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Abstract. The Cascaded LRW2 tweakable block cipher was introduced
by Landecker et al. at CRYPTO 2012, and proven secure up to 22n/3

queries. There has not been any attack on the construction faster than
the generic attack in 2n queries. In this work we initiate the quest towards
a tight bound. We first present a distinguishing attack in 2n1/223n/4

queries against a generalized version of the scheme. The attack is sup-
ported with an experimental verification and a formal success probabil-
ity analysis. We subsequently discuss non-trivial bottlenecks in proving
tight security, most importantly the distinguisher’s freedom in choosing
the tweak values. Finally, we prove that if every tweak value occurs at
most 2n/4 times, Cascaded LRW2 is secure up to 23n/4 queries.

Keywords: LRW2, Cascaded LRW2, tweakable block cipher, tightness.

1 Introduction

A block cipher is a family of permutations that is indexed via a secret key. While
block ciphers are omnipresent in cryptographic permutations, they inherently
lack flexibility and many applications of block ciphers are either implicitly or
explicitly designed from a tweakable block cipher: a function Ẽ : K×T ×M→
M that is a family of permutations indexed by secret key k ∈ K and public
tweak t ∈ T . Tweakable block ciphers were formalized by Liskov, Rivest, and
Wagner [19] and find a broad range of applications, most notably in the direction
of authenticated encryption (such as OCB [15,32,33], COPA [1], AEZ [11], and
Deoxys [13,29]) and in XTS disk encryption [9].

This work centers around a generic tweakable block cipher design that was
introduced in Liskov et al.’s original paper [19]. It internally uses a block cipher
E, and is defined as follows:

LRW2((k, h), t,m) = E(k,m⊕ h(t))⊕ h(t) , (1)

where k is a block cipher key and h an XOR universal hash function. The con-
struction is strongly related with Rogaway’s XEX [32] (in turn used in OCB1,
OCB2, OCB3, and XTS disk encryption), and extensions by Chakraborty and
Sarkar [3], Minematsu [21], and Granger et al. [10]. The LRW2 tweakable block
cipher is proven to achieve security up to approximately 2n/2 queries. This bound
is tight: for any two queries (t,m), (t′,m′) with m⊕h(t) = m′⊕h(t′), the corre-
sponding ciphertexts satisfy c⊕ c′ = h(t)⊕ h(t′) = m⊕m′, and such a collision
can be found in approximately 2n/2 queries.



A notable approach towards beyond birthday bound secure tweakable block
ciphers is by Landecker et al. [17], who suggested to cascade two independent
evaluations of LRW2:

CLRW2((k1, k2, h1, h2), t,m) = LRW2((k2, h2), t,LRW2((k1, h1), t,m)) ,

= Ek2(Ek1(m⊕ h1(t))⊕ h1(t)⊕ h2(t))⊕ h2(t) ,

where k1, k2 are two block cipher keys and h1, h2 XOR universal hash func-
tions. They proved that this construction is indistinguishable from random up
to approximately 22n/3 queries. This proof was very technical, and Procter [30]
pointed out that it was, in fact, flawed. The proof was subsequently fixed by
both Landecker et al. and Procter, but it does not generalize to higher security,
either for the construction as is or for a generalization to multiple cascades. So
far, there has never been any attack justifying tightness of the bound; the best
attack so far is a generic one in 2n queries.

The state of affairs stands in sharp contrast with that of two rounds of
Tweakable Even-Mansour, LRW2’s sibling based on public permutations [6]:

CTEM((h1, h2), t,m) = p2(p1(m⊕ h1(t))⊕ h1(t)⊕ h2(t))⊕ h2(t) ,

where p1, p2 are two permutations and h1, h2 uniform and XOR universal hash
functions. Cogliati et al. [6] proved that CTEM is indistinguishable from random
up to approximately 22n/3 queries, and this bound is tight: keeping the tweak
constant reduces the scheme to a key alternating cipher for which Bogdanov et
al. [2] derived an attack in query complexity approximately 22n/3. This attack
uses availability of the public permutations and is therefore not applicable to
CLRW2.

1.1 Attack on Generalized Cascaded LRW2

We consider a generalized version of Cascaded LRW2, for brevity called “GCL:”

GCLf1,f2,f3((k1, k2, kf ), t,m) = E(k2, E(k1,m⊕ f1(t))⊕ f2(t))⊕ f3(t) , (2)

where k1, k2 are two block cipher keys and kf a key to the masking func-
tions (f1, f2, f3) (for ease of presentation, the key input to the fi’s is left im-
plicit throughout). GCLf1,f2,f3 is depicted in Figure 1. If h1, h2 are two XOR
universal hash functions, then GCLh1,h1⊕h2,h2 matches CLRW2 (where we set
kf = (h1, h2)).

We derive a generic attack against GCLf1,f2,f3 with arbitrary masking in
2n1/223n/4 evaluations. The information-theoretic attack is given in Section 3
and relies on a boomerang-style observation on the mode, based on the obser-
vation that if there exist four queries where the first and second collide on the
input to Ek1 , the second and third on the output of Ek2 , and the third and
fourth on the input to Ek1 , then the first and fourth collide at the output of Ek2
with probability 1 if the tweak values are selected delicately.
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Fig. 1: Depiction of GCLf1,f2,f3 .

In support of its correctness, the attack is backed up with a formal suc-
cess probability computation in Section 3.3 as well as an implementation in
Section 3.4. The formal success analysis demonstrates that for n ≥ 27, the
distinguisher’s success probability is at least 1/2. The small-scale implemen-
tation demonstrates that for GCLf1,f2,f3 based on random permutations on
n = 16, 20, 24 bits, the special collisions as searched for in the attack indeed
appear more often than usual. The gap between the accuracy in n of the exper-
imental verification and the security proof is caused by the fact that some loose
probability bounds had to be used in the rather conservative proof.

The attack is independent of the masking functions f1, f2, f3. It implies that
GCLf1,f2,f3 cannot achieve optimal security, regardless of the choice of masking.
The attack particularly applies to CLRW2, therewith improving the best known
attack to date.

1.2 Towards Tight Security?

In Section 4 we approach the attack from a more theoretical perspective, and
describe the main limitations in proving security of GCLf1,f2,f3 beyond 22n/3.
The quasi-formal discussion relies on equating executions of GCLf1,f2,f3 with a
bipartite graph, and by drawing a parallel with Patarin’s mirror theory [20, 22,
26, 28] we indicate various issues in trying to prove security beyond 22n/3. The
most notable one of these, namely the potential existence of four queries which
alternatively collide on the input of Ek1 or output of Ek2 is precisely the one
exploited in our attack in 2n1/223n/4 queries. We also pinpoint where and how
the current gap between a security lower bound of 22n/3 and an attack upper
bound of 23n/4 arises. Most importantly, as the distinguisher can freely choose
the value of the tweak for every query, it can set a certain distinguishing event
with a significant probability.

1.3 Improved Security of Cascaded LRW2 Under Tweak Limits

In Section 5 we use these insights obtained in our quest towards tight security.
We return to CLRW2, or equivalently GCLh1,h1⊕h2,h2 , and prove that if (i) h1

and h2 are 4-wise independent XOR universal hash functions and (ii) every tweak
value occurs at most q1/3 times, where q is the total amount of queries, then
Cascaded LRW2 is secure up to 23n/4 queries. In Section 2.2 we describe two
possibilities of designing 4-wise independent XOR universal hash functions. The
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condition on the occurrence of the tweak seems restrictive, but many modes of
operation based on a tweakable block cipher query their primitives for tweaks
that are constituted of a nonce or random number concatenated with a counter
value [10, 12, 15, 29]: in a nonce-respecting setting, every nonce appears at most
1 + qf times, where qf is the amount of forgery attempts.

The proof relies on Patarin’s mirror theory up to the first recursion, i.e., up
to 3n/4-bit security. It shares ideas with the analysis of Mennink and Neves [20]
on Encrypted Davies-Meyer [7], namely that an evaluation (t,m, c) of CLRW2
can be rewritten as a sum of permutations “in the middle.” Adversarial power
to choose tweak values, however, precludes optimal security, and security up to
23n/4 is the best possible bound.

1.4 Longer Cascades?

Lampe and Seurin [16] suggested the cascade of ρ ≥ 1 evaluations of LRW2, and
proved that for even ρ this construction is secure up to approximately 2ρn/(ρ+2)

queries. Lee et al. [18] proved that if the universal hash functions are replaced by
random functions, security up to 2ρn/(ρ+1) is achieved. It is generally conjectured
that the security of the cascade of ρ LRW2’s is 2ρn/(ρ+1) [16–18], but also for this
larger cascade, nothing is known on the attack side, besides the trivial attack
in 2n queries. Unfortunately, it does not seem possible to generalize the attack
of Section 3 nor the security proof of Section 5 to larger cascades. As before, it
is noteworthy that a cascade of ρ ≥ 1 evaluations of TEM can be attacked in
approximately 2ρn/(ρ+1) queries [2].

2 Preliminaries

For n ∈ N, {0, 1}n denotes the set of bit strings of length n, and perm(n) the
set of all permutations on {0, 1}n. Extending notation, for κ ∈ N, we denote
by iperm(κ, n) the set of all “indexed permutations,” families of permutations
pk ∈ perm(n), indexed by k ∈ {0, 1}κ. We additionally denote by iperm(κ, τ, n)
for τ ∈ N the set of all indexed permutations where the index consists of two
elements (k, t) ∈ {0, 1}κ × {0, 1}τ . For m,n ∈ N such that m ≥ n, the falling
factorial is defined as (m)n = m(m−1) · · · (m−n+1) = m!/(m−n)!. For n ∈ N
and m ∈ {0, . . . , 2n−1}, we denote by 〈m〉n the encoding of m as an n-bit string.

If X is a finite set, x
$←− X denotes the event of uniformly randomly drawing x

from X .

2.1 Block Ciphers and Tweakable Block Ciphers

A block cipher with key size κ and state size n is a function E ∈ iperm(κ, n).
For fixed key k ∈ {0, 1}κ we denote Ek(·) = E(k, ·), and its inverse is denoted
E−1
k (·). A tweakable block cipher with key size κ, tweak size τ , and state size

n is a function Ẽ ∈ iperm(κ, τ, n). For fixed key k ∈ {0, 1}κ and t ∈ {0, 1}τ we

denote Ẽk(t, ·) = Ẽ(k, t, ·), and its inverse is denoted Ẽ−1
k (t, ·).
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Let κ, n ∈ N and let E ∈ iperm(κ, n) be a block cipher. The advantage of
a distinguisher D in breaking the SPRP (strong pseudorandom permutation)
security of E is defined as

Advsprp
E (D) = Pr

(
DE

±
k = 1

)
−Pr

(
Dp
±

= 1
)
, (3)

where the probabilities are taken over the random drawing of k
$←− {0, 1}κ,

p
$←− perm(n), and the randomness used by D. The resources that D may use

are typically expressed in terms of query complexity (to the oracle) and time
complexity (for offline computations).

As block ciphers are a special case of tweakable block ciphers with tweak
space of size 1 (τ = 0), the security definition straightforwardly generalizes to

the latter. Let κ, τ, n ∈ N and let Ẽ ∈ iperm(κ, τ, n) be a tweakable block cipher.
The advantage of a distinguisher D in breaking the STPRP (strong tweakable

pseudorandom permutation) security of Ẽ is defined as

Advstprp

Ẽ
(D) = Pr

(
DẼ

±
k = 1

)
−Pr

(
Dp̃
±

= 1
)
, (4)

where the probabilities are taken over the random drawing of k
$←− {0, 1}κ,

p̃
$←− iperm(τ, n), and the randomness used by D. The resources that D may use

are typically bounded as before.

2.2 XOR Universal Hash Functions

We use the notion of `-wise independent XOR universal hash functions, a slight
adaptation of the original definition of Wegman and Carter [34]. For two non-
empty sets X ,Y, a hash function family H = {h : X → Y} is called `-wise
independent almost XOR universal up to bound ε, denoted ε-AXU`, if for any j ∈
{2, . . . , `}, any distinct x1, . . . , xj ∈ X and (not necessarily distinct) y2, . . . , yj ∈
Y,

Pr
(
h

$←− H : h(x1)⊕ h(x2) = y2 , . . . , h(x1)⊕ h(xj) = yj

)
≤ εj−1 .

For X = Y = {0, 1}n, a 2−n-AXU2 hash function family can be defined using
finite field multiplication with respect to some irreducible polynomial to repre-
sent the field, i.e., h(x) := h⊗ x. It is not ε-AXU` for ` > 2. Defining the hash
function family as

h(x) :=

`−1⊕
i=1

hi ⊗ xi

for h = (h1, . . . , h`−1) gives a 2−n-AXU` hash function family for any ` ≥ 2. One
can alternatively obtain a (2n − (`− 1))−1-AXU` by defining the hash function
family using an ideal cipher or a family of random permutations.
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3 Generic Attack

We present a generic attack against GCLf1,f2,f3 in 2n1/223n/4 queries. The attack
is generic in nature, it does not exploit any weaknesses in the underlying cipher,

and as such we simply assume that E
$←− iperm(κ, n) is an ideal cipher. It is

fair to assume that the success probability of the attack simply improves if E
is less than ideal, except for degenerate cases, e.g., if Ek1 and Ek2 are almost
perfect nonlinear permutations (APNPs, cf., [8,23,24]). Throughout the attack,
we simply denote p1 = Ek1 and p2 = Ek2 for brevity.

An informal rationale of our attack is given in Section 3.1, and the formal
distinguisher in Section 3.2. Its advantage is lower bounded in Section 3.3, and
the analysis is backed up with experimental verification in Section 3.4.

3.1 Informal Rationale of Attack

Suppose a distinguisher obtains four queries (t,m1, c1), (t′,m′2, c
′
2), (t,m3, c3),

and (t′,m′4, c
′
4) of GCLf1,f2,f3 such that

m1 ⊕ f1(t) = m′2 ⊕ f1(t′) ,

c′2 ⊕ f3(t′) = c3 ⊕ f3(t) ,

m3 ⊕ f1(t) = m′4 ⊕ f1(t′) .

(5)

In other words, the first and second query collide at the input to Ek1 , the second
and third at the output of Ek2 , and the third and fourth at the input to Ek1 .
As the four queries are performed using only two tweak values, each occurring
twice, we have f2(t) ⊕ f2(t′) ⊕ f2(t) ⊕ f2(t′) = 0, and from a simple inspection
of the scheme (see also Figure 2) one can conclude that, necessarily,

c1 ⊕ f3(t) = c′4 ⊕ f3(t′) . (6)

Stated differently, under the assumption that (5) is satisfied, (6) is implied, and
therefore the four equations combine to

m1 ⊕m′2 = m3 ⊕m′4 = f1(t)⊕ f1(t′) ,

c′2 ⊕ c3 = c1 ⊕ c′4 = f3(t)⊕ f3(t′) .

Unfortunately, the distinguisher does not know f1(t)⊕ f1(t′) and f3(t)⊕ f3(t′),
but if we ignore these two values in above equations, we obtain

m1 ⊕m′2 = m3 ⊕m′4 ,
c′2 ⊕ c3 = c1 ⊕ c′4 ,

(7)

which necessarily holds if m1 ⊕m′2 = f1(t)⊕ f1(t′) and c′2 ⊕ c3 = f3(t)⊕ f3(t′),
but may hold by accident as well. Stated differently, if for some d ∈ {0, 1}n,
there are about 2n choices for the four queries such that

m1 ⊕m′2 = m3 ⊕m′4 = d , (8)
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Fig. 2: Attack idea: the red (solid) collisions are targeted, the blue (dashed) one
is implied by the red ones.

the expected number of solutions to (7) is close to 2 if d = f1(t) ⊕ f1(t′) but
close to 1 if d 6= f1(t) ⊕ f1(t′). For an ideal permutation, the expected number
of solutions is always close to 1 for any d ∈ {0, 1}n. By making approximately
23n/4 queries, the distinguisher can ensure that there are about 2n solutions to
(8) for all d, including d = f1(t)⊕ f1(t′).

This almost allows for a distinguishing attack, but not quite: as the distin-
guisher does not actually know f1(t)⊕ f1(t′), it must simply hope that for some
d there is a significant difference, but d may take 2n values and false positives
are likely to occur. By extending the number of queries slightly, i.e., by making
about n1/2 · 23n/4 queries, the case of f1(t)⊕ f1(t′) will stand out.

We remark that the attack is effectively an XOR subkey recovery attack,
as the distinguisher learns f1(t)⊕ f1(t′) and f3(t)⊕ f3(t′). In case of Cascaded
LRW2, where f1 = h1, f2 = h1 ⊕ h2, and f3 = h2 for two XOR universal hash
functions h1, h2, this immediately gives f2(t) ⊕ f2(t′), and potentially more,
depending on the specific hash functions.

3.2 Formal Description of Distinguisher

Let ε = log2(n)/2 (assumed to be integral), and consider the following distin-
guisher D making q = 23n/4+ε queries.

(i) Fix arbitrary distinct t, t′ ∈ {0, 1}τ ;
(ii) For i = 0, . . . , 23n/4+ε − 1, put mi = 0n/4−ε‖〈i〉3n/4+ε and query (t,mi) to

obtain ci;
(iii) For i = 0, . . . , 23n/4+ε− 1, put m′i = 〈i〉3n/4+ε‖0n/4−ε and query (t′,m′i) to

obtain c′i;
(iv) For d ∈ {0, 1}n, define Id = {(i, j) | mi⊕m′j = d}. Note that |Id| = 2n/2+2ε

for all d ∈ {0, 1}n, and define q′ := 2n/2+2ε;
(v) For all d ∈ {0, 1}n do:
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– Define Nd = 0;
– For all distinct (i, j), (k, l) ∈ Id: if ci ⊕ c′l = c′j ⊕ ck, put Nd = Nd + 1;

(vi) Briefly looking forward, for a random tweakable block cipher we have

Ex (Nd) =
(
q′

2

)
/(2n − 1) for any d ∈ {0, 1}n, whereas for GCLf1,f2,f3 ,

Ex
(
Nf1(t)⊕f1(t′)

)
≥ 2
(
q′

2

)
/2n. Inspired by this, define

β :=
3

2

(
q′

2

)
/2n .

If there exists a d ∈ {0, 1}n such that Nd ≥ β, output 1. Otherwise, output
0.

3.3 Analysis of Distinguisher Advantage

A formal analysis confirms that the distinguisher succeeds with non-negligible
probability.

Theorem 1. Let κ, τ, n ∈ N with n ≥ 16, let E
$←− iperm(κ, n), denote the

size of the key space of (f1, f2, f3) by κf , and consider GCLf1,f2,f3 : {0, 1}2κ ×
{0, 1}κf ×{0, 1}τ ×{0, 1}n → {0, 1}n. Distinguisher D of Section 3.2 with query
complexity 2n1/2 · 23n/4 has advantage

Advstprp
GCLf1,f2,f3

(D) ≥ 1− 32

n2
− 80

n2n/2
− 5 · 2n

(
10

n

)3/100·n2

− n7

23n/2
. (9)

One can verify that the lower bound of (9) is at least 1/2 for n ≥ 27. This
theorem is not the core contribution of the article (which is Theorem 2), and its
proof is given Appendix A.

Note that the attack is de facto a TPRP-attack, only requiring forward ac-
cess to the scheme. In addition, it is information-theoretical: the distinguisher’s
complexity is solely measured in its number of queries. The offline complexity is
around 23n/2.

3.4 Experimental Verification

We have implemented the distinguisher of Section 3.2 on a small scale, for
n = 16, 20, 24 and with p1, p2, f1, f2, f3 instantiated as independent uniform ran-
dom permutations, noting that a uniform random permutation is a (2n − 1)−1-
AXU2 hash function (see Section 2.2). In each case, two distinct tweaks t, t′ are
evaluated for q = 23n/4+ε queries, with ε = 0, 1, 2 (note that 2 . log2(n)/2 for
n = 16, 20, 24). The average values Nd for both the real and ideal world and both
d = f1(t)⊕ f1(t′) and random d are summarized in Table 1. The computations
confirm soundness of the rationale of Section 3.1 and the expected values of Sec-
tion 3.2. In more detail, the expected values given in Section 3.2 suggest that
Nd ≈ 24ε for d = f1(t) ⊕ f1(t′) in the real world and Nd ≈ 24ε−1 in any other
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Table 1: Number of elements in Nd for the real and ideal world, for d = f1(t)⊕
f1(t′) and for random d. For the cases n = 16, 20, the numbers are averaged over
32 attacks; for n = 24 the numbers are averaged over 8 attacks.

Nd in real world for d = Nd in ideal world for d =

n ε q f1(t)⊕ f1(t′) random f1(t)⊕ f1(t′) random

16 0 1 · 212 0.843750 0.437500 0.343750 0.687500
1 2 · 212 16.343750 6.656250 7.625000 8.500000
2 4 · 212 256.593750 129.781250 127.093750 127.375000

20 0 1 · 215 0.968750 0.500000 0.687500 0.593750
1 2 · 215 17.156250 7.593750 8.343750 8.187500
2 4 · 215 265.531250 133.312500 125.625000 128.750000

24 0 1 · 218 1.125000 0.875000 0.250000 0.125000
1 2 · 218 16.375000 7.625000 8.375000 7.125000
2 4 · 218 246.750000 131.375000 120.625000 129.875000

case (real or ideal world), and the statistics in Table 1 reasonably accurately
match these numbers.

Note that, in particular, for ε = 0 the value Nf1(t)⊕f1(t′) already shows a
small peak in the real world (for each of n = 16, 20, 24), but outliers in Nd for
d 6= f1(t)⊕ f1(t′) are hidden by the statistics. For increasing ε, the gap becomes
more significant and the success probability increases.

4 Towards Tight Security?

Consider a simplification of GCLf1,f2,f3 with its two block ciphers replaced by
random permutations p1, p2 (this is a typical hybrid argument in security proofs
performed at the cost of 2Advsprp

E (D′) for some distinguisher D′). For simplicity,
assume that f2 is injective (the scheme turns out to be significantly weakened if
f2 is non-injective). For an evaluation GCLf1,f2,f3(t,m) = c, denote

x = p1(m⊕ f1(t)) ,

y = p−1
2 (c⊕ f3(t)) ,

in such a way that x⊕ y = f2(t).
Intuitively, one may think of a proof going “fine” if there is always some

randomness available. For example, consider just a single forward query (t,m)
to GCLf1,f2,f3 . The value m ⊕ f1(t) has never been evaluated by p1, hence the
value x will look uniformly randomly drawn from {0, 1}n; the value y satisfies
y = x ⊕ f2(t), and also y has never been evaluated by p2 so the value c ⊕ f3(t)
is uniformly randomly drawn from {0, 1}n.

A more complicated case appears if there exist two distinct queries (m1, t1)
and (m2, t2) such that m1 ⊕ f1(t1) = m2 ⊕ f1(t2). The first query is handled as

9



before, rendering fresh x1 and c1⊕f3(t1). The second query satisfiesm1⊕f1(t1) =
m2 ⊕ f1(t2), meaning that x2 = x1. However, as the two queries are distinct,
this equation implies that t1 6= t2. As f2 is injective, we subsequently have
f2(t1) 6= f2(t2) and thus y2 6= y1. The evaluation of p2 on y2 yields a value
uniformly drawn from {0, 1}n\{c1 ⊕ f3(t1)}.

Likewise, two queries could also collide at the right side, i.e., c1 ⊕ f3(t1) =
c2 ⊕ f3(t2). It is unlikely, though, that two queries collide at both the left and
right side, at least if f1 and f3 are two randomized functions (as is the case in
CLRW2), and we will ignore this case. If more than two queries are involved,
one could visualize queries as a bipartite graph G = (U, V,E). U = {0, 1}n
corresponds to the input values to p1, V = {0, 1}n to the output values of p2,
and for every query tuple (ti,mi, ci), the edge (mi⊕f1(ti), ci⊕f3(ti)) with label
f2(ti) from U to V is added to E. An example graph G is depicted in Figure 3.

m̄1 m̄2 = m̄3 m̄4 = m̄5 = m̄6 m̄7

c̄1 c̄2 c̄3 c̄4 c̄5 c̄6 = c̄7

f2(t1) f2(t2) f2(t3) f2(t4)

f2(t5)

f2(t6) f2(t7)

Fig. 3: Example of a bipartite graph G representing seven evaluations of
GCLf1,f2,f3 . For brevity, we denote m̄i = mi ⊕ f1(ti) and c̄i = ci ⊕ f3(ti).
Graph view rotated for economical reasons.

What the above comprises is an informal introduction to a potential use of
Patarin’s mirror theory [20,22,26,28], a powerful approach towards counting the
number of solutions to a system of equations of the form x ⊕ y = λ, where λ
is known. If, in above graph, two queries touch on the left, i.e., m1 ⊕ f1(t1) =
m2 ⊕ f1(t2), they share the same x1 = x2 but have different y1, y2.

Unfortunately, the mirror theory does not turn out to be particularly suited
here, most importantly as it is tailored towards comparing systems to random
functions and we aim to compare our scheme to a family of permutations. Yet,
closer inspection of the theory reveals that it puts two conditions on the graph
that are “reasonably easily” violated:

(i) The graph should not contain a path of even length whose labels sum to 0;
(ii) The graph should not contain a circle.

The first condition prevents that there are two different inputs to p1 with the
same output (or two different outputs of p2 with the same input). The second
condition prevents that there exists a query with “no randomness.” Both condi-
tions are harmful for any possible even length, in the sense that Patarin’s mirror
theorem cannot be applied.

10



The attack of Section 3 relies on the fact that condition (i) can be violated
easier than expected. Note that there cannot exist a path of length 2 whose
labels sum to 0 (as f2 is injective). A path of length 4 whose labels sum to 0
requires the existence of four queries (t1,m1, c1), . . . , (t4,m4, c4) such that

m1 ⊕ f1(t1) = m2 ⊕ f1(t2) ,

c2 ⊕ f3(t2) = c3 ⊕ f3(t3) ,

m3 ⊕ f1(t3) = m4 ⊕ f1(t4) ,

f2(t1)⊕ f2(t2)⊕ f2(t3)⊕ f2(t4) = 0 .

(10)

As the four queries are distinct, the path may only appear if t1 6= t2 6= t3 6= t4.
However, it may be that t1 = t3 and t2 = t4, and this is how the attack of
Section 3 exploits a path: in this case, the fourth equation of (10) is satisfied by
design and the remaining three can be rewritten as

m1 ⊕m2 = m3 ⊕m4 = f1(t1)⊕ f1(t2) ,

c2 ⊕ c3 = f3(t1)⊕ f3(t2) .
(11)

The attack of Section 3 relies on the additional fact that if these conditions are
met, then the condition

c4 ⊕ f3(t2) = c1 ⊕ f3(t1) (12)

holds with probability 1 in the real world (i.e., there is a circle as depicted in
Figure 4, violating condition (ii)), but with negligible probability in the ideal
world. This property (that (11) implies (12)) gives a clean and well-verifiable
distinguishing event.

m̄1 = m̄2 m̄3 = m̄4

c̄1 = c̄4 c̄2 = c̄3

f2(t1)

f2(t2)

f2(t3)

f2(t4)

Fig. 4: A circle in bipartite graph G with f2(t1)⊕ f2(t2)⊕ f2(t3)⊕ f2(t4) = 0, as
exploited in the attack of Section 3. We use the same convention as in Figure 3.

A distinguisher can choose the mi’s smartly to make sure that m1 ⊕m2 =
m3⊕m4 is satisfied. Consider a distinguisher that makes queries for at most two
tweaks t, t′, each queried q times, say for queries (m0, c0), . . . , (mq−1, cq−1) and
(m′0, c

′
0), . . . , (m′q−1, c

′
q−1). Inspired by Section 3, denote

Id = {(i, j) ∈ {0, . . . , q − 1}2 | mi ⊕m′j = d} .
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The probability that there exist four queries (i, j) 6= (i′, j′) that comply with the
equations of (11), denoted X, is

Pr (X) =
∑

d∈{0,1}n
Pr (X | f1(t1)⊕ f1(t2) = d) ·Pr (f1(t1)⊕ f1(t2) = d)

≈
∑

d∈{0,1}n

(|Id|
2

)
2n
·Pr (f1(t1)⊕ f1(t2) = d)

≈
∑

d∈{0,1}n

(|Id|
2

)
2n
· 1

2n
, (13)

where the first approximation assumes independence of events and that the ci’s
are generated using a random function (for simplicity of reasoning), and the
second approximation assumes that f1 is close to a 2−n-AXU2 hash function.
The two extremes in selecting the mi’s are the following:

– Choose the mi’s and m′i’s such that |Id| = q for q values of d and |Id| = 0
for the remaining 2n − q values. This is achieved by setting mi = m′i =
0n−log2(q)‖〈i〉log2(q) for i = 0, . . . , q − 1. In this case, we obtain for (13):

(13) = q ·
(
q

2

)
/22n ≈ q3/22n ;

– Choose the mi’s and m′i’s such that |Id| = q2/2n for all values of d, i.e., Id is
equally large for all d. This is achieved by setting mi = 0n−log2(q)‖〈i〉log2(q)

and m′i = 〈i〉log2(q)‖0n−log2(q) for i = 0, . . . , q − 1 (as in the attack of Sec-
tion 3). In this case, we obtain for (13):

(13) = 2n ·
(
q2/2n

2

)
/22n ≈ q4/23n .

A security analysis, i.e., an upper bound on the distinguisher’s success probabil-
ity, would have to take into account any possible distinguisher, and it therefore
seems such analysis caps at around q3/22n. Yet, if the attack of Section 3 would
have been based on the former strategy instead of the latter, it would have suc-
ceeded only if |If1(t1)⊕f1(t2)| 6= 0, and the attack should have been evaluated
2n/q times to succeed (resulting in total complexity of about 2n). By making
23n/4 queries, the distinguisher makes sure that |Id| is equally large for all d’s
and that way spreads its chances, but unfortunately, we see little opportunities
in improving the attack.

It is important to remark that the attack of Section 3 and the discussion
on the distinguishing event (11) consider the case where the distinguisher can
choose the tweak values. This implies that an improved security bound can be
achieved if the maximum number of queries for each tweak is fixed.

We explicitly remark that this limitation is not a necessary condition. In
particular, above reasoning is informal and only included for intuitive reasons,
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and we cannot draw any formal conclusion from it. However, even for this limited
scenario, improved security of CLRW2 is still a non-trivial open problem. We
elaborate on the possibility of releasing the tweak usage limitation in Section 5.7.

A final condition that the mirror theory puts on the graph, in addition to (i)
and (ii) above, is the following:

(iii) The graph should not contain an excessively large tree.

This is a merely technical requirement to make the proof argument of the mirror
theory work, and it is not clear how a violation of condition (iii) may break the
scheme. That said, also condition (iii) can be easily violated, depending on the
mixing functions in use. For example, if f1(t) = f1 ⊗ t (i.e., the example AXU2

hash function of Section 2), a collision of the form

m1 ⊕ f1(m1) = m2 ⊕ f1(m2) ,

for m1,m2 6= 0 implies that also

m2 ⊕ f1(m2) = m−1
1 m2

2 ⊕ f1(m−1
1 m2

2) = · · · = m−λ1 mλ+1
2 ⊕ f1(m−λ1 mλ+1

2 ) ,

for any λ ≥ 0, potentially rendering an excessively large tree. The issue can be
resolved by resorting to 4-wise independent XOR universal hash functions (see
Section 2.2).

5 Improved Security of Cascaded LRW2 Under Tweak
Limits

Based on the two conclusions from Section 4, we prove that if h1 and h2 are
two 4-wise independent XOR universal hash functions and every tweak occurs
at most q1/3 times, the Cascaded LRW2 construction GCLh1,h1⊕h2,h2 of (2)
achieves security up to complexity approximately 23n/4.

Theorem 2. Let κ, τ, n ∈ N, let E ∈ iperm(κ, n), H be an ε-AXU4 hash func-
tion family, and consider GCLh1,h1⊕h2,h2 : {0, 1}2κ ×H2 × {0, 1}τ × {0, 1}n →
{0, 1}n. Let γ ∈ N such that 2 ≤ γ ≤ q/4 be a threshold. For any distinguisher
D with query complexity at most q ≤ 2n/1600 that queries each tweak at most γ
times, there exists a distinguisher D′ that makes at most q queries such that

Advstprp
GCLh1,h1⊕h2,h2

(D) ≤ 6

(
q

4

)
2nε4 +

(
q

2

)
(2γ + 1)ε2 +

(γ + 3)q

2n
+ 2Advsprp

E (D′) .

(14)

Putting γ = q1/3, the bound of (14) yields security up to q ≤ 23n/4 queries. The
limitation γ on the number of tweak repeats sounds restrictive, but it is not.
In practical applications [10, 12, 29], the tweak is constituted of a random value
concatenated with a counter.

13



The proof of Theorem 2 is based on Patarin’s mirror theory [22, 26, 28],
which found popularization in the work of Mennink and Neves on Encrypted
Davies-Meyer and its dual [20]. Although the mirror theory is quite simple to
understand and apply, its proof is heavy and the recursive argument underneath
it is debated by some. In this work, however, we will only use the mirror theory
up to 3n/4-bit security, i.e., rely on the first recursion in the mirror theory proof
only.

The security proof is comparable to that of EDM [20], and in particular also
relies on the observation that any evaluation of c = GCLh1,h1⊕h2,h2(k, t,m) for
k = (k1, k2, h1, h2) can be rewritten as

Ek1(m⊕ h1(t))⊕ E−1
k2

(c⊕ h2(t)) = h1(t)⊕ h2(t) . (15)

Differences in the analysis occur due to the possibility of the adversary to choose
the tweak and the fact that the tweak occurs in all three parts of the equation
(input to Ek1 , to E−1

k2
, and in the right hand side h1(t) ⊕ h2(t)). These differ-

ences cause that only security up to 23n/4 is achievable. However, the differences
compared with the analysis in [20] mostly affect description of oracle views and
analysis of bad views; the application of the mirror theory is fairly the same.
Therefore, we discard much of the details on mirror theory from the proof and
include it in Appendix B; the proof is fully intelligible without this appendix.

The proof is given in Sections 5.1-5.6. We discuss the possibility of releasing
the limitation γ on the tweak usage in Section 5.7.

5.1 H-Coefficient Technique

We will use Patarin’s H-coefficient technique [25,27], for which we follow the de-
scription by Chen and Steinberger [5]. Consider two oracles O and P with iden-
tical interfaces, and a deterministic distinguisher D with query complexity q and
unbounded computational power that tries to distinguish both oracles. Denote
its success probability by ∆D(O ; P). Let XO denote the probability distribution
of views when D is interacting with O, and similarly XP the distribution of views
for interaction with P. A view ν is called “attainable” if Pr (XP = ν) > 0, and
denote by V the set of all attainable views. The H-coefficient technique states
the following:

Lemma 1 (H-coefficient technique). Let D be a deterministic distinguisher,
and consider a partition V = Vbad ∪ Vgood of the set of attainable views. Let

δ, ε ∈ [0, 1] be such that Pr (XP ∈ Vbad) ≤ δ, and
Pr (XO = ν)

Pr (XP = ν)
≥ 1 − ε for all

ν ∈ Vgood. Then, the distinguishing advantage satisfies ∆D(O ; P) ≤ δ + ε.

A proof of the technique is given among others in [4, 5, 20].

For view ν = {(x1, y1), . . . , (xq, yq)} consisting of q input/output tuples, an
oracle O is said to extend ν, denoted O ` ν, if O(xi) = yi for all i = {1, . . . , q}.
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5.2 General Setting and Views

Let p̃
$←− iperm(τ, n), k

$←− {0, 1}2κ × H2, and p1, p2
$←− perm(n). Consider any

distinguisher D whose goal is to distinguish GCLh1,h1⊕h2,h2

k from p̃.
As a first step, we replace (Ek1 , Ek2) by (p1, p

−1
2 ) at the cost of 2Advsprp

E (D′),
whereD′ is some distinguisher with the same query complexity q asD. (Note that
we replaced Ek2 by the inverse of p2 for simplicity of further analysis.) Denote
the resulting scheme with F for brevity; it remains to bound the advantage of D
in distinguishing O = F (the real world) from P = p̃ (the ideal world). As of now,
we give the distinguisher unbounded computational power, and its complexity
will only be measured by the number of oracle queries it makes. Without loss of
generality, we can consider it to be deterministic, and will apply the H-coefficient
technique of Lemma 1.
D makes q construction queries which are recorded in view ν′ = {(t1,m1, c1),

. . . , (tq,mq, cq)}. After D’s interaction with its oracle, but before it outputs its
decision bit, its oracle will reveal the subkeys h1, h2. In the real world, these are
the XOR universal hash functions used in F , whereas in the ideal world these
are dummy functions randomly drawn from H. We denote the complete view by

ν = (ν′, h1, h2) . (16)

Without loss of generality, we assume that D never repeats queries, and hence
that (ti,mi) 6= (tj ,mj) and (ti, ci) 6= (tj , cj) for any i 6= j.

5.3 Attainable Index Mappings

In the real world O, each tuple (ti,mi, ci) ∈ ν′ corresponds to an evaluation of
F and satisfies

p1(mi ⊕ h1(ti))⊕ p2(ci ⊕ h2(ti)) = h1(ti)⊕ h2(ti) ,

where we recall that Ek2 was replaced with p−1
2 . Writing Pai := p1(mi ⊕ h1(ti))

and Pbi := p2(ci ⊕ h2(ti)), view ν defines the following q equations:

Pa1 ⊕ Pb1 = h1(t1)⊕ h2(t1) ,

Pa2 ⊕ Pb2 = h1(t2)⊕ h2(t2) ,

...

Paq ⊕ Pbq = h1(tq)⊕ h2(tq) .

(17)

Here, some of the unknowns may be equal to each other. We have that Pai 6= Paj
if and only if mi⊕h1(ti) 6= mj⊕h1(tj), and Pbi 6= Pbj if and only if ci⊕h2(ti) 6=
cj ⊕ h2(tj). No condition a priori holds for Pai versus Pbj , as these are defined
by independent permutations. We have

r = |{mi ⊕ h1(ti) | i ∈ {1, . . . , q}}|+ |{ci ⊕ h2(ti) | i ∈ {1, . . . , q}}| (18)

unknowns.
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5.4 Bad Views

Inspired by the discussion in Section 4, we associate a bipartite graph G(ν) =
(U, V,E(ν)) with the view ν. U = {0, 1}n corresponds to the input values to p1,
V = {0, 1}n to the output values of p−1

2 , and for every (ti,mi, ci) ∈ ν′, the edge
(mi⊕h1(ti), ci⊕h2(ti)) with label h1(ti)⊕h2(ti) from U to V is added to E(ν).
The example graph of Figure 3 still applies, be it with f1 = h1, f2 = h1 ⊕ h2,
and f3 = h2.

In Section 4, we already informally discussed what problems could occur in
such a graph, i.e., what properties would make the mirror theory inapplicable:
it should not contain a path of even length whose labels sum to 0, a circle, or an
excessively large tree. The latter is informal, it is often based on a pre-defined
threshold on the maximum size of the tree. As our security analysis will cap on
3n/4-bit security anyway, we can keep it simple, and put as one of the bad events
that G(ν) should not contain a subgraph of ≥ 4 edges. This would imply the
non-existence of an excessively large tree, as well as circles and paths of length
≥ 4. We still have to rule out the existence of a path of length 2 whose labels
sum to 0 and a circle of length 2.

Formally, we say that a view ν is a bad view if its corresponding tree G(ν)
contains

(i) a path of length 2 whose labels sum to 0;
(ii) a circle of length 2;

(iii) a subgraph of ≥ 4 edges.

5.5 Probability of Bad Views (δ)

By Lemma 1, we have to analyze the probability that a view generated in the
ideal world is bad, and the analysis will rely on the fact that h1 and h2 are 4-wise
independent universal hash functions. We have

Pr (Xp̃ ∈ Vbad) ≤ Pr (path) + Pr (circle) + Pr (subgraph) , (19)

where the sizes of the path, circle, and subgraph, are left implicit.

(i) a path. Consider any two distinct queries (ti,mi, ci), (tj ,mj , cj). They yield
a 0-label-sum path if either

mi ⊕ h1(ti) = mj ⊕ h1(tj) and h1(ti)⊕ h2(ti) = h1(tj)⊕ h2(tj) ,

or

ci ⊕ h2(ti) = cj ⊕ h2(tj) and h1(ti)⊕ h2(ti) = h1(tj)⊕ h2(tj) .

If ti = tj , then necessarily mi 6= mj and ci 6= cj (as the two queries are distinct)
and the conditions happen with probability 0. Otherwise, as h1 and h2 are ε-
AXU4, both conditions happen with probability at most ε2. Thus,

Pr (path) ≤ 2

(
q

2

)
ε2 . (20)
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(ii) a circle. Consider any two distinct queries (ti,mi, ci), (tj ,mj , cj). They yield
a circle if

mi ⊕ h1(ti) = mj ⊕ h1(tj) and ci ⊕ h2(ti) = cj ⊕ h2(tj) ,

which, as before, happens with probability at most ε2. Thus,

Pr (circle) ≤
(
q

2

)
ε2 . (21)

(iii) a subgraph. Consider any four distinct queries (ti1 ,mi1 , ci1), . . . ,
(ti4 ,mi4 , ci4) to yield a subgraph. We can consider six possible configurations, as
described in Figure 5. In these configurations, only collisions are explicitly indi-
cated; two nodes that are different in the configuration may or may not collide.
We treat all configurations independently, where we will rely on the fact that h1

and h2 are ε-AXU4.

(A) (B) (C) (D) (E) (F)

Fig. 5: Possible configurations of subgraphs of 4 edges. Upper shore is U , lower
shore is V , and labels are omitted for brevity. Two nodes in the same shore may
or may not be equal.

(A) Configuration (A) happens only if

mi1 ⊕ h1(ti1) = mi2 ⊕ h1(ti2) = mi3 ⊕ h1(ti3) = mi4 ⊕ h1(ti4) .

If the tweaks are not all distinct, the condition is satisfied with probability 0.
On the other hand, if ti1 , ti2 , ti3 , ti4 are all distinct, the condition is satisfied
with probability at most ε3. There are at most

(
q
4

)
possible choices of queries

that satisfy this condition on the tweaks;
(B) Configuration (B) happens only if

mi1 ⊕ h1(ti1) = mi2 ⊕ h1(ti2) = mi3 ⊕ h1(ti3) ,

ci3 ⊕ h2(ti3) = ci4 ⊕ h2(ti4) .

Further analysis depends on the values of the tweaks.
– If ti1 , ti2 , ti3 , ti4 are all distinct, the condition is satisfied with probability

at most ε3. There are at most
(
q
4

)
possible choices of queries that satisfy

this condition on the tweaks;
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– If ti1 = ti2 , ti1 = ti3 , ti2 = ti3 , or ti3 = ti4 , the condition is satisfied
with probability 0;

– If ti1 = ti4 , but ti1 , ti2 , ti3 are all distinct, the condition is satisfied with
probability at most ε3. There are at most

(
q
3

)
· (γ − 1) possible choices

of queries that satisfy this condition on the tweaks, noting that every
tweak occurs at most γ times;

– If ti2 = ti4 , but ti1 , ti2 , ti3 are all distinct, a similar reasoning applies.
Overall, configuration (B) is satisfied with probability at most

max

{(
q

4

)
ε3,

(
q

3

)
(γ − 1)ε3

}
≤
(
q

4

)
ε3 ,

for γ ≤ q/4;
(C) Configuration (C) happens only if

mi1 ⊕ h1(ti1) = mi2 ⊕ h1(ti2) ,

ci2 ⊕ h2(ti2) = ci3 ⊕ h2(ti3) ,

mi3 ⊕ h1(ti3) = mi4 ⊕ h1(ti4) .

Further analysis depends on the values of the tweaks.
– If ti1 , ti2 , ti3 , ti4 are all distinct, the condition is satisfied with proba-

bility at most 2nε4 (obtained by summing over all possible connections
between the first and third equation, and then applying the ε-AXU4

bound). There are at most
(
q
4

)
possible choices of queries that satisfy

this condition on the tweaks;
– If ti1 = ti2 , ti2 = ti3 , or ti3 = ti4 , the condition is satisfied with proba-

bility 0;
– If ti1 = ti3 , but ti1 , ti2 , ti4 are all distinct, the condition is satisfied with

probability at most ε3. There are at most
(
q
3

)
· (γ − 1) possible choices

of queries that satisfy this condition on the tweaks, noting that every
tweak occurs at most γ times;

– If ti2 = ti4 , but ti1 , ti2 , ti3 are all distinct, a similar reasoning applies;
– If ti1 = ti4 , but ti1 , ti2 , ti3 are all distinct, a similar reasoning applies;
– If ti1 = ti3 and ti2 = ti4 but ti1 , ti2 are distinct, the condition is satisfied

with probability at most ε2. There are at most
(
q
2

)
· (γ − 1) possible

choices of queries that satisfy this condition on the tweaks, noting that
every tweak occurs at most γ times and that there is at most one option
for (ti4 ,mi4 , ci4) once the other three queries are fixed.

Overall, configuration (C) is satisfied with probability at most

max

{(
q

4

)
2nε4,

(
q

3

)
(γ − 1)ε3,

(
q

2

)
(γ − 1)ε2

}
≤
(
q

4

)
2nε4 +

(
q

2

)
(γ − 1)ε2 ,

for γ ≤ q/4 and 2nε ≥ 1;
(D) Configuration (D) is symmetrical to configuration (C);
(E) Configuration (E) is symmetrical to configuration (B);
(F) Configuration (F) is symmetrical to configuration (A).
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Thus,

Pr (subgraph) ≤ 4

(
q

4

)
ε3 + 2

(
q

4

)
2nε4 + 2

(
q

2

)
(γ − 1)ε2

≤ 6

(
q

4

)
2nε4 + 2

(
q

2

)
(γ − 1)ε2 . (22)

Conclusion for bad events. From (19) and the individual probabilities of (20),
(21), and (22), we obtain

Pr (Xp̃ ∈ Vbad) ≤ 3

(
q

2

)
ε2 + 6

(
q

4

)
2nε4 + 2

(
q

2

)
(γ − 1)ε2

≤ 6

(
q

4

)
2nε4 +

(
q

2

)
(2γ + 1)ε2 ,

for γ ≥ 2.

5.6 Ratio for Good Views (ε)

Consider a given view ν = (ν′, h1, h2) where ν = {(t1,m1, c1), . . . , (tq,mq, cq)}.
Define

r1 = |{mi ⊕ h1(ti) | i ∈ {1, . . . , q}}| , (23)

r2 = |{ci ⊕ h2(ti) | i ∈ {1, . . . , q}}| . (24)

Note that r1 + r2 is equal to the number of unknowns in the system of equations
(see (18)). For any t ∈ {0, 1}τ , we denote ut = |{i ∈ {1, . . . , q} | ti = t}|.

For the ideal world p̃, we have

Pr (Xp̃ = ν) = Pr
(
p̃

$←− iperm(τ, n) : p̃ ` ν′
)
·Pr

(
(h1, h2) = (h′1, h

′
2)

$←− H2
)

=
1∏

t∈{0,1}τ (2n)ut
· 1

|H|2
, (25)

where for the first probability we use that p̃ is a family of permutations and for
every t ∈ {0, 1}τ the view defines ut values.

For the real world F , recall that it is built from two permutations p1, p
−1
2 .

We have

Pr (XF = ν) = Pr
(
p1, p

−1
2

$←− perm(n) : F ` ν′ | h1, h2

)
·Pr

(
(h1, h2) = (h′1, h

′
2)

$←− H2
)

= Pr
(
p1, p

−1
2

$←− perm(n) : F ` ν′ | h1, h2

)
· 1

|H|2
. (26)

As has become clear from (17), ν = (ν′, h1, h2) fixes exactly q equations on r1

unknowns for p1 and r2 unknowns for p−1
2 , where the inputs to p1 and p−1

2 are
fixed. We rely on the following lemma that is based on Patarin’s mirror theory.
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Lemma 2. Consider good view ν = (ν′, h1, h2) whose system of q equations
(17) has no subgraph of ≥ 4 edges, has no path of length 2 whose labels sum to
0, and no circle of length 2. As long as 52 · q ≤ 2n/64, the number of solutions
to the r1 + r2 unknowns is at least

(2n)r1(2n − 4)r2
2nq

.

The proof of Lemma 2 is omitted: it is very similar to the reasoning on EDM
in [20] and follows straightforwardly from Patarin’s mirror theory as reviewed
in Appendix B. The side condition 52 · q ≤ 2n/64 is slightly different from that
in [20], as we have adopted the bound from Nachef, Patarin, and Volte [22].

Every such solution defines r1 evaluations of p1, and r2 evaluations of p2, and
hence the remaining probability in (26) satisfies

Pr
(
p1, p

−1
2

$←− perm(n) : F ` ν′ | h1, h2

)
≥ (2n)r1(2n − 4)r2

2nq · (2n)r1(2n)r2
.

We obtain for the ratio:

Pr (XF = ν)

Pr (Xp̃ = ν)
≥
∏
t∈{0,1}τ (2n)ut · |H|2

1
· (2n)r1(2n − 4)r2

2nq · (2n)r1(2n)r2 · |H|2

=

∏
t∈{0,1}τ (2n)ut · (2n − 4)r2

2nq · (2n)r2
. (27)

Using that for all t, ut ≤ γ, and that
∑
t∈{0,1}τ ut = q:

(27) ≥
∏
t∈{0,1}τ (2n − (γ − 1))ut · (2n − 4)r2

2nq · (2n)r2

=

(
2n − (γ − 1)

2n

)q
·

3∏
i=0

(
1− r2

2n − i

)
. (28)

Using that r2 ≤ q − 1, and by simple algebra for q ≤ 2n/3:

(28) ≥ 1−
(

(γ − 1)q

2n
+
q − 1

2n
+

q − 1

2n − 1
+

q − 1

2n − 2
+

q − 1

2n − 3

)
≥ 1− (γ + 3)q

2n
.

We have obtained ε = (γ+3)q
2n , provided 52 · q ≤ 2n/64.

5.7 Releasing Tweak Usage Limitation

The limitation on the tweak usage, namely that the distinguisher can query each
tweak at most γ times, is used at two places in the proof.
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The first place is the last case of configuration (C) in Section 5.5, namely the
case where ti1 = ti3 and ti2 = ti4 . For upper bounding the number of choices for
the four queries without relying on parameter γ, one may take into account that
mi1 ⊕mi2 = mi3 ⊕mi4 is necessarily needed. This value needs to be equal to
the random value h1(ti1)⊕ h2(ti2). However, we see no possibility for deriving a
formal bound here.

The second place is in the application of the mirror theory in Section 5.6.
Our approach to achieve improved 3n/4-bit security relies on Patarin’s mirror
theory, which is specifically developed to work well if a scheme is compared with
a random function. Obviously, evaluations of CLRW2 under the same tweak will
always give distinct responses. In particular, if a distinguisher uses the same
tweak for all queries, all responses will be distinct, and the scheme can be distin-
guished from a random function with probability about

(
q
2

)
/2n. More generally,

if every tweak is evaluated at most γ times, the scheme can be distinguished from
a random function with probability at most around γq/2n. Resolving the γ lim-
itation here requires improving Patarin’s mirror theory or employing a different
proof technique.
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Ph.D. thesis, Université Paris 6, Paris, France (Nov 1991)

22



26. Patarin, J.: On Linear Systems of Equations with Distinct Variables and Small
Block Size. In: Won, D., Kim, S. (eds.) ICISC 2005. Lecture Notes in Computer
Science, vol. 3935, pp. 299–321. Springer (2005)

27. Patarin, J.: The “Coefficients H” Technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. Lecture Notes in Computer Science, vol. 5381, pp. 328–345.
Springer (2008)

28. Patarin, J.: Introduction to Mirror Theory: Analysis of Systems of Linear Equalities
and Linear Non Equalities for Cryptography. Cryptology ePrint Archive, Report
2010/287 (2010)

29. Peyrin, T., Seurin, Y.: Counter-in-Tweak: Authenticated Encryption Modes for
Tweakable Block Ciphers. In: Robshaw and Katz [31], pp. 33–63

30. Procter, G.: A Note on the CLRW2 Tweakable Block Cipher Construction. Cryp-
tology ePrint Archive, Report 2014/111 (2014)

31. Robshaw, M., Katz, J. (eds.): CRYPTO 2016, Part I, Lecture Notes in Computer
Science, vol. 9814. Springer (2016)

32. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. Lecture Notes
in Computer Science, vol. 3329, pp. 16–31. Springer (2004)

33. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM CCS 2001. pp. 196–205. ACM (2001)

34. Wegman, M.N., Carter, L.: New Hash Functions and Their Use in Authentication
and Set Equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

A Proof of Theorem 1

Consider the distinguisher of Section 3.2 for any ε ≥ 0. Its success advantage
satisfies

Advstprp
GCLf1,f2,f3

(D) = Pr
(
DGCLf1,f2,f3 = 1

)
−Pr

(
Dp̃ = 1

)
= 1−Pr

(
DGCLf1,f2,f3 = 0

)
−Pr

(
Dp̃ = 1

)
. (29)

The derivation relies on the following two lemmas, the proofs of which are in
Sections A.1 and A.2.

Lemma 3. Provided n ≥ 6, Pr
(
DGCLf1,f2,f3 = 0

)
≤ 32

24ε + 80
2n/2+2ε .

Lemma 4. For any integral 1 ≤ α ≤
√
β − 1, provided n ≥ 16, Pr

(
Dp̃ = 1

)
≤

α2n
(

2α
22ε

)3/(4α2)·24ε

+ 2(α+2)2ε

2(α−2)n/2 .

Putting ε = log2(n)/2, we derive from (29) and Lemmas 3 and 4 that

Advstprp
GCLf1,f2,f3

(D) ≥ 1− 32

n2
− 80

n2n/2
− α2n

(
2α

n

)3/(4α2)·n2

− n(α+2)

2(α−2)n/2
,

provided n ≥ 16, and for any integral 1 ≤ α ≤
√

3/8n− 1. Clearly, the bound is
meaningless for α = 1, 2. Computer verification yields optimal choice α = 5.
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A.1 Proof of Lemma 3

Putting d∗ = f1(t)⊕ f1(t′), we have

Pr
(
DGCLf1,f2,f3 = 0

)
= Pr

(
∀d∈{0,1}nNd < β

)
≤ Pr (Nd∗ < β) . (30)

Clearly, if f2(t) ⊕ f2(t′) = 0, then ci ⊕ c′j = f3(t) ⊕ f3(t′) for all (i, j) ∈ Id∗

and thus Nd∗ =
(
q′

2

)
> β, implying Pr (Nd∗ < β) = 0. Henceforth, assume that

d∗∗ := f2(t)⊕ f2(t′) 6= 0.
By Chebychev’s inequality:

Pr (Nd∗ < β) = Pr (Nd∗ −Ex (Nd∗) < β −Ex (Nd∗))

≤ Pr
(∣∣Nd∗ −Ex (Nd∗)

∣∣ ≥ Ex (Nd∗)− β
)

≤ Var (Nd∗)

(Ex (Nd∗)− β)2

=
Ex
((
Nd∗

)2)− (Ex (Nd∗)
)2

(Ex (Nd∗)− β)2
. (31)

For distinct (i, j), (k, l) ∈ Id∗ , define

N
(i,j),(k,l)
d∗ =

{
1, if ci ⊕ c′j = ck ⊕ c′l ,
0, otherwise ,

(32)

such that

Nd∗ =
∑

(i,j),(k,l)∈Id∗
(i,j)6=(k,l)

N
(i,j),(k,l)
d∗ . (33)

We have

Ex (Nd∗) =
∑

(i,j),(k,l)∈Id∗
(i,j)6=(k,l)

Pr
(
ci ⊕ c′j = ck ⊕ c′l

)
, (34)

and

Ex
((
Nd∗

)2)
= Ex

 ∑
(i,j),(k,l)∈Id∗

(i,j)6=(k,l)

∑
(i′,j′),(k′,l′)∈Id∗

(i′,j′)6=(k′,l′)

N
(i,j),(k,l)
d∗ N

(i′,j′),(k′,l′)
d∗


=

∑
(i,j),(k,l)∈Id∗

(i,j)6=(k,l)

∑
(i′,j′),(k′,l′)∈Id∗

(i′,j′)6=(k′,l′)

Pr
(
ci ⊕ c′j = ck ⊕ c′l , ci′ ⊕ c′j′ = ck′ ⊕ c′l′

)
.

(35)
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Above summation consists of
(
q′

2

)2
terms of independent probabilities, but their

values differ depending on overlaps in the two sets {(i, j), (k, l)}, {(i′, j′), (k′, l′)}.
For any distinct (i1, j1), (i2, j2), (i3, j3), (i4, j4) ∈ Id∗ , define

P2 := Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2

)
,

P3 := Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 = ci3 ⊕ c′j3

)
,

P4 := Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 , ci3 ⊕ c

′
j3 = ci4 ⊕ c′j4

)
.

We can observe that the sum in (35) consists of exactly
(
q′

2

)
terms satisfying∣∣{(i, j), (k, l)} ∪ {(i′, j′), (k′, l′)}∣∣ = 2, in which case the corresponding proba-

bility is of the form P2, exactly
(
q′

2

)
2
(
q′−2

1

)
terms satisfying

∣∣{(i, j), (k, l)} ∪
{(i′, j′), (k′, l′)}

∣∣ = 3, in which case the corresponding probability is of the form

P3, and exactly
(
q′

2

)(
q′−2

2

)
terms satisfying

∣∣{(i, j), (k, l)}∪{(i′, j′), (k′, l′)}∣∣ = 4,
in which case the corresponding probability is of the form P4. We obtain (using
independence of the probabilities)

Ex
((
Nd∗

)2)
=

(
q′

2

)
·P2 +

(
q′

2

)
2

(
q′ − 2

1

)
·P3 +

(
q′

2

)(
q′ − 2

2

)
·P4 .

We likewise have Ex (Nd∗) =
(
q′

2

)
·P2, and using that β = 3

2

(
q′

2

)
/2n, we obtain

for (30-31):

Pr
(
DGCLf1,f2,f3 = 0

)
≤

(
q′

2

)
·P2 +

(
q′

2

)
2
(
q′−2

1

)
·P3 +

(
q′

2

)(
q′−2

2

)
·P4 −

((
q′

2

)
·P2

)2

(
(
q′

2

)
·P2 − 3

2

(
q′

2

)
/2n)2

=
P2 + 2

(
q′−2

1

)
·P3 +

(
q′−2

2

)
·P4 −

(
q′

2

)
·P2

2(
q′

2

)
(P2 − 3

2/2
n)2

. (36)

We can derive the following bounds on P2,P3,P4.

Claim. Provided n ≥ 6, P2 ≥ 2/2n, P3 ≤ 5/22n, and P4 ≤ 4
(2n−6)(2n−7) .

Proof (proof of claim). Before bounding the probabilities separately, note that
in general for any distinct (i, j), (k, l) ∈ Id∗ , we have i 6= k and j 6= l. Write

xi1 = p1(mi1 ⊕ f1(t)) = p1(m′j1 ⊕ f1(t′)) ,

xi2 = p1(mi2 ⊕ f1(t)) = p1(m′j2 ⊕ f1(t′)) ,

xi3 = p1(mi3 ⊕ f1(t)) = p1(m′j3 ⊕ f1(t′)) ,

xi4 = p1(mi4 ⊕ f1(t)) = p1(m′j4 ⊕ f1(t′)) ,

where we recall that d∗ = f1(t)⊕ f1(t′) = mi1 ⊕m′j1 = · · · = mi4 ⊕m′j4 . Above
values xi1 , xi2 , xi3 , xi4 are pairwise distinct as mi1 ,mi2 ,mi3 ,mi4 are pairwise
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distinct as i1, i2, i3, i4 are. Furthermore, write

yi1 = p−1
2 (ci1 ⊕ f3(t)) = xi1 ⊕ f2(t) ,

y′j1 = p−1
2 (c′j1 ⊕ f3(t′)) = xi1 ⊕ f2(t′) ,

yi2 = p−1
2 (ci2 ⊕ f3(t)) = xi2 ⊕ f2(t) ,

y′j2 = p−1
2 (c′j2 ⊕ f3(t′)) = xi2 ⊕ f2(t′) ,

yi3 = p−1
2 (ci3 ⊕ f3(t)) = xi3 ⊕ f2(t) ,

y′j3 = p−1
2 (c′j3 ⊕ f3(t′)) = xi3 ⊕ f2(t′) ,

yi4 = p−1
2 (ci4 ⊕ f3(t)) = xi4 ⊕ f2(t) ,

y′j4 = p−1
2 (c′j4 ⊕ f3(t′)) = xi4 ⊕ f2(t′) .

Recall that d∗∗ := f2(t)⊕ f2(t′) 6= 0.
We start with bounding P2:

P2 = Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2

)
= Pr

(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 | xi1 ⊕ xi2 = d∗∗

)
Pr (xi1 ⊕ xi2 = d∗∗)

+ Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 | xi1 ⊕ xi2 6= d∗∗

)
Pr (xi1 ⊕ xi2 6= d∗∗) .

Given that xi1 6= xi2 , we have

Pr (xi1 ⊕ xi2 = d∗∗) =
1

2n − 1
.

Conditioned on xi1 ⊕ xi2 = d∗∗, we have yi1 = y′j2 and y′j1 = yi2 , and ci1 ⊕ c′j1 =
ci2 ⊕ c′j2 holds with probability 1. Conditioned on xi1 ⊕xi2 6= d∗∗ and using that
d∗∗ 6= 0, the values yi1 , y

′
j1
, yi2 , y

′
j2

are pairwise distinct and

Pr
(
p2(yi1)⊕ p2(y′j1) = p2(yi2)⊕ p2(y′j2) | xi1 ⊕ xi2 6= d∗∗

)
≤ 1

2n − 3
.

We therefore obtain

P2 =
1

2n − 1
+

1

2n − 3

(
1− 1

2n − 1

)
=

2 · 2n − 5

(2n − 1)(2n − 3)
≥ 2

2n
.

We next bound P3:

P3 = Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 = ci3 ⊕ c′j3

)
= Pr

(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 = ci3 ⊕ c′j3 | xi1 ⊕ xi2 = d∗∗

)
Pr (xi1 ⊕ xi2 = d∗∗)

+ Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 = ci3 ⊕ c′j3 | xi1 ⊕ xi3 = d∗∗

)
Pr (xi1 ⊕ xi3 = d∗∗)

+ Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 = ci3 ⊕ c′j3 | xi2 ⊕ xi3 = d∗∗

)
Pr (xi2 ⊕ xi3 = d∗∗)

+ Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 = ci3 ⊕ c′j3 | xi1 ⊕ xi2 , xi1 ⊕ xi3 , xi2 ⊕ xi3 6= d∗∗

)
·Pr (xi1 ⊕ xi2 , xi1 ⊕ xi3 , xi2 ⊕ xi3 6= d∗∗) ,
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using that no two or more of the events “xi1⊕xi2 = d∗∗,” “xi1⊕xi3 = d∗∗,” and
“xi2 ⊕ xi3 = d∗∗” can hold simultaneously. Starting with the first line, as before
we have

Pr (xi1 ⊕ xi2 = d∗∗) =
1

2n − 1
.

Conditioned on xi1 ⊕ xi2 = d∗∗, we have yi1 = y′j2 and y′j1 = yi2 , and ci1 ⊕ c′j1 =
ci2 ⊕ c′j2 holds with probability 1. On the other hand, xi1 ⊕ xi3 6= d∗∗, and thus,
the values yi1 , y

′
j1
, yi3 , y

′
j3

are pairwise distinct and

Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 = ci3 ⊕ c′j3 | xi1 ⊕ xi2 = d∗∗

)
≤ 1

2n − 3

(we now need to consider an upper bound, as the probability may be 0 if the
targeted value is already sampled).

The second and third line go identically. For the fourth line, conditioned on
the fact that xi1 ⊕ xi2 , xi1 ⊕ xi3 , xi2 ⊕ xi3 6= d∗∗ and using that d∗∗ 6= 0, the
values yi1 , y

′
j1
, yi2 , y

′
j2
, yi3 , y

′
j3

are pairwise distinct and

Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 = ci3 ⊕ c′j3 | xi1 ⊕ xi2 , xi1 ⊕ xi3 , xi2 ⊕ xi3 6= d∗∗

)
≤ 1

(2n − 4)(2n − 5)
.

We therefore obtain

P3 ≤
3

(2n − 1)(2n − 3)
+

1

(2n − 4)(2n − 5)
≤ 4

(2n − 4)(2n − 5)
≤ 5

22n
,

provided 2n ≥ 45.
We finally bound P4:

P4 = Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 , ci3 ⊕ c

′
j3 = ci4 ⊕ c′j4

)
= Pr

(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 , ci3 ⊕ c

′
j3 = ci4 ⊕ c′j4 | xi1 ⊕ xi2 = d∗∗ ∧ xi3 ⊕ xi4 = d∗∗

)
·Pr (xi1 ⊕ xi2 = d∗∗ ∧ xi3 ⊕ xi4 = d∗∗)

+ Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 , ci3 ⊕ c

′
j3 = ci4 ⊕ c′j4 | xi1 ⊕ xi2 = d∗∗ ∧ xi3 ⊕ xi4 6= d∗∗

)
·Pr (xi1 ⊕ xi2 = d∗∗ ∧ xi3 ⊕ xi4 6= d∗∗)

+ Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 , ci3 ⊕ c

′
j3 = ci4 ⊕ c′j4 | xi1 ⊕ xi2 6= d∗∗ ∧ xi3 ⊕ xi4 = d∗∗

)
·Pr (xi1 ⊕ xi2 6= d∗∗ ∧ xi3 ⊕ xi4 = d∗∗)

+ Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 , ci3 ⊕ c

′
j3 = ci4 ⊕ c′j4 | xi1 ⊕ xi2 6= d∗∗ ∧ xi3 ⊕ xi4 6= d∗∗

)
·Pr (xi1 ⊕ xi2 6= d∗∗ ∧ xi3 ⊕ xi4 6= d∗∗) ,

For the first line, the event xi1⊕xi2 = d∗∗∧xi3⊕xi4 = d∗∗ holds with probability
1/(2n − 2)(2n − 3), and conditioned on xi1 ⊕ xi2 = d∗∗ ∧ xi3 ⊕ xi4 = d∗∗, the
equations ci1 ⊕ c′j1 = ci2 ⊕ c′j2 and ci3 ⊕ c′j3 = ci4 ⊕ c′j4 hold with probability 1
(see the analysis of P2). The second and third line go as in the analysis of P3,
giving

Pr (xi1 ⊕ xi2 = d∗∗ ∧ xi3 ⊕ xi4 6= d∗∗) ≤ 1

2n − 1
,
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and

Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 , ci3 ⊕ c

′
j3 = ci4 ⊕ c′j4 | xi1 ⊕ xi2 = d∗∗ ∧ xi3 ⊕ xi4 6= d∗∗

)
≤ 1

2n − 3
.

For the fourth line, conditioned on the fact that xi1 ⊕xi2 6= d∗∗∧xi3 ⊕xi4 6= d∗∗

and using that d∗∗ 6= 0, the values yi1 , y
′
j1
, yi2 , y

′
j2

are pairwise distinct and
so are yi3 , y

′
j3
, yi4 , y

′
j4

, and in addition, yi1 , yi2 , yi3 , yi4 are pairwise distinct and
y′j1 , y

′
j2
, y′j3 , y

′
j4

are. We obtain

Pr
(
ci1 ⊕ c′j1 = ci2 ⊕ c′j2 , ci3 ⊕ c

′
j3 = ci4 ⊕ c′j4 | xi1 ⊕ xi2 , xi3 ⊕ xi4 6= d∗∗

)
≤ 1

(2n − 6)(2n − 7)
.

We therefore obtain

P4 ≤
1

(2n − 2)(2n − 3)
+

2

(2n − 1)(2n − 3)
+

1

(2n − 6)(2n − 7)
≤ 4

(2n − 6)(2n − 7)
.

ut
To suit further analysis of (36), we claim that the P4-term cancels out to the
P2

2-term.

Claim. Provided 6q′ ≤ 2n,
(
q′−2

2

)
·P4 ≤

(
q′

2

)
·P2

2.

Proof (proof of claim). By above claim, P4 ≤ 4
(2n−6)(2n−7) and P2 ≥ 2/2n, and

it remains to prove that

(q′ − 2)(q′ − 3)

(2n − 6)(2n − 7)
≤ q′(q′ − 1)

22n
.

This in turn follows from the fact that

q′ − 3

2n − 7
≤ q′ − 2

2n − 6
≤ q′ − 1

2n
,

as 6q′ ≤ 2n. ut
From (36) and the bounds of above two claims, we directly obtain

Pr
(
DGCLf1,f2,f3 = 0

) a
≤

P2 + 2
(
q′−2

1

)
·P3(

q′

2

)
(P2 − 3

2/2
n)2

b
≤

2/2n + 2
(
q′−2

1

)
· 5/22n(

q′

2

)
(2/2n − 3

2/2
n)2

=
8 · 2n + 40(q′ − 2)(

q′

2

)
c
≤ 32

24ε
+

80

2n/2+2ε
,

where
a
≤ holds due to the second claim,

b
≤ holds as P2 ≥ 2/2n and P3 ≤ 5/22n

(note that a lower bound on P2 suffices for both the numerator and denominator

as A/(A− C) ≤ B/(B − C) for A ≥ B > C > 0), and
c
≤ holds as

(
q′

2

)
≥ (q′)2/4

and q′ = 2n/2+2ε.
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A.2 Proof of Lemma 4

For any d ∈ {0, 1}n, recall that Nd counts the number of collisions ci⊕c′j = ck⊕c′l
for distinct (i, j), (k, l). There could be multi-collisions; for λ ≥ 2 we say that
(i1, j1), . . . , (iλ, jλ) ∈ Id form a λ-collision if ci1 ⊕ c′j1 = · · · = ci5 ⊕ c′j5 . Denote

by Nλ
d the number of λ-collisions that are not part of a (λ+ 1)-collision. Denote

by N≥λd the number of λ-collisions (that may be part of a (λ+ 1)-collision).
Fix any 1 ≤ α ≤

√
β − 1. By basic probability theory,1

Pr
(
Dp̃ = 1

)
≤

∑
d∈{0,1}n

Pr (Nd ≥ β)

≤
∑

d∈{0,1}n
Pr
(
Nd ≥ β | N≥α+2

d = 0
)

+ Pr
(
N≥α+2
d ≥ 1

)
≤

∑
d∈{0,1}n

Pr
(
Nd ≥ β | N≥α+2

d = 0
)

+

(
q′

α+ 2

)
1

(2n)α+1
. (37)

Conditioned on the fact that there is no (α + 2)-collision, by the pigeonhole
principle, Nd ≥ β only if the number of collisions arising from either 2-collisions,
3-collisions, . . . , or (α + 1)-collisions is at least β/α. Clearly, a 2-collision con-
tributes 1 to Nd, a 3-collision contributes 3 to Nd, and generally, an i-collision

contributes
(
i
2

)
to Nd. Therefore, denoting Pr?(X) = Pr

(
X
∣∣∣ N≥α+2

d = 0
)

for

brevity,

Pr?(Nd ≥ β) ≤
α+1∑
i=2

Pr?
(
N i
d ≥ β/α

)
≤
α+1∑
i=2

(
q′

i · β/(α
(
i
2

)
)

)
1

(2n)(i−1)·β/(α(i2))

. (38)

As α ≤
√
β − 1, we particularly have (i − 1) · β/(α

(
i
2

)
) ≥ 2 for all i, and we

obtain(
q′

i · β/(α
(
i
2

)
)

)
1

(2n)(i−1)·β/(α(i2))

a
≤

(q′)(i−1)·β/(α(i2)) · (q
′ − 2)β/(α(i2))

(2n)(i−1)·β/(α(i2))

·

(
e

i · β/(α
(
i
2

)
)

)i·β/(α(i2))

b
≤

((
eα(i− 1)

2

)i
· (q′)i−1(q′ − 2)

2(i−1)n
· 1

βi

)β/(α(i2))

c
≤

((
2eα

3

)i
· (i− 1)i

24ε(2n/2+2ε − 1)i−2

)(3·24ε)/(8α(i2))

d
≤
(

2α

22ε

)3/(4α(i−1))·24ε

,

1 Note that a plain Markov bound or Chebychev’s inequality do not help, as we have
to sum over all possible d ∈ {0, 1}n.
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where
a
≤ holds as

(
A
B

)
≤ (A)B · (e/B)B by Stirling’s approximation,

b
≤ holds as

(A)m/(B)m ≤ (A/B)m if A ≤ B,
c
≤ uses β = 3

2

(
q′

2

)
/2n, q′(q′ − 2) ≤ (q′ − 1)2,

and q′ = 2n/2+2ε, and, finally
d
≤ holds as (i − 1)i ≤ (2n/2−1)i−2 is satisfied for

all i, provided that n ≥ 16.
We obtain for (38):

Pr?(Nd ≥ β) ≤
α+1∑
i=2

(
2α

22ε

)3/(4α(i−1))·24ε

≤ α
(

2α

22ε

)3/(4α2)·24ε

,

and for (37):

Pr
(
Dp̃ = 1

)
≤ α2n

(
2α

22ε

)3/(4α2)·24ε

+
2(α+2)2ε

2(α−2)n/2
,

again using that (A)m/(B)m ≤ (A/B)m if A ≤ B. This bound holds for all
1 ≤ α ≤

√
β − 1.

B Mirror Theory

We will follow the description of Patarin’s mirror theory [22,26,28] by Mennink
and Neves [20]. We will restrict ourselves to the simplified setting where the
equations are of the form Pa ⊕ Pb = λ, where the Pa’s and Pb’s come from
independent permutations, and we will use the theory for 3n/4-bit security at
most.

B.1 System of Equations

Consider a system of q ≥ 1 equations

E = {Pϕ(a1) ⊕ Pϕ(b1) = λ1, · · · , Pϕ(aq) ⊕ Pϕ(bq) = λq} (39)

over r ≥ 1 unknowns P = {P1, . . . , Pr}, where ϕ is some surjective index map-
ping

ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r} .

In our work we consider the case that the Pa’s and Pb’s come from independent
permutations, hence ϕ(ai) 6= ϕ(bj) for any i, j. We write I1 = {ϕ(ai) | i ∈
{1, . . . , q}} and I2 = {ϕ(bi) | i ∈ {1, . . . , q}}, such that {1, . . . , r} = I1 ∪ I2 is a
partition. For a subset I ⊆ {1, . . . , q}, define the multiset MI as

MI =
⋃
i∈I
{ϕ(ai), ϕ(bi)} .

We give three definitions with respect to the system of equations E .
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Definition 1 (circle-freeness). For any I ⊆ {1, . . . , q}, MI has an element
of odd multiplicity.

Definition 2 (ξ-block-maximality). There is a partition {1, . . . , r} = R1 ∪
· · · ∪ Rs of the r indices, all of size at most ξ, such that for any i ∈ {1, . . . , q}
there is an ` ∈ {1, . . . , s} such that {ϕ(ai), ϕ(bi)} ⊆ R`.

Definition 3 (non-degeneracy). For any I ⊆ {1, . . . , q} such that MI has
exactly two odd multiplicity element from either I1 or I2, it satisfies

⊕
i∈I λi 6= 0.

Circle-freeness implies that there is no linear combination of the equations E
that is independent of the unknowns, ξ-block maximality implies that there are
not too many unknowns that are jointly related, and non-degeneracy implies
that there is no linear combination of the equations E that implies equality of
two distinct unknowns from either I1 or I2.

B.2 Main Result

The main theorem of Patarin’s mirror theory, tailored to the case where we have
a partition of the unknowns into two disjoint sets, is given below. We follow [20],
with the side condition on 2n/64 from [22].

Theorem 3 (mirror theorem). Let {1, . . . , r} = I1 ∪ I2 be a partition of
the indices. Let E be a system of equations over the unknowns P that is (i)
circle-free, (ii) ξ-block-maximal, and (iii) non-degenerate. Then, as long as ξ2 ·
max{|I1|, |I2|} ≤ 2n/64, the number of solutions for P such that Pi 6= Pj for all
i, j ∈ I` (` = 1, 2) is at least

NonEq(I1, I2; E)

2nq
,

where NonEq(I1, I2; E) denotes the number of solutions to P that satisfy Pi 6= Pj
for all i, j ∈ I` (` = 1, 2) as well as the inequalities imposed by E (but the
equalities themselves released).

A lower bound on the technical quantity NonEq(I1, I2; E) can be derived as
follows. Every equation Pϕ(a) ⊕ Pϕ(b) = λ 6= 0 in E imposes Pϕ(a) 6= Pϕ(b). As
ϕ(a) ∈ I1 and ϕ(b) ∈ I2 are in distinct index sets, this inequality Pϕ(a) 6= Pϕ(b)

imposes an extra inequality over the ones suggested by I1, I2. An obvious lower
bound thus is

NonEq(I1, I2; E) ≥ (2n)|I1|(2
n − (ξ − 1))|I2| ,

because every unknown of I2 is in exactly one block, and connects with at most
ξ − 1 unknowns of I1 (as the system is ξ-block-maximal).
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