
Differential Fault Analysis of RECTANGLE-80

Shobhit Sinha, Sandip Karmakar

Department of Computer Science and Engineering,
Indian Institute of Information Technology Kalyani, India

{shobhit,sandip}@iiitkalyani.ac.in

Abstract. We present various differential fault attack schemes for the
RECTANGLE-80 and demonstrate how initially we started from a 80-bit
fault to a single word fault scheme. This was mainly due to a differential
vulnerability in the S-box of RECTANGLE as a result of which the
exhaustive search space for the key reduces from 280 to 232. We have
also presented a key schedule attack that is a variant of the single fault
scheme, exploiting the same vulnerability and reduces the search space
to 240. The paper concludes with the simulation results for the single
word fault scheme followed by countermeasures.

1 Introduction

With the advent of the IoT era, there is of course an increasing need for lightweight
ciphers to provide security in small embedded devices. Moreover, these devices
have strong cost constraints like speed, area, power, memory and energy con-
sumption. RECTANGLE [1] is a lightwieght block cipher designed to meet such
purposes. The design of this cipher meets all these constraints and is extremely
hardware friendly. Also, due to its bit-slice implementation, it achieves a very
competitive speed among the existing lightweight ciphers.

The designers of RECTANGLE have presented a security analysis of the
cipher in [1], indicating its resistance against differential, linear, impossible dif-
ferential and integral cryptanalysis along with attacks such as the statistical
saturation and key schedule. They have reported that even though differential
and linear trails exist, their clustering is limited and effective difference or linear
propagation cannot be constructed with more than 14 rounds. For the statistical
saturation attack, the longest distinguisher can reach 15 rounds and can be used
to attack 18 rounds at most. Some impossible differential distinguishers were
found for 8-rounds, and some integral distinguishers were for found for 7 rounds.
To prevent slide attacks on key schedule they have added different round con-
stants for different rounds. Based on this security analysis, the cipher has been
designed to run for 25 rounds to resist the above mentioned attacks, the extra 7
rounds after 18 serve as a safe security margin.

The designers have also reported a comparative analysis of RECTANGLE’s
implementations in different hardware environments against some popular ci-
phers in literature. The throughput of RECTANGLE is quite remarkable when
compared against block ciphers like AES [2], PRESENT [3] or even against



stream ciphers like Grain [4] or Trivium [5]. On software implementations, the
bit-slice implementation gives it an edge in speed over the other ciphers which
do not have such implementations.

The RECTANGLE is indeed an “interesting” cipher and keeping in mind
the above discussion on its security and speed, it can be used for encryption
in various devices. However, modern-day ciphers not only need to be resistant
against mathematical cryptanalysis, they have to also show robustness against
implementation attacks also known as side-channel attacks. The device where
the algorithm is implemented in hadware or software, generally, leak information
such as power consumption, elctromagnetic energy etc. Analysing such leakages
may lead to getting information either full or partial about the secret key to an
unwanted user. This kind of attacks are known as side-channel attacks. Fault
attacks are sometimes classified as a type of side-channel attack. In this scenario
faults into the device where the crypto-algorithm is implemented are used to
retrieve secret information about the implementation [6]. Almost all the ciphers
proposed till date are vulnerable to fault attacks. For example, AES [7, 8, 9, 10,
11], Grain-128 [12], Trivium [13] etc. have fault attacks reported against them.
The solidity of RECTANGLE obviously poses the question whether it is resistant
to side-channel attacks. This makes its fault analysis against RECTANGLE
even more important. There exists a discussion of differential power attack on
RECTANGLE in the literature [14]. But, to the best of our knowledge, there is no
known differential fault attack on RECTANGLE. In differential fault attack, the
faulty ciphertexts and the fault-free ciphertexts output from the implementation
are analyzed to deduce partial or full knowledge of the secret key. We present
differential fault schemes against RECTANGLE-80 in this paper. Furthermore,
we show that it can be attacked with a single fault and minutes of computation.
Also the paper proposes fault attacks that target both the state and the key
schedule of the cipher, which implies that weakness of the cipher is not only
limited to its state update, it is also prevalent to its key schedule algorithm.

Organization:
The paper is organized as follows:
Section 2 : Background
Section 3 : 80/64 bit fault scheme
Section 4 : Single word fault and associated schemes
Section 5 : Fault Scheme for the Key Scheduler
Section 6 : Conclusion

2 Background

2.1 The RECTANGLE-80 Cipher

The plaintext of 64 bits of RECTANGLE is represented as a matrix of 4 ×16
bits (called the state) whereas the key of 80 bits is represented as matrix of 5
×16 bits. The structure of the RECTANGLE-80, as used to perform encryption,
is illustrated in Algorithm 1.



Algorithm 1: The RECTANGLE-80 encryption function

Input: The 64-bit plaintext P, The 80-bit key K.
Output: The 64-bit ciphertext C.

round ← 1
X ← P
while round ≤ 25 do

X ← AddRoundKey(X,K)
X ← SubColumn(X)
X ← ShiftRow(X)
K ← KeySchedule(K,round)

end
X ← AddRoundKey(X,K)
return X

2.2 Round Transformation

The RECTANGLE is a 25 round SP-network Cipher.Each of the 25 rounds
consists of the following 3 steps: AddRoundkey, SubColumn, ShiftRow. After
the last round, there is a final AddRoundKey.

AddRoundkey: performs a Bitwise XOR of the round subkey to the inter-
mediate state.

SubColumn: applies S-boxes in a parallel manner to the 4 bits in the same
column. The S-box is applied to each of the 16 columns. The S-box used in
RECTANGLE is a 4-bit to 4-bit S-box S : F 4

2 → F 4
2 . The S-box values are

shown in Table 1.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 6 5 C A 1 E 7 9 B 0 3 D 8 F 4 2

Table 1. S-box of RECTANGLE

ShiftRow: A cyclic left rotation to each row over different offsets. Row 0 is
not rotated, row 1 is left rotated over 1 bit, row 2 is left rotated over 12 bits,
and row 3 is left rotated over 13 bits.

2.3 Key Schedule

The KeySchedule function generates the next Round key from the previous key,
as shown in Algorithm 2.



Algorithm 2: The RECTANGLE-80 Key Schedule function

Input: rth round key Kr, Round Number r.
Output: (r + 1)th round key Kr+1.

Y ← Kr

Y ← PartialSubColumn(Y)
Y ← KeyFeistel(Y)
Y ← RCXor(Y,r)
return Y

At round i (i = 1, 2, . . . , 25), the 64-bit round subkey Ki consists of the
first 4 rows of the current contents of the key register. After extracting Ki , the
key register is updated by follows transformations:

PartialSubColumn: S-box is applied vertically to the bits intersected at
the 4 uppermost rows and the 4 rightmost columns.

KeyFeistel: Applying a 1-round generalized Feistel transformation,
Row

′

0 := (Row0 <<< 8)⊕Row1, Row
′

1 := Row2, Row
′

2 := Row3,

Row
′

3 := (Row3 <<< 12)⊕Row4, Row
′

4 := Row0.
RCXor: A 5-bit round constant RC[i] is XORed with the 5-bit key state(

k4 ‖ k3 ‖ k2 ‖ k1 ‖ k0) Finally, K25 is extracted from the updated key state. The
round constants for each round are fixed and given in [1].

3 Fault Attack: 80/64 bit Fault Scheme

3.1 Specifications :

Fault Timing : After round 1’s AddRoundKey operation (for first 64 bits)
and after round 2’s AddRoundKey operation (for last 16 bits)
Fault Location : A given bit of the Intermediate state
No. of Bits affected : 1
Nature of Fault : Sets the affected bit to 0 (hard fault)
No. of Faults required : 80 or 64

3.2 Details of the Attack:

Let there be a plaintext P such that for all ai (a single bit) belonging to P, ai =
0. The attacker encrypts P and stores the result in enc0.

Recovery of the first 64 bits:
After the initial AddRoundKey operation, the value of ai becomes ki. This is
the result of ai ← 0 ⊕ ki being performed. The attacker then sets the ith bit
of the intermediate state to 0. The rest of the operations proceed normally and
a faulty ciphertext cf is obtained.
Now, if cf = enc0 , then ki := 0 otherwise ki := 1 This is because if ki was



0, then setting it to 0 results in no change and we get a fault-free encryption.
Otherwise, if ki was 1, then setting it to 0 results in a different ciphertext. The
attacker repeats the attack for different values of i to recover the first 64 bits.

Recovery of the last 16 bits: The attacker has two options :
a) Brute force the last 16 key-bits in 216 trials. This a trivial task with mod-
ern processing powers. It is better than the second option as lesser faults are
required. Thus, the 80 fault scheme reduces to a 64 fault scheme.
b) Using the 64- bits recovered, the attacker constructs a plaintext such that
after the first round transformations the intermediate state becomes 0. We ob-
serve that, from the RECTANGLEs S-box Nature that, S(9) → (0).
Hence, to obtain the special plaintext, we perform a column wise XOR of (1,0,0,1)
to the columns of the recovered key. Now, after AddRound Key of Round 2, we
fault the ith bit of the 3rd Row in the intermediate state. Similar observations
between faulty ciphertext and enc0 follow, and the attack is repeated 16 times for
each 3rd Row bit and we deduce the value of the 3rd row of key state produced af-
ter the first key schedule. With the relation between 3rd, 4th rows of key and the
new 3rd row of key state after key schedule i.e (Row

′

3 = Row3 <<< 12⊕Row4)
and knowing the values of Row

′

3 and Row3, we can find out the value of Row4
and the entire key is now recovered.

3.3 Practicality of the attack :

An attack of a similar nature was proposed in [7] for the Advanced Encryption
Standard. The authors mention spike, glitch, optical and electromagnetic per-
turbations as mechanisms for injecting the fault (setting the bit to 0). However,
this fault model poses the following challenges :
a)The timing and precision should be impeccable for it to succeed.
b) At least 64 faults are required, which is too high and chances of permanent
damage to the device increases. This is because every injected fault will stress
the device to some extent and there will be some probability that it will produce
a permanent, rather than a transient fault.

4 Fault Attack: Single Word fault scheme

4.1 Specifications :

Fault Timing : At the begining of the 25th Round
Fault Location : 1st Row of the Intermediate State
No. of Bits affected : 16
Nature of Fault : Flips the affected bit
No. of Faults required : 1



4.2 Details :

Let’s analyze the nature of the RECTANGLE′s S-box. Let M be a particular
column in the intermediate state. Thus, M is a 4-bit integer. The following table
shows values of

δz = S(M)⊕ S(M ⊕ f) (1)

Here, f = (8,4,2,1) This is analogous to faulting M at first, second, third and
fourth bit respectively.

M⇒ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f = 8 13 5 15 7 9 1 3 11 13 5 15 7 9 1 3 11
f = 4 7 11 11 3 7 11 11 3 3 15 7 15 3 15 7 15
f = 2 10 15 10 15 6 7 6 7 8 13 8 13 12 13 12 13
f = 1 3 3 6 6 15 15 14 14 11 11 14 14 7 7 6 6

Table 2. δz values for all possible M for different f

Using the above table, we can find the values of δz for a given M and faulty
bit f of M. The following table now indicates the frequency of δz values.

δz 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Freq. 0 2 0 8 0 2 6 10 2 2 2 8 2 6 4 10

Table 3. Frequency of all possible δz values

Clearly, a differential analysis results in smaller set of possible values of M
(cardinality of the possible values set varies from 2 to 10 ) as compared to the
number of values in brute force case which is 16. An attack scheme based on
this info. reduces the key space from 280 to 270 in worst case scenario. Hence, we
investigate further the nature of the S-box. Note that value for δz = 0, frequency
= 0. This is obvious as δz is 0 only if there is no fault ocurring in M i.e. f = 0.
The next table uses the above two tables to infer the number of possible values
of M, given a δz and fault location(f).

From the table, we can clearly see that faulting the first bit of M, possible
values of M in worst case is 2 as compared to second/third/fourth bit where
this value is 4. Clearly, an attack scheme based on first bit fault reduces the key
space to 232 and based on second/third/fourth bit fault reduces the key space
to 248. Hence, we use the first scheme and present an algorithm that breaks the
cipher in a single word fault.



δz ⇒ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f = 8 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
f = 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
f = 2 0 0 0 0 0 0 2 2 2 0 2 0 2 4 0 2
f = 1 0 0 0 2 0 0 4 2 0 0 0 2 0 0 4 2

Table 4. Given f and δz, no. of possible values of M

Fig. 1. Propagation of Fault Induced in the input to 25th round of RECTANGLE-80.

Description of Algorithm :
dev encrypt() is the fault-free encryption performed by the device.
dev faultyencrypt() is the encryption with fault injection (as per specifications)



Algorithm 3: DFA on RECTANGLE-80 using a single Word fault

Input: A 64-bit plaintext, P
Output: The 80 bit key K

C ← dev encrypt(P)
C′ ← dev faultyencrypt(P)
DECLARE ∆z : [4][16] array of bits
for i = 0 to 3 do

for j = 0 to 15 do
∆z[i][j] = C[i][j]⊕ C′[i][j]

end

end
∆z ← ShiftRow−1(∆z)
/* We now guess the columns of intermediate state after Round 25 by

looking at each column value of ∆z by using Table 1. There

exist two possible values for each column of ∆z i.e 216 possible

intermediate states. */

M ← All possible combinations from 2 choices for each 16 columns
R ← All possible combinations of 216 bits
for each m ε M do

m ← SubColumn(m)
m ← ShiftRow(m)
k ← m ⊕ C
for each r ε R do

K ← append r to k as the 5th Row
K ← CompleteInvertKeySchedule(K)
if encrypt(P,K)=C then

return K
end

end

end



performed by the device.
Now, if I25 is the intermediate state as input to the Round 25,
If C ← dev encrypt(P ), then
⇒ C = ShiftRow(SubColumn(I25 ⊕K25))⊕Klast

Also, if C ′ ← dev faultyencrypt(P )
⇒ C ′ = ShiftRow(SubColumn(I25 ⊕K25 ⊕ f))⊕Klast

Now, if ∆z ← C ⊕ C ′, then
⇒ ∆z = ShiftRow(SubColumn(I25 ⊕K25))

⊕ ShiftRow(SubColumn(I25 ⊕K25 ⊕ f))

⇒ ShiftRow−1(∆z) = SubColumn(I25⊕K25)⊕SubColumn(I25⊕
K25 ⊕ f)
Compare above equation with eqn (1). Now, we can calculate the column value
for each column of ∆z, which gives us the value of M. We already know the
value of f to be 8(as first row is faulted). Using Table 1, we can guess the value
of I25 ⊕K25. Two such possible values exist. Hence, we have 216 possible com-
binations of the intermediate state. Xoring each combination with C, we get
216 possible combinations of KeyState after 25 rounds. It should be noted that
C,C ′and∆z are all [4][16] matrices.
However, as the key is of 80 bits, we have no information about the fifth row
of the key state. Now, there are 216 possible combinations for the fifth row (16
bits). Hence, we have 232 possible key states after 25th round. We can now
perform an exhaustive search by inverting the key states and find out the value of
the correct key by checking if it is giving the correct ciphertext C on encrypting P.

4.3 Practicality of the attack :

Flipping a particular bit at a given instant was considered probabilistic two
decades ago [15] but has been demonstrated perfectly in [16]. Using the same
technique with particular parameters of the laser beam, it is indeed possible to
flip an entire row in the chip leading to a successful fault injection.
Even if the 16 consecutive bits are not flipped at once, the bit that is not flipped
can easily be detected with δz value being 0 for thecorresponding column. Instead
of simultaneous flipping we can flip the bits one by one, an approach similar to
the one mentioned in [10] for the AES.
It is also very interesting to note that if we Repeat Steps 1 to 6 but this time
with fault injection at a different row than first, we can know the value of K
exactly and our exhaustive search reduces to 216. This obviously requires two
word faults, but with a reduced exhaustive search of 216.

5 Fault Attack: Fault scheme for the Key Scheduler

The fault scheme in the key scheduler is a variant of the attack described in
section-4. The obvious scheme is to fault the first 16 bits of the Key State at



the end of 24th round. The AddRoundKey operation in the subsequent round
then faults the 16 bits of the first row and the key scheduler scheme reduces
to the attack in section-4. However, this scheme has a major flaw. The Key
Scheduler function (Algorithm-2) of RECTANGLE-80 has a PartialSubColumn
round. Faulting the key state in such a manner causes the SubColumn function
to change the contents of the topmost and leftmost four columns as well. This
change then increases the overall “guess” complexity of our scheme. To avoid
this we split our scheme in two phases.

5.1 Phase I

Specifications :
Fault Timing : At the end of the 24th Round

Fault Location : 1st Row of the Key
No. of Bits affected : 12 leftmost bits
Nature of Fault : Flips the affected bit
No. of Faults required : 1

Details :
The flipping of 12 leftmost bits ensure that there is no effect of the PartialSub-

Column on the Key State during the fault propagation. This is shown in Fig 2. It
is interesting to note that a,b,...,k,l all denote bit flip faults and are analogus to
a xor with 1. Hence, we now present an algorithm that first remove the presence
of a,b,...,k,l from the cipher text and then we use a modified Algorithm 3 to
reduce the possible search space for 12 columns from 248 to 212.



Fig. 2. Propagation of Fault in Phase I of Key Scheduler Scheme

5.2 Phase II

Specifications :
Fault Timing : After 25th Round’s AddRoundkey

Fault Location : 1st Row of the KeyState
No. of Bits affected : 4 right most bits
Nature of Fault : Flips the affected bit
No. of Faults required : 1

Details :
We now flip the four rightmost bits of the first row of the key state. Due

to the PartialSubColumn function of the key schedule, the same differential
vulnerability of the S-box will be exploited to reduce the possible search space
for four columns from 216 to 24. The fault propagation in this case is shown in
Fig 3. The AddRoundConstant function will not contribute to the propagation
of the fault in the keystate.



Algorithm 4: Phase-I of Key Schedule attack on RECTANGLE-80

Input: A 64-bit plaintext, P
Output: 212 choices for 48 bits of the 25th Round intermediate state

C ← dev encrypt(P)
C′ ← dev faultyencrypt(P)
DECLARE ∆z : [4][16] array of bits
for i = 0 to 3 do

for j = 0 to 15 do
∆z[i][j] = C[i][j]⊕ C′[i][j]

end

end
∆z[0]← ∆z[0]⊕ {1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}
∆z ← ShiftRow−1(∆z)
/* We now guess the columns of intermediate state after Round 25 by

looking at each column value of ∆z by using Table 1. There

exist two possible values for each of 12 leftmost columns of ∆z
i.e 212 possible intermediate states. */

M left ← All possible combinations from 2 choices for each of the leftmost 12
columns of the intermediate state

return M left

Fig. 3. Propagation of Fault in Phase II of Key Scheduler Scheme

Using this knowledge of the keyspace, coupled with the information of phase-
I and Key-Scheduler Function, attacker can easiy calculate the following bits,
with '1'representing bit calculated using information by Phase 1 and '2'using
information from both P1 and P2. This is shown in Table 5. The rest of the bits
can be found using a brute-force approach. If only phase-I is implemented the



Algorithm 5: Phase-II of Key Schedule attack on RECTANGLE-80

Input: A 64-bit plaintext, P
Output: 24 choices for 16 bits of the 25th Round Key state

C ← dev encrypt(P)
C′ ← dev faultyencrypt(P)
DECLARE ∆z : [4][16] array of bits
for i = 0 to 3 do

for j = 0 to 15 do
∆z[i][j] = C[i][j]⊕ C′[i][j]

end

end
∆z ← KeyFiestel−1(∆z)
K right ← All possible combinations from 2 choices for each of the rightmost 4
columns of the key state

return K right

key space reduces to 244 and if both Phase-I and Phase-II are implemented then
the key-space reduces to 240.

1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

1 1 1 1 1 1 1 1 2 2 2 2

2 1 1 1 1 1 1 1 1 2 2 2 2

2 2 2 2

Table 5. Bits recovered with the attack on the key schedule

6 Conclusion

We have proposed different fault schemes for RECTANGLE 80 . A brief sum-
mary of each scheme is given in Table 6. For the single word fault scheme, when
simulated (non-bit slice implementation) in C on a single processor machine,
we observed that the InvertKeySchedule() takes 2.6 µs whereas the encrypt()
takes 2.9 µs on average for a single execution (based on 1,000,000 encryptions).
Hence, it can be calculated that the best case timing of 5.5 µs (instant match,
when the last row of K25 is 0x0000) and the worst case to be 6.5 hours (travers-
ing the entire 232 search space, when the last row of K25 is 0xFFFF). This
can further be improved using GPUs and multicore processors along with bit
slice-implementation. As most RECTANGLE implementations use the bit-slice
technique (12 instructions required for SubColumn round[1]), our word fault can
be applied more precisely in such cases by other mechanisms like clock-glitching,



the equipments of which are cheaper than that of the laser-based bit-flipping.
The word fault is better than the key schedule attack as the key schedule attack
requires greater accuracy in fault injection. As a countermeasure, to prevent the
single fault attack described in this paper the last two rounds would need to be
repeated to check that no fault was injected.

Fault Scheme Reduced key space

80-bit fault 20

64-bit fault 216

Two word faults 216

Single word fault 232

Key-Schedule :Phase-I only 244

Key-Schedule :Both phases 240

Table 6. Fault Schemes for RECTANGLE-80 and search complexity

References

1. Zhang W T, Bao Z Z, Lin D D, et al. RECTANGLE: a bit-slice lightweight block
cipher suitable for multiple platforms. Sci China Inf Sci, 2015, 58: 122103(15), doi:
10.1007/s11432-015-5459-7

2. National Institute of Standards and Technology (NIST). Advanced En-
cryption Standard (AES).FIPS Publication 197, available for download at
http://www.itl.nist.gov/fipspubs/, 2001.

3. Bogdanov A. et al. (2007) PRESENT: An Ultra-Lightweight Block Cipher. In: Pail-
lier P., Verbauwhede I. (eds) Cryptographic Hardware and Embedded Systems -
CHES 2007. CHES 2007. Lecture Notes in Computer Science, vol 4727. Springer,
Berlin, Heidelberg

4. M. Hell, T. Johansson, A. Maximov, and W. Meier. A Stream Cipher Proposal:
Grain-128. IT, IEEE International Symposium on, pages 16141618, 2006.

5. C. D. Canniere and B. Preneel. Trivium specifications. eSTREAM, ECRYPT
Stream Cipher Project, 2006.

6. E. Biham, A. Shamir, Differential fault analysis of secret key cryptosystems, Proc.
of CRYPTO 97, Springer LNCS vol. 1294, pp. 513525, 1997.

7. J. Blömer and J.-P. Seifert. Fault based cryptanalysis of the advanced encryption
standard (AES). In R. N. Wright, editor, Financial Cryptography FC 2003, volume
2742 of Lecture Notes in Computer Science, pages 162181. Springer-Verlag, 2003.

8. P. Dusart, G. Letourneux, and O. Vivolo. Differential fault analysis on A.E.S. In J.
Zhou, M. Yung, and Y. Han, editors, Applied Cryptography and Network Security
ACNS 2003, volume 2846 of Lecture Notes in Computer Science, pages 293306.
Springer-Verlag, 2003.

9. G. Piret and J.-J. Quisquater. A differential fault attack technique against SPN
structure, with application to the AES and KHAZAD. In C. D. Walter, . K. Ko,
and C. Paar, editors, Cryptographic Hardware and Embedded Systems CHES 2003,



volume 2779 of Lecture Notes in Computer Science, pages 7788. Springer-Verlag,
2003.

10. C. Giraud. DFA on AES. In H. Dobbertin, V. Rijmen, and A. Sowa, editors,
International Conference Advanced Encryption Standard AES 2004, volume 3373
of Lecture Notes in Computer Science, pages 2741. Springer-Verlag, 2004.

11. Michael Tunstall, Debdeep Mukhopadhyay, and Sk Subidh Ali. Differential fault
analysis of the advanced encryption standard using a single fault. In WISTP, pages
224233, 2011.

12. Alexandre Berzati, Cecile Canovas, Guilhem Castagnos, Blandine Debraize, Louis
Goubin, Aline Gouget, Pascal Paillier, and Stephanie Salgado. Fault Analysis of
Grain-128. Hardware-Oriented Security and Trust, IEEE International Workshop
on, 0:714, 2009.

13. Hojsk, M., Rudolf, B.: Differential fault analysis of Trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158172. Springer, Heidelberg (2008)

14. Selvam, R., Shanmugam, D., Annadurai, S.: Side channel attacks: Vulnerability
analysis of prince and rectangle using dpa

15. S. Skorobogatov, R. Anderson, Optical Fault Induction Attacks, Proc. of CHES
02, Springer LNCS, pp. 212, 2002.

16. Michel Agoyan, Jean-Max Dutertre, Amir-Pasha Mirbaha, David Naccache, Anne-
Lise Ribotta, et al.. How to Flip a Bit?. On-Line Testing Symposium (IOLTS), 2010
IEEE 16th International, Jul 2010, Corfu, Greece.


