
Message-locked Encryption with File Update

Suyash Kandele[0000−0002−5887−2907] and Souradyuti Paul[0000−0001−5404−9975]

Indian Institute of Technology Bhilai, C.G., India
{suyashk,souradyuti}@iitbhilai.ac.in

Abstract. Message-locked encryption (MLE) (formalized by Bellare,
Keelveedhi and Ristenpart, 2013) is an important cryptographic primi-
tive that supports deduplication in the cloud.Updatable block-level message-
locked encryption (UMLE) (formalized by Zhao and Chow, 2017) adds
the update functionality to the MLE. In this paper, we formalize and
extensively study a new cryptographic primitive file-updatable message-
locked encryption (FMLE). FMLE can be viewed as a generalization of
the UMLE, in the sense that unlike the latter, the former does not require
the existence of BL-MLE (block-level message-locked encryption). FMLE
allows more flexibility and efficient methods for updating the ciphertext
and tag.
Our second contribution is the design of two efficient FMLE construc-
tions, namely, RevD-1 and RevD-2, whose design principles are inspired
from the very unique reverse decryption functionality of the FP hash
function (designed by Paul, Homsirikamol and Gaj, 2012) and the APE
authenticated encryption (designed by Andreeva et al., 2014). With re-
spect to UMLE – which provides so far the most efficient update function
– RevD-1 and RevD-2 reduce the total update time by at least 50%, on av-
erage. Additionally, our constructions are storage efficient; in particular,
ciphertext expansion and tag storage for our constructions are constant,
while they are logarithmic and linear for the UMLE, making it difficult
to implement in various practical applications. We also provide detailed
proofs of security for our constructions and give extensive comparison
between our and the existing constructions. Being randomized, our con-
structions are secure against dictionary attacks. On the other hand, they
are vulnerable to strong tag consistency (STC) attacks (as is the case
with any randomized MLE).

1 Introduction

MLE. Message-locked encryption (MLE) is a special type of encryption, where
the decryption key is derived from the message itself. The main application of
MLE is in the secure deduplication of data in the cloud, where MLE removes the
need for storing multiple copies of identical data, without compromising their
privacy and, thereby, helps to reduce the storage costs. Given the cloud services
being on the rise, this primitive is gaining importance.

The first attempt to solve the problem of deduplication was made in 2002
by Douceur et al.[15], who came up with the idea of Convergent Encryption

2 S. Kandele and S. Paul

(CE). Bellare, Keelveedhi and Ristenpart [6] studied this subject in a formal
way and named it message-locked encryption (MLE). They also gave efficient
constructions of MLE.
UMLE. As seen before, MLE does not inherently support the file-update and
the proof of ownership functionalities in its definition. UMLE solves this issue
by adding three functionalities – file-update, PoW algorithms for prover and
verifier – to the existing definition of MLE. The main drawback of UMLE is
that the functionalities are constructed from another cryptographic primitive,
namely, BL-MLE, which is nothing but MLE executed on a fixed-sized block.
Such a BL-MLE-based UMLE entails degradation of performance for encryption
and decryption [20]. Another drawback of UMLE is that the update of file-tag
is an expensive operation.

Motivation for studying FMLE. From the high level, both UMLE and
FMLE have identical functionalities; the main difference, however, is that the
former is necessarily based on BL-MLE, but the latter may or may not be. There-
fore, the definition of FMLE can be viewed as a generalisation of UMLE, where
we remove the constraint of using BL-MLE. The motivation for studying FMLE
is clear from the drawbacks of UMLE mentioned above. These motivations are:

Does there exist an FMLE scheme which is not based on BL-MLE? If
such a construction exists, is it more efficient than UMLE?

Studying FMLE is a futile exercise, if both the answers are in the negative. A
moment’s reflection suggests that the answer to the first question is actually
‘Yes’. A trivial FMLE construction – not based on BL-MLE – always exists,
where the file-update function is designed the following way: apply decryption
to the ciphertext to recover the original plaintext; edit/modify the original mes-
sage; and finally encrypt the updated message. Note that this trivial file-update
function does not need any BL-MLE, therefore, it is an FMLE, but certainly
not a UMLE scheme. The main drawback of this FMLE scheme is that this is
several orders of magnitude slower than a UMLE scheme. Therefore, the main
challenge is:

Does there exists an FMLE scheme more efficient than UMLE?

Searching for such a construction is the main motivation of this paper.

Our Contribution. Our first contribution is formalizing the new crypto-
graphic notion file-updatable message-locked encryption (FMLE). We also pro-
pose two efficient FMLE constructions RevD-1 and RevD-2: their update func-
tions are at least 50% faster (on average).1 Also, our constructions are more
space efficient than the so-far best MLE variants; in particular, the ciphertext
expansion and tag storage in RevD-1 and RevD-2 are constant, while they are
logarithmic and linear (or may be worse) for other similar time-efficient cases. In
1 The term RevD is a shorthand for Reverse Decryption.

Message-locked Encryption with File Update 3

order to obtain this improvement in the performance, our constructions critically
exploit a very unique feature – what we call reverse decryption – of the hash
function FP and the authenticated encryption APE. We also present proofs of
security of our constructions. Extensive comparison of our constructions with the
others – in terms of time complexity, storage requirements and security proper-
ties – have also been provided (see Table 1). Being randomized, our constructions
are secure against the dictionary attacks, however, they lack STC security, like
all other randomized MLEs.

Related Work. We now describe various pieces of work done by several re-
searchers that are related to FMLE. Douceur et al. are the first to come up with
the idea of Convergent Encryption (CE) in 2002, where the key was calculated
as a hash of the message, and then this key was used for encryption [15]. Bel-
lare, Keelveedhi and Ristenpart formalized CE in the form of message-locked
encryption (MLE) [6]. They also provided a systematic discussion of various
MLE schemes. In a separate paper, these authors also designed a new system
DupLESS that supports deduplication even if the message entropy is low [5].

Beelare and Keelveedhi extended message-locked encryption to interactive
message-locked encryption, and have addressed the cases when the messages
are correlated as well as dependent on the public parameters, leading to weak-
ened privacy [4]. Abadi et al. gave two new constructions for the i-MLE ; these
fully randomized schemes also supported equality-testing algorithm for finding
ciphertexts derived from identical messages [1]. Jiang et al. gave an efficient
logarithmic-time deduplication scheme that substantially reduces the equality-
testing in the i-MLE schemes [17].

Canard, Laguillaumie and Paindavoine introduced deduplication consistency
– a new security property – that prevents the clients from bypassing the dedu-
plication protocol. This is accomplished by introducing a new feature named
verifiability (of the well-formation) of ciphertext at the server [13]. They also
proposed a new ElGamal-based construction satisfying this property. Wang et
al. proposed a stronger security notion PRV-CDA3 and showed that their new
construction ME is secure in this model [19].

Chen et al. proposed the block-level message-locked encryption (BL-MLE),
which is nothing but breaking a big message into smaller chunks – called blocks –
and then applying MLE on the individual blocks [14]. Huang, Zhang and Wang
showed how to integrate the functionality proof of storage (PoS) with MLE by
using a new data structure Quadruple Tags [16]. Zhao and Chow proposed the
use of BL-MLE to design Efficiently Updatable Block-Level Message-Locked En-
cryption (UMLE) scheme which has an additional functionality of updating the
ciphertext that costs sub-linear time [20].

Organization of the paper. In Sect. 2, we discuss the preliminaries includ-
ing the notation and basic definitions. In Sect. 3, we give the formal definition of
FMLE. Section 4 describes the application of FMLE in the deduplication proto-
col. In Sects. 5 and 6, we construct the FMLE schemes by tweaking the existing
MLE and UMLE schemes. In Sect. 7, we describe the two new efficient FMLE

4 S. Kandele and S. Paul

schemes and we compare them with the various FMLE schemes and conclude
our paper in Sect. 8.

2 Preliminaries

2.1 Notation

The expression M := x denotes that the value of x is assigned to M , and
M := D(x) denotes that the value returned by function D(·), on input x, is
assigned to M . M = x denotes the equality comparison of the two variables M
and x, and M = D(x) denotes the equality comparison of the variable M with
the output of D(·), on input x. The XOR or ⊕ denotes the bit-by-bit exclusive-
or operation on two binary strings of same length. The concatenation operation
of p ≥ 1 strings s1, s2, · · · , sp and assignment to the variable s is denoted by
s := s1||s2|| · · · ||sp. The parsing of string s into p ≥ 1 strings s1, s2, · · · , sp is
denoted by s1||s2|| · · · ||sp := s. The length of string M is denoted by |M |. The
set of all binary strings of length ` is denoted by {0, 1}`. The set of all binary
strings of any length is denoted by {0, 1}∗. A vector of strings is denoted by
M and i-th string in M is denoted by M (i). The number of strings in M is
denoted by ‖M‖. The infinite set of all binary strings of any length is denoted
by {0, 1}∗∗. The set of all Natural numbers is denoted by N. We denote that
M is assigned a binary string of length k chosen randomly and uniformly by
M

$← {0, 1}k. To mark any invalid string (may be input string or output string),
the symbol ⊥ is used. (M , Z) $← S(1λ) denotes the assignment of outputs given
randomly and uniformly by S to M and Z.

2.2 Dictionary Attack

A dictionary attack is defined to be a brute-force attack, where the adversary
first builds a dictionary off-line, and then processes every element of the dictio-
nary to determine the correct solution against an online challenge. For example,
suppose that the hash of a message is given as a challenge to the adversary for
her to determine the correct message. If the entropy of the message is low, then
the adversary generates the dictionary of all possible messages and their cor-
responding hash values off-line; and given the online challenge, she selects the
message whose hash value matches the challenge. Any deterministic MLE with
low message entropy is broken by dictionary attack.

2.3 Proof of Ownership

Proof-of-ownership (PoW) is an interactive protocol where the owner of file
proves the ownership of a file to the cloud storage. This protocol assumes that
the adversary does not have access to the entire ciphertext which was uploaded
onto the cloud by some previous (or first) owner, but he may know the tag,
which is a small fraction of the entire information. In this protocol, the cloud

Message-locked Encryption with File Update 5

storage provider generates a challenge Q and sends it to the client, along with
some other information. The client computes the proof P corresponding to the
given challenge Q and sends it back to the cloud. The cloud verifies it and if the
verification is successful, then the client is granted access, otherwise the access
is denied.

2.4 Ideal Permutation

Let π/π−1 : {0, 1}n 7→ {0, 1}n be a pair of oracles. The pair π/π−1 is called an
ideal permutation if the following three properties are satisfied.
1. π−1(π(x)) = x and π(π−1(x)) = x, for all x ∈ {0, 1}n.
2. Suppose, xk is the k-th query (k ≥ 1), submitted to the oracle π, and y ∈
{0, 1}n. Then, for the current query xi:

Pr
[
π(xi) = y

∣∣∣π(x1) = y1, π(x2) = y2, · · · , π(xi−1) = yi−1

]

=

1, if xi = xj , y = yj , j < i.
0, if xi = xj , y 6= yj , j < i,
0, if xi 6= xj , y = yj , j < i,

1
2n−i+1 , if xi 6= xj , y 6= yj , j < i.

3. Suppose, yk is the k-th query (k ≥ 1), submitted to the oracle π−1, and
x ∈ {0, 1}n. Then, for the current query yi:

Pr
[
π−1(yi) = x

∣∣∣π−1(y1) = x1, π
−1(y2) = x2, · · · , π−1(yi−1) = xi−1

]

=

1, if yi = yj , x = xj , j < i.
0, if yi = yj , x 6= xj , j < i,
0, if yi 6= yj , x = xj , j < i,

1
2n−i+1 , if yi 6= yj , x 6= xj , j < i.

2.5 Random Function

Let rf : {0, 1}n 7→ {0, 1}n. Then rf is called a random function if the following
property is satisfied. Suppose, xk is the k-th query (k ≥ 1), submitted to the rf,
and y ∈ {0, 1}n. Then, for the current query xi:

Pr
[
rf(xi) = y

∣∣∣rf(x1) = y1, rf(x2) = y2, · · · , rf(xi−1) = yi−1

]

=

1, if xi = xj , y = yj , j < i.
0, if xi = xj , y 6= yj , j < i,
1

2n , if xi 6= xj , j < i.

6 S. Kandele and S. Paul

2.6 Unpredictable Sources

We are modelling the security based on an unpredictable message source which is
a PT algorithm, denoted S(·), that returns (M , Z) on input 1λ, where vector of
messages M ∈ {0, 1}∗∗ and auxiliary information Z ∈ {0, 1}∗. We consider that
S(·) is a Public source, that is, it is known to all the parties including the adver-
sary. Here, M hasm(1λ) number of strings, i.e., ‖M‖ = m(1λ) and the length of
each string M (i) is l(1λ, i), i.e., |M (i)| = l(1λ, i) for i ∈ {1, 2, · · · ,m(1λ)}. Here,
m and l are two functions. We require that the two strings M (i1) 6= M (i2), for
i1 6= i2 and i1, i2 ∈ {1, 2, · · · ,m(1λ)}. Associated with the source S(·) is a real
number GPS , namely, the Guessing Probability of source, which is the maximum
of all the probabilities of guessing a single string in M , given the auxiliary infor-
mation. The formal definition is GPS(1λ) def= maxi∈{1,2,··· ,m(1λ)}GP (M (i)|Z).
The source S(·) is said to be unpredictable if the value of GPS is negligible. We
now define themin-entropy µS(·) of the source S(·) as µS(1λ) = − log(GPS(1λ)).
The source S(·) is said to be a valid source for an MLE scheme Π if M (i) ∈
M,∀i ∈ {1, 2, · · · ,m(1λ)}.

2.7 Message-locked Encryption

The definition of message-locked encryption (MLE) has already been described
in [6]. We briefly re-discuss it below, with a few suitable changes in the notation
to suit the present context.

Syntax. Suppose λ ∈ N is the security parameter. An MLE scheme Π =
(Π. E , Π.D) is a pair of algorithms over a PPT setup Π.Setup. Π satisfies the
following conditions.

1. The PPT setup algorithm Π.Setup(1λ) outputs the parameter params(Π)

and the sets K(Π),M(Π), C(Π) and T (Π), denoting the key, message, cipher-
text and tag spaces respectively.

2. The PPT encryption algorithm Π. E takes as inputs params(Π) and M ∈
M(Π), and returns a 3-tuple (K,C, T) := Π. E(params(Π),M), where K ∈
K(Π), C ∈ C(Π) and T ∈ T (Π).

3. The decryption algorithm Π.D is a deterministic algorithm that takes as in-
puts params(Π),K ∈ K(Π), C ∈ C(Π) and T ∈ T (Π), and returnsΠ.D(para-
ms(Π),K,C, T) ∈M(Π) ∪ {⊥}. The decryption algorithm Π.D returns ⊥ if
the key K, ciphertext C and tag T are not generated from a valid message.

4. We restrict |C| to be a linear function of |M |.

Key Correctness. Let M,M ′ ∈M(Π). Suppose:
• (K,C, T) := Π. E(params(Π),M), and
• (K ′, C ′, T ′) := Π. E(params(Π),M ′).

Then key correctness of Π requires that if M = M ′, then K = K ′, for
all λ ∈ N and all M,M ′ ∈M(Π).

Message-locked Encryption with File Update 7

Decryption Correctness. Let M ∈M(Π). Suppose:
• (K,C, T) := Π. E(params(Π),M).

Then decryption correctness of Π requires that Π.D(params(Π),K,C,
T) = M , for all λ ∈ N and all M ∈M(Π).

Tag Correctness. Let M,M ′ ∈M(Π). Suppose:
• (K,C, T) := Π. E(params(Π),M), and
• (K ′, C ′, T ′) := Π. E(params(Π),M ′).

Then tag correctness of Π requires that if M = M ′, then T = T ′, for
all λ ∈ N and all M,M ′ ∈M(Π).

The two security games are written in the form of a challenger-adversary
framework.

Game PRV$-CDAS,A
Π

(1λ, b)

(M , Z) $← S(1λ);
for (i := 1, 2, · · ·m(1λ))

(K(i)
1 ,C

(i)
1 ,T

(i)
1) := Π. E(params(Π),M(i));

K
(i)
0

$← {0, 1}|K
(i)
1 |;

C
(i)
0

$← {0, 1}|C
(i)
1 |;

T
(i)
0

$← {0, 1}|T
(i)
1 |;

b′ := A(1λ,Cb,T b, Z);
return b′;

Game STCAΠ(1λ) TCAΠ(1λ)

(M,C′, T ′) := A(1λ);
If (M =⊥) ∨ (C′ =⊥)

return 0;
(K,C, T) := Π. E(params(Π),M);
M ′ := Π.D(params(Π), K,C′, T ′);
If (T = T ′) ∧ (M 6= M ′) ∧(M ′ 6=⊥)
return 1;

Else return 0;

Fig. 1. Games defining PRV$-CDA, STC and TC security of MLE scheme Π =
(Π. E , Π.D).

Privacy. Let Π = (Π. E , Π.D) be an MLE scheme. Since, no MLE scheme
can provide PRV$-CDA security for predictable messages (even if the scheme is
randomized), we use an unpredictable message source S, as defined in Sect. 2.6,
to design our security notion. For an MLE scheme, we design the privacy against
chosen distribution attack PRV$-CDA security game in Fig. 1. Here, the chal-
lenger generates a vector of messages M and some auxiliary information Z using
the source S(1λ), encrypts the string M (i), where i ∈ {1, 2, · · · ,m(1λ)}, using
Π. E to obtain (K(i)

1 ,C
(i)
1 ,T

(i)
1), computes the random strings K

(i)
0 , C

(i)
0 and

T
(i)
0 of length |K(i)

1 |, |C
(i)
1 | and |T

(i)
1 | respectively, and sends (Cb,T b, Z) to the

adversary. The adversary has to return a bit b′ indicating whether the ciphertext
Cb and tag T b corresponds to message M or is it a collection of random strings.
If the values of b and b′ coincide, then the adversary wins the game.

Now, we define the advantage of a PRV$-CDA adversary A against Π as:

8 S. Kandele and S. Paul

AdvPRV$-CDA
Π,S,A (1λ) def=

∣∣∣Pr[PRV$-CDAAΠ,S(1λ, b = 1) = 1]

−Pr[PRV$-CDAAΠ,S(1λ, b = 0) = 1]
∣∣∣.

An MLE scheme Π is said to be PRV$-CDA secure over a set of valid PT
sources for MLE scheme Π, S = {S0,S1, · · · }, for all PT adversaries A and
for all Si ∈ S, if AdvPRV$-CDA

Π,Si,A (·) is negligible. An MLE scheme Π is said to be
PRV$-CDA secure, for all PT adversaries A, if AdvPRV$-CDA

Π,S,A (·) is negligible, for
all valid PT source S for Π.

Tag Consistency. Let Π = (Π. E , Π.D) be an MLE scheme. For an MLE
scheme, we design the STC and TC security games in Fig. 1, which aims to
provide security against duplicate faking attacks. In a duplicate faking attack,
two unidentical messages – one fake message produced by an adversary and a
legitimate one produced by an honest client – produce the same tag, thereby
causing loss of message and hampers the integrity. In an erasure attack, the
adversary replaces the ciphertext with a fake message that decrypts successfully.

The adversary returns a message M , a ciphertext C ′ and a tag T ′. If the
message or ciphertext is invalid, the adversary loses the game. Otherwise, the
challenger computes encryption key K, ciphertext C and tag T corresponding
to message M using Π. E , and computes the message M ′ corresponding to key
K, ciphertext C ′ and tag T ′ using Π.D. If the two tags are equal, i.e. T = T ′,
the message M ′ is valid, i.e. M ′ 6=⊥, and the two messages are unequal, i.e.
M 6= M ′, then the adversary wins the TC game.

Now, we define the advantage of a TC adversary A against Π as:

AdvTC
Π,A(1λ) def= Pr[TCAΠ(1λ) = 1].

Now, we define the advantage of an STC adversary A against Π as:

AdvSTC
Π,A(1λ) def= Pr[STCAΠ(1λ) = 1].

An MLE scheme Π is said to be TC (or STC) secure, for all PT adversaries
A, if AdvTC

Π,A(·) (or AdvSTC
Π,A(·)) is negligible.

2.8 Updatable block-level message-locked encryption

The definition of updatable block-level message-locked encryption (UMLE) has
already been described in [20]. We briefly re-discuss it below, with a few suitable
changes in the notation to suit the present context.

Syntax. Suppose λ ∈ N is the security parameter. A UMLE scheme Π =
(Π.KeyGen, Π.Enc, Π.TagGen, Π.Dec, Π.Update, Π.UpdateTag, Π.PoWPrf,
Π.PoWVer) is eight-tuple of algorithms over a PPT setup Π.Setup. Π satisfies
the following conditions.

Message-locked Encryption with File Update 9

1. The PPT setup algorithm Π.Setup(1λ) outputs the parameter params(Π)

and the sets K(Π),M(Π), C(Π) and T (Π), denoting the key, message, cipher-
text and tag spaces respectively.

2. The PPT key-generation algorithm Π.KeyGen takes as inputs params(Π)

andM ∈M(Π), and returns a set of keys (kmas, k1, k2, · · · , kn) := Π.KeyGe-
n(params(Π),M), where kmas, k1, k2, · · · , kn ∈ K(Π). It uses two routines:
Π.B-KeyGen that takes as input i-th block of message M [i], and returns the
block key ki; and Π.M-KeyGen that takes as input message M , and returns
the master key kmas.

3. The PPT encryption algorithm Π.Enc takes as inputs params(Π), a set of
keys kmas, k1, k2, · · · , kn ∈ K(Π) and M ∈M(Π), and returns the ciphertext
C := Π.Enc(params(Π), (kmas, k1, k2, · · · , kn),M), where C ∈ C(Π). It uses
two routines: Π.B-Enc that takes as input i-th block of message M [i] and
corresponding key ki, and returns the block ciphertext C[i]; and Π.BK-Enc
that takes as input block keys k1, k2, · · · , kn and returns the encrypted block
keys C[n+ 1], C[n+ 2], · · · , C[n′], where n′ ∈ O(n).

4. The PPT tag-generation algorithm Π.TagGen takes as inputs params(Π)

and C ∈ C(Π), and returns the tag T := Π.TagGen(params(Π), C), where
T ∈ T (Π). It uses two routines: Π.B-TagGen that takes as input i-th block of
ciphertext C[i] and returns the block tag T [i]; and Π.M-TagGen that takes
as input ciphertext C and returns the file tag T [0]. Then T = T [0]||T [1]||T [2]
|| · · · ||T [n′].

5. The decryption algorithm Π.Dec is a deterministic algorithm that takes as
inputs params(Π), kmas ∈ K(Π) and C ∈ C(Π), and returns theΠ.Dec(param
s(Π), kmas, C) ∈M(Π) ∪ {⊥}. It uses two routines: Π.BK-Dec that takes as
input master key kmas and encrypted block keys C[n+1], C[n+2], · · · , C[n′],
and returns a set of block keys k1, k2, · · · , kn; and Π.B-Dec that takes as
input ciphertext C[i] and corresponding key ki and returns the file block
M [i]

6. The update-ciphertext algorithmΠ.Update takes as inputs params(Π), mas-
ter key kmas ∈ K(Π), block number to be updated i ∈ N, new message
block Mnew ∈ M(Π) and the ciphertext C ∈ C(Π), and returns the pair
(K ′, C ′) := Π.Update(params(Π), (kmas, i,Mnew), C), whereK ′ ∈ K(Π) and
C ′ ∈ C(Π).

7. The update-tag algorithm Π.UpdateTag takes as inputs params(Π), T ∈
T (Π), and C,C ′ ∈ C(Π), and returns T ′ := Π.UpdateTag(params(Π), T, C,
C ′), where T ′ ∈ T (Π).

8. The PPT PoW algorithm for prover Π.PoWPrf takes as inputs params(Π),
challenge Q and M ∈M(Π), and returns the proof P := Π.PoWPrf(param-
s(Π), Q,M).

9. The PPT PoW algorithm for verifier Π.PoWVer takes as inputs params(Π),
challenge Q, T ∈ T (Π) and proof P , and returns the value val := Π.PoWVe-
r(params(Π), Q, T, P), where val ∈ {TRUE,FALSE}.

10. We restrict |C| to be a linear function of |M |.

Decryption Correctness. Let M = M [1]||M [2]|| · · · ||M [n]. For block mes-
sage M [i], where 1 ≤ i ≤ n, suppose:

10 S. Kandele and S. Paul

• ki := Π.B-KeyGen(M [i]), and
• C[i] := Π.B-Enc(ki,M [i]).

Then decryption correctness of Π requires that Π.B-Dec(ki, C[i]) =
M [i], for all λ ∈ N and all M [i] ∈M(Π).

Block Key Retrieval Correctness. Let M = M [1]||M [2]|| · · · ||M [n]. Sup-
pose:
• ki := Π.B-KeyGen(M [i]), for block message M [i], where 1 ≤ i ≤ n,
• kmas := Π.M-KeyGen(M), and
• (C[n+ 1], C[n+ 2], · · · , C[n′]) := Π.BK-Enc(k1, k2, · · · , kn).

Then block key retrieval correctness ofΠ requires thatΠ.BK-Dec(kmas,
C[n+ 1], C[n+ 2], · · · , C[n′]) = (k1, k2, · · · , kn).

Tag Correctness. Let M,M ′ ∈M(Π), Suppose:
• kmas := Π.KeyGen(params(Π),M),
• C := Π.Enc(params(Π), kmas,M),
• T := Π.TagGen(params(Π), C)
• k′mas := Π.KeyGen(params(Π),M ′),
• C ′ := Π.Enc(params(Π), k′mas,M

′), and
• T ′ := Π.TagGen(params(Π), C ′).

Then tag correctness of Π requires that if M = M ′, then T = T ′, for
all λ ∈ N and all M,M ′ ∈M(Π).

Update Correctness. Let M = M [1]||M [2]|| · · · ||M [n]. Suppose:
• kmas := Π.KeyGen(params(Π),M),
• C := Π.Enc(params(Π), kmas,M), and
• (K ′, C ′) := Π.Update(params(Π), (kmas, i,M ′[i]), C).

Then update correctness ofΠ requires thatΠ.Dec(params(Π),K ′, C ′) =
M [1]||M [2]|| · · · ||M [i− 1]||M ′[i]||M [i+ 1]|| · · · ||M [n].

PoW Correctness. Let M = M [1]||M [2]|| · · · ||M [n]. Suppose:
• kmas := Π.KeyGen(params(Π),M),
• C := Π.Enc(params(Π), kmas,M), and
• T := Π.TagGen(params(Π), C).

Then PoW correctness of Π requires that for any challenge Q, and for
the proof P := Π.PoWPrf(params(Π), Q,M), we have the probability Pr[Π.Po-
WVer(params(Π), Q, T, P) = TRUE] = 1.

The four security games are written in the form of a challenger-adversary
framework.

Privacy. Let Π = (Π.KeyGen, Π.Enc, Π.TagGen, Π.Dec, Π.Update, Π.Updat-
eTag, Π.PoWPrf, Π.PoWVer) be a UMLE scheme. Since, no UMLE scheme can
provide security for predictable messages, we are modelling the security based
on the unpredictable message source S(·) (for details see Sect. 2.6). According to

Message-locked Encryption with File Update 11

Game PRV$-CDAS,A
Π

(1λ, b)

(M , Z) $← S(1λ);
for (i := 1, 2, · · · ,m(1λ))
K

(i)
1 := Π.KeyGen(params(Π),M(i));

C
(i)
1 := Π. Enc(params(Π),K

(i)
1 ,M(i));

T
(i)
1 := Π.TagGen(params(Π),C

(i)
1);

K
(i)
0

$← {0, 1}|K
(i)
1 |;

C
(i)
0

$← {0, 1}|C
(i)
1 |;

T
(i)
0

$← {0, 1}|T
(i)
1 |;

b′ := A(1λ,Cb,T b, Z);
return b′;

Game STCAΠ(1λ) TCAΠ(1λ)

(M,C′, T ′) := A(1λ);
If (M =⊥) ∨ (C′ =⊥), then return 0;
If (T ′ 6= Π.TagGen(params(Π), C′))
return 0;

K := Π.KeyGen(params(Π),M);
C := Π. Enc(params(Π), K,M);
T := Π.TagGen(params(Π), C);
M ′ := Π.Dec(params(Π), K,C′);
If (T = T ′) ∧ (M 6= M ′) ∧(M ′ 6=⊥)
return 1;

Else return 0;

Game CXHAΠ(1λ, b)

(M0,M1, i) := A1(1λ);
Determine block i′ where M0 and M1 differ;
If i 6= i′, then return 0;
K0 := Π.KeyGen(params(Π),M0);
C0 := Π. Enc(params(Π), K0,M0);
K1 := Π.KeyGen(params(Π),M1);
C1 := Π. Enc(params(Π), K1,M1);
(K′1, C

′
1) := Π.Update(params(Π),

(K1, i,M0[i]), C1);
If b = 0, then C∗ := C0;
Else C∗ := C′1;
b′ := A2(1λ, C∗);
return b′;

Game UNC-CDAAΠ(1λ)

S(·) := A1(1λ);

(M,Z) $← S(1λ);
K := Π.KeyGen(params(Π),M);
C := Π. Enc(params(Π), K,M);
T := Π.TagGen(params(Π), C);
P∗ := A2(1λ, Q, Z);
P := Π.PoWPrf(params(Π), Q,M);
If (Π.PoWVer(params(Π), Q, T, P∗) = TRUE)

∧(P∗ 6= P)
return 1;

Else return 0;

Fig. 2. Games defining PRV$-CDA, STC, TC, CXH and UNC-CDA security of
UMLE scheme Π = (Π.KeyGen, Π.Enc, Π.TagGen, Π.Dec, Π.Update, Π.UpdateTag,
Π.PoWPrf, Π.PoWVer). In CXH and UNC-CDA games, adversary A = (A1,A2).

the PRV$-CDA game, as in Fig. 2, the challenger gets a vector of messages, M
and the auxiliary information Z, from the source S(·). The challenger does the
following operations: computes the decryption key K

(i)
1 , ciphertext C

(i)
1 and tag

T
(i)
1 for each message string M (i), where i ∈ {1, 2, · · · ,m(1λ)}; computes the

random strings K
(i)
0 , C

(i)
0 and T

(i)
0 of length |K(i)

1 |, |C
(i)
1 | and |T

(i)
1 | respectively;

and returns (Cb,T b, Z) to the adversary. The adversary has to return a bit b′
indicating whether the ciphertext Cb and tag T b corresponds to message M or
is it a collection of random strings. If the values of b and b′ coincide, then the
adversary wins the game.

We define the advantage of a PRV$-CDA adversary A against Π for the mes-
sage source S(·) as:

AdvPRV$-CDA
Π,S,A (1λ) def=

∣∣∣Pr[PRV$-CDAAΠ,S(1λ, b = 1) = 1]

−Pr[PRV$-CDAAΠ,S(1λ, b = 0) = 1]
∣∣∣.

A UMLE scheme Π is said to be PRV$-CDA secure over a set of valid PT
sources for UMLE scheme Π, S = {S1,S2, · · · }, for all PT adversaries A and

12 S. Kandele and S. Paul

for all Si ∈ S, if AdvPRV$-CDA
Π,Si,A (·) is negligible. A UMLE scheme Π is said to be

PRV$-CDA secure, for all PT adversaries A, if AdvPRV$-CDA
Π,S,A (·) is negligible, for

all valid PT source S for Π.

Tag Consistency. Let Π = (Π.KeyGen, Π.Enc, Π.TagGen, Π.Dec, Π.Update,
Π.UpdateTag, Π.PoWPrf, Π.PoWVer) be a UMLE scheme. For a UMLE scheme,
we have designed the STC and TC security game in Fig. 2, which aims to pro-
vide security against duplicate faking attacks. In addition, STC provides guards
against erasure attack. In a duplicate faking attack, two unidentical messages –
one fake message produced by an adversary and a legitimate one produced by
an honest client – produce the same tag, thereby causing loss of message and
hampers the integrity. In an erasure attack, the adversary replaces the ciphertext
with a fake message that decrypts successfully.

The adversary returns a message M , a ciphertext C ′ and a tag T ′. If the
message or ciphertext is invalid, the adversary looses the game. If the tag T ′ is
not computed from C ′, then also, the adversary loses the game. Otherwise, the
challenger computes key K, ciphertext C and tag T corresponding to message
M , and computes the message M ′ corresponding to ciphertext C ′ using key K.
If the two tags are equal, i.e. T = T ′, the message M ′ is valid, i.e. M ′ 6=⊥, and
the two messages are unequal, i.e. M 6= M ′, then the adversary wins the TC
game.

Now, we define the advantage of a TC adversary A against Π as:

AdvTC
Π,A(1λ) def= Pr[TCAΠ(1λ) = 1].

Now, we define the advantage of an STC adversary A against Π as:

AdvSTC
Π,A(1λ) def= Pr[STCAΠ(1λ) = 1].

A UMLE scheme Π is said to be TC (or STC) secure, for all PT adversaries
A, if AdvTC

Π,A(·) (or AdvSTC
Π,A(·)) is negligible.

Context Hiding. Let Π = (Π.KeyGen, Π.Enc, Π.TagGen, Π.Dec, Π.Update,
Π.UpdateTag, Π.PoWPrf, Π.PoWVer) be a UMLE scheme. For a UMLE, we
have designed the CXH game in Fig. 2, which aims to provide security against
distinguishing between an updated ciphertext and a ciphertext encrypted from
scratch, to ensure that the level of privacy is not compromised during update
process.

According to the CXH game, as in Fig. 2, the adversary returns two messages
M0 and M1 such that M0 and M1 are identical for all bits except block i. The
challenger determines the messages block i′ where M0 and M1 differ, and the
adversary loses if the messages M0 and M1 differ at any place other than i-
th block, i.e. i 6= i′. The challenger encrypts the two messages M0 and M1 to
generate K0 & C0 and K1 & C1 and updates the i-th block of C1 with M0[i]
to obtain K ′1 and C ′1. The challenger then sends either C0 or C ′1, depending on
the value of b, to the adversary. The adversary has to return a bit b′ indicating

Message-locked Encryption with File Update 13

whether the ciphertext is built from scratch or is an updated ciphertext. If the
values of b and b′ coincide, then the adversary wins the game.

Now, we define the advantage of a CXH adversary A for 1-block update in
message, against Π as:

AdvCXH
Π,A(1λ) def=

∣∣∣Pr[CXHAΠ(1λ, b = 1) = 1]− Pr[CXHAΠ(1λ, b = 0) = 1]
∣∣∣.

A UMLE scheme Π is said to be CXH secure, for 1-block update in message,
for all PT adversaries A, if AdvCXH

Π,A(·) is negligible.

Proof of ownership. Let Π = (Π.KeyGen, Π.Enc, Π.TagGen, Π.Dec, Π.Up-
date, Π.UpdateTag, Π.PoWPrf, Π.PoWVer) be a UMLE scheme. For a UMLE,
we have designed the UNC-CDA game in Fig. 2, which aims to provide security
against the adversary in proving that they possess the entire file when they
actually have only a partial information about the file. This is to block the
unauthorised ownership of the file.

According to the UNC-CDA game, as in Fig. 2, the adversary returns an
unpredictable message source S(·). The challenger gets a message M and the
auxiliary information Z, from this source. The challenger then send the chal-
lenge Q and the auxiliary information Z to the adversary and the adversary
returns a proof P ∗. The challenger generates the proof P for the same chal-
lenge. If P ∗ is successfully verified by the PoW verifier algorithm Π.PoWVer,
i.e. Π.PoWVer(params(Π), Q, T, P ∗) = TRUE, and P is different from P ∗, i.e.
P ∗ 6= P , then the adversary wins the game.

Now, we define the advantage of a UNC-CDA adversary A against an uncheat-
able chosen distribution attack against Π for a message source source S(·) as:

AdvUNC-CDA
Π,A (1λ) def= Pr[UNC-CDAAΠ(1λ) = 1].

A UMLE scheme Π is said to be UNC-CDA secure, for all PT adversaries A,
if AdvUNC-CDA

Π,A (·) is negligible.

2.9 Hash Function

Syntax. Suppose λ ∈ N is the security parameter. A hash function H is an
algorithm H.H over a PPT setup H.Setup. H satisfies the following conditions.

1. The PPT setup algorithm H.Setup(1λ) outputs the parameter params(H)

and the setsM(H) and T (H) denoting the message and digest spaces respec-
tively.

2. The deterministic hash algorithm H.H takes as inputs params(H) and M ∈
M(H), and returns h := H.H(params(H),M), where h ∈ T (H).

Correctness. Let M,M ′ ∈M(H). Suppose:
• h := H.H(params(H),M), and
• h′ := H.H(params(H),M ′).

14 S. Kandele and S. Paul

Then correctness of H requires that if M = M ′, then h = h′, for all
λ ∈ N and all M,M ′ ∈M(H).

The security game is written in the form of a challenger-adversary framework.

Game CRHFAH (1λ)
(M0,M1) := A(1λ);
If (H.H(params(H),M0) = H.H(params(H),M1))∧ (M0 6= M1)
return 1;

Else return 0;

Fig. 3. Game defining CRHF security of Hash Function H = H.H.

Collision-Resistance. Let H = H.H be a hash function. We design the
Collision-Resistance security game in Fig. 3. According to the CRHF game,
the adversary sends two messages M0 and M1 to the challenger. The chal-
lenger checks, if the hash value of the two messages M0 and M1 are equal,
i.e. H.H(params(H),M0) = H.H(params(H),M1) under M0 6= M1.

Now, we define the advantage of a CRHF adversary A against H as:

AdvCRHF
H,A (1λ) def= Pr[CRHFAH (1λ) = 1].

A hash function H is said to be CRHF secure, for all PPT adversaries A, if
AdvCRHF

H,A (·) is negligible.

2.10 One-time Symmetric Encryption

Syntax. Suppose λ ∈ N is the security parameter. A one-time symmetric en-
cryption scheme SE = (SE.GEN ,SE.SE ,SE.SD) is three-tuple of algorithms
over a PPT setup SE.Setup. SE satisfies the following conditions.

1. The PPT setup algorithm SE.Setup(1λ) outputs the parameter params(SE)

and the sets K(SE),M(SE) and C(SE) denoting the key, message and ciphertext
spaces respectively.

2. The PPT key generation algorithm SE.GEN takes as inputs params(SE),
and returns key K := SE.GEN (params(SE)), where K ∈ K(SE).

3. The encryption SE.SE is a deterministic algorithm takes as inputs params(SE),
encryption key K ∈ K(SE) and the message M ∈ M(SE), returns ciphertext
C := SE.SE(params(SE),K,M), where C ∈ C(SE). In order to make this
scheme one-time symmetric encryption, each execution of SE.SE(·) requires
that the key be freshly generated using SE.GEN (·).

4. The decryption SE.SD is a deterministic algorithm that takes as inputs
params(SE), key K ∈ K(SE) and ciphertext C ∈ C(SE), and returns the mes-
sage M := SE.SD(params(SE), K,C), where M ∈M(SE).

Message-locked Encryption with File Update 15

5. We restrict |C| to be a linear function of |M |.

Correctness. Let M ∈M(SE). Suppose:
• K := SE.GEN (params(SE)), and
• C := SE.SE(params(SE),K,M).

Then correctness of SE requires that SE.SD(params(SE),K,C) = M ,
for all λ ∈ N and all M ∈M(SE).

The two security games are written in the form of a challenger-adversary
framework.

Game KRASE(1λ)
M := A1(1λ);
K := SE.GEN (params(SE));
C := SE.SE(params(SE),K,M);
K′ := A2(1λ, C);
If K′ = K, then return 1;
Else return 0;

Game IND-PRVASE(1λ, b)
M := A1(1λ);
K := SE.GEN (params(SE));
C0 := SE.SE(params(SE),K,M);
C1

$← {0, 1}|C0|;
b′ := A2(1λ, Cb);
return b′;

Fig. 4. Game defining KR and IND-PRV security of one-time symmetric encryption
SE = (SE.GEN ,SE.SE , SE.SD). Here, A = (A1,A2).

Key Recovery. Let SE = (SE.GEN ,SE.SE ,SE.SD) be a one-time symmetric
encryption scheme. We design Key-Recovery security game in Fig. 4. Accord-
ing to the KR game, the adversary sends a message M to the challenger. The
challenger generates a key K := SE.GEN (params(SE)), encrypts M using K
to obtain the ciphertext C := SE.SE(params(SE),K,M) and sends C to the
adversary. The adversary has to return a key K ′ as the encryption key of M
that resulted into C. If the values of K and K ′ coincide, i.e. K = K ′, then the
adversary wins the game.

Now, we define the advantage of a KR adversary A against SE as:

AdvKR
SE,A(1λ) def= Pr[KRASE(1λ) = 1].

A one-time symmetric encryption scheme SE is said to be KR secure, for all
PT adversaries A, if AdvKR

SE,A(·) is negligible.

Privacy. Let SE = (SE.GEN ,SE.SE ,SE.SD) be a one-time symmetric en-
cryption scheme. We design the Privacy security game in Fig. 4. According to
the IND-PRV game, the adversary sends a message M to the challenger. The
challenger generates a key K := SE.GEN (params(SE)), encrypts M using K to
obtain the ciphertext C0 := SE.SE(params(SE),K,M), computes the random
string C1 of length |C0|, and sends Cb to the adversary. The adversary has to

16 S. Kandele and S. Paul

return a bit b′ indicating whether the ciphertext Cb corresponds to message M
or is it a random string. If the values of b and b′ coincide, then the adversary
wins the game.

Now, we define the advantage of a IND-PRV adversary A against SE as:

AdvIND-PRV
SE,A (1λ) def=

∣∣∣Pr[IND-PRVASE(1λ, b = 1) = 1]

−Pr[IND-PRVASE(1λ, b = 0) = 1]
∣∣∣.

A one-time symmetric encryption scheme SE is said to be IND-PRV secure,
for all PT adversaries A, if AdvIND-PRV

SE,A (·) is negligible.

2.11 Sponge hash function

The pictorial and algorithmic descriptions of Sponge construction [3, 8–12] are
given in Figs. 5 and 6; all wires are λ-bit long. Let M denote the message to be
hashed, M [i] denote the i-th block of message. Below we describe the algorithm
H.H for Sponge hash function in detail.

0

0

r′0

s′0
π π

r1

s1

r′1

s′1

r2

s2

M [1] M [2]

r′2

s′2

r3

s3

M [3]

π
r′3

s′3
π

r`

s`

M [`]

h
r′`

s′`

r′`−1

s′`−1

Fig. 5. Diagrammatic description of Sponge hash function h := H.H(1λ,M), where
M := M [1]||M [2]|| · · · ||M [`], and M [1],M [2], · · ·M [`] are the λ-bit message blocks.

H.H(1λ,M)
` := |M |/λ, r′0 := 0λ, s′0 := 0λ;
M [1]||M [2]|| · · · ||M [`] := M ;
for (j := 1, 2, · · · , `)
rj := M [j]⊕ r′j−1, sj := s′j−1;
r′j ||s′j := π(rj ||sj);

h := r′`;
return h;

Fig. 6. Algorithmic description of Sponge hash function h := H.H(1λ,M).

Hash H.H. Fig. 5 shows the hashing of message M . The hash takes the pa-
rameter 1λ and message M and breaks it into several λ-bit blocks, namely,
M [1],M [2], · · · ,M [`]. Hash of M is composed of hash of individual blocks in

Message-locked Encryption with File Update 17

sequence. Two variables r′0 and s′0 are assigned 0λ. Now we give the details of
how the message blockM [j], for j := 1, 2, · · · ` is hashed: rj is assigned the XOR
of M [j] and r′j−1; sj is assigned the value of s′j−1; and we compute (r′j ||s′j) as
π(rj ||sj). We assign r′` as the hash h.

Security of Sponge construction Sponge construction is already proven to
be CRHF secure. CRHF game is given in Fig. 3.

3 FMLE: A New Cryptographic Primitive

The File-updatable Message-Locked Encryption (FMLE) is a generalisation of
Efficiently Updatable Block-Level Message-Locked Encryption (UMLE) as given
by Zhao and Chow[20]. The difference between the definitions of UMLE and
FMLE is that the former requires the existence of a BL-MLE scheme, while
the latter does not.2 Therefore, any UMLE scheme can be viewed as an FMLE
scheme too, not the other way round.

Below we elaborately discuss the syntax, correctness and security definition
of the new notion FMLE.

3.1 Syntax

Suppose λ ∈ N is the security parameter. An FMLE scheme Π = (Π. E , Π.D,
Π.U , Π.P, Π.V) is five-tuple of algorithms over a PPT setup Π.Setup. Π sat-
isfies the following conditions.

1. The PPT setup algorithm Π.Setup(1λ) outputs the parameter params(Π)

and the sets K(Π),M(Π), C(Π) and T (Π), denoting the key, message, cipher-
text and tag spaces respectively.

2. The PPT encryption algorithm Π. E takes as inputs params(Π) and M ∈
M(Π), and returns a 3-tuple (K,C, T) := Π. E(params(Π),M), where K ∈
K(Π), C ∈ C(Π) and T ∈ T (Π).

3. The decryption algorithm Π.D is a deterministic algorithm that takes as in-
puts params(Π),K ∈ K(Π), C ∈ C(Π) and T ∈ T (Π), and returnsΠ.D(para-
ms(Π),K,C, T) ∈M(Π) ∪ {⊥}. The decryption algorithm Π.D returns ⊥ if
the key K, ciphertext C and tag T are not generated from a valid message.

4. The PPT update algorithm Π.U takes as inputs params(Π), the index of
starting and ending bits ist and iend, new message bits Mnew ∈ M(Π),
the decryption key K ∈ K(Π), the ciphertext to be updated C ∈ C(Π),
the tag to be updated T ∈ T (Π) and the bit app ∈ {0, 1} indicating
change in length of new message, and returns a 3-tuple (K ′, C ′, T ′) :=
Π.U(params(Π), ist, iend,Mnew,K,C, T, app), where K ′ ∈ K(Π), C ′ ∈ C(Π)

and T ′ ∈ T (Π).
2 A block-level message-locked encryption (BL-MLE) is an MLE that works on the
fixed-sized messages, called blocks.

18 S. Kandele and S. Paul

5. The PPT proof-of-ownership (PoW) algorithm for prover Π.P takes as in-
puts parameter params(Π), challenge Q, a file M ∈ M(Π), the decryption
key K ∈ K(Π), the ciphertext C ∈ C(Π), the tag T ∈ T (Π), and returns the
proof P := Π.P(params(Π), Q,M,K,C, T).

6. The PPT proof-of-ownership (PoW) algorithm for verifier Π.V takes as in-
puts parameter params(Π), challenge Q, ciphertext C ∈ C(Π), tag T ∈ T (Π)

and proof P , and returns the value val := Π.V(params(Π), Q,C, T, P),
where val ∈ {TRUE,FALSE}.

7. We restrict |C| to be a linear function of |M |.

3.2 Correctness

Key Correctness. Let M,M ′ ∈M(Π). Suppose:
• (K,C, T) := Π. E(params(Π),M), and
• (K ′, C ′, T ′) := Π. E(params(Π),M ′).

Then key correctness of Π requires that if M = M ′, then K = K ′, for
all λ ∈ N and all M,M ′ ∈M(Π).

Decryption Correctness. Let M ∈M(Π). Suppose:
• (K,C, T) := Π. E(params(Π),M).

Then decryption correctness of Π requires that Π.D(params(Π),K,
C, T) = M , for all λ ∈ N and all M ∈M(Π).

Tag Correctness. Let M,M ′ ∈M(Π). Suppose:
• (K,C, T) := Π. E(params(Π),M), and
• (K ′, C ′, T ′) := Π. E(params(Π),M ′).

Then tag correctness of Π requires that if M = M ′, then T = T ′, for
all λ ∈ N and all M,M ′ ∈M(Π).

Update Correctness. Let M ∈M(Π). Suppose:
• ` = |M |,
• (K,C, T) := Π. E(params(Π),M), and
• (K ′, C ′, T ′) := Π.U(params(Π), ist, iend,Mnew,K,C, T, app).

Then update correctness of Π requires that, for all λ ∈ N, all M ∈
M(Π), 1 ≤ ist ≤ ` and ist < iend:
• for app = 1, Π.D(params(Π),K ′, C ′, T ′) = M [1] ||M [2] || · · · || M [ist − 1]
||Mnew, and
• for app = 0, Π.D(params(Π),K ′, C ′, T ′) = M [1] ||M [2] || · · · || M [ist − 1]
||Mnew ||M [iend + 1]||M [iend + 2]|| · · · ||M [`].

PoW Correctness. Let M ∈M(Π). Suppose:
• (K,C, T) := Π. E(params(Π),M),
• Q is any challenge, and
• P := Π.P(params(Π), Q,M,K,C, T).

Then PoW correctness ofΠ requires that Pr[Π.V(params(Π), Q,C, T, P) =
TRUE] = 1, for all λ ∈ N and all M ∈M(Π).

Message-locked Encryption with File Update 19

3.3 Security Definitions

Security definitions of FMLE are naturally adapted from those of UMLE. For
the sake of completeness, we describe them below in full detail. As usual, all the
games are written in the form of challenger-adversary framework.

Game PRV$-CDAS,A
Π

(1λ, b)

(M , Z) $← S(1λ);
for (i := 1, 2, · · · ,m(1λ))

(K(i)
1 ,C

(i)
1 ,T

(i)
1) := Π. E(params(Π),M(i));

K
(i)
0

$← {0, 1}|K
(i)
1 |;

C
(i)
0

$← {0, 1}|C
(i)
1 |;

T
(i)
0

$← {0, 1}|T
(i)
1 |;

b′ := A(1λ,Cb,T b, Z);
return b′;

Game STCAΠ(1λ) TCAΠ(1λ)

(M,C′, T ′) := A(1λ);
If (M =⊥) ∨ (C′ =⊥), then return 0;
(K,C, T) := Π. E(params(Π),M);
M ′ := Π.D(params(Π), K,C′, T ′);
If (T = T ′) ∧ (M 6= M ′) ∧(M ′ 6=⊥)
return 1;

Else return 0;

Game CXHAΠ(1λ, σ, b)

(M0,M1) := A1(1λ, σ);
Determine bit-positions i1, i2, · · · , iρ

where M0 and M1 differ;
If ρ > σ, then return 0;
(K0, C0, T0) := Π. E(params(Π),M0);
(K1, C1, T1) := Π. E(params(Π),M1);
(K′1, C

′
1, T
′
1) := Π.U(params(Π), i1, iρ,

M0[i1, i1 + 1, · · · , iρ], K1, C1, T1, 0);
If b = 0, then C∗ := C0;
Else C∗ := C′1;
b′ := A2(1λ, C∗);
return b′;

Game UNC-CDAAΠ(1λ)

S := A1(1λ), (M,Z) $← S(1λ);
(K,C, T) := Π. E(params(Π),M)
P∗ := A2(1λ, Q, Z);
P := Π.P(params(Π), Q,M,K,C, T);
If (Π.V(params(Π), Q, C, T, P∗) = TRUE)

∧(P∗ 6= P)
return 1;

Else return 0;

Fig. 7. Games defining PRV$-CDA, STC, TC, CXH and UNC-CDA security of FMLE
scheme Π = (Π. E , Π.D, Π.U , Π.P, Π.V). In CXH and UNC-CDA games, adversary
A = (A1,A2)

Privacy. Let Π = (Π. E , Π.D, Π.U , Π.P, Π.V) be an FMLE scheme. Since, no
FMLE scheme can provide security for predictable messages, we are modelling
the security based on the unpredictable message source S(·). According to the
PRV$-CDA game, as in Fig. 7, the challenger gets a vector of messages, M
and the auxiliary information Z, from the source S(·). The challenger does the
following operations: computes the decryption key K

(i)
1 , ciphertext C

(i)
1 and

tag T
(i)
1 for each message string M (i) using Π. E , where i ∈ {1, 2, · · · ,m(1λ)};

computes the random strings K
(i)
0 , C

(i)
0 and T

(i)
0 of length |K(i)

1 |, |C
(i)
1 | and

|T (i)
1 | respectively; and returns (Cb,T b, Z) to the adversary. The adversary has

to return a bit b′ indicating whether the ciphertext Cb and tag T b corresponds
to message M or is it a collection of random strings. If the values of b and b′

coincide, then the adversary wins the game.

20 S. Kandele and S. Paul

We define the advantage of an PRV$-CDA adversary A against Π for the
message source S(·) as:

AdvPRV$-CDA
Π,S,A (1λ) def=

∣∣∣Pr[PRV$-CDAAΠ,S(1λ, b = 1) = 1]

−Pr[PRV$-CDAAΠ,S(1λ, b = 0) = 1]
∣∣∣.

An FMLE scheme Π is said to be PRV$-CDA secure over a set of valid PT
sources for FMLE scheme Π, S = {S1,S2, · · · }, for all PT adversaries A and
for all Si ∈ S, if AdvPRV$-CDA

Π,Si,A (·) is negligible. An FMLE scheme Π is said to be
PRV$-CDA secure, for all PT adversaries A, if AdvPRV$-CDA

Π,S,A (·) is negligible, for
all valid PT source S for Π.

Tag Consistency. LetΠ = (Π. E , Π.D, Π.U , Π.P, Π.V) be an FMLE scheme.
For an FMLE scheme, we have designed the STC and TC security games in Fig. 7,
which aim to provide security against duplicate faking attacks. In addition, STC
provides safeguards against erasure attack. In a duplicate faking attack, two
unidentical messages – one fake message produced by an adversary and a legit-
imate one produced by an honest client – produce the same tag, thereby cause
loss of message and hamper the integrity. In an erasure attack, the adversary
replaces the ciphertext with a fake message that decrypts successfully.

The adversary returns a message M , a ciphertext C ′ and a tag T ′. If the
message or ciphertext is invalid, the adversary loses the game. Otherwise, the
challenger computes decryption key K, ciphertext C and tag T corresponding
to message M , and computes the message M ′ corresponding to ciphertext C ′
and tag T ′ using key K. If the two tags are equal, i.e. T = T ′, the message M ′
is valid, i.e. M ′ 6=⊥, and the two messages are unequal, i.e. M 6= M ′, then the
adversary wins the TC game.

Now, we define the advantage of a TC adversary A against Π as:

AdvTC
Π,A(1λ) def= Pr[TCAΠ(1λ) = 1].

Now, we define the advantage of an STC adversary A against Π as:

AdvSTC
Π,A(1λ) def= Pr[STCAΠ(1λ) = 1].

An FMLE scheme Π is said to be TC (or STC) secure, for all PT adversaries
A, if AdvTC

Π,A(·) (or AdvSTC
Π,A(·)) is negligible.

Context Hiding. Let Π = (Π. E , Π.D, Π.U , Π.P, Π.V) be an FMLE scheme.
For an FMLE, we have designed the CXH game in Fig. 7, which aims to provide
security against distinguishing between an updated ciphertext and a ciphertext
encrypted from scratch, to ensure that the level of privacy is not compromised
during update process.

According to the CXH game, as in Fig. 7, the adversary returns two messages
M0 and M1 such that M0 and M1 are identical for all bits except σ bits. The
challenger calculates the bit-positions i1, i2, · · · , iρ where M0 and M1 differ, and

Message-locked Encryption with File Update 21

the adversary loses if ρ > σ. The challenger encrypts the two messages M0 and
M1 to generate (K0, C0, T0) and (K1, C1, T1) and updates the C1 withM0[i1, i1+
1, · · · , iρ] to obtain (K ′1, C ′1, T ′1). The challenger then sends either C0 or C ′1,
depending on the value of b, to the adversary. The adversary has to return a
bit b′ indicating whether the ciphertext is built from scratch or is an updated
ciphertext. If the values of b and b′ are equal, then the adversary wins the game.

Now, we define the advantage of a CXH adversary A for σ-bit update in
message, against Π as:

AdvCXH
Π,A(1λ, σ) def=

∣∣∣Pr[CXHAΠ(1λ, σ, b = 1) = 1]− Pr[CXHAΠ(1λ, σ, b = 0) = 1]
∣∣∣.

An FMLE scheme Π is said to be CXH secure, for σ-bit update in message,
for all PT adversaries A, if AdvCXH

Π,A(·, ·) is negligible.

Proof of ownership. Let Π = (Π. E , Π.D, Π.U , Π.P, Π.V) be an FMLE
scheme. For an FMLE, we have designed the UNC-CDA game in Fig. 7, which
aims to provide security against the adversary in proving that they possess the
entire file when they actually have only a partial information about the file. This
is to block the unauthorised ownership of the file.

According to the UNC-CDA game, as in Fig. 7, the adversary returns an
unpredictable message source S(·). The challenger gets a message M and the
auxiliary information Z, from this source. The challenger then send the challenge
Q and the auxiliary information Z to the adversary and the adversary returns a
proof P ∗. The challenger generates the proof P for the same challenge. If P ∗ is
successfully verified by the PoW verifier algorithm Π.V and P is different from
P ∗, then the adversary wins the game.

Now, we define the advantage of a UNC-CDA adversary A against an uncheat-
able chosen distribution attack against Π for a message source source S(·) as:

AdvUNC-CDA
Π,A (1λ) def= Pr[UNC-CDAAΠ(1λ) = 1].

An FMLE scheme Π is said to be UNC-CDA secure, for all PT adversaries
A, if AdvUNC-CDA

Π,A (·) is negligible.

4 Deduplication: An Application of FMLE

Deduplication is a mechanism by which a protocol removes the requirement for
storing multiple copies of an identical file in memory. This is highly beneficial
for the better utilization of space in the cloud, where multiple users often store
identical files. Loosely speaking, it does so, by identifying the identical files, re-
moving all the copies except one, and then attaching a special file called the list of
owners to it. In Fig. 8, we give the details of the deduplication protocol support-
ing file-update and proof of ownership (PoW) functionalities, implemented using
FMLE scheme Π = (Π. E , Π.D, Π.U , Π.P, Π.V). Although, intuitively clear,
we would like to point out that the authentication of users is not a part of this

22 S. Kandele and S. Paul

protocol; the system, otherwise, takes care of that through various well-known
means such as password-based/bio-metric authentications, etc.

The deduplication protocol with file-update and PoW functionalities, has
three functions: client uploading data to the server, as shown in Fig. 8(a); client
downloading data from the server, as shown in Fig. 8(b); and client updating
data to the server, as shown in Fig. 8(c). Below we give the textual description
of the three functionalities of the deduplication protocol.

Uploading. For uploading data to the server, the client authenticates its iden-
tity to the server, calculates the key K, ciphertext C and tag T using the en-
cryption function Π. E on message M , and sends C1 := C||T to the server. The
server computes tag T and ciphertext C from C1, generates a challenge Q and
sends Q to the client. The client generates and sends to the server, the proof
P based on the challenge Q, message M , key K, ciphertext C and tag T using
Π.P. The server verifies if the proof is correct or not using Π.V function and if
it is correctly verified, then stores the (C, T) pair in the database T along with
the Client-ID as owner. If the (C, T) pair already exists in the database, then
only the owner information is appended.

Downloading. For downloading data from the server, the client authenticates
its identity to the server and sends tag T corresponding to the required cipher-
text, to the server. Then, the server checks if the client is the owner of ciphertext
corresponding to tag T in the database T or not, and on successful verification,
sends ciphertext C. The client decrypts the C using the decryption function
Π.D with key K and tag T , to obtain message M . If the message is valid, i.e. if
M 6=⊥, then the message is accepted, otherwise the ciphertext C is rejected.

Updating. For updating data to the server, the client authenticates its identity
to the server and sends tag T corresponding to the required ciphertext, to the
server. Then, the server checks if the client is the owner of ciphertext corre-
sponding to tag T in the database T or not, and on successful verification, sends
ciphertext C. The client updates the ciphertext using the new message M ′ and
the key K, ciphertext C and tag T , to obtain the new key K ′, ciphertext C ′ and
tag T ′ and sends C ′1 := C ′||T ′ to the server. The server removes the ownership
of the client from the ciphertext C, computes a challenge Q corresponding to C ′1
and sends Q to the client. The client generates and sends to the server, the proof
P based on the challenge Q, messageM ′, key K ′, ciphertext C ′ and tag T ′ using
Π.P. The server verifies if the proof is correct or not using Π.V function and if
it is correctly verified, then stores the (C ′, T ′) pair in the database T along with
the Client-ID as owner. If the (C ′, T ′) pair already exists in the database, then,
only the owner information is appended.

Message-locked Encryption with File Update 23

Client (message M)

(K,C, T) := Π. E(M);
C1 := C||T ;

P := Π.P(Q,M,K,C, T);

(Authentication)

Send (C1)
−−−−−−−−−−−→

Send (Q)
←−−−−−−−−−−−

Send (P)
−−−−−−−−−−−→

Server (database T)

C||T := C1;
Compute challenge Q from C;

If Π.V(Q,C, T, P) = True
If T ∈ T
Augment the list of owners

of T with Client-ID;
Else T[T] := C and add

Client-ID as owner;
Else report Error;

(a) Client uploading data to the Server.

Client (tag T , key K)

M := Π.D(K,C, T);
If M 6=⊥, then accept M ;
Else reject C;

(Authentication)
Send (T)

−−−−−−−−−−−→

Send (C)
←−−−−−−−−−−−

Server (database T)

If Client is owner of T
Get C := T[T];

(b) Client downloading data from the Server.

Client (tag T , key K, message M ′)

(K′, C′, T ′) := Π.U(M ′,K,C,
T);

C′1 := C′||T ′

P := Π.P(Q,M ′,K′, C′, T ′);

(Authentication)
Send (T)

−−−−−−−−−−−→

Send (C)
←−−−−−−−−−−−

Send (C′1)
−−−−−−−−−−−→

Send (Q)
←−−−−−−−−−−−

Send (P)
−−−−−−−−−−−→

Server (database T)

If Client is owner of T
Get C := T[T];

If Client-ID is the only
owner of T

Delete T[T] and owner of T ;
Else Remove Client-ID from

owner of T ;
C′||T ′ := C′1;
Compute challenge Q;

If Π.V(Q,C′, T ′, P) = True
If T ′ ∈ T
Augment the list of owners

of T ′ with Client-ID;
Else T[T ′] := C′ and add

Client-ID as owner;
Else report Error;

(c) Client updating data to the Server.

Fig. 8. Upload, Download and Update Protocols in the Deduplication Protocol.

24 S. Kandele and S. Paul

5 Practical FMLE Constructions from existing MLE
schemes

In this section, we give three FMLE schemes built by augmenting the existing
MLE schemes.

Ingredients. All three FMLE schemes Π of this section are built from a one-time
symmetric encryption SE = (SE.GEN ,SE.SE ,SE.SD), and a hash function fam-
ily H = (H.H), as discussed in Sects. 2.10 and 2.9 respectively. Here, we note
that the setup function of SE, H and Π are compatible such that:

• M(H) = K(SE) =M(SE) = C(SE)

• K(Π) = T (H) = K(SE)

• M(Π) =M(H) =M(SE)

• C(Π) =M(H) = C(SE)

• T (Π) = T (H)

As defined in Sect. 3, any FMLE is associated with an implicit setup algo-
rithm that outputs params(Π) and the sets K(Π),M(Π), C(Π) and T (Π). Con-
struction is all about clearly specifying the five algorithms namely Π. E , Π.D,
Π.U , Π.P and Π.V. All five algorithms have, as input, params(Π) given by the
associated setup algorithm. The setup functionΠ.Setup is designed in such a way
that it invokes H.Setup and SE.Setup, to generate params(H) and params(SE),
and the output of Π.Setup is params(Π) = (params(H), params(SE)).

5.1 F-CE

The MLE construction CE, proposed by Douceur et al.[15], that uses the hash
function H = (H.H) and the symmetric-key algorithm SE = (SE.GEN ,SE.SE ,
SE.SD), can be converted into an FMLE scheme, denoted F-CE, by adding three
algorithms F-CE.U , F-CE.P and F-CE.V to the existing algorithms F-CE. E and
F-CE.D, as shown in Fig. 9.

5.2 F-HCE2

The MLE construction HCE2, proposed by Bellare, Keelveedhi and Ristenpart
[6], that uses the hash function H = (H.H) and the symmetric-key algorithm
SE = (SE.GEN ,SE.SE ,SE.SD), can be modified into an FMLE scheme F-HCE2
as shown in Fig. 10.

5.3 F-RCE

The MLE construction RCE, proposed by Bellare, Keelveedhi and Ristenpart
[6], that uses the hash function H = (H.H) and the symmetric-key algorithm
SE = (SE.GEN ,SE.SE ,SE.SD), can be modified into an FMLE scheme F-RCE
as shown in Fig. 11.

Message-locked Encryption with File Update 25

F-CE. E(params(Π),M)

K := H.H(params(H),M);
C := SE.SE(params(SE), K,M);
T := H.H(params(H), C);
return (K,C, T);

F-CE.D(params(Π), K,C, T)

T ′ := H.H(params(H), C);
If T ′ 6= T , then return ⊥;
M := SE.SD(params(SE), K,C);
return M ;

F-CE.V(params(Π), Q = {i1, i2, · · · , iσ},
C′, T ′, P)

If C′[ij] = P [j], ∀j ∈ {1, 2, · · · , σ}
return TRUE;

Else return FALSE;

F-CE.U(params(Π), ist, iend,Mnew, K,C,

T, app)

M := SE.SD(params(SE), K,C);
M ′ := M [1]||M [2]|| · · · ||M [ist − 1]||Mnew;
if app = 0
` := |M |;
M ′ := M ′||M [iend + 1]||M [iend + 2]||

· · · ||M [`];
K′ := H.H(params(H),M ′);
C′ := SE.SE(params(SE), K′,M ′);
T ′ := H.H(params(H), C′);
return (K′, C′, T ′);

F-CE.P(params(Π), Q = {i1, i2, · · · , iσ},
M,K,C, T)

P := C[i1]||C[i2]|| · · · ||C[iσ];
return P ;

Fig. 9. Algorithmic Description of the FMLE scheme F-CE. Here, params(Π) =
(params(H), params(SE)).

F-HCE2. E(params(Π),M)

K := H.H(params(H),M);
C := SE.SE(params(SE), K,M);
T := H.H(params(H), K);
return (K,C, T);

F-HCE2.D(params(Π), K,C, T)

M := SE.SD(params(SE), K,C);
K′ := H.H(params(H),M);
T ′ := H.H(params(H), K′);
If T ′ = T , then return M ;
Else return ⊥;

F-HCE2.P(params(Π), Q = {i1, i2, · · · , iσ},
M,K,C, T)

P := C[i1]||C[i2]|| · · · ||C[iσ];
return P ;

F-HCE2.U(params(Π), ist, iend,Mnew, K,C,

T, app)

M := SE.SD(params(SE), K,C);
M ′ := M [1]||M [2]|| · · · ||M [ist − 1]||Mnew;
if app = 0
` := |M |;
M ′ := M ′||M [iend + 1]||M [iend + 2]||

· · · ||M [`];
K′ := H.H(params(H),M ′);
C′ := SE.SE(params(SE), K′,M ′);
T ′ := H.H(params(H), K′);
return (K′, C′, T ′);

F-HCE2.V(params(Π), Q = {i1, i2, · · · , iσ},
C′, T ′, P)

If C′[ij] = P [j], ∀j ∈ {1, 2, · · · , σ}
return TRUE;

Else return FALSE;

Fig. 10. Algorithmic Description of the FMLE scheme F-HCE2. Here, params(Π) =
(params(H), params(SE)).

5.4 Security of F-CE, F-HCE2 and F-RCE

The F-CE, F-HCE2 and F-RCE schemes are constructed by adding functionalities
to the CE, HCE2 and RCE schemes respectively. Therefore, if the CE, HCE2 and
RCE schemes are PRV$-CDA, STC and TC secure, so are the F-CE, F-HCE2 and
F-RCE schemes.

The CXH and UNC-CDA security of the schemes F-CE and F-HCE2 follow
from the fact that they are deterministic.

The CXH security of the scheme F-RCE follows from the fact that the new
key is generated for the updated message and the whole updated message is re-

26 S. Kandele and S. Paul

F-RCE. E(params(Π),M)

K := H.H(params(H),M);

L
$← K(SE);

C1 := SE.SE(params(SE), L,M);
C2 := L⊕K;
C := C1||C2;
T := H.H(params(H), K);
return (K,C, T);

F-RCE.D(params(Π), K,C, T)

C1||C2 := C, L := C2 ⊕K;
M := SE.SD(params(SE), L, C1);
K′ := H.H(params(H),M);
T ′ := H.H(params(H), K′);
If T ′ = T , then return M ;
Else return ⊥;

F-RCE.V(params(Π), Q = {i1, i2, · · · , iσ},
C′, T ′, P)

If C′[ij] = P [j], ∀j ∈ {1, 2, · · · , σ}
return TRUE;

Else return FALSE;

F-RCE.U(params(Π), ist, iend,Mnew, K,C,

T, app)

C1||C2 := C;
L := C2 ⊕K;
M := SE.SD(params(SE), L, C1);
M ′ := M [1]||M [2]|| · · · ||M [ist − 1]||Mnew;
if app = 0
` := |M |;
M ′ := M ′||M [iend + 1]||M [iend + 2]||

· · · ||M [`];
K′ := H.H(params(H),M ′);
C′1 := SE.SE(params(SE), L,M ′);
C′2 := L⊕K;
C′ := C′1||C

′
2;

T ′ := H(params(H), K′);
return (K′, C′, T ′);

F-RCE.P(params(Π), Q = ({i1, i2, · · · , iσ},
C′2),M,K,C, T)

C1||C2 := C;
L := C2 ⊕K;
L′ := C′2 ⊕K;
M := SE.SD(params(SE), L, C1);
C′1 := SE.SE(params(SE), L′,M);
P := C′1[i1]||C′1[i2]|| · · · ||C′1[iσ];
return P ;

Fig. 11. Algorithmic Description of the FMLE scheme F-RCE. Here, params(Π) =
(params(H), params(SE)).

encrypted (as described in the Fig. 11), therefore, the advantage of the adversary
is zero.

The UNC-CDA security is achieved in the F-RCE scheme because the proof
P ∗ produced by the adversary has to be identical to the real proof P , which
already stored as the ciphertext in the cloud, because the verification part is
just the equality check.

6 Practical FMLE Construction from existing UMLE
scheme

In this section, we give one FMLE scheme built by augmenting the existing
UMLE scheme.

6.1 The F-UMLE scheme

The F-UMLE schemeΠ is constructed, as shown in Fig. 12, from a UMLE scheme
π = (π.KeyGen, π.Enc, π.TagGen, π.Dec, π.Update, π.UpdateTag, π.PoWPrf,
π.PoWVer), defined over the setup algorithm π.Setup that outputs parameters
params(π) and the sets K(π),M(π), C(π) and T (π). Here, we note that the setup
function Π.Setup is designed in such a way that it invokes π.Setup, to generate

Message-locked Encryption with File Update 27

params(π), and the output of Π.Setup is params(Π) = params(π). Also the sets
generated by Π.Setup and π.Setup are compatible such that:

• K(Π) = K(π)

• M(Π) =M(π)

• C(Π) = C(π)

• T (Π) = T (π)

F-UMLE. E(params(Π),M)

(kmas, k1, k2, · · · , km) :=
π.KeyGen(params(π),M);

C := π. Enc(params(π), (kmas, k1, k2, · · ·
· · · , km),M);

T := π.TagGen(params(π), C);
return (kmas, C, T);

F-UMLE.P(params(Π), Q,M, kmas, C, T)

P := π.PoWPrf(params(π), Q,M);
return P ;

F-UMLE.V(params(Π), Q, C, T, P)

val := π.PoWVer(params(π), Q, T, P);
return val;

F-UMLE.U(params(Π), ist, iend,Mnew,

kmas, C, T, app)
i := bist/λc;
K′ := kmas;
C′ := C;
For (j := i, i + 1, · · · , biend/λc)

(K′, C′) := π.Update(params(π), (K′,
j,Mnew[j − i + 1]), C′);

T ′ := π.UpdateTag(params(π), T, C, C′);
return (K′, C′, T ′);

F-UMLE.D(params(Π), kmas, C, T)

T ′ := π.TagGen(params(π), C);
If T 6= T ′, then return ⊥;
M := π.Dec(params(π), kmas, C);
return M ;

Fig. 12. Algorithmic Description of the FMLE scheme F-UMLE. Here, params(Π) =
params(π)

6.2 Security of F-UMLE scheme

The F-UMLE scheme is a UMLE as well as an FMLE scheme. Since, the security
targets of FMLE and UMLE are identical, and F-UMLE satisfies the UMLE
security targets, hence, F-UMLE is a secure FMLE scheme.

7 New Efficient FMLE Schemes

In this section we present the two new efficient constructions for FMLE – namely
RevD-1 and RevD-2 – which are based on a 2λ-bit easy-to-invert permutation
π. We assume that the length of message is a multiple of λ; λ is the security
parameter.

7.1 The RevD-1 scheme

We describe our first FMLE scheme, namely, RevD-1. This construction is mo-
tivated by the design of the hash function mode of operation FP [18].

28 S. Kandele and S. Paul

Description of RevD-1 The pictorial and algorithmic descriptions are given
in Figs. 13 and 14; all wires are λ-bit long. Let M denote the message to be
encrypted, M [i] denote the i-th block of message, and M [i][j] denote the j-th
bit of i-th block of message. It is worth noting that the decryption is executed in
the reverse direction of encryption. Below, we describe the 5-tuple of algorithms
(RevD-1. E ,RevD-1.D,RevD-1.U ,RevD-1.P,RevD-1.V) for RevD-1, in detail.

Encryption RevD-1. E. Fig. 13(a) shows the encryption of message M . The en-
cryption takes the parameter 1λ and message M and breaks it into several λ-bit
blocks, namely, M [1],M [2], · · · ,M [`]. Encryption of M is composed of encryp-
tions of individual blocks in sequence. Two variables s1 and t1 are assigned 0λ.
Two numbers R and R′ are chosen randomly from {0, 1}λ, and u1 and v1 are
assigned R and R′ respectively. Now we give the details of how the message
block M [j], for j := 1, 2, · · · `− 1 is encrypted: rj is assigned M [j]; we compute
(r′j ||s′j) as π(rj ||sj); we compute uj+1||vj+1 as π(uj ||vj); we obtain C[j] as the
XOR of vj+1 and r′j ; sj+1 is assigned the XOR of s′j and tj ; and tj+1 is assigned
the value r′j .

For the last block M [`], we perform the following operations: r` is assigned
M [`]; we compute (r′`||s′`) as π(r`||s`); we compute u`+1||v`+1 as π(u`||v`); s`+1
is assigned the XOR of s′` and t`; u′ is assigned the value of u`+1; and v`+1 is
XORed with s`+1 to obtain v′.

We assign s`+1 as the decryption key K, we concatenate C[1], C[2], · · · , C[`−
1]||u′||v′ to obtain the ciphertext C, and r′` as the tag T .

Decryption RevD-1.D. The decryption takes the parameter 1λ, decryption key
K, ciphertext C and tag T . Fig. 13(b) shows the decryption of ciphertext C.
The decryption takes the ciphertext C and breaks it into several λ-bit blocks,
namely, C[1], C[2], · · · , C[` − 1]||u′||v′. Decryption of C is composed of decryp-
tions of individual blocks executed in the direction opposite to the encryption.
For decrypting the last block, we first perform following operations: we assign
K to s`+1; we assign T to r′`; we assign u′ to u`+1; v′ is XORed with s`+1 to
obtain v`+1; we compute u`||v` as π−1(u`+1||v`+1); if ` > 1, we compute t` as
XOR of C[` − 1] and v`, otherwise as 0λ; s`+1 is XORed with t` to obtain s′`;
r`||s` as π−1(r′`||s′`); and we assign r` to M [`].

Now we give the details of how the ciphertext block C[j] for j := ` − 1, ` −
2, · · · , 1 is decrypted: we compute uj ||vj as π−1(uj+1||vj+1); if the value of j is
1, then we assign tj as 0λ, otherwise tj is assigned the XOR of C[j − 1] and vj ;
r′j is assigned tj+1; s′j is assigned the XOR of sj+1 and tj ; we compute rj ||sj as
π−1(r′j ||s′j); and M [j] is assigned the value of rj .

We concatenateM [1],M [2], · · · ,M [`] to obtain the messageM . The message
is only returned if the value of variable s1 is equal to 0λ.

Update RevD-1.U . The update takes the parameter 1λ, the index of starting and
ending bits ist and iend, new message bits Mnew ∈ M, the decryption key K,
the ciphertext to be updated C, the tag T and the bit app. Fig. 13(c) shows

Message-locked Encryption with File Update 29

0

0

ππ
K

M [1] M [2]

ππ

C[1]

π

M [`− 1]

π

C[2]

π

C[`− 1]

u1
u′

v′

T

u3

v3

u`+1

v`+1

R

R′

π

M [`]

r`

s`

t`

r′`

s′`
s`+1

u`−1

r2

s2

t2

r′2

s′2

v1

u2

v2

u2

v2 v`−1

u`

v`

u`

v`

r1

s1

t1

r′1

s′1

r`−1

s`−1

t`−1

r′`−1

s′`−1

(a) Pictorial description of RevD-1. E(1λ,M).

0

0

ππ

ππ

π

π π

π

u′

v′

R

R′

K

T

?

M [1] M [2] M [`− 1] M [`]

C[1] C[2] C[`− 1]

u1

v1

u2

v2

u2

v2

u3

v3

u`+1

v`+1

u`−1

v`−1

u`

v`

u`

v`

r1

s1

t1

r′1

s′1

r2

s2

t2

r′2

s′2

r`−1

s`−1

t`−1

r′`−1

s′`−1

r′`

s′`
s`+1

r`

s`

t`

(b) Pictorial description of RevD-1.D(1λ,K,C, T).

0

0

ππ

ππ

π

π π

π

u′

v′

R

R′

K

T

M [1] M [m− 1] M [`− 1] M [`]

C[1] C[m− 1] C[`− 1]

u1

v1

u2

v2

um−1

vm−1

um

vm

u`+1

v`+1

u`−1

v`−1

u`

v`

u`

v`

r1

s1

t1

r′1

s′1

rm−1

sm−1

tm−1

r′m−1

s′m−1

r`−1

s`−1

t`−1

r′`−1

s′`−1

r′`

s′`
s`+1

r`

s`

t`

sm
π

s′m

rm

M [m]

r′m

C[m]

π
um

vm

um+1

vm+1

tm

π

π π

π

u′

v′

K ′

T ′

M ′[`−m] M ′[`−m+ 1]

C ′[`− 1]

u`+1

v`+1

u`−1

v`−1

u`

v`

u`

v`

r`−1

s`−1

t`−1

r′`−1

s′`−1

r′`

s′`
s`+1

r`

s`

t`

sm
π

s′m

rm

M ′[1]

r′m

C ′[m]

π
um

vm

um+1

vm+1

tm

(c) Pictorial description of RevD-1.U(1λ, ist, iend,Mnew,K,C, T, app).

0

0

ππ

ππ

π

π π

π

u′

v′

R

R′

K

T

M [1] M [n− 1] M [`− 1] M [`]

C[1] C[n− 1] C[`− 1]

u1

v1

u2

v2

un−1

vn−1

un

vn

u`+1

v`+1

u`−1

v`−1

u`

v`

u`

v`

r1

s1

t1

r′1

s′1

rn−1

sn−1

tn−1

r′n−1

s′n−1

r`−1

s`−1

t`−1

r′`−1

s′`−1

r′`

s′`
s`+1

r`

s`

t`

sn
π

s′n

rn

M [n]

r′n

C[n]

π
un

vn

un+1

vn+1

tn

un+1

vn+1

π π
u′′

v′′

u′`+1

v′`+1

u′`−1

v′`−1

u′`

v′`

u′`

v′`

u′n+1

v′n+1
C ′[n]

(d) Pictorial description of RevD-1.P(1λ, Q = (n, u′′, v′′),M,K,C, T).

Fig. 13. Diagrammatic description of RevD-1.

30 S. Kandele and S. Paul

RevD-1. E(1λ,M)

` := |M |/λ, s1 := 0λ, t1 := 0λ;
M [1]||M [2]|| · · · ||M [`] := M ;

R
$← {0, 1}λ, R′ $← {0, 1}λ;

u1 := R, v1 := R′;
for (j := 1, 2, · · · , `− 1)
rj := M [j], r′j ||s

′
j := π(rj ||sj);

uj+1||vj+1 := π(uj ||vj), C[j] := vj+1⊕r′j ;
sj+1 := s′j ⊕ tj , tj+1 := r′j ;

r` := M [`], r′`||s
′
` := π(r`||s`);

u`+1||v`+1 := π(u`||v`), s`+1 := s′` ⊕ t`;
u′ := u`+1, v′ := v`+1 ⊕ s`+1;
K := s`+1, T := r′`;
C := C[1]||C[2]|| · · · ||C[`− 1]||u′||v′;
return (K,C, T);

RevD-1.D(1λ, K,C, T)

` := |C|/λ− 1, s`+1 := K, r′` := T ;
C[1]||C[2]|| · · · ||C[`− 1]||u′||v′ := C;
u`+1 := u′, v`+1 := v′ ⊕ s`+1;
u`||v` := π−1(u`+1||v`+1);
if ` = 1, then t` := 0λ;
Else t` := C[`− 1]⊕ v`;
s′` := s`+1 ⊕ t`, r`||s` := π−1(r′`||s

′
`);

M [`] := r`;
for (j := `− 1, `− 2, · · · , 1)
uj ||vj := π−1(uj+1||vj+1);
If j = 1, then tj := 0λ;
Else tj := C[j − 1]⊕ vj ;
r′j := tj+1, s′j := sj+1 ⊕ tj ;
(rj ||sj) := π−1(r′j ||s

′
j), M [j] := rj ;

M := M [1]||M [2]|| · · · ||M [`];
if s1 = 0λ then return M ;
else return ⊥;

RevD-1.P(1λ, Q = (n, u′′, v′′),M,K,C, T)

` := |C|/λ− 1, s`+1 := K;
C[1]||C[2]|| · · · ||C[`− 1]||u′||v′ := C;
u`+1 := u′, v`+1 := v′ ⊕ s`+1;
u′`+1 := u′′, v′`+1 := v′′ ⊕ s`+1;
for (j := l, l− 1, · · · , n + 1)
uj ||vj := π−1(uj+1||vj+1);
u′j ||v

′
j := π−1(u′j+1||v

′
j+1);

C′[n] := C[n]⊕ vn+1 ⊕ v′n+1;
return C′[n];

RevD-1.U(1λ, ist, iend,Mnew, K,C, T, app)

` := |C|/λ− 1, m := dist/λe;
C[1]||C[2]|| · · · ||C[`− 1]||u′||v′ := C;
s`+1 := K, r′` := T , u`+1 := u′;
v`+1 := v′ ⊕ s`+1;
u`||v` := π−1(u`+1||v`+1);
if ` = 1, then t` := 0λ;
Else t` := C[`− 1]⊕ v`;
s′` := s`+1 ⊕ t`, r`||s` := π−1(r′`||s

′
`);

M [`] := r`;
for (j := `− 1, `− 2, · · · ,m)
uj ||vj := π−1(uj+1||vj+1);
If j = 1, then tj := 0λ;
Else tj := C[j − 1]⊕ vj ;
r′j := tj+1, s′j := sj+1 ⊕ tj ;
(rj ||sj) := π−1(r′j ||s

′
j), M [j] := rj ;

idx1 := ist mod λ;
if idx1 = 0, then idx1 := λ;
M ′ = M [m][1]||M [m][2]|| · · ·

· · · ||M [m][idx1 − 1]||Mnew;
if app = 0
n := diend/λe, idx2 := iend mod λ;
If idx2 = 0, then idx2 := λ;
M ′ = M ′||M [n][idx2 + 1]||M [n][idx2 + 2]

|| · · · ||M [n][λ]||M [n + 1]
||M [n + 2]|| · · · ||M [`];

Else ` := (m− 1) + (|M ′|/λ);
M ′[1]||M ′[2]|| · · · ||M ′[`−m + 1] := M ′;
for (j := m,m + 1, · · · , `− 1)
rj := M ′[j −m + 1];

r′j ||s
′
j := π(rj ||sj);

uj+1||vj+1 := π(uj ||vj);
C′[j] := vj+1 ⊕ r′j ;
sj+1 := s′j ⊕ tj , tj+1 := r′j ;

r` := M ′[`−m + 1], r′`||s
′
` := π(r`||s`);

u`+1||v`+1 := π(u`||v`), s`+1 := s′` ⊕ t`;
u′ := u`+1, v′ := v`+1 ⊕ s`+1;
K′ := s`+1, T ′ := r′`;
C′ := C[1]||C[2]|| · · · ||C[m− 1]||C′[m]

||C′[m + 1]|| · · · ||C′[`− 1]||u′||v′;
return (K′, C′, T ′);

RevD-1.V(1λ, Q = n,C, T, P)

if C[n] = P , then return TRUE;
Else return FALSE;

Fig. 14. Algorithmic description of the FMLE scheme RevD-1.

the update on ciphertext C. The update takes the ciphertext C and breaks it
into several λ-bit blocks, namely, C[1], C[2], · · · , C[`−1]||u′||v′ and computes the
index of block from where the update starts m as the ceil value of ist/λ. Update
of C is composed of decryptions of individual blocks executed in the direction
opposite to the encryption upto m-th block, calculating sm and tm, and then
encrypting the new updated message from m-th block to the last block. The
decryption and encryption processes are already explained above.

Message-locked Encryption with File Update 31

We assign the new s`+1 as the decryption key K ′, we concatenate C[1], C[2],
· · · , C[m− 1], C ′[m], C ′[m+ 1], · · · , C ′[`− 1]||u′||v′ to obtain the ciphertext C ′,
and r′` as the tag T ′.

Proof of ownership by Prover RevD-1.P. The proof of ownership by prover takes
the parameter 1λ, the challenge Q = (n, u′′, v′′), the message M , the decryption
key K, the ciphertext C and the tag T . Fig. 13(d) shows the proof of own-
ership by prover for the ciphertext C. The algorithm takes the ciphertext C
and breaks it into several λ-bit blocks, namely, C[1], C[2], · · · , C[` − 1]||u′||v′,
assigns K to s`+1; the values of u′ and u′′ are assigned to u`+1 and u′`+1, and
the values of v′ and v′′ are XORed with s`+1 to obtain v`+1 and v′`+1. Now, for
j := `, `− 1, · · · , n+ 1, we calculate the values of uj ||vj as π−1(uj+1||vj+1) and
u′j ||v′j as π−1(u′j+1||v′j+1). The values of C[n], vn+1 and v′n+1 are XORed to get
the proof C ′[n].

Proof of ownership by Verifier RevD-1.V. The proof of ownership by verifier
takes the parameter 1λ, the challenge Q = n, the ciphertext C, the tag T and
the proof P as inputs, and checks if C[n] equals the proof P and returns TRUE
if the equality holds, otherwise returns FALSE.

Security of RevD-1 Our assumption is that the 2λ-bit permutation used in
the RevD-1 is an ideal permutation. On a distinct input, an Ideal permutation
outputs a uniformly chosen element from the set of remaining elements in the
range that had not been already outputted in previous queries. Similar properties
are retained for the inverse permutation.

Theorem 1. Let λ be the security parameter. If the π in the design of RevD-1
is assumed to be the 2λ-bit ideal permutation, then for all adversaries A,

AdvPRV$-CDA
RevD-1,S,A(1λ) ≤

(m(m− 1)
22λ

)
+
(2 · (`+ 1)2m2

2µ + 2 · (`+ 1)2m2

2λ
)
.

Here, S is a message source that outputs the message vector M such that
‖M‖ def= m = m(1λ), with min-entropy µ = µS(1λ) and ` = maxi∈{1,2,··· ,m} |M i|.
The PRV$-CDA game is defined in Fig. 7.

Proof. We prove the security by constructing successive games (or hybrids) and
finding adversarial advantages in distinguishing between them. In summary, we
need to bound the adversarial advantage ∆ between the Games GS and GL
(denoted GS

∆→ GL). In order to do so, we construct two intermediate games:
GS

∆1→ G1
∆2→ G2

∆3→ GL. Using Triangle Inequality [7], ∆ ≤ ∆1 +∆2 +∆3.
In what follows, we compute the values from ∆1 to ∆3.

Game GS : This game is identical to PRV$-CDA for b = 1, that is, when the
challenger sends to the adversary A, the encryption of the vector of messages M

32 S. Kandele and S. Paul

(derived from source S) using the encryption algorithm E of the RevD-1 scheme.

Game G1: This game is identical to Game GS , except that it uses a modified
version of E , namely E ′, as described in Fig. 15. In E ′, the 2λ-bit permutation π
of E is replaced by the 2λ-bit random function rf. Therefore,

∆1
def=
∣∣∣Pr[PRV$-CDAARevD-1π,S(1λ, b = 1) = 1]

−Pr[PRV$-CDAARevD-1rf,S(1λ, b = 1) = 1]
∣∣∣

Using PRP/PRF Switching Lemma [7], for an adversary A with the vector
of messages M , such that ‖M‖ = m, we obtain:

∆1 ≤
m(m− 1)

22λ (1)

Game G2: This game is identical to Game G1, except that it uses a modified
version of E ′, namely E ′′, as described in Fig. 15. In E ′′, the bad flag is set, when
there is a collision in the latter λ bits of the 2λ-bit input to the random function
rf. Therefore,

∆2
def=
∣∣∣Pr[PRV$-CDAARevD-1rf,S(1λ, b = 1) = 1]

−Pr[PRV$-CDAARevD-1rf′ ,S(1λ, b = 1) = 1]
∣∣∣

Using Code-Based Game Playing Technique [7], for an adversary A with the
vector of messages M , such that ‖M‖ = m, we obtain:

∆2 ≤ Pr[A sets bad1 in G2] + Pr[A sets bad2 in G2] (2)

The event that A sets bad1 in G2 happens when si,j matches with one of
the previous lower-half-inputs to the random function rf, that is, si,j can match
with vi′,j′ or si′,j′ for all (i′ < i and j′ < `) or (if i′ = i, then j′ < j).

The event that A sets bad2 in G2 happens when vi,j matches with one of
the previous lower-half-inputs to the random function rf, that is, vi,j can match
with vi′,j′ or si′,j′ for all (i′ < i and j′ < `) or (i′ = i and j′ < j).

Calculation of Pr[A sets bad1 in G2]: Suppose that we are using the con-
struction E ′′, and we define the following events:

• A is the event that A sets bad1 in G2, that is, at least one of the si,j collides
with some si′,j′ or vi′,j′ for i, i′ ∈ {1, 2, · · · ,m} and j, j′ ∈ {1, 2, · · · , `+ 1}.

• Ai,j is the event that all the si′,j′ ’s and vi′,j′ ’s are all distinct for the values
j′ ≤ `, when i′ < i, and j′ < j, when i′ = i.

Message-locked Encryption with File Update 33

• Bi,j is the event that the value si,j , for i ∈ {1, 2, · · · ,m} and j ∈ {1, 2, · · · , `+
1}, collides with some si′,j′ or vi′,j′ for the values j′ ≤ `, when i′ < i, and j′ < j,
when i′ = i.

So, we calculate the Probability of event A as follows:

Pr[A] ≤ Pr[B1,2|A1,2] + Pr[B1,3|A1,3] + · · ·+ Pr[Bm,`+1|Am,`+1]

≤
(1

2µ + 1
2λ
)

+
(2

2µ + 2
2λ
)

+ · · ·
(m× (`+ 1)

2µ + m× (`+ 1)
2λ

)
≤ (`+ 1)2m2

2µ + (`+ 1)2m2

2λ

∴ Pr[A sets bad1 in G2] ≤ (`+ 1)2m2

2µ + (`+ 1)2m2

2λ (3)

Similarly, we can calculate:

Pr[A sets bad2 in G2] ≤ (`+ 1)2m2

2µ + (`+ 1)2m2

2λ (4)

Using the Eqs. 2, 3 and 4, we obtain the following:

∆2 ≤
2 · (`+ 1)2m2

2µ + 2 · (`+ 1)2m2

2λ (5)

Game GL: This game is identical to PRV$-CDA for b = 0, that is, when the
challenger sends to the adversary A, a random string of length identical to the
length of ciphertexts and tags obtained by the encryption of the vector of mes-
sages M (derived from source S) using the encryption algorithm E of the RevD-1
scheme.

∆3
def=
∣∣∣Pr[PRV$-CDAAΠ′′,S(1λ, b = 1) = 1]

−Pr[PRV$-CDAAΠ,S(1λ, b = 0) = 1]
∣∣∣

In Game G2, each value of vi,j is generated randomly and is distinct from
previous values, therefore the ciphertext generated Ci[j − 1] will be also ran-
dom, for (i, j) ∈ {1, 2, · · ·m} × {1, 2, · · · , ` + 1}, where ‖M‖ = m and ` =
maxi∈{1,2,··· ,m} |M [i]|. Thus, the games G2 and GL output a completely random
ciphertext C, without releasing any non-trivial information to the adversary and
are, therefore, indistinguishable. Hence, we obtain:

∆3 = 0 (6)

34 S. Kandele and S. Paul

Using Triangle Inequality [7] and the Eqs.1, 5 and 6, the following equation
can be obtained.

∆ ≤ ∆1 +∆2 +∆3

≤
(m(m− 1)

22λ

)
+
(2 · (`+ 1)2m2

2µ + 2 · (`+ 1)2m2

2λ
)

+ 0

main GS

(M , Z) $← S(1λ);
for (i := 1, 2, · · · ,m(1λ))

(K[i], C[i], T [i]) := E(1λ,M [i]);
HC [M [i]] := C[i];
HK [M [i]] := K[i];
HT [M [i]] := T [i];

b′ := AE(·)(C, T, Z);
return b′;

main G1

(M , Z) $← S(1λ);
for (i := 1, 2, · · · ,m(1λ))

(K[i], C[i], T [i]) := E′(1λ,M [i]);
HC [M [i]] := C[i];
HK [M [i]] := K[i];
HT [M [i]] := T [i];

b′ := AE
′(·)(C, T, Z);

return b′;

main G2

(M , Z) $← S(1λ);
for (i := 1, 2, · · · ,m(1λ))

(K[i], C[i], T [i]) := E′′(1λ,M [i]);
HC [M [i]] := C[i];
HK [M [i]] := K[i];
HT [M [i]] := T [i];

b′ := AE
′′(·)(C, T, Z);

return b′;

main GL

(M , Z) $← S(1λ);
for (i := 1, 2, · · · ,m(1λ))

K[i] $← {0, 1}λ;

C[i] $← {0, 1}|M[i]|+λ;

T [i] $← {0, 1}λ;
HC [M [i]] := C[i];
HK [M [i]] := K[i];
HT [M [i]] := T [i];

b′ := AH(C, T, Z);
return b′;

E′(1λ,Mi) E′′(1λ,M)

V := φ; ` := |Mi|/λ;
Mi[1]||Mi[2]|| · · · ||Mi[`] := Mi;
si,1 := 0λ; ti,1 := 0λ;

Ri
$← {0, 1}λ; R′i

$← {0, 1}λ;
ui,1 := Ri; vi,1 := R′i;
for (j := 1, 2, · · · , `− 1)
ri,j := Mi[j];
r′i,j ||s

′
i,j := rf(ri,j ||si,j);

if si,j ∈ V

bad1 := 1; r′i,j ||s
′
i,j

$← {0, 1}2λ;

ui,j+1||vi,j+1 := rf(ui,j ||vi,j);
if vi,j ∈ V

bad2 := 1; ui,j+1||vi,j+1
$← {0, 1}2λ;

V := V ∪ {vi,j , si,j};
Ci[j] := vi,j+1 ⊕ r′i,j ;
si,j+1 := s′i,j ⊕ ti,j ;
ti,j+1 := r′i,j ;

ri,` := Mi[`];
r′i,`||s

′
i,` := rf(ri,`||si,`);

if si,` ∈ V

bad1 := 1; r′i,`||s
′
i,`

$← {0, 1}2λ;

ui,`+1||vi,`+1 := rf(ui,`||vi,`);
if vi,` ∈ V

bad2 := 1; ui,`+1||vi,`+1
$← {0, 1}2λ;

V := V ∪ {vi,`, si,`};
si,`+1 := s′i,` ⊕ ti,`;
u′i := ui,`+1; v′i := vi,`+1 ⊕ si,`+1;
Ki := si,`+1; T i := r′i,`;
Ci := Ci[1]||Ci[2]|| · · · ||Ci[`− 1]||u′i||v

′
i;

return (Ki,Ci,T i);

proc. rf(x)

if x /∈ Dom(Drf);

then Drf[x] $← {0, 1}2λ;
return Drf[x];

Fig. 15. Games used in PRV$-CDA of RevD-1.

Message-locked Encryption with File Update 35

Theorem 2. Let λ be the security parameter. For all TC adversaries A against
RevD-1, there exists a poly-reducible CRHF adversary B against FP, such that:

AdvTC
RevD-1,A(1λ) ≤ AdvCRHF

FP,B (1λ)

The TC game is defined in Fig. 7 and the CRHF game is defined in Fig. 3.

Proof. We poly-reduce any TC adversary A against RevD-1 into a CRHF ad-
versary B against FP. The explicit reduction is shown in Fig. 16 and the proof
readily follows from it.

(M,C ′, T ′)

return 1

AFMLE(1λ)ChallengerFMLE(1λ)

ChallengerFP(1λ) BFP(1λ)

∧(M 6= M ′)

If (M =⊥) ∨ (C ′ =⊥)

(M,C ′, T ′)

(M,M ′)

:= A1(1λ)

M = M ′ =⊥
Else

(K,C, T) := Π. E(1λ,M)
M ′ := Π.D(1λ,K,C ′, T ′)
If (M ′ =⊥)

M ′ := M

If (H(M) = H(M ′))

Else return 0

Fig. 16. Reducing an TC adversary A against RevD-1 into a CRHF adversary B against
FP (see the TC game for RevD-1 in Fig. 7 and CRHF game for FP in Fig. 3.

Theorem 3. Let λ be the security parameter. Then for all adversaries A,

AdvCXH
RevD-1,A(1λ) = 0.

The CXH game is defined in Fig. 7.

Proof. The function RevD-1. E(1λ,M) can be rewritten as RevD-1. Er(1λ,M)
because internally it generates and uses a random number r. So, the func-
tion RevD-1.U(1λ, i1, iρ,M0[i1, i1 + 1, · · · , iρ],RevD-1. Er2(1λ,M1), 0) is equiva-
lent to RevD-1. Er2(1λ,M0) (from the algorithms described in Fig. 14). Since,
RevD-1. Er1(1λ,M0) and RevD-1. Er2(1λ,M0) differ in the choice of random num-
ber only. Therefore, RevD-1. Er1(1λ,M0) is indistinguishable from RevD-1.U(1λ,
i1, iρ,M0[i1, i1 + 1, · · · , iρ],RevD-1. Er2(1λ,M1), 0).

36 S. Kandele and S. Paul

Theorem 4. Let λ be the security parameter. Then for all adversaries A,

AdvUNC-CDA
RevD-1,A (1λ) = 0

The UNC-CDA game is defined in Fig. 7.

Proof. The UNC-CDA game requires the proof P ∗ generated by adversary A to
be different from the actual proof P , and then P ∗ needs to be correctly verified
by the function RevD-1.V. However, this is not possible in RevD-1, because for
each challenge Q, the corresponding unique proof P is already stored in the
cloud (as the ciphertext) and some other value of P ∗ 6= P will never be accepted
by the function RevD-1.V.

7.2 The RevD-2 scheme

We describe our second FMLE scheme, namely, RevD-2. This construction is
motivated by the design of the authenticated encryption APE [2].

Description of RevD-2 The pictorial and algorithmic descriptions are given
in Figs. 17 and 18; all wires are λ-bit long. Let M denote the message to be
encrypted, M [i] denote the i-th block of message, and M [i][j] denote the j-th
bit of i-th block of message. It is worth noting that the decryption is executed in
the reverse direction of encryption. Below, we describe the 5-tuple of algorithms
(E ,D,U ,P,V) for RevD-2, in detail.

Encryption RevD-2. E. Fig. 17(a) shows the encryption of message M . The en-
cryption takes the parameter 1λ and message M and breaks it into several λ-bit
blocks, namely, M [1],M [2], · · · ,M [`]. Encryption of M is composed of encryp-
tions of individual blocks in sequence. Two variables r′0 and s′0 are assigned 0λ.
Two numbers R and R′ are chosen randomly from {0, 1}λ, and u1 and v1 are
assigned R and R′ respectively. Now we give the details of how the message
block M [j], for j := 1, 2, · · · `− 1 is encrypted: rj is assigned the XOR of M [j]
and r′j−1; sj is assigned the value of s′j−1; we compute (r′j ||s′j) as π(rj ||sj); we
compute uj+1||vj+1 as π(uj ||vj); and we obtain C[j] as the XOR of vj+1 and
r′j .

For the last block M [`], we perform the following operations: r` is assigned
the XOR of M [`] and r′`−1; s` is assigned the value of s′`−1; we compute (r′`||s′`)
as π(r`||s`); we compute u`+1||v`+1 as π(u`||v`); u′ is assigned the value of u`+1;
and v`+1 is XORed with s′` to obtain v′.

We assign s′` as the decryption key K, we concatenate C[1], C[2], · · · , C[`−
1]||u′||v′ to obtain the ciphertext C, and r′` as the tag T .

Decryption RevD-2.D. The decryption takes the parameter 1λ, decryption key
K, ciphertext C and tag T . Fig. 17(b) shows the decryption of ciphertext C.
The decryption takes the ciphertext C and breaks it into several λ-bit blocks,

Message-locked Encryption with File Update 37

0

0 K

M [1] M [2]

ππ

C[1]

π

M [`− 1]

π

C[2]

π

C[`− 1]

u′

v′

T

R

R′

π

M [`]

π π

u1

v1

u2

v2

u2

v2

u3

v3

u`+1

v`+1

u`−1

v`−1

u`

v`

u`

v`

r1

s1

r′1

s′1

r2

s2

r′2

s′2

r`−1

s`−1

r′`−1

s′`−1

r`

s`

r′`

s′`

r′0

s′0

(a) Pictorial description of RevD-2. E(1λ,M).

0

0 K

M [1] M [2]

ππ

C[1]

π

M [`− 1]

π

C[2]

π

C[`− 1]

u′

v′

T

u3

v3

u`+1

v`+1

R

R′

π

M [`]

π π
?

u1

v1

u2

v2

u2

v2

u`−1

v`−1

u`

v`

u`

v`

r1

s1

r′1

s′1

r2

s2

r′2

s′2

r`−1

s`−1

r′`−1

s′`−1

r`

s`

r′`

s′`

r′0

s′0

(b) Pictorial description of RevD-2.D(1λ,K,C, T).

0

0

M [1] M [m− 1]

ππ

C[1]

R

R′

π π

u1

v1

u2

v2

um−1

vm−1

r1

s1

r′1

s′1

rm−1

sm−1

r′0

s′0

r′m−1

s′m−1

rm

sm
π

C[m− 1]

um

vm
π

um

vm

M [m]

r′m

s′m

C[m]

M [`− 1]

π
r`−1

s`−1

r′`−1

s′`−1

C[`− 1]

M [`]

π
r`

s`

r′`

s′`
K

u′

v′

T

um+1

vm+1

π
u`−1

v`−1

u`

v`
π

u`+1

v`+1

u`

v`

r′m−1 rm

sm
π

π
um

vm

M ′[1]

r′m

s′m

C ′[m]

M ′[`−m]

π
r`−1

s`−1

r′`−1

s′`−1

C ′[`− 1]

M ′[`−m+ 1]

π
r`

s`

r′`

s′`
K ′

u′

v′

T ′

um+1

vm+1

π
u`−1

v`−1

u`

v`
π

u`+1

v`+1

u`

v`

(c) Pictorial description of RevD-2.U(1λ, ist, iend,Mnew, C, T,K, app).

0

0

M [1] M [n− 1]

ππ

C[1]

R

R′

π π

u1

v1

u2

v2

un−1

vn−1

r1

s1

r′1

s′1

rn−1

sn−1

r′0

s′0

r′n−1

s′n−1

rn

sn
π

C[n− 1]

un

vn
π

un

vn

M [n]

r′n

s′n

C[n]

M [`− 1]

π
r`−1

s`−1

r′`−1

s′`−1

C[`− 1]

M [`]

π
r`

s`

r′`

s′`
K

u′

v′

T

un+1

vn+1

π
u`−1

v`−1

u`

v`
π

u`+1

v`+1

u`

v`

u′′

v′′
π

u′`

v′`
π

u′`+1

v′`+1

u′`

v′`

u′`−1

v′`−1

u′n+1

v′n+1
C ′[n]

(d) Pictorial description of RevD-2.P(1λ, Q = (n, u′′, v′′), C, T,M,K).

Fig. 17. Diagrammatic description of RevD-2.

38 S. Kandele and S. Paul

RevD-2. E(1λ,M)

` := |M |/λ, r′0 := 0λ, s′0 := 0λ;
M [1]||M [2]|| · · · ||M [`] := M ;

R
$← {0, 1}λ, R′ $← {0, 1}λ;

u1 := R, v1 := R′;
for (j := 1, 2, · · · , `− 1)
rj := M [j]⊕ r′j−1, sj := s′j−1;
r′j ||s

′
j := π(rj ||sj);

uj+1||vj+1 := π(uj ||vj);
C[j] := vj+1 ⊕ r′j ;

r` := M [`]⊕ r′`−1, s` := s′`−1;
r′`||s

′
` := π(r`||s`), u`+1||v`+1 := π(u`||v`);

u′ := u`+1, v′ := v`+1 ⊕ s′`;
K := s′`, T := r′`;
C := C[1]||C[2]|| · · · ||C[`− 1]||u′||v′;
return (K,C, T);

RevD-2.D(1λ, K,C, T)

` := |C|/λ− 1, r′` := T , s′` := K;
C[1]||C[2]|| · · · ||C[`− 1]||u′||v′ := C;
u`+1 := u′,v`+1 := v′ ⊕ s′`;
u`||v` := π−1(u`+1||v`+1);
r`||s` := π−1(r′`||s

′
`);

If ` = 1, then r′`−1 := 0λ;
Else r′`−1 := C[`− 1]⊕ v`;
s′`−1 := s`, M [`] := r′`−1 ⊕ r`;
for (j := `− 1, `− 2, · · · , 1)
rj ||sj := π−1(r′j ||s

′
j);

uj ||vj := π−1(uj+1||vj+1);
If j = 1, then r′j−1 := 0λ;
Else r′j−1 := C[j − 1]⊕ vj ;
M [j] := rj ⊕ r′j−1, s

′
j−1 := sj ;

M := M [1]||M [2]|| · · · ||M [`];
if s′0 = 0λ, then return M ;
else return ⊥;

RevD-2.P(1λ, n, u′′, v′′, C, T,M)

` := |C|/λ− 1, s′` := K;
C[1]||C[2]|| · · · ||C[`− 1]||u′||v′ := C;
u`+1 := u′, v`+1 := v′ ⊕ s′`;
u′`+1 := u′′, v′`+1 := v′′ ⊕ s′`;
for (j := l, l− 1, · · · , n + 1)
uj ||vj := π−1(uj+1||vj+1);
u′j ||v

′
j := π−1(u′j+1||v

′
j+1);

C′[n] := C[n]⊕ vn+1 ⊕ v′n+1;
return C′[n];

RevD-2.U(1λ, ist, iend,Mnew, C, T,K, app)

` := |C|/λ− 1, m := dist/λe;
C[1]||C[2]|| · · · ||C[`− 1]||u′||v′ := C;
s′`+1 := K, r′` := T ;
u`+1 := u′, v`+1 := v′ ⊕ s′`;
u`||v` := π−1(u`+1||v`+1);
r`||s` := π−1(r′`||s

′
`);

If ` = 1, then r′`−1 := 0λ;
Else r′`−1 := C[`− 1]⊕ v`;
s′`−1 := s`, M [`] := r′`−1 ⊕ r`;
for (j := `− 1, `− 2, · · · ,m)
rj ||sj := π−1(r′j ||s

′
j);

uj ||vj := π−1(uj+1||vj+1);
If j = 1, then r′j−1 := 0λ;
Else r′j−1 := C[j − 1]⊕ vj ;
M [j] := rj ⊕ r′j−1, s

′
j−1 := sj ;

idx1 := ist mod λ;
if idx1 = 0, then idx1 := λ;
M ′ = M [m][1]||M [m][2]|| · · ·

· · · ||M [m][idx1 − 1]||Mnew;
if app = 0
n := diend/λe, idx2 := iend mod λ;
If idx2 = 0, then idx2 := λ;
M ′ = M ′||M [n][idx2 + 1]||M [n][idx2 + 2]

|| · · · ||M [n][λ]||M [n + 1]
||M [n + 2]|| · · · ||M [`];

Else ` := (m− 1) + (|M ′|/λ);
M ′[1]||M ′[2]|| · · · ||M ′[`−m + 1] := M ′;
for (j := m,m + 1, · · · , `− 1)
rj := M ′[j −m + 1]⊕ r′j−1, sj := s′j−1;
r′j ||s

′
j := π(rj ||sj);

uj+1||vj+1 := π(uj ||vj);
C′[j] := vj+1 ⊕ r′j ;

r` := M ′[`−m + 1]⊕ r′`−1, s` := s′`−1;
r′`||s

′
` := π(r`||s`);

u`+1||v`+1 := π(u`||v`);
u′ := u`+1, v′ := v`+1 ⊕ s′`;
K′ := s′`, T

′ := r′`;
C′ := C[1]||C[2]|| · · · ||C[m− 1]||C′[m]

||C′[m + 1]|| · · · ||C′[`− 1]||u′||v′;
return (K′, C′, T ′);

RevD-2.V(1λ, n, C, T, P)

if C[n] = P , then return TRUE;
Else return FALSE;

Fig. 18. Algorithmic description of the FMLE scheme RevD-2.

namely, C[1], C[2], · · · , C[` − 1]||u′||v′. Decryption of C is composed of decryp-
tions of individual blocks executed in the direction opposite to the encryption.
For decrypting the last block, we first perform following operations: we assign
T to r′`; we assign K to s′`; we assign u′ to u`+1; v′ is XORed with s′` to ob-
tain v`+1; we compute u`||v` as π−1(u`+1||v`+1); r`||s` as π−1(r′`||s′`); C[`− 1] is

Message-locked Encryption with File Update 39

XORed with v` to obtain r′`−1, s` is assigned to s′`−1; and r′`−1 is XORed with
r` to obtain M [`].

Now we give the details of how the ciphertext block C[j] for j := ` − 1, ` −
2, · · · , 1 is decrypted: we compute rj ||sj as π−1(r′j ||s′j); we compute uj ||vj as
π−1(uj+1||vj+1); if the value of j is 1, then we assign r′j−1 as 0λ, otherwise r′j−1
is assigned the XOR of C[j − 1] and vj ; M [j] is assigned the XOR of rj and
r′j−1; and s′j−1 is assigned the value of sj .

We concatenateM [1],M [2], · · · ,M [`] to obtain the messageM . The message
is only returned if the value of variable s1 is equal to 0λ.

Update RevD-2.U . The update takes the parameter 1λ, the index of starting and
ending bits ist and iend, new message bits Mnew ∈ M, the decryption key K,
the ciphertext to be updated C, the tag T and the bit app. Fig. 17(c) shows
the update on ciphertext C. The update takes the ciphertext C and breaks it
into several λ-bit blocks, namely, C[1], C[2], · · · , C[`−1]||u′||v′ and computes the
index of block from where the update starts m as the ceil value of ist/λ. Update
of C is composed of decryptions of individual blocks executed in the direction
opposite to the encryption upto m-th block, calculating r′m−1 and s′m−1, and
then encrypting the new updated message from m-th block to the last block.
The decryption and encryption processes are already explained above.

We assign the new s′` as the decryption key K ′, we concatenate C[1], C[2],
· · · , C[m− 1], C ′[m], C ′[m+ 1], · · · , C ′[`− 1]||u′||v′ to obtain the ciphertext C ′,
and r′` as the tag T ′.

Proof of ownership by Prover RevD-2.P. The proof of ownership by prover takes
the parameter 1λ, the challenge Q = (n, u′′, v′′), the message M , the decryption
key K, the ciphertext C and the tag T . Fig. 17(d) shows the proof of ownership
by prover for the ciphertext C. The algorithm takes the ciphertext C and breaks
it into several λ-bit blocks, namely, C[1], C[2], · · · , C[`−1]||u′||v′; assignsK to s′`;
the values of u′ and u′′ are assigned to u`+1 and u′`+1, and the values of v′ and v′′
are XORed with s′` to obtain v`+1 and v′`+1. Now, for j := `, `−1, · · · , n+1, we
calculate the values of uj ||vj as π−1(uj+1||vj+1) and u′j ||v′j as π−1(u′j+1||v′j+1).
The values of C[n], vn+1 and v′n+1 are XORed to get the proof C ′[n].

Proof of ownership by Verifier RevD-2.V. The proof of ownership by verifier
takes the parameter 1λ, the challenge Q = n, the ciphertext C, the tag T and
the proof P as inputs, and checks if C[n] equals the proof P and returns TRUE
if the equality holds, otherwise returns FALSE.

Security of RevD-2 The security proofs for the RevD-1 and RevD-2 are similar.

Resistance of RevD-1 and RevD-2 against Dictionary Attack Since,
RevD-1 and RevD-2 have randomized encryption algorithms, they are not vul-
nerable to dictionary attacks (see Sect. 2.2 for a definition of dictionary attack).

40 S. Kandele and S. Paul

7.3 Comparing RevD-1 and RevD-2 with the other FMLE schemes

In Table 1, we compare the RevD-1 and RevD-2 with the other FMLE construc-
tions described in Sects. 5 and 6, on the basis of time and space complexities,
and the security properties.

In summary, the FMLE schemes RevD-1 and RevD-2 possess the randomiza-
tion property of MLE construction RCE, and the efficient update property of
UMLE. It is also noted that it outperforms all the constructions in terms of the
number of passes.

8 Conclusion

In this paper, we present a new cryptographic primitive FMLE and two new con-
structions of it: RevD-1 and RevD-2. We showed that these constructions perform
better – both with respect to time and memory – than the existing constructions.
The high performance is attributed to a unique property named reverse decryp-
tion of the FP hash function and the APE authenticated encryption, on which
these new constructions are based. The only disadvantage is, perhaps, that these
constructions are not STC secure. We leave as an open problem construction of
an STC secure efficient FMLE.

References

1. Abadi, M., Boneh, D., Mironov, I., Raghunathan, A., Segev, G.: Message-Locked
Encryption for Lock-Dependent Messages. In: Canetti, R., Garay, J. A. (eds.)
CRYPTO 2013, LNCS, vol. 8042, pp. 374–391. Springer, Santa Barbara (2013).
https://doi.org/10.1007/978-3-642-40041-4_21

2. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N.,
Yasuda, K.: APE: Authenticated Permutation-Based Encryption for Lightweight
Cryptography. In: Cid, C., Rechberger, C. (eds.) Fast Software Encryption -
21st International Workshop, FSE 2014, London, UK, March 3-5, 2014, Re-
vised Selected Papers, LNCS, vol. 8540, pp. 168–186. Springer, London (2014).
https://doi.org/10.1007/978-3-662-46706-0_9

3. Andreeva, E., Daemen, J., Mennink, B., Assche, G. V.: Security of Keyed Sponge
Constructions Using a Modular Proof Approach. In: Leander, G. (ed.) Fast Software
Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-
11, 2015, Revised Selected Papers, LNCS, vol. 9054, pp. 364–384. Springer, Istanbul
(2015). https://doi.org/10.1007/978-3-662-48116-5_18

4. Bellare, M., Keelveedhi, S.: Interactive Message-Locked Encryption and Secure
Deduplication. In: Katz, J. (ed.) Public-Key Cryptography - PKC 2015 - 18th
IACR International Conference on Practice and Theory in Public-Key Cryptog-
raphy, Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceedings, LNCS, vol.
9020, pp. 516–538. Springer, Gaithersburg (2015). https://doi.org/10.1007/978-3-
662-46447-2_23

5. Bellare, M., Keelveedhi, S., Ristenpart, T.: DupLESS: Server-Aided Encryption for
Deduplicated Storage. In: King, S. (ed.) USENIX 2013, pp. 179–194.

Message-locked Encryption with File Update 41

XXXXXXXParam.
Const. F-CE F-HCE2 F-RCE F-UMLE RevD-1/RevD-2

[15] [6] [6] [20] This Paper
Time of E

• Key Gen cH|F | cH|F | cH|F |
(|F |
B

+ logB/λ |F |
)

cHB −

• Tag Gen cH|F | cHλ cHλ cH|F | +
(|F |
B

+ logB/λ |F |
)

cHB −

• Cipher cSE|F | cSE|F | cSE|F |
(|F |
B

+ logB/λ |F |
)

cSEB 2 ·
|F |
λ

cπ2λ

of passes 3 2 1 1 + logB/λ |F | 1
Time of D

• Plaintext cSD|F | cSD|F | cSD|F |
(|F |
B

+ logB/λ |F |
)

cSDB 2 ·
|F |
λ

c
π
−1
2λ

• Tag Verif cH|F | cH|F | + cHλ cH|F | + cHλ
(|F |
B

+ logB/λ |F |
)

cHB −

of passes 2 2 1 1 + logB/λ |F | 1
Time of U

• Decryp cSD|F | cSD|F | cSD|F | logB/λ |F |. cSDB 2 ·
|F ′|
λ

c
π
−1
2λ

• Encryp cSE|F | cSE|F | cSE|F | logB/λ |F |. cSEB 2 ·
|F ′|
λ

cπ2λ

• Key Gen cH|F | cH|F | cH|F | logB/λ |F |. cHB −

• Tag Gen cH|F | cHλ cHλ logB/λ |F |. cHB + cH|F | −

of passes 4 3 1 1 +
logB/λ |F |
|F |

2
|F ′|
|F |

Time of P

• Gen Proof negl. negl. cSD|F | + cSE|F | negl. 2
|F | − k
λ

c
π
−1
2λ

of passes 0 0 1 0 1−
k

|F |
Storage
• Key λ λ λ λ λ

• Ciphertext |F | |F | |F |+ λ |F |+ logB/λ |F | · B |F |+ λ

• Tag λ λ λ
(|F |
B

+ logB/λ |F |
)
λ λ

Security
• TC X X X X X

• STC X × × X ×
• PRV-CDA X X X X X

• PRV$-CDA X X X X X

• CXH X X X X X

• UNC-CDA X X X X X

• Dict. Attack × × X × X

Table 1. RevD-1 and RevD-2 are compared with the other FMLE schemes. Here, λ is
the security parameter; F is the file to be encrypted; |F | denotes the bit-length of F ;
B is the block-size used in the UMLE scheme; F ′ is the shortest suffix of F containing
all modified bits; k is the index of the first bit in the challenge in the PoW protocol;
cH|F | , cHB and cHλ are the costs of computing hashes on inputs of lengths |F |, B and
λ respectively; cSE|F | and cSEB are the costs of encryption (in a one-time symmetric
encryption) of the messages of lengths |F | and B respectively; cSD|F | and cSDB are the
costs of decryption of the messages of lengths |F | and B respectively; cπ2λ and c

π−1
2λ

are the costs of computing the 2λ-bit permutation and its inverse respectively.

42 S. Kandele and S. Paul

6. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-Locked Encryption and Secure
Deduplication. In: Johansson, T., Nguyen, P. Q. (eds.) EUROCRYPT 2013, LNCS,
vol. 7881, pp. 296–312. Springer, Athens (2013). https://doi.org/10.1007/978-3-642-
38348-9_18

7. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Frame-
work for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006, LNCS, vol. 4004, pp. 409-426. Springer, Saint Petersburg (2006).
https://doi.org/10.1007/11761679_25

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G. V.: Sponge Functions. ECRYPT
2007, http://sponge.noekeon.org/SpongeFunctions.pdf. Last accessed 1 March
2012

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G. V.: On the Indifferentiabil-
ity of the Sponge Construction. In: Smart, N. P. (ed.) EUROCRYPT 2008,
Istanbul, Turkey, LNCS, vol. 4965, pp. 181-197. Springer, Istanbul (2008).
https://doi.org/10.1007/978-3-540-78967-3_11

10. Bertoni, G., Daemen, J., Peeters, M., Assche, G. V.: The Keccak Hash Function.
In: The 1st SHA-3 Candidate Conference 2009, Leuven, Belgium, (2009).

11. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the Sponge: Single-
Pass Authenticated Encryption and Other Applications. In Miri, A., Vaudenay, S.
(eds.) Selected Areas in Cryptography - 18th International Workshop, SAC 2011,
Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers, LNCS, vol.
7118, pp. 320–337. Springer, Toronto (2011). https://doi.org/10.1007/978-3-642-
28496-0_19

12. Bertoni, G., Daemen, J., Peeters, M., Assche, G. V., Keer, R. V.: CAESAR submis-
sion: KETJE v1, (2014). https://competitions.cr.yp.to/round1/ketjev1.pdf

13. Canard, S., Laguillaumie, F., Paindavoine, M.: Verifiable Message-Locked En-
cryption. In: Foresti, S., Persiano, G. (eds.) Cryptology and Network Secu-
rity - 15th International Conference, CANS 2016, Milan, Italy, November 14-
16, 2016, Proceedings, LNCS, vol. 10052, pp. 299–315. Springer, Milan (2016).
https://doi.org/10.1007/978-3-319-48965-0_18

14. Chen, R., Mu, Y., Yang, G., Guo, F.: BL-MLE: Block-Level Message-Locked
Encryption for Secure Large File Deduplication. In: IEEE Trans. Informa-
tion Forensics and Security 2015, vol. 10, no. 12, pp. 2643–2652 (2015).
https://doi.org/10.1109/TIFS.2015.2470221

15. Douceur, J. R., Adya, A., Bolosky, W. J., Simon, D., Theimer, M.: Reclaiming
Space from Duplicate Files in a Serverless Distributed File System. In: ICDCS
2002, pp. 617-624 (2002). https://doi.org/10.1109/ICDCS.2002.1022312

16. Huang, K., Zhang, X., Wang, X.: Block-Level Message-Locked Encryption with
Polynomial Commitment for IoT Data. In: Journal of Information Science and En-
gineering (JISE) 2017, vol. 33, no. 4, pp. 891–905 (2017). http://jise.iis.sinica.
edu.tw/JISESearch/pages/View/PaperView.jsf?keyId=157_2047

17. Jiang, T., Chen, X., Wu, Q., Ma, J., Susilo, W., Lou, W.: Towards Efficient Fully
Randomized Message-Locked Encryption. In: Liu, J. K., Steinfeld, R. (eds.) Informa-
tion Security and Privacy - 21st Australasian Conference, ACISP 2016, Melbourne,
VIC, Australia, July 4-6, 2016, Proceedings, Part I, LNCS, vol. 9722, pp. 361–375.
Springer, Melbourne (2016). https://doi.org/10.1007/978-3-319-40253-6_22

18. Paul, S., Homsirikamol, E., Gaj, K.: A Novel Permutation-based Hash Mode of
Operation FP and the Hash Function SAMOSA. In: Galbraith, S., Nandi, M. (eds.)
Progress in Cryptology - INDOCRYPT 2012, Kolkata, WB, India, LNCS, vol. 7668,
pp. 514–532. Springer, Verlag (2012).

Message-locked Encryption with File Update 43

19. Wang, H., Chen, K., Qin, B., Lai, X., Wen, Y.: A new construction on ran-
domized message-locked encryption in the standard model via UCEs. In: SCI-
ENCE CHINA Information Sciences 2017, vol. 60, no. 5, pp. 52101 (2017).
https://doi.org/10.1007/s11432-015-1037-2

20. Zhao, Y., Chow, S. S. M: Updatable Block-Level Message-Locked Encryption. In:
Karri, R., Sinanoglu O., Sadeghi A., Yi, X. (eds.) Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, AsiaCCS 2017,
Abu Dhabi, United Arab Emirates, April 2-6, 2017, pp. 449–460. ACM (2017).
https://doi.org/10.1145/3052973.3053012

