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Abstract. A proxy re-encryption (PRE) scheme is a public-key encryp-
tion scheme that allows the holder of a key pk to derive a re-encryption
key for any other key pk′. This re-encryption key lets anyone transform
ciphertexts under pk into ciphertexts under pk′ without having to know
the underlying message, while transformations from pk′ to pk should
not be possible (unidirectional). Security is defined in a multi-user set-
ting against an adversary that gets the users’ public keys and can ask
for re-encryption keys and can corrupt users by requesting their secret
keys. Any ciphertext that the adversary cannot trivially decrypt given
the obtained secret and re-encryption keys should be secure.
All existing security proofs for PRE only show selective security, where
the adversary must first declare the users it wants to corrupt. This can
be lifted to more meaningful adaptive security by guessing the set of
corrupted users among the n users, which loses a factor exponential in n,
rendering the result meaningless already for moderate n.
Jafargholi et al. (CRYPTO’17) proposed a framework that in some cases
allows to give adaptive security proofs for schemes which were previously
only known to be selectively secure, while avoiding the exponential loss
that results from guessing the adaptive choices made by an adversary.
We apply their framework to PREs that satisfy some natural additional
properties. Concretely, we give a more fine-grained reduction for several
unidirectional PREs, proving adaptive security at a much smaller loss.
The loss depends on the graph of users whose edges represent the re-
encryption keys queried by the adversary. For trees and chains the loss
is quasi-polynomial in the size and for general graphs it is exponential
in their depth and indegree (instead of their size as for previous reduc-
tions). Fortunately, trees and low-depth graphs cover many, if not most,
interesting applications.
Our results apply e.g. to the bilinear-map based PRE schemes by Ate-
niese et al. (NDSS’05 and CT-RSA’09), Gentry’s FHE-based scheme
(STOC’09) and the LWE-based scheme by Chandran et al. (PKC’14).

1 Introduction

A proxy re-encryption (PRE) scheme is a public-key encryption scheme with
an additional functionality: Alice and Bob, who have key pairs (pkA, skA) and
(pkB , skB), respectively, can generate a re-encryption key (re-key, for short)



rkA,B that allows its holder, say Peggy, to act as a proxy; that is, she can
transform ciphertexts under pkA to ciphertexts under pkB without having to
know the underlying message. A trivial way to accomplish this would be for
Alice to hand her secret key skA to Peggy, who can then decrypt ciphertexts
under pkA, encrypt them under pkB and send them to Bob. Alice’s secret key acts
thus as the re-key and de- and encryption algorithms are used for re-encryption.
However, this approach requires Alice to reveal her secret key to Peggy and
therefore place complete trust on her. The more interesting cases are when the
parties are mutually distrustful.

Bidirectional vs. unidirectional. In the above setting, if the re-key rkA,B
allows Peggy to also transform ciphertexts under pkB to pkA, the PRE scheme
is called “bidirectional”. For such schemes the re-key is necessarily a function of
both skA and skB . In this paper we are interested in the more interesting case
of “unidirectional” PRE schemes where the re-key rkA,B can only transform
ciphertexts from pkA to pkB , and not vice-versa, and ciphertexts under pkB re-
main secure even given skA and rkA,B . (Henceforth we will always assume PREs
to be unidirectional.) As opposed to bidirectional PREs, the re-key generation
algorithm in a unidirectional PRE takes as input “source” keys (pkA, skA) and
only the “target” public key pkB .

Single hop vs. multiple hops. Suppose a third user, Charlie, holding keys
(pkC , skC), enters the picture and suppose Peggy obtains the re-key rkB,C that
allows her to transform ciphertexts under Bob’s public key to ciphertexts under
Charlie’s public key. Peggy can, by definition, transform a ciphertext cA under
pkA to a ciphertext cB under pkB using her re-key rkA,B . If it allows Peggy to
transform ciphertext cB , which has already been re-encrypted once, to a cipher-
text cC under pkC using the re-key rkB,C then we say that the PRE scheme
allows two “hops”. In a similar manner, one can consider multiple hops of re-
encryptions. Such a scheme is termed “multi-hop” as opposed to a “single-hop”
scheme (which does not allow re-encryptions of already re-encrypted cipher-
texts).

1.1 Modelling Security

The basic notion of security for unidirectional PREs is that of indistinguishability
under chosen-plaintext attack (CPA). There are n users and, at the beginning of
the game, the adversary gets their public keys pk1, . . . , pkn from the challenger.
In the first phase, the adversary can corrupt users of its choice by requesting their
secret keys; in the second phase, it can obtain re-keys rki,j and re-encryptions
for ciphertexts of its choice. The scheme is CPA-secure if it is infeasible for
the adversary to distinguish encryptions of two messages under a key that the
adversary has not corrupted either directly or indirectly (through a re-key or
re-encryption query to a corrupted user).

Just as in standard public-key encryption, the above security definition can
be strengthened to chosen-ciphertext attack (CCA) by allowing the adversary
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access to a decryption oracle which, on input a ciphertext and a public key pki
returns the decryption of the ciphertext under ski. The conditions to ensure
non-triviality have to be altered accordingly.

We note that both definitions are selective in nature: the adversary must
choose the set of players it corrupts before issuing any queries.

1.2 Prior Work

Bidirectional PREs were introduced as “atomic proxy cryptography” by Blaze,
Bleumer and Strauss [BBS98], who constructed a multi-hop scheme under the
decisional Diffie-Hellman assumption. Unidirectional PREs were introduced later
by Ateniese et al. [AFGH05]. Their main motivation was to limit the amount of
trust placed on the proxy, as required by their application to access control for
distributed storage. Since the notion of security for unidirectional PRE is differ-
ent from a bidirectional PRE, they also reformulated the notion of CPA (for the
single-hop setting). Assuming hardness of certain problems on bilinear groups,
they constructed CPA-secure schemes that are single-hop and unidirectional.

The definition of CCA security for single-hop bidirectional schemes is due to
Canetti and Hohenberger [CH07] and is more involved than previous definitions,
mainly because the adversary is allowed adaptive corruption. They gave a scheme
satisfying their notion under the standard decisional bilinear Diffie-Hellman as-
sumption. The definition of CCA security in the unidirectional setting is due to
Libert and Vergnaud [LV08], who instantiate it under a slightly non-standard
assumption on bilinear groups.

The earlier constructions of multi-hop, unidirectional schemes were based on
program obfuscation [HRsV07, CCV12]. In his seminal paper, Gentry [Gen09]
gave a generic construction of PREs from fully homomorphic encryption. The
first construction (with succinct ciphertexts) based on a standard assumption is
due to Chandran et al. [CCL+14]: their scheme is CPA-secure assuming deci-
sional learning with errors. Phong et al. [PWA+16] followed up with a construc-
tion that, in addition, enjoys a security property called “key-privacy”. The only
construction of a CCA-secure multi-hop, unidirectional scheme is due to Fan
and Liu [FL17]. In their paper, they also rigorously defined the security models
(CPA and CCA) for the multi-hop setting.

Cohen [Coh17] has recently argued that CPA security might be too weak for
some applications and introduced indistinguishability against honest-reencryption
attack (HRA), a notion that implies CPA (but is incomparable to CCA). He also
showed that if a PRE satisfies a property called “source-hiding”, which several
existing CPA-secure schemes do, then HRA security reduces to CPA security.

1.3 Our Contribution

Our starting point is the observation that, unlike bidirectional PREs, the secu-
rity definitions for unidirectional PREs (that is, CPA, HRA and CCA) are all
selective in nature: the adversary must choose the set of parties it corrupts be-
fore issuing any queries. A more meaningful notion would be adaptive security,
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where the adversary is allowed to corrupt users at any time during the game.
However, modelling this turns out to be as tricky as in the bidirectional setting.
In this paper, we lift the definitions for CPA and HRA to the adaptive setting.

1.3.1 First Contribution: Modelling Adaptive Corruption. The main
problem that arises when we allow the adversary to adaptively corrupt users is
that we must ensure that the adversary cannot trivially win the security game.
For bidirectional PREs this was handled in [CH07] by defining a relation that
keeps track of the dependency between the re-keys and re-encryptions that were
issued during the game. Our approach is similar in spirit: the security game
maintains a “recoding graph” that has n nodes, and whose edges are derived
from the re-keys and re-encryptions issued to the adversary. The exact definitions
of the recoding graph for adaptive CPA and for adaptive HRA differ slightly, but
in both cases it is defined so that no corrupt key is reachable from the challenge
key. That is, the adversary is forbidden from making any re-key or re-encryption
queries to a corrupt user that is reachable from the challenge key. The recoding
graph now allows to ensure non-triviality of the adversary’s actions by checking
a few basic graph properties.

1.3.2 Second Contribution: The Reduction. Proving adaptive security
can be reduced to showing selective security by initially guessing the set of users
that will be corrupted. However, this reduction loses an exponential factor in
n, rendering the reduction meaningless already for moderate n. As our main
contribution, we give a more fine-grained reduction from adaptive to selective
security which in many practical settings and for several existing schemes (or
minor variants) implies adaptive security at much smaller (quasi-polynomial, or
even polynomial) loss. More precisely, the loss in our reduction depends on the
structure of the recoding graph: for trees and chains we get a quasi-polynomial
nO(logn) loss, whereas for general graphs the loss is exponential in their depth.
Fortunately, trees, chains, and low-depth graphs cover many, if not most, inter-
esting applications.

Security assumptions. A key step in our search for a tighter reduction was
the identification of the basic security assumptions on a PRE that we required
in our arguments. For the case of CPA, it turned out to be ciphertext indis-
tinguishability and weak key-privacy, both fairly standard security requirements
already explored in some of the previous works.

As the name suggests, a PRE is ciphertext-indistinguishable (or, for short,
indistinguishable) if the underlying encryption is. Since the syntax of the encryp-
tion algorithm for a PRE is slightly different from that of a standard public-key
encryption, the definition of indistinguishability has to be slightly changed. To
be precise, the encryption algorithm for a PRE takes also a “level” as input, and
we require that the ciphertexts are indistinguishable on all levels. It is not hard,
therefore, to see that any selectively CPA-secure PRE has to trivially satisfy
indistinguishability.
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The notion of key-privacy was introduced in a strong form in [ABH09]. We
require the PRE to satisfy a much weaker property, namely that a re-key rkA,B
looks pseudorandom given just the source and target public keys pkA and pkB .
Existing PRE schemes that satisfy the stronger key privacy as defined in [ABH09]
are therefore candidates for our reduction.

To apply our reduction to HRA-secure PRE, we need a third assumption
to hold: source-hiding. This is the same property that allowed Cohen [Coh17]
to lift a CPA-secure PRE to a HRA-secure one. Informally, a PRE is source-
hiding if ciphertexts that result from re-encryptions are distributed close to fresh
encryptions (at the corresponding level).

For PRE satisfying these assumptions, we show that the framework of Ja-
fargholi et al. [JKK+17], who gave an abstraction of the techniques from [FKPR14],
can be applied. This framework has been used to show adaptive security of a
variety of cryptographic protocols (e.g., secret sharing, garbled circuits etc.) in
the “symmetric-key” setting while avoiding an exponential loss that typically
results from the guessing step when going from selective to adaptive security.
Its application to PREs in the work is the first in the “public-key” setting. We
describe their framework in more detail below.

The JKK+ framework. A standard way to prove adaptive security is to first
define a “selective” variant that requires the adversary to commit to some of its
choices (e.g., whom to corrupt, or on what input to be challenged at the end) at
the beginning of the game. Let W denote the set of all possible choices.

Consider a selective security notion defined as two games H0 and H1 being
indistinguishable. A security proof often uses a hybrid argument: one defines a
sequence of hybrid games (H0, . . . ,Hτ ) where the first and last games correspond
to the original selective games (i.e., H0 = H0 and H1 = Hτ ). One then proves
that any two consecutive hybrids (Ht and Ht+1) are ε-indistinguishable. As in-
distinguishability satisfies the triangle inequality, the extreme games H0 and Hτ
are (ε · τ)-indistinguishable.

Now to prove security against an adaptive adversary (who will not reveal its
choices at the beginning), one defines a new reduction that just guesses the ad-
versary’s future choices at random from the setW and then follows the selective
reduction. Conditioned on the guess being correct, this reduction has the same
success probability as the selective one.

Unfortunately, the overall loss in security of this second step is as large as
the size of W, which is typically exponential (e.g., exponential in the num-
ber of parties that can be corrupted). Thus, if the selective reduction implied
ε-indistinguishability (based on some underlying assumption), the adaptive re-
duction will only imply (ε · |W|)-indistinguishability, which in most cases will be
meaningless.

The key observation in [JKK+17] was that in many selective reductions as
above, only a highly compressed version h(w) of the information w ∈ W that the
adversary commits to is actually used in the simulation of intermediate hybrids.
Jafargholi et al. called these “partially selective” hybrids, as opposed to the
original hybrids, which are “fully selective”. They show that the security loss in
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such cases is only exponential in the length of h(w) (its the longest value for any
two consecutive hybrids), and not exponential in the length of the entire w.

In all the instances to which the [JKK+17] framework has been applied the
simulation of the security game depends on some underlying graph (e.g., the
access structure in secret sharing or the Boolean circuit in case of garbling) and
the hybrid games involve incremental changes to the simulation depending on
the structure of this graph. Jafargholi et al. managed to decouple the particulars
of the simulation from the design of the hybrids by using a pebbling game on the
graph (the graph must thus be directed and acyclic). To be more precise, they
associated the simulation of a hybrid (Ht) to a pebbling configuration (Pt), and
therefore the incremental changes in the simulation to the pebbling sequence
(P0, . . . ,Pτ ). In particular, if a vertex carries a pebble then the part of simula-
tion of the hybrid that is dependent on the vertex is carried out in a different
manner (e.g., in garbling using Yao’s scheme the ciphertexts in the garbled table
for a gate are all bogus). The rules of the simulation is what then determines
the pebbling rules, i.e., when exactly a pebble can be placed on or removed from
a vertex. The extreme hybrids correspond to the initial and final pebbling con-
figurations, and the immediate goal is to show that two hybrids that differ by a
pebble are indistinguishable to an adversary. Indistinguishability of the original
games then follows by transitivity of indistinguishability.

In the fully selective games of the above examples, the adversary commits
to the whole graph; but, as explained above, knowledge of the vertices that are
pebbled suffices to simulate the intermediate hybrids. Therefore, in the partially
selective game the adversary “commits” to some pebbling configuration. Since
we have established a correspondence between the simulation and a pebbling
configuration, the task of designing a better sequence of hybrids has been re-
duced to finding a better pebbling sequence. In particular, the fewer pebbles are
on the graph at any particular time, the more concisely we can describe this
configuration, and thus the smaller the incurred security loss.

Designing the hybrids. The graph that underlies the simulation in adaptive
CPA and HRA is precisely the recoding graph. (Strictly speaking, it suffices
to consider the subgraph that is reachable from the challenge vertex, which we
will call the “challenge graph”.) The presence (or not) of a pebble on a vertex
dictates how the re-encryption and re-key queries outgoing from that vertex
are simulated. Therefore in the fully selective games, the adversary commits to
the recoding graph (which is different from the original selective game in which
the adversary committed to the set of corrupt users), whereas in the partially
selective games it “commits” just to a pebbling configuration.

Let us first consider adaptive CPA: the edges of the recoding graph corre-
spond to the re-key and re-encryption queries made by the adversary during the
game. For simplicity, assume that the recoding graph has a single source vertex
i∗ that is also the vertex the adversary wants to be challenged on. Once it has
made all the queries, the adversary receives its challenge, which is the encryption
of either m∗0 or m∗1 under pki∗ ; let CPA0 and CPA1 denote the respective games.
In case there are no outgoing edges from i∗, indistinguishability of CPA0 and
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CPA1 follows from ciphertext indistinguishability (the first assumption): The re-
duction embeds the challenge public key (of the indistinguishability game) as
the i∗-th key, relays (m∗0,m

∗
1) to its challenger and forwards the challenge ci-

phertext it receives to the adversary. As there are no outgoing re-keys from i∗,
the simulation does not require the secret key ski∗ .

In case i∗ does have outgoing edges, the idea is to use a sequence of hybrids
to reach a game where knowledge of ski∗ is not required for simulation, just like
above. To argue indistinguishability of hybrids, we use weak key-privacy, which
guarantees that a re-key looks pseudorandom given the source and target public
keys. Weak key-privacy allows the simulator to fake the outgoing edges from a
vertex, after which the secret key for this vertex is not required for simulation
anymore. However, the simulator cannot fake edges right away: it has to fake all
children of a vertex first, before it can rely on weak key-privacy. Consequently,
the pebbling must obey the following rule: in a move, a pebble can be placed on
or removed from a vertex only if all its children carry pebbles.

To be precise, in game Hbt , for each pebbled vertex in Pt all queried re-keys
outgoing from that vertex are faked. Observe that as the secret key corresponding
to a vertex is used only for the generation of the re-keys outgoing from that
vertex, the simulation of a hybrid can be carried out without knowledge of the
secret key corresponding to the pebbled vertices. Thus, a pebbling sequence
describes a sequence of hybrids.

Main result. Our main result bounds the security loss for arbitrary recoding
graphs in terms of their space and time complexity, where a graph is said to
have space complexity σ and time complexity τ if there exists a valid pebbling
strategy for that graph that uses at most σ pebbles and requires at most τ moves.
More generally, a class of graphs has space complexity σ and time complexity τ
if this is the case for every graph in that class.

Theorem 1 (Informal Theorem 5 and Theorem 6). Let G(n) denote a
family of graphs on n vertices with space-complexity σ and time-complexity τ .
Then a PRE that is ciphertext-indistinguishable and weakly key-private for com-
putationally bounded adversaries is also adaptively CPA-secure against compu-
tationally bounded adversaries for recoding graphs in G with a loss in security of
≈ τ · nσ. If the PRE is also statistically source-hiding then it is also adaptively
HRA-secure.

In many applications, the underlying recoding graph is has a very particular
structure like trees (or even paths) and low-depth graphs, which cover many
interesting applications. For paths, or fixed-arity trees, our reduction only loses
a quasi-polynomial factor. For low-depth graphs, the loss is exponential only in
the depth (and thus polynomial for fixed depth-graphs). Below, we mention two
such applications.

1. In key rotation for encrypted cloud storage, a client has its data encrypted
on a server, and occasionally wants to re-encrypt it (say, to restore security
after key leakage). As the client does not trust the server, it will not want
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Table 1: PRE schemes we prove adaptively CPA and HRA secure (see §5 for the
definitions of the assumptions).

Scheme Setting Assumption(s) Hops

Construction 2 [AFGH05] Bilinear maps eDBDH and XDH Single

Construction 4 [ABH09] Bilinear maps eDBDH and DLin Single

Construction 5 [Gen09] – FHE Multiple

Construction 7 [CCL+14] Lattices LWE Multiple

to hand it the decryption key. When using PRE, the client can simply send
a re-key to the server, which enables it to locally re-encrypt all ciphertexts
to the new key. In this application the recoding graph is simply a chain.

2. Another common application is forwarding of encrypted email without in-
volving the receiver, say, for delegation during vacation or for filtering spam
emails. In most cases the underlying delegation structure will be captured
by simple graphs. For example, if delegation only happens to subordinates,
the depth of the recoding graph is bounded by the depth of the hierarchy of
the organisation.

1.3.3 Third Contribution: Adaptively-Secure PREs. Finally, we show
that the aforementioned three properties are satisfied by several existing con-
structions or by minor variants thereof, and thus Theorem 1 can be applied to
them. An overview of these schemes is given in Table 1. We consider the most in-
teresting corollary to our results the adaptive security of the LWE-based scheme
by Chandran et al. [CCL+14]:

Theorem 2 (Informal Theorem 11). The quasi-polynomially secure deci-
sional LWE problem implies multi-hop, unidirectional adaptively CPA/HRA-
secure PRE for chains or complete binary trees.

2 Formal Definitions

Notation. We use [a, b] to denote {a, a+1, . . . , b} and [b] as a shorthand for [1, b].
We will only consider logarithms to the base 2 (i.e., log := log2). For two sets
X ,Y we write X∆Y for the symmetric difference. We write x← X for sampling
an element x uniformly at random from the set X ; analogously, x1, . . . , xn ← X
denotes sampling x1, . . . , xn independently and uniformly at random from the
set X . To indicate sampling according to a distribution X on X , we write x← X.
By [X] we denote the support of X, i.e., the values with positive probability.
For two distributions X,Y , ∆(X,Y ) denotes their statistical distance. We write
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X ≡ Y if X has the same input/output distribution as Y . Two distributions
X = {Xκ}κ∈N and {Yκ}κ∈N are (s, ε)-indistinguishable, denoted X ≈(s,ε) Y , if
for every adversary A of size at most s

|P[A(X) = 1]− P[A(Y ) = 1]| ≤ ε.

Throughout the paper, we will repeatedly use the following lemma concerning
the transitivity of the indistinguishability relation ≈:

Lemma 1. Let X, Y , Z be distributions on a set X . If X ≈(s1,ε1) Y and
Y ≈(s2,ε2) Z, then X ≈(min(s1,s2),ε1+ε2) Z.

For indistinguishability-based security games, we use 〈G,A〉 to denote the bit
output by the challenger G at the end of its interaction with the adversary A. We
say that two games G0 and G1 are (s, ε)-indistinguishable, denoted G0 ≈(s,ε) G

1,
if for every adversary A of size at most s

|P[〈G0,A〉 = 1]− P[〈G1,A〉 = 1]| ≤ ε.

For an algorithm A, we use sA to denote its size; in a similar manner, for
a set X , we use sX to denote the complexity of sampling from X uniformly at
random.

Notation for graphs. We let G = (V, E) denote a directed graph with vertices
V (usually V = [n] for some n ∈ N) and edges E ⊆ V2. The indegree (resp.,
outdegree) of a vertex is defined as the number of edges coming in to (resp.,
going out of) that vertex. The indegree (resp., outdegree) of the graph is the
maximum indegree (resp., outdegree) over all the vertices. A vertex with indegree
(resp., outdegree) zero is called a source (resp., sink). A vertex i is connected
to another vertex j (or alternatively j is reachable from i) if there is a directed
path from i to j in G.

Miscellaneous notation.

1. κ: the security parameter
2. λ: the number of supported levels of re-encryption supported
3. q: the order of a group or a field
4. b: the bit used to select the challenge
5. b′: adversary’s guess
6. n: number of keys/size of the graph
7. δ/d: degree/depth of a graph

2.1 Proxy Reencryption: Formal Definitions

Definition 1 (Multi-hop, unidirectional PRE). A multi-hop, unidirectional
PRE scheme for a message space M consists of the six-tuple of algorithms
(S,K,RK,E,D,RE), which are explained below.
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S(1κ, 1λ)→ pp: On input the security parameter κ and the maximum level λ
(both in unary) supported by the scheme, setup outputs the public parame-
ters pp. We assume that pp is implicit in other function calls.

K(pp)→ (pk, sk): Key generation returns a public key pk and the correspond-
ing secret key sk.

RK((pki, ski), pkj)→ rki,j: On input a source key pair (pki, ski) and a target
public key pkj, re-key generation generates a unidirectional re-encryption
key (rekey, for short) rki,j.

E(pk, (m, `))→ (c, `): Encryption takes as input the public key pk, a message
m and a level ` ∈ [λ], and outputs a level-` ciphertext (c, `).

D(sk, (c, `))→ m : On input a ciphertext (c, `) and the secret key sk, decryp-
tion outputs a message m, or the symbol ⊥ (if the ciphertext is invalid).

RE(rki,j , pki, pkj , (ci, `))→ (cj , `+ 1): Reencryption takes a re-key rki,j, a
source public key pki, a target public key pkj and a level-` ciphertext ci
under pki and transforms it to a level-(`+ 1) ciphertext cj under pkj. Only
ciphertexts belonging to levels ` ∈ [λ−1] can be re-encrypted. In constructions
where arguments pki and/or pkj are optional, we simply drop them.

Definition 1 differs slightly from the definition of multi-hop unidirectional PRE
in [FL17]. Here, the re-keys are level-agnostic: the same re-key can be used
to re-encrypt a ciphertext belonging to any level. In [FL17], however, a re-key
associated to a level cannot be used to re-encrypt a ciphertext from a different
level. We require the PRE to satisfy the following two correctness properties.

Definition 2 (Correctness [ABH09]). A proxy re-encryption scheme (as in
Definition 1) is correct w.r.t. the message spaceM if the following two properties
hold:

1. Correctness of encryption: ∀κ, λ ∈ N ∀ pp ∈ [S(1κ, 1λ)] ∀ (pk, sk) ∈ [K(pp)]
∀ (m, `) ∈M× [λ]:

P[D
(
sk,E(pk, (m, `))

)
6= m] = negl(κ, λ),

where the probability is over the random coins of E.

2. Correctness of re-encryption: ∀κ, λ ∈ N ∀ pp ∈ [S(1κ, 1λ)] ∀ (pki, ski),
(pkj , skj) ∈ [K(pp)] ∀ rki,j ∈ [RK((pki, ski), pkj)] ∀ (m, `) ∈M× [λ− 1]:

P[D
(
skj ,RE(rki,j , pki, pkj ,E(pki, (m, `)))

)
6= m] = negl(κ, λ),

where the probability is over the random coins of E and RE.

2.2 Modelling Security

2.2.1 Selective Corruption. The selective security of a multi-hop, unidi-
rectional PRE scheme against a chosen-plaintext attack is modelled using the
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Challenger sCPAb(1κ, 1λ, n)
1: Set C = ∅ . Stores the corrupt public keys
2: pp← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn)← PRE.K(pp) . Generate keys
3: ∀i, j ∈ [n], i 6= j : rki,j ← PRE.RK((pki, ski), pkj) . Generate re-keys

4: state← A
(corrupt,·)
1 (pp) . Phase 1

5: b′ ← A
(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)
2 (pk1, . . . , pkn, state) . Phase 2

6: return b′

Oracle (corrupt, i)
1: Add i to C
2: return ski

Oracle (rekey, i, j)
1: if i /∈ C and j ∈ C then HALT end if . abort2
2: return rki,j

Oracle (reencrypt, i, j, (ci, `))
1: if i /∈ C and j ∈ C then HALT end if . abort3
2: return (cj , `+ 1)← PRE.RE(rki,j , pki, pkj , (ci, `))

Oracle (challenge, i∗, (m∗0,m
∗
1), `∗) . Single access

1: if i∗ ∈ C then HALT end if . abort1
2: return (ci∗ , `

∗)← PRE.E(pki∗ , (m
∗
b , `
∗))

Game 1: sPRE-CPA

security game given in Game 1.3 It is an extension of the security model for
single-hop PRE from [ABH09] to the multi-hop setting.4 The limiting feature of
the model is that the adversary has to fix, beforehand in Phase 1 (see Game 1),
the honest and corrupt public keys. Its goal is to distinguish an encryption of
m0 from an encryption of m1 (for m0,m1 of its choice) under a key of its choice.
The game aborts if the adversary does one of the following:

– query the challenge oracle on a corrupt public key (abort1);
– request a re-key from an honest key to a corrupt key (abort2); or
– query a re-encryption from an honest to a corrupt key (abort3).

Definition 3 (sPRE-CPA-security). A PRE scheme is (s, ε)-selectively se-
cure against chosen-plaintext attack if sCPA0 ≈(s,ε) sCPA1, where sCPAb is de-
fined in Game 1.

Security against honest-reencryption attack. A stronger security defini-
tion was introduced in [Coh17] to address some of the restrictions that sPRE-CPA

3 The formulation here is slightly different from the original one in [ABH09]. In
[ABH09], the adversary has access to two oracles in Phase 1, one for generating
honest keys (i.e., the adversary gets just the public key) and the other for generat-
ing corrupted keys (i.e., the adversary gets both public and secret key). In Game 1
the adversary is first given all the public keys and can then, in Phase 1, choose the
keys it wants to corrupt.

4 [FL17] formalised security differently; we stick to the definition from [ABH09].
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Challenger sHRAb(1κ, 1λ, n)
1: Set C, E = ∅ . Stores corrupt keys and issued re-keys and re-encryptions
2: Set C = 0 . Counts ciphertexts generated
3: Set L,L∗ = ∅ . Stores honest ciphertexts and which derived from challenge
4: pp← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn)← PRE.K(pp) . Generate keys
5: ∀i, j ∈ [n], i 6= j : rki,j ← PRE.RK((pki, ski), pkj) . Generate re-keys

6: state← A
(corrupt,·)
1 (pp) . Phase 1

7: b′ ← A
(encrypt,·,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)
2 (pk1, . . . , pkn, state) . Phase 2

8: return b′

Oracles corrupt and rekey are defined like in Game 1.

Oracle (encrypt, i, (m, `))
1: (c, `)← PRE.E(pki, (m, `))
2: Increment C and add (C, i,m, (c, `)) to L
3: return (c, `)

Oracle (reencrypt, i, j, k)
1: Retrieve (k, i,m, (ci, `)) from L and increment C
2: (cj , `+ 1)← PRE.RE(rki,j , pki, pkj , (ci, `))
3: if k ∈ L∗ then . The ciphertext is derived from the challenge
4: if j ∈ C then HALT else add C to L∗ . abort∗3 end if
5: end if
6: Add (C, j,m, (cj , `+ 1)) to L
7: return (cj , `+ 1)

Oracle (challenge, i∗, (m∗0,m
∗
1), `∗) . Single access

1: Compute (ci∗ , `
∗)← PRE.E(pki∗ , (m

∗
b , `
∗)) and increment C

2: if i∗ ∈ C then HALT else add C to L∗ . abort1 end if
3: Add (C, i∗,m∗b , (ci∗ , `

∗)) to L
4: return (ci∗ , `

∗)

Game 2: sPRE-HRA

imposes on the adversary. The idea is to allow re-encryptions from honest to cor-
rupt keys, if the ciphertexts to re-encrypt were honestly generated. The adversary
can obtain such honest ciphertexts via an encrypt oracle, which stores them in a
list. The reencrypt oracle now takes the index of an honestly generated cipher-
text. It was shown in [Coh17] that (selective) HRA-security implies (selective)
CPA-security and also that if the PRE scheme is re-encryption-simulatable (a
generalisation of Definition 9) then (selective) CPA-security implies (selective)
HRA-security. In sPRE-HRA, which we formally define in Game 2, abort3 is
relaxed to

– abort∗3: The adversary queries the re-encryption of a ciphertext that is the
result of a chain of re-encryptions of the challenge ciphertext from an honest
to a corrupt key.

Definition 4 (sPRE-HRA-security). A PRE scheme is (s, ε)-selectively se-
cure against honest-reencryption attack if sHRA0 ≈(s,ε) sHRA

1, where sHRAb is
defined in Game 2.
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2.2.2 Modelling Adaptive Corruption. The adaptive security games cor-
responding to Games 1 and 2 are given in Games 3 and 4, respectively. To
model adaptive corruption, we think of the game being played on a directed
graph G = (V, E) called the “recoding” graph. The vertices of the recoding
graph correspond to the public keys, i.e., V = [n]. The edges are derived from
the re-keys and re-encryptions issued to the adversary in the security game, and
their purpose is to ensure that the adversary does not win the game in a trivial
manner. In particular, the recoding graph is defined so that no corrupt key is
reachable from the challenge key. To be precise, in CPA an edge (i, j) is added
to E if the adversary made either a (rekey, i, j) or (reencrypt, i, j, ·) query (see
Game 3 and Figure 1). Consequently, the adversary is forbidden from making
any re-key or re-encryption queries to a corrupt user that is reachable from the
challenge key.5

For HRA, on the other hand, (i, j) is added to E if the adversary made either
a (rekey, i, j) query or a (reencrypt, i, j, k) query where the k-th ciphertext is
a re-encryption of the challenge ciphertext (see Game 4 and Figure 1). This is
less restrictive than in CPA: the adversary can make re-encryption queries to a
corrupt user that is reachable from the challenge key unless it is related to the
challenge ciphertext.

For comparison we have reformulated the selective notions defined in Games 1
and 2 using a recoding graph instead of explicit aborts. Games 9 and 10 given
in Appendix A define the exact same notions as Games 1 and 2, respectively.

Definition 5 (PRE-CPA-security). A PRE scheme is (s, ε)-adaptively secure
against chosen-plaintext attack if CPA0 ≈(s,ε) CPA1, where CPAb is defined in
Game 3.

Definition 6 (PRE-HRA-security). A PRE scheme is (s, ε)-adaptively secure
against honest-reencryption attack if HRA0 ≈(s,ε) HRA

1, where HRAb is defined
in Game 4.

3 Preliminaries

This section provides the background necessary for the main results in §4. We
start with the security assumptions on PREs that allow us to prove adaptive se-
curity (§3.1) and then give an overview of the framework of [JKK+17] (§3.2), the
description of the pebbling game that is used in the design of the hybrids (§3.3).

3.1 Security Assumptions on PRE

We describe the three security properties of PRE schemes that allow us to prove
adaptive security: indistinguishability, key-privacy and source-hiding.

5 The selective CPA notion (Game 1) is in fact more restrictive in that it does not
allow re-keys and re-encryptions from any honest user to a corrupt user.
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Fig. 1: Recoding graph. The (round) green nodes represent the honest users,
whereas the (square) red nodes are the corrupted ones. The edges denote the
recoding information. In particular, the (solid) black edges are the re-keys, the
(dashed) orange edges are the re-encryptions related to the challenge ciphertext
(therefore, 3 is the challenge vertex) and (dotted) blue edges represent the re-
maining re-encryptions. For CPA, all the edges are counted, but for HRA the
blue (dotted) edges are not counted. The subgraph of the recoding graph that
forms the challenge graph (cf. §4) is shaded: the darker inner shading for HRA,
whereas the lighter outer shading is the challenge graph for CPA. Note that the
edge (7, 8) is valid in the case of HRA, but invalid for CPA (and therefore the
CPA challenger would abort at the end of such an execution.)
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Challenger CPAb(1κ, 1λ, n)
1: Set C, E = ∅ . Stores corrupt keys and issued re-keys and re-encryptions
2: pp← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn)← PRE.K(pp) . Generate keys
3: ∀i, j ∈ [n], i 6= j : rki,j ← PRE.RK((pki, ski), pkj) . Generate re-keys

4: b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp, pk1, . . . , pkn)
5: if A made call (challenge, i∗, ·, ·) for some i∗ then . Check abort conditions
6: if ∃ i ∈ C : i∗ is connected to i in ([n], E) then return 0 end if
7: end if
8: return b′

Oracle (corrupt, i)
1: Add i to C
2: return ski

Oracle (rekey, i, j)
1: Add (i, j) to E . Add to recoding graph
2: return rki,j

Oracle (reencrypt, i, j, (ci, `))
1: Add (i, j) to E . Add to recoding graph
2: return (cj , `+ 1)← PRE.RE(rki,j , pki, pkj , (ci, `))

Oracle (challenge, i∗, (m∗0,m
∗
1), `∗) . Single access

1: return (ci∗ , `
∗)← PRE.E(pki∗ , (m

∗
b , `
∗))

Game 3: PRE-CPA

Indistinguishability of ciphertexts. For proxy re-encryption, we require the
notion of indistinguishability, as defined for public-key encryption in [GM82], to
hold on all levels:

Definition 7 (Indistinguishability). A proxy re-encryption scheme PRE has
(s, ε)-indistinguishable ciphertexts if IND0 ≈(s,ε) IND

1 with IND as in Game 5.

Key-privacy. The original notion of key-privacy for PREs, which we refer to
as “strong” key-privacy, was introduced in [ABH09]. It is modelled by a security
game similar to sPRE-CPA: the adversary has access to corrupt, rekey and
reencrypt oracles, but as a challenge it has to distinguish a real re-key from a
re-key sampled uniformly at random from the support of re-keys. We refer the
readers to [ABH09] for the details.

We only need a weaker definition stating that re-keys should hide the source
keys. That is, the re-key rk0,1 from source (pk0, sk0) to a target key pk1 should
be indistinguishable from a random source to pk1. In addition, we need this
property to hold with respect to multiple re-keys. More formally, the security
game for weak key-privacy is given in Game 6 where the simulator RK∗ is defined
as

RK∗(pp, pk1) := RK((pk0, sk0), pk1) : (pk0, sk0)← K(pp).

Definition 8 (Weak key-privacy). Let δ ∈ N. A proxy re-encryption scheme
PRE is (s, ε, δ)-weakly key-private if KP0 ≈(s,ε) KP

1 with KP as in Game 6.
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Challenger HRAb(1κ, 1λ, n)
1: Set C,L,L∗ = ∅ and C = 0 . L stores honest enc’s, L∗ marks challenge reenc’s
2: E = ∅ . The edges of the recoding graph
3: pp← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn)← PRE.K(pp) . Generate keys
4: ∀i, j ∈ [n], i 6= j : rki,j ← PRE.RK((pki, ski), pkj) . Generate re-keys

5: b′ ← A(corrupt,·),(rekey,·,·),(encrypt,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp, pk1, . . . , pkn)
6: if A made call (challenge, i∗, ·, ·) for some i∗ then . Check abort conditions
7: if ∃ i ∈ C : i∗ is connected to i then return 0 end if
8: end if
9: return b′

Oracle (corrupt, i)
1: Add i to C
2: return ski

Oracle (rekey, i, j)
1: Add (i, j) to E . Add to recoding graph
2: return rki,j

Oracle (encrypt, i, (m, `))
1: c← PRE.E(pki, (m, `)), increment C and add (C, i,m, (c, `)) to L
2: return c

Oracle (reencrypt, i, j, k)
1: Retrieve (k, i,m, (ci, `)) from L
2: (cj , `+ 1)← PRE.RE(rki,j , pki, pkj , (ci, `))
3: Increment C and add (C, j,m, (cj , `+ 1)) to L
4: if k ∈ L∗ then . cj derived from challenge
5: Add C to L∗ and add (i, j) to E . Add to recoding graph
6: end if
7: return (cj , `+ 1)

Oracle (challenge, i∗, (m∗0,m
∗
1), `∗) . Single access

1: Compute (ci∗ , `
∗)← PRE.E(pki∗ , (m

∗
b , `
∗))

2: Increment C, add (C, i∗,m∗b , (ci∗ , `
∗)) to L and C to L∗

3: return (ci∗ , `
∗)

Game 4: PRE-HRA

Challenger INDb(1κ, 1λ)
1: pp← PRE.S(1κ, 1λ), (pk, sk)← PRE.K(pp)
2: return b′ ← A(challenge,·,·)(pp, pk)

Oracle (challenge, (m∗0,m
∗
1), `∗)

1: return PRE.E(pk, (m∗b , `
∗))

Game 5: Security game IND for ciphertext indistinguishability

Challenger KPb(1κ, 1λ)
1: pp← PRE.S(1κ, 1λ), (pk0, sk0), . . . , (pkδ, skδ)← K(pp)

2: ∀j ∈ [δ] : rk
(0)
0,j ← RK((pk0, sk0), pkj)

3: rk
(1)
0,j ← RK∗(pp, pkj)

4: return b′ ← A(pp, pk0, . . . , pkδ, rk
(b)
0,1, . . . , rk

(b)
0,δ)

Game 6: Security game KP for weak key-privacy
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Challenger SHb(1κ, 1λ)
1: pp← PRE.S(1κ, 1λ)
2: (pk0, sk0), (pk1, sk1)← PRE.K(pp)
3: rk0,1 ← PRE.RK((pk0, sk0), pk1)
4: b′ ← A(challenge,·,·)(pp, (pk0, sk0), (pk1, sk1), rk0,1)
5: return b′

Oracle (challenge,m∗, `∗) . `∗ ∈ [λ− 1]
1: c0 ← PRE.E(pk0, (m

∗, `∗))

2: c
(0)
1 ← PRE.RE(rk0,1, pk0, pk1, c0) . Real re-encryption

3: c
(1)
1 ← PRE.E(pk1, (m

∗, `∗ + 1)) . Simulate re-encryption

4: return (c0, c
(b)
1 )

Game 7: Security game SH for source hiding

Source-hiding. Source-hiding is a special case of re-encryption-simulatability,
a notion that was introduced in [Coh17]. It requires that re-encryptions can
be simulated without knowledge of the secret key. In particular, the simulated
re-encryptions should be indistinguishable from re-encrypted ciphertexts even
when given the secret keys for the source and target public keys, as well as the
re-key that was used for re-encryption (hence the notion of indistinguishabil-
ity is at least that of statistical indistinguishability). A PRE scheme is called
source-hiding if re-encrypted ciphertexts have the same distribution as “fresh”
ciphertexts, i.e., the encryption algorithm can be used as a simulator for re-
encryption.

Definition 9 (Source-hiding). A proxy re-encryption scheme PRE is (s, ε)-
source-hiding if SH0 ≈(s,ε) SH

1, with SH as defined in Game 7.

3.2 Overview of the JKK+ Framework

Random guessing. A standard way to prove adaptive security is to first show
security in a “selective” version of the adaptive game, in which the adversary
commits to some of its future choices, and then use random guessing of the
adversary’s commitment to reduce adaptive security to selective security. For
instance, consider the indistinguishability game for identity-based encryption:
in the selective counterpart the adversary commits to the challenge identity at
the start of the game, and the adaptive to selective reduction then works by
guessing the challenge identity. More formally, let G0 and G1 denote the two
adaptive games. For some function g : {0, 1}∗ →W we define below the selective
games H0 = SELW [G0, g] and H1 = SELW [G1, g] where the adversary commits to
some information w ∈ W – for the case of IBE,W is the set of all identities. Note
that the selective game gets a commitment w from the adversary but essentially
ignores it during the rest of the game. It checks that the commitment matches
what actually happened during the game only at the very end of the game;
whether w matches is defined via the function g.
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G0

H0 = H0 H1 H2 · · · Hτ−1 Hτ = H1

G1

Ĥ0,0 Ĥ0,1 Ĥ1,0 Ĥ1,1 Ĥ2,0 Ĥτ−2,1 Ĥτ−1,0 Ĥτ−1,1

Fig. 2: A schematic diagram showing the relationship between adaptive, fully
selective and partially selective hybrids. The adaptive games G0 and G1 are in
green (circles); the fully selective games H0, . . . ,Hτ are in solid black (boxes);

and the partially selective games Ĥ0,0, Ĥ0,1, . . . , Ĥτ−1,0, Ĥτ−1,1 are in (dotted)
blue boxes. The arrows indicate indistinguishability.

Definition 10 (Fully selectivised game [JKK+17]). Given an (adaptive)
game G and some function g : {0, 1}∗ →W, the selectivised game H = SELW [G, g]
is defined as follows. The adversary A first sends a commitment w ∈ W to H.
Then H runs the challenger G against A, at the end of which G outputs a bit
b̂. Let transcript denote all communication exchanged between G and A. If
g(transcript) = w then H outputs the bit b̂ and else it outputs 0.

Next, suppose that the selective security is proved using a hybrid argument.
That is, to show the indistinguishability of H0 and H1 suppose we have a sequence
of τ + 1 (selective) hybrid games H0 = H0,H1, . . . ,Hτ = H1 (see Figure 2). If
we only assume that neighbouring hybrids Hi,Hi+1 are indistinguishable, then
by combining the hybrid argument and random guessing we get that G0 and
G1 are indistinguishable with a loss in distinguishing advantage of τ · |W|. The
factor of |W| is the cost of the random guessing, whereas the factor of τ is due
to the hybrid argument. This is stated in the following (recall that sW denotes
the complexity of sampling from W):

Theorem 3 ([BB04, JKK+17]). Assume we have two games defined via (adap-
tive) challengers G0 and G1 respectively. Let g : {0, 1}∗ → W be an arbitrary

function and define the selectivised games Hb = SELW [Gb, g] for b ∈ {0, 1}. Also
assume that for each i ∈ [τ ], the games Hi−1,Hi are (s, ε)-indistinguishable.
Then, G0 and G1 are (s− sW , ε · τ · |W|)-indistinguishable.

The framework. In some cases only part of the information that the adversary
commits to is used in simulating the intermediate hybrids, but when considering
all the hybrids the whole commitment is being used. For example, the simulation
of an intermediate hybrid in the case of IBE could rely on only certain bits of
the challenge identity. It is shown in [JKK+17] that the security loss in such
cases can be limited to the maximum size of the information used across any
two successive hybrids.

More formally, [JKK+17] makes a stronger assumption: not only are neigh-
bouring hybrids Hi,Hi+1 indistinguishable, but they are “selectivised” versions,
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of “partially” selective games Ĥi,0, Ĥi,1 which are already indistinguishable. In
particular, for each pair of neighbouring hybrids Hi,Hi+1 there exists a pair of
partially selective hybrids Ĥi,0, Ĥi,1 (see Figure 2) in which the adversary com-
mits to much less information hi(w) ∈ U instead of w ∈ W. The selectivised
game essentially ignores w and only relies on the partial information u = hi(w)
during the course of the game but at the very end it still checks that the full
commitment w matches what actually happened during the game.

Definition 11 (Partially selectivised game [JKK+17]). Assume Ĥ is a
game which expects to receive some commitment u ∈ U from the adversary in
the beginning. Given functions g : {0, 1}∗ → W and h : W → U the partially

selectivised game H = SELU→W [Ĥ, g, h] is defined as follows. The adversary A

first sends a commitment w ∈ W to H and H begins running Ĥ and passes it
u = h(w). It then continues running the game between Ĥ and A at the end of

which Ĥ outputs a bit b̂. Let transcript denote all communication exchanged
between Ĥ and A. If g(transcript) = w then H outputs the bit b̂ and else it
outputs 0.

Note that different pairs of partially selective hybrids Ĥi,0, Ĥi,1 might rely on
completely different partial information hi(w) about the adversary’s choices.
The partially selective hybrid associated to each Hi can thus be different when
we compare Hi−1,Hi (in which case it is Ĥi−1,1) and when we compare Hi and

Hi+1 (in which case it is Ĥi,0) – see Figure 2. The next theorem shows that we
only incur a security loss proportional to |U| rather than |W| if we can define a
sequence of partially selective hybrids which only require commitments from U .

Theorem 4 ([JKK+17]). Let G0 and G1 be two adaptive games. For some
function g : {0, 1}∗ → W we define the selectivised games H0 = SELW [G0, g],
H1 = SELW [G1, g]. Let H0 = H0,H1, . . . ,Hτ = H1 be some sequence of hybrid
games. Assume that for each i ∈ [0, τ − 1], there exists a function hi : W → U
and games Ĥi,0, Ĥi,1 such that

Hi ≡ SELU→W [Ĥi,0, g, hi] and Hi+1 ≡ SELU→W [Ĥi,1, g, hi]. (1)

Furthermore, if Ĥi,0, Ĥi,1 are (s, ε)-indistinguishable for all i ∈ [0, τ −1], then G0

and G1 are (s− sU , ε · τ · |U|)-indistinguishable.

3.3 Pebbling Games

The reversible pebbling game on DAGs was introduced in [Ben89] to model
reversible computation. We define a variant in which the pebbling rules have
been adapted for application to PREs. In particular, the rule is the opposite of
that in [Ben89]: a pebble can be placed on or removed from a vertex if all its
children carry a pebble.6

6 Alternatively, one can think of the pebbling game in Definition 12 as the classical
reversible pebbling game played on a DAG whose edges have their direction flipped.
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Definition 12. A reversible pebbling of a directed acyclic graph G = (V, E) with
a unique source vertex i∗ is a sequence P := (P0, . . . ,Pτ ) of pebbling configura-
tions Pt ⊆ V. Two subsequent configurations differ only in one vertex and the
following rule is respected in a move: a pebble can be placed on or removed from
a vertex iff all its children carry a pebble. That is, P is a valid sequence iff

∀t ∈ [τ ] ∃! i ∈ Pt−14Pt and children(i, G) ⊆ Pt−1.

Starting with an empty graph (i.e., P0 = ∅), the goal of the game is to place a
pebble on the source (i.e., i∗ ∈ Pτ ).

For a DAG G, let PG denote the set of all valid reversible pebbling sequences
(as per Definition 12) for G. The time complexity of a particular sequence P =
(P0, . . . ,Pτ ) for a DAG G is defined as τG(P) := τ , whereas its space complexity
is defined as

σG(P) := max
t∈[0,τ ]

|Pt|.

Definition 13 (Space- and time-complexity of a class of DAGs). We
say that a class of DAGs G has time complexity τ and space complexity σ if

∀G ∈ G ∃P ∈ PG : τG(P) ≤ τ ∧ σG(P) ≤ σ.

Concrete Bounds. We compute the pebbling complexity for the following
classes of single-source graphs on n vertices:

[Lemma 2]: G(n, δ, d), DAGs with outdegree δ and depth d;
[Lemma 3]: B(n) = G(n, 2, log n), complete binary trees of size n; and
[Lemma 4]: C(n) = G(n, 1, n), chains of length n.

Lemma 2 (Arbitrary DAGs). G(n, δ, d) has space-complexity (δ + 1) · d and
time-complexity (2δ)d.

Proof. The pebbling algorithm P1 that pebbles any graph in G(n, δ, d) using at
most (δ + 1) · d pebbles in at most (2δ)d moves is given in Algorithm 1. The
strategy is recursive in the depth, and to pebble a vertex i, P1 (recursively)
pebbles all of i’s children. We consider the time and space complexity of the
pebbling sequence defined by P1 as functions τ(d) and σ(d) of the depth d. Then
the number of moves incurred is captured by the expression τ(d) ≤ 2δ · τ(d− 1)
with τ(1) ≤ 2δ, and hence τ(δ) ≤ (2δ)d. The number of pebbles, on the other
hand, is captured by the recursion σ(d) < (δ + 1) + σ(d− 1) with σ(1) = δ + 1;
hence σ(d) = (δ + 1) · d. ut

Lemma 3 (Complete binary trees). B(n) has space-complexity 3 · log n and
time-complexity n2.

Proof. This follows from Lemma 2 on substituting δ = 2 and d = log n. ut

Lemma 4 (Chains). C(n) has space-complexity log n+ 1 and time-complexity
3logn.

20



P1(G, t)
1: Set T = 0 and P = ∅ . Global variables
2: Let i∗ denote the source of the graph G
3: return P′1(G, t, i∗, i∗)

P′1(G, t, i∗, i) . i∗ denotes the source; i is the vertex currently pebbled
1: for j ∈ children(i, G) do P′1(G, t, i∗, j) . Pebble children recursively
2: if i ∈ P then P := P \ {i} . Unpebble if i already pebbled
3: else
4: P := P ∪ {i} . Place pebble on i
5: if i = i∗ then return P . Placed pebble on source
6: end if
7: Increment T
8: if T = t then return P . P currently stores the t-th pebbling configuration
9: for j ∈ children(i, G) do P′1(G, t, i∗, j) . Unpebble children

Algorithm 1: A pebbling strategy for general DAGs.

Proof. A pebbling algorithm P2 for pebbling the source vertex of C(n), where n is
a power of two, is given in Algorithm 2 – the argument can be easily extended for
arbitrary n and vertex. Let σ(n) and τ(n) denote the space and time complexity
of the pebbling defined by P2 for chains of length n. Then the number of pebbles
used by P2 is captured by the recursion σ(n) = σ(n/2) + 1, with σ(1) = 1.
The number of moves, on the other hand, is captured by τ(n) = 3 · τ(n/2) with
τ(1) = 1. Therefore, σ(n) = log n+ 1 and τ(n) = 3logn. ut

4 Framework for Adaptive Security

In this section we demonstrate, using the framework of [JKK+17], how adaptive
security can be achieved for PREs. In particular, we show that for CPA and
derive an analogous result for HRA. As for the applications given in [JKK+17],
we use pebbling games on DAGs to design the hybrid games. Each pebbling con-
figuration uniquely determines a hybrid game bridging the two real games CPA0

and CPA1. The DAG that we pebble in the proof is the subgraph of the recoding
graph that is reachable from the challenge i∗ (via the edges E defined during the
game); it is thus a subgraph of the recoding graph with one unique source i∗,
which we call the challenge graph. A pebble on a vertex allows the simulation of
the hybrid to be carried out without the knowledge of the secret key associated
with that vertex. The pebbling rules will ensure that hybrids corresponding to
two successive pebbling configurations can be proven indistinguishable assuming
key-privacy.

4.1 Adaptive Security Against Chosen-Plaintext Attack

We first show how a pebbling sequence on the challenge graph defines a sequence
of fully selective hybrids (Lemma 5), and then prove that these hybrids are
partially selectivised (Lemma 6).
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P2(n, t) . n denotes the length of the chain
1: Set T = 0 and P = ∅ . Global variables
2: return P′2(1, n, t)

P′2(i, j, t) . i and j denote the end points of the active chain
1: if i = j then . End of recursion
2: if i ∈ P then P := P \ {i} . Unpebble if i already pebbled
3: else
4: P := P ∪ {i} . Place pebble on i
5: if i = 1 then return P . Placed pebble on challenge
6: end if
7: Increment T
8: else
9: P′2(i, (i+ j − 1)/2, t) . Recursively pebble left half

10: P′2((i+ j + 1)/2, j, t) . Recursively pebble right half
11: P′2(i, (i+ j − 1)/2, t) . Recursively unpebble left half
12: end if
13: if T = t then return P . P currently stores the t-th pebbling configuration

Algorithm 2: Pebbling strategy for chains with n vertices, for n a power of two.

4.1.1 Fully Selective Hybrids. In the fully selectivised version of PRE-CPA

(Game 3), A first makes a commitment Ĝ to the challenge graph. Any correct
commitment Ĝ must therefore have one unique source, which we denote by ı̂. The
selective challenger is thus SELG [CPAb, g], where g is the function that extracts
the recoding graph G and the challenge user i∗ from the transcript and returns
the challenge graph, i.e., the subgraph of G reachable from i∗. Note that this is
fundamentally different from the original selective game (i.e., sCPA in Game 1)
where the adversary commits, beforehand, to the set of corrupt public keys.

Each hybrid is associated with a pebbling configuration Pt and a bit b, and
we consider the sequence of hybrids H0

0, . . . ,H
0
τ ,H

1
τ , . . . ,H

1
0. The pebbling state of

a vertex dictates how the outgoing re-key and re-encrypt queries are simulated,
whereas the bit determines how the challenge query is answered. To be precise,
in game Hbt , for each pebbled vertex in Pt all used re-keys outgoing from that
vertex are faked, and the challenge query is answered by an encryption of m∗b .
(Rekeys outgoing from pebbled vertices that are not used for any queries are
defined as real re-keys.) Observe that the secret key corresponding to a vertex
is used only for the generation of the re-keys outgoing from that vertex; the
simulation of a hybrid can thus be carried out without knowledge of the secret
keys corresponding to the pebbled vertices (as the non-queried re-keys need not
be generated).

Since the initial pebbling configuration is the empty set, H0
0 and H1

0 corre-
spond to the (fully selectivised) games SELG [CPA0, g] and SELG [CPA1, g], respec-
tively. Now, consider the middle hybrids H0

τ and H1
τ : they are the same except

for the response to the challenge query which is the encryption of m∗0 in the
former and the encryption of m∗1 in the latter. Since the pebbling configuration
Pτ , by definition, contains a pebble on the challenge vertex i∗, the simulation of
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this hybrid can be carried out without knowledge of the secret key corresponding
to i∗. This means we can reduce indistinguishability of the PRE to the indis-
tinguishability of these two hybrids. To be precise, the reduction embeds the
challenge public key at ı̂, which is defined by the commitment Ĝ and replies to
the challenge query (in the CPA game) by sending the challenge ciphertext (of
the indistinguishability game). Note that if i∗ 6= ı̂, that is, the commitment Ĝ
doesn’t coincide with the transcript of the CPA game, then the hybrid returns
0 anyway. The reduction is formally defined in Algorithm 4.

Next, consider any two hybrids Hbt and Hbt+1, t ∈ [0, τ − 1] and b ∈ {0, 1}.
Also, assume Pt+1 results from Pt by placing a pebble on the vertex i0 (the case
when a pebble is removed can be argued analogously). The simulation of Hbt and
Hbt+1 is the same except for the (used) re-keys outgoing from i0: in Hbt they are

all real whereas in Hbt+1 they are all fake. By the rules of the pebbling game,
the children of i0 all carry pebbles in the configurations Pt and Pt+1; therefore
the simulation need not know the corresponding secret keys. This means that
we can prove indistinguishability of Hbt and Hbt+1 from weak key-privacy: the
reduction embeds the (key-privacy) challenge public keys pk0, . . . , pkδ at i0 and
its children, and uses the challenge re-keys rk0,1, . . . , rk0,δ to simulate the re-
key oracle for queries from i0 to its children. The reduction is formally defined
in Algorithm 5. (Note that the simulation of the reduction in Algorithm 5 is
perfect: if the commitment Ĝ does not match with the transcript, it returns 0;
else, we have ı̂ = i∗ and by definition of the pebbling, i0 is reachable from ı̂ = i∗

and so are its children i1, . . . , iδ. If the adversary corrupts any of these, then the
game returns 0.)

In summary, we get a sequence of hybrids SELG [CPA0, g] = H0
0, . . . ,H

0
τ ,

H1
τ , . . . ,H

1
0 = SELG [CPA1, g], where each pair of subsequent hybrids can be

proved indistinguishable. Security in the fully selectivised CPA game follows
by Lemma 1. We state this formally in Lemma 5 below.

Lemma 5 (Security against fully selectivised PRE-CPA). Consider the
sequence of hybrids H0

0, . . . ,H
0
τ ,H

1
τ , . . . ,H

1
0, where Hbt is defined in Algorithm 3

using the pebbling configuration Pt. Hb0 is the fully selectivised game of CPAb:
i.e., Hb0 = SELG [CPAb, g] where g extracts the challenge graph (subgraph reach-
able from the challenge vertex) from a transcript. Moreover, if the adversary
makes at most QRE re-encryption queries, then a PRE scheme that is (s1, ε1)-
indistinguishable and (s2, ε2, δ)-weakly key-private is (s, ε)-secure against fully
selectivised PRE-CPA restricted to challenge graphs in G(n, δ, d) with

s := min(s1, s2)− sCPA and ε := ε1 + 2τ · ε2,

where sCPA ≈ O(sP + n2 · sRK + QRE · sRE) denotes the complexity of simulating
the CPA game.

PRE-CPA-security follows from random guessing (Theorem 3) but with a

security loss of 2n
2

, where n2 is an upper bound on the number of bits required
to encode the challenge subgraph:
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Hybrid Hbt(1
κ, 1λ, n)

1: Obtain the challenge graph Ĝ ∈ G(n, δ, d) from A
2: Compute Pt ← P(Ĝ, t) . The t-th pebbling configuration
3: Set C, E = ∅ . Stores corrupt keys and issued re-keys and re-encryptions
4: pp← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn)← PRE.K(pp)

5: ∀i ∈ Pt, ∀j ∈ children(i, Ĝ): rki,j ← RK∗(pp, pkj) . Fake re-keys

6: ∀i ∈ Pt, ∀j ∈ [n] \ {children(i, Ĝ) ∪ i}: rki,j ← PRE.RK((pki, ski), pkj) . Real
re-keys

7: ∀i ∈ [n] \ Pt, ∀j 6= i: rki,j ← PRE.RK((pki, ski), pkj) . Real re-keys

8: b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp, pk1, . . . , pkn)
9: if A made call (challenge, i∗, ·, ·) for some i∗ then . Check abort conditions

10: if ∃ i ∈ C : i∗ is connected to i in ([n], E) then return 0 end if
11: end if
12: if Ĝ is the subgraph of ([n], E) reachable from i∗ then return b′ end if
13: return 0

Algorithm 3: Template for generating fully selective PRE-CPA hybrids given a
pebbling configuration. All the oracles are defined like in Game 3.

Corollary 1 (PRE-CPA-security by random guessing). A PRE scheme
that is (s1, ε1)-indistinguishable and (s2, ε2, δ)-weakly key-private is (s, ε)-secure
against PRE-CPA restricted to challenge graphs in G(n, δ, d), where

s := min(s1, s2)− sCPA − sG and ε := (ε1 + 2τ · ε2) · 2n
2

.

4.1.2 Partially Selective Hybrids. In hybrid Hbt described in Algorithm 3,
we observe that not all information on the committed recoding graph Ĝ is ac-
tually required for the simulation. In fact, only the pebbling configuration Pt is
required to simulate the hybrid: re-keys are only required once a corresponding
re-key or a re-encrypt query is issued; for a pebbled node, such queries lead to
an edge added in E ; thus the re-key is simulated (while the “not-queried” re-keys
are never used during the experiment).

In addition to the pebbling configuration Pτ , the reduction from ciphertext
indistinguishability (cf. Algorithm 4) also needs to know the challenge vertex
ı̂ in order to embed the challenge public key. The reduction from weak key-
privacy (cf. Algorithm 5) requires, in addition to Pt, the vertex that is pebbled
or unpebbled in Pt+1 (i.e., the vertex i0) and its children, so it can embed its
challenge public keys and re-keys.

To sum up, two consecutive hybrids Hbt and Hbt+1 can be shown to be indis-
tinguishable using a lot less information than what the adversary commits to.
We thus have the following:

Lemma 6 (Partially selectivised hybrids). Let P0, . . . ,Pτ and H0
0, . . . ,H

0
τ ,

H1
τ , . . . ,H

1
0 be defined as in Lemma 5, and let σ denote the space complexity of

the pebbling sequence. Then, for t ∈ [0, τ − 1] and b, β ∈ {0, 1},

Hbt+β ≡ SELU→G [Ĥ
b

t,β , g, ht] and Hbτ ≡ SELU→G [Ĥ
b

τ,0, g, hτ ],
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Reduction R
(IND.challenge,·,·)
τ (pp∗, pk∗) . pk∗ denotes the challenge public key

1: Obtain the challenge graph Ĝ ∈ G(n, δ, d) from A
2: Compute Pτ ← P(Ĝ, τ) . The τ -th pebbling configuration
3: Set C, E = ∅ . Stores corrupt keys and issued re-keys and re-encryptions
4: (pk1, sk1), . . . , (pk̂ı−1, sk̂ı−1), (pk̂ı+1, sk̂ı+1), . . . , (pkn, skn)← PRE.K(pp∗)

5: Let ı̂ be the source of Ĝ, set pk̂ı := pk∗ . Embed challenge public key

6: ∀i ∈ Pτ , ∀j ∈ children(i, Ĝ): rki,j ← RK∗(pp, pkj) . Fake re-keys

7: ∀i ∈ [n] \ Pτ , ∀j ∈ children(i, Ĝ): rki,j ← PRE.RK((pki, ski), pkj) . Real re-keys

8: ∀i ∈ Pτ , ∀j ∈ [n] \ {children(i, Ĝ) ∪ i}: rki,j ← PRE.RK((pki, ski), pkj) . Real
re-keys

9: ∀i ∈ [n] \ Pτ , ∀j 6= i: rki,j ← PRE.RK((pki, ski), pkj) . Real re-keys

10: b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp∗, pk1, . . . , pkn)
11: if A made call (challenge, i∗, ·, ·) for some i∗ then . Check abort conditions
12: if ∃ i ∈ C : i∗ is connected to i in ([n], E) then return 0 end if
13: end if
14: if Ĝ is the subgraph of ([n], E) reachable from i∗ then return b′ end if
15: return 0

Oracles rekey and reencrypt are defined like in Game 3.

Oracle (corrupt, i)
1: if i = ı̂ then HALT: Rτ returns 0 end if . Commitment Ĝ doesn’t match or. . .
2: Add i to C and return ski . . . . i∗ corrupted

Oracle (challenge, i∗, (m∗0,m
∗
1), `∗) . Single access

1: (ci∗ , `
∗)← IND.challenge((m∗0,m

∗
1), `∗) . Embed challenge ciphertext

2: return (ci∗ , `
∗)

Algorithm 4: The reduction showing that the hybrids H0
τ and H1

τ are indistin-
guishable by indistinguishability of ciphertexts.

where Ĥ
b

t,β is defined in Algorithm 6 (see also Figure 3), g extracts the challenge
graph from the transcript (as in Lemma 5). For t ∈ [0, τ − 1], ht is the function
that extracts the pebbling configuration Pt, the pebbled/unpebbled vertex in Pt+1

and its children; hτ extracts the pebbling configuration Pτ and the challenge node
i∗. Thus, U corresponds to the set Vσ+δ+1.

The tighter bound for PRE-CPA-security now results by applying Theorem 4:

Theorem 5 (Main, PRE-CPA security). Let σ and τ denote, respectively,
the pebbling space and time complexity for the class G(n, δ, d). Then a PRE
scheme that is (s1, ε1)-indistinguishable and (s2, ε2, δ)-weakly key-private is (s, ε)-
PRE-CPA-secure restricted to challenge graphs in G(n, δ, d), where

s := min(s1, s2)− sCPA − sG and ε := (ε1 + 2τ · ε2) · nσ+δ+1.
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Reduction Rbt(pp
∗, pk∗0, . . . , pk

∗
δ , rk

∗
0,1, . . . , rk

∗
0,δ)

1: Obtain the challenge graph Ĝ ∈ G(n, δ, d) from A
2: Compute Pt ← P(Ĝ, t), Pt+1 ← P(Ĝ, t+ 1) . The t-th and (t+ 1)-th

configurations
3: Set C, E = ∅ . Stores corrupt keys and issued re-keys and re-encryptions
4: i0 := Pt∆Pt+1, i1, . . . , iδ := children(i0, Ĝ) . i0 denotes pebbled/unpebbled vertex
5: ∀k ∈ [0, δ]: pkik := pk∗k . Embed the challenge public keys
6: ∀k ∈ [n] \ {i0, . . . , iδ}: (pkk, skk)← PRE.K(pp∗) . Real keys
7: ∀k ∈ [δ] : rki0,ik := rk∗0,k . Embed challenge re-keys

8: ∀i ∈ Pt \ {i0},∀j ∈ children(i, Ĝ): rki,j ← RK∗(pp∗, pkj) . Fake re-keys

9: ∀i ∈ Pt, ∀j ∈ [n] \ {children(i, Ĝ) ∪ i}: rki,j ← PRE.RK((pki, ski), pkj) . Real
re-keys

10: ∀i ∈ [n] \ (Pt ∪ {i0}), ∀j 6= i: rki,j ← PRE.RK((pki, ski), pkj) . Real re-keys

11: b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp∗, pk1, . . . , pkn)
12: if A made call (challenge, i∗, ·, ·) for some i∗ then . Check abort conditions
13: if ∃ i ∈ C : i∗ is connected to i in ([n], E) then return 0 end if
14: end if
15: if Ĝ is the subgraph of ([n], E) reachable from i∗ then return b′ end if
16: return 0

Oracles rekey, reencrypt and challenge are defined like in Game 3.

Oracle (corrupt, i)
1: if i ∈ {i0, . . . , iδ} then HALT: Rτ returns 0 end if. Commitment Ĝ doesn’t match
2: Add i to C and return ski . . . . or i reachable from i∗

Algorithm 5: The reduction showing that the hybrids Hbt and Hbt+1, for t ∈
[0, τ − 1] and b ∈ {0, 1}, are indistinguishable by weak key-privacy.

4.2 Adaptive Security Against Honest-Reencryption Attack

Cohen [Coh17] showed that if a PRE scheme is re-encryption-simulatable then
selective security against HRA reduces to showing selective security against CPA.
We now consider such a reduction in the adaptive setting. This is not immediate
because the reduction in [Coh17] simulates all re-encryption queries from the
honest keys to the corrupt keys. This works in the selective setting, where the
set of corrupt users is known in advance, but not in the adaptive setting.

The recoding graphs ([n], E) for CPA and HRA are defined differently: for
HRA, only re-encryptions of the challenge ciphertexts lead to edges in E , whereas
for CPA all re-encryption queries do. To prove that CPA implies HRA we need
to define a reduction playing the CPA game and simulating the HRA game for
an adversary. It cannot forward the adversary’s re-encryption queries to its own
challenger, as this might create edges in the CPA game, but not in the HRA
game. An adversary that then corrupts the target key of such a re-encryption
query might still win the HRA game, while the reduction loses the CPA game.

Assuming source-hiding, the reduction could answer all re-encryption queries
by fresh encryptions. But then every re-encryption of the challenge ciphertext
would also be freshly encrypted, meaning that the reduction needs to make
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CPA0

H0 = H0
0 H0

1 H0
2 · · · H0

τ H1
τ · · ·

Ĥ
0

0,0 Ĥ
0

0,1 Ĥ
0

1,0 Ĥ
0

1,1 Ĥ
0

2,0 Ĥ
0

τ−1,1 Ĥ
0

τ,0 Ĥ
1

τ,0 Ĥ
1

τ−1,1

Fig. 3: Diagram showing the partially selectivised hybrids for PRE-CPA.

multiple challenge queries. This would require a multi-challenge notion of CPA
and thus worsen the security guarantees; we proceed thus differently. Instead
of replacing all re-encryptions by fresh encryptions, the reduction only replaces
those that do not concern the challenge ciphertext, while still forwarding re-
encryption queries of the ciphertext to its own re-encryption oracle. The vertices
created in the HRA game correspond then precisely to those created in the CPA
game and the adversary’s success probability translates directly to that of the
reduction.

4.2.1 HRA from CPA and Source-Hiding. We start by defining, in Game 8,
the intermediate game shHRAb just discussed. It proceeds like HRAb, except that
all re-encryption queries which do not re-encrypt the challenge ciphertext are
simulated. The games HRAb and shHRAb are shown to be indistinguishable as-
suming source-hiding by a standard hybrid argument (without pebbling) which
includes a moderate amount of guessing: when replacing a re-encryption by a
fresh encryption, it guesses the two concerned users and which ciphertext will
be re-encrypted. This loses a factor of n(n− 1)(QRE +QE) in the distinguishing
advantage. As there are QRE hybrids, we get the following:

Lemma 7. If a PRE scheme is (s3, ε3)-source-hiding then HRAb and shHRAb

are (s, ε)-indistinguishable, where

s := s3 − sHRA and ε := n(n− 1)(QE +QRE)QRE · ε3

where QE and QRE are upper bounds on the number of the adversary’s encryption
and re-encryption queries.

Proof. We define a sequence of intermediate hybrids shHRAb0, . . . , shHRA
b
QRE

be-

tween HRAb and shHRAb where certain re-encrypt queries are simulated by com-
puting fresh encryptions. In particular, the simulation in shHRAbq is similar to

that in HRAb, except that the first q queries (reencrypt, ·, ·, k) with k /∈ L∗ are
replied by fresh encryptions. Therefore, we have

shHRAb0 ≡ HRAb and shHRAbQRE
≡ shHRAb.

We show that two neighbouring hybrids shHRAbq−1 and shHRAbq are indistin-
guishable assuming that the PRE is source-hiding. The reduction receives a
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Hybrid Hbt+β
1: Obtain the challenge graph Ĝ ∈ G(n, δ, d) from A and let ı̂ be its source
2: Compute Pt ← P(Ĝ, t), Pt+1 ← P(Ĝ, t+ 1) . The t-th and (t+ 1)-th

configurations
3: i0 := Pt∆Pt+1, i1, . . . , iδ := children(i0, Ĝ) . i0 denotes pebbled/unpebbled vertex

4: if t < τ then b̂← Ĥ
b

t,β(Pt, {i0, . . . , iδ}) . Key-privacy hybrid

5: else b̂← Ĥ
b

τ,0(Pτ , {̂ı,⊥, . . . ,⊥}) end if . t = τ , β = 0: ind hybrid

6: if Ĝ is subgraph of ([n], E) reachable from i∗ then return b′ end if
7: return 0

Ĥ
b

t,β(Pt, {i0, . . . , iδ})
1: Set C, E = ∅ . Stores corrupt keys and issued re-keys and re-encryptions
2: if t < τ then
3: if i0 ∈ Pt then Pt+1 := Pt \ {i0} else Pt+1 := Pt ∪ {i0} end if
4: end if
5: pp← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn)← PRE.K(pp)
6: ∀i, j ∈ [n], i 6= j : rki,j = ⊥ . Delay re-key generation till the query
7: b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp, pk1, . . . , pkn)
8: if A made call (challenge, i∗, ·, ·) for some i∗ then . Check abort conditions
9: if ∃ i ∈ C : i∗ is connected to i in ([n], E) then return 0 end if

10: end if
11: return b′

Oracles corrupt and challenge are defined like in Game 3.

Oracle (rekey, i, j)
1: if rki,j = ⊥ then . Re-key not generated
2: if i ∈ Pt+β then rki,j ← RK∗(pp, pkj) . Fake re-key
3: else rki,j ← RK((pki, ski), pkj) end if . Real re-key
4: end if
5: Add (i, j) to E . Add to recoding graph
6: return rki,j

Oracle (reencrypt, i, j, (ci, `))
1: if rki,j = ⊥ then . Re-key not generated
2: if i ∈ Pt+β then rki,j ← RK∗(pp, pkj) . Fake re-key
3: else rki,j ← RK((pki, ski), pkj) end if . Real re-key
4: end if
5: Add (i, j) to E . Add to recoding graph
6: return (cj , `+ 1)← PRE.RE(rki,j , pki, pkj , (ci, `))

Algorithm 6: Partially selectivised hybrids. For t ∈ [0, τ − 1] and b, β ∈ {0, 1}:
Hbt+β = SELU→G [Ĥ

b

t,β , g, ht] and Hbτ = SELU→G [Ĥ
b

τ,0, g, hτ ]. Moreover, U is the

set Vσ+δ+1. Note that the sampling of the re-keys has been deferred to the actual
calls.

(source-hiding) challenge (pp, (pk, sk), (pk′, sk′), rk) and has (one-time) access
to an oracle (SH.challenge, ·, ·). The reduction proceeds as follows:
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Hybrid shHRAb

1: Set C,L,L∗, E = ∅ and C = 0 . As in Game 2, E . . . edges of recoding graph
2: pp← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn)← PRE.K(pp)
3: ∀i, j ∈ [n], i 6= j : rki,j ← PRE.RK((pki, ski), pkj)

4: b′ ← A(corrupt,·),(rekey,·,·),(encrypt,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp, pk1, . . . , pkn)
5: if A made call (challenge, i∗, ·, ·) for some i∗ then . Check abort conditions
6: if ∃ i ∈ C : i∗ is connected to i then return 0 end if
7: end if
8: return b′

Oracles corrupt, rekey, encrypt and challenge are defined like Game 4.

Oracle (reencrypt, i, j, k)
1: Retrieve (k, i,m, (ci, `)) from L and increment C
2: if k /∈ L∗ then . Not a re-encryption of challenge ciphertext
3: (cj , `+ 1)← PRE.E(pkj , (m, `+ 1)) . Simulate re-encryption
4: else
5: (cj , `+ 1)← PRE.RE(rki,j , pki, pkj , (ci, `)) . Real re-encryption
6: Add C to L∗ and add (i, j) to E . cj derived from challenge
7: end if
8: Add (C, j,m, (cj , `+ 1)) to L
9: return (cj , `+ 1)

Game 8: Intermediate game shHRA in the proof of HRA.

1. It first makes a guess (i∗, j∗, k∗) ∈ [n] × ([n] \ {i∗}) × [QE + q − 1] that the
q-th re-encryption query will be of the form (reencrypt, i∗, j∗, k∗)

2. It simulates game shHRAbk setting (pki∗ , ski∗) := (pk, sk), (pkj∗ , skj∗) :=
(pk′, sk′) and rki∗,j∗ := rk.

3. When the adversary makes the k∗-th encrypt or re-encrypt query, the reduc-
tion does the following:
(a) (encrypt, i, (m, `)): if i 6= i∗ abort; else query (SH.challenge,m, `) to

receive (c, c′); reply (c, `) after adding the new entry to L.
(b) (reencrypt, i, j, k): if k ∈ L∗ then proceed as in Game 4. Otherwise: if

j 6= i∗ abort; else retrieve (k, i,m, (ci, `−1)) from L, query (SH.challenge,
m, `) to receive (c, c′); reply (c, `) after adding the new entry to L.

4. When the adversary makes the q-th re-encrypt query (reencrypt, i, j, k), the
reduction aborts if (i, j, k) 6= (i∗, j∗, k∗). Otherwise it replies (c′, `+ 1), with
c′ received on its SH.challenge query.

5. If the reduction aborted the simulation, it returns a random bit, otherwise
it returns the adversary’s output bit b′.

Assuming the reduction’s guess is right, if the c′ returned by the source-hiding
challenger is a re-encryption then the reduction simulated shHRAbq−1 while if c′

was a fresh encryption, it simulated shHRAbq. ut

We next show that shHRA0 and shHRA1 are indistinguishable assuming CPA0

and CPA1 are. To do so, we construct a reduction R in Algorithm 7, which
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Reduction Rb,(CPA.corrupt,·),(CPA.rekey,·,·),(CPA.reencrypt,·,·,·),(CPA.challenge,·,·,·)(pp, pk1, . . . , pkn)
1: Set L,L∗ = ∅ and C = 0 . Stores honestly created ciphertexts
2: b′ ← A(corrupt,·),(rekey,·,·),(encrypt,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp, pk1, . . . , pkn)
3: return b′

Oracle (corrupt, i)
1: return ski ← (CPA.corrupt, i)

Oracle (rekey, i, j)
1: return rki,j ← (CPA.rekey, i, j)

Oracle (encrypt, i, (m, `))
1: c← PRE.E(pki, (m, `)), increment C and add (C, i,m, (c, `)) to L
2: return c

Oracle (reencrypt, i, j, k)
1: Retrieve (k, i,m, (ci, `)) from L and increment C
2: if k /∈ L∗ then (cj , `+ 1)← PRE.E(pkj , (m, `+ 1))
3: else (cj , `+ 1)← (CPA.reencrypt, i, j, k) and add C to L∗ end if
4: Add (C, j,m, (cj , `+ 1)) to L
5: return (cj , `+ 1)

Oracle (challenge, i∗, (m∗0,m
∗
1), `∗) . Single access

1: (ci∗ , `
∗)← (CPA.challenge, i∗, (m∗0,m

∗
1), `∗)

2: Increment C, add (C, i∗,m∗b , (ci∗ , `
∗)) to L and C to L∗

3: return (ci∗ , `
∗)

Algorithm 7: The reduction relating shHRAb to CPAb.

simulates game shHRA to an adversary A (denoted R[A]); the reduction runs
in CPA. It is easily seen that R perfectly simulates the oracles of shHRA to A
and that at the end of the game the sets C and the graphs ([n], E) which were
implicitly defined by the adversary’s oracle calls in the simulated HRA game and
the reduction’s calls in the CPA game are the same. The CPA game thus returns
the reduction’s output b′ (which is A’s output) whenever the shHRA game would.
We have thus:

〈shHRAb,R[A]〉 ≡ 〈CPAb,A〉, (2)

that is, the two games are equally distributed. (This can also be seen by replacing
A in the definition of CPA (Game 3) by the code of R[A′] (Algorithm 7), which
yields game HRA (Game 4) played by A′.)

Combining Lemma 7 and (2), we get that HRAb and CPAb are (s3−sHRA, n(n−
1)(QE+QRE)QRE ·ε3)-indistinguishable, and together with Theorem 4 this finally
yields:

Theorem 6 (main, PRE-HRA security). Let σ and τ denote, respectively,
the upper bound on time and space complexity for the class G = G(n, δ, d). Then
a PRE scheme that is (s1, ε1)-indistinguishable, (s2, ε2, δ)-weakly key-private and
(s3, ε3)-source-hiding is (s, ε)-PRE-HRA-secure restricted to challenge graphs in
G, where s := min(s1, s2, s3)− sHRA − sG and

ε := 2n(n− 1)(QE +QRE)QRE · ε3 + nσ+δ+1
(
ε1 + 2τ · ε2

)
.
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Table 2: Space and time complexity for different classes of DAGs and approxi-
mate security loss implied by Theorem 5.

Family
Bounds

Space (σ) Time (τ) Security loss (≈ ε/ε′)

Arbitrary DAGs G(n, δ, d) (Lemma 2) (δ + 1) · d (2δ)d nO(d·δ)

Complete binary trees B(n) (Lemma 3) logn n2 nO(logn)

Chains C(n) (Lemma 4) logn+ 1 3logn nO(logn)

Remark 1. All the schemes that we inspect in §5 turn out to be statistically
source-hiding, and therefore ε3 is exponentially small. In such cases, assuming
that the adversary is allowed to make only polynomially many queries to the
encryption and re-encryption oracle, the term 2n(n − 1)(QE + QRE)QRE · ε3 is
negligible and therefore ε = O(nσ+δ+1(ε1 + 2τ · ε2)) (just like in CPA).

4.3 Corollaries

We calculate concrete bounds to Theorems 5 and 6 for the following families of
recoding graphs: arbitrary DAGs in G(n, δ, d), complete binary trees B(n) and
chains C(n). Table 2 lists the space and time complexity for these classes (from
Lemmas 2, 3 and 4) and approximate security loss (assuming ε1 = ε2 = ε′)
that results when substituting these bounds for CPA in Theorem 5. The same
bounds hold for HRA if one assumes that QRE and QE (i.e., number of queries)
are polynomial and ε3 = 2−κ (i.e., the PRE scheme is statistically source-hiding).

5 Adaptively Secure PRE Schemes

We show that several existing PRE schemes satisfy the requirements in §3.1 and,
therefore, can be proven adaptively secure using Theorems 5 and 6.

5.1 Single-Hop Schemes from Bilinear Maps

We start with the unidirectional, single-hop schemes based on bilinear maps
from [AFGH05] and [ABH09]. The definition of bilinear maps is given below in
Definition 14; the hardness assumptions on which security of the constructions
is based are then listed in Definitions 16 through 18.

Definition 14 (Bilinear maps). Let BS′ be an algorithm that on input a se-
curity parameter 1κ outputs the description of cyclic groups G1, G2 and GT , all
of prime order q ∈ Θ(2κ), generators g1 ∈ G1, g2 ∈ G2, and an asymmetric
cryptographic bilinear map e′ : G1×G2 → GT – i.e., e′ is efficiently computable,
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bilinear (i.e., e′(ga1 , g
b
2) = e′(g1, g2)ab) and non-degenerate (i.e., for a generator

g1 for G1 and a generator g2 for G2: e′(g1, g2) 6= 1GT ).
The algorithm BS for symmetric bilinear groups is defined as BS′, except for

having G1 = G2 and g1 = g2.

Definition 15 (eDBDH in asymmetric groups [AFGH05]). Let Grp =
(q, g1, g2,G1,G2,GT , e′) ← BS′(1κ) and a, b, c, r ← Zq. The extended decisional
bilinear Diffie-Hellman problem is (s, ε)-hard in the asymmetric setting if

(ga2 , g
b
1, g

c
1, e
′(g1, g2)bc

2

, e′(g1, g2)abc, Grp)

≈(s,ε) (ga2 , g
b
1, g

c
1, e
′(g1, g2)bc

2

, e′(g1, g2)r, Grp).

The symmetric variant of the above is obtained by replacing G1 and G2 by
G, and g1 and g2 by g.

Definition 16 (eDBDH assumption [AFGH05]). Let Grp := (q, g,G,
GT , e) ← BS(1κ) and a, b, c, r ← Zq. The extended decisional bilinear Diffie-
Hellman problem is (s, ε)-hard if

(ga, gb, gc, e(g, g)bc
2

, e(g, g)abc, Grp) ≈(s,ε) (ga, gb, gc, e(g, g)bc
2

, e(g, g)r, Grp).

Definition 17 (XDH [Sco02, BBS04]). Let Grp = (q, g1, g2,G1,G2,GT , e′)
← BS′(1κ) and a, b, r ← Zq. The external Diffie-Hellman problem is (s, ε)-hard
if the decisional Diffie-Hellman problem is (s, ε)-hard in the group G1, that is

(ga1 , g
b
1, g

ab
1 , Grp) ≈(s,ε) (ga1 , g

b
1, g

r
1, Grp).

Definition 18 (DLin [BBS04]). Let Grp = (q, g,G,GT , e)← BS(1κ), a, b, r ←
Zq and h, f be two random generators of G. The decision linear problem is (s, ε)-
hard if

(h, f, ga, hb, fa+b, Grp) ≈(s,ε) (h, f, ga, hb, fr, Grp).

5.1.1 The AFGH Scheme. The original scheme (given as Construction 1)
encrypts messages from GT and was shown selectively secure against CPA as-
suming eDBDH, but [AFGH05] did not consider key-privacy. We prove that
when instantiated over asymmetric bilinear groups, their scheme is key-private
assuming XDH. To additionally make the scheme source-hiding we re-randomise
the re-encryption algorithm. The modified scheme is given in Construction 2.

Security. If the eDBDH problem is (s1, ε1)-hard then the original scheme (Con-
struction 1) is (s1, 2ε1)-sPRE-CPA-secure– and hence has indistinguishable ci-
phertexts [AFGH05, Theorem 3.1]. They also claim security when instantiated
in the asymmetric setting, presumably assuming that the eDBDH problem is
hard in the asymmetric setting: this reduction works for Construction 2 too. It
moreover satisfies the remaining two properties:
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1. S(1κ): (q, g,G,GT , e) ← BS(1κ). Compute Z = e(g, g) and return the public pa-
rameters pp = ((q, g,G,GT , e), Z).

2. K(pp): Pick a, b ← Zq and set pk := (Za, gb) and sk := (a, b). Return the keys
(pk, sk).

3. RK((pki, ski), pkj): Parse ski as (ai, bi) ∈ Z2
q and pkj as (pkj,1, pkj,2). Return the

re-key rki,j := pk
ai
j,2 = gbj ·ai .

4. E(pk, (m, `)): Parse pk as (pk1, pk2) ∈ GT × G and pick k ← Zq. If ` = 1 return
the (level-1) ciphertext ((gk, m · pkk1 = m · Zak), 1);
otherwise return the (level-2) ciphertext ((e(pk2, g)k, m · Zk) = (Zbk, m · Zk), 2).

5. RE((ci, 1), rki,j): Parse ci as (ci,1, ci,2) ∈ G×GT and return the level-2 ciphertext
((e(rki,j , ci,1), ci,2) = (Zbj ·(aik), m · Zaik), 2).

6. D((c, `), sk): Parse the secret key sk as (a, b) ∈ Z2
q. Parse a level-1 ciphertext as

(c1, c2) ∈ G×GT and return c2/e(c1, g)a. Parse a level-2 ciphertext as (c1, c2) ∈ G2
T

and return c2/c
1/b
1 .

Construction 1: Unidirectional, single-hop PRE from [AFGH05]; basis for Con-
struction 2.

1. S(1κ): (q, g1, g2,G1,G2,GT , e′)← BS′(1κ) . Compute Z = e′(g1, g2) and return

the public parameters pp = ((q, g1, g2,G1,G2,GT , e′), Z).
2. K(pp): Pick a, b ← Zq and set pk := (Za, gb1) and sk := (a, b). Return the keys

(pk, sk).
3. RK((pki, ski), pkj): Parse ski as (ai, bi) ∈ Z2

q and pkj as (pkj,1, pkj,2) ∈ GT × G1.

Return the re-key rki,j := pk
ai
j,2 = g

bj ·ai
1 .

4. E(pk, (m, `)): Parse pk as (pk1, pk2) ∈ GT × G1 and pick k ← Zq. If ` = 1 return
the (level-1) ciphertext ((gk2 , m · pkk1 = m · Zak), 1);
otherwise return the (level-2) ciphertext ((e′(pk2, g2)k = Zbk, m · Zk), 2).

5. RE(rki,j , pki, (ci, 1)): Parse ci as (ci,1, ci,2) ∈ G2 × GT and pki as (pki,1, pki,2) ∈
GT × G1. Pick k′ ← Zq for re-randomisation and return the level-2 ciphertext

((e′(rki,j , ci,1 · gk
′

2 ), ci,2 · pkk
′

i,1), 2) = (Zbj ·ai(k+k
′),m · Zai(k+k

′)).

6. D(sk, (c, `)): Parse the secret key sk as (a, b). Parse a level-1 ciphertext as c =
(c1, c2) ∈ G2 × GT and return c2/e

′(g1, c1)a. Parse a level-2 ciphertext as c =

(c1, c2) ∈ G2
T and return c2/c

1/b
1 .

Construction 2: Rerandomised [AFGH05] in the asymmetric setting. The differ-
ences from Construction 1 are highlighted in boxes.

Lemma 8. Construction 2 is statistically source-hiding.

Proof. A level-2 ciphertext under pkj that results from the re-encryption of
a level-1 ciphertext ci = (ci,1, ci,2) under pki = (pki,1, pki,2) is of the form
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cj = (cj,1, cj,2)

cj,1 = e′(rki,j , ci,1 · gk
′

2 ) = e′(g
bj ·ai
1 , gk2 · gk

′

2 ) = e′(g
bj
1 , g2)ai·(k+k

′)

cj,2 = ci,2 · pkk
′

i,1 = m · Zai·k · Zai·k
′

= m · Zai·(k+k
′). (3)

From (3) it is clear that the distribution of the re-encrypted ciphertext is statis-
tically close to a fresh level-2 ciphertext under pkj . ut

Lemma 9. If XDH is (s2, ε2)-hard then Construction 2 is (s2 − δ · sExp, ε2, δ)-
weakly key-private, where sExp is the complexity of four exponentiations in G1.

Proof. For (q, g1, g2,G1,G2,GT , e′)← BS′(1κ) and Z := e′(g1, g2), our goal is to
show that KP0 ≈(s2,ε2) KP

1, where

KP0 := ((Za0 , gb01 ), (Za1 , gb11 ), . . . , (Zaδ , gbδ1 ), gb1·a01 , . . . , gbδ·a01 ) and

KP1 := ((Za0 , gb01 ), (Za1 , gb11 ), . . . , (Zaδ , gbδ1 ), gb1·r11 , . . . , gbδ·rδ1 )

with a0, b0, a1, b1, . . . , aδ, bδ, r1, . . . , rδ ← Zq. Let A be an adversary of size s2
that distinguishes KP0 from KP1 with probability at least ε2. Given an XDH in-
stance (A,B,C,Grp), where Grp := (q, g1, g2,G1,G2,GT , e′), the reduction first
uses random self-reducibility of XDH to generate δ instances (A,Bi, Ci, Grp):
it picks ui, vi ← Zq and sets Bi := Buigvi1 and Ci := CuiAvi . (If A = ga1 , B =

gb1, C = gc1 then Bi = gbi1 with bi = bui+vi and Ci = gci1 with ci = ui(c−ab)+abi;
thus if c = ab then (A,Bi, Ci) is a DH tuple, otherwise Bi and Ci are indepen-
dently random.) The reduction picks b0, a1, . . . , aδ ← Zq and sends

KP := ((e′(A, g2), gb01 ), (Za1 , B1), . . . , (Zaδ , Bδ), C1, . . . , Cδ)

to A. Depending on whether C was real or random, the adversary sees either
KP0 or KP1, and any distinguishing advantage it has is translated to that of the
reduction. ut

Note that the reduction of XDH to δ-weak key-privacy is without any security
loss due to the use of random self-reducibility of XDH. The adaptive security
of Construction 2 against CPA (resp., HRA) is a corollary to Theorem 5 (resp.,
Theorem 6), [AFGH05, Theorem 3.1], Lemma 8 and Lemma 9.

Theorem 7 (PRE-CPA and PRE-HRA security of Construction 2). Let
σ and τ denote, respectively, the space and time complexity for the class G =
G(n, δ, d). Assume BS′ generates asymmetric bilinear groups for which eDBDH
is (s1, ε1)-hard, XDH is (s2, ε2)-hard and where four exponentiations in G1 cost
sExp. Then Construction 2 is (s, ε)-PRE-CPA-secure and (s′, ε′)-PRE-HRA-secure
restricted to challenge graphs in G where

s := min(s1, s2 − δ · sExp)− sCPA − sG ,
ε := 2(ε1 + τ · ε2) · nσ+δ+1,

s′ := min(s1, s2 − δ · sExp)− sHRA − sG and

ε′ := 2n(n− 1)(QE +QRE)QRE · 2−κ + ε.
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1. S(1κ): (q, g,G,GT , e) ← BS(1κ). Pick a random generator h ∈ G and compute
Z = e(g, h). Return the public parameters pp = ((q, g,G,GT , e), h, Z).

2. K(pp): Pick a, b← Zq and set the public key as pk := (Za, gb) and the secret key
as sk := (a, b). Return the keys (pk, sk).

3. RK((pki, ski), pkj): Parse ski as (ai, bi) ∈ Z2
q and pkj as (pkj,1, pkj,2) ∈ GT × G.

Pick r, w ← Zq and return the re-key:

rki,j := ((pkj,2)ai+r, hr, e(pkj,2, h)w, e(g, h)w ) = ((gbj )ai+r, hr, Zwbj , Zw ).

4. E(pk, (m, `)): Parse the public key as pk = (pk1, pk2) ∈ GT ×G and pick k ← Zq.
If ` = 1 return the (level-1) ciphertext ((gk, hk,m · pkk1), 1); otherwise, return the
(level-2) ciphertext ((e(pk2, h)k,m · Zk), 2).

5. RE(rki,j , (ci, 1)): Parse the re-key rki,j as (rki,j,1, . . . , rki,j,4) ∈ G2 ×G2
T , and the

ciphertext ci as (ci,1, ci,2, ci,3) ∈ G2×GT . Verify that the ciphertext is well-formed
by checking if e(ci,1, h) = e(g, ci,2) – if it is not, halt. Compute t1 = e(rki,j,1, ci,2) =
Zbj(ai+r)k and t2 = ci,3 · e(ci,1, rki,j,2) = m · Zaik · Zkr; choose w′ ← Zq and re-

randomise t1, t2 by setting t′1 = t1 · rkw
′

i,j,3 and t′2 = t2 · rkw
′

i,j,4 . Return ((t′1, t
′
2), 2).

6. D(sk, (c, `)): Parse the secret key sk as (a, b) ∈ Z2
q. Parse a level-1 ciphertext as

(c1, c2, c3) ∈ G2 ×GT ; halt if e(c1, h) 6= e(g, c2), and otherwise return c3/e(c1, h)a.

Parse a level-2 ciphertext as as (c1, c2) ∈ G2
T and return c2/c

1/b
1 .

Construction 3: Unidirectional, single-hop PRE from [ABH09]: the differences
to our simplified version (Construction 4) are boxed.

5.1.2 The ABH Scheme. This scheme, given in Construction 3, can be
thought of as a variant of Construction 1 with a randomised re-key generation
algorithm, and it is this feature that enabled [ABH09] to show (strong) key-
privacy assuming DLin. In Construction 4, we simplify their scheme and show
that it is weakly key-private (still) assuming DLin. The main difference from the
original construction is the way the re-randomisation of a re-encrypted ciphertext
is carried out: it is now done just like in Construction 2, and this allows for shorter
re-keys (just two group elements compared to four).

Security. If the eDBDH problem is (s1, ε1)-hard then Construction 3 is (s1, 2ε1)-
sPRE-CPA-secure [ABH09, Theorem 3.1]. The sPRE-CPA security of Construc-
tion 4 follows by the same reduction: we refer the readers to [ABH09] for the
details. It was also shown in [ABH09, Theorem 3.4] that if the DLin problem is
(s2, ε2)-hard then Construction 3 is (s2, 4n

2 · ε2) (strongly) key-private. Below
we simplify this reduction to show that Construction 4 is (s2, δ · ε2, δ) weakly
key-private (Lemma 10). We also show (Lemma 11) that it is statistically source-
hiding.

Lemma 10. If the DLin problem is (s2, ε2)-hard then Construction 4 is (s2, δ ·
ε2, δ)-weakly key-private.
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1. S(1κ): (q, g,G,GT , e) ← BS(1κ). Pick a random generator h ∈ G and compute
Z = e(g, h). Return the public parameters pp = ((q, g,G,GT , e), h, Z).

2. K(pp): Pick a, b← Zq and set the public key as pk := (Za, gb) and the secret key
as sk := (a, b). Return the keys (pk, sk).

3. RK((pki, ski), pkj): Parse ski as (ai, bi) ∈ Z2
q and pkj as (pkj,1, pkj,2) ∈ GT × G.

Pick r ← Zq and return the re-key:

rki,j := ((pkj,2)ai+r, hr) = ((gbj )ai+r, hr).

4. E(pk, (m, `)): Parse the public key as pk = (pk1, pk2) ∈ GT ×G and pick k ← Zq. If
` = 1 return the (level-1) ciphertext (c, 1) = ((gk, hk,m ·pkk1), 1); otherwise, return
the (level-2) ciphertext (c, 2) = ((e(pk2, h)k = Zb·k,m · Zk), 2).

5. RE(rki,j , pki, (ci, 1)): Parse the re-key rki,j as (rki,j,1, rki,j,2) ∈ G2, the public key
pki as (pki,1, pki,2) ∈ GT × G and the ciphertext ci as (ci,1, ci,2, ci,3) ∈ G2 × GT .
Verify that the ciphertext is well-formed by checking if e(ci,1, h) = e(g, ci,2) – if it
is not, halt. Pick k′ ← Zq and return ((cj,1, cj,2), 2), where

cj,1 := e(rki,j,1, ci,2 · hk
′
) = Zbj(ai+r)(k+k

′) and

cj,2 := ci,3 · pkk
′

i,1 · e(ci,1 · g
k′ , rki,j,2) = m · Zaik · Zaik

′
· Z(k+k′)r.

6. D(sk, (c, `)): Parse the secret key sk as (a, b) ∈ Zq. Parse a level-1 ciphertext as
(c1, c2, c3) ∈ G2 ×GT ; halt if e(c1, h) 6= e(g, c2), and otherwise return c3/e(c1, h)a.

Parse a level-2 ciphertext as (c1, c2) ∈ G2
T and return c2/c

1/b
1 .

Construction 4: Simplified version of scheme from [ABH09] (Construction 3).

Proof. For (q, g,G,GT , e) ← BS(1κ), a random generator h ∈ G and Z :=
e(g, h), our goal is to show that KP0 ≈(s2,ε2) KP

1, where

K0 :=
(
(Za0 , gb0), . . . , (Zaδ , gbδ), ((gb1)a0+r1 , hr1), . . . , ((gbδ)a0+rδ , hrδ)

)
and

K1 :=
(
(Za0 , gb0), . . . , (Zaδ , gbδ), ((gb1)a

′
1+r1 , hr1), . . . , ((gbδ)a

′
δ+rδ , hrδ)

)
with a0, b0, a1, a

′
1, b1, r1, . . . , aδ, a

′
δ, bδ, rδ ← Zq. Unfortunately, in contrast to

Lemma 9, random self-reducibility of DLin does not apply here, since the DLin
instances share one of their exponents (a0); we therefore proceed via a hybrid
argument. Let A be an adversary of size s2 that distinguishes KP0 from KP1

with probability at least ε2. With probability ε2/δ it must therefore distinguish
two of the hybrid games KP0 = K0, . . . ,Kδ = KP1 defined as

Ki :=
(
(Za0 , gb0), . . . , (Zaδ , gbδ), ((gb1)a

′
1+r1 , hr1), . . . , ((gbi)a

′
i+ri , hri),

((gbi+1)a0+ri+1 , hri+1), . . . ((gbδ)a0+rδ , hrδ)
)
.

Given a DLin instance (h, f,A,B,C,Grp), where Grp := (q, g,G,GT , e), the re-
duction picks a1, . . . , aδ, b0, r0, . . . , bi−1, ri−1, bi+1, ri+1, . . . , bδ, rδ ← Zq and runs
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A on(
(e(A, h), gb0), (Za1, gb1), . . . , (Zai−1, gbi−1), (Zai , f), (Zai+1 , gbi+1), . . . , (Zaδ , gbδ),

((gb1)a
′
1+r1 , hr1), . . . , ((gbi−1)a

′
i−1+ri−1 , hri−1), (C,B),

(Abi+1gbi+1ri+1 , hri+1), . . . , (Abδgbδrδ , hrδ)
)
.

Letting a0, ri be such that A = ga0 and B = hri , the challenge C is either
fa0+ri (real) or fa

′
i+ri (random). Thus the above is either distributed as Ki−1

(real) or Ki (random). Its distinguishing advantage thus translates to that of
the reduction. ut

Lemma 11. Construction 4 is statistically source-hiding.

Proof. A level-2 ciphertext under pkj that results from the re-encryption of a
level-1 ciphertext ci = (ci,1, ci,2, ci,3) under pki = (pki,1, pki,2) is of the form

cj = (cj,1, cj,2)

= (e(rki,j,1, ci,2 · hk
′
), ci,3 · pkk

′

i,1 · e(ci,1 · g
k′ , rki,j,2))

= (e(gbj(ai+r), hk · hk
′
),m · Zaik · Zaik

′
· e(gk · gk

′
, hr))

= (Zbj(k+k
′)(ai+r),m · Z(k+k′)(ai+r)). (4)

From (4) it is clear that the distribution of the re-encrypted ciphertext is statis-
tically close to a fresh level-2 ciphertext under pkj . ut

The adaptive security of Construction 4 against CPA (resp., HRA) is then a
corollary to Theorem 5 (resp., Theorem 6) and [ABH09, Theorem 3.1] using the
above lemmas.

Theorem 8 (PRE-CPA and PRE-HRA security of Construction 4). Let
σ and τ denote, resp., the space and time complexity for the class G = G(n, δ, d).
Assume BS generates bilinear groups for which eDBDH is (s1, ε1)-hard and
DLin is (s2, ε2)-hard. Then Construction 4 is (s, ε)-PRE-CPA-secure and (s′, ε′)-
PRE-HRA-secure restricted to challenge graphs in G where

s := min(s1, s2)− sCPA − sG ε := 2(ε1 + τ · δ · ε2) · nσ+δ+1

s′ := min(s1, s2)− sHRA − sG ε′ := 2n(n− 1)(QE +QRE)QRE · 2−κ + ε

Remark 2. We note that since the proofs for key-privacy in both Constructions
2 and 4 proceed via a hybrid argument, by using a trick of Panjwani [Pan07], one
can improve the bound for ε to 2(ε1+τ ·ε2)·nσ+log δ+1 and 2(ε1+τ ·δ·ε2)·nσ+log δ+1,
respectively. We refer the reader to [JKK+17] for further reading.

5.2 Multi-Hop Scheme from Fully Homomorphic Encryption.

We now describe the generic construction of a unidirectional multi-hop PRE
scheme from fully homomorphic encryption (FHE) due to Gentry [Gen09].
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1. Algorithms S,K and D for PRE are defined the same as their counterparts in FHE.
2. PRE.RK((pki, ski), pkj): The re-key rki,j is an encryption of ski under pkj :

PRE.RK((pki, ski), pkj) := FHE.E(pkj , ski).

3. PRE.E(pk,m): Given a message m and a public key pk, the encryption algorithm

outputs a “sanitized” FHE encryption:

(PRE.E(pk,m)← Sanitize (pk, FHE.E(pk,m)).

4. PRE.RE(rki,j , pki, pkj , (ci, `))→ (cj , `+1): Given a re-key rki,j and a level-` cipher-
text ci that was encrypted under pki, the re-encryption algorithm homomorphically

decrypts the ciphertext ci and “sanitizes” the result :

cj ← Sanitize(pkj , FHE.F(FHE.D, (rki,j ,FHE.E(pkj , ci)))).

Construction 5: PRE from sanitizable FHE. Sanitize denotes the sanitization
algorithm. We refer to the construction without the boxes by Construction 5.a
and the construction with blurring (including the boxes) by Construction 5.b.

5.2.1 Gentry’s Scheme. A fully homomorphic encryption scheme consists
of a five-tuple of algorithms (S,K,E,D,F), where S is the setup algorithm, K the
key-generation algorithm, E the encryption algorithm, D the decryption algo-
rithm and F the homomorphic evaluation algorithm, which takes a function f
and encrypted inputs for f and returns an encryption of the evaluation of f on
the inputs.

Gentry [Gen09] gave a generic construction of PRE from FHE. We show
that this scheme, given in Construction 5.a, is adaptively secure against CPA.
In Construction 5.b, we “sanitize” the previous construction and prove that the
resulting construction is adaptively secure against HRA.

Security. The ciphertext indistinguishability of Construction 5.a directly fol-
lows from the semantic security of the underlying FHE scheme. We show that
weak key-privacy also follows from semantic security. If, in addition, the FHE
scheme is sanitizable, then Construction 5.a is source-hiding and thus satisfies
PRE-HRA. In particular, if sanitizability is as defined and discussed in [DS16]
(see Definition 19), then Construction 5.b is statistically source-hiding.

Lemma 12. If FHE is (s1, ε1)-semantically secure then Construction 5.a is (s1−
δsE − nsK, δ · ε1, δ)-weakly key-private.

Proof. Our goal is to show that KP0 ≈(s1,ε1) KP
1 where

KP0 := (pp, pk0, pk1, . . . , pkδ,FHE.E(pk1, sk0), . . . ,FHE.E(pkδ, sk0)) and

KP1 := (pp, pk0, pk1, . . . , pkδ,FHE.E(pk1, sk
′
0), . . . ,FHE.E(pkδ, sk

′
δ)),
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where pp← FHE.S(1κ) and (pk0, sk0), . . . , (pkδ, skδ), (pk
′
1, sk

′
1), . . . , (pk′δ, sk

′
δ)←

FHE.K(pp). We use a sequence of hybrid distributions KP0 = K0, . . . ,Kδ = KP1,
where in the i-th hybrid the first i re-keys are random and the rest real. That is,

Ki :=
(
pp, pk0, pk1, . . . , pkδ,FHE.E(pk1, sk

′
0), . . . ,FHE.E(pki, sk

′
i),

FHE.E(pki+1, sk0), . . . ,FHE.E(pkδ, sk0)
)
.

Let A be an adversary of size s1 that distinguishes KP0 from KP1 with probability
at least ε1. Given a challenge for FHE semantic security containing parameters
pp∗ and public key pk∗, the reduction sets pki := pk∗, picks (pk0, sk0), (pk′i, sk

′
i)←

FHE.K(pp∗), sends (sk0, sk
′
i) to its own challenger and receives c∗. The reduction

embeds c∗ at position i and sends

Ki−1,i :=
(
pp, pk0, pk1, . . . , pkδ,FHE.E(pk1, sk

′
0), . . . ,FHE.E(pki−1, sk

′
i−1), c∗,

FHE.E(pki+1, sk0), . . . ,FHE.E(pkδ, sk0)
)

to A. Depending on whether c∗ encrypts sk0 or sk′i, Ki−1,i is distributed as Ki−1
or Ki. ut

Definition 19 (Sanitizability of encryptions [DS16]). An encryption scheme
(S,K,E,D) is called sanitizable if there exists a polynomial-time algorithm Sanitize
which takes as input a public key and a ciphertext, outputs a ciphertext, and sat-
isfies the following two properties (with all but negligible probability).

– Message-preserving. For any key pair (pk, sk) ← K(1κ) and any c in the
ciphertext space

D(sk,Sanitize(pk, c)) = D(sk, c).

– Sanitizing. For all c, c′ such that D(sk, c) = D(sk, c′)

∆((Sanitize(pk, c), pk, sk), (Sanitize(pk, c′), pk, sk)) ≥ 2−κ.

Theorem 9 (PRE-CPA security of Construction 5.a). Let σ and τ denote
the space and time complexity for G = G(n, δ, d). If FHE is (s1, ε1)-semantically
secure then Construction 5.a is (s, ε)-PRE-CPA-secure restricted to challenge
graphs in G, where

s := s1 − (δsE + nsK + sCPA + sG) and ε := (2τ · δ + 1) · ε1 · nσ+δ+1.

Theorem 10 (PRE-HRA-security of Construction 5.b). Let ε be defined
as in Theorem 9 and let σ and τ denote the space and time complexity for
G = G(n, δ, d). If FHE is a sanitizable FHE scheme that is (s1, ε1)-semantically
secure, then Construction 5.b is (s′, ε′)-PRE-HRA-secure restricted to challenge
graphs in G, where

s′ := s1 − (δsE + nsK + sHRA + sG) and ε′ := n(n− 1)(QE +QRE)QRE · 2−κ + ε.
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1. S(1κ): Pick lattice parameters N, M, q ∈ N and a B-bounded error distribution χ
onZMq . SampleA← ZM×Nq uniformly at random and return the public parameters
pp = (A, N,M, q, χ).

2. K(pp): Sample s ← ZNq uniformly at random and compute b = A · s + e, where
e← χ. Set pk := b as the public key and sk := s as the secret key. Return (pk, sk).

3. E(pk,m): On input pk ∈ ZMq and a message bit m ∈ {0, 1}, sample r ← {0, 1}M
and output

c := rT (A, b) + (0N ,m · dq/2c) ∈ ZN+1
q .

4. D(sk, c): On input a secret key sk = s ∈ ZNq and a ciphertext c = (α, β) ∈ ZNq ×Zq,
output 0 if β − 〈α, s〉 is closer to 0 than to dq/2c, else output 1.

Construction 6: Regev’s Encryption scheme RGV [Reg05].

5.3 Lattice-based Multi-Hop Schemes

Here, we decribe the lattice-based unidirectional multi-hop PRE scheme from
[CCL+14]. Being based directly on the decision LWE (DLWE) problem it achieves
better parameters than the construction from FHE above.

5.3.1 The CCL+ Scheme. In [CCL+14], Chandran et al. propose two
lattice-based unidirectional multi-hop proxy re-encryption schemes. The schemes
are built upon Regev’s encryption [Reg05] and its dual version [GPV07], respec-
tively. Here, we will describe the former one, which is inspired by the fully
homomorphic encryption scheme of [BV11]. Security can be proven assuming
the hardness of the decisional learning with errors (DLWE) problem (cf. Defini-
tion 20 below).

We recall Regev’s encryption scheme in Construction 6. We can now define
the PRE scheme from [CCL+14] using RGV in Construction 7.a. To achieve
source-hiding, Chandran et al. propose the variant given as Construction 7.b.

In both schemes, the LWE error will grow with each re-encryption and the
level bound λ needs to be chosen appropriately so that correctness of decryption
is still guaranteed (with overwhelming probability). The second variant achieves
the stronger notion of PRE-HRA-security (see below) at the cost of worse pa-
rameters; only a small number λ of re-encryptions is supported by this scheme
and the underlying security assumption is very strong.

Security. The PRE scheme in Construction 7.a can be proven secure assum-
ing the hardness of decisional learning with errors (DLWE). We will first show
PRE-CPA-security of Construction 7.a and then consider PRE-HRA-security of
Construction 7.b.

Definition 20 (DLWE [Reg05]). Let N, M, q ∈ N. For a matrix A← ZM×Nq

and a secret vector s ← ZNq , each sampled uniformly at random, and a vec-

tor e ← χ for an error distribution χ on ZMq , the decisional LWE problem
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1. S(1κ): Get parameters pp′ ← RGV.S(1κ), level bound λ and “blurring error”

bound E` for each level ` ∈ [λ]. Return the parameters pp = (pp′, λ, (E`)`∈[λ]).

2. K(pp): Run RGV.K(pp′) and output the result.

3. E(pk, (m, `)): Compute c = RGV.E(pk,m)+ (0N , f`) , where f` ← [−E`, E`] ∩ Z ,

and return the level-` ciphertext (c, `).
4. RK((pki, ski), pkj): Parse ski as si = (si,1, . . . , si,N ) ∈ ZNq . For k ∈ [N ] and

l ∈ [dlog qe], compute Kk,l ← RGV.E(pkj , 0) + (0N , si,k · 2l). Return the re-key:

rki,j := {Kk,l}k∈[N ],l∈[dlog qe].

5. RE(rki,j , pki, pkj , (ci, `))→ (cj , `+ 1): If ` ≥ λ, abort. Otherwise, parse the level-`

ciphertext ci as (α, β) ∈ ZNq ×Zq and rki,j as {Kk,l}k∈[N ],l∈[dlog qe]. Denote by αk
the k-th component of α, and denote the bit decomposition of αk as {αk,l}l∈[dlog qe],
i.e., αk =

∑
l∈[dlog qe] αk,l2

l, where each αk,l ∈ {0, 1}. Compute

cj = (0N , β) +
∑
k,l αk,l ·Kk,l + RGV.E(pkj , 0) + (0N , f`+1) ,

where f`+1 ← [−E`+1, E`+1] ∩ Z , and return (cj , `+ 1).

6. D(sk, (c, `)): Run RGV.D(sk, c) and output the result.

Construction 7: source-hiding unidirectional multi-hop PRE from [CCL+14].

We refer to the construction without the blurring (ignoring the boxes) by Con-
struction 7.a and the construction with blurring (including the boxes) by Con-
struction 7.b.

DLWEN,M,q,χ is to distinguish (A,A · s + e) from (A, b) for a uniformly ran-
dom sample b← ZMq .

To prove adaptive security for the two variants of Construction 7, we will
need the following lemma [BV11].

Lemma 13 (Matrix-vector leftover hash lemma). Let κ, N, q ∈ N, and

M ≥ N · log q + 2κ. For A← ZM×Nq , r ← {0, 1}M , and y ← ZNq each sampled

uniformly at random, it holds ∆((A,ATr), (A,y)) ≤ 2−κ.

Assuming the computational hardness of DLWEN,M,q,χ for appropriate pa-
rameters, by the above lemma we get for any pp = (A, N,M, q, χ, λ), pk = b and
m ∈ {0, 1}: RGV.E(pk,m) = rT (A, b) + (0N ,m · dq/2c) is computationally indis-

tinguishable from rT (A, b′) + (0N ,m · dq/2c), where r ← {0, 1}M and b′ ← ZMq .
The latter distribution is, in turn, statistically close to the uniform distribution
on ZN+1

q . Informally, since RGV.E(pk, 0) is computationally indistinguishable
from uniformly random, ciphertexts, re-keys and re-encrypted ciphertexts all
look uniformly random; in particular Construction 7.a satisfies indistinguisha-
bility of ciphertexts as well as δ-weak key privacy.
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Lemma 14. Assuming DLWEN,M,q,χ is (s1, ε1)-hard for parameters N,M, q as
in Lemma 13, Construction 7.a satisfies (s1−sE, 2(ε1+2−κ))-indistinguishability
and (s1 −O(δ N dlog qe (sZN+1

q
+ sRGV.E)), δNdlog qeε1, δ)-weak key-privacy.

Theorem 11 (PRE-CPA-security of Construction 7.a). Let σ and τ de-
note the space and time complexity for the class G = G(n, δ, d). Assume the
DLWEN,M,q,χ problem is (s1, ε1)-hard for parameters N,M, q as in Lemma 13.
Then Construction 7.a is (s, ε)-PRE-CPA-secure restricted to challenge graphs
in G, where

s := s1 −O(δ N dlog qe (sZN+1
q

+ sRGV.E))− sCPA − sG and

ε := (2τ · δNdlog qe+ 1) · ε1 · nσ+δ+1.

Construction 7.a clearly does not satisfy source-hiding and, thus cannot be
proven PRE-HRA-secure using our results. Fortunately, Construction 7.b solves
this issue, but at the cost of only allowing for a constant level bound λ. The ad-
ditional uniform error f` ← [−E`, E`]∩Z added in E and RE in Construction 7.b
is used to “blur out” the different errors caused by encryption or re-encryption,
respectively. Choosing the error bounds E` appropriately guarantees the source-
hiding property of the scheme while still preserving correctness.7 Chandran et
al. refer to this rerandomisation technique as strong blurring ; a more detailed
analysis can be found in [DS16, Section 4.1], where the same method for reran-
domization of Regev ciphertexts is used to discuss sanitizability of the FHE
scheme from [BV11].

To prove PRE-HRA-security of Construction 7.b, note that, as above, seman-
tic security and δ-weak key-privacy of (E,D) directly follow by the security of
Regev’s encryption scheme. We get a result similar to Lemma 14.

Lemma 15. For large enough (see Footnote 7) error ranges E`, ` ∈ [λ], Con-
struction 7.b is (statistically) source-hiding.

Theorem 12 (PRE-HRA-security of Construction 7.b). Let ε be as in
Theorem 11 and let σ and τ denote the space and time complexity for G =
G(n, δ, d). If DLWEN,M,q,χ is (s1, ε1)-hard for parameters N,M, q as in Lemma 13
and E` (` ∈ [λ]), λ are chosen appropriately, then Construction 7.b is (s′, ε′)-
PRE-HRA-secure restricted to challenge graphs in G, where

s′ := s1 −O(δ N dlog qe (sZN+1
q

+ sRGV.E))− sHRA − sG , and

ε′ := 2n(n− 1)(QE +QRE)QRE · 2−κ + ε.

6 Open Problems

We leave as open problems to find adaptively secure PREs (either via the
[JKK+17] framework or using a new technique) for more general settings, which

7 In fact, we need to choose the error bounds (E`)`∈[λ] exponentially large, eg., E1 ≥
(M + 1)B2κ. Thus, to provide correctness of the scheme, one needs to choose the
modulus q to be of size exp(O(κ)) and the level bound λ of size O(1).

42



includes unidirectional PREs on general graphs, bidirectional PREs and CCA-
secure PRE(the schemes above only satisfy CPA, and the slightly stronger HRA
security notion).
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A Selective Security Definitions

In order to relate the selective security notions sCPA and sHRA to their adaptive
variants, we reformulate the former using recoding graphs instead of explicit
abort conditions. Inspection of the games yields the following:

Lemma 16. A PRE scheme is (s, ε)-selectively secure against chosen-plaintext
attack (i.e, sCPA0 ≈(s,ε) sCPA

1 with sCPA from Game 1) if and only if

sCPA0
∗ ≈(s,ε) sCPA

1
∗

with sCPA∗ defined in Game 9.
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Challenger sCPAb∗(1
κ, 1λ, n)

1: Set C, E = ∅ . Stores corrupt keys and issued re-keys and re-encryptions
2: pp← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn)← PRE.K(pp) . Generate keys
3: ∀i, j ∈ [n], i 6= j : rki,j ← PRE.RK((pki, ski), pkj) . Generate re-keys

4: state← A
(corrupt,·)
1 (pp) . Phase 1

5: b′ ← A
(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)
2 (pk1, . . . , pkn, state) . Phase 2

6: if i∗ ∈ C or ∃ i /∈ C ∃ j ∈ C: i is connected to j in ([n], E) then return 0
7: end if
8: return b′

Oracle (corrupt, i)
1: Add i to C
2: return ski

Oracle (rekey, i, j)
1: Add (i, j) to E . Add to recoding graph
2: return rki,j

Oracle (reencrypt, i, j, (ci, `))
1: Add (i, j) to E . Add to recoding graph
2: return (cj , `+ 1)← PRE.RE(rki,j , pki, pkj , (ci, `))

Oracle (challenge, i∗, (m∗0,m
∗
1), `∗) . Single access

1: return (ci∗ , `
∗)← PRE.E(pki∗ , (m

∗
b , `
∗))

Game 9: sPRE-CPA using recoding graph to check illegal behaviour.

Lemma 17. A PRE scheme is (s, ε)-selectively secure against honest-reencryption
attack (i.e, sHRA0 ≈(s,ε) sHRA

1 with sHRA from Game 2) if and only if

sHRA0
∗ ≈(s,ε) sHRA

1
∗

with sHRA∗ defined in Game 10.
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Challenger sHRAb∗(1
κ, 1λ, n)

1: Set C,L,L∗ = ∅ . Corrupt keys, ciphertexts and which derive from challenge
2: Set C = 0 . Counts ciphertexts generated
3: pp← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn)← PRE.K(pp) . Generate keys
4: ∀i, j ∈ [n], i 6= j : rki,j ← PRE.RK((pki, ski), pkj) . Generate re-keys

5: state← A
(corrupt,·)
1 (pp) . Phase 1

6: b′ ← A
(encrypt,·,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)
2 (pk1, . . . , pkn, state) . Phase 2

7: if A made call (challenge, i∗, ·, ·) for some i∗ then . Check abort conditions
8: if ∃ i ∈ C : i∗ is connected to i then return 0 end if
9: end if

10: return b′

Oracles corrupt and rekey are defined like in Game 9.

Oracle (encrypt, i, (m, `))
1: (c, `)← PRE.E(pki, (m, `))
2: Increment C and add (C, i,m, (c, `)) to L
3: return (c, `)

Oracle (reencrypt, i, j, k)
1: Retrieve (k, i,m, (ci, `)) from L and increment C
2: (cj , `+ 1)← PRE.RE(rki,j , pki, pkj , (ci, `))
3: if k ∈ L∗ then . The ciphertext is derived from the challenge
4: Add C to L∗ and add (i, j) to E . Add to recoding graph
5: end if
6: Add (C, j,m, (cj , `+ 1)) to L
7: return (cj , `+ 1)

Oracle (challenge, i∗, (m∗0,m
∗
1), `∗) . Single access

1: Compute (ci∗ , `
∗)← PRE.E(pki∗ , (m

∗
b , `
∗))

2: Increment C, add (C, i∗,m∗b , (ci∗ , `
∗)) to L and C to L∗

3: return (ci∗ , `
∗)

Game 10: sPRE-HRA using recoding graph to check illegal behaviour.

B Application to Key Rotation

An interesting application of unidirectional multi-hop PRE is for key rotation
in remote storage systems, for which it can mitigate the risk of key compromise.
Consider a user that stores content on a server which is encrypted under her
public key pk. Using key rotation, from time to time the user creates a new key
pair (pk′, sk′) and would like to replace the encryption of the content under pk

by an encryption under pk′.
To do so, it seems she must either download the content, re-encrypt it and

upload it again; or give the secret key sk for pk to the server, so the latter can
obtain the content and encrypt it under the new key. PRE allows avoiding both
costly transfer of content and unnecessary trust in the server: the user simply
creates rk← RK((pk, sk), pk′) and sends rk to the server. The latter uses rk to
re-encrypt the content to the new key pk′ without knowing either content nor
any secret keys.
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There are several attack scenarios to consider: an adversary could (i) obtain
the encrypted content or (ii) a re-key by breaking into the server; and it could
obtain (iii) the secret key by attacking the user. We would like to guarantee
that, as long as the adversary does not see a ciphertext which it can decrypt by
either obtaining the secret key for it or re-keys that allow it to (consecutively)
re-encrypt it to a key it knows, nothing is leaked on the plaintext.

We formalize this via a game that considers n epochs in each of which a new
key pair is generated and the content is re-encrypted. The adversary obtains
all public keys and can ask for messages to be encrypted at certain epochs;
one of which is its challenge query which lets it choose two messages (m0,m1).
The adversary can at any time query secret keys for any epoch and re-keys
between two epochs. It can also ask to see (re-)encryptions of (the challenge)
messages. If it asks to see the challenge ciphertext in some epoch i and corrupts
a secret key in some epoch j such that either j = i or it has obtained all re-keys
rki,i+1, . . . , rkj−1,j then it loses. Otherwise, the adversary wins if it guesses the
bit b chosen by the challenger that determines whether m0 or m1 was encrypted.

Definition 21 (KRot security). A PRE scheme is (s, ε)-adaptively secure
against key rotation attacks if KRot0 ≈(s,ε) KRot1, where KRotb is defined in
Game 11.

Note that, as with all other notions, restricting the adversary to a single
challenge call is without loss of generality: a standard hybrid argument shows
that this notion implies a more general multi-challenge variant of this definition.
(In the jth hybrid, the first j−1 calls (challenge, i, (m0,m1)) are answered like
(encrypt, i,m1) and the remaining ones like (encrypt, i,m0).)

The adaptive notion of key-rotation security we defined is not immediately
implied by HRA security: in the former the adversary is allowed to ask for mb

to be encrypted under pk1, to see its re-encryption under pk2 and to corrupt
pk1. This is not allowed by the HRA game, as a challenge ciphertext is imme-
diately revealed by the oracle and the corresponding key must therefore not be
corrupted. We show however that if the PRE scheme is source-hiding then HRA
security implies key-rotation (KRot) security.

Theorem 13 (KRot security). Let n ∈ N. Then a PRE scheme that is
(s1, ε1)-PRE-HRA-secure (under multiple challenges) and (s2, ε2)-source-hiding
is (s, ε)-KRot-secure, where

s := min{s1, s2} − sKRot, and ε := ε1 + (n− 1)ε2,

where sKRot denotes the complexity of simulating game KRot.

Proof. To prove the theorem we show that if the encryption scheme is source-
hiding then the game KRot is indistinguishable from a game where, instead of
being re-encrypted, the challenge is freshly encrypted when the adversary queries
its reveal oracle on it.

Consider the hybrid game shKRotbt defined as KRotb, except that the challenge
oracle is defined as follows:
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Challenger KRotb(1κ, 1n)
1: Set C, E ,S = ∅ . Stores corrpt. keys (C), re-keys (E) and revealed challenges (S)
2: Set L,L∗ = ∅ . Stores ciphertexts and challenge ciphertexts
3: Set C = 0 . Counter for generated ciphertexts
4: pp← PRE.S(1κ, 1n) . n determines the number of levels
5: (pk1, sk1), . . . , (pkn, skn)← PRE.K(pp)
6: ∀i ∈ [2, n] : rki−1,i ← PRE.RK((pki−1, ski−1), pki)

7: b′ ← A(corrupt,·),(rekey,·),(encrypt,·,·),(challenge,·,·,·),(reveal,·,·)(pp, pk1, . . . , pkn)
8: if ∃ i ∈ S ∃ j ∈ C : i is connected to j then return 0 end if
9: return b′

Oracle (corrupt, i)
1: Add i to C
2: return ski

Oracle (rekey, i)
1: Add (i− 1, i) to E
2: return rki−1,i

Oracle (encrypt, i,m)
1: Increment C, compute (ci, i)← PRE.E(pki, (m, i))
2: for j = i+ 1 . . . n do (cj , j)← PRE.RE(rkj−1,j , pkj−1, pkj , (cj−1, j − 1))
3: end for
4: Increment C, add (C, i,m, (ci, . . . , cn)) to L

Oracle (challenge, i, (m∗0,m
∗
1)) . Single access

1: Compute (ci, i)← PRE.E(pki, (m
∗
b , i))

2: for j = i+ 1 . . . n do (cj , j)← PRE.RE(rkj−1,j , pkj−1, pkj , (cj−1, j − 1)) end for
3: Increment C, add (C, i,m∗b , (ci, . . . , cn)) to L and C to L∗

Oracle (reveal, k, j)
1: Retrieve (k, i,m, (ci, . . . , cn)) from L
2: if k ∈ L∗ then add j to S end if
3: return cj

Game 11: Game KRot for key rotation using a (unidirectional multi-hop) PRE
scheme PRE.

Oracle (challenge, i, (m∗0,m
∗
1))

1: Compute (ci, i)← PRE.E(pki, (m
∗
b , i))

2: for j = i+ 1 . . . t do (cj , j)← PRE.E(pkj , (m
∗
b , j)) end for

3: for j = t + 1 . . . n do (cj , j) ← PRE.RE(rkj−1,j , pkj−1, pkj , (cj−1, j − 1))
end for

4: Increment C, add (C, i,m∗b , (ci, . . . , cn)) to L and C to L∗

The difference between shKRotbt−1 and shKRotbt is whether the challenge oracle
computes ct by reencrypting or by freshly encrypting. An adversary distinguish-
ing shKRotbt−1 from shKRotbt can thus be turned into an adversary against source-
hiding (Definition 9): the reduction receives (pp, (pk, sk), (pk′, sk′), rk), simu-
lates the experiment setting (pkt−1, skt−1) := (pk, sk), (pkt, skt) := (pk′, sk′),
and rkt−1,t := rk. When the adversary queries (challenge, i, (m∗0,m

∗
1)), the re-

duction first computes for j = i + 1 . . . t − 2: (cj , j) ← PRE.E(pkj , (m
∗
b , j)); it

then queries (challenge,m∗b , t − 1) to receive ct−1 (a fresh encryption) and ct
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(a re-encryption of ct−1 or a fresh encryption depending on the challenger); for
j = t + 1 . . . n it computes (cj , j) ← PRE.RE(rkj−1,j , pkj−1, pkj , (cj−1, j − 1)).
The reduction continues the simulation of the game (it has all secret keys) and
returns whatever the adversary does.

shKRotb1 is the original game KRotb, whereas shKRotbn is a game where the
challenge message is freshly re-encrypted for every pki. Moreover, shKRotbn is

equivalently distributed to a game shKRotbn+1 where the challenge oracle does
not compute anything yet, and the show oracle directly computes challenge
ciphertexts. shKRotbn+1 is thus defined like KRotb except for the following oracles:

Oracle (challenge, i, (m∗0,m
∗
1))

1: Increment C, add (C, i,m∗b , ∅) to L and C to L∗

Oracle (reveal, k, j)
1: Retrieve (k, i,m, (ci, . . . , cn)) from L . (ci, . . . , cn) could be empty
2: if k ∈ L∗ then
3: Add j to S
4: Compute (cj , j)← PRE.E(pkj , (m, j))
5: end if
6: return cj

Game shKRotbn+1 can now be simulated for an adversary A in a straightforward

way by a reduction R that plays (the multi-challenge version of) game HRAb:
R forwards all corrupt and rekey queries; when A makes a query encrypt,
then R generates (ci, ci+1, . . . , cn) as follows: it queries its encrypt oracle to
get ci and its reencrypt oracle to obtain ci+1, . . . , cn. (Note that this does not
lead to any edges being added to E .) When A makes its query challenge then
R faithfully simulates shKRotbn+1 and stores the message in L and the current
counter value in L∗. Queries (reveal, k, j) with k /∈ L∗ are answered as specified
in shKRotbn+1; if k ∈ L∗ then R queries (challenge, j, (m∗0,m

∗
1), j) and forwards

the reply. Finally R returns A’s final output b′.
R’s probability of winning KRotb is the same as A’s probability of winning

shKRotbn+1, as R only violates the winning condition that no key that was chal-
lenged is connected to a corrupt key via re-keys (represented by edges in E in
both games) when and only when A does in game shKRotbn+1. ut
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