
Lachlan J. Gunn, Ricardo Vieitez Parra, and N. Asokan

Circumventing Cryptographic Deniability
with Remote Attestation
Abstract: Deniable messaging protocols allow two par-
ties to have ‘off-the-record’ conversations without leav-
ing any record that can convince external verifiers
about what either of them said during the conversa-
tion. Recent events like the Podesta email dump under-
score the importance of deniable messaging to politi-
cians, whistleblowers, dissidents and many others. Con-
sequently, messaging protocols like Signal and OTR are
designed with cryptographic mechanisms to ensure de-
niable communication, irrespective of whether the com-
munications partner is trusted.
Many commodity devices today support hardware-
assisted remote attestation which can be used to con-
vince a remote verifier of some property locally observed
on the device.
We show how an adversary can use remote attesta-
tion to undetectably generate a non-repudiable tran-
script from any deniable protocol (including messaging
protocols) providing sender authentication. We prove
that our attack allows an adversary to convince skepti-
cal verifiers. We describe a concrete implementation of
the attack against someone using the Signal messaging
protocol. We then show how to design protocols resis-
tant to attestation-based attacks, and in particular how
attestation itself can be used to restore deniability by
thwarting realistic classes of adversary.

1 Introduction
There is a growing trend towards the use of communi-
cations dumps as political weapons. Transparent inser-
tion of signatures by mail servers as an anti-spam mea-
sure [25] has made email dumps into potent weapons,
as they allow readers to verify the authenticity of emails
leaked by unknown or untrusted parties [3].

A deniable [24] but authenticated communications
channel allows the sender of a message to authenticate

Lachlan J. Gunn: Aalto University, Email: lachlan@gunn.ee
Ricardo Vieitez Parra: Aalto University
N. Asokan: Aalto University, Email: asokan@acm.org

themselves to the recipient without the possibility for
anyone else to reliably authenticate the source of the
message, even with the aid of the original intended recip-
ient. Modern secure messaging protocols [11, 30] place
great emphasis on supporting deniability. These have
become popular in the wake of the Snowden disclo-
sures [15], and in particular amongst politicians follow-
ing a number of well-known email dumps [19]. Thus it is
reasonable to expect that when someone wants to have
a conversation without leaving a verifiable audit trail—
such as when a whistleblower talks to a journalist—they
may choose to use a modern deniable messaging proto-
col like Signal, rather than a medium such as email.

Hardware-based Trusted Execution Environments
(tees) like ARM TrustZone and Intel SGX are widely
available in commodity devices. They can support re-
mote attestation: the ability to convince a remote veri-
fier about properties observable locally on the device.

Deniability depends upon the ability of an adver-
sary to lie: cryptographic deniability means nothing if a
verifier can trust your communications partner to truth-
fully reveal what you said. Remote attestation allows
even manifestly untrustworthy actors such as criminal
organizations or hostile intelligence agencies to reach
such a level of trustworthiness by piggybacking on a
verifier’s trust in a hardware vendor; such an adversary
can compromise your partner’s device, and use attes-
tation to prove to a skeptical audience that the mes-
sages you sent to that device were not fabricated. In
this paper, we show that an adversary can use remote
attestation on a device (say Bob’s) to produce a publicly
verifiable, non-repudiable transcript of an otherwise de-
niable protocol run, circumventing the deniability guar-
antees that the protocol provides to his communication
partner (Alice). Worse still, Alice cannot detect her loss
of deniability. We provide a security argument to show
that the transcript resulting from the attack can con-
vince a skeptical verifier (e.g., a journalist who does not
trust Bob or some recording software on Bob’s device) of
what Alice1 said during the conversation. Furthermore,
the transcript is transferable: the attacker can publish

1 As identified by the long-term identity key that she uses to
authenticate herself to peers in the deniable messaging protocol.

Circumventing Cryptographic Deniability with Remote Attestation 2

the transcript, which can be verified by anyone capable
of verifying the attestation. This is at odds with the ex-
pectations of users, who assume that a remote adversary
cannot obtain verifiable transcripts of their messages by
compromising their contacts’ devices.

We have implemented a working prototype of the
attack using Signal as the deniable messaging protocol,
and Intel SGX for remote attestation. But the basic
approach can circumvent deniability guarantees of any
protocol that makes use of an authenticated channel.
We discuss several such examples.

We show that remote attestation itself can be used
to restore deniability for Alice by thwarting a realistic
class of adversaries which we call software-modifying
adversary (who can install or manipulate software on
Bob’s device but cannot install new tees) from mount-
ing this attack. The intuition behind the defense is for
Bob’s device to attest to Alice either that it will make
no further attestations about the conversation, or that
the message authentication key(s) used in the session
are present outside the tee, and thus any subsequent
attested transcript from Bob’s device will not convince
skeptical verifiers about the origin of the messages Alice
sends in the session. We show that the attack cannot be
defended against stronger adversaries (who can install
tees on Bob’s device) without foregoing sender authen-
tication in the messaging protocol.

Finally, we show that the central idea of attesting
confidentiality and behavior of secret keys can have pos-
itive applications, too. One such application is to use a
tee to ‘upgrade’ a shared-key based message authen-
tication code to a publicly verifiable signature which
may be useful in scenarios where resource-constrained
devices (e.g., automotive microcontroller units) need to
produce publicly verifiable statements (e.g., for use in
accident investigation).

Our contributions are as follows:
– Removing deniability: We present a generic

method for stripping the deniability of messaging
protocols that provide sender authentication [Sec-
tion 3.2] and a concrete implementation of it using
Intel SGX and the Signal messaging protocol [Sec-
tion 3.3]. We discuss several other types of deni-
able protocols which can be similarly attacked [Sec-
tion 3.4].

– Restoring deniability: We show how we can re-
store deniability (a) in the presence of adversaries
who can only modify software, by using remote at-
testation itself [Section 4.1], and (b) in the presence
of stronger adversaries, by foregoing sender authen-
tication [Section 4.2].

– Positive uses:We show that the basic pattern used
in the attack has positive applications such as allow-
ing a tee to ‘upgrade’ a shared-key based message
authenticator to a publicly verifiable signature [Sec-
tion 5].

We also prove in Appendix A that (a) our attack results
in a transcript that can convince skeptical, offline veri-
fiers [Theorem 1], (b) that any authenticated messaging
protocol that does not use a tee can be undetectably
rendered non-repudiable [Theorem 2], and (c) that it
is not possible to defend against a hardware-modifying
adversary without sacrificing sender authentication in
the messaging protocol [Corollary 2].

Though we focus on deniable messaging, this ob-
servation applies to the more general zero-knowledge
setting; the use of remote attestation effectively turns
interactive protocols into non-interactive ones, allowing
the verifier in a zero-knowledge protocol to prove to a
third party any property that it can locally verify.

Today’s cryptographic deniability mechanisms are
indeed secure with respect to their assumptions. But we
show that it is no longer valid to assume the adversary
can lie to the verifier. We hope that our work will help
protocol designers to be cognizant of how this change
affects the deniability guarantees that their protocols
provide in real world systems.

2 Preliminaries

2.1 Deniable protocols

We consider the following setting for secure messaging
protocols: two parties, Alice and Bob, each having long-
term identity keys. The messaging scheme provides the
usual authenticity, integrity, and confidentiality guaran-
tees to Alice and Bob [36]. Suppose that one party (say
Bob) has recording software (which we refer to as the
prover) installed on his device (possibly by an exter-
nal adversary without Bob’s knowledge). The goal of
the adversary is to use a protocol transcript recorded
on Bob’s device to convince a skeptical third party ver-
ifier (Valerie) that a certain message was definitely sent
by Alice, the victim. Valerie is “skeptical” in the sense that
she does not automatically believe the claims of provers
since provers may be dishonest. Valerie therefore expects
that the claims are backed up by verifiable evidence in
the transcripts.

Circumventing Cryptographic Deniability with Remote Attestation 3

Informally, a deniable protocol prevents the prover
from obtaining such evidence. This is not necessarily at
odds with the requirement for authentication; a protocol
can provide strong authentication between its partici-
pants, while at the same time not allowing either party
to prove anything about it to anyone else.

Deniability is traditionally established by showing
that an adversary can produce a protocol transcript, in-
distinguishable from a real one, consisting of arbitrary
messages of the adversary’s choice. This is known as off-
line deniability [18]. The double-ratchet algorithm [29]
used by Signal has this property: anyone can construct
a completely valid transcript for any set of messages be-
tween any two parties. Other protocols such as tls [17]
are also deniable; in both cases, message authentication
uses symmetric-key cryptography; thus each party can
produce a transcript containing arbitrary messages pur-
porting to be from the other, along with correct message
authentication tokens.

A stronger notion than off-line deniability is on-line
deniability [18, 36, 37] where the prover is allowed to
communicate with the verifier during the protocol. In
general, this is much harder to achieve, though protocols
such as those by [18, 37] have had some success. Note
that the proof obtained by the verifier performing an
online attack in this case is not transferable, meaning
that it cannot, for example, be published in a data dump
to implicate the victim in the eyes of skeptical observers.

2.2 Hardware-assisted trusted execution
environments

A tee is a security primitive that makes it possible
to execute security-critical logic isolated from all other
software on the same device. In addition, tees support
secure persistent storage, referred to as sealed storage,
for persistently storing sensitive data like keys, and re-
mote attestation, the possibility of convincing a remote
verifier of the configuration or other properties of the
device. Over the past two decades, processor extensions
to enable tees have become widely deployed. ARM
TrustZone [1] (common on smartphones and tablets)
and Intel SGX [2] (for x86-based personal computers
and servers) are two examples. Trusted Platform Mod-
ules (TPMs) [20], typically realized as discrete compo-
nents, are an example of a widely deployed type of fixed-
function tee.
Intel SGX allows a developer to designate a (security-
critical) portion of an application as an enclave. When
an enclave is initialized, the processor measures the

enclave. Data belonging to the enclave are automati-
cally protected when they leave the processor, ensuring
that only the enclave code can access its data. Memory
protection provided by sgx ensures that enclaves are
strongly isolated even from the operating system.
TPMs provide an append-only log that is used to store
‘measurements’ of subsequent components of the boot
process. A root of trust for measurement appends a hash
of the bios, which appends a hash of the bootloader,
and with operating system support this measurement
chain can continue as far as user applications. A tpm
provides only a chain of measurement, not any form
of memory protection, but this is sufficient to perform
remote attestation.
Remote attestation is the process by which a tee
on a device takes part in a secure protocol in order
to convince a remote verifier about specific properties
that can be observed on the device. The most common
form of remote attestation is to convince the verifier of
the software state of the local device. This is done by
measuring the software running locally and signing it
with a key known only to the tee. The manufactur-
ers of a tee typically issue a certificate for the tee’s
signature verification key. A verifier who trusts a tee
manufacturer and knows the manufacturer’s signature
verification key, can verify the attestation from a tee
from that manufacturer to convince itself of the state of
the device. Any locally observable property, such as the
result of running a program in a tee, can be conveyed
via remote attestation.

Attestation of an sgx enclave consists of a number
of components [2, §2.15], including the code signature
verification key that was used verify the enclave, the
enclave’s measurement hash, and a piece of arbitrary
data provided by the attesting enclave from within its
protected memory region. The utility of this attestation
depends upon the isolation guarantees provided by the
processor; a production-mode sgx enclave is strongly
isolated from outside code, and its state is therefore
mutated according only to the rules of the enclave. This
allows us to make more detailed inferences about the
state of the enclave.

Circumventing Cryptographic Deniability with Remote Attestation 4

3 Making deniable protocols
non-repudiable with remote
attestation

The goal of a deniable messaging protocol is to allow its
participants to communicate in such a way that the re-
cipient of a message in a protocol session can be assured
of the identity of the sender, but that the protocol pro-
vides outsiders with no such assurance, even with the
cooperation of the original recipient.

Recall that remote attestation makes it possible to
transform any locally verifiable property on a system
into an unforgeable statement that can be—possibly
publicly—verified by a remote party. In this attack, we
select as the attested property the output of a proto-
col, as implemented by a program P. This results in a
statement of the form:

Program P, running under conditions [. . .], output x.

The intuition behind our attack is simple: if the output
of P convinces the party executing it of any statement,
then the attestation convinces its verifier of the same
statement. If P implements an authenticated message
functionality, then the attestation can convince anyone
verifying it that a particular party sent a particular
message. In this section, we describe our deniability-
stripping protocol transformation, and its concrete re-
alization using Intel SGX, targeting Signal.

3.1 Adversary model for deniability

The traditional adversary model for deniable communi-
cation in the presence of skeptical verifiers is as follows.
The adversary is assumed not to be able to compromise
either the victim’s (Alice) or the verifier’s (Valerie) devices
(if the adversary compromises Alice’s device, then he can
use it to send legitimate messages saying whatever he
wants!). The adversary is assumed to have access to the
device of the person the victim is communicating with
(Bob).

In this paper, we make a distinction between two
kinds of adversaries. A remote attacker can install or
manipulate software on Bob’s device but cannot modify
the hardware. We call this a software-modifying adver-
sary. Conversely, an attacker with physical access to
Bob’s device can modify its hardware, and thus nest
one execution environment within another. This type
of attacker we call a hardware-modifying adversary. We

assume that the adversary cannot compromise the in-
tegrity of tees.

This distinction is important if the security of a
protocol depends upon the absence of some piece of
hardware—an attacker wishing to insert a new piece
of hardware into a device must have physical access,
whereas a remote attacker must content themselves with
whatever happens to be available.

In either case, the adversary can use all tees on the
devices under its control, and in particular can produce
remote attestations that are trusted by the skeptical
verifier Valerie. As a pre-requisite for Valerie to be con-
vinced by the remote attestation from Bob’s device, we
assume that Valerie has securely obtained—and trusts
the integrity of—the trust root for verifying the attesta-
tion, e.g. the signature verification key from the manu-
facturer of the tee. Importantly, the adversary’s remote
attestations do not need to convince everyone, but only
those verifiers that Alice wants to keep from learning
what messages she sent.

3.2 Attesting the output of deniable
protocols

In this paper, we will use remote attestation to trans-
form authenticated protocols into non-repudiable ones,
making deniability impossible for protocols that can be
executed inside a tee without detection.

We show our protocol transformation in Figure 1. It
takes the original protocol π and adds an attestation by
a tee on Bob’s device to the original protocol’s output
after running it. It then sends this output along with
the attestation to the verifier, Valerie, who verifies the
attestation and then outputs the value sent by Bob’s de-
vice. We denote the transformed protocol as CloneB(π).
Valerie knows that the message from Bob’s tee is au-
thentic, because the verification function VerifyP(x, σ)
ensures that the message x was emitted by the program
P implementing π. These changes are invisible to Alice,
who just sees a normal execution of π.

This result is significant in that it allows us to non-
interactively prove to a skeptical verifier that a protocol
has yielded some result. Where this protocol attempts
to realize a deniable communications channel, this is
catastrophic to its security.

An important point is that this attack depends upon
CloneB(π) being secure, and so a demonstration is not
enough on its own. We provide a formal security argu-
ment for the non-deniability of π in Appendix A.

Circumventing Cryptographic Deniability with Remote Attestation 5

Alice Bob Valerie

πA πB

TEE(P)

AttP (Out(πB))

σ

OutB OutB

(x, σ) = (OutB, σ)

if VerifyP (x, σ) = INVALID
abort

x

Fig. 1. Our modified protocol CloneB(π), with a tee added and additions to the protocol shown in dashed lines. In this three-party
protocol, we take the original protocol π = (πA, πB)—which does not use the tee shown—and convert Bob’s part into a program P
that executes his component πB before producing an attestation to its output. No change is made to Alice’s part of the protocol—the
modifications are completely invisible to her. Valerie can then verify the attestation, and knowing that the program P attests to the
output of πB , concludes that the protocol was correctly executed. The protocol is so-named because, in general, it takes a functional-
ity and ‘clones’ one of its outputs, so that Valerie will always output the same value as the one being cloned.

Canetti [12] defined the secure message transmission
functionality Fsmt; this functionality allows a party P

to send a message (Send, sid,Q,m), and it will accord-
ingly send (Sent, sid, P,m) to party Q. Significantly, a
user cannot in general return a message to the func-
tionality for after-the-fact verification of its origin. As
a result, the recipient of a message can lie about what
they received, making messages sent through the func-
tionality deniable. Critically, deniability is a feature of
the protocol realizing Fsmt, and not of the functionality;
there exist both deniable and non-repudiable protocols
that realize this functionality. For example, we might
imagine a protocol that has Alice sign every message to
Bob, such as that described in [13, §4.1]. Conversely, pro-
tocols such as Signal, tls, and Off-the-Record provide
deniable realizations of Fsmt.

This fact means that there is no guarantee that de-
niability will be preserved under composition, allowing
the existence of protocols such CloneB(π) that provide
non-repudiability of messages despite the sender believ-
ing that they are taking part in a repudiable protocol
π.

A point worth noting is that some mutually-
authenticated protocols such as Signal, otr, and tls
guarantee the authenticity of Alice’s messages even when
Bob’s identity key is available to the adversary. In this
case, an attacker can compromise Bob’s device and carry

out this attack at any time. This fact has been used to
construct online attacks on deniability, such as in [38,
§A]; they point out that an online trusted third party
(or even sgx) can be used to obtain a non-repudiable
proof of authenticity specifically for otr and Signal.

Protocols such as dakez [38] provide online denia-
bility by allowing forgery by anyone holding either iden-
tity key. Such protocols resist our attack if Bob’s iden-
tity key is generated or exported outside the tee. Our
attack is still applicable if the adversary can generate
a new identity key inside a tee and have it accepted
by Alice [28], for example by corrupting Bob’s key—thus
forcing him to generate a new one—or compromising his
device before he installs his messaging client. For this
reason, such protocols are more resistant—though not
invulnerable—to our attack.

Let us consider a concrete example of transforming
the Signal protocol πSignal to CloneB(πSignal). As de-
scribed in Figure 1, this involves a regular Signal client
on Bob’s device augmented with a custom addition by
the adversary that uses the tee on Bob’s device to pro-
duce an attestation of the output produced by the reg-
ular Signal client. This will convince Valerie that Bob re-
ceived an authenticated message from Alice. The Signal
protocol πSignal does not interact with the tee, and so
this modification from πSignal to CloneB(πSignal) is un-
detectable to Alice.

Circumventing Cryptographic Deniability with Remote Attestation 6

3.3 Practical attack

We have implemented this attack using remote attes-
tations provided by Intel’s SGX. We have produced an
sgx enclave based on the libsignal-protocol-c [7] library
to perform all session-related cryptographic operations;
it produces all ephemeral keys, and the cryptographic
state of the protocol never leaves the enclave in the clear.
We then modify the third-party signal-cli Signal client
to use this enclave in place of its own implementation
of πSignal.

Signal’s key-establishment protocol at its most ba-
sic involves four key-pairs: one identity key-pair for
each party—(A, gA) and (B, gB)—one ephemeral key-
pair for the initiator—(a, ga)—and one short-term pre-
key pair (b, gb) that is published by the recipient to al-
low asynchronous operation [30]. The root key is de-
rived from these keys using a Diffie-Hellman key ex-
change, with the complication that several exchanges
are computed simultaneously and combined according
to KDF(gab ‖ gaB ‖ gAb). Reading or forging messages
therefore requires at least one private key from each
handshake; that is to say, at least one from {a, b}, one
from {a,B}, and one from {A, b}.

An identity key is not enough to obtain the session
key; this is necessary for forward secrecy. Deniability of
the key exchange derives from the fact that possession
of both ephemeral private keys suffices to obtain the
session key, and thus anyone can forge a key exchange
between any two parties. This feature is helpful for our
attack, because if we know that an enclave has generated
b and maintained its secrecy, then derivation of the key
by any other entity requires the secret keys a and A—
and unless Alice is compromised, only she will have access
to A.

In addition to the normal processing that is per-
formed by libsignal-protocol-c, the enclave constructs a
transcript of the session, eventually producing an attes-
tation to the entire transcript. This attestation proves
to Valerie that Bob’s secret ephemeral key b was secured
by the tee, and so that he cannot forge messages pur-
porting to be from Alice.

An important point is that we do not require that
the tee maintain the secrecy of Bob’s long-term identity
key. The result is that the attack can take place at any
time, for example following the compromise of a user’s
device, rather than at the time of key generation—this
is the ideal situation for a remote attacker, as by com-
promising a victim’s phone, this attack can be used to
obtain a non-repudiable transcript of any messages sent
to them from then on.

This implementation demonstrates that the attack
is not difficult to carry out: our implementation took
less than three months for a single student developer
with no prior sgx experience. To be publicly deployable,
enclave code needs to be signed by an authorized devel-
oper. Intel maintains a whitelist of authorized enclave
developer keys [4, p. 17]. However, as previous experi-
ence has demonstrated, whitelisting of code-signing keys
is not an insurmountable obstacle for highly-motivated,
well-resourced adversaries [21, 23].

3.4 Other targets for attack

The attack described above is applicable not only to
messaging protocols such as Signal and otr, but to any
system that provides authentication. This includes sys-
tems that involve a trusted third party, such as web-
based messaging or email. To highlight this, we show
how attestation can be used to attack the deniability of
several other protocols.

3.4.1 Web-based messaging

Consider web-based private messaging systems such as
those by Facebook [6] and Twitter [35] that are accessed
via server-authenticated tls. Remote attestation can be
used to obtain a transferable proof that, according to
the service provider, a certain message was sent or re-
ceived by the compromised user.

3.4.2 Local email

The attack generalizes to higher-level protocols that
provide authentication in a non-cryptographic way, for
example email between users of the same mailserver.

Take, for example, the mail system shown in Fig-
ure 2. A trusted mailserver accepts new mail via
smtp [22], and allows users to view and modify the con-
tents of their mailboxes via imap [16] over tls, and re-
quest a change of password over https. While email is
in general vulnerable to forgery, a trusted mailserver can
provide a secure messaging functionality to local users.
The mailserver verifies user identities with a username
and password over tls; any mail received by smtp pur-
porting to be from a local user is rejected if the smtp
session is not authenticated in this way. Since smtp is
the only way to write to another user’s mailbox, this
provides a form of secure messaging.

Circumventing Cryptographic Deniability with Remote Attestation 7

MailserverExternal
Mailservers

SMTP

SM
TP

IM
AP

SM
TP

IM
AP

Local Users

H
TT

PS

Fig. 2. A mail system providing authenticated messaging between
local users. Each local user accesses the server using a change-
able password over tls. Each user can append or delete messages
from their own mailbox using password-authenticated imap over
tls. It is possible to append new messages to other users’ mail-
boxes using smtp, but a message purporting to be from a local
user will only be accepted if the sender uses tls and authenti-
cates themselves using their password. Password changes can be
made using https.

If the imap session is protected by tls, then a user
Bob can prove the state of his mailbox to Valerie by using
a tee to obtain an attestation to the mailserver response
over tls. However, he cannot prove that a message in
his mailbox came from another local user Alice, since
the imap protocol allows anyone with Bob’s password to
write to the mailbox as well.

Suppose Bob sets his password using https and does
not share it with anyone. He can then be sure that
only he can access his mailbox and insert fraudulent
messages; he keeps track of any messages that he in-
serts himself, and accepts as legitimate any messages
from local users that have appeared in his mailbox since
the password change, but which he did not add to the
mailbox himself. Since the only other way that mes-
sages from a local user can be added to the mailbox is
via authenticated smtp, this protocol provides a secure
messaging functionality from local users to Bob. So long
as the mailserver does not sign messages, such as with
dkim [25] signatures, this protocol is also deniable, since
only Bob knows that he did not insert his own messages
with imap.

Nevertheless, as an authenticated messaging proto-
col, we can attack this system by performing the pro-
tocol above inside a tee. We have Bob’s tee change his
password to a random value, known only to the tee.
From then on, Bob’s account is only accessible via the
tee, which will attest only to messages that have ap-
peared in the mailbox since the password change, but
not those that Bob inserts or modifies via imap. The
result is that Bob can prove to Valerie that Alice sent a
supposedly-deniable message.

3.4.3 Voting systems

Though we focus on deniable messaging in this paper,
the same cloning protocol allows Bob to convince Valerie
of arbitrary protocol outputs, not just Fauth as we prove
in Section A.

This is particularly relevant to online voting; an im-
portant goal of online voting systems is to prevent vote-
buying and coercion. This is accomplished in a number
of ways, but in general uses a property known in the
literature as receipt-free-ness [10].

Our attack applies to all systems that allow user
devices to determine whether or not a final vote has
been cast for a particular candidate (as opposed to one
that requires outside information in order to decide, e.g.
a randomized paper ballot). For the simplest electronic
voting system—a web form with a list of candidates—
an attestation to its submission over tls will do. The
exact form of this attestation depends on the system,
but if a voter’s device can ascertain their vote, it will in
general be able to prove this to Valerie.

In cases where a voter can vote multiple times,
the adversary must prevent the attested vote from be-
ing overridden after the fact. For example, if the sys-
tem is completely online and allows login credentials—
e.g. passwords and password-recovery settings—to be
changed, the adversary can have the tee lock the user
out of the system after a single vote, thereby making it
final.

4 Mitigation

4.1 Regaining deniability with remote
attestation

We have shown how remote attestation can be used to
break deniability properties; in this section, we show
how remote attestation can make authenticated proto-
cols deniable once more.

We do this by including attestations in the protocol,
such that Alice can refuse to send any messages to Bob
unless he uses remote attestation to prove that he does
not use his tee to harm Alice’s deniability.

Though disrupting individual realizations in this
way does not protect against all adversaries, it can be
used to prevent an attacker from using the tees already
present in a compromised device; if the channel is bound
to a particular piece of hardware, then the available
tees will in some cases be known to Alice, allowing this

Circumventing Cryptographic Deniability with Remote Attestation 8

attack to be prevented completely. Otherwise, an ad-
versary might, for example, run an sgx enclave within
a tpm-protected system, for example, and obtain a tpm-
attestation to the output of the enclave, even though it
is unattested by sgx.

The inability to counter a hardware-modifying at-
tacker in this way is best explained by the following
example: Bob might allow his part in the protocol to
be performed by some generally-trusted human notary
who attests to its output. Such social methods do not af-
fect the protocol execution, and so this is an unsolvable
problem in general.

If the recipient is not bound to a particular piece
of hardware, all adversaries are hardware-modifying—
a remote attacker cannot change Bob’s hardware, but
they can steal his key and run the protocol on a device
over which they have arbitrary control. Any attestation-
based countermeasure therefore requires that the chan-
nel be linkable to a specific device.

4.1.1 Complete protocol attestation

One approach is as follows: implement π—for concrete-
ness, let us suppose that it is the Signal protocol—inside
a tee, but when Bob sends any public key to Alice, he
obtains a remote attestation to the fact that the corre-
sponding private key is protected inside the tee, and
sends this attestation alongside the public key. Before
sending any messages using this new key, Alice can in-
spect the code run by Bob to verify that messages she
sends will never be attested to, whether directly or in-
directly. Alice is thereby assured of the deniability of her
messages.

This countermeasure is straightforward, and has the
peculiar advantage of being able to rule out even on-
line attacks, since Alice can see that Bob has not mod-
ified his protocol implementation. The disadvantage is
that the entire protocol implementation is within the
trusted computing base of the system—in practice, this
will mean trusting the developer, as proving the ab-
sence of even some covert, indirect form of attestation
is a formidable task.

4.1.2 Protocol-independent countermeasures

As an alternative, we might consider an approach that
requires only a very small piece of trusted code. Bob uses
an tee to obtain a remote attestation to the public key
corresponding to a private key that is verified as being

present in an unprotected location. This proves to Al-
ice that Bob’s device can perform a man-in-the-middle
attack on the messages she sends, and therefore any at-
testation that Bob obtains on her messages will be insuf-
ficient to prove authenticity. This trusted functionality
involves only a pointer check and a single elliptic-curve
operation, and is therefore small enough that formal
verification is realistic.

Another advantage of this method is that it does
not require that every software developer produce their
own trusted application; rather, the trusted part of the
application is specific only to a cryptosystem, and thus
with only a few such libraries it is possible to secure a
wide variety of protocols.

The disadvantage of this approach is that the Bob
cannot use his tee to protect his own session keys; us-
ing a tee to protect the entire protocol might allow
greater security by keeping the its keys secure, but it is
necessary to trust a large code-base. Conversely, using
attestation to prove forgeability allows Bob to promise
deniability using only a very small trusted application,
but limits his ability to take advantage of the positive
aspects of his tee.

4.1.3 Adding attestations to the Signal protocol

The X3DH [30] Diffie-Hellman handshake used by the
Signal protocol combines two Diffie-Hellman key pairs
to provide both authentication and forward-secrecy.
Rather than directly attesting to the non-protection of
each secret key, we instead generate and attest an extra
key-pair at the beginning of each session. Then, in each
subsequent handshake, the ephemeral Diffie-Hellman se-
cret gab is instead replaced by gab ‖ gaq ‖ gbp, where p
is generated and held by Alice’s tee, and q by Bob’s tee.
At the beginning of each session, gp and gq are attested
by Alice’s and Bob’s tees respectively, and sent to the
other party. The secret keys p and q are confined to
their respective tees. If one party does not have a tee,
then they do not send any gp, and it is not included as
input to the key derivation function.

For the ‘large-tcb’ countermeasure from Sec-
tion 4.1.1, this occurs in the same tee as the protocol
itself. From Alice’s perspective, since she keeps a secret,
anyone else who obtains gaq must know q. Bob’s attesta-
tion proves to Alice that his q and the derived symmetric
key katt are confined to the non-message-attesting tee
that implements the protocol while keeping b secret. The
same guarantee holds in reverse for Bob.

Circumventing Cryptographic Deniability with Remote Attestation 9

In the case of the ‘small-tcb’ countermeasure from
Section 4.1.2, each enclave simply computes katt and
writes it to an unprotected region of memory. This en-
sures that Alice and Bob can use katt to forge messages
at will.

4.1.4 Defeating the TPM

We claimed before that an attestation-based counter-
measure must individually prevent each tee from at-
testing to the protocol output. Most systems with sup-
port for sgx-based tees will also have a tpm, which can
attest to the state of the entire system.

The tpm is relatively difficult to defeat in practice,
owing to the difficulty of extending the measurement
chain all the way to the application—an adversary must
achieve this on one platform, while the defender must do
so on every platform used to run the protocol. The tpm
cannot simply be disabled, as it is necessary to obtain
an attestation to the fact that it is not used. The dif-
ficulty of obtaining meaningful TPM attestations rules
out the countermeasures from Sections 4.1.1 and 4.1.2.
The most practical means of defeating the tpm is there-
fore to prevent it from performing message attestations
by breaking the chain of trust early in the boot process.
At this point, remote attestation serves only to prove
that a given value is present on this non-attesting sys-
tem, allowing us to prove that the shared symmetric
key exists outside a tee. This approach has the rather
substantial downside of preventing the use of the tpm
elsewhere in the system, but it is currently the only vi-
able means of defeating such an attack on the pc.

4.2 Regaining deniability by abandoning
authentication

The fundamental problem that we demonstrate in this
paper is that deniability and sender-authentication can-
not coexist in a world with secure remote attestation.
Thus, the only way to avoid non-repudiation crypto-
graphically is to abandon sender-authentication.

This may seem like a drastic measure, but it is
important to note that this does not mean the aban-
donment of message-authentication, but only in-band
sender-authentication; that is, sender-authentication
that occurs as part of the message-authentication pro-
tocol. Authentication performed outside the protocol,
such as in-person verification of public keys, cannot be

proven by an attestation, and can therefore be used to
salvage deniability.

4.2.1 Linkable message authentication

An alternative to sender-authentication is to make mes-
sages linkable but not authenticated. Rather than hav-
ing one long-term identity key that is used to communi-
cate with all other users, and which can be used to prove
the sender’s identity, each user generates long-term keys
that are unique to an individual session. The messaging
protocol does not authenticate the sender of each mes-
sage, but assures the recipient that all the messages in
a session have come from the same sender; as a result,
this is all that can be proven by attestation. In-person
verification of the session keys can be used to obtain
sender authentication, but this cannot be verified by
the device, making it unattestable.

The Signal user interface has already moved in this
direction, with each conversation having an individual
‘safety number’ that is the concatenation of the two
users’ long-term identity key fingerprints. The interface
discourages the use of identity keys outside the con-
text of an individual pair of users, by showing these
two keys as a single large block of numbers, and so it
is possible to switch to a linkability-only model without
any user interface changes; a major downside is that
the changeover must invalidate any in-person verifica-
tions already made, since the new ‘per-pair’ keys can-
not be automatically connected to the current ‘global’
long-term identity keys, as otherwise the link can be
established by attestation.

4.2.2 Practical difficulties

Such a model is far from foolproof. Some kind of per-
user identifier will be needed, if only to make initial
contact—in the case of Signal, this is a phone number.
The discovery service that responds to this request must
not authenticate the connection between users and keys,
for example by responding using server-authenticated
tls, as then our attack can be used to obtain a state-
ment that, according to the discovery service, a particu-
lar key belongs to a particular user. Despite this precau-
tion, the discovery service can still map users to keys,
forcing users to trust a central service to maintain the
secrecy of their identities, and to trust themselves not to
inadvertently link their own identity to the transcript,

Circumventing Cryptographic Deniability with Remote Attestation 10

for example by disclosing secret information that only
they know, which later becomes public.

A fully decentralized system such as Briar [5], in
which users cannot communicate without prior verifi-
cation, is more resistant to such attacks, but because
in-band authentication methods such as the web of
trust [32, §24.12] cannot be used, this would result in a
return to the pre-Diffie-Hellman world of bilateral phys-
ical key exchange, a trade-off that few users would tol-
erate in practice.

4.3 Switching to online-deniable protocols

Online-deniable protocols such as rsdake [37], and
dakez and zxdh [38] prevent online attacks on deni-
ability; this means that we cannot use a tee to mount
an online attack ‘offline’ as shown in [38, §A.2] for Sig-
nal and otr. They achieve this by allowing Bob to forge
messages to his tee using his identity key, something
that is not possible with Signal or the current version
of otr (OTRv3).

As we show in Section A, our attack applies to
any purely cryptographic protocol implementing Fauth.
As we discussed in Section 3.2, in the case of dakez
and zxdh, this requires that Bob’s identity key be
generated and confined within the tee implementing
CloneB(π) [28]. This restricts the time window in which
an attacker can compromise Bob’s device without Alice
detecting them by a key change.

The upcoming OTRv4 protocol will use the online-
deniable dakez and xzdh protocols [28]. Nevertheless, it
is plausible that an attacker might convince Bob that his
key material has become corrupted or otherwise needs
to be regenerated, encouraging him to tell Alice that she
need not be alarmed by the changed identity key. This
therefore provides only partial mitigation, particularly
against users lacking great discipline with respect to
identity keys.

4.4 Setting correct expectations

Developers of messaging protocols may deem the miti-
gations above unaffordable. In that case, we recommend
that they make clear to their users the level of deniabil-
ity that they can expect.

This is important because non-transferability is an
major expectation of deniable protocols by users, who
do not expect that their messages can be published and

publicly verified; for example, the Signal website says
the following [27] about deniability:

One of OTR’s primary features is a property called denia-
bility. If someone receives an OTR message from you, they
can be absolutely sure you sent it (rather than having been
forged by some third party), but can’t prove to anyone else
that it was a message you wrote. This is a nice change com-
pared to PGP signatures, for instance, where anyone who
receives a PGP signed message can prove exactly who wrote
it to anyone else.

This security property has motivated a number of high-
value targets to switch to deniable messaging applica-
tions in place of email [19] following the Podesta email
dump, in which a large number of emails were published
to Wikileaks, many of them including signatures that
can be used to verify their authenticity [3].

We have shown that the wide availability of
hardware-supported attestation invalidates this expec-
tation, and users facing such attacks may have to ac-
cept this risk if their application developers are unable
to provide some mitigation.

5 Upgrading deniable
authenticators to signatures

Despite our offensive use of the protocol in Figure 1,
non-repudiability is highly desirable in many other
systems. For example, consider an automotive setting
where a sensor containing a resource-constrained micro-
controller unit (MCU) montitors airbag deployment. In
case of an accident, the investigation process can bene-
fit from an unforgeable report from the MCU indicating
whether the airbag deployed. While the MCU can be
equipped with hardware-protected secret key, it is too
resource-constrained to sign every piece of data that it
emits. However, a message authentication code (mac)
does not require much processing power. If the MCU
shares a symmetric key with a tee on the vehicle, which
can verify the mac, sign the message, and place it into
the audit log. Shared symmetric keys between each sen-
sor and the tee, can be established either at the time
of manufacture or each time the car is started. This ap-
proach will allow auditors to verify the provenance of
data even from more limited sensors.

In general, this type of protocol allows an
arbitrarily-authenticated message to be made non-
repudiable. This is essentially a simple hardware secu-

Circumventing Cryptographic Deniability with Remote Attestation 11

rity module, and we refer to the resulting signature as
a translated signature.

While this is perhaps an obvious application of
a tee, we briefly discuss it for a number of reasons.
First, such ‘obvious’ applications are often discussed but
rarely rigorously analyzed [34]. Secondly, such a proto-
col is extremely similar to that described in Figure 1,
but its requirements differ in a manner that contradicts
the analysis in Section A. Because of this, we leave its
analysis for the extended version of this paper.

A practical translated signature protocol might in-
volve the following:
1. During the setup phase, Alice registers with the

trusted application Bob and sets up a shared sym-
metric key, with Bob using remote attestation to
show that this key is available only to the trusted
application.

2. Bob generates a signing key and enrols it with a reg-
istration authority—which can be either a separate
entity, or part of the trusted application—to provide
a binding between the signing key and Alice.

3. During the online phase, Alice sends data to the
server, authenticated with its shared symmetric key.
Bob then signs the data with Alice’s signing key, and
sends the signature either to Alice or some other en-
tity, such as an audit log.

The server-authentication process in step one violates
the requirement, given in Figure 1, that π not use a
tee, but the resulting loss of indistinguishability is not
a problem for this application.

In particular, when Alice uses this signature proto-
col, it is neither necessary nor desirable that she be un-
able to detect that she is taking part in something more
than Fauth. On the contrary: in many applications Alice
must be certain that her signing key remains safely in-
side the tee, used only to sign messages that she herself
has authenticated.

6 Related work
Deniability has a long history in the cryptographic lit-
erature, and protocols such as Off-the-Record [11] and
Signal [29] have been designed with the express goal of
providing repudiability. These protocols are nonetheless
vulnerable to online attacks, in which the verifier com-
municates with one of the parties during the protocol,
and a number of protocols have been designed with this
model in mind [18, 37, 38]. In a sense, our attack can be

seen as running one of these online attacks locally inside
a tee, as foreshadowed by [38], who propose an attack
similar to ours specifically against OTRv3 and Signal
using a trusted third party. However, unlike previous
work, our attack is more general and applies to even
online-deniable protocols and higher-level protocols as
shown in Section 3.

In fact, the Town Crier protocol [39] is quite sim-
ilar to that that we describe in Section 5. They use a
trusted execution environment to produce a certifica-
tion that an input to a smart contract originated from
a trusted feed at a certain time. The implications for de-
niability were not realized at the time, and so they did
not consider the possibility that such a protocol can be
used adversarially, nor the question of whether a feed
operator might prevent their data from being used in
such a way.

The tls-sign [33] and tls-n [31] extensions to tls
provide non-repudiation by signing all or part of the
data stream, but require that the server be modified to
provide a digital signature. This is effective where the
server is willing to cooperate, but cannot be used in
practice unless the server operator is willing to expend
effort in order to make their responses non-repudiable.
Unlike our approach, they can not be used by a client
to hold a server accountable against its will.

Other approaches to server-supported signatures
have been proposed that provide some level of account-
ability on the part of the server. For example, [8] com-
bines a normal signature scheme with a hash chain;
the client releases a hash pre-image for each signing re-
quest, which the server signs along with the data. For
the server to produce extra signatures beyond those re-
quested by the client it must re-use an element of the
hash chain, but the discovery of distinct signatures that
include the same hash pre-image provides cryptographic
evidence of the server’s misbehavior, meaning that it
can be held accountable if such signatures are found in
the wild.

7 Discussion
That remote attestation can compromise deniable mes-
saging protocols is somewhat obvious in hindsight; nev-
ertheless, even [39], which makes use of the phenomenon
in a fundamental way, fails to anticipate the far-reaching
implications of a protocol that obtains a transferable
authenticator from a deniable protocol.

Circumventing Cryptographic Deniability with Remote Attestation 12

This attack is highly practical with existing hard-
ware; the sgx-based realization of this attack is mit-
igated somewhat by the need for an Intel-whitelisted
signing key in order to run an sgx enclave with mem-
ory protection, but for a well-resourced attacker this is
unlikely to pose an enormous obstacle. Though more
difficult to use, tpm-based attestation is available to
anyone, and so restrictions on the use of sgx do not
prevent this attack in general.

7.1 Is this a protocol issue?

One might reasonably ask whether defense against this
type of attack is within the scope of a deniable protocol,
given that one is already forced to concede that crypto-
graphic deniability provides no defense against a recipi-
ent that is trusted by the verifier in their own right. We
argue that this viewpoint is overly restrictive given that
this class of attack is closely linked to protocol proper-
ties.

Consider a protocol like pgp, in which users send
messages signed with a long-term key; this is clearly not
deniable, though this might not matter if the recipient
erases the signatures after verification. However, if the
recipient’s system is compromised then the attacker can
obtain signed copies of new messages. This can be mit-
igated by changing the protocol to use a mac on each
message, rather than a signature, and modern protocols
do so.

The fact that our attestation-based attack can be
mitigated with protocol changes means that protocol
designers face a choice as to whether their systems will
resist it. It is for this reason that we take a more op-
timistic view: while there is no general defense against
a recipient who is trusted by a verifier, we can at least
make such attacks unscalable by preventing untrustwor-
thy actors from taking advantage of the trust placed by
the wider community in vendors of attestation hard-
ware.

7.2 Comparison to forensic methods

We also take a moment to compare our attack with
the methods normally used in criminal investigations:
these are generally considered to be outside the scope
of protocol design, and so they merit comparison to our
own approach.

A judge can rely on many different kinds of non-
cryptographic evidence: Bob might testify under oath, or

his device might be examined by a forensic technician
who is trusted to give honest evidence.

What these methods have in common with our at-
tack is that some party provides a link in the chain of
trust between Alice’s input to the protocol and the value
that the judge accepts. However, there is an important
difference in that these methods rely on the existence of
such a party who is directly involved in the case. When
an attack is made by an untrustworthy adversary—for
example, a hostile government—then it is unlikely that
the adversary will be able to obtain such a signed—and
so transferable—statement from a source trusted by the
public.

Our attack demonstrates that such a trustworthy
party is now widely available in the form of a tee with
remote attestation capabilities; this is vastly more ac-
cessible and scalable than depending on the personal
involvement of a trustworthy human. Fortunately, pro-
tocol builders seeking to achieve a practical form of de-
niability can choose to mitigate this attack by the meth-
ods discussed in Section 4.

7.3 TEE-based countermeasures

The need for a tee in order to retain existing protocol
guarantees has a number of implications. First, if we
are to provide both sender authentication and deniabil-
ity in the same protocol, the use of a tee is mandatory.
That is to say, there is no purely cryptographic method
by which deniability can be achieved without sacrific-
ing authenticity. Secondly, the asymmetric nature of the
threat puts the defender at a distinct disadvantage. Now
that tees capable of remote attestation are available, to
be assured of deniability it becomes necessary for every-
one to abandon either purely-cryptographic protocols or
machine-verifiable sender authentication. Even suppos-
ing that an attestation-based defense is viable, there will
be a long transitional period during which the relevant
hardware and software is not sufficiently ubiquitous as
to allow users to refuse communication with those that
fail to provide the proper attestations.

In addition, the tee-based countermeasures that we
describe in Section 4.1 require complete enumeration of
the tees present in the system; on mobile platforms this
might be realistic if it is possible to obtain an attestation
to the model of the device. However, such an enumer-
ation will be most reliable in an organizational setting,
where the capabilities of issued devices can be exactly
known.

Circumventing Cryptographic Deniability with Remote Attestation 13

The effect on the software ecosystem is also substan-
tial: with applications generally being unable to use a
tee without some kind of commercial relationship with
its designer, it will no longer be possible for users to ar-
bitrarily modify their messaging applications, as is the
case in the open-source world today. This disadvantage
might be greatly ameliorated by allowing the general
public to access tee functionality in some limited way—
while tee vendors are hesitant to allow free access so be-
cause of malware concerns, defenses that we propose in
this Section 4.1 will be equally effective if they allow un-
trusted code read-only access. This will allow arbitrary
applications to perform meaningful attestations with-
out the risk of the platform being misused to produce
un-analyzable malware.

7.4 Trust in the TEE

Another important point is that it is not necessary to
have universal trust in the tee: only Valerie needs to
trust the tee, and so the fact that some user might
hold that a tee can easily be physically attacked is
irrelevant—if a few local journalists trust the tee, then
that is enough for an adversary seeking to provide a
credible email dump.

Backdoor-ed tees are also irrelevant to our proto-
col in at least one important case—if we suppose that
the politicians and officials of any given nation use de-
vices whose tees are manufactured in their own country,
then even if a backdoor is present, will not be accessi-
ble by a foreign adversary to be of use for forgery. In-
criminating messages obtained by a foreign power can
therefore still be verified: while they might conceivably
be forged, a well-designed backdoor will allow only the
target nation to forge attestations, and thus the victim’s
nation cannot deny the attested messages by blaming a
backdoor-ed tee.

7.5 Responsible disclosure

We informed the Signal and OTR developers of this
work on 30 April 2018.

The Signal developers have responded that they
“don’t consider this a protocol issue, or an issue that
affects deniability in practice.”

The OTR developers have acknowledged our report,
and noted that it provides practical justification for
their decision to use online-deniable key-establishment
schemes in the upcoming OTRv4.

8 Conclusion
In this work, we show how a tee can be used to convert
a deniable authenticated channel into a non-repudiable
one. While this ability can been used legitimately for
such purposes as implementation of remotely-accessible
hsm [26] or the injection of data into smart con-
tracts [39], that one can do so surreptitiously has far-
reaching implications that are obvious only with the
benefit of hindsight.

We have shown that this applies to any protocol im-
plementing an authenticated message functionality. Pro-
tocol designers therefore face a difficult choice: abandon
either unconditional deniability or some level of authen-
ticity, or incorporate trusted execution environments
into their protocols. Compatibility concerns render the
latter unrealistic in the short-term, leading us to the
unfortunate conclusion that even off-line deniable com-
munication is no longer practical for most users without
in-person verification. Despite this, offline-deniable au-
thentication protocols significantly reduce the window
of attack, and we hope that other protocol designers
will follow the lead of OTRv4 in adopting them.

More generally, remote attestation changes adver-
sary models in a non-trivial way. In some ways, an ad-
versary using remote attestation is weaker, because it
cannot arbitrarily deviate from the protocol specifica-
tion. But when selecting an adversary model for deni-
able protocols, power is weakness and honesty strength.
With remote attestation capabilities widely available,
it is necessary to reconsider whether existing protocols
provide the same security guarantees under this adver-
sary model. In the case of deniable messaging, the an-
swer is no.

9 Acknowledgements
We thank Chris Brzuska for helpful discussion, as well
as Jian Liu and Andrew Paverd for reviewing previous
versions of this paper. We thank the developers of Signal
and OTR for their prompt responses and discussion.

This work is supported in part by Intel (ICRI-
CARS) and by the Academy of Finland (grant 309195).

Circumventing Cryptographic Deniability with Remote Attestation 14

References
[1] “ARM security technology: Building a secure system using

TrustZone technology,” ARM, White paper, 2009. [Online].
Available: https://www.arm.com/products/security-on-
arm/trustzone

[2] “Intel Software Guard Extensions programming reference,”
Tech. Rep., 2014. [Online]. Available: https://software.intel.
com/sites/default/files/managed/48/88/329298-002.pdf

[3] (2016) DKIM verification. [Online]. Available: https:
//wikileaks.org/DKIM-Verification.html

[4] “Intel Software Guard Extensions SDK for Linux OS:
Developer reference,” Tech. Rep., 2016.

[5] (2018) Briar: Secure messaging, anywhere. Accessed
2018-04-29. [Online]. Available: https://briarproject.org/

[6] (2018) Messenger. Accessed 2018-05-03. [Online]. Available:
https://www.messenger.com/

[7] “Signal Protocol C library,” Code, 2018, commit
9e10362fce9072b104e6d5a51d6f56d939d1f36e. [Online].
Available: https://github.com/signalapp/libsignal-protocol-c

[8] N. Asokan, G. Tsudik, and M. Waidner, “Server-supported
signatures,” in ESORICS’96: 4th European Symposium
on Research in Computer Security, ser. Lecture Notes in
Computer Science, E. Bertino, H. Kurth, G. Martella, and
E. Montolivo, Eds., vol. 1146. Springer, Heidelberg, Sep.
1996, pp. 131–143.

[9] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R.
Sadeghi, G. Scerri, and B. Warinschi, “Secure multiparty
computation from SGX,” in FC 2017: 21st International
Conference on Financial Cryptography and Data Security,
ser. Lecture Notes in Computer Science, A. Kiayias, Ed., vol.
10322. Springer, Heidelberg, Apr. 2017, pp. 477–497.

[10] J. C. Benaloh and D. Tuinstra, “Receipt-free secret-ballot
elections (extended abstract),” in 26th Annual ACM Sympo-
sium on Theory of Computing. ACM Press, May 1994, pp.
544–553.

[11] N. Borisove, I. Goldberg, and E. Brewer, “Off-the-record
communication, or, why not to use PGP,” in Proceedings
of the ACM Workshop on Privacy in the Electronic Society
(WPES), 2004.

[12] R. Canetti, “Universally composable security: A new paradigm
for cryptographic protocols,” in 42nd Annual Symposium on
Foundations of Computer Science. IEEE Computer Society
Press, Oct. 2001, pp. 136–145.

[13] ——, “Universally composable signatures, certification and
authentication,” Cryptology ePrint Archive, Report 2003/239,
2003, http://eprint.iacr.org/2003/239.

[14] R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Universally
composable security with global setup,” Cryptology ePrint
Archive, Report 2006/432, 2006, http://eprint.iacr.org/
2006/432.

[15] I. Carmon, “How we broke the NSA story,” Salon, 2013,
2013-06-10.

[16] M. Crispin, “Internet Message Access Protocol - Version
4rev1,” RFC 3501, Mar. 2003. [Online]. Available:
https://rfc-editor.org/rfc/rfc3501.txt

[17] T. Dierks and C. Allen, RFC 2246 - The TLS Protocol
Version 1.0, Internet Activities Board, Jan. 1999.

[18] Y. Dodis, J. Katz, A. Smith, and S. Walfish, “Composability
and on-line deniability of authentication,” in TCC 2009: 6th
Theory of Cryptography Conference, ser. Lecture Notes in
Computer Science, O. Reingold, Ed., vol. 5444. Springer,
Heidelberg, Mar. 2009, pp. 146–162.

[19] M. Gay, “Political world embraces encrypted-messaging app
Signal amid fears of hacking,” The Wall Street Journal,
2017, 2017-01-27. [Online]. Available: https://www.wsj.
com/articles/political-world-embraces-encrypted-messaging-
app-amid-fears-of-hacking-1485492485

[20] “Trusted Platform Module library,” Standard, 2015.
[21] D. Kim, B. J. Kwon, and T. Dumitras, “Certified malware:

Measuring breaches of trust in the windows code-signing
PKI,” in ACM CCS 17: 24th Conference on Computer and
Communications Security, B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, Eds. ACM Press, Oct. / Nov. 2017,
pp. 1435–1448.

[22] J. C. Klensin, “Simple Mail Transfer Protocol,” RFC
5321, Oct. 2008. [Online]. Available: https://rfc-
editor.org/rfc/rfc5321.txt

[23] P. Kotzias, S. Matic, R. Rivera, and J. Caballero, “Certified
PUP: Abuse in authenticode code signing,” in ACM CCS
15: 22nd Conference on Computer and Communications
Security, I. Ray, N. Li, and C. Kruegel:, Eds. ACM Press,
Oct. 2015, pp. 465–478.

[24] H. Krawczyk, “SKEME: A versatile secure key exchange
mechanism for Internet,” in Proceedings of the Symposium
on Network and Distributed System Security, 1996.

[25] M. Kucherawy, D. Crocker, and T. Hansen, “DomainKeys
Identified Mail (DKIM) Signatures,” RFC 6376, Sep. 2011.
[Online]. Available: https://rfc-editor.org/rfc/rfc6376.txt

[26] A. Kurnikov, A. Paverd, M. Mannan, and N. Asokan,
“https://arxiv.org/abs/1804.08569,” 2018. [Online].
Available: https://arxiv.org/abs/1804.08569

[27] M. Marlinspike. (2013) Simplifying OTR deniability. Accessed
2018-05-01. [Online]. Available: https://signal.org/blog/
simplifying-otr-deniability/

[28] OTRv4 team, “Personal communication,” 2018.
[29] T. Perrin and M. Marlinspike, “The double ratchet algorithm,”

Open Whisper Systems, Standard, 2016. [Online]. Available:
https://signal.org/docs/specifications/doubleratchet/

[30] ——, “The X3DH key agreement protocol, revision 1,”
Open Whisper Systems, Standard, 2016. [Online]. Available:
https://signal.org/docs/specifications/x3dh/

[31] H. Ritzdorf, K. Wüst, A. Gervais, G. Felley, and S. Capkun,
“TLS-N: Non-repudiation over TLS enabling - ubiquitous
content signing for disintermediation,” Cryptology ePrint
Archive, Report 2017/578, 2017, http://eprint.iacr.org/
2017/578.

[32] B. Schneier, Applied Cryptography. Wiley, 1996.
[33] A. Serhrouchni and I. Hajjeh, “Intégration de la signature

numérique au protocole SSL/TLS,” Annales Des Télécom-
munications, vol. 61, no. 5–6, pp. 522–541, 2006.

[34] Y. Swami, “SGX remote attestation is not sufficient,”
Cryptology ePrint Archive, Report 2017/736, 2017, http:
//eprint.iacr.org/2017/736.

[35] Twitter. (2018) About direct messages. Accessed 2018-05-03.
[Online]. Available: https://help.twitter.com/en/using-
twitter/direct-messages

https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://wikileaks.org/DKIM-Verification.html
https://wikileaks.org/DKIM-Verification.html
https://briarproject.org/
https://www.messenger.com/
https://github.com/signalapp/libsignal-protocol-c
http://eprint.iacr.org/2003/239
http://eprint.iacr.org/2006/432
http://eprint.iacr.org/2006/432
https://rfc-editor.org/rfc/rfc3501.txt
https://www.wsj.com/articles/political-world-embraces-encrypted-messaging-app-amid-fears-of-hacking-1485492485
https://www.wsj.com/articles/political-world-embraces-encrypted-messaging-app-amid-fears-of-hacking-1485492485
https://www.wsj.com/articles/political-world-embraces-encrypted-messaging-app-amid-fears-of-hacking-1485492485
https://rfc-editor.org/rfc/rfc5321.txt
https://rfc-editor.org/rfc/rfc5321.txt
https://rfc-editor.org/rfc/rfc6376.txt
https://arxiv.org/abs/1804.08569
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
http://eprint.iacr.org/2017/578
http://eprint.iacr.org/2017/578
http://eprint.iacr.org/2017/736
http://eprint.iacr.org/2017/736
https://help.twitter.com/en/using-twitter/direct-messages
https://help.twitter.com/en/using-twitter/direct-messages

Circumventing Cryptographic Deniability with Remote Attestation 15

[36] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl,
I. Goldberg, and M. Smith, “SoK: Secure messaging,” in 2015
IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2015, pp. 232–249.

[37] N. Unger and I. Goldberg, “Deniable key exchanges for secure
messaging,” in ACM CCS 15: 22nd Conference on Computer
and Communications Security, I. Ray, N. Li, and C. Kruegel:,
Eds. ACM Press, Oct. 2015, pp. 1211–1223.

[38] ——, “Improved strongly deniable authenticated key ex-
changes for secure messaging,” vol. 2018, 2018.

[39] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi,
“Town crier: An authenticated data feed for smart con-
tracts,” in ACM CCS 16: 23rd Conference on Computer and
Communications Security, E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM Press,
Oct. 2016, pp. 270–282.

A Security analysis
Deniability is an unusual property in that it requires
that a certain attack be possible; as a result our at-
tack is unusual in that it requires that the protocol
CloneB(π) described in Figure 1 be secure. This means
that a practical demonstration is not enough: the attack
also requires an argument for its security.

Conversely, the goal of our countermeasures—
described in Section 4—is to change the original proto-
col so that any statement about it afterwards by either
party is vulnerable to forgery.

Our analysis of the protocol CloneB(π) has two
goals:
1. To show that the attestation for the protocol cannot

be forged—that is, a soundness proof to the benefit
of Valerie.

2. To show that Alice cannot distinguish between our
protocol and the base protocol π.

Though we devote most of this section to proving the
first point, the second is equally important. If Alice can
detect that Bob is making a non-repudiable record of her
statements, then she can abort.

A.1 Universal composability

We perform our analysis in the universal composability
framework [12]. This framework defines security accord-
ing to the inability of the environment, which controls
the inputs and the adversary, and observes the outputs
of the protocol, to distinguish between a real run of the

protocol and one that simply calls the ideal functional-
ity that the real-world protocol attempts to emulate.

If a protocol π is indistinguishable from another ρ
in this way, we say that π uc-emulates ρ, and vice-versa.
This approach is particularly attractive because of what
is known as the universal composition theorem [12, The-
orem 13], by which we are assured that a protocol com-
posed of many sub-protocols is indistinguishable from a
similar protocol in which all of its sub-protocols are re-
placed by the ideal functionalities that they uc-emulate.

A.2 Defining deniability

Deniability is a highly intuitive concept, but unfortu-
nately there is no widely-accepted formal definition of
deniability. Dodis et al. [18] sketch the following defini-
tion of online-deniability, in terms of an informant I or
misinformant M who can adaptively corrupt either the
sender S or recipient R, with the knowledge of a judge
J :

Definition 1 (Deniable protocol, quoted from [18]).
A protocol π achieves on-line deniable authentication
if, for any efficient informant I, there exists an ef-
ficient misinformant M such that no efficient judge
J can distinguish the following two experiments with
non-negligible probability:
1. Informant experiment: S and R run π in the

presence of the informant I (who in turn interacts
with the judge J in an on-line manner). R informs
J upon accepting any message m′ as having been
authenticated by S (the message m′ need not be the
same as the input to S if, say, S is corrupt and
ignores its input).

2. Misinformant experiment: S and R do nothing,
and J only interacts with the misinformant M.
(Here, M is allowed to falsely inform J that R ac-
cepted some arbitrary message m′ as having been
authenticated by S).

As in the uc model, we can take the informant I to be
a “dummy” attacker who follows the instructions of the
judge and truthfully reports everything it sees.

That is to say, a protocol is deniable if it is possible
to efficiently and undetectably forge any evidence an
informant might provide. It is also claimed by [18] that
this definition of deniability is equivalent to emulation of
the Fauth functionality under the generalized universal
composability model [14], and that it cannot be fulfilled
unconditionally in their particular pki model. We show

Circumventing Cryptographic Deniability with Remote Attestation 16

in this section that when remote attestation is possible,
the attack presented in Section 3 prevents deniability
for any tee-free authenticated protocol.

A.3 Unforgeability

We begin by showing that the protocol from Figure 1 is
sound. Bob might try to frame Alice by sending Valerie an
x that is different from what Alice really sent. Valerie has
no contact with Alice, or even with the adversary during
the execution of the protocol; in the most extreme case,
Bob may not send his message (x, σ) to the verifier until
years later. Our proof proceeds as follows:
1. Use the game from Figure 3—taken from [9, Fig-

ure 1]—to infer the existence of a machine that has
executed the protocol πB and output the value m.

2. Suppose π uc-emulates the functionality Fauth.
3. Construct a universal-composability experiment

based on the following:
– Real World: Execute CloneB(π), where Bob is

incorruptible, and produces attestations using
the functionality Fcert from [13].

– Ideal World: Simulate CloneB(π) for A by tak-
ing the simulator S from the uc-emulation proof
for π, and augmenting it with extra calls to the
adversary to simulate the attestation by Bob and
the message from Bob to Valerie.

4. These two worlds are indistinguishable until the end
of execution of πB , based on the definition of S.

5. After πB , our simulator is an exact simulation of the
real-world protocol, and thus the two worlds cannot
be distinguished by E .

In the real-world protocol described in Figure 1, the ad-
versary hosts the tee and sees its output, and so in this
section we consider an authenticated message function-
ality Fauth, rather than the secure message functionality
Fsmt that also provides confidentiality.

We begin by constructing a model in the univer-
sal composability framework, using a security definition
for remote attestation to infer the existence of a physi-
cal party running the protocol in question. Let us con-
sider the computational framework from [9]; they de-
scribe a machine, deterministic except via a system call
providing fresh random coins, that takes labelled inputs
to produce optionally-attested outputs. Their definition
of security has the adversary perform arbitrary inter-
actions with the machine, producing a set of labelled
input/attested-output pairs [9, Fig. 1]. The adversary
wins if the attestations are valid, but no execution envi-

1 : prms←$M.Init(1n)

2 : (P,L∗, l, n, stA)←$A1(prms)

3 : P ∗ ← Compile(prms, P, L∗)

4 : stV ← (prms, P, L∗)

5 : // The adversary produces n attestations,

6 : // possibly interacting with the tee.

7 : for k ∈ [1 . . . n]

8 : (ik, ok, stA)←$AM2 (stA)

9 : (ok, stV)← Verify(prms, l, ik, o∗k, stV)

10 : // The adversary loses if the attestations are invalid.

11 : if ok =⊥

12 : return False

13 : fi

14 : done

15 : // The adversary loses if the attestations are legitimate.

16 : for hdl∗ : ProgramM(hdl∗) = P ∗

17 : (l′1, i′1, o′1, . . . , l′m, i′m, o′m)← TraceMR
(hdl∗)

18 : T ′ ← filter[l](Trace[st;CoinsM(hdl∗)])

19 : if T v T ′

20 : return False

21 : fi

22 : done

23 : // If the attestations are valid but not genuine,

24 : // the adversary wins.

25 : return True

Fig. 3. The security game for Labelled Attested Computation,
as given in [9, Figure 1]. The adversary interacts with a machine
typeM, which may be any number of physical devices, and pro-
duces an attestation trace. The adversary wins if they succeed in
obtaining a set of valid attestations that were not produced by a
machine running the specified program.

Circumventing Cryptographic Deniability with Remote Attestation 17

ronment on the machine has legitimately generated the
same input/output sequence.

If we suppose that the adversary cannot win with
a non-negligible probability, then we know that, except
with a negligible probability, that there is a machine
that has executed πB yielding output m. We introduce
an incorruptible party into our real-world model that
executes πB and hands a signature to A to be given to
V .

Lemma 1. Suppose that Bob has access to a machine
for which no adversary can win the remote-attestation
security game from Figure 3 with non-negligible proba-
bility. Then, the real-world protocol CloneB π is modelled
in the universal-composabilty setting by Figure 4, not-
ing that the additional incorruptible party executing π′

B

physically exists in the form of an adversary-controlled
tee.

Proof. By assumption, Bob cannot win the game
from [9, Fig. 1] with more than negligible probability.
We may therefore ignore the possibility that he will win
the game, and focus on the ways in which he might lose.

In order for Valerie not to abort upon receiving the
message from Bob, the attestation must be valid. We
therefore need only consider the other failure condition
for the adversary, namely that in which the machine has
correctly executed the program P, yielding the given
output.

Because we know that a machine running this pro-
tocol physically exists somewhere, we may introduce one
such machine as an incorruptible party π′

B to the pro-
tocol in Figure 4.

Since the attested value is, by definition, a mes-
sage from some instance of π′

B , we model the attesta-
tion signature using Canetti’s certification functionality
Fcert [13]. This functionality allows us to ensures that
a given message originated from π′

B , which is exactly
the guarantee given by the attestation. Note that this
only works because there is only a single attestation per
protocol-execution, and thus the adversary cannot inter-
leave messages from different protocol instances2.

This model of our protocol is advantageous in that it
allows us to construct our CloneB(π)-simulator by mod-
ification of an arbitrary simulator for π.

2 This problem is quite easy to solve, even if this protocol does
not require that we do so here. For example, a π′B that performs
several attestations might generate a random session identifier
and include it in its attested data.

ℰ

πA

π'

πV

A

Input
Output

Messages

FCERTSigning
Requests

Verification
Requests

Signature
Operations

B

Fig. 4. Hybrid model of our protocol in the universal composabil-
ity setting. We model the remote attestation using the certifica-
tion functionality from [13]—because π′B performs only a single
attestation, this models a remote attestation.

The isolation guarantees of the tee are important
here—in the uc model of the protocol, π′

B is executed by
a distinct party. A perfectly isolating execution environ-
ment will make this party incorruptible, while a com-
pletely non-isolating execution environment—e.g. sgx
operating in debug mode—manifests itself as a corrupt-
ible party.

Next we must specify the exact ideal-world function-
ality Fclone that our protocol is to implement. This is
shown in Figure 5, with reference to the ideal function-
ality Fauth that is uc-emulated by the original protocol
π. We take the original functionality Fauth and have it
ignore any messages from the verifier, but duplicate to
Valerie any message sent to Bob.

Theorem 1 (Security of CloneB(π)). Suppose the
original protocol π uc-emulates Fauth. Then, CloneB(π)
uc-emulates Fclone.

Proof. Since π uc-emulates Fauth, for any adversary A
there must exist a block-box simulator S of π, such that
the environment cannot distinguish between the follow-
ing:
1. The real-world protocol π being run with an adver-

sary A.
2. The ideal-world functionality Fauth being run

against the simulator S.
Our goal is to construct a simulator S ′ that cannot be
distinguished from the real protocol CloneB(π) by the
environment.

To do this, we augment S with an exact simula-
tion of the extra messages provided by CloneB(π). Note
that CloneB(π) is identical to π up until the attesta-

Circumventing Cryptographic Deniability with Remote Attestation 18

The ideal functionality Fauth adapted from [12].
When receiving (sid,Send, R,m) from party S:

1 : Send (sid, Sent, S,R,m) to R.

2 : Send (sid, Sent, S,R,m) to A.

Otherwise:

Ignore the message.

The ideal functionality Fclone.
When receiving (sid, Send, R,m) from S:

1 : Send (sid, Sent, S,R,m) to R.

2 : Send (sid, Sent, S,R,m) to A.

3 : Send (sid, Sent, S,R,m) to V .

Otherwise:

Ignore the message.

The simulator S ′ for π in the Fclone model.

// Simulate π.

1 : Do as per S until its simulation of π is complete.

// Simulate the behavior of Fcert during the attestation.

// Let m be the message from Alice received from Fclone

// during Step 1.

2 : Send (sid,Sign,m) to A from the simulated Fcert.

3 : Upon receiving (sid, Signature,m, σ) from A to Fcert,

proceed as per Canetti’s simulator of Fcert, shown

in Fig. 2 of [13].

// Simulate the receipt of the attested output to V .

4 : Upon receiving a message (sid, x, σ) from A to V ,

send (sid,Verify, x, σ) to A from the simulated V .

5 : Upon receiving a message (sid,Verified, x, r)

from A to Fcert, if x = m ∧ r 6= 1 then abort.

Fig. 5. The ideal functionality Fauth implemented by π, its varia-
tion Fclone implemented by CloneB(π), and the Fclone simula-
tor S′. We show that S′ in the Fclone model is indistinguishable
from the hybrid model of π in Figure 4. This definition captures
the fact that we wish to provide the same functionality as Fauth
to Alice and Bob, but to provide Valerie and the adversary with
Bob’s output.

tion; therefore, we can use S to simulate this part of the
protocol.

Each time S ′ receives a message M from Fclone, it
does as S does until it reaches the end of the simulation
of π.

At this point the environment cannot distinguish
between the hybrid and ideal worlds, because the real-
world execution is simply π, and this is simulated by
S.

We must now simulate the remainder of the protocol
CloneB(π), in which Bob’s device attests to his output
and sends it to Valerie. We perform a perfect simulation
of the signature and verification using the contents m of
the message leaked by Fauth: the behavior of π′ at this
point can be completely determined by the value of the
message m leaked to the adversary.

This is a perfect simulation of the adversary’s view
of the protocol. Jointly with this, we consider the par-
ties’ outputs to the environment. Alice and Bob do not
produce any outputs after they finish executing π, as in
the ideal-world case. However, Valerie does produce an
output at this point, if and only if the attestation she
receives is accepted as valid. Otherwise, she aborts.

By the definition of Fclone, the message
(sid,Sent,Alice,Bob,m) received by the adversary from
the ideal functionality corresponds exactly to the in-
put (sid,Send,Bob,m) given to Alice as input by the
environment. Therefore, the simulated protocol must—
and in Figure 5, does—abort if and only if A responds
negatively to the simulated verification request for the
attestation of m. Otherwise the simulator may termi-
nate, and Valerie will, by the definition of Fclone, output
the correct value.

This is a perfect simulation of the real participants’
behavior after the original protocol. The simulated pro-
tocol execution as a whole is therefore indistinguishable
from a real protocol execution by the environment, and
protocol thus uc-emulates Fclone.

A.4 Undeniability

The transformed protocol CloneB(π) is clearly not deni-
able in the intuitive sense, as Valerie receives an authentic
copy of every message that Alice sends to Bob. All that
remains is to show that this implies that π is not deni-
able.

Corollary 1. The protocol π is not deniable with re-
spect to informants capable of carrying out the attack
from Section 3.

Circumventing Cryptographic Deniability with Remote Attestation 19

Proof. By the definition of deniability, we need to find
one informant I such that there exists a judge capable
of distinguishing I from any efficient misinformant M.

We choose an I that statically compromises Bob and
runs CloneB(π) with Alice and the judge, Valerie.

Valerie can trivially distinguish between I, who has
compromised Bob, and a misinformant M. The protocol
CloneB(π) by which Valerie communicates with the in-
formant or misinformant uc-emulates Fclone, and thus
the following occur except with negligible probability:
– If Valerie communicates with the informant, then the

protocol will output a value identical to that pro-
vided by Bob as part of the deniability game.

– When Valerie communicates with the misinformant
M, the rules of the game say that she will be in-
formed if M corrupts Alice:
– If M compromises Alice, then it is trivially dis-

tinguishable from I, who statically corrupts
Bob.

– Otherwise, since Alice never sends a message to
Bob, CloneB(π) does not yield any output for
Valerie.

When Valerie is informed that Bob has authenticated a
value from Alice, she checks to see whether her execu-
tion of CloneB(π) has yielded the same value; if it has,
then she is communicating with the informant except
with negligible probability. Otherwise (except with neg-
ligible probability), she is communicating with the mis-
informant.

Thus, π is not deniable.

A.5 Undetectability

We finish by showing that the substitution of a protocol
π by CloneB(π) is undetectable by Alice.

Theorem 2 (Indistinguishability by Alice). Let π be a
protocol that does not contain any calls to some
tee tee(P) running the program P that implements
CloneB(π).

Then, the modified protocol CloneB(π) is statisti-
cally indistinguishable by Alice from the original protocol
π.

Proof. We follow a hybrid argument. Noting that π does
not use the trusted execution environment, and so Alice
cannot detect changes in the derivation of messages to
other parties, the following protocols are all perfectly
indistinguishable from one another by Alice:
1. CloneB(π)

2. Protocol #1 with Valerie removed, along with the
message from Bob to Valerie.
Valerie does not send any messages to Alice or Bob,
and so this change does not affect Alice’s view.

3. Protocol #2 with Bob’s attestation and tee removed.
The original protocol πB does not use the tee, and
so its execution is not affected by removing it.
Bob’s attestation occurs only after communica-
tion with Alice has finished; therefore, the protocol
formed by step #2 is indistinguishable by Alice from
the protocol formed by taking the same protocol
and removing the attestation.

Protocol #3 is π, and thus CloneB(π) is indistinguish-
able by Alice from π.

It is important to note that this holds true for any tee
with which the protocol π does not interact. This makes
hardware-modifying adversaries particularly powerful.

Corollary 2. A hardware-modifying adversary can per-
form this attack undetectably, even if Alice requires that
Bob perform remote attestation.

Proof. Let π be an arbitrary authenticated messaging
protocol, where πB may or may not include calls to a
tee. A hardware-modifying adversary Bob can add new
forms of tee to the system, and in particular, can nest
the machine running πB inside another tee; for exam-
ple, if πB includes an sgx attestation, then Bob can run
it within a tpm-measured application.

This means that a hardware-modifying adversary
can always construct a protocol CloneB(π) that meets
the requirements of Theorem 2, and hence any protocol
implementing Fauth can be attacked without detection
by such an adversary.

	Circumventing Cryptographic Deniability with Remote Attestation
	1 Introduction
	2 Preliminaries
	2.1 Deniable protocols
	2.2 Hardware-assisted trusted execution environments

	3 Making deniable protocols non-repudiable with remote attestation
	3.1 Adversary model for deniability
	3.2 Attesting the output of deniable protocols
	3.3 Practical attack
	3.4 Other targets for attack
	3.4.1 Web-based messaging
	3.4.2 Local email
	3.4.3 Voting systems

	4 Mitigation
	4.1 Regaining deniability with remote attestation
	4.1.1 Complete protocol attestation
	4.1.2 Protocol-independent countermeasures
	4.1.3 Adding attestations to the Signal protocol
	4.1.4 Defeating the TPM

	4.2 Regaining deniability by abandoning authentication
	4.2.1 Linkable message authentication
	4.2.2 Practical difficulties

	4.3 Switching to online-deniable protocols
	4.4 Setting correct expectations

	5 Upgrading deniable authenticators to signatures
	6 Related work
	7 Discussion
	7.1 Is this a protocol issue?
	7.2 Comparison to forensic methods
	7.3 TEE-based countermeasures
	7.4 Trust in the TEE
	7.5 Responsible disclosure

	8 Conclusion
	9 Acknowledgements
	A Security analysis
	A.1 Universal composability
	A.2 Defining deniability
	A.3 Unforgeability
	A.4 Undeniability
	A.5 Undetectability

