2 = 3. The set of all possible
sequence k1k2k3 is {000, 100, 010, 001} and each of them has either the subsequence 00 or 10.

2. Assume the lemma is true for all f where 1 ≤ f ≤ t− 1; i.e. either the subsequence 00 or 10 occurs
among all possible sequence k1k2 . . . kf+2, where f ≤ t− 1.

3. Now consider f = t. We focus on the last term kt+2, where there are two possible cases:

– If kt+2 ≥ 1 then it implies that at most t−1 faults could occur in the first t+1 phases. However
by induction hypothesis it follows that irrespective of the adversary strategy, the subsequence 00
or 10 will occur among all possible sequence k1k2 . . . kt+1 if at most t − 1 faults are allowed
during t+ 1 phases. This automatically implies that the subsequence 00 or 10 will occur among
all possible sequence k1k2 . . . kt+2.

7

– If kt+2 = 0 then we further focus on the term kt+1. If kt+1 has value 1 or 0 we meet our subse-
quence requirement. However if kt+1 ≥ 2 then it implies that at most t− 2 faults could occur in
the first t phases. However by induction hypothesis it follows that irrespective of the adversary
strategy, the subsequence 00 or 10 will occur among all possible sequence k1k2 . . . kt if at most
t − 2 faults are allowed during t phases. This automatically implies that the subsequence 00 or
10 will occur among all possible sequence k1k2 . . . kt+2.

We next claim that if there are two consecutive crash-free phases then protocol MinMax achieves consensus
within those two phases. The idea behind the proof has been already discussed earlier (see section 1). The
formal proof is available in Appendix B due to space constraints.

Lemma 3.2. Let G have f crash-tolerant node connectivity. If during the execution of MinMax there are
two consecutive phases, say pt and pt+1, such that no crash occurs in any of these two phases then consensus
is achieved by the end of phase pt+1.

We next show that consensus will be achieved even if there is crashed phase followed by a crash-free phase,
provided only one node crashes during the crashed phase.

Lemma 3.3. Let G have f crash-tolerant node connectivity. If during the execution of MinMax there are
two consecutive phases, say pt and pt+1, such that only one node crashes during pt and no node crashes
during pt+1, then consensus is achieved by the end of phase pt+1.

Proof: Without loss of generality let pt be a min phase and pt+1 be a max phase. Let F denote the nodes that
have crashed before the phase pt and let GF = (VF,EF) be the reduced graph at the beginning of pt. Let
GF → GF′ denote the transition, where a single node in GF, say vc, crashes during the phase pt, resulting
in the reduced graph GF′ . Let SGF and SGF′

denote the set of source nodes for the reduced graphs GF and
GF′ respectively. If the crashed node vc 6∈ SGF then the proof of the lemma is exactly the same as Lemma
3.2, as in this case SGF = SGF′

(follows from Claim 2.10). So we next consider the case when vc ∈ SGF .
We have two further sub-cases:

• If the node vc crashes during the first round of pt and without propagating its value to any node in
SGF′

: in this case we can effectively ignore the effect of the initial source set SGF . Moreover, from
the second round onward of pt, each node in the source set SGF′

will get the required d rounds of
communication to propagate their value to every other node in GF′ during pt. Furthermore, during
pt+1, the source set remains the same as SGF′

. In essence, this is equivalent to as if pt and pt+1 are
executed over the reduced graph GF′ with at least d rounds of communication, with the source set
being SGF′

and with no crash occurring in these phases. So using exactly the same arguments as in
Lemma 3.2, we can conclude that consensus will be achieved by the end of phase pt+1.

• If the node vc crashes after propagating its value to at least one node in SGF′
: let λ denote the value

of vc at the beginning of pt. We first note that there exists at least one source node, say vs′ ∈ SGF′
,

such that vs′ receives λ from vc at the end of the first round of pt. This is because the node vs′ will be
an outgoing neighbour of the node vc in GF (this follows from Claim 2.11). Moreover, the node vs′
can propagate λ to all the remaining nodes in GF′ during pt. This follows from the definition of d and
the fact that pt has still d rounds of communication left.

Let λmin
G′ denote the minimum value among the nodes in SGF′

at the beginning of pt and let λmin =

min(λ, λmin
G′). We claim that at the end of pt, all the nodes in SGF′

will have λmin as their updated
value. This is because no node in SGF′

will ever see a value smaller than λmin being propagated. Next
we claim that all the non-source nodes in GF′ will have their value updated to λmin or a smaller value

8

at the end of pt. More specifically, if the non-source nodes in GF′ have their value greater than λmin

at the beginning of phase pt, then all these non-source nodes will set λmin as their updated value at
the end of pt and consensus will be achieved at the end of pt. This is because λmin will be propagated
to all these nodes. On the other hand, if some non-source node has a value smaller than λmin at the
beginning of pt, then the node will set a value smaller than λmin as its updated value at the end of pt.
In this case, at the beginning of pt+1, the value λmin will be maximum value of any node. Moreover,
all the nodes in SGF′

will have λmin as their value. Since pt+1 is a max phase and no crash occurs
during pt+1, it follows from the definition of d that λmin will be propagated to all the nodes in GF′ and
every node will set λmin as their updated value at the end of pt+1, thus attaining consensus. 2

The following theorem follows from Lemma 3.1-3.3 and the fact that every node will terminate the protocol
after (f +2)(d+1) rounds. In every round, each node has to send log |K| bits to all its outgoing neighbours
and there are O(n) outgoing neighbours of every node; this proves the communication complexity.

Theorem 3.4. Let G = (V,E) be a directed graph with f crash-tolerant node connectivity and crash-
tolerant diameter d, where |V| = n. Then protocol MinMax is a (f + 2)(d + 1) round protocol for multi-
valued consensus tolerating A. The protocol has communication complexity O(nfd log |K|) bits.

Further optimization in the round complexity of MinMax: In Appendix C we present a modified version
of MinMax called MinMax′′, where we allow the first phase and the last phase to have exactly d rounds;
the remaining f phases still consist of d + 1 rounds of communication. Hence the total round complexity
is (f + 2)(d + 1) − 2. We show that MinMax′′ still achieves consensus. The idea is as follows: we first
consider a variation MinMax′ of MinMax, where only the first phase is restricted to d rounds and show that
MinMax′ still achieves consensus within f + 2 phases. This is argued depending upon whether the first
phase of MinMax′ is crash-free or not. If it is crash-free, then the execution of MinMax′ is “equivalent” to
that of MinMax, where there are d + 1 rounds in the first phase and where the first phase is crash-free. On
the other hand, if the first phase of MinMax′ is not crash-free, then in the remaining f + 1 phases (each of
which has d+ 1 rounds), at most f − 1 crashes can occur. Now using Lemma 3.1, we can say that in these
f + 1 phases, either there will be at least two consecutive crash-free phases or a crashed phase with a single
crash followed by a crash-free phase. So consensus will be achieved by the end of (f + 2)th phase. We
then consider protocol MinMax′′, which is a variation of MinMax′ in that the last phase is now restricted to
d rounds. Now again depending upon whether the last phase of MinMax′′ is crash-free or not we show that
consensus will be achieved by MinMax′′.

4 Lower Bounds on Round Complexity of Consensus Protocols Based on
Min-Max strategy

In this section we consider crash-tolerant consensus protocols based on min-max strategy, consisting of
alternate min and max phases and show few impossibility results regarding the minimum number of rounds
required by consensus protocols. Based on these results, we conclude that our protocol MinMax requires
optimal number of communication rounds. We assume protocols which have alternate min-max phases,
where the first phase is a min phase (this is without loss of generality).

4.1 Impossibility of Consensus in f + 1 Phases (Irrespective of the Number of Rounds)

Consider the family of directed graphs with f -crash-tolerant node connectivity such that every graph G =
(V,E) has the following properties (see Figure 2): V = {v1, v2, ..., vf+3}. The edge set E = {(vi, vj)},
where i < j and 1 ≤ i ≤ f + 2. Clearly |E| = ((f+3)2−(f+3))

2 − 1. The graph has exactly two “sink” nodes

9

vf+2, vf+3, which do not have any outgoing edges. Node v1 has input value 1, while nodes v2, . . . , vf+3

have input value 0. The graph has d = 1.

Figure 2: The family of graphs
in which it is impossible to
achieve consensus in f + 1
phases.

Let ΠMinMax be an arbitrary protocol for G, consisting of f + 1 al-
ternate min-max phases, where the first phase is a min phase. Moreover,
each phase has at least d rounds of communication5. We consider the
following adversary strategy AMinMax by A during ΠMinMax: No crash
occurs during phase p1. Adversary crashes node vi during phase pi+1

for i = 1, . . . , f in the following fashion: during the first round of pi+1,
the node vi sends its value to nodes vi+2, . . . , vf+3 and crashes. Hence,
except vi+1, all the neighbours of vi receive vi’s value. The adversarial
strategy ensures the following: if pi+1 is a min (resp. max) phase, then
vi will be the source node at the beginning of pi+1 with value 0 (resp. 1),
while all the remaining nodes vi+1, . . . , vf+3 will have value 1 (resp. 0).
At the end of pi+1, the node vi+1 will be the source node with value 1 (resp. 0), while all the remaining
nodes vi+2, . . . , vf+3 will have value 0 (resp. 1). Hence at the end of each min (resp. max) phase, all the
nodes in the graph except the source will have value 0 (resp. 1). So at the end of ΠMinMax, the reduced
graph will have nodes vf+1, vf+2 and vf+3, with vf+1 being the source and where vf+2 and vf+3 will have
values, different from vf+1. The formal proof is available in Appendix D.

Theorem 4.1. Consensus will not be achieved in G (Figure 2) by ΠMinMax against the strategy AMinMax.

4.2 Impossibility of Consensus with (f + 2)(d+ 1)− 3 Rounds in Total

Here we consider min-max protocols with f+2 phases and (f+2)(d+1)−3 rounds in total, with each phase
having at least d rounds. We present a family of directed graphs and a corresponding adversarial strategy
against which consensus will not be achieved at the end of f + 2 phases. This shows that the minimum
number of rounds required is (f + 2)(d + 1) − 2, implying that our protocol MinMax′′(optimized variant
of MinMax) is round optimal. Note that the adversarial strategy AMinMax and the graph of Fig 2 cannot be
used to derive the lower bound. This is because if we allow f + 2 phases then consensus will be achieved
in the graph of Fig 2 against AMinMax. Hence we need to modify the graph and also the adversary strategy.
The detailed proof can be found in Appendix E.

4.3 Impossibility of Consensus based on Min-Max Strategy in 2f +1 Phases with d Rounds

Here we consider protocols based on min-max strategy, consisting of 2f + 1 alternate min and max phases,
with each phase having d rounds of communication. For several values of f and d, we show that there exist
graphs for which it is impossible to reach consensus within 2f+1 phases. The adversary strategy in all these
graphs will be the following: without loss of generality, we will assume that the first phase is a min phase.
Hence there will be f + 1 min phases and f max phases. There will be no crash during the min phases and
during each max phase, one new node will get crashed by the adversary. Moreover, the node to be crashed
will be the source node of the reduced graph at the beginning of that phase. It will be always ensured that
every reduced graph has only one source node. It will be ensured that no consensus is achieved during any
of the min phases. This is achieved by ensuring that at the beginning of each min phase, the source has
value 1 and there exists at least one non-source node with value 0. As a result, at the end of each min phase,
the source will retain 1 as its value (as it will never see the value 0 during the min phase because there will
be only one source), while there will be at least one node, which retains 0 as its value. During each of the

5The number of rounds in each phase need to be finite so that ΠMinMax should terminate for each node.

10

f max phases, the adversary will crash the source node. The crashed node will crash during the first round
of a max phase, after sending its value 1 only to the new source of the reduced graph. The new source will
further get d − 1 rounds to propagate the value 1 that it received from the crashed source. However, it will
be ensured that that there is some node with value 0 which is d distance apart from the new source, such that
it never sees the value 1 during the max phase and as a result, it retains its original value 0, thus preventing
consensus being achieved during the crashed max phase.

Presenting a generalized graph which maintains the above properties for a general value of f and d is
an extremely challenging task. But we believe that indeed it is possible to come up with a graph and corre-
sponding adversary strategy for any arbitrary value of f and d. In Appendix F, we present graphs for several
values of f and d, where consensus is achieved only at the end of 2f + 2 phases.

References

[1] E. Alchieri, A. N. Bessani, J. S. Fraga, and F. Greve. Byzantine Consensus with Unknown Participants.
In OPODIS, pages 22–40, 2008.

[2] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulation and Advanced Topics.
Wiley series on Parallel and Distributed Computing, 2004.

[3] P. Bansal, P. Gopal, A. Gupta, K. Srinathan, and P. K. Vasishta. Byzantine Agreement Using Partial
Authentication. In DISC, pages 389–403, 2011.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Opti-
mization and Neural Computation Series. Athena Scientific, 1997.

[5] B. Charron-Bost, M. Függer, and T. Nowak. Approximate Consensus in Highly Dynamic Networks:
The Role of Averaging Algorithms. In ICALP, pages 528–539, 2015.

[6] D. Dolev. The Byzantine Generals Strike Again. Journal of Algorithms, 3(1):14–30, 1982.

[7] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy Impossibility Proofs for Distributed Consensus
Problems. In PODC, pages 59–70. ACM, 1985.

[8] M. Fitzi. Generalized Communication and Security Models in Byzantine Agreement. PhD thesis, ETH
Zurich, 2002.

[9] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of Groups of Mobile Autonomous Agents Using
Nearest Neighbor Rules. IEEE Trans. Automat. Contr., 48(6):988–1001, 2003.

[10] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[11] M. Pease, R. E. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults. JACM,
27(2):228–234, 1980.

[12] U. Schmid, B. Weiss, and I. Keidar. Impossibility Results and Lower Bounds for Consensus under
Link Failures. SIAM J. Comput., 38(5):1912–1951, 2009.

[13] L. Tseng. Recent Results on Fault-Tolerant Consensus in Message-Passing Networks. In SIROCCO,
volume 9988 of Lecture Notes in Computer Science, pages 92–108, 2016.

11

[14] L. Tseng and N. H. Vaidya. Crash-Tolerant Consensus in Directed Graphs. CoRR, abs/1412.8532,
2014. Full version appeared as [15].

[15] L. Tseng and N. H. Vaidya. Fault-Tolerant Consensus in Directed Graphs. In PODC, pages 451–460.
ACM, 2015.

[16] L. Tseng and N. H. Vaidya. A Note on Fault-tolerant Consensus in Directed Networks. SIGACT News,
47(3):70–91, 2016.

A Proof of the Properties of Reduced Graphs

Proposition 2.7: If a node vi ∈ VF has a directed path to any node vj ∈ SGF in GF, then vi ∈ SGF .

Proof. Since vj ∈ SGF is a source, it has a directed path to every node in GF. Hence if vi has a di-
rected path to vj , it implies that vi has a directed path as well to every node in GF through vj .

Claim 2.9: Consider an arbitrary vi ∈ VF, such that vi /∈ SGF . Moreover vi ∈ VF′ (i.e. node vi is not
crashed during the transition GF → GF′). Let there exist at least one node, say vj ∈ SGF that is not crashed
by the adversary during the transition GF → GF′ (i.e. vj 6∈ T). Then vi /∈ SGF′

.

Proof. We prove the claim by contradiction. Let vi /∈ SGF be a non-source node in GF and let vi ∈ SGF′
be

a source node in GF′ , while there still exist a source-node vj ∈ SGF in GF that has not crashed during the
transition GF → GF′ . Since vi ∈ SGF′

, node vi must have a directed path to node vj in GF′ . This path would
exist in GF as well since during the transition GF → GF′ , no new edges are added. Thus by proposition 2.7,
vi ∈ SGF as well, which is a contradiction.

Claim 2.10: If during the transition GF → GF′ , T ∩ SGF = ∅, then SGF = SGF′
.

Proof. We prove the claim by contradiction. Assume SGF 6= SGF′
. We know by Claim 2.9 that there

cannot exist a node vi such that vi /∈ SGF but vi ∈ SGF′
, unless SGF ⊆ T. However, this cannot hold since

it is given that T∩SGF = ∅. Therefore, for SGF 6= SGF′
to hold, there must exist a node, say vi ∈ SGF such

that vi /∈ SGF′
, even though T ∩ SGF = ∅. We next show that this is not possible. For this we consider two

cases, depending upon the size of SGF .

– Case 1: If |SGF | > 1: Let vj ∈ SGF′
(note that such a vj exists as we are considering graphs with

f crash-tolerant node connectivity). Since vi ∈ SGF still exists in GF′ , it follows from claim 2.9 that
vj ∈ SGF as well. The path from vi to vj in GF must consist only of nodes in SGF (By Corollary 2.8).
Since the set of nodes T that crashed during transition is such that T ∩ SGF = ∅, the path from vi to
vj still exists in GF′ as well. So by Proposition 2.7, vi ∈ SGF′

, which is a contradiction.

– Case 2: If |SGF | = 1, comprising of the node vi alone: By the guarantee of f crash-tolerant node
connectivity, there must exist at least one source node, say vj ∈ SGF′

. Moreover vi 6= vj (as we are
assuming vi /∈ SGF′

). Since vi ∈ SGF has not crashed during the transition, it follows from claim 2.9
that vj ∈ SGF . Thus both vi, vj ∈ SGF which contradicts the assumption that |SGF | = 1.

Claim 2.11: Let T = {vs}, where vs ∈ SGF (i.e. during the transition GF → GF′ the only node to
crash is a source node vs). Then N+

vs ∩SGF′
6= ∅, where N+

vs denotes the set of outgoing neighbours of vs in

12

the reduced graph GF.

Proof. By the f crash-tolerant node connectivity guarantee, after the described transition, there exists
at least one source node, say vs′ in GF′ ; i.e. vs′ ∈ SGF′

. Also, since vs ∈ SGF it must have a path to vs′ in
GF. If there exist a direct edge from vs to vs′ in GF (i.e vs′ ∈ N+

vs), then N+
vs ∩SGF′

6= ∅. On the other hand,
if there exists a directed path vs → vi → . . .→ vs′ in GF, where there is a direct edge from vs to vi in GF,
then by proposition 2.7 we have vi ∈ SGF′

. Thus in this case also N+
vs ∩ SGF′

6= ∅ holds.

B Properties of the Protocol MinMax

Lemma 3.2: Let G have f crash-tolerant node connectivity. If during the execution of MinMax there are
two consecutive phases, say pt and pt+1, such that no crash occurs in any of these two phases then consensus
is achieved by the end of phase pt+1.

Proof. Without loss of generality let pt be a min phase and pt+1 be a max phase. Let F be the set of nodes
that have crashed before phase pt. So pt and pt+1 are executed over the reduced graph GF = (VF,EF) with
the set of source nodes SGF . Note that the source set does not change during these two phases since no crash
occurs. Let λmin denote the minimum value among the nodes in SGF at the beginning of pt and let Smin

GF
be

the set of source nodes possessing the minimum value λmin. Now there are two possible cases:

• All the nodes in the set VF\Smin
GF

have values which are greater that or equal to λmin at the beginning of
pt: In this case, at the end of pt, all the nodes in VF will have their value equal to λmin. This is because
pt is a min phase and by the definition of crash-tolerant diameter, the value λmin will propagate to
each node in VF within d rounds of communication. Hence in this case, consensus is achieved at the
end of pt.

• At least one node in the set VF\SGF has value less than λmin at the beginning of pt: In this case, all the
nodes in the source set SGF will have their value set to λmin at the end of pt. This is because no node
in the source set SGF will ever see a value smaller than λmin being propagated during pt, otherwise it
contradicts the assumption that λmin is the minimum value among the nodes in SGF at the beginning
of pt. Moreover all the nodes in the set VF \SGF will have their values set to a value which is less than
or equal to λmin at the end of pt. This is because pt is a min phase and the minimum value propagated
to any node in VF \ SGF within d rounds of communication will be either λmin or a value less that it.
This implies that at the beginning of the next phase pt+1, the value λmin will be the maximum value
of any node. Since all the nodes in SGF have λmin as their value during pt+1 and since pt+1 is a max
phase, no node will ever see a value greater than λmin being propagated during pt+1. Moreover by the
definition of d, the value λmin will be propagated to every non-source node during pt+1. Hence at the
end of pt+1 all the nodes in GF will set their values to λmin, thus achieving consensus at the end of
pt+1.

C Optimizing the Round Complexity of MinMax

In this section, we present a slightly modified version of the MinMax protocol, called MinMax′′ that reduces
the round complexity by an additional two rounds. MinMax′′ is similar to MinMax except with the following
difference: The first phase p1 and the (f + 2)th phase pf+2 comprises of d rounds as opposed to (d + 1)
rounds in MinMax. The following set of lemmas prove that MinMax′′ achieves consensus.

13

We first consider a variation MinMax′ of MinMax, where only the first phase is restricted to d rounds.
We show that irrespective of the adversary strategy, consensus will be achieved by MinMax′ within f + 2
phases, for any value of f .

Lemma C.1. Let G be a directed graph with f ′ crash-tolerant node connectivity and crash-tolerant diam-
eter d. Let MinMax′ be a protocol consisting of f ′ + 2 alternate min-max phases, where the first phase has
d rounds and the remaining phases have d + 1 rounds. If at most f ′ crashes occur during MinMax′, then
irrespective of the adversary strategy, consensus will be achieved at the end of MinMax′.

Proof. Let the sequence k′1k
′
2 . . . k

′
f ′+2 denote the faults occurred during the f ′ + 2 phases of MinMax′,

where each k′i ∈ {0, . . . , f ′} and k′1 + . . .+ k′f ′+2 ≤ f ′. Now consider the value of k′1. Depending upon the
behaviour of the adversary, we have the following two cases:

• k′1 = 0: In this case, the execution of MinMax′ is equivalent to an execution of MinMax, where the
first phase is crash-free. This follows from the definition of crash-tolerant diameter d since d rounds
suffice for a source’s value to propagate to all nodes in a graph. The remaining execution of MinMax′

(namely the remaining f ′+1 phases) will be exactly the same as in MinMax. Now substituting f = f ′

in Theorem 3.4, it follows that consensus will be achieved at the end of MinMax′.

• k′1 ≥ 1: This further implies that at most (f ′ − 1) crashes can occur during the remaining (f ′ + 1)
phases, namely p2, . . . , pf ′+2. Each of the remaining (f ′ + 1) phases have d + 1 rounds. Moreover,
the difference between the number of remaining phases and the total number of faults that can occur
in these remaining phases is atleast two. Hence from Lemma 3.1 there will be either two consecu-
tive crash-free phases or a crashed phase with a single crash followed by a crash-free phase among
p2, . . . , pf ′+2. More specifically, we consider f = f ′ − 1 and rename the remaining f ′ + 1 = f + 2
phases {p2 . . . pf ′+2} as {p1, . . . ,pf+2}, with ki denoting the number of faults that can occur during
pi, where ki ∈ {0, . . . , f} and k1 + . . . + kf+2 ≤ f . It follows via Lemma 3.1 that there exists at
least one subsequence ki−1ki such that either ki−1 = 0, ki = 0 or ki−1 = 1, ki = 0. Now, it follows
directly from lemmas 3.2 and 3.3 that MinMax′ achieves consensus.

We next consider a variation MinMax′′ of MinMax′, where the last phase is restricted to d rounds (note
that the first phase is implicitly restricted to d rounds). We show that irrespective of the adversary strategy,
consensus will be achieved by MinMax′′ within f + 2 phases, for any value of f .

Lemma C.2. Let G be a directed graph with f ′′ crash-tolerant node connectivity and crash-tolerant diam-
eter d. Let MinMax′′ be a protocol consisting of f ′′ + 2 alternate min-max phases, where the first and the
last phase has d rounds and the remaining phases have d + 1 rounds. If at most f ′′ crashes occur during
MinMax′′, then irrespective of the adversary strategy, consensus will be achieved at the end of MinMax′′.

Proof. Let the sequence k′′1k
′′
2 . . . k

′′
f ′′+2 denote the faults caused by the adversary during the f ′′ + 2 phases

of MinMax′′, where each k′′i ∈ {0, . . . , f ′′} and k′′1 + . . .+ k′′f ′′+2 ≤ f ′′. Now consider the value of k′′f ′′+2.
Depending upon the behaviour of the adversary, we have the following two cases:

• k′′f ′′+2 = 0: In this case, the execution of MinMax′′ is equivalent to an execution of MinMax′, where
the last phase is crash-free. This follows from the definition of crash-tolerant diameter d since d
rounds suffice for a source’s value to propagate to all nodes in a graph. The remaining execution of
MinMax′′ (namely the first f ′′ + 1 phases) will be exactly the same as in MinMax′. Now substituting
f ′ = f ′′ in Lemma C.1, it follows that consensus will be achieved at the end of MinMax′′.

14

• kf ′′+2 ≥ 1: This further implies that at most (f ′′ − 1) crashes could occur during the first (f ′′ + 1)
phases, namely p1, . . . , pf ′′+1. Moreover, p1 will have d rounds, while p2, . . . , pf ′′+1 will have d+ 1
rounds each. This is equivalent to an execution of MinMax′ protocol with at most f ′ = f ′′−1 crashes
and f ′ + 2 = f ′′ + 1 phases {p1, . . . pf ′′+1}. It now follows from lemma C.1 that MinMax′′ achieves
consensus by the end of pf ′′+1.

The following theorem directly follows from Lemma C.2 by substituting f ′′ = f and Theorem 3.4.

Theorem C.3. Let G = (V,E) be a directed graph with f crash-tolerant node connectivity and crash-
tolerant diameter d, where |V| = n. Then protocol MinMax′′ is a (f + 2)(d + 1) − 2 round protocol for
multi-valued consensus tolerating A. The protocol has communication complexity O(nfd log |K|) bits.

D Proof of Impossibility of Consensus based on Min-Max Strategy in f + 1
Phases

Theorem 4.1: Consensus will not be achieved in G (Figure 2) by ΠMinMax against the strategy AMinMax.

Proof. To prove the lemma, we consider each phase of ΠMinMax:

• At the end of p1, there will no change in the values of the node in G. This is because this is a min
phase. As node v1 will only see value 1 throughout p1, its value will remain 1. While v2, . . . , vf+3

will retain 0 as their value, even though they see both 0 and 1 during p1.

• At the end of p2, the reduced graph GF1
will consist of nodes v2, . . . , vf+3, with v2 being the source

node, where F1 = {v1} is the set of nodes crashed till now. Moreover, v2 will retain 0 as its value,
while v3, . . . , vf+3 will set 1 as their value. This is because, as per the strategy of AMinMax, the
crashed node v1 sends 1 to all the nodes in GF1

, except v2 and since it is a max phase, the nodes
v3, . . . , vf+3 will set 1 as their input. However, v2 will not see any value other than 0 throughout p2.

• At the end of p3, the reduced graph GF2
will consist of nodes v3, . . . , vf+3, with v3 being the source

node, where F1 = {v1, v2} is the set of nodes crashed till now. Moreover, v3 will retain 1 as its
value, while v4, . . . , vf+3 will set 0 as their value. This is because, as per the strategy of AMinMax,
the crashed node v2 sends 0 to all the nodes in GF2

, except v3 and since it is a min phase, the nodes
v4, . . . , vf+3 will set 0 as their value. However, v3 will not see any value other than 1 throughout p3.

• In general, if f is odd, then the last crashed phase pf+1 will be a max phase. The reduced graph GF
will consist of nodes vf+1, vf+2 and vf+3, with values 0, 1 and 1 respectively; here F = {v1, . . . , vf}
denote the set of crashed nodes till the end of pf+1. Hence no consensus will be achieved among
vf+1, vf+2 and vf+3 at the end of ΠMinMax. For a demonstration of the execution ΠMinMax against
AMinMax for odd value of f , see Figure 3.

On the other hand, if f is even, then the last crashed phase pf+1 will be a min phase. The reduced
graph GF will consist of nodes vf+1, vf+2 and vf+3, with values 1, 0 and 0 respectively. Hence no
consensus will be achieved among vf+1, vf+2 and vf+3 at the end of ΠMinMax. For a demonstration
of the execution ΠMinMax against AMinMax for even value of f , see Figure 4.

15

Figure 3: Execution of ΠMinMax in G against AMinMax for f = 1. The first figure denotes the values of the
nodes at the beginning of p1. No crash occurs and the values of the nodes remain the same at the end of p1.
The second figure denotes the reduced graph due to the crash of v1 during p2, with the values of the nodes
at the end of p2.

Figure 4: Execution of ΠMinMax in G against AMinMax for f = 2. The first figure denotes the values of the
nodes at the beginning of p1. No crash occurs and the values of the nodes remain the same at the end of p1.
The second figure denotes the reduced graph due to the crash of v1 during p2, with the values of the nodes
at the end of p2. The third figure denotes the reduced graph due to the crash of v2 during p3, with the values
of the nodes at the end of p3.

E Impossibility of Consensus with (f + 2)(d+ 1)− 3 Rounds in Total

Π is an arbitrary min-max based protocol with f+2 phases p1 . . . , pf+2 and (f+2)(d+1)−3 rounds, with
each phase having at least d rounds. We first derive few properties of Π, based on counting arguments. To
begin with we claim that in Π, there exist at least three phases, each with exactly d rounds of communication.

Lemma E.1. In protocol Π there exist at least three phases consisting of exactly d rounds each.

Proof. We prove the lemma by contradiction. Suppose there are at most two phases with exactly d rounds.
Then, the remaining f phases must have at least d+1 rounds. This sums upto a total of 2(d)+(f)(d+1) =
2d+ fd+ f , which is one more than the total number of rounds of Π i.e (f + 2)(d+ 1)− 3 = fd+ f +
2d+ 2− 3 = 2d+ fd+ f − 1. Thus, we have arrived at a contradiction which proves that Π must have at
least three phases with exactly d rounds each.

Based on Lemma E.1, we next show that in Π, other than the first and the last phase, there exists at least
one “intermediate phase” p` ∈ {p2, . . . , pf+1} consisting of exactly d rounds; moreover if p` 6= pf+1 then
it holds that the phase p`+2 in Π has at most d + 1 rounds6. More specifically, let r1, . . . , rf+2 denote the
number of rounds in phase p1, . . . , pf+2 of Π respectively, where each ri ≥ d and where r1 + . . .+ rf+2 =
(f + 2)(d+ 1)− 3. Then we have the following lemma.

6Note that if p` = pf+1 then there is no phase p`+2 in Π. If phase p`+2 exists in Π then it will have either d or d + 1 rounds
because in Π each phase has at least d rounds.

16

Lemma E.2. In protocol Π, one of the following holds:

• There exists a phase p` ∈ {p2, . . . , pf}, where r` = d and r`+2 ≤ d+ 1.

• rf+1 = d.

Proof. We prove the lemma by contradiction. So assume that none of the two conditions hold in protocol
Π. Hence rf+1 ≥ d + 1. From Lemma E.1 we know that are at least three phases consisting of d rounds
each, which further implies that there exists at least one phase p` ∈ {p2, . . . , pf}, with r` = d. Note that
as per our assumption, we have r`+2 ≥ d + 2 for every such p`. Now we have the following two cases,
depending upon the total number of phases with d rounds in Π:

• Π has exactly three phases of d rounds: consider r1 = rf+2 = d and r` = d for exactly one
p` ∈ {p2, . . . , pf}. Moreover, r`+2 ≥ d + 2. Furthermore ri ≥ d + 1, for all i ∈ {2, . . . f + 1}
and i 6= `, ` + 2. This sums upto a total of at least 3(d) + d + 2 + (f − 2)(d + 1) = 2d + fd + f
rounds, which is at least one more than the available number of rounds in Π and so we arrive at a
contradiction.

• Π has more than three phases of d rounds: Let there be m + 2 phases with d rounds each, where
m > 1. Consider r1 = rf+2 = d. Moreover, as per our assumption, rf+1 ≥ d + 1. Furthermore for
each of them phases p` ∈ {p2, . . . , pf} with d rounds, the corresponding p`+2 phase has at least d+2
rounds. This sums upto a total of at least (m+ 2)(d) +m(d+ 2) + (f − 2m)(d+ 1) = 2d+ fd+ f
rounds, which is at least one more than the available number of rounds in Π and so we arrive at a
contradiction.

Figure 5: The family of graphs in which it
is impossible to achieve consensus in f + 2
phases with each round having at least d
rounds and with total (f + 2)(d + 1) − 3
rounds.

Now consider the directed graph G (see Figure 5) with f crash-
tolerant node connectivity and with crash-tolerant diameter d.
We next recall the adversary strategy AΠ consisting of sub-
strategies A1

Π and A2
Π against the protocol Π, executed over

G:

• From phase p1 to p`−1, the sub-strategyA1
Π is followed,

which is exactly the same as the strategy AMinMax.
Namely p1 is crash-free. Then in each of the subsequent
phase p2, . . . , p`−1, the source node crashes during the
first round of the phase after sending its value to all its
outgoing neighbours, except the next source in the L1
layer.

• Between p` and p`+2, the sub-strategy A2
Π is followed:

at the beginning of phase p`, the node v`−1 in the L1
layer will be the source node. During the first round
of p`, the source v`−1 crashes after sending its value to
the next source v`. The next phase p`+1 is a crash-free
phase. During p`+2, the source node v` crashes in one
of the following two ways, depending upon whether p`+2 has d or d+ 1 rounds:

– p`+2 has d rounds: here v` crashes after sending its value to all its neighbours (both in the L1
layer as well as the P (1) layer), except the next source v`+1.

17

– p`+2 has d + 1 rounds: here v` crashes after sending its value only to its neighbours in the L1
layer (and not to the neighbours in P (1) layer), except v`+1.

• For the remaining phases p`+3, . . . , pf+2, sub-strategy
A1

Π is followed, where in each phase, the source node in
L1 layer crashes after sending its value to all its neigh-
bour (inL1 layer and P (1) layer), except the next source
in the L1 layer.

Note that in the above description, we assumed that p` 6= pf+1, so that phase p`+2 exists in Π. In case
p` = pf+1, then A1

Π is followed from p1 to pf , while A2
Π is followed during pf+1 and pf+2. We now prove

the following theorem.

Theorem E.3. Let Π be a min-max protocol wth f + 2 phases with total (f + 2)(d+ 1)− 3 rounds, where
each phase has at least d rounds. Then consensus will not be achieved in G (Figure 5) by Π against AΠ.

Proof of Theorem E.3: For simplicity, we first assume that p` 6= pf+1, so that phase p`+2 exists in Π. We
next analyse the outcome of the adversary strategy AΠ against Π over the graph G in Fig 5.

• Phase p1, . . . , p`−1: No change occurs in the graph during p1 as it is a crash-free min phase. At the
end of p1, the source node v1 has value 1, while all the remaining nodes in the graph has value 0. Due
to the adversary strategy A1

Π, the following invariant is maintained at the end of each phase pi for
i = 2, . . . , ` − 1: the source of the reduced graph will be vi. If pi is a min phase then vi has value 1,
while all the remaining nodes have value 0. On the other hand if pi is a max phase then vi has value
0, while all the remaining nodes have value 1. Hence consensus is not achieved in any of the phases
p1, . . . , p`−1.

• Phase p`, p`+1 and p`+2: Without loss of generality, let p` be a max phase, implying that p`+1 and
p`+2 are min and max phase respectively. We analyse each of these three phases separately.

– Phase p`: At the beginning of p`, node v`−1 will be the source node with value 1, while all the
remaining nodes in the reduced graph will have value 0. As per the adversary strategy, at the
end of the first round of p`, the new source v` will have value 1, as it is a max phase. This value
further gets propagated to all other nodes in the graph, except vT , within the remaining d − 1
rounds of p`. At the end of p`, all the nodes in the reduced graph have value 1, except the node
vT , which retains the value 0. This is because vT is at a distance d from the new source v`.
Hence consensus is not achieved in this phase.

– Phase p`+1: as per the adversary strategy this is a crash-free phase. However, due to the presence
of backward edges from vT to the nodes in P (d − 1) and to the node v`+1, the value 0 of vT
starts propagating backward. So even though there is no crash during p`+1, by the end of p`+1,
all the nodes in the graph except the source v`, reset their value to 0. Note that v` never sees the
value 0 and hence it retains the value 1. Hence consensus is not achieved in this phase.

– Phase p`+2: here there are two cases, depending upon whether p`+2 has d or d+ 1 rounds.

∗ p`+2 has d rounds: here the value 1 is passed to all the neighbours of the source v`, except
v`+1, at the end of the first round after which v` crashes. As there are still d − 1 rounds
left in p`+2, the value 1 further propagates to all the remaining nodes in the reduced graph.
Hence at the end of this phase, except the node v`+1, all the nodes have value 1 and so
consensus is not achieved in this phase.

18

∗ p`+2 has d + 1 rounds: here the value 1 is passed to all the neighbours of the source v`,
except v`+1 and the nodes in layer P (1), at the end of the first round after which v` crashes.
As there are still d rounds left in p`+2, the value 1 further propagates to all the remaining
nodes in the reduced graph. Hence at the end of this phase, except the node v`+1, all the
nodes have value 1 and so consensus is not achieved in this phase. Note that it is important
that this phase has at most d + 1 rounds, as other wise the node v`+1 would also receive 1
from vT if there are d + 2 rounds in this phase. This is because once v` crashes, node vT
also becomes a source node, apart from v`+1.

• Phase p`+3, . . . , pf+2: Note that the invariant condition that was maintained at the end of p2, . . . , p`−1

is re-instated at the end of p`+2. Namely, one of the source nodes v`+1 has a value 0, while all the
remaining nodes have value 1. The invariant is going to be retained for phase p`+3, . . . , pf+2. More
specifically, the following is ensured at the end of each phase pi for i = `+ 3, . . . , f + 2: the source
of the reduced graph will be vi−1 (and not vi). If pi is a min phase then vi−1 has value 1, while all
the remaining nodes have value 0. On the other hand if pi is a max phase then vi−1 has value 0,
while all the remaining nodes have value 1. Hence consensus is not achieved in any of the phases
p`+3, . . . , pf+2.

Once pf+2 is over the reduced graph consists of nodes vf+1, vf+2 and vf+3, along with all the P
nodes and vT . The source of the reduced graph will be vf+1 having a value different from all the
remaining nodes in the graph, all of which will have the same value.

We next consider the case when p` = pf+1. In this case, phase p`+2 does not exist in Π. Here A1
Π is

followed from p1 to pf , while A2
Π is followed during pf+1 and pf+2. We analyse the different phases of Π

in this case.

• Phase p1, . . . , pf : Here no change occurs in the graph during p1. The following invariant is main-
tained at the end of each phase pi for i = 2, . . . , f : the source of the reduced graph will be vi. If pi is
a min phase then vi has value 1, while all the remaining nodes have value 0. On the other hand if pi is
a max phase then vi has value 0, while all the remaining nodes have value 1. Hence consensus is not
achieved in any of the phases p1, . . . , pf .

• Phase pf+1: Without loss of generality, let pf+1 be max phase. At the beginning of pf+1, node vf
will be the source node with a value 1, while all the remaining nodes in the reduced graph will have
value 0. As per the adversary strategy, at the end of the first round of pf+1, the new source vf+1 will
have value 1, as it is a max phase. This value further gets propagated to all other nodes in the graph,
except vT , within the remaining d−1 rounds of pf+1. At the end of pf+1, all the nodes in the reduced
graph have value 1, except the node vT , which retains the value 0. This is because vT is at a distance
d from the new source v`. Hence consensus is not achieved in this phase.

• Phase pf+2: As per the adversary strategy, this is a crash-free phase. Since it is a min phase, the value
0 of vT gets propagated back to all the nodes of the graph, except the source node vf+1, which retains
its value 1. Hence consensus is not achieved in this phase. 2

F Impossibility of Consensus in 2f+1 Min-Max Phases with d Rounds Each

Here we show the impossibility of consensus in 2f + 1 alternate min-max phases for different values of f
and d, where each phase has d rounds of communication.

19

Lemma F.1. Let f = 1 and d ≥ 1. Then there exist directed graphs with f crash-tolerant node connectivity
and crash-tolerant diameter d, and an adversary strategy for A, where consensus can be achieved only if
there are 2f + 2 alternate min and max phases, where each phase has d rounds of communication.

Proof: Consider the family of graph given in Fig. 6, with the initial values of the nodes given in the figure.
The graph has crash-tolerant diameter d = k where k ≥ 1 and has f crash-tolerant node connectivity. The
graph contains k + 2 nodes where in the first phase vs is the initial source. It has a direct edge to all the
nodes. In this graph vi has a direct edge only to vj , for i ∈ {1, . . . , k− 1} and j = i+ 1, and vk has a direct
edge to the sink vT . It is easy to verify that the graph has crash-tolerant node connectivity of 1: if vs crashes
then v1 becomes the source, else vs is the source. If v1 becomes the source then it is at a distance k from the
node vT and so d = k in the graph.

The adversarial strategy in the graph is as follows: the first phase is a crash-free min phase, due to which
no change will occur to the value of the nodes in the graph. This is because the source vs sees only value
1, while the remaining nodes will retain 0 as their value, as this is a min phase. In the next phase which
is a max phase, the source vs crashes during the first round after sending its input only to the source of the
reduced graph, namely the node v1. Moreover, this new source v1 will get d−1 = k−1 rounds to propagate
the value 1 to the nodes v2, . . . , vk. As a result, at the end of second phase, the nodes v1, . . . , vk will set 1 as
their value as it is a max phase, However node vT will still retain 0 as its value, since it never sees the value
1. During the third phase which is a crash-free min phase, no change happens in the graph. Specifically, the
nodes v1, . . . , vk will only see the value 1; on the other hand even though vT sees the value 1 as well as 0, it
retains 0 as its value since this is a min phase. Hence no consensus will be achieved between v1, . . . , vk and
vT at the end of the third phase. During the fourth phase there will be no crash (as f = 1) and consensus
is achieved, where all the nodes have value 1. In Fig. 6, we present the transition table with the values of
each node at the end of each round of each of the four phases. In the table, the symbol “X” denotes that the
corresponding node has crashed. 2

Figure 6: The graph for the case f = 1 and d = k, with the corresponding transition table.

20

Lemma F.2. Let d = 1 and f ≥ 1. Then there exist directed graphs with f crash-tolerant node connectivity
and crash-tolerant diameter d, and an adversary strategy for A, where consensus can be achieved only if
there are 2f + 2 alternate min and max phases, where each phase has d rounds of communication.

Proof: Consider the family of directed graphs given in Fig. 7, with crash-tolerant diameter d = 1 and which
has f crash-tolerant node connectivity, where f = k. The initial value of the nodes are also given in the
figure. The graph contains k + 2 nodes where in every phase there is always one source. The initial source
vs and the potential sources vi have a direct edge to all the jth nodes in the graph, for i ∈ {1, . . . , k − 1}
and j > i. There is one node vT in the graph which is the sink of the graph and all the other nodes have
outgoing edges to this sink.

The adversarial strategy in this graph is as follows: the first phase is a crash-free min phase, due to which
no changes occur in the value of the nodes. Then each subsequent min phase is also a crash-free min phase.
During each max phase, the adversary crashes only node, namely the source of the current reduced graph,
during the first round of the max phase. Moreover, before crashing, the source node sends its value only to
the source of the next reduced graph. For instance, during the first max phase (which is overall the second
phase in the protocol), the source vs crashes after sending its value 1 only to the source of the next reduced
graph, namely v1. Since d = 1, it is ensured that the value of the crashed source node does not propagate
further in the graph during a crashed max phase. The manner in which the crashed source node propagates
its value during a max phase , it is ensured that in the immediate next min phase (which is crash-free), no
node in the reduced graph will change their value. This is because there will be only one source node in the
reduced graph, and with value 1, and throughout the min phase it sees only value 1. On the other hand, the
non-source nodes will see both 0 and 1 and will retain 0 as their input. As there will be f = k crashed max
phases, it follows that at the end of phase number 2f , the reduced graph will be left with nodes vk and vT ,
with values 1 and 0 respectively and with vk as the source. During the phase number 2f + 1, no change
will occur in the graph and hence no consensus is achieved between vk and vT . The consensus is finally
achieved in phase number 2f + 2. The transition table with the values of each node at the end of each round
of each of the 2f + 2 phases is given in Fig. 7. 2

Figure 7: The graph for the case f = k and d = 1, with the corresponding transition table.

Lemma F.3. Let d = 2 and f = 2. Then there exist directed graphs with f crash-tolerant node connectivity
and crash-tolerant diameter d, and an adversary strategy for A, where consensus can be achieved only if
there are 2f + 2 alternate min and max phases, where each phase has d rounds of communication.

21

Proof: Consider the first graph shown in Fig. 8, along with the initial value of the nodes. There are four
“levels” in the graph, where each level has a specific function. The first level (L1) contains the initial source
and the source nodes for the subsequent reduced graphs. The second level (L2) contains nodes whose goal
is to “pump” the value 0 into the graph during the second min phase; looking ahead, the value 0 will be
pumped to all the nodes, except the “current” source node, which will retain the value 1, thus preventing
consensus during the second min phase. The fourth level (L4) contains a “sink” node, which will not achieve
consensus within 2f + 1 phases. The third level (L3) makes sure that each source node is at a distance of
d = 2 from the sink. All the nodes in L1 have edges to all the nodes in L3, denoted by the “

39 ” symbol in
the graph. The same holds for the nodes in L2. Nodes in L3 have edges to L2 denoted by the “

29 ” symbol.
It is easy to verify that the graph has a crash-tolerant connectivity of two and has d = 2.

The adversary strategy is the following: no crash occurs during the first phase and hence there is no
change in the values of the nodes in the graph at the end of the first phase. During the first round of the
second phase (second graph in Fig. 8), the source node crashes and passes on its value 1, only to the next
node, which becomes the new source of the reduced graph. In the second round, the new source further
transmits this value to L3 and L1, due to which all of them attain the value 1 at the end of phase two. The
nodes in L2 and L4 remain unaffected, since one more round is required to propagate 1 to them. The third
phase (third graph in Fig. 8) is a crash-free min phase, and the nodes in L2 reset the value of the rightmost
node in L1 and the nodes in L3 by pumping 0. At the end of the third phase, all the nodes have value 0
except the second node in L1, which is the source of the current reduced graph. In the fourth phase (fourth
figure in Fig. 8), the second node in L1 crashes during the first round, propagating its value 1 only to the
next node in L1, which now becomes the new source. The new source further transmits its value 1 to L2
and L3 in the next round, but it fails to propagate 1 to L4, as this further requires one more round. Thus at
the end of the fourth phase, all the nodes in the reduced graph have value 1, except the node in L4. During
the firth phase (the second last figure in Fig. 8), no change occur in the graph and consensus is not achieved.
Finally consensus will be achieved during the sixth phase (the last figure in Fig. 8) which is a crash-free
phase. 2

Lemma F.4. Let d = 2 and f = k, where k ≥ 3. Then there exist directed graphs with f crash-tolerant
node connectivity and crash-tolerant diameter d, and an adversary strategy for A, where consensus can
be achieved only if there are 2f + 2 alternate min and max phases, where each phase has d rounds of
communication.

Proof: We first explain how to extend the graph for f = 2, d = 2 (the first figure in Fig. 8) to f = 3, d = 2;
the extension to f = k and d = 2 is done in a natural fashion. The graph for the case f = 3, d = 2 is
given in Fig. 9. For increasing the value of f we increase the “width” of the graph by adding three extra
nodes in L1, L2 and L3, denoted in the graph by blue circles. Correspondingly, new directed edges need to
be included which are indicated in blue colour. We include one node in L1, since three nodes will crash and
so we need to add one source node too. The extra node in L2 is used to reset the third node in L1 from left
during third phase. The node in L3 is used to preserve the f crash-tolerant property, as otherwise the node
in L4 gets disconnected from the graph in case if three nodes in L3 get crashed.

The basic intuition for the graph construction is that in every max phase, the source node will crash and
transmit its value 1 to the next source node. The new source node will transmit this value further to all the
other nodes that are within a distance d − 1 apart from it. There will be some nodes which are d distance
apart, and they will retain their original value 0 and prevent the graph from attaining consensus. Also there
will be some pumping nodes, which will be at d distance apart from the source nodes. In the next min phase,
the source will contain 1 and all nodes that were d − 1 distance will contain 1. The rest of the nodes will

22

Figure 8: The graph showing the impossibility of achieving consensus within 2f + 1 phases for f = 2 and
d = 2. The figures from left to right show the value of nodes in each graph at the end of the first, second,
third, fourth, fifth and sixth phase respectively.

have 0 from previous min phase. The pumping node (in L2) will provide 0 to the next possible (potential)
source and also make whole graph attain the value 0, except the current source node. The pumping nodes
will also shift towards the right in L2. Note that different nodes in L2 play the role of pumping node during
different min phase. The pumping node in the second min phase (which is overall the third phase in the
protocol) is the first node (from left) in L2, whereas in the third min phase (which is overall the fifth phase in
the protocol) it is the second node in L2. Note that the third (the rightmost) node in L2 always retain value
0, till the sixth phase, since this node pumps the value 0 to the other nodes in L2 during the min phases. In
Fig. 10, we pictorially represent the value of each node at the end of each of the eight phases.

23

Figure 9: Extending from f = 2 to f = 3 with d = 2. The nodes and edges in blue colour represent the
additional nodes and edges which need to be incorporated.

Figure 10: The graph showing the impossibility of achieving consensus within 2f + 1 phases for f = 3 and
d = 2. The figures from left to right show the value of nodes in each graph at the end of the first, second,
third, fourth, fifth, sixth, seventh and eighth phase respectively.

24

	Introduction
	Preliminaries, Definitions and Notations
	Some Properties of Graphs with f Crash-Tolerant Node Connectivity

	Multi-valued Consensus Protocol Based on Min-Max Strategy
	Lower Bounds on Round Complexity of Consensus Protocols Based on Min-Max strategy
	Impossibility of Consensus in f + 1 Phases (Irrespective of the Number of Rounds)
	Impossibility of Consensus with (f+2)(d+1) - 3 Rounds in Total
	Impossibility of Consensus based on Min-Max Strategy in 2f + 1 Phases with d Rounds

	Proof of the Properties of Reduced Graphs
	Properties of the Protocol MinMax
	Optimizing the Round Complexity of MinMax
	Proof of Impossibility of Consensus based on Min-Max Strategy in f + 1 Phases
	Impossibility of Consensus with (f+2)(d+1) - 3 Rounds in Total
	Impossibility of Consensus in 2f+1 Min-Max Phases with d Rounds Each

