
Lattice-based Revocable (Hierarchical) IBE with

Decryption Key Exposure Resistance∗

†Shuichi Katsumata ‡Takahiro Matsuda §Atsushi Takayasu

July 14, 2020

Abstract

Revocable identity-based encryption (RIBE) is an extension of IBE that supports a key
revocation mechanism, which is an indispensable feature for practical cryptographic schemes.
Due to this extra feature, RIBE is often required to satisfy a strong security notion unique
to the revocation setting called decryption key exposure resistance (DKER). Additionally,
hierarchal IBE (HIBE) is another orthogonal extension of IBE that supports key delegation
functionalities allowing for scalable deployments of cryptographic schemes. So far, R(H)IBE
constructions with DKER are only known from bilinear maps, where all constructions rely
heavily on the so-called key re-randomization property to achieve the DKER and/or hierarchal
feature. Since lattice-based schemes seem to be inherently ill-fit with the key re-randomization
property, no construction of lattice-based R(H)IBE schemes with DKER are known.

In this paper, we propose the first lattice-based RHIBE scheme with DKER without relying
on the key re-randomization property, departing from all the previously known methods. We
start our work by providing a generic construction of RIBE schemes with DKER, which uses as
building blocks any two-level standard HIBE scheme and (weak) RIBE scheme without DKER.
Based on previous lattice-based RIBE constructions without DKER, our result implies the first
lattice-based RIBE scheme with DKER. Then, building on top of our generic construction, we
construct the first lattice-based RHIBE scheme with DKER, by further exploiting the algebraic
structure of lattices. To this end, we prepare a new tool called the level conversion keys,
which enables us to achieve the hierarchal feature without relying on the key re-randomization
property. In this full version, we give the formal proofs of our proposed schemes.

∗This is the full version of [KMT19] which appeared in PKC 2019. The first author was partially supported
by JST CREST Grant Number JPMJCR1302 and JSPS KAKENHI Grant Number 17J05603. The second author
was partially supported by JST CREST Grant Number JPMJCR1688. The first and second authors were partially
supported by JST CREST Grant Number JPMJCR19F6. The third author was partially supported by JST CREST
Grant Number JPMJCR14D6.

†National Institute of Advanced Industrial Science and Technology (AIST), Japan. During a part of this work,
the author belonged to the University of Tokyo, Japan. The author is supported by a JSPS Fellowship for Young
Scientists.

‡National Institute of Advanced Industrial Science and Technology (AIST), Japan.
§National Institute of Information and Communications Technology, Japan. During a part of this work, the

author belonged to the University of Tokyo, Japan, and National Institute of Advanced Industrial Science and
Technology (AIST), Japan. e-mail: takayasu@nict.go.jp

1

1 Introduction

Identity-based encryption (IBE) is an advanced form of public key encryption, where an arbitrary
string can be used as user’s public keys. One extension of IBE is hierarchical IBE (HIBE), which
further supports a key delegation functionality; an attractive feature for scalable deployments
of IBE. However, as opposed to ordinary public key encryption, (H)IBE does not support a
key/user revocation mechanism due to the absence of the public key infrastructures and there are
no trivial ways to drive malicious users out from an ordinary (H)IBE system. Therefore, adding
a key revocation mechanism to (H)IBE is considered to be one of the important research themes
when considering practical deployments of (H)IBE. For instance, Boneh and Franklin [BF03]
proposed a method for adding a simple revocation mechanism to any IBE system. However, the
bottleneck of their proposal was its efficiency. The number of keys generated for every time period
was proportional to the number of all users in the IBE system and the scheme did not scale if the
number of users became too large. Since then, constructing an (H)IBE scheme with a scalable
revocation mechanism has been a sought-after goal. Below, we refer to (H)IBE that allows for
such a scalable revocation mechanism as revocable (H)IBE.

The first revocable IBE (RIBE) scheme was proposed by Boldyreva et al. [BGK08]. RIBE re-
quires three types of keys: a secret key, a key update, and a decryption key. As in IBE, each user is
issued a secret key that is associated with his identity. However, in order to achieve the key revoca-
tion mechanism, each user’s secret key itself does not allow them to decrypt ciphertexts. To allow
the users to decrypt, the key generation center (KGC) broadcasts key updates for every time period
through a public channel. Roughly, the key update incorporates public information of the users
that are currently allowed in the system. Specifically, although the key update is meaningless in-
formation to revoked users, it allows non-revoked users to combine with their secret keys to derive
a decryption key, which effectively enables them to properly decrypt ciphertexts. To achieve a scal-
able revocation mechanism, Boldyreva et al. utilized a subset cover framework called the complete
subtree (CS) method [NNL01], so that the size of the key update sent by the KGC in each time
period will be logarithmic in the number of system users. The work of Boldyreva et al. [BGK08]
attracted numerous followup works [LV09, SE13, ISW17, LLP17, WES17] and their RIBE con-
struction was also extended to revocable hierarchical IBE (RHIBE) which simultaneously supports
scalable key revocation and key delegation functionalities [RLPL15, ESY16, SE16, LP18].

Considering that RIBE and RHIBE were introduced by envisioning the real-world use of
(H)IBE systems, their security definitions should take into account as many realistic threats and
attack scenarios as possible. For example, leakage of decryption keys due to social/cyber at-
tacks or unexpected human errors are common incidents in practice. Motivated by this, Seo and
Emura [SE13, SE16] introduced a security notion unique to R(H)IBE called decryption key expo-
sure resistance (DKER). Roughly speaking, this security notion guarantees that an exposure of a
user’s decryption key at some time period will not compromise the confidentiality of ciphertexts
that are encrypted for different time periods — a clearly desirable security guarantee in practice.
After the introduction of the new security notion DKER, it has quickly become one of the de-
fault security requirements for R(H)IBE and attracted many followup works concerning R(H)IBE
schemes with DKER [ISW17, LLP17, WES17, RLPL15, ESY16, LP18, SE16, MLC+15, PLL15].
So far constructions of R(H)IBE schemes with DKER are all based on bilinear or multilinear
maps.

State of Affairs of Lattice-based R(H)IBE. Lattice-based cryptography has been paid much
attention in the last decade, however, construction of R(H)IBE schemes with DKER has been
rather elusive. In 2012, Chen et al. [CLL+12] proposed the first lattice-based RIBE scheme

2

without DKER; a work before the now default security notion of DKER was formalized by Seo
and Emura [SE13], building on top of the standard IBE constructions of [ABB10, CHKP12]. The
only followup work was done recently by Takayasu and Watanabe [TW17] who partially solved
the problem of achieving RIBE with DKER by proposing a variant of [CLL+12]. Unfortunately,
their scheme only satisfies bounded DKER, a strictly weaker notion than DKER, which only
allows a bounded number of decryption keys to be leaked. Therefore, constructing an RIBE
scheme with (unbounded) DKER based on lattices still remains an unsolved problem. This is in
sharp contrast with the bilinear map setting where many constructions are known [SE13, ISW17,
LLP17, WES17, RLPL15, ESY16, LP18, SE16]. Moreover, extending the RIBE scheme of Chen
et al. [CLL+12] to the hierarchal setting seems to be highly non-trivial since no construction of
lattice-based RHIBEs are known regardless of the scheme being DKER or not.

One of the main reasons why constructing R(H)IBE schemes with DKER in the lattice-setting
has been difficult is because the algebraic structure of lattices seems to be ill-fit with the so-
called key re-randomization property. So far, all RIBE schemes [SE13, ISW17, LLP17, WES17,
MLC+15, PLL15] and RHIBE schemes with DKER [RLPL15, ESY16, LP18, SE16] are based on
number theoretical assumptions, e.g., bilinear maps and multilinear maps, which all rely heavily
on this key re-randomization property. At a high level, this is the property with which each
user can re-randomize their key so that the re-randomized key is distributed identically to (or
at least statistically close to) a key generated using a fresh randomness. In essence, this is the
central property that enables DKER. Furthermore, this property is also heavily utilized when
generating the children’s secret keys for fixed randomness without using any secret information,
hence, achieving the hierarchal feature. However, unfortunately, due to the difference in the
algebraic structure of bilinear, multilinear maps and lattices, we are currently unaware of any
way of achieving the key re-randomization property from lattices.1 Therefore, to construct lattice-
based R(H)IBE schemes with DKER, it seems that we must deviate from prior methodologies
and develop new techniques.

Our Contributions. In this paper, we propose the first lattice-based R(H)IBE scheme with
DKER secure under the learning with errors (LWE) assumption. The techniques used in this work
highly depart from previous works that rely on the key re-randomization property for achieving
DKER and the key delegation functionality. Specifically, we show a generic construction of an
RIBE scheme with DKER from any two-level standard HIBE scheme and RIBE scheme without
DKER, thus bypassing the necessity of the key re-randomization property. Then, building on top
of the idea of our generic construction, we further exploit the algebraic structure of lattices to
construct an RHIBE scheme with DKER. We provide a brief summary of our work below and
refer the detailed technical overview to Section 2.

Our first contribution is a generic construction of RIBE with DKER from any RIBE without
DKER and two-level HIBE. The new tools we introduce to circumvent the necessity of the key
re-randomization property are called leveled ciphertexts and leveled decryption keys. At a high
level, each “level” for the leveled ciphertexts and decryption keys is associated to the RIBE
scheme without DKER and the two-level HIBE scheme, respectively; one level is responsible for
achieving the revocation mechanism and the other is responsible for the key re-randomization
mechanism. Therefore, informally, our leveled structure allows for a partial key re-randomization
mechanism. Using the lattice-based RIBE scheme without DKER of Chen et al. [CLL+12] and
any lattice-based HIBE scheme, e.g., [ABB10, CHKP12], our result implies the first lattice-based

1A knowledgeable reader familiar with lattice-based cryptography may wonder why the existing RIBE schemes
[CLL+12, TW17] cannot be easily modified to support the property by using short trapdoor bases. We provide
detailed discussions on why this simple modification is insufficient in Section 2.

3

RIBE scheme with DKER. Furthermore, since any IBE schemes can be converted to an HIBE
scheme [DG17] (in the selective-identity model) and any RIBE scheme without DKER implies an
IBE scheme, our result also implies a generic conversion of any RIBE scheme without DKER into
an RIBE scheme with DKER.

Our second contribution is the construction of the first lattice-based RHIBE scheme with
DKER. It is built on top of the idea of our generic construction and further exploits the algebraic
structure unique to lattices. Namely, to achieve the key delegation functionality, i.e., hierarchal
feature, we additionally introduce a tool called level conversion keys. In essence, this tool enables a
user to convert his (secret) decryption key to a (public) key update for users of different hierarchal
levels. In other words, the level conversion key allows one to delegate his key to its children without
re-randomizing his key. Although the idea is simple, the concrete machinery to blend the level
conversion keys securely into the construction is rather contrived and we refer the details to
Section 2.

Finally, we state some side contributions worth highlighting in our paper. Firstly, we re-
formalize the syntax and security definitions for R(H)IBE. For instance, since previous security
definitions [BGK08, SE13, SE14, SE16] had some ambiguity (e.g. in some cases it is not clear
when the values such as secret keys and key updates are generated during the security game),
it was up to the readers to interpret the definitions and the proofs. Therefore, in our work
we provide a refined security definition for R(H)IBE which in particular is a more rigorous and
explicit treatment than the previous definitions. Secondly, we provide a formal treatment on an
implicit argument that has been frequently adopted in the R(H)IBE literature. In particular,
we introduce a simple yet handy “strategy-dividing lemma”, which helps us simplify the security
proofs for R(H)IBE schemes in general. For the details, see Section 4.

In this full version, we show the following additional contents which were not included in the
preliminary version of the paper [KMT19];

• the formal proof of the strategy-dividing lemma (Lemma 8),

• the formal proof of the security of our proposed generic construction of RIBE with DKER
(Theorem 1),

• the formal proofs of the correctness and the security of our proposed lattice-based RHIBE
scheme with DKER including the parameter selection (Lemma 11 and Theorem 2).

The additional contents will help the reader better understand our results and techniques in depth.

Related Works. Boldyreva et al. [BGK08] proposed the first RIBE scheme that achieved
selective-identity security from bilinear maps, and Libert and Vergnaud [LV09] extended their
results to the adaptive setting. The first lattice-based RIBE scheme was proposed by Chen et
al. [CLL+12], and the first RHIBE scheme was proposed by Seo and Emura [SE14] based on
bilinear maps. Recently, Chang et al. [CCKS18] proposed an RIBE scheme in the random oracle
model from codes with rank metric and Hu et al. [HLCL18] proposed an RIBE scheme from the
CDH assumption without pairing.

After Seo and Emura [SE13] introduced the security notion of DKER along with the first
proposal of bilinear map-based RIBE scheme with DKER, several improvements and variants
have been proposed from bilinear maps [ISW17, LLP17, WES17] and multilinear maps [MLC+15,
PLL15]. Takayasu and Watanabe [TW17] proposed a lattice-based RIBE scheme with bounded
DKER; a strictly weaker notion than DKER. Ma and Lin [ML19] recently proposed a generic
construction of RIBE without DKER from IBE, and a generic construction of RIBE with DKER
from 2-level HIBE.

4

The notion of RHIBE was first formalized by Seo and Emura [SE14]. However, the security
definition did not capture collusion resistance. Subsequently, Seo and Emura [SE16] revised the
security definition to capture collusion resistance (which they called insider security). Further-
more, they introduced the notion of DKER in the non-hierarchical RIBE setting. Several RHIBE
schemes from bilinear maps [RLPL15, ESY16, SE16, LP18] have been proposed in this model.
We call RHIBE only when a scheme satisfies collusion resistance (i.e., insider security). In this
paper, we further establish the security definition by making the behaviors of an adversary and
the challenger more rigorous and explicit than the ones adopted in previous works. Furthermore,
we introduce a stronger definition of DKER than Seo and Emura’s definition.

The revocation mechanism we study in this paper is sometimes referred to as indirect re-
vocation. A direct revocation mechanism does not require key updates and has been discussed
for attribute-based encryption [AI09a, AI09b] and predicate encryption [NMS12]. Recently, Ling
et al. proposed the first lattice-based directly revocable predicate encryption scheme [LNWZ17]
and its server-aided variant [LNWZ18]. Finally, there is a variant of RIBE named server-aided
RIBE [QDLL15, CDLQ16, NWZ16] iwhere most of the computation of the users are delegated to
an untrusted server.

Roadmap. In Section 2, we provide an overview of our constructions. In Section 3, we recall basic
tools for lattice-based cryptography. In Section 4, we introduce formal definitions for RHIBE. In
Section 5, we show a generic construction of RIBE with DKER. Finally, in Section 6, we show
our main result concerning the first lattice-based RHIBE scheme with DKER.

Notations. Before diving into the technical details, we prepare some notations. Let N be
the set of all natural numbers. For non-negative integers n, n′ ∈ N with n ≤ n′, we define
[n, n′] := {n, n+ 1, . . . , n′}, and we extend the definition for n > n′ by [n, n′] = ∅. For notational
convenience, for n ∈ N, we define [n] := [1, n]. Throughout the paper, λ ∈ N denotes the security
parameter.

As usual in the literature of (R)HIBE, an identity ID of a user at level ℓ in the hierarchy in
an RHIBE scheme is expressed as a length-ℓ vector ID = (id1, · · · , idℓ). Here, let |ID| denote the
length of ID, i.e., |ID| = ℓ. In order not to mix up with an identity ID = (id1, id2, . . .) treated in an
RHIBE scheme and its element idi, we sometimes call the former a hierarchical identity and the
latter an element identity. We refer to the set of all element identities as the element identity space
and denote it by ID. We assume the element identity space is determined only by the security
parameter λ. Thus, for example, the space to which level-ℓ identities belong is expressed as (ID)ℓ.
For notational convenience, for ℓ ∈ N we define (ID)≤ℓ :=

⋃
i∈[ℓ](ID)i, and the hierarchal identity

space IDh := (ID)≤L, where L denotes the maximum depth of the hierarchy. We denote by “kgc”
the special hierarchical identity for the level-0 user, i.e., the key generation center (KGC).

Like an ordinary vector, we consider a prefix of hierarchical identities. For example, for a
level-ℓ hierarchical identity ID = (id1, . . . , idℓ) and t ≤ ℓ, ID[t] represents the length-t prefix of
ID, i.e., ID[t] = (id1, . . . , idt). We denote by “pa(ID)” the identity of its parent (i.e. the direct

ancestor), namely, if ID ∈ (ID)ℓ, then pa(ID) := ID[ℓ−1] = (id1, . . . , idℓ−1), and pa(ID) for a level-
1 identity ID ∈ ID is defined to be kgc. For a level-ℓ hierarchical identity ID = (id1, . . . , idℓ)
and an element identity idℓ+1, ID∥idℓ+1 represents a level-(ℓ + 1) hierarchical identity such that
ID∥idℓ+1 = (id1, . . . , idℓ, , idℓ+1)). We denote by “prefix(ID)” the set consisting of itself and all of
its ancestors, namely, prefix(ID) := {ID[1], ID[2], . . . , ID[|ID|] = ID}. Also, for ID ∈ (ID)ℓ, we denote

by “ID∥ID” the subset of (ID)ℓ+1 that contains all the members who have ID as its parent.
We treat vectors in their column form. For a vector v ∈ Rn, denote ∥v∥ as the standard

Euclidean norm. For a matrix R ∈ Rn×n, denote ∥R∥GS as the longest column of the Gram-

5

Schmidt orthogonalization of R and denote ∥R∥2 as the largest singular value. We denote Im as
the m ×m identity matrix and 0n×m as the n ×m zero matrix. We sometimes simply write 0n
to denote the (column) zero vectors.

2 Technical Overview

In this section, we provide the technical overview of our results. In order to make the lattice-based
RHIBE overview easier to follow, we present the details of our generic construction of RIBE with
DKER using lattice terminologies. The general idea presented below translates naturally to our
generic construction. To this end, we first prepare two standard hash functions used in lattice-
based cryptography: one for the users ID ∈ IDh = ID≤L, where each element identity space is
defined by ID = Zn

q \ {0n}, and another for the time period2 t ∈ T ⊂ Zn
q \ {0n}. In particular,

for a user ID = (id1, . . . , idℓ) ∈ (Zn
q \ {0n})≤L and time period t ∈ Zn

q \ {0n} we use the following
hash functions E(·) and F(·):

E(ID) := [B1 +H(id1)G| · · · |Bℓ +H(idℓ)G] ∈ Zn×ℓm
q ,

F(t) := BL+1 +H(t)G ∈ Zn×m
q ,

(1)

where (Bj)j∈[L+1] are random matrices in Zn×m
q chosen at setup of the scheme and G is the gadget

matrix [MP12]. Here, H : Zn
q → Zn×n

q is a specific hash function used to encode an identity to

a matrix, and its definition is provided in Section 3. Notice that for any ID ∈ (Zn
q \ {0n})ℓ

and idℓ+1 ∈ Zn
q \ {0n}, we have E(ID∥idℓ+1) = [E(ID)|Bℓ+1 + H(idℓ+1)G]. Finally, we define

E(kgc) := ∅.

Review of RIBE without DKER. We first recall Chen et al.’s lattice-based RIBE scheme
without DKER [CLL+12] in Figure 1. Here, A and u in the master public key PP are a matrix
in Zn×m

q and a vector in Zn
q , respectively, and TA is the trapdoor associated with A. Other

terms will be explained as we proceed with our technical overview. Below, we see why the scheme

PP := (A,u,hash functions E(·),F(·)), skkgc := TA

ct := (c0 := u⊤s+ noise+M
⌊ q
2

⌋
, c1 := [A|E(ID)|F(t)]⊤s+ noise)

skID := (eID,θ)θ s.t. [A|E(ID)]eID,θ = uθ

kut := (et,θ)θ s.t. [A|F(t)]et,θ = u− uθ

dkID,t := dID,t s.t. [A|E(ID)|F(t)]dID,t = u

Figure 1: Chen et al.’s RIBE Scheme

realizes the revocation mechanism while it does not satisfy DKER. One feature of the RIBE
construction is that the KGC maintains a binary tree where each user is assigned to a randomly
selected leaf. Furthermore, a random vector uθ ∈ Zn

q is uniquely assigned to each node θ of
the binary tree. Below, we explain the three types of keys which are core tools to realize the
revocation mechanism: A secret key for a user ID is a tuple of short vectors skID = (eID,θ)θ, where
each short vector eID,θ ∈ Z2m is associated to a random vector uθ such that

[A|E(ID)]eID,θ = uθ.

2As we will show in Section 4, the time period space is a set of natural numbers {1, 2, . . .}. Here, we assume
that there is an efficient hash function that maps each natural number to a distinct vector in Zn

q \ {0n}.

6

Since uθ is an independent random vector and the ciphertext c0 only depends on u, the vector
eID,θ in skID itself is useless for decrypting a ciphertext ct. Hence, in each time period the KGC
broadcasts a key update which is also a tuple of short vectors kut = (et,θ)θ, where each short
vector et,θ is associated to a random vector uθ such that

[A|F(t)]et,θ = u− uθ.

Similarly to above, et,θ in kut itself is useless for decrypting a ciphertext ct. Now, we explain
how the revocation mechanism works. By utilizing the complete subtree (CS) method [NNL01],
the KGC is able to broadcast key updates so that there is no common node θ in kut and skID of
revoked IDs, while there is at least one common node θ in kut and skID of non-revoked IDs. Then,
eID,θ in skID and et,θ in kut of the common node θ enable a non-revoked ID to derive a well-formed
decryption key dID,t ∈ Z3m which is a short vector satisfying

[A|E(ID)|F(t)]dID,t = u.

It can be easily checked that dID,t can be obtained by simply adding eID,θ and et,θ in a component-
wise fashion. Note that if eID,θ and et,θ are short vectors, then so is dID,t. Then, the vector enables
us to recover the plaintext by computing

c0 − c⊤1 dID,t ≈ M
⌊q
2

⌋
.

The main insight of this construction is that only non-revoked users can use the key updates to
eliminate the random factor uθ to obtain a short vector dID,t that is bound to the the public
matrix [A|E(ID)|F(t)] and public vector u with which a ciphertexts ct is created.

Although the scheme is proven to be a secure RIBE scheme without DKER, it clearly does
not satisfy DKER. Indeed, there is a concrete attack even with a single decryption key query
(i.e., decryption key exposure) on the target ID∗. The attack is as follows: assume that the
adversary obtains a decryption key dkID∗,t for the target ID∗ and a time period t ̸= t∗. Since key
updates are publicly broadcast, the adversary also obtains kut and kut∗ . Since user ID∗ will not
be revoked unless skID∗ was revealed to the adversary, the key updates kut and kut∗ will share a
common node θ∗ with the secret key.3 Therefore, recalling that dkID∗,t was a simple component-
wise addition of eID∗,θ∗ in skID∗ and et,θ∗ in kut, A can first recover the secret key component
eID∗,θ∗ from (dkID∗,t, et,θ∗), which he can then combine with et∗,θ∗ in kut∗ to create the decryption
key dID∗,t∗ for the challenge time period t∗. Specifically, this decryption key allows the adversary
to completely break the scheme. In reality, this corresponds to the fact that once a decryption
key for a certain time period is exposed to an adversary, then all the messages of distinct time
periods may also be compromised. In essence, this attack relies on the fact that the decryption
key leaks partial information on the secret key, which can then be used to construct decryption
keys of all distinct time periods.

In all the previous bilinear map-based constructions, the above problem was circumvented by
relying on the so-called key re-randomization property. Informally, this property allows one to
re-randomize the decryption key, hence even if the decryption key is leaked, it would be impossible
to restore the original secret key. In the above construction, this idea would correspond to re-
sampling a short random vector d̄ID,t such that

[A|E(ID)|F(t)]d̄ID,t = u

3To be more precise, there are cases kut and kut∗ might not share a common node, however, A can always
adaptively revoke other users so that this holds.

7

using his original decryption key dID,t. Indeed, if the distribution of d̄ID,t is independent of the
original decryption key dID,t, this modification would prevent the above attack, since the adversary
will not be able to recover the secret key component eID∗,θ∗ anymore using the above strategy.
However, such a re-sampling procedure is computationally infeasible, since otherwise we would
be able to trivially solve the small integer solution (SIS) problem.

Readers familiar with lattice-based constructions of (non-revocable) HIBE may think that we
could achieve the key re-randomization property by simply using a short trapdoor basis as the
secret key instead of a vector. Indeed, if we add a short trapdoor basis T[A|E(ID)] as a part of
the secret key skID, the user ID will be able to sample a short vector d̄ID,t ̸= dID,t, since anybody
can efficiently extend the trapdoor basis T[A|E(ID)] to T[A|E(ID)|F(t)] and thus sample a random
vector d̄ID,t such that [A|E(ID)|F(t)]d̄ID,t = u. However, this approach does not mesh well with
the above revocation mechanism, since now the user ID can derive decryption keys dID,t for every
time period without requiring the key updates kut. Therefore, adding a short trapdoor basis to
the secret key provides too much flexibility to the users and we completely lose the mechanism
for supporting revocation.

Constructing RIBE with DKER. To summarize so far, the main bottleneck of Chen et al.’s
RIBE scheme without DKER is that it satisfies the key revocation mechanism, but seems chal-
lenging to extend it to satisfy DKER. On the other hand, adding a short trapdoor basis would
definitely be useful for achieving DKER, however, it seems to contradict with the revocation
mechanism. In the following, we show that we can carefully combine these two seemingly con-
flicting ideas together. The concrete construction of our lattice-based RIBE scheme with DKER
is illustrated in Figure 2. The boxed items denote the changes made from the previous figure.

PP := (A, Ā ,u,hash functions E(·),F(·)), skkgc := (TA, TĀ)

ct :=

(
c0 := u⊤(s+ s̄) + noise+M

⌊ q
2

⌋
,

c1 := [A|E(ID)|F(t)]⊤s+ noise, c̄1 := [Ā|E(ID)|F(t)]⊤s̄+ noise

)
skID :=

(
(eID,θ)θ, T[Ā|E(ID)]

)
s.t. [A|E(ID)]eID,θ = uθ

kut := (et,θ)θ s.t. [A|F(t)]et,θ = u− uθ

dkID,t :=
(
dID,t, d̄ID,t

)
s.t. [A|E(ID)|F(t)]dID,t = u, [Ā|E(ID)|F(t)]d̄ID,t = u

Figure 2: Our RIBE Scheme with DKER

Our construction relies on a tool we call leveled ciphertexts and leveled decryption keys; the
terminology should become more intuitive and helpful in the hierarchical setting that we explaine
later. Here, we call an element associated with a matrix A and Ā level-1 and level-2, respectively.
In particular, c1, c̄1 and dID,t, d̄ID,t in Figure 2 are the level-1, level-2 ciphertexts and decryption
keys, respectively. Here, the level-1 components c1 and dID,t correspond to Chen et al.’s RIBE
scheme without DKER and are responsible for achieving the revocation mechanism. On the other
hand, the level-2 components c̄1 and d̄ID,t are the newly introduced elements that will help us
achieve DKER. Since the two decryption keys for levels-1 and 2 are in one-to-one correspondence
with the ciphertexts (c1, c̄1) for levels-1 and 2, both of the decryption keys are required to recover
the underlying message as follows:

c0 − c⊤1 dID,t︸ ︷︷ ︸
level-1 component

− c̄⊤1 d̄ID,t︸ ︷︷ ︸
level-2 component

≈ M
⌊q
2

⌋
.

8

In particular, if either level of the decryption key is missing, the message cannot be recovered.
Separating the role of the decryption keys is the main idea that allows us to associate the two
seemingly conflicting properties of revocation and key re-randomization to each level of the de-
cryption keys.

First, we observe that the above RIBE scheme achieves the revocation mechanism since it
simply inherits this property from the underlying Chen et al.’s RIBE scheme without DKER.
Furthermore, we achieve DKER by incorporating the aforementioned trapdoor idea; we add a
trapdoor T[Ā|E(ID)] to the secret key skID. Using this short trapdoor basis T[Ā|E(ID)], we can now

sample a level-2 decryption key d̄ID,t for each time period independently from the previous time
periods. Namely, using T[Ā|E(ID)], we can sample a short vector d̄ID,t such that

[Ā|E(ID)|F(t)]d̄ID,t = u,

where d̄ID,t leaks no information of the secret key skID. Hence, although we are not able to
completely re-randomize the decryption key dkID,t = (dID,t, d̄ID,t), we can partially re-randomize
the decryption key by sampling a new level-2 decryption key d̄ID,t for each time period; even if
dkID,t is compromised, this alone will not be sufficient for constructing decryption keys for other
time periods. Indeed, we show that this partial key re-randomization property is sufficient to
prove the DKER security.

In Section 5, we formalize and prove the above idea by providing a generic construction of
RIBE with DKER, using as building blocks any RIBE without DKER and 2-level HIBE. At a
high level, the 2-level HIBE scheme is responsible for the key re-randomization property and is
the core component that allows us to convert non-DKER secure RIBE schemes into DKER secure
RIBE schemes.

Constructing RHIBE from Lattices. Next, we show an overview of our lattice-based RHIBE
construction. For simplicity of presentation and since we can add DKER via the above idea, we
do not take into account DKER in the following RHIBE construction. Specifically, we explain
how to construct an RHIBE scheme without DKER by modifying Chen et al.’s RIBE scheme.

Before getting into detail, we prepare some notations used for the hierarchal setting. In the
following, let L be the maximum depth of the hierarchy, where we treat the KGC as level-0. In
RHIBE, all level-i users ID for i ∈ [0, L − 1], including the KGC, maintain a binary tree BTID
to manage their children users in ID∥ID. Furthermore, a random vector uID,θ ∈ Zn

q is uniquely
assigned to each node θ of the binary tree BTID. The level-(ℓ−1) user pa(ID) creates the secret key
skID of the level-ℓ user ID, and the user ID derives his own decryption key dkID,t by combining his
own secret key skID and the key updates kupa(ID),t that are broadcast by the parent user pa(ID).
Throughout the overview, we assume ID represents an level-ℓ user.

Introducing Leveled Secret Keys: Due to the complex nature of our scheme, we believe it to be
helpful to provide the intuition of our scheme following a series of modifications, where our final
scheme without DKER is depicted in Figure 6. Our starting point is illustrated in Figure 3, where
as before, the box indicates the changes made from the prior scheme.

Toward resolving the incompatibility of the key delegation property and the key revocation
mechanism, the scheme in Figure 3 utilizes leveled ciphertexts as done in the prior non-hierarchal
scheme in Figure 2. Furthermore, we introduce a new tool called leveled secret keys in this
scheme. Here, we call an element associated with a matrix Ai level-i, respectively. In particular,
the ciphertext ct of a level-ℓ user ID is a level-ℓ ciphertext since c1 is associated with Aℓ. The
main trick of the scheme in Figure 3 is that a secret key skID for a level-ℓ user consists of level-i
secret keys for i ∈ [ℓ, L], where the level-ℓ secret key (eID,θ)θ and the other level-i secret keys

9

PP := ((Ai)i∈[L] ,u, hash functions E(·),F(·)), skkgc := (TAi)i∈[L]

ct :=
(
c0 := u⊤s+ noise+M

⌊ q
2

⌋
, c1 := [Aℓ |E(ID)|F(t)]⊤s+ noise

)
skID :=

(
(eID,θ)θ, (T[Ai|E(ID)])i∈[ℓ+1,L]

)
s.t. [Aℓ |E(ID)]eID,θ = upa(ID),θ

kupa(ID),t := (epa(ID),t,θ)θ s.t. [Aℓ |E(pa(ID))|F(t)]epa(ID),t,θ = u− upa(ID),θ

dkID,t := dID,t s.t. [Aℓ |E(ID)|F(t)]dID,t = u

Figure 3: Leveled Secret Key and i-Leveled Ciphertext

T[Ai|E(ID)] for i ∈ [ℓ + 1, L] serve a different purpose. The level-ℓ secret key in skID is a tuple of
short vectors of the form (eID,θ)θ each of which satisfies

[Aℓ|E(ID)]eID,θ = [Aℓ|E(pa(ID))|Bℓ +H(idℓ)G]eID,θ = upa(ID),θ, (2)

and serves the same purpose as the original Chen et al.’s RIBE scheme. Namely, the level-ℓ secret
key of a level-ℓ user is used for decrypting its own level-ℓ ciphertext, where the detailed procedure
will be explained later. The remaining level-i secret keys in skID for i ∈ [ℓ+1, L] are trapdoors of
the form T[Ai|E(ID)] in skID and serves the purpose of delegation. Concretely, using the trapdoor
T[Ai|E(ID)] for i ∈ [ℓ + 1, L], the level-ℓ user ID can sample all level-i secret keys for his children
ID∥idℓ+1 ∈ ID∥ID; a set of short vectors (eID∥idℓ+1,θ)θ such that [Ai|E(ID∥idℓ+1)]eID∥idℓ+1,θ = uID,θ

and trapdoors T[Ai|E(ID∥idℓ+1)] for i ∈ [ℓ + 2, L]. In addition, the level-ℓ user ID can also use the
level-(ℓ+ 1) trapdoor T[Aℓ+1|E(ID)] in skID to derive key updates kuID,t. Here, a level-(ℓ− 1) user
pa(ID)’s key update kupa(ID),t is a tuple of short vectors (epa(ID),t,θ)θ such that

[Aℓ|E(pa(ID))|F(t)]epa(ID),t,θ = u− upa(ID),θ. (3)

Then, from Eqs. (2) and (3), the level-ℓ user ID can derive a well-formed decryption key dkID,t

which is a short vector of the form dID,t satisfying

[A|E(ID)|F(t)]dID,t = [A|E(pa(ID))|Bℓ +H(idℓ)G|F(t)]dID,t = u.

Hence, the scheme in Figure 3 properly supports the key delegation functionality.
Furthermore, at first glance, the scheme also supports the key revocation mechanism. Since

the level-ℓ secret key (eID,θ)θ of the level-ℓ user ID is exactly the same as the secret key used by
user ID in Chen et al.’s RIBE scheme, it simply inherits the revocation mechanism. In particular,
user ID will not be able to decrypt his level-ℓ ciphertext without his parent’s key update kupa(ID),t,
which will no longer be provided once user ID is revoked. However, unfortunately, this scheme is
trivially flawed and does not meet the security notion of RHIBE. In RHIBE, we require the user
ID to be revoked once any of his ancestors ID[i] ∈ prefix(ID) for i ∈ [ℓ − 1] is revoked. In other
words, once a user is revoked from the system, then all of its descendants must also be revoked.
It can be easily checked that this requirement is not met by our above RHIBE scheme. Since the
level-ℓ user ID has the full trapdoor T[Ai|E(ID)] for i ∈ [ℓ+ 1, L] as part of its secret key, nothing
is preventing user ID from continuing on generating secret keys and key updates for his children.

Introducing Leveled Decryption Keys: To fix the above issue concerning key revocation, we fur-
ther modify the scheme as in Figure 4. From now on, we further modify the definition of level-i
ciphertext, and call a tuple

(u⊤si + noise, ci = [Ai|E(ID[i])|F(t)]⊤si + noise)

10

PP := ((Ai)i∈[L],u,hash functions E(·),F(·)), skkgc := (TAi)i∈[L]

ct :=

 c0 := u⊤ (s1 + · · ·+ sℓ) + noise+M
⌊ q
2

⌋
,

(ci := [Ai|E(ID[i])|F(t)]⊤si + noise)i∈[ℓ]


skID := ((eID,θ), (T[Ai|E(ID)])i∈[ℓ+1,L]) s.t. [Aℓ|E(ID)]eID,θ = uθ

kupa(ID),t := ((epa(ID),t,θ), (fID[i],t)i∈[ℓ−1]) s.t. [Aℓ|E(pa(ID))|F(t)]epa(ID),t,θ = u− uθ,

[Ai|E(ID[i])|F(t)]fID[i],t = u

dkID,t :=
(
dID,t, (fID[i],t)i∈[ℓ−1]

)
s.t. [Aℓ|E(ID)|F(t)]dID,t = u

Figure 4: Multiple Leveled Ciphertext and Key Update

a level-i ciphertext since ci is associated with the public matrix Ai and both components are
associated with the same secret vector si. In this scheme, we modify the ciphertext for a level-ℓ
user ID to contain all the level-i ciphertexts for i ∈ [ℓ], where each level-i ciphertext is associated
with the public matrix Ai and an identity ID[i]. The idea behind this modification is to revoke any
user ID whose ancestors were revoked by including some information specific to the ancestors in
the ciphertext. In particular, if some ancestor at level i ∈ [ℓ−1] were to be revoked, then the level-
i ciphertext ci should become undecryptable, hence maintaining the secrecy of the plaintext M.
To make this idea work, we must now provide user ID with new components to allow decryption
of the level-i ciphertexts for i ∈ [ℓ− 1]. We achieve this by introducing a new tool called leveled
decryption keys. A leveled decryption key for a level-ℓ user ID consists of level-i decryption keys
for i ∈ [ℓ]. Similarly to leveled secret keys, the level-ℓ decryption key dID,t and the other level-i
decryption keys fID[i],t for i ∈ [ℓ− 1] serve a different purpose. The level-ℓ decryption key denoted
as dID,t in dkID,t serves the same purpose as in the previous schemes. The level-i decryption key
for i ∈ [ℓ−1] denoted as fID[i],t in dkID,t is the actual decryption key used by its ancestor at level-i.
Although we use a different notation, fID[i],t is equivalent to dID[i],t such that

[Ai|E(ID[i])|F(t)]fID[i],t = [Ai|E(ID[i])|F(t)]dID[i],t = u. (4)

In particular, each ancestor at level-i for i ∈ [ℓ − 1] broadcasts their own decryption key fID[i],t

(See kupa(ID),t in Figure 4) and the user ID sets the level-i decryption key for i ∈ [ℓ− 1] as fID[i],t.
It can be easily verified that user ID can correctly decrypt his ciphertext as follows:

c0 − c⊤ℓ dID,t︸ ︷︷ ︸
level-ℓ component

−
ℓ−1∑
i=1

c⊤i fID[i],t︸ ︷︷ ︸
level-i component

≈ M
⌊q
2

⌋
.

However, this scheme is obviously insecure, since the level-i ancestors are required to publicly
broadcast their level-i decryption key fID[i],t(= dID[i],t), which can in turn be used by anybody to
decrypt the level-i ciphertexts of that particular ancestor.

Making the Levels Two-Dimensional: For the scheme in Figure 4 to be secure, decryption keys
of the ancestors should not be made public via the key updates. Specifically, a ciphertext aimed
for a user should not contain the same level as of his ancestors, since otherwise the decryption
keys of the ancestors must be made public. For the purpose, we further modify the scheme as in
Figure 5. To this end, we incorporate multiple public vectors (uk)k∈[L], and redefine the notion
of leveled ciphertexts and leveled decryption keys to be two-dimensional. Here, we refer to an

11

PP := ((Ai)i∈[L], (uk)k∈[L] ,hash functions E(·),F(·)), skkgc := (TAi)i∈[L]

ct :=

(
c0 := uℓ

⊤(s1 + · · · sℓ) + noise+M
⌊ q
2

⌋
,

(ci := [Ai|E(ID[i])|F(t)]⊤si + noise)i∈[ℓ]

)
skID := ((eID,θ), (T[Ai|E(ID)])i∈[ℓ+1,L]) s.t. [Aℓ|E(ID)]eID,θ = uθ,

kupa(ID),t := ((epa(ID),t,θ), (fID[i],t,k)i∈[ℓ−1],k∈[ℓ,L])

s.t. [Aℓ|E(pa(ID))|F(t)]epa(ID),t,θ = uℓ − uθ, [Ai|E(ID[i])|F(t)]fID[i],t,k = uk

dkID,t := (dID,t, (fID[i],t,ℓ)i∈[ℓ−1]) s.t. [Aℓ|E(ID)|F(t)]dID,t = uℓ

Figure 5: (k, i)-Leveled Ciphertext and Decryption Key

element associated with a vector uk and a matrix Ai as level-(k, i), respectively. For example, we
call a tuple

(u⊤
k si + noise, ci = [Ai|E(ID[i])|F(t)]⊤si + noise)

a level-(k, i) ciphertext since the first component is associated with the public vector uk, and the
latter component ci is associated with the public matrix Ai, and both components are associated
with the same secret vector si. In particular, a ciphertext for a level-ℓ user ID consists of level-(ℓ, i)
ciphertexts for i ∈ [ℓ]. Accordingly, we must provide user ID with a redefined leveled decryption
key to allow decryption of the two-dimensional leveled ciphertexts. Specifically, we provide a
level-ℓ user ID with level-(ℓ, i) decryption keys for i ∈ [ℓ], where again the level-(ℓ, ℓ) decryption
key dID,t and the other level-(ℓ, i) decryption keys fID[i],t,ℓ for i ∈ [ℓ− 1] serve a different purpose.
The level-(ℓ, ℓ) decryption key denoted as dID,t is constructed and serves the exact same purpose
as in the previous scheme. The level-(ℓ, i) decryption keys for i ∈ [ℓ−1] are denoted as fID[i],t,ℓ. As
before, these decryption keys fID[i],t,ℓ are broadcast as part of the parent’s key updates kupa(ID),t,
however, the way they are defined is slightly different from the previous scheme. Namely, the
level-(ℓ, i) decryption key fID[i],t,ℓ satisfies

[Ai|E(ID[i])|F(t)]fID[i],t,ℓ = uℓ.

Note that it is uℓ and not u as in Eq. (4). Using this, a level-ℓ user ID can decrypt its ciphertext
as follows:

c0 − c⊤ℓ dID,t︸ ︷︷ ︸
level-(ℓ, ℓ) component

−
ℓ−1∑
i=1

c⊤i fID[i],t,ℓ︸ ︷︷ ︸
level-(ℓ, i) component

≈ M
⌊q
2

⌋
,

where each level of the ciphertext and decryption keys are in one-to-one correspondence with each
other. Note that the level-ℓ user ID uses only level-(ℓ, i) decryption keys fID[i],t,ℓ for i ∈ [ℓ − 1]
provided in the key update kupa(ID),t to decrypt his own ciphertext. He simply forwards the
remaining level-(k, i) decryption keys fID[i],t,k for (k, i) ∈ [ℓ + 1, L] × [ℓ − 1] as part of his key
update kuID,t.

One can see that the problem in the previous scheme of Figure 4 is now resolved, since the
public term fID[i],t,ℓ can only be used in combination with the level-(ℓ, i) ciphertext. In other
words, due to the two-dimensional level, fID[i],t,ℓ is only useful for decrypting ciphertexts of level-
ℓ users. Furthermore, since the level-(ℓ, ℓ) decryption key dID,t still remains secret, the publicly
broadcast decryption keys fID[i],t,ℓ for i ∈ [ℓ−1] alone are insufficient for decrypting the ciphertexts

12

sent to user ID. The remaining problem with this approach is that there is currently no way for
the level-(ℓ − 1) ancestors pa(ID) to create the level-(k, ℓ − 1) decryption keys (fID[ℓ−1],t,k)k∈[ℓ,L]
which they must broadcast as part of the key updates kupa(ID),t. Specifically, since they do not
have the trapdoor T[Aℓ−1|E(ID[ℓ−1])], they cannot simply sample the level-(k, ℓ−1) decryption keys

(fID[ℓ−1],t,k)k∈[ℓ,L] for every time period.

Introducing Level Conversion Keys: Finally, we arrive at our proposed RHIBE scheme (without
DKER) illustrated in Figure 6. We overcome our final obstacle by introducing a tool called level
conversion keys. In the scheme of Figure 5, a level-ℓ parent user ID is able to create his level-
(ℓ, ℓ) decryption key dID,t by himself although he cannot compute the level-(k, ℓ) decryption keys
(fID,t,k)k∈[ℓ+1,L] in the key updates kuID,t (which corresponds to (fID[ℓ−1],t,k)k∈[ℓ,L] in kupa(ID),t of
level-(ℓ − 1) users in the figure). To overcome the issue, we define a level-[ℓ, k] conversion key

PP := ((Ai)i∈[L], (uk)k∈[L], hash functions E(·),F(·)), skkgc := (TAi)i∈[L]
ct :=

(
c0 := u⊤

ℓ (s1 + · · · sℓ) + noise+M
⌊ q
2

⌋
, (ci := [Ai|E(ID[i])|F(t)]⊤si + noise)i∈[ℓ]

)
skID := ((eID,θ), (fID,k)k∈[ℓ+1,L] , (T[Ai|E(ID)])i∈[ℓ+1,L]) s.t. [Aℓ|E(ID)]eID,θ = uθ,

[Aℓ|E(ID)]fID,k = uk − uℓ

kupa(ID),t := ((epa(ID),t,θ), (fID[i],t,k)i∈[ℓ−1],k∈[ℓ,L])

s.t. [Aℓ|E(pa(ID))|F(t)]epa(ID),t,θ = uℓ − uθ, [Ai|E(ID[i])|F(t)]fID[i],t,k = uk

dkID,t := (dID,t, (fID[i],t,ℓ)i∈[ℓ−1]) s.t. [Aℓ|E(ID)|F(t)]dID,t = uℓ

Figure 6: Level Conversion Key

(fID,k)k∈[ℓ+1,L] of a level-ℓ user ID satisfying

[Aℓ|E(ID)]fID,k = uk − uℓ.

To compute level-(k, ℓ) decryption keys (fID,t,k)k∈[ℓ+1,L] in key updates kuID,t, the level-[ℓ, k] con-
version key allows the user ID to convert his secret level-(ℓ, ℓ) decryption key dID,t which satisfies

[Aℓ|E(ID)|F(t)]dID,t = uℓ

into a public level-(k, ℓ) decryption key fID,t,k which satisfies

[Aℓ|E(ID)|F(t)]fID,t,k = uk,

where the conversion is a simple component-wise addition. Since the scheme supports both the
key delegation functionality and the key revocation mechanism, it can be shown to be a secure
RHIBE scheme without DKER.

Adding DKER to the Construction: To make the above lattice-based RHIBE scheme in Figure 6
satisfy DKER, we will use the same idea incorporated in our generic construction of RIBE with
DKER. Specifically, we add one more level to the above scheme and wrap a standard HIBE scheme
around it to manage the partial key re-randomization property. The concrete construction appears
in Section 6.

3 Preliminaries

In this section, we briefly summarize the basic tools used in lattice-based cryptography.

13

Lattices. A (full-rank-integer) m-dimensional lattice Λ in Zm is a set of the form
{
∑

i∈[m] xibi|xi ∈ Z}, where B = {b1, · · · ,bm} are m linearly independent vectors in Zm. We

call B the basis of the lattice Λ. For any positive integers n,m and q ≥ 2, a matrix A ∈ Zn×m
q and

a vector u ∈ Zn
q , we define Λ⊥

q (A) = {z ∈ Zm|Az = 0n mod q} and Λu
q (A) = {z ∈ Zm|Az = u

mod q}.
Gaussian Measures. Let DΛ,σ denote the standard discrete Gaussian distribution over Λ with
a Gaussian parameter σ. We summarize some basic properties of discrete Gaussian distributions.

Lemma 1 ([GPV08]). Let Λ be an m-dimensional lattice. Let T be a basis for Λ, and suppose
σ ≥ ∥T∥GS · ω(

√
logm). Then Pr[∥x∥2 > σ

√
m : x← DΛ,σ] ≤ negl(m).

Lemma 2 ([GPV08]). Let n,m, q be positive integers such that m ≥ 2n log q and q a prime.
Let σ be any positive real such that σ ≥ ω(

√
log n). Then for A ← Zn×m

q and e ← DZm,σ, the
distribution of u = Ae mod q is statistically close to uniform over Zn

q . Furthermore, for a fixed
u ∈ Zn

q , the conditional distribution of e← DZm,σ, given Ae = u mod q for a uniformly random
A in Zn×m

q is DΛu
q (A),σ with all but negligible probability.

Sampling Algorithms. We review some of the algorithms for sampling short vectors from a
given lattice.

Lemma 3. Let n,m, m̄, q > 0 be positive integers with m ≥ 2n⌈log q⌉ and q a prime. Then, we
have the following polynomial time algorithms:
TrapGen(1n, 1m, q)→ (A,TA)([MP12, Ajt99, AP11]): a randomized algorithm that outputs a full

rank matrix A ∈ Zn×m
q and a basis TA ∈ Zm×m for Λ⊥

q (A) such that A is statistically close
to uniform and ∥TA∥GS = O

(√
n log q

)
with overwhelming probability in n.

SampleLeft(A,F,u,TA, σ)→ e([ABB10, MP12]): a randomized algorithm that, given as input a
full rank matrix A ∈ Zn×m

q , a matrix F ∈ Zn×m̄
q , a vector u ∈ Zn

q , a basis TA ∈ Zm×m of

Λ⊥
q (A), and a Gaussian parameter σ ≥ ∥TA∥GS · ω

(√
logm

)
, outputs a vector e ∈ Zm+m̄

sampled from a distribution statistically close to DΛu
q ([A|F]),σ.

([MP12]): There exists a fixed full rank matrix G ∈ Zn×m
q such that the lattice Λ⊥

q (G) has a

publicly known basis TG ∈ Zm×m with ∥TG∥GS ≤
√
5.

For simplicity, we omit the SamplePre algorithm of [ABB10], since in our paper it will be
used as a public algorithm to sample from the lattice Zm. The following algorithms allow one
to securely delegate a trapdoor of a lattice to an arbitrary higher-dimensional extension, with a
slight loss in quality. It can be obtained by combining the works of [CHKP12] and [ABB10] in a
straightforward manner.

Lemma 4. Let n,m, m̄, q > 0 be positive integers with m > n and q a prime. Then, we have the
following polynomial time algorithms:
ExtRndLeft(A,F,TA, σ)→ T[A|F] : a randomized algorithm that, given as input matrices A ∈

Zn×m
q ,F ∈ Zn×m̄

q , a basis TA of Λ⊥
q (A), and a Gaussian parameter σ ≥ ∥TA∥GS ·ω(

√
log n),

outputs a matrix T[A|F] ∈ Z(m+m̄)×(m+m̄) distributed statistically close to (DΛ⊥
q ([A|F]),σ)

m+m̄.

ExtRndRight(A,G,R,TG, σ)→ T[A|AR+G] : a randomized algorithm that, given as input full

rank matrices A,G ∈ Zn×m
q , a matrix R ∈ Zm×m, a basis TG of Λ⊥

q (G), and a Gaussian
parameter σ ≥ ∥R∥2 · ∥TG∥2 ·ω(

√
log n) outputs a matrix T[A|AR+G] ∈ Z2m×2m distributed

statistically close to (DΛ⊥
q ([A|AR+G]),σ)

2m.

Useful Facts. We recall some useful facts that will be used in our paper.

14

Lemma 5 (Leftover Hash Lemma). Let q > 2 be a prime, m,n, k be positive integers such that
m > (n + 1) log q + ω(log n), k is polynomial in n, and let R ← {−1, 1}m×k. Let A and B be
matrices chosen uniformly in Zn×m

q and Zn×k
q , respectively. Then the distribution of (A,AR) is

negligibly close in n to the distribution of (A,B).

To obtain a lower bound of σ, we will use the following fact.

Lemma 6. Let m, k be positive integers such that k ≥ m. If R is sampled uniformly in {−1, 1}m×k

then there exists a universal constant C such that Pr
[
∥R∥2 > C

√
m+ k

]
< e−m.

Lemma 7 (Noise Re-randomization, [KY16], Lemma 1). Let q, ℓ,m be positive integers and r a
positive real satisfying r > max{ω(

√
logm), ω(

√
log ℓ)}. Let b ∈ Zm

q be arbitrary and z chosen

from DZm,r. Then there exists a PPT algorithm ReRand such that for any V ∈ Zm×ℓ and positive
real σ > ∥V∥2, ReRand(V,b + z, r, σ) outputs b′⊤ = b⊤V + z′⊤ ∈ Zℓ

q where z′ is distributed
statistically close to DZℓ,2rσ.

We use the standard map to encode identities as matrices in Zn×n
q .

Definition 1 ([ABB10]). Let n, q be positive integers with q a prime. We say that a function
H : Zn

q → Zn×n
q is a full-rank difference (FRD) map if: for all distinct ID, ID′ ∈ Zn

q , the matrix
H(ID)−H(ID′) ∈ Zn×n

q is full rank, and H is computable in polynomial time in n log q.

Hardness Assumption. The security of our RIBE scheme is reduced to the learning with errors
(LWE) assumption introduced by Regev [Reg05].

Assumption 1 (Learning with Errors). For integers n,m, a prime q, a real α ∈ (0, 1) such
that αq > 2

√
n, and a PPT algorithm A, the advantage for the learning with errors problem

LWEn,m,q,DZm,αq
of A is defined as

∣∣Pr [A(A,A⊤s+ x) = 1
]
− Pr [A(A,v + x) = 1]

∣∣, where A←
Zn×m, s ← Zn, x ← DZm,αq, v ← Zm. We say that the LWE assumption holds if the above
advantage is negligible for all PPT A.

4 Formal Definitions for Revocable Hierarchical Identity-Based
Encryption and a Supporting Lemma

In this section, we first provide formal definitions for RHIBE in Section 4.1. Then, in Section 4.2,
we explain a simple and yet handy lemma that we call the “strategy-dividing lemma”, which
helps us simplify security proofs of R(H)IBE schemes in general. Since RIBE is a special case of
RHIBE, we omit the formal definitions of RIBE to A.1.

4.1 Revocable Hierarchical Identity-Based Encryption

As mentioned in the introduction, we re-formalize the syntax of RHIBE. Compared to the existing
works on RHIBE, our syntax of RHIBE treats each user’s secret key, state information, and
revocation list in a simplified manner. We will first explain how we simplify them and then
proceed to introducing the formal syntax and security definitions.

On the Role of Secret Keys. In the literature of R(H)IBE, the entity who can derive a
secret key for lower-level users (i.e., the KGC in RIBE, and non-leaf users in RHIBE), is typically
modeled as a stateful entity, and is supposed to maintain a so-called “state” in addition to its own
secret key. Generally, the state information contains the information with which the revocation

15

mechanism is realized and needs to be treated confidentially. Since it is after all another type
of secret information, we simply merge the roles of the state information and a secret key in our
syntax. Concretely, in our model, each user maintains the secret key generated by their parents,
and it is updated after running the key generation algorithm (when generating a secret key for
its child) or the key update information generation algorithm.

On the Treatment of Revocation Lists. Note that unlike in standard revocable (non-
hierarchical) IBE, the key update information and revocation lists of users are maintained in-
dividually by their corresponding parent. In our syntax of R(H)IBE, we treat a revocation list as
a subset of (the corresponding children’s) identity space. More specifically, the revocation list of
a user with identity ID ∈ (ID)ℓ contains identities that belong to the set ID∥ID ⊆ (ID)ℓ+1.

In previous literatures on R(H)IBE, a “revoke” algorithm which adds a user to be revoked
into the revocation list have been considered. However, we do not explicitly consider such an
algorithm as part of our syntax, since all the revoke algorithm considered in the literature so far
simply appends revoked users to a list.

Syntax. An RHIBE scheme Π consists of the six algorithms (Setup,Encrypt,GenSK,KeyUp,
GenDK,Decrypt) with the following interface:

Setup(1λ, L)→ (PP, skkgc) : This is the setup algorithm that takes the security parameter 1λ and
the maximum depth of the hierarchy L ∈ N as input, and outputs a public parameter PP
and the KGC’s secret key skkgc (also called a master secret key).
We assume that the plaintext spaceM, the time period space T := {1, 2, . . . , tmax}, where
tmax is polynomial in λ, the element identity space ID, and the hierarchical identity space
IDh := (ID)≤L are determined only by the security parameter λ, and their descriptions are
contained in PP.

Encrypt(PP, ID, t,M)→ ct : This is the encryption algorithm that takes a public parameter PP,
an identity ID, a time period t, and a plaintext M as input, and outputs a ciphertext ct.

GenSK(PP, skpa(ID), ID)→ (skID, sk
′
pa(ID)) : This is the secret key generation algorithm that takes

a public parameter PP, a parent’s secret key skpa(ID), and an identity ID ∈ IDh as input,
and may update the parent’s secret key skpa(ID). Then, it outputs a secret key skID for the
identity ID and also the parent’s “updated” secret key sk′pa(ID).

KeyUp(PP, t, skID,RLID,t, kupa(ID),t)→ (kuID,t, sk
′
ID) : This is the key update information generation

algorithm that takes a public parameter PP, a time period t, a secret key skID (of a user
with ID ∈ (ID)≤L−1 ∪ {kgc}), a revocation list RLID,t ⊆ ID∥ID, and a parent’s key update
kupa(ID),t as input, and may update the secret key skID. Then, it outputs a key update kuID,t

and also the “updated” secret key sk′ID.
In the special case ID = kgc, we define kupa(kgc),t := ⊥ for all t ∈ T , i.e., a key update is not
needed for generating the KGC’s key update kukgc,t.

GenDK(PP, skID, kupa(ID),t)→ dkID,t or ⊥ : This is the decryption key generation algorithm that

takes a public parameter PP, a secret key skID (of a user with ID ∈ (ID)≤L), and a parent’s
key update kupa(ID),t as input, and outputs a decryption key dkID,t for time period t or the
special “invalid” symbol ⊥ indicating that ID or some of its ancestor has been revoked.

Decrypt(PP, dkID,t, ct)→ M : This is the decryption algorithm that takes a public parameter PP,
a decryption key dkID,t, and a ciphertext ct as input, and outputs the decryption result M.

Correctness. We require the following to hold for an RHIBE scheme. Informally, we require
a ciphertext corresponding to a user ID for time t to be properly decrypted by user ID if the

16

user or any of its ancestor is not revoked on time t. To fully capture this, we can consider all
the possible scenarios of creating the secret key for user ID. Namely, for all λ ∈ N, L ∈ N,
(PP, skkgc) ← Setup(1λ, L), ℓ ∈ [L], ID ∈ (ID)ℓ, t ∈ T , M ∈ M, RLkgc,t ⊆ ID, RLID[1],t ⊆
ID[1]∥ID, . . . ,RLID[ℓ−1],t ⊆ ID[ℓ−1]∥ID, if ID′ ̸∈ RLpa(ID′),t holds for all ID′ ∈ prefix(ID), then we
require M′ = M to hold after executing the following procedures:

(1) (kukgc,t, skkgc)← KeyUp(PP, t, skkgc,RLkgc,t,⊥).
(2) For all ID′ ∈ prefix(ID) (in the short-to-long order), execute (2.1) and (2.2):

(2.1) (skID′ , sk′pa(ID′))← GenSK(PP, skpa(ID′), ID
′).

(2.2) (kuID′,t, sk
′
ID′)← KeyUp(PP, t, skID′ ,RLID′,t, kupa(ID′),t).

4

(3) dkID,t ← GenDK(PP, skID, kupa(ID),t).
5

(4) ct← Encrypt(PP, ID, t,M).
(5) M′ ← Decrypt(PP, dkID,t, ct).

We note that the most stringent way to define correctness would be to also capture the fact that
the secret keys skID can be further updated after executing GenSK. In particular, the output of
KeyUp, which takes as input the secret key skID, may potentially differ before and after GenSK
is run. Therefore, to be more precise, we should also allow an arbitrary (polynomial) number of
executions of GenSK in between steps (2.1) and (2.2). However, we defined correctness as above
for the sake of simplicity and readability. We note that our scheme satisfies the more stringent
correctness (which will be obvious from the construction).

Security Definition. Here, we give a formal security definition for RHIBE.
Due to some ambiguous treatments in the security definition in prior works [BGK08, SE13,

SE14, SE16], often times it was up to the readers to interpret and fill in the gap of security proofs.
(See Section 1 for discussion.) In our work, we provide a refined security definition for RHIBE
which in particular is a more rigorous and explicit treatment than the previous definitions.

In this game, we explicitly separate the secret key generation and secret key reveal queries,
so that we can capture situations where some skID has been generated but not revealed to an
adversary. Furthermore, we combine the “revoke” and “key update” queries in the previous
definitions into the single “revoke & key update” query, and introduce the notion of the “current
time period” tcu ∈ T which is coordinated with the adversary’s revoke & key update query. These
make all the key updates of non-revoked users to be well-defined throughout the security game.

Formally, let Π = (Setup,Encrypt,GenSK,KeyUp,GenDK,Decrypt) be an RHIBE scheme. We
will only consider selective-identity security, which is defined via a game between an adversary A
and the challenger C. The game is parameterized by the security parameter λ and a polynomial
L = L(λ) representing the maximum depth of the identity hierarchy. Moreover, the game has
the global counter tcu, initialized with 1, that denotes the “current time period” with which C’s
responses to A’s queries are controlled. The game proceeds as follows:

At the beginning, A sends the challenge identity/time period pair (ID∗, t∗) ∈ (ID)≤L × T to
C. Next, C runs (PP, skkgc) ← Setup(1λ, L), and prepares a list SKList that initially contains
(kgc, skkgc), and into which identity/secret key pairs (ID, skID) generated during the game will be
stored. From this point on, whenever a new secret key is generated or an existing secret key is
updated for an identity ID ∈ (ID)≤L∪{kgc} due to the execution of GenSK or KeyUp, C will store
(ID, skID) or update the corresponding entry (ID, skID) in SKList, and we will not explicitly mention

4If |ID′| = L, then this step is skipped.
5Here, skID is the latest secret key that is the result of the step (2).

17

this addition/update. Then, C executes (kukgc,1, sk
′
kgc)← KeyUp(PP, tcu = 1, skkgc,RLkgc,1 = ∅,⊥)

for generating a key update for the initial time period tcu = 1. After that, C gives PP and kukgc,1
to A.

From this point on, A may adaptively make the following five types of queries to C:

Secret Key Generation Query: Upon a query ID ∈ (ID)≤L from A, C checks if (ID, ∗) /∈
SKList and (pa(ID), skpa(ID)) ∈ SKList for some skpa(ID), and returns ⊥ to A if this is not
the case. Otherwise, C executes (skID, sk

′
pa(ID)) ← GenSK(PP, skpa(ID), ID). If |ID| = 1, or

2 ≤ |ID| ≤ L− 1 and pa(ID) /∈ RLpa(pa(ID)),tcu , then C furthermore executes (kuID,tcu , sk
′
ID)←

KeyUp(PP, tcu, skID,RLID,tcu := ∅, kupa(ID),tcu) and returns kuID,tcu to A. If 2 ≤ |ID| ≤ L and
pa(ID) ∈ RLpa(pa(ID)),tcu , then C furthermore executes RLpa(ID),tcu ← RLpa(ID),tcu ∪ {ID} and
returns nothing to A.6
We require that all identities ID appearing in the following queries (except the challenge
query) be “activated”, in the sense that skID is generated via this query and hence (ID, skID) ∈
SKList.

Secret Key Reveal Query: Upon a query7 ID ∈ (ID)≤L from A, C checks if the following
condition is satisfied:

– If tcu ≥ t∗ and ID ∈ prefix(ID∗), then ID′ ∈ RLpa(ID′),t∗ for some ID′ ∈ prefix(ID).8

If this condition is not satisfied, then C returns ⊥ to A. Otherwise, C finds skID from SKList,
and returns it to A.

Revoke & Key Update Query: Upon a query RL ⊆ (ID)≤L (which denotes the set of identi-
ties that are going to be revoked in the next time period) from A, C checks if the following
conditions are satisfied simultaneously:

– RLID,tcu ⊆ RL for all ID ∈ ID≤L−1 ∪ {kgc} that appear in SKList.9

– For all identities ID such that (ID, ∗) ∈ SKList and ID′ ∈ prefix(ID), if ID′ ∈ RL then
ID ∈ RL.10

– If tcu = t∗ − 1 and skID′ for some ID′ ∈ prefix(ID∗) has already been revealed by the
secret key reveal query ID′, then ID′ ∈ RL.11

If these conditions are not satisfied, then C returns ⊥ to A.
Otherwise C increments the current time period by tcu ← tcu + 1. Then, C executes the
following operations (1)–(3) for all “activated” and non-revoked identities ID, i.e., ID ∈
(ID)≤L−1 ∪ {kgc}, (ID, ∗) ∈ SKList, and ID /∈ RL, in the breadth-first order in the identity
hierarchy:

(1) Set RLID,tcu ← RL ∩ (ID∥ID), where we define kgc∥ID := ID.
(3) Run (kuID,tcu , sk

′
ID)← KeyUp(PP, tcu, skID,RLID,tcu , kupa(ID),tcu), where kupa(kgc),tcu := ⊥.

6We stress that just making this query does not give the secret key skID to A. It is captured by the “Secret Key
Reveal Query” explained next. Furthermore, we provide the key updates to A if pa(ID) /∈ RLpa(pa(ID)),tcu , since they
are typically broadcast via an insecure channel and are not meant to be secret.

7As opposed to a game for correctness, A is not able to make the query on kgc.
8In other words, this check ensures that if ID is ID∗ itself or one of the ancestors of ID∗, then ID or one of its

ancestors must have been revoked before the challenge time period t∗. Without this condition, there is a trivial
attack on any RHIBE scheme. See Remark 1 for a detail explanation.

9This check ensures that the identities that have already been revoked will remain revoked in the next time
period.

10In other words, this check ensures that if some ID is revoked, then all of its descendants are also revoked.
11In other words, this check is to ensure that if the secret key skID′ of some ancestor ID′ of ID∗ (or ID∗ itself) has

been revealed to A, then ID′ is revoked in the next time period.

18

Finally, C returns all the generated key updates {kuID,tcu}(ID,∗)∈SKList\RL to A.
Decryption Key Reveal Query: Upon a query (ID, t) ∈ (ID)≤L × T from A, C checks if the

following conditions are simultaneously satisfied:

– t ≤ tcu.
– ID ̸∈ RLpa(ID),t

– (ID, t) ̸= (ID∗, t∗).

If these conditions are not satisfied, then C returns ⊥ to A. Otherwise, C finds skID from
SKList, runs dkID,t ← GenDK(PP, skID, kupa(ID),t), and returns dkID,t to A.12

Challenge Query: A is allowed to make this query only once. Upon a query (M0,M1) from
A, where it is required that |M0| = |M1|, C picks the challenge bit b ∈ {0, 1} uniformly at
random, runs ct∗ ← Encrypt(PP, ID∗, t∗,Mb), and returns the challenge ciphertext ct∗ to A.

At some point, A outputs b′ ∈ {0, 1} as its guess for b and terminates.

The above completes the description of the game. In this game, A’s selective-identity security
advantage AdvRHIBE-selΠ,L,A (λ) is defined by AdvRHIBE-selΠ,L,A (λ) := 2 · |Pr[b′ = b]− 1/2|.

Definition 2. We say that an RHIBE scheme Π with depth L satisfies selective-identity security,
if the advantage AdvRHIBE-selΠ,L,A (λ) is negligible for all PPT adversaries A.

Remark 1 (Condition in the Secret Reveal Query.). The condition in the secret reveal key is
necessary, because if we do not have this condition, there is a trivial attack on any RHIBE scheme.
Suppose there is some ID ∈ prefix(ID∗) such that ID′ /∈ RLpa(ID′),t∗ for all ID′ ∈ prefix(ID), and A
obtains skID after the challenge time period t∗ via a secret key reveal query. Then, A can compute
sk

ĨD
for all ĨD ∈ prefix(ID∗)\prefix(ID) (including skID∗). Furthermore, since ID′ /∈ RLpa(ID′),t∗ hold

for all ID′ ∈ prefix(ID), A owns kupa(ID),t∗ generated by using RLpa(ID),t∗ not containing ID. Then,

setting k̃upa(ID),t∗ := kupa(ID),t∗, A can compute its own key update k̃u
ĨD,t∗

by sequentially executing

KeyUp(PP, t∗, sk
ĨD
, R̃L

ĨD,t∗
, k̃u

pa(ĨD),t∗
), for each ĨD ∈ prefix(ID∗)\prefix(ID) where ĨD /∈ R̃L

pa(ĨD),t∗
.

Therefore, A can obtain both skID∗ and k̃upa(ID∗),t∗ where ID∗ is not revoked at the time period t∗.
Notably, A can derive a decryption key (using GenDK) that can decrypt the challenge ciphertext
ct∗.

Remark 2 (Collusion Resistance). The above security definition captures collusion resistance.
In the first model proposed by Seo-Emura [SE14], A was only able to receive the initial secret
keys skID via secret key reveal queries. In other words, although the secret key skID was possibly
updated to sk′ID after executing GenSK and KeyUp, A was not able to receive the updated key sk′ID.
Therefore, the second model proposed by Seo-Emura [SE16] and ours provide more flexibility to
A and captures a stronger security notion.

Remark 3 (DKER). In the first model proposed by Seo-Emura [SE14] without DKER, an ad-
versary is not allowed to make decryption key reveal queries. Therefore, if A wants to obtain
decryption keys dkID,t for ID ∈ prefix(ID∗), he must make a secret key reveal query on ID and
revoke ID before the challenge time period t∗. In the second model proposed by Seo-Emura [SE16],
A is allowed to make decryption key reveal queries except for (ID∗

[ℓ], t
∗) where ℓ ∈ |ID∗|. In our

model, A is allowed to make decryption key reveal queries except only (ID∗, t∗). Thus, A is able to
obtain more secret information than in the Seo-Emura model without any additional restrictions
for A in the security game.

12Note that kupa(ID),t must have been already generated at this point due to the condition t ≤ tcu.

19

4.2 Strategy-Dividing Lemma

In the literature of R(H)IBE, a typical security proof for an R(H)IBE scheme goes as follows:

(1) classify an adversary’s strategies into multiple pre-determined types, say Type-1 to Type-n
for some n ∈ N that cover all possible strategies, and

(2) for each i ∈ [n], prove that any adversary that is promised to follow the Type-i strategy
(and never break the promise) has negligible advantage in attacking the considered scheme.

Here, it is implicitly assumed that the above mentioned “type-classification-based” security
proof is sufficient for proving security against arbitrary adversaries that may decide their attack
strategies adaptively during the game.

For completeness, we formalize the above implicit argument as a simple yet handy “strategy-
dividing lemma”, which helps us simplify security proofs for R(H)IBE schemes in general. We
only state it for selective-identity security of an RIBE scheme for concreteness, but it can be
similarly shown for R(H)IBE with all security notions considered in the paper.

Lemma 8 (Strategy-Dividing Lemma). Let Π be an RIBE scheme, and let A be any PPT adver-
sary against the selective-identity security of Π. Assume that there are n possible attack strategies
for A, Type-1, ... Type-n, that satisfy the following conditions:

(1) Type-1, . . . , Type-n cover all possible strategies, and each Type-i is mutually exclusive.
(2) For every i ∈ [n], whether A has deviated from the Type-i strategy is “publicly detectable”,

in the sense that during the security game, as soon as A deviates from the Type-i strategy,
it can be efficiently recognized given A’s view at the moment it deviates from the strategy.

Then, there exist PPT adversaries A1, . . . ,An against the selective-identity security of Π, such
that Ai always follows the Type-i strategy for every i ∈ [n], and

AdvRIBE-selΠ,A (λ) ≤
∑
i∈[n]

AdvRIBE-selΠ,Ai
(λ). (5)

In particular, if AdvRIBE-selΠ,A′
i

(λ) is negligible for all PPT adversaries A′
i that always follow

the Type-i strategy and for all i ∈ [n], then Π satisfies selective-identity security for any PPT
adversary A following an arbitrary strategy.

Proof of Lemma 8. Let A be any PPT adversary that attacks the selective-identity security of
an RIBE scheme Π, and suppose there are n attack strategies, Type-1, . . . , Type-n, satisfying
the conditions (1) and (2) stated in the lemma. We emphasize that A may decide its strategy
adaptively during the security game.

In the selective-identity security game, let S be the event that A succeeds in guessing the
challenge bit (i.e. b′ = b occurs). Furthermore, for each i ∈ [n], let Ti be the event that A
follows the Type-i strategy in the game. Since each Type-i is mutually exclusive and covers all
possibilities, we have Pr[

∨
i∈[n] Ti] =

∑
i∈[n] Pr[Ti] = 1.

Using the definitions of the events, we can calculate A’s advantage as follows:

AdvRIBE-selΠ,A (λ) = 2 ·
∣∣∣Pr[S]− 1

2

∣∣∣ = 2 ·
∣∣∣∑
i∈[n]

Pr[S ∧ Ti]−
1

2

∑
i∈[n]

Pr[Ti]
∣∣∣

= 2 ·
∣∣∣∑
i∈[n]

(
Pr[S ∧ Ti] +

1

2
Pr[Ti]−

1

2

)∣∣∣
20

≤ 2 ·
∑
i∈[n]

∣∣∣Pr[S ∧ Ti] +
1

2
Pr[Ti]−

1

2

∣∣∣. (6)

Now, for each i ∈ [n], consider an adversary Ai against the selective-identity security of
Π, which internally simulates the selective-identity security game for A while playing its own
selective-identity security game with the challenger C. Whenever A tries to send some value to
the challenger, Ai forwards it to Ai’s challenger C, and when C sends some value to an adversary,
Ai forwards it to A, except that as soon as Ai detects that A has deviated from the Type-i
strategy, Ai outputs a uniformly random bit and terminates. (Ai can detect it due to the public
detectability condition.) Note that by design, this Ai is PPT and never deviates from the Type-i
strategy.

Now, let S′ be the event that Ai succeeds in guessing the challenge bit, and let T′
i be the

event that A follows the Type-i strategy in the security game simulated by Ai. Note that by
design, Ai perfectly simulates the selective-identity security game for A so that A’s challenge
bit is that of Ai, until the point A deviates from the Type-i strategy. This implies that we have
Pr[S′ ∧ T′

i] = Pr[S ∧ Ti] and Pr[T′
i] = Pr[Ti]. Furthermore, whenever A deviates from the Type-i

strategy, Ai always detects it and outputs a random bit. This means that we have Pr[S′|T′
i] = 1/2.

Hence, we can calculate Ai’s selective-identity advantage as follows:

AdvRIBE-selΠ,Ai
(λ) = 2 ·

∣∣∣Pr[S′]− 1

2

∣∣∣
= 2 ·

∣∣∣Pr[S′ ∧ T′
i] + Pr[S′|T′

i] · Pr[T′
i]−

1

2

∣∣∣
= 2 ·

∣∣∣Pr[S ∧ Ti] +
1

2
Pr[Ti]−

1

2

∣∣∣. (7)

Using Eq. (7) in Eq. (6), we can conclude that there exist PPT adversaries A1, . . . ,An such
that Ai always follows the Type-i strategy for every i ∈ [n] and Eq. (5) holds, as desired. This
completes the proof of Lemma 8.

5 Generic Construction of RIBE with DKER

In this section, we show a “security-enhancing” generic construction for RIBE. Namely, we show
how to construct an RIBE scheme with DKER by combining an RIBE scheme without DKER
and a 2-level (non-revocable) HIBE scheme, (where the formal definitions for HIBE are provided
in A.2).

Let r.Π = (r.Setup, r.Encrypt, r.GenSK, r.KeyUp, r.GenDK, r.Decrypt) be an RIBE scheme (with-
out DKER) with identity space r.ID, plaintext space r.M, and time period space r.T . Let
h.Π = (h.Setup, h.Encrypt, h.GenSK, h.Delegate, h.Decrypt) be a 2-level HIBE scheme with element
identity space h.ID and plaintext space h.M. We assume r.ID = h.ID, r.M = h.M, and
r.T ⊆ h.ID. Furthermore, we assume that the plaintext space is finite and forms an abelian
group with the addition “+” as the group operation.

Using these ingredients, we construct an RIBE scheme Π = (Setup,Encrypt,GenSK,KeyUp,
GenDK,Decrypt) with DKER as follows. The identity space ID, the plaintext spaceM, and the
time period space T of the constructed RIBE scheme Π are, respectively, ID = r.ID = h.ID,
M = r.M = h.M, and T = r.T ⊆ h.ID.
Setup(1λ)→ (PP, skkgc) : It takes the security parameter 1λ as input, and runs

(r.PP, r.skkgc)← r.Setup(1λ), (h.PP, h.skkgc)← h.Setup(1λ).

21

Then, it outputs

PP := (r.PP, h.PP), skkgc := (r.skkgc, h.skkgc).

Encrypt(PP, ID, t,M)→ ct : It takes a public parameter PP = (r.PP, h.PP), an identity ID ∈ ID,
a time period t ∈ T , and a plaintext M ∈M as input, and samples a pair (r.M, h.M) ∈M2

uniformly at random, subject to

r.M+ h.M = M.

Then, it runs

r.ct← r.Encrypt(r.PP, ID, t, r.M), h.ct← h.Encrypt(h.PP, (ID, t), h.M).

Finally, it outputs a ciphertext

ct := (r.ct, h.ct).

GenSK(PP, skkgc, ID)→ (skID, sk
′
kgc) : It takes a public parameter PP = (r.PP, h.PP), the KGC’s

secret key skkgc = (r.skkgc, h.skkgc), and an identity ID ∈ ID as input, and runs

(r.skID, r.sk
′
kgc)← r.GenSK(r.PP, r.skkgc, ID), h.skID ← h.GenSK(h.PP, h.skkgc, ID).

Then, it outputs a secret key

skID := (r.skID, h.skID)

for the identity ID and also the KGC’s updated secret key sk′kgc := (r.sk′kgc, h.skkgc).

KeyUp(PP, t, skkgc,RLt)→ (kut, sk
′
kgc) : It takes a public parameter PP = (r.PP, h.PP), a time

period t ∈ T , the KGC’s secret key skkgc = (r.skkgc, h.skkgc), and a revocation list RLt ⊆ ID
as input, and, runs

(r.kut, r.sk
′
kgc)← r.KeyUp(r.PP, t, r.skkgc,RLt).

Then, it outputs a key update

kut := r.kut

and also the KGC’s updated secret key sk′kgc := (r.sk′kgc, h.skkgc).

GenDK(PP, skID, kut)→ dkID,t or ⊥ : It takes a public parameter PP = (r.PP, h.PP), a secret key
skID = (r.skID, h.skID), and a key update kut = r.kut as input, and runs

r.dkID,t ← r.GenDK(r.PP, r.skID, r.kut), h.skID,t ← h.Delegate(h.PP, h.skID, t).

Then, it outputs a decryption key

dkID,t := (r.dkID,t, h.skID,t)

for time period t, except that if r.dkID,t = ⊥, then it returns the special “invalid” symbol ⊥
indicating that ID has been revoked.

22

Decrypt(PP, dkID,t, ct)→ M : It takes a public parameter PP = (r.PP, h.PP), a decryption key
dkID,t = (r.dkID,t, h.skID,t), and a ciphertext ct = (r.ct, h.ct) as input, and then runs

r.M← r.Decrypt(r.PP, r.dkID,t, r.ct), h.M← h.Decrypt(h.PP, h.skID,t, h.ct).

If r.M = ⊥ or h.M = ⊥, then it returns ⊥. Otherwise, it outputs the decryption result

M := r.M+ h.M.

It is immediate to see that the correctness of the constructed RIBE scheme Π follows from
that of the building blocks. The security of Π is guaranteed by the following theorem.

Theorem 1. If the underlying RIBE scheme r.Π satisfies weak selective-identity (resp. weak
adaptive-identity) security and the underlying 2-level HIBE scheme h.Π satisfies selective-identity
(resp. adaptive-identity) security, then the resulting RIBE scheme Π satisfies selective-identity
(resp. adaptive-identity) security.

Proof of Theorem 1. Since the proof for the selective-identity security and that for adaptive-
identity security are essentially the same, we only show the proof for the former.

Let us call a query made by an adversary valid if the answer to the query by the challenger is
not ⊥. We consider following two attack strategies of an adversary against the RIBE scheme Π
that are mutually exclusive and cover all possibilities:

• Type-I: The adversary issues a valid secret key reveal query on ID∗.
• Type-II: The adversary does not issue a valid secret key reveal query on ID∗.

Whether an adversary has deviated from one strategy, is easy to detect. By Lemma 8, in order
to prove the theorem, it is sufficient to show that for each type of adversary (that is promised
to follow the attack strategy), its selective-identity advantage is negligible. We show it in the
following lemmas.

Lemma 9. For every PPT Type-I adversary A1, there exists a PPT adversary B1 against
the weak-selective security of the underlying RIBE scheme r.Π such that AdvRIBE-selΠ,A1

(λ) =

AdvRIBE-sel-weakr.Π,B1
(λ).

Proof of Lemma 9. Let A1 be any PPT Type-I adversary. First of all, recall that the condition
of the secret key reveal queries says that if ID∗ has not been revoked before t∗ (i.e. ID∗ /∈ RLt∗),
then a secret key reveal query on ID∗ made after t∗ cannot be valid. Recall also that the condition
of the revoke & key update queries implies that if an adversary has made a valid secret key reveal
query on ID∗ before t∗ and tcu ≥ t∗, then ID∗ ∈ RLt∗ . Hence, if tcu ≥ t∗, then we must have
ID∗ ∈ RLt∗ . This fact will be used in this proof.

Now, using A1 as a building block, we construct a PPT adversary B1 that attacks the weak
selective-identity security of the underlying RIBE scheme r.Π with the claimed advantage. The
description of B1 is as follows:

At the beginning, A1 declares its challenge identity/time period pair (ID∗, t∗). B1 sends the pair
(ID∗, t∗) as its own challenge identity/time period pair to B1’s challenger r.C, and then receives the
public parameter r.PP and the key update r.ku1 from r.C. B1 runs (h.PP, h.skkgc)← h.Setup(1λ),
and gives PP := (r.PP, h.PP) and ku1 := r.ku1 to A1. Also, B1 initializes the counter tcu := 1
(which will always be synchronized by the one maintained by r.C), and also generates an empty

23

list SKListB into which identity/secret key pairs (ID, skID) that are known to B1, will be stored.
From this point on, A1 starts making queries.

For a secret key generation query ID ∈ ID from A1, B1 makes a secret key generation query
ID to r.C. (Note that upon this query, r.C executes (r.skID, r.sk

′
kgc) ← r.GenSK(r.PP, r.skkgc, ID),

but returns nothing to B1.) Right after this, B1 further makes a secret key reveal query ID to r.C,
and receives r.skID from r.C. Then, B1 generates h.skID ← h.GenSK(h.skkgc, ID). Finally, B1 sets
skID := (r.skID, h.skID), and adds (ID, skID) into the list SKListB (and returns nothing to A1).

For a secret key reveal query ID ∈ ID from A1, B1 does the same check as the challenger
in the selective-identity security game does. Namely, B1 checks that if tcu ≥ t∗ and ID∗ /∈ RLt∗

then ID ̸= ID∗. If this is not satisfied, then B1 returns ⊥ to A1. Otherwise, it is guaranteed that
(ID, skID) is contained in the list SKListB, and thus B1 returns skID to A1.

For a revoke & key update query RL ⊂ ID from A, B1 forwards RL to r.C, and receives the
result r.kutcu (which may be ⊥) from r.C. If the answer from r.C is ⊥, then B1 returns ⊥ to
A1. Otherwise, r.C has incremented the counter tcu, and thus so does B1 (which ensures that the
counter tcu maintained by B1 and that maintained by r.C are synchronized). Then, B1 returns
kutcu := r.kutcu to A. Here, as mentioned at the beginning of the proof of this lemma, if tcu ≥ t∗,
then it is guaranteed that ID∗ ∈ RLt∗ .

For a decryption key reveal query (ID, t) ∈ ID×T from A1, B1 does the checks in the same way
as the challenger in the selective-identity security game does. Namely, whether t ≤ tcu, ID /∈ RLt,
and (ID, t) ̸= (ID∗, t∗) hold. If these conditions are not satisfied simultaneously, then B1 returns
⊥ to A1. Otherwise, it is guaranteed that B1 has already obtained kut = r.kut from r.C, and B1
owns skID = (r.skID, h.skID) in SKListB (because A1 must have made a secret key generation query
on ID, in which case B1 has obtained skID in the response to the query). Using r.kut and r.skID,
B1 runs r.dkID,t ← r.GenDK(r.PP, r.skID, r.kut). B1 also runs h.skID,t ← h.Delegate(h.PP, h.skID, t).
Finally, B1 returns dkID,t := (r.dkID,t, h.skID,t) to A1.

For the challenge query (M0,M1) from A1, B1 picks h.M ∈M uniformly at random, and then
sets

r.M0 ← M0 − h.M, r.M1 ← M1 − h.M.

Then, B1 submits the challenge query (r.M0, r.M1) to r.C, and receives B1’s challenge ciphertext

r.ct∗ ← r.Encrypt(r.PP, ID∗, t∗, r.Mβ)

from r.C, where β is B1’s challenge bit. B1 also executes

h.ct∗ ← h.Encrypt(h.PP, (ID∗, t∗), h.M)

by itself. Finally, B1 returns the challenge ciphertext ct∗ := (r.ct∗, h.ct∗) to A1.
Eventually, A1 terminates with output its guess bit b′. Then, B1 sets β′ ← b′, and terminates

with output β′.

The above completes the description of B1. Note that B1 simulates the selective-identity
security game perfectly for the Type-I adversary A1 so that B1’s challenge bit β is that of A1’s
(i.e. the plaintext encrypted in ct∗ is Mβ). Since B1 uses A1’s final output b

′ as its own guess β′,
the probability that B1 succeeds in guessing B1’s challenge bit is the same as the probability that
A1 succeeds in guessing the challenge bit in the selective-identity security game. Hence, we have
AdvRIBE-sel-weakr.Π,B1

(λ) = AdvRIBE-selΠ,A1
(λ), as desired. This completes the proof of Lemma 9.

24

Lemma 10. For any Type-II adversary A2, there exists a PPT adversary B2 against the
selective-identity security of the underlying 2-level HIBE scheme h.Π such that AdvRIBE-selΠ,A2

(λ) =

AdvHIBE-selh.Π,B2
(λ).

Proof of Lemma 10. Let A2 be any PPT Type-II adversary. Using A2 as a building block, we
construct a PPT adversary B2 that attacks the selective-identity security of the underlying 2-level
HIBE scheme h.Π with the claimed advantage. The description of B2 is as follows:

At the beginning, A2 declares its challenge identity/time period pair (ID∗, t∗). B2 sends
the pair (ID∗, t∗) as its own challenge (2-level hierarchical) identity to B2’s challenger h.C, and
receives the public parameter h.PP from h.C. B2 initializes the counter tcu := 1, and then runs
(r.PP, r.skkgc) ← r.Setup(1λ) and (r.ku1, r.sk

′
kgc) ← r.KeyUp(r.PP, 1, r.skkgc,RL1 = ∅). Then, B2

gives PP := (r.PP, h.PP) and ku1 := r.ku1 to A2. From this point on, A2 starts making queries.
For a secret key generation query ID ∈ ID from A2, B2 forwards ID to h.C as a level-1 secret

key generation query. (Note that by this query, h.C executes h.skID ← h.GenSK(h.PP, h.skkgc, ID),
but returns nothing to B2.) Also, B2 generates (r.skID, r.sk

′
kgc) ← r.GenSK(r.skkgc, ID), and keeps

it to itself.
For a secret key reveal query ID ∈ ID from A2, B2 does the same check as the challenger in

the selective-identity security game does. Namely, B2 checks that if tcu ≥ t∗ and ID∗ /∈ RLtcu , then
ID ̸= ID∗. If this is not satisfied, then B2 returns ⊥ to A2. Otherwise, it is guaranteed that A2’s
query is valid. At this point, it is guaranteed that ID ̸= ID∗ because A2 is of Type-II. B2 submits
a level-1 secret key reveal query ID to h.C, and receives h.skID from h.C. B2 also finds r.skID that
B2 has already generated, and returns skID := (r.skID, h.skID) to A2.

For a revoke & key update query RL ⊂ ID from A2, B2 responds to it in exactly the same
way as the challenger in the selective-identity security game does, which is possible because B2
possesses r.skkgc. (Note that if the query is valid, then the counter tcu is incremented, and a key
update kutcu := r.kut is generated.)

For a decryption key reveal query (ID, t) ∈ ID × T from A2, B2 does the checks in the
same way as the challenger in the selective-identity security game does. Namely, B2 checks
whether t ≤ tcu, ID /∈ RLt, and (ID, t) ̸= (ID∗, t∗) hold simultaneously. If these conditions are not
satisfied, then B2 returns ⊥ to A2. Otherwise, it is guaranteed that B2 has already generated
kut = r.kut and r.skID. Using r.kut and r.skID, B2 runs r.dkID,t ← r.GenDK(r.PP, r.skID, r.kut). B2
also makes a 2-level secret key reveal query (ID, t), and receives h.skID,t from h.C. Finally, B2
returns dkID,t := (r.dkID,t, h.skID,t) to A2.

For the challenge query (M0,M1) from A2, B2 picks r.M ∈M uniformly at random, and then
sets

h.M0 ← M0 − r.M, h.M1 ← M1 − r.M.

Then, B2 submits the challenge query (h.M0, h.M1) to h.C, and receives B2’s challenge ciphertext

h.ct∗ ← h.Encrypt(h.PP, (ID∗, t∗), h.Mβ)

from r.C, where β is B2’s challenge bit. B2 also executes

r.ct∗ ← r.Encrypt(r.PP, ID∗, t∗, r.M)

by itself. Finally, B2 returns the challenge ciphertext ct∗ := (r.ct∗, h.ct∗) to A2.
Eventually, A2 terminates with output its guess bit b′. Then, B2 sets β′ ← b′, and terminates

with output β′.

25

The above completes the description of B2. Note that B2 never falls into the situation in which
B2 has to make a level-1 secret key reveal query on ID∗ or a level-2 secret key reveal query on
(ID∗, t∗). Note also that B2 simulates the selective-identity security game perfectly for A2 so that
B2’s challenge bit β is that of A2’s (i.e. the plaintext encrypted in ct∗ is Mβ). Since B2 uses A2’s
final output b′ as its own guess β′, the probability that B2 succeeds in guessing B2’s challenge bit is
the same as the probability that A2 succeeds in guessing the challenge bit in the selective-identity
security game. Hence, we have AdvHIBE-selh.Π,B2

(λ) = AdvRIBE-selΠ,A2
(λ), as desired. This completes the

proof of Lemma 10.

Due to Lemmas 8, 9, and 10, we can conclude that the RIBE scheme Π satisfies selective-
identity security. This completes the proof of Theorem 1.

6 RHIBE from Lattices

In this section, we first explain our treatment on binary trees, the CS method, and the parameters
used in the scheme. Then, we show our proposed scheme in Section 6.1 and discuss the security
in Section 6.2.

On the Treatment of Binary Trees and the CS Method. Every user ID such that |ID| ≤
L−1 (including KGC) maintains a binary tree BTID as part of his secret key skID. We assume that
auxiliary information such as user identities ID and vectors in Zn

q can be stored in the nodes of
binary trees. The binary tree along with the CS method is the mechanism used by the parent to
manage its children, i.e., keep track whether a child is revoked or not. We use θ to denote a node in
a binary tree. We use η when we emphasize that the node θ is a leaf node. Let Path(BTpa(ID), ηID)
denote the set of nodes which are on the path along the root of BTpa(ID) to the leaf ηID. Note
that the size of Path(BTpa(ID), ηID) is O(logN). We define the CS method by the following four
algorithms:

CS.SetUp(N)→ BTpa(ID): It takes the number of users N as input, and outputs a binary tree
BTpa(ID) with at least N and at most 2N leaves.

CS.Assign(BTpa(ID), ID)→ (ηID, BTpa(ID)): It takes a binary tree BTpa(ID) and an identity ID as in-
puts, and randomly assigns the user identity ID to a leaf node ηID, to which no other IDs
have been assigned yet. Then, it outputs a leaf ηID and an “updated” binary tree BTpa(ID).

CS.Cover(BTpa(ID),RLpa(ID),t)→ KUNode(BTpa(ID),RLpa(ID),t): It takes a binary tree BTpa(ID) and a
revocation list RLpa(ID),t as inputs, and outputs a set of nodes KUNode(BTpa(ID),RLpa(ID),t).
Here, the subtrees with root θ ∈ KUNode(BTpa(ID),RLpa(ID),t) cover all leaves ηID in BTpa(ID)

for ID ̸∈ RLpa(ID),t and do not cover any leaves ηID for ID ∈ RLpa(ID),t.
CS.Match(Path(BTpa(ID), ηID),KUNode(BTpa(ID),RLpa(ID),t))→ θ or ∅: It takes Path(BTpa(ID), ηID)

and KUNode(BTpa(ID),RLpa(ID),t) as inputs, and outputs an arbitrary node θ ∈
Path(BTpa(ID), ηID) ∩ KUNode(BTpa(ID),RLpa(ID),t) if it exists. Otherwise, it outputs ∅.

Looking ahead, at a high level, all parents maintain the children to whom it has generated secret
keys by the binary tree BTpa(ID). The secret keys skID will include some (partial) secret information
that are associated with a node in Path(BTpa(ID), ηID). To revoke a set of users RLpa(ID),t, the
parent constructs the key update kupa(ID),t by running CS.Cover and generates a set of nodes
KUNode(BTpa(ID),RLpa(ID),t), which represents the set of users that are not revoked. Similarly to
above, each node in KUNode(BTpa(ID),RLpa(ID),t) will include some (partial) secret information.
We note that the size of KUNode(BTpa(ID),RLpa(ID),t) is O(R log(N/R)), where R =

∣∣RLpa(ID),t

∣∣.
Notably, the size of the key update kupa(ID),t will be logarithmic in N . Then, any user ID who
is not revoked can run the CS.Match algorithm to obtain a node θ which is included both in

26

Path(BTpa(ID), ηID) and KUNode(BTpa(ID),RLpa(ID),t). Combining the two partial secret information
embedded in the nodes, user ID will be able to construct the decryption key dkID,t which allows
him to decrypt the ciphertext.

Parameters. Let L denote the maximum depth of the hierarchy and N denote the maximum
number of children each parent manages. Furthermore, let n,m, q be positive integers such that
q is a prime and α, α′, (σi)

L
i=0 be positive reals denoting the Gaussian parameters. Finally, we

set the plaintext space as M = {0, 1}, the element identity space as ID = Zn
q \ {0n}, and

the hierarchal identity space as IDh := (Zn
q \ {0n})≤L. We also encode the time period space

T = {1, 2, · · · , tmax} into a polynomial sized subset of Zn
q . In the following, for readability, we

may simply address each space ID, IDh, T as T = ID = Zn
q \ {0n}, IDh = (Zn

q \ {0n})≤L, unless
stated otherwise.

6.1 Construction

We provide our RHIBE scheme below. The intuition of the construction follows the explanation
given in Section 2. Due to the complex nature of our scheme, we encourage readers to go back to
Section 2 whenever needed.

Setup(1n, L)→ (PP, skkgc) : The setup algorithm is run by the KGC. It takes the security pa-
rameter 1n and the maximum depth of the hierarchy L as input, and runs (Ai,TAi) ←
TrapGen(1n, 1m, q) for i ∈ [L+1]. It also samples uniformly random matrices (Bj)j∈[L+1] ←
(Zn×m

q)(L+1) and vectors (uk)k∈[L] ← (Zn
q)

L. Finally, it creates a binary tree by running
BTkgc ← CS.SetUp(N) and outputs

PP :=
(
(Ai)i∈[L+1], (Bj)j∈[L+1], (uk)k∈[L]

)
, skkgc :=

(
BTkgc, (TAi)i∈[L+1]

)
.

Recall here that the matrices Bj define the hash functions E(·) and F(·) stated in Eq. (1)
in Section 2.

Encrypt(PP, ID = (id1, . . . , idℓ), t,M)→ ct : On input an identity ID ∈ (Zn
q)

ℓ at depth ℓ ∈ [L] and
time period t ∈ Zn

q , it first samples ℓ+1 uniformly random vectors (si)i∈[ℓ], sL+1 ∈ Zn
q . Then

it samples x← DZ,αq,xi ← DZ(i+2)m,α′q for i ∈ [ℓ] and xL+1 ← DZ(ℓ+2)m,α′q, and sets
c0 = u⊤

ℓ (s1 + · · ·+ sℓ + sL+1) + x+M
⌊q
2

⌋
,

ci = [Ai|E(ID[i])|F(t)]⊤si + xi for i ∈ [ℓ],

cL+1 = [AL+1|E(ID)|F(t)]⊤sL+1 + xL+1.

Finally, it outputs a ciphertext ct := (c0, c1, . . . , cℓ, cL+1) ∈ Zq×Z3m
q ×· · ·×Z

(ℓ+2)m
q ×Z(ℓ+2)m

q .

GenSK(PP, skpa(ID), ID)→ (skID, sk
′
pa(ID)) : The secret key generation algorithm is run by a parent

user pa(ID) at level ℓ− 1, where 1 ≤ ℓ ≤ L, to create a secret key for its child ID.13 It first
runs (BTpa(ID), ηID)← CS.Assign(BTpa(ID), ID). Then, for each node θ ∈ Path(BTpa(ID), ηID), it
checks whether a vector upa(ID),θ ∈ Zn

q has already been assigned. If not, pick a uniformly
random vector upa(ID),θ ∈ Zn

q and update skpa(ID) by storing upa(ID),θ in node θ ∈ BTpa(ID).

Next, it samples vectors eID,θ, fID,k ∈ Z(ℓ+1)m for θ ∈ Path(BTpa(ID), ηID), k ∈ [ℓ + 1, L],
respectively, such that

[Aℓ|E(ID)]eID,θ = upa(ID),θ, [Aℓ|E(ID)]fID,k = uk − uℓ

13Recall that a user at level 0 corresponds to the kgc, i.e., for any level-1 user ID ∈ Zn
q \ {0n}, pa(ID) = kgc.

27

by running SampleLeft(·) with trapdoor T[Aℓ|E(pa(ID))]
14 and Gaussian parameter σℓ. Then,

it extends its bases by running the following algorithm for i ∈ [ℓ+ 1, L+ 1]:

T[Ai|E(ID)] ← ExtRndLeft([Ai|E(pa(ID))], Bℓ +H(idℓ)G, T[Ai|E(pa(ID))], σℓ−1),

where T[Ai|E(ID)] ∈ Z(ℓ+1)m×(ℓ+1)m. Here, recall that E(ID) = [E(pa(ID))|Bℓ + H(idℓ)G].
Finally, it runs BTID ← CS.SetUp(N) and outputs,

skID =

(
BTID,Path(BTpa(ID), ηID), (eID,θ)θ∈Path(BTpa(ID),ηID),

(fID,k)k∈[ℓ+1,L], (T[Ai|E(ID)])i∈[ℓ+1,L+1]

)
along with its updated secret key sk′pa(ID).

KeyUp(PP, t, skID,RLID,t, kupa(ID),t)→ (kuID,t, sk
′
ID) : The key update information generation algo-

rithm is run by user ID at level ℓ, where 0 ≤ ℓ ≤ L − 1, to create a key update kuID,t for
time period t for its children. It first runs KUNode(BTID,RLID,t) ← CS.Cover(BTID,RLID,t),
and checks whether uID,θ is defined for each node θ ∈ KUNode(BTID,RLID,t). If not, it picks
a random uID,θ ∈ Zn

q and updates skID by storing uID,θ in the node θ ∈ BTID. Then, for each

node θ, it samples eID,t,θ ∈ Z(ℓ+2)m such that

[Aℓ+1|E(ID)|F(t)]eID,t,θ = uℓ+1 − uID,θ

by running SampleLeft(·) with trapdoor T[Aℓ+1|E(ID)] and Gaussian parameter σℓ+1.
At this point, the algorithm behaves differently depending on ℓ ≥ 1 or ℓ = 0 (i.e., ID = kgc).
In case ℓ ≥ 1, it computes its own decryption key dkID,t, which includes a vector dID,t ∈
Z(ℓ+2)m, using the decryption key generation algorithm GenDK(PP, skID, kupa(ID,t)) defined
below, and computes the following vectors for k ∈ [ℓ+ 1, L]:

fID,t,k = dID,t + [fID,k∥0m] ∈ Z(ℓ+2)m.

Here, [·∥·] denotes vertical concatenation of vectors.
Finally, it extracts (fID[i],t,k ∈ Z(i+2)m)(i,k)∈[ℓ−1]×[ℓ+1,L] from its ancestor’s key update infor-
mation kupa(ID),t and outputs

kuID,t =

(
KUNode(BTID,RLID,t), (eID,t,θ)θ∈KUNode(BTID,RLID,t),

(fID[i],t,k)(i,k)∈[ℓ]×[ℓ+1,L]

)
and the possibly updated sk′ID.
In case ℓ = 0, it skips all the above procedures and simply outputs

kuID,t = (KUNode(BTID,RLID,t), (eID,t,θ)θ∈KUNode(BTID,RLID))

and the possibly updated sk′ID.
15

14There are two exceptions for this algorithm. In the special case ID = kgc, recall that we set T[A1|E(kgc)] as TA1 ,
which is included in the skkgc. In the other special case when ℓ = L, we no longer sample fID,k, since this vector is
only required for delegating key updates to its children, which users at level L do not have.

15The branch in the algorithm is due to the fact that for the special case ℓ = 0, i.e., ID = kgc, we have kupa(ID),t = ⊥
for all T and there exists no decryption key dkID,t.

28

GenDK(PP, skID, kupa(ID),t)→ dkID,t or ⊥ : The decryption key generation algo-
rithm is run by user ID at level ℓ, where 1 ≤ ℓ ≤ L. It extracts
Path(BTpa(ID), ηID) in skID and KUNode(BTpa(ID),RLpa(ID),t) in kupa(ID),t, and runs
θ/∅ ← CS.Match(Path(BTpa(ID), ηID),KUNode(BTpa(ID),RLpa(ID),t)). If the output is ∅,
it outputs ⊥. Otherwise, it extracts eID,θ, epa(ID),t,θ ∈ Z(ℓ+1)m in skID, kupa(ID),t, respectively,
and parses it as

eID,θ = [eLID,θ∥eRID,θ], epa(ID),t,θ = [eLpa(ID),t,θ∥e
R
pa(ID),t,θ],

where eLID,θ, e
L
pa(ID),t,θ ∈ Zℓm and eRID,θ, e

R
pa(ID),t,θ ∈ Zm. Then, it computes

dID,t = [eLID,θ + eLpa(ID),t,θ∥e
R
ID,θ∥eRpa(ID),t,θ] ∈ Z(ℓ+2)m.

It further samples gID,t ∈ Z(ℓ+2)m such that

[AL+1|E(ID)|F(t)]gID,t = uℓ

by running SampleLeft(·) with trapdoor T[AL+1|E(ID)] and Gaussian parameter σℓ.
Finally, in case ℓ ≥ 2, it extracts (fID[i],t,ℓ)i∈[ℓ−1] from kupa(ID),t and outputs dkID,t =
(dID,t, (fID[i],t,ℓ)i∈[ℓ−1],gID,t). Otherwise, in case ℓ = 1, it simply outputs

dkID,t = (dID,t,gID,t).

Decrypt(PP, dkID,t, ct)→ M : The decryption algorithm is run by user ID at level ℓ, where 1 ≤
ℓ ≤ L. It first parses the ciphertext ct as (c0, c1, · · · , cℓ, cL+1). Then, in case ℓ ≥ 2, it uses
its decryption key dkID,t = (dID,t, (fID[i],t,ℓ)i∈[ℓ−1],gID,t) and computes

c′ = c0 −
ℓ−1∑
i=1

f⊤ID[i],t,ℓ
ci − d⊤

ID,tcℓ − g⊤
ID,tcL+1 ∈ Zq. (8)

Otherwise, in case ℓ = 1, it uses its decryption key dkID,t = (dID,t,gID,t) and computes

c′ = c0 − d⊤
ID,tc1 − g⊤

ID,tcL+1 ∈ Zq.

Finally, it compares c′ and ⌊ q2⌋ treating them as integers in Z, and outputs 1 in case |c′ −
⌊ q2⌋| < ⌊

q
4⌋ and 0 otherwise.

Correctness. Let a ciphertext be aimed for user ID and time period t. To check correctness, we
only need to consider the case where all the ancestors of ID are not revoked. In other words, we
check that user ID will be able to obtain all the required components to construct the decryption
key dID,t when provided with all the key updates kuID′,t from ID′ ∈ prefix(ID)\{ID}.

Lemma 11. Assume O((α +mL2σLα
′)q) ≤ q/5 holds with overwhelming probability. Then the

above scheme has negligible decryption error.

Proof of Lemma 11. We consider a user ID at level ℓ for ℓ ∈ [L] that decrypts a ciphertext created
on time t. To show correctness, we only need to consider the case where ID and all of its ancestors
are not revoked. In other words, ID obtains the key update information kupa(ID),t from his parent.
Below, we only show the case for ℓ ≥ 2, since the case for ℓ = 1 is a special case of ℓ ≥ 2, where the
vectors fID[i],t,ℓ are not required for decryption. Now, since ID is not revoked (by his parent), there

29

exists at least one node θ such that θ ∈ Path(BTpa(ID), ηID)∩KUNode(BTpa(ID),RLpa(ID),t). Further-
more, the key update information kupa(ID),t includes (fID[i],t,ℓ)i∈[ℓ−1], i.e., “partial” information of
the all his ancestor’s decryption keys.

We explain the decryption procedure of Eq. (8) one step at a time. Recall that the decryption
key is created during GenDK, and is of the form dkID,t = (dID,t, (fID[i],t,ℓ)i∈[ℓ−1],gID,t). First, the

vector dID,t ∈ Z(ℓ+2)m
q can be rewritten as [eLID,θ + eLpa(ID),t,θ∥e

R
ID,θ∥eRpa(ID),t,θ], where

[Aℓ|E(ID)]eID,θ = upa(ID),θ, [Aℓ|E(pa(ID))|F(t)]epa(ID),t,θ = uℓ − upa(ID),θ,

eID,θ = [eLID,θ∥eRID,θ], epa(ID),t,θ = [eLpa(ID),t,θ∥e
R
pa(ID),t,θ].

Therefore, we have [Aℓ|E(ID)|F(t)]dID,t = uℓ. Next, for each i ∈ [ℓ − 1], the vector fID[i],t,ℓ ∈
Z(i+2)m
q can be rewritten as fID[i],t,ℓ = dID[i],t + [fID[i],ℓ∥0m], where we have

[Ai|E(ID[i])|F(t)]dID[i],t = ui, [Ai|E(ID[i])]fID[i],ℓ = uℓ − ui.

Here, the first equation follows from the exact same argument we made above for the vector
dID,t. Therefore, combining the two, we have [Ai|E(ID[i])|F(t)]fID[i],t,ℓ = uℓ. Finally, the vector

gID,t ∈ Z(ℓ+2)m
q satisfies [AL+1|E(ID)|F(t)]gID,t = uℓ. Combining everything together, we have

the following for i ∈ [ℓ− 1]:

f⊤ID[i],t,ℓ
ci = u⊤

ℓ si + f⊤ID[i],t,ℓ
xi, d⊤

ID,tcℓ = u⊤
ℓ sℓ + d⊤

ID,txℓ, g⊤
ID,tcL+1 = u⊤

ℓ sL+1 + g⊤
ID,txL+1.

Therefore,

c′ = u⊤
ℓ (s1 + · · ·+ sℓ + sL+1) + x+M

⌊q
2

⌋
−

ℓ−1∑
i=1

f⊤ID[i],t,ℓ
ci − d⊤

ID,tcℓ − g⊤
ID,tcL+1

= M
⌊q
2

⌋
+ x−

ℓ−1∑
i=1

f⊤ID[i],t,ℓ
xi − d⊤

ID,txℓ − g⊤
ID,txL+1︸ ︷︷ ︸

:=z (“noise”)

.

Here the noise can be bounded as follows with overwhelming probability due to Lemma 1:

∥z∥2 ≤ |x|+
ℓ−1∑
i=1

∥fID[i],t,ℓ∥2 · ∥xi∥2 + ∥dID,t∥2 · ∥xℓ∥2 + ∥gID,t∥2 · ∥xL+1∥2

≤ αq +
(ℓ−1∑
i=1

3σi(i+ 2) + 3σℓ(ℓ+ 2)
)
·mα′q

≤ (α+ 3m(ℓ+ 1)(ℓ+ 2)σℓα
′)q

Then, since ℓ ≤ L and σi ≤ σL for all i ∈ [L], the error is upper bounded by O((α+mL2σLα
′)q)

with all but negligible probability. By assumption this is smaller than q/5 with overwhelming
probability. Hence, the error probability for the Decrypt algorithm is negligible.

Parameter Selection. Here, we provide an example parameter selection of our scheme. First
recall the following restrictions we have on the parameters:

- the error term is less than q/5 with high probability (i.e., O((α + mL2σLα
′)q) < 5/q. See

Lemma 11),

30

- algorithm TrapGen works as specified (i.e., m ≥ 2n⌈log q⌉. See Lemma 3),
- algorithm SampleLeft and ExtRndLeft work as specified in the main construction for each level
0 ≤ ℓ ≤ L (i.e., σ0 ≥ ∥TAi∥GS · ω(

√
logm) for i ∈ [L + 1] and σi+1 ≥ σi

√
m · ω(

√
logm) for

i ∈ [L− 1]. See Lemma 3, 4),
- algorithm ExtRndRight works as specified in the security proof (i.e., σ0 ≥ ∥Ri∥2 · ∥TG∥ ·
ω(
√
log n). See Lemma 4, 6),

- algorithm ReRand works as specified in the security proof (i.e., α′/2α > ∥R∗∥2 where R∗ ←
{−1, 1}m×(L+1)m, αq > ω(

√
(L+ 1)m). See Lemma 7),

- the hardness assumption of LWE applies, i.e., q > 2
√
n/α.

To satisfy the above requirements, one way to set the parameters is as follows, where L denotes
the maximum depth of the hierarchy.

m = O(n log q), q = m
L+6
2 L

5
2ω((log n)

L+1
2),

σi = m
i+1
2 ω((log n)

i+1
2) α = m−L+4

2 L− 5
2ω((log n)

L+1
2)−1, α′ = (mL)

1
2α,

where i ∈ [0, L] and we round up q to the nearest larger prime.

Remarks. Note that for simplicity we defined correctness of RHIBE to hold with probability one
in Section 4. Therefore, to be consistent with our definition, we can use standard techniques to
modify our lattice-based construction to have no decryption error by considering a bound on the
secret/noise vectors.

6.2 Security

Theorem 2. The above RHIBE scheme Π is selective-identity secure assuming the hardness of
the LWEn,m+1,q,χ problem, where χ = DZm+1,αq.

Proof. Let A be a PPT adversary that attacks the selective-identity security of the RHIBE
scheme Π with advantage AdvRHIBE-selΠ,L,A (λ) = ϵ. In addition, let (ID∗ = (id∗1, . . . , id

∗
ℓ∗), t

∗) be the
challenge identity/time period pair that A sends to the challenger at the beginning of the game.
Now, observe that the strategy taken by A can be divided into the following two types that are
mutually exclusive, where the first type can be further divided into ℓ types of strategies that are
mutually exclusive:

• Type-I: A issues secret key reveal queries on at least one ID ∈ prefix(ID∗).
- Type-I-i∗: A issues a secret key reveal query on ID∗

[i∗] but not on any ID ∈
prefix(ID∗

[i∗−1]).
• Type-II: A does not issue secret key reveal queries on any ID ∈ prefix(ID∗).

Since all the above strategies fulfill the conditions stated in Lemma 8, we can assume without loss
of generality that A is an adversary that always follows one of the above strategies (which has
advantage ϵ). We note that when A follows the Type-I-i∗ strategy, the condition of revoke & key
update query ensures that ID∗

[i∗] or one of its ancestors must be revoked before t∗. In other words,
the challenger C does not have to create kuID∗

[i∗],t
for t ≥ t⋆. Below we provide two types of security

proofs: one for when A uses the Type-I-i∗ (1 ≤ i∗ ≤ ℓ∗) strategy and another for when A uses the
Type-II strategy. In both proofs, we show security of the scheme through a sequence of games,
where we define Ei to be the event that A guesses correctly the bit chosen by the challenger in
Gamei. In particular, regardless of the strategy taken by A, both proofs share a common game
sequence Gamereal and Game0 as defined below:

31

Gamereal: This is the real security game between the adversary A and a challenger, where A sends
the challenge tuple (ID∗ = (id∗1, . . . , id

∗
ℓ∗), t

∗) to the challenger at the beginning of the game. By
definition, we have

AdvRHIBE-selΠ,L,A (λ) = 2 ·
∣∣∣∣Pr[Ereal]−

1

2

∣∣∣∣ ⇔ Pr[Ereal] =
1

2
(1± ϵ).

Game0: In this game, we make a conceptual change on how the challenger deals with the trapdoors
in GenSK,KeyUp and GenDK, so that we only need to keep in mind during the following game
sequence whether the challenger is in possession of the “base” trapdoors (TAi)i∈[L+1] provided in
the master secret key skkgc. In particular, in this game whenever the challenger requires to use
a trapdoor to sample a short vector, say run algorithm SampleLeft with trapdoor T[Aℓ|E(pa(ID))]

during GenSK, he creates the required trapdoor from the base trapdoor TAi provided in skkgc
by running algorithm ExtRndLeft. Furthermore, whenever the challenger is required to extend
a trapdoor basis, say extend T[Ai|E(pa(ID))] to T[Ai|E(ID)] during GenSK, the challenger extends
it from the base trapdoor TAi provided in skkgc, e.g., extend TAi to T[Ai|E(ID)]. In both cases,
the Gaussian parameters are set accordingly so that the quality of the extended trapdoors are
consistent with the actual trapdoor. Then, due to Lemma 3 and 4, since the sampled vectors and
the extended trapdoors are statistically independent from the trapdoors provided as input, we
have |Pr[Ereal]− Pr[E0]| = negl(λ).

In the following, we prove that we have Pr[E0] =
1
2 ± negl(λ), regardless of the strategy taken

by the adversary A. From the above argument, this implies that ϵ = negl(λ), which concludes
the proof of our theorem. Below, we first provide the proof against an adversary A that uses the
Type-I-i∗ strategy.

Lemma 12. The advantage of an adversary A using the Type-I-i∗ strategy in Game0 is negligible
assuming the hardness of the LWEn,m+1,q,χ problem, where χ = DZm+1,αq.

Proof. Our goal of this proof is to modify the challenger so that he is able to simulate the game
with only the trapdoors {TAi}i∈[L+1]\{i∗}. At a high level, since the challenger will not require
TAi∗ , this will allow us to embed the matrixAi∗ given as the LWE problem in the public parameter
PP. To this end, we informally illustrate in Table 1 for reference the situations for which the actual
challenger in Game0 requires to use the trapdoor TAi∗ , either implicitly or explicitly, to respond
to A’s queries. Note that we do not include a row corresponding to the secret key reveal query,
since the challenger simply returns the secret key created during the secret key generation query.
Furthermore, we emphasize that we do not explicitly consider the key updates kuID,t created
during the secret key generation query since this will be captured by item (iii) in our proof
below without loss of generality. (See GameI-i∗-3 for further details.) Here, the unnumbered items
concerning users ID ∈ (ID)i∗ in the above table are constructed deterministically from items (i),
(ii) and (iii): to answer revoke & key update queries, the challenger creates (fID,t,k)k∈[i∗+1,L] from
combining (fID,k)k∈[i∗+1,L] and dID,t, and to answer decryption key reveal queries, the challenger
creates dID,t from combining eID,θ and epa(ID),t,θ. Note that epa(ID),t,θ corresponds to item (iii),

since pa(ID) ∈ (ID)i∗−1. Therefore, in the following we only focus on how to simulate items (i),
(ii) and (iii), ultimately without requiring TAi∗ . We now proceed with the following sequence of
games.

GameI-i∗-1: In this game, we change the way (Bj)j∈[L+1] are chosen. At the beginning of the
game, the GameI-i∗-1 challenger samples R∗

j ← {−1, 1}m×m for j ∈ [L+1] and sets (Bj)j∈[L+1] as

32

ID ∈ (ID)i∗ ID ∈ (ID)i∗−1

(In case i∗ ≥ 3)

ID ∈ (ID)≤i∗−2

Secret Key

Generation
(skID) (i)

(eID,θ)θ∈Path(BTpa(ID),ηID
)

(fID,k)k∈[i∗+1,L]
(ii) T[Ai∗ |E(ID)] (ii) T[Ai∗ |E(ID)]

Revoke &
Key Update

(kuID,t) (fID,t,k)k∈[i∗+1,L] (iii) (eID,t,θ)θ∈KUNode(BTID,RLID,t) −

Decryption

Key Reveal
(dkID,t) dID,t − −

Table 1: Items for which the challenger requires TAi∗ to construct.

follows:

Bj =


Ai∗R

∗
j −H(id∗j)G, for j ∈ [i∗],

Ai∗R
∗
j for j ∈ [i∗ + 1, L],

Ai∗R
∗
j −H(t∗)G, for j = L+ 1.

The challenger keeps the matrices (R∗
j)j∈[L+1] as a part of skkgc. By Lemma 5, the statistical

distance between the public parameters PP in Game0 and GameI-i∗-1 is negligible. Therefore, we
have |Pr[E0]− Pr[EI-i∗-1]| = negl(λ).

GameI-i∗-2 : In this game, we make two modifications: when we generate the binary tree BTpa(ID∗
[i∗])

and how we assign ID∗
[i∗] to the binary tree BTpa(ID∗

[i∗])
. Recall in the previous game, the challenger

created BTpa(ID∗
[i∗])

when A submitted a secret key generation query on pa(ID∗
[i∗]), and assigned

ID∗
[i∗] to some random leaf ηID∗

[i∗]
of BTpa(ID∗

[i∗])
when A submitted a secret key generation query

on ID∗
[i∗]. In this game, the GameI-i∗-2 challenger creates an empty binary tree BTpa(ID∗

[i∗])
and

chooses a random leaf ηID∗
[i∗]

in BTpa(ID∗
[i∗])

for which he plans to assign ID∗
[i∗] before providing

A the public parameter PP. Then, when A issues a secret key generation query on some ID ∈
pa(ID∗

[i∗])∥ID, if ID = ID∗
[i∗] then the challenger proceeds with GenSK as if (BTpa(ID), ηID∗

[i∗]
) ←

CS.Assign(BTpa(ID∗
[i∗])

, ID∗
[i∗]), and otherwise it assigns ID to some random leaf of BTpa(ID∗

[i∗])
that is

not ηID∗
[i∗]

. Note that this can be done, since A sends the challenger the challenge identity ID∗

at the outset of the game. Since the time on which BTpa(ID∗
[i∗])

is generated is only a conceptual

matter and the random assignment of ID∗
[i∗] made by the challenger is statistically hidden from

A, the view of the adversary is unchanged. Therefore, we have |Pr[EI-i∗-1]− Pr[EI-i∗-2]| = 0.

GameI-i∗-3 : In this game, we change the challenger so he does not have to use the trapdoor TAi∗

when generating the following short vectors for user ID∗
[i∗]: eID∗

[i∗],θ
for θ ∈ Path(BTpa(ID∗

[i∗])
, ηID∗

[i∗]
)

in skID∗
[i∗]

(Table 1, Item (i)) and epa(ID∗
[i∗]),t

∗,θ for θ ∈ KUNode(BTpa(ID∗
[i∗])

,RLpa(ID∗
[i∗]),t

∗) in

kupa(ID∗
[i∗]),t

∗ (Table 1, Item (iii)). To this end, we modify when and how the vectors upa(ID∗
[i∗]),θ

stored in each node θ ∈ BTpa(ID∗
[i∗])

in skpa(ID∗
[i∗])

are constructed. In the following, let SPath =

Path(BTpa(ID∗
[i∗])

, ηID∗
[i∗]

) and SKU,t∗ = KUNode(BTpa(ID∗
[i∗])

,RLpa(ID∗
[i∗]),t

∗). By definition of the Type-

I-i∗ strategy, user ID∗
[i∗] or one of its ancestors must be revoked before time period t∗. Therefore,

due to the property of the CS scheme, we have SPath ∩ SKU,t∗ = ∅.
We first recall when and how the vectors upa(ID∗

[i∗]),θ
stored in the nodes θ ∈ BTpa(ID∗

[i∗])
are

constructed. In the beginning, the binary tree BTpa(ID∗
[i∗])

is initialized empty. The only situation

the challenger updates BTpa(ID∗
[i∗])

is when A issues a secret key generation query for some ID ∈
pa(ID∗

[i∗])∥ID or a revoke & key update query, and the relevant nodes θ ∈ BTpa(ID∗
[i∗])

for answering

33

theses queries have not been stored any vectors yet. For these particular nodes, the GameI-i∗-2
challenger samples a random vector upa(ID∗

[i∗]),θ
and updates the binary tree BTpa(ID∗

[i∗])
by storing

the vectors inside node θ. Note that when A issues a secret key generation query on ID ∈
pa(ID∗

[i∗])∥ID (resp. a revoke & key update query16), the challenger samples short vectors eID,θ

for θ ∈ Path(BTpa(ID∗
[i∗])

, ηID) in skID (resp. epa(ID∗
[i∗]),tcu,θ

for θ ∈ KUNode(BTpa(ID∗
[i∗])

,RLpa(ID∗
[i∗]),tcu

)

in kupa(ID∗
[i∗]),tcu

) such that

[Ai∗ |E(ID)] eID,θ = upa(ID∗
[i∗]),θ

for θ ∈ Path(BTpa(ID∗
[i∗])

, ηID), (9)

[Ai∗ |E(pa(ID∗
[i∗]))|F(tcu)]epa(ID∗

[i∗]),tcu,θ
= ui∗ − upa(ID∗

[i∗]),θ

for θ ∈ KUNode(BTpa(ID∗
[i∗])

,RLpa(ID∗
[i∗]),tcu

),
(10)

where the required trapdoors for these operations are created by the challenger from TA∗
i
on

the fly due to the modification we made in Game0. Note that to be precise, we must also take
into account the fact that we run the KeyUp algorithm during the secret key generation query.
However, we omit this for clarity, since it can be seen that the we can make the same argument
as above for the key updates generated during the secret key generation query.

In this game, whenever A issues a secret key generation query for some ID ∈ pa(ID∗
[i∗])∥ID or

a revoke & key update query, the GameI-i∗-3 challenger first checks whether the node θ ∈ Sundef

is in SPath or not, where Sundef denotes the set of nodes in BTpa(ID∗
[i∗])

where a vector upa(ID∗
[i∗]),θ

has not been not stored yet and for which it must be defined for the challenger to answer A’s
query. If θ ∈ Sundef ∩ SPath, the challenger first samples a vector eID∗

[i∗],θ
← DZ(i∗+1)m,σi∗

and sets

upa(ID∗
[i∗]),θ

as in Eq. (9). Then it stores upa(ID∗
[i∗]),θ

in the node θ and keeps eID∗
[i∗],θ

secret. If

θ ∈ Sundef \ (Sundef ∩SPath), the challenger first samples a vector epa(ID∗
[i∗]),t

∗,θ ← DZ(i∗+1)m,σi∗
and

sets upa(ID∗
[i∗]),θ

as in Eq. (10) by implicitly setting tcu = t∗. Specifically, it sets

upa(ID∗
[i∗]),θ

= −[Ai∗ |E(pa(ID∗
[i∗]))|F(t

∗)]epa(ID∗
[i∗]),t

∗,θ + ui∗ .

Then it stores upa(ID∗
[i∗]),θ

in the node θ and keeps epa(ID∗
[i∗]),t

∗,θ secret. Now if the ID ∈
pa(ID∗

[i∗])∥ID issued by A as the secret key generation query is not ID∗
[i∗], then the GameI-i∗-3 chal-

lenger samples the short vectors (eID,θ)θ as in Eq. (9) using TAi∗ . Otherwise, in case ID = ID∗
[i∗],

the challenger simply returns the vectors (eID∗
[i∗],θ

)θ∈SPath
which he has already created without

using TAi∗ . Furthermore, if the global counter tcu on which A queried the revoke & key up-
date query is not t∗, then the GameI-i∗-3 challenger samples the short vectors (epa(ID∗

[i∗]),tcu,θ
)θ as

in Eq. (10) using TAi∗ . Otherwise, in case tcu = t∗, the challenger simply returns the vectors
(epa(ID∗

[i∗]),t
∗,θ)θ∈SKU,t∗ which he has already created without using TAi∗ . Note that this procedure

is well-defined since SPath∩SKU,t∗ = ∅. Now, due to Lemma 2, the distribution of the short vectors
provided to A are distributed statistically close to those of the previous game. Therefore, we have
|Pr[EI-i∗-2]− Pr[EI-i∗-3]| = negl(λ).

GameI-i∗-4: In this game, we change the challenger so he does not have to use the trapdoor TAi∗

for user ID∗
[i∗] when generating the short vectors (fID∗

[i∗],k
)k∈[i∗+1,L] in skID∗

[i∗]
(Table 1, Item (i)).

In particular, with the change we made in the previous game, the challenger no longer requires

16Recall that by our security definition, there exists a global counter tcu initialized to 1, which the adversary A
can increment only by querying the revoke & key update query. Specifically, all items that are associated with the
revoke & key update query are by definition associated with the variable tcu.

34

TAi∗ when issued a secret key generation query for ID∗
[i∗]. To this end, we modify how we create

the vectors (uk)k∈[i∗,L]\{ℓ∗} in PP.
Recall that in the previous game, the challenger sampled (uk)k∈[L] as uniformly random vectors

in Zn
q at the beginning of the game. Then, when A issued a secret key generation query on ID∗

[i∗],
the challenger sampled short vectors (fID∗

[i∗],k
)k∈[i∗+1,L] such that

[Ai∗ |E(ID∗
[i∗])]fID∗

[i∗],k
= uk − ui∗ , (11)

where the required trapdoor for sampling is created by the challenger from TA∗
i
on the fly.

We first describe how the vectors (uk)k∈[L] in PP are created. In this game, the GameI-i∗-4
challenger first samples (uk)k∈[i∗−1]∪{ℓ∗} as uniformly random vectors in Zn

q at the beginning of
the game, as was done in the previous game. Next, the challenger computes ui∗ by first sampling
fID∗

[i∗],ℓ
∗ ← DZ(i∗+1)m,σi∗

and setting it to satisfy the following equation:

[Ai∗ |E(ID∗
[i∗])]fID∗

[i∗],ℓ
∗ = uℓ∗ − ui∗ .

Then, it keeps the vector fID∗
[i∗],ℓ

∗ secret. Finally, the challenger computes the remaining

(uk)k∈[i∗+1,L]\{ℓ∗} by first sampling fID∗
[i∗],k

← DZ(i∗+1)m,σi∗
for k ∈ [i∗ + 1, L] \ {ℓ∗} and set-

ting the vectors uk to satisfy Eq. (11). Then, it keeps the vectors (fID∗
[i∗],k

)k∈[i∗+1,L]\{ℓ∗} secret.

All other terms in PP are constructed as in the previous game. In this game, the GameI-i∗-4 chal-
lenger answers all queries made by A as in the previous game, except for when A queries ID∗

[i∗] as
the secret key generation query. For this specific case, the challenger simply returns the vectors
(fID∗

[i∗],k
)k∈[i∗+1,L] which he has already created at the beginning of the game without using TAi∗ .

Due to Lemma 2, the distribution of the vectors provided to A are distributed statistically close
to those of GameI-i∗-3. Therefore, we have |Pr[EI-i∗-3]− Pr[EI-i∗-4]| = negl(λ).

GameI-i∗-5: In this game, we change how Ai∗ is sampled. Namely, in this game, we generate Ai∗

as a random matrix in Zn×m
q instead of generating it with a trapdoor. By Lemma 3, this makes

only negligible difference. Accordingly, we modify the challenger, so that he does not require the
trapdoor TAi∗ to answer any of the queries made by A. Recall that in the previous game, the
challenger used TAi∗ to create the following items in Table 1:

(a) Item (i) for ID ∈ (ID)i∗ \ {ID∗
[i∗]}.

(b) Item (ii) for ID ∈ (ID)≤i∗−1 \ prefix(ID∗
[i∗−1]).

(c) Item (iii) for (ID, t) ∈ (ID)i∗−1 × T .
Note that we do not require TAi∗ anymore to create the secret key skID∗

[i∗]
in item (a) due to

the modification we made in GameI-i∗-3 and GameI-i∗-4.
17 Furthermore, we can add the restriction

ID ̸∈ prefix(ID∗
[i∗−1]) in item (b) without loss of generality, since an adversary following the Type-

I-i∗ strategy never asks for a secret key reveal query for ID ∈ prefix(ID∗
[i∗−1]) and due to the change

we made in Game0, i.e., we extend the basis from TAi∗ instead from pa(ID)’s basis. Finally, recall
that when creating the key update kupa(ID∗

[i∗]),t
∗ in item (c), we do not require TAi∗ anymore to

sample short vectors corresponding to the path of ID∗
[i∗], i.e., SKU,t∗ due to the modification we

made in GameI-i∗-3.
We now show that the GameI-i∗-5 challenger no longer requires TAi∗ to construct items (a),

(b) and (c), which follows simply from the change we made in GameI-i∗-1. In the following we

17Recall that we do not require TAi∗ to execute the KeyUp algorithm for the secret key generation query when
tcu = t∗.

35

only show the case for item (a), since the other cases can be easily verified in a similar fashion.
Now, if ID ∈ (ID)i∗ \ {ID∗

[i∗]}, then there must exist an index j ∈ [i∗] such that idj ̸= id∗j where
idj , id

∗
j is the j-th element identity of ID, ID∗

[i∗], respectively. Hence, H(idj) ̸= H(id∗j). Then,
to create a trapdoor T[Ai∗ |E(ID)], the challenger first runs ExtRndRight(Ai∗ ,G,R∗

j ,TG, σ0) to
create T[Ai∗ |Ai∗R

∗
j+(H(idj)−H(id∗j))G]. If i∗ = 1, this is the desired trapdoor basis. Otherwise,

using this basis, the challenger extends it to a basis T[Ai∗ |E(ID)] by running ExtRndLeft, where the
Gaussian parameter is set as σi∗ so that the quality of the trapdoor is the same as in the previous
game. Note that this can be done since we can rearrange the rows of the basis in an arbitrary
manner. Finally, the challenger samples the short secret key vectors by running SampleLeft(·)
with trapdoor T[Ai∗ |E(ID)] and Gaussian parameter σi∗ . This shows that the challenger is able
to create the required trapdoor without using TAi∗ . Due to Lemma 3 and 4, since the sampled
vectors and the extended trapdoors are statistically independent from the trapdoors provided as
input, this makes a negligible difference. Since, we can make a similar argument in the case for
items (b) and (c) as well, we have |Pr[EI-i∗-4]− Pr[EI-i∗-5]| = negl(λ).

GameI-i∗-6: In this game, we change the way the challenge ciphertext is created. In this game,
when the GameI-i∗-6 challenger is issued a challenge query on (M0,M1) by A, it first samples
si ← Zn

q for i ∈ [ℓ∗] ∪ {L + 1}, x ← DZ,αq, x̄ ← DZm,αq, xi ← DZ(i+2)m,α′q for i ∈ [ℓ∗] \ {i∗} and
xL+1 ← DZ(ℓ∗+2)m,α′q. Then it computes v = u⊤

ℓ∗si∗ + x ∈ Zq, v = A⊤
i∗si∗ + x̄ ∈ Zm

q and the
following terms: 

c0 = v + u⊤
ℓ∗

(∑
i∈[ℓ∗]∪{L+1}\{i∗}

si

)
+Mb

ci = [Ai|E(ID∗
[i])|F(t

∗)]⊤si + xi for i ∈ [ℓ∗] \ {i∗}

cL+1 = [AL+1|E(ID∗)|F(t∗)]⊤sL+1 + xL+1

(12)

where b is the random bit chosen by the challenger. It then sets R∗ = [R∗
1∗ | · · · |R∗

i∗ |R∗
L+1] ∈

Zm×(i∗+1)m and runs

ReRand
(
[Im|R∗],v, αq,

α′

2α

)
→ c ∈ Z(i∗+2)m

q

from Lemma 7, where Im is the identity matrix with size m. Finally, it sets ci∗ = c and outputs
the challenge ciphertext as follows:

ct = (c0, c1, . . . , cℓ∗ , cL+1) ∈ Zq × Z3m
q × · · · × Z(ℓ∗+2)m

q × Z(ℓ∗+2)m
q . (13)

We claim that this change alters the view of A only negligibly, which follows from the noise re-
randomization lemma (Lemma 7). In particular, we set V = [Im|R∗], b = A⊤

i∗si∗ and x = x̄ in
Lemma 7 to conclude that the obtained distribution c is negligibly close to the following:

c⊤ = s⊤i∗Ai∗ [Im|R∗] + x′⊤

= s⊤i∗ [Ai∗ |B1 +H(id∗1)G| · · · |Bi∗ +H(id∗i∗)G|BL+1 +H(t∗)G] + x′⊤

= s⊤i∗ [Ai∗ |E(ID∗
[i∗])|F(t

∗)] + x′⊤ ∈ Z(i∗+2)m
q

where x′ is distributed statistically close to DZ(i∗+2)m,α′q due to our parameter selection. It can
be seen that the challenge ciphertext in Eq. (13) is distributed statistically close to the previous
game. Therefore, we have

|Pr[EI-i∗-5]− Pr[EI-i∗-6]| = negl(λ).

36

GameI-i∗-7: In this game, we further change the way the challenge ciphertext is created. In
particular, in this game, the GameI-i∗-7 challenger first samples si ← Zn

q for i ∈ [ℓ∗]∪{L+1}\{i∗},
w ← Zq, w ← Zm

q , x ← DZ,αq, x̄ ← DZm,αq, xi ← DZ(i+2)m,α′q for i ∈ [ℓ∗] \ {i∗} and xL+1 ←
DZ(ℓ∗+2)m,α′q. Then it computes v = w + x ∈ Zq, v = w + x̄ ∈ Zm

q and sets the remaining terms
as in Eq. (12) of the previous game. Furthermore, it sets R∗ and runs the ReRand algorithm as
in GameI-i∗-6. Finally, it sets the challenge ciphertext as in Eq. (13). We claim that

|Pr[EI-i∗-6]− Pr[EI-i∗-7]| = negl(λ),

assuming the hardness of the LWEn,m+1,q,χ problem. To this end, we use A to construct an LWE
adversary B as follows:

B is given the problem instance of LWE as (A′,v′ = w′ + z̄′) ∈ Zn×(m+1)
q × Zm+1

q where

z̄′ ← DZm+1,αq. The task of B is to distinguish whether w′ = A′⊤s for s ← Zn
q or w′ ← Zm+1

q .
In the following, let the first column of A′ be u ∈ Zn

q and the remaining columns be A ∈ Zn×m
q .

Further, let the first coefficient of v′ be v and the remaining coefficients be v ∈ Zm
q . Using these

terms, B sets the public parameter PP. In particular, B sets (Ai∗ ,uℓ∗) = (A,u) and proceeds the
setup as the GameI-i∗-4 challenger. Furthermore, whenever A issues a query, B proceeds as the
GameI-i∗-5 challenger, and answers them without the knowledge of TAi∗ . Finally, to generate the
challenge ciphertext, it first picks b← {0, 1} and generates the challenge ciphertext as in Eq. (13)
using v,v, and returns it to A. Note that all B needs to do to generate the ciphertext is to run the
ReRand algorithm, which it can do without knowledge of the secret randomness s, z̄′. Let b′ be
the output of A. B outputs 1 if b′ = b and 0 otherwise. It can be seen that if A′,v′ is a valid LWE
sample (i.e., w′ = A′⊤s), the view of the adversary corresponds to GameI-i∗-6. Otherwise (i.e.,
w′ ← Zm+1

q), it corresponds to GameI-i∗-7. We therefore conclude that assuming the hardness of
the LWEn,m+1,q,χ problem we have |Pr[EI-i∗-6]− Pr[EI-i∗-7]| = negl(λ).

Finally, since v is distributed uniformly at random over Zq and independently of all other
terms, the probability of adversary A guessing whether b = 0 or b = 1 is exactly 1/2. In
particular, we have

Pr[EI-i∗-7] =
1

2
.

Combining everything together, we conclude that if the adversary A uses the Type-I-i∗ strategy,
then Pr[E0] =

1
2 ± negl(λ) assuming the hardness of LWEn,m+1,q,χ problem.

Similarly, we provide the following lemma against an adversary A that uses the Type-II strat-
egy. The proof proceeds closely to Lemma 12, where we gradually modify the game so that the
challenger no longer requires TAL+1

in the final game.

Lemma 13. The advantage of an adversary A using the Type-II strategy in Game0 is negligible
assuming the hardness of the LWEn,m+1,q,χ problem, where χ = DZm+1,αq.

Proof. The proof outline is essentially the same as Lemma 12 against the adversary using the
Type-I strategy. The only difference is that in this proof, we aim at modifying the challenger so
that he is able to simulate the game without using the trapdoor TAL+1

. At a high level, since
the adversary does not require TAL+1

anymore, we would be able to embed the matrix AL+1

provided as the LWE problem into the public parameter PP. To this end, we provide for reference
the situations for which the challenger in Game0 requires to use the trapdoor TAL+1

to respond
to A’s queries:

37

(i) Secret Key Generation Query (skID): T[AL+1|E(ID)] for any ID ∈ (ID)≤L \ prefix(ID∗)

(ii) Decryption Key Reveal Query (dkID,t): gID,t for any (ID, t) ∈ (ID)≤L × T \ {(ID∗, t∗)}.
Here, the restriction on the users ID for item (i) follows from the Type-II strategy, where the
adversary A does not issue any secret key reveal queries on users ID ∈ prefix(ID∗). Furthermore,
note that the challenger can respond to all other queries made by A by using the trapdoors
(TAi)i∈[L]. With this in mind, we proceed with the following sequence of games.

GameII-1: In this game, we change the way (Bj)j∈[L+1] are chosen. At the beginning of the game,
the GameII-1 challenger samples R∗

j ← {−1, 1}m×m for j ∈ [L+1] and sets (Bj)j∈[L+1] as follows:

Bj =


AL+1R

∗
j −H(id∗j)G, for j ∈ [ℓ∗],

AL+1R
∗
j for j ∈ [ℓ∗ + 1, L],

AL+1R
∗
j −H(t∗)G, for j = L+ 1.

The challenger keeps the matrices (R∗
j)j∈[L+1] as a part of skkgc. By Lemma 5, the statistical

distance between the public parameter PP in Game0 and GameII-1 is negligible. Therefore, we
have

|Pr[E0]− Pr[EII-1]| = negl(λ).

GameII-2: In this game, we modify the challenger so he does not require the trapdoor TAL+1

when generating gID∗
[i],t

∗ for i ∈ [ℓ∗ − 1] in dkID,t∗ (See Item (ii)), i.e., decryption keys for users

ID ∈ prefix(ID∗)\{ID∗}. Note that due to the definition of the security game, the challenger never
has to create a decryption key for the user-time pair (ID∗, t∗). To this end, we modify how we
create the vectors (uk)k∈[ℓ∗−1] in PP.

Recall that in the previous game, the challenger sampled all vectors (uk)k∈[L] as uniformly
random vectors in Zn

q at the beginning of the game. Then, when A issued a decryption key reveal
query on user-item pair (ID∗

[i], t
∗) for i ∈ [ℓ∗ − 1], the challenger sampled a short vector gID∗

[i],t
∗

such that

[AL+1|E(ID∗
[i])|F(t

∗)]gID∗
[i],t

∗ = ui. (14)

where the required trapdoor for sampling the vector was created by the challenger from TAL+1

on the fly, due to the modification we made in Game0.
We first describe how the vectors (uk)k∈[L] in PP are created in this game. The GameII-2

challenger first samples (uk)k∈[L]\[ℓ∗−1] as uniformly random vectors in Zn
q at the beginning of the

game, as was done in the previous game. Next the challenger samples gID∗
[i],t

∗ ← DZi+2,σi
and sets

the remaining vectors (uk)k∈[ℓ∗−1] to satisfy Eq. (14). Then, it keeps the vectors (gID∗
[i]
, t∗)i∈[ℓ∗−1]

secret. All other terms in PP are constructed as in the previous game. In this game, the GameII-2
challenger answers all the queries made by A as in the previous game, except for when A queries
the user-item pair (ID∗

[i], t
∗) for i ∈ [ℓ∗−1] as the decryption key reveal query. For this specific case,

the challenger simply returns the vector gID∗
[i],t

∗ which he has already created at the beginning of

the game without using TAL+1
. Due to Lemma 2, the distribution of the short vectors provided

to A is distributed statistically close to those of the previous game. Therefore, we have

|Pr[EII-1]− Pr[EII-2]| = negl(λ).

38

GameII-3: In this game, we change how AL+1 is sampled. Namely, in this game, we generate AL+1

as a random matrix in Zn×m
q instead of generating it with a trapdoor. By Lemma 3, this makes

only a negligible difference. Accordingly, we modify the challenger, so that he does not require
TAL+1

to answer any of the queries made by A. Recall that in the previous game, the challenger
used TAL+1

to create the following terms for the items we provided for reference before GameII-1:
(a) Item (i) for ID ∈ (ID)≤L \ prefix(ID∗).
(b) Item (ii) for (ID, t) ∈ (ID)≤L × T \ {(ID, t∗) | ID ∈ prefix(ID∗)}.

We now show that the GameII-3 challenger no longer requires TAL+1
to construct items (a) and (b).

In the following, we only show the case for item (a), since the case for item (b) can be easily verified
in a similar manner. Now, consider a user ID ∈ (ID)≤L \ prefix(ID∗), where ID = (id1, · · · , idℓ)
for some ℓ ∈ [L]. Then, let j ∈ [ℓ] be the smallest index such that ID[j] ̸∈ prefix(ID∗), which
always exists since ID ̸∈ prefix(ID∗). Let us first consider the case j ≤ ℓ∗ and denote idj , id

∗
j

as the j-th element identities of ID, ID∗, respectively, where we have H(idj) ̸= H(id∗j). Then,
to create a trapdoor T[AL+1|E(ID)], the challenger first runs ExtRndRight(AL+1,G,R∗

j ,TG, σ0) to
create T[AL+1|AL+1R

∗
j+(H(idj)−H(id∗j)G)]. If ℓ = 1, this is our desired basis. Otherwise, using this

basis, the challenger extends it to a basis T[AL+1|E(ID)] by running ExtRndLeft with parameter σℓ.
Note that this can be done since we can rearrange the rows of the basis in an arbitrary manner.
Furthermore, in case j > ℓ∗ (or in particular j = ℓ∗ + 1 by definition), since H(idj) ̸= 0n×n,
we first run algorithm ExtRndRight to create T[AL+1|AL+1R

∗
j+H(idj)G)] and then extend it to a

basis T[AL+1|E(ID)] by running ExtRndLeft, as done above. In both cases, the challenger is able to
create the required trapdoor without using TAi∗ . Now, due to Lemma 3 and 4, since the sampled
vectors and the extended trapdoors are statistically independent from the trapdoors being used,
this modification makes a negligible difference. Since, we can make a similar argument in the case
for item (b) as well, we obtain

|Pr[EII-2]− Pr[EII-3]| = negl(λ).

GameII-4: In this game, we change the way the challenge ciphertext is created. In this game, when
the GameII-4 challenger is issued a challenge query on (M0,M1) by A, it first samples si ← Zn

q for
i ∈ [ℓ∗] ∪ {L + 1}, x ← DZ,αq, x̄ ← DZm,αq and xi ← DZ(i+2)m,α′q for i ∈ [ℓ∗]. Then it computes

v = u⊤
ℓ∗sL+1 + x ∈ Zq, v = A⊤

L+1sL+1 + x̄ ∈ Zm
q and the following terms:

c0 = v + u⊤
ℓ∗

(∑
i∈[ℓ∗]

si

)
+Mb

ci = [Ai|E(ID∗
[i])|F(t

∗)]⊤si + xi for i ∈ [ℓ∗]

(15)

where b is the random bit chosen by the challenger. It then sets R∗ = [R∗
1∗ | · · · |R∗

ℓ∗ |R∗
L+1] ∈

Zm×(ℓ∗+1)m and runs

ReRand
(
[Im|R∗],v, αq,

α′

2α

)
→ c ∈ Z(ℓ∗+2)m

q

from Lemma 7, where Im is the identity matrix with size m. Finally, it sets cL+1 = c and outputs
the challenge ciphertext as follows:

ct = (c0, c1, . . . , cℓ∗ , cL+1) ∈ Zq × Z3m
q × · · · × Z(ℓ∗+2)m

q × Z(ℓ∗+2)m
q . (16)

39

We claim that this change alters the view of A only negligibly, which follows from the noise re-
randomization lemma (Lemma 7). In particular, we set V = [Im|R∗], b = A⊤

L+1sL+1 and x = x̄
in Lemma 7 to conclude that the obtained distribution c is negligibly close to the following:

c⊤ = s⊤L+1AL+1[Im|R∗] + x′⊤

= s⊤L+1[AL+1|B1 +H(id∗1)G| · · · |Bℓ∗ +H(id∗ℓ∗)G|BL+1 +H(t∗)G] + x′⊤

= s⊤L+1[AL+1|E(ID∗)|F(t∗)] + x′⊤ ∈ Z(ℓ∗+2)m
q

where x′ is distributed statistically close to DZ(ℓ∗+2)m,α′q. It can be seen that the challenge
ciphertext in Eq. (16) is distributed statistically close to the previous game. Therefore, we have

|Pr[EII-3]− Pr[EII-4]| = negl(λ).

GameII-5: In this game, we further change the way the challenge ciphertext is created. In particular,
in this game, the GameII-5 challenger first samples si ← Zn

q for i ∈ [ℓ∗], w ← Zq, w ← Zm
q ,

x ← DZ,αq, x̄ ← DZm,αq and xi ← DZ(i+2)m,α′q for i ∈ [ℓ∗]. Then it computes v = w + x ∈ Zq,
v = w+ x̄ ∈ Zm

q and sets the remaining terms as in Eq. (15) of the previous game. Furthermore,
it sets R∗ and runs the ReRand algorithm as in GameII-4. Finally, it sets the challenge ciphertext
as in Eq. (16). We can show that

|Pr[EII-4]− Pr[EII-5]| = negl(λ),

assuming the hardness of the LWEn,m+1,q,χ problem. We omit this proof, since it is essentially the
same proof we provided to bound the advantage between GameI-i∗-6 and GameI-i∗-7 in Lemma 12
against the adversary using the Type-I strategy. In particular, instead of viewing the matrix A
provided by the LWE problem as Ai∗ in the public parameter PP, we view A as AL+1. Fur-
thermore, the LWE challenger is able to simulate the game for A properly, since we modified the
challenger in GameII-2 and GameII-3 so that it does not require TAL+1

anymore to answer any of
A’s queries.

Finally, since v is distributed uniformly at random over Zq and independently of all other
terms, the probability of adversary A guessing whether b = 0 or b = 1 is exactly 1/2. In
particular, we have

Pr[EII-5] =
1

2
.

Combining everything together, we conclude that if the adversary A uses the Type-II strategy,
then Pr[E0] =

1
2 ± negl(λ) assuming the hardness of LWEn,m,q,χ problem.

Therefore, combining the two Lemmas 12 and 13, and the strategy dividing lemma (Lem-
mas 8), we can conclude that the RHIBE scheme Π satisfies selective-identity security.

Acknowledgement. The first author was partially supported by JST CREST Grant Number
JPMJCR1302 and JSPS KAKENHI Grant Number 17J05603. The second author was partially
supported by JST CREST Grant Number JPMJCR1688. The first and second authors were
partially supported by JST CREST Grant Number JPMJCR19F6. The third author was partially
supported by JST CREST Grant Number JPMJCR14D6.

40

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the
standard model. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, volume 6110 of Lecture Notes in Computer Science, pages 553–
572. Springer, 2010.

[AI09a] Nuttapong Attrapadung and Hideki Imai. Attribute-based encryption supporting di-
rect/indirect revocation modes. In Matthew G. Parker, editor, Cryptography and
Coding, 12th IMA International Conference, Cryptography and Coding 2009, volume
5921 of Lecture Notes in Computer Science, pages 278–300. Springer, 2009.

[AI09b] Nuttapong Attrapadung and Hideki Imai. Conjunctive broadcast and attribute-based
encryption. In Hovav Shacham and Brent Waters, editors, Pairing-Based Cryptogra-
phy - Pairing 2009, Third International Conference, volume 5671 of Lecture Notes in
Computer Science, pages 248–265. Springer, 2009.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In Jiŕı Wie-
dermann, Peter van Emde Boas, and Mogens Nielsen, editors, Automata, Languages
and Programming, 26th International Colloquium, ICALP’99, volume 1644 of Lecture
Notes in Computer Science, pages 1–9. Springer, 1999.

[AP11] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices.
Theory Comput. Syst., 48(3):535–553, 2011.

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
SIAM J. Comput., 32(3):586–615, 2003.

[BGK08] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption
with efficient revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors,
Proceedings of the 2008 ACM Conference on Computer and Communications Security,
CCS 2008, pages 417–426. ACM, 2008.

[CCKS18] Donghoon Chang, Amit Kumar Chauhan, Sandeep Kumar, and Somitra Kumar
Sanadhya. Revocable identity-based encryption from codes with rank metric. In
Nigel P. Smart, editor, Topics in Cryptology - CT-RSA 2018 - The Cryptographers’
Track at the RSA Conference 2018, volume 10808 of Lecture Notes in Computer Sci-
ence, pages 435–451. Springer, 2018.

[CDLQ16] Hui Cui, Robert H. Deng, Yingjiu Li, and Baodong Qin. Server-aided revocable
attribute-based encryption. In Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K.
Katsikas, and Catherine A. Meadows, editors, Computer Security - ESORICS 2016 -
21st European Symposium on Research in Computer Security, volume 9879 of Lecture
Notes in Computer Science, pages 570–587. Springer, 2016.

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. J. Cryptology, 25(4):601–639, 2012.

[CLL+12] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Khoa Nguyen. Revocable
identity-based encryption from lattices. In Willy Susilo, Yi Mu, and Jennifer Seberry,

41

editors, Information Security and Privacy - 17th Australasian Conference, ACISP
2012, volume 7372 of Lecture Notes in Computer Science, pages 390–403. Springer,
2012.

[DG17] Nico Döttling and Sanjam Garg. From selective IBE to full IBE and selective HIBE.
In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography - 15th International
Conference, TCC 2017, volume 10677 of Lecture Notes in Computer Science, pages
372–408. Springer, 2017.

[ESY16] Keita Emura, Jae Hong Seo, and Taek-Young Youn. Semi-generic transformation of
revocable hierarchical identity-based encryption and its DBDH instantiation. IEICE
Transactions, 99-A(1):83–91, 2016.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, Proceedings of the
40th Annual ACM Symposium on Theory of Computing, pages 197–206. ACM, 2008.

[HLCL18] Ziyuan Hu, Shengli Liu, Kefei Chen, and Joseph K. Liu. Revocable identity-based
encryption from the computational Diffie-Hellman problem. In Willy Susilo and
Guomin Yang, editors, Information Security and Privacy - 23rd Australasian Confer-
ence, ACISP 2018, Proceedings, volume 10946 of Lecture Notes in Computer Science,
pages 265–283. Springer, 2018.

[ISW17] Yuu Ishida, Junji Shikata, and Yohei Watanabe. CCA-secure revocable identity-based
encryption schemes with decryption key exposure resistance. IJACT, 3(3):288–311,
2017.

[KMT19] Shuichi Katsumata, Takahiro Matsuda, and Atsushi Takayasu. Lattice-based revoca-
ble (hierarchical) IBE with decryption key exposure resistance. In Dongdai Lin and
Kazue Sako, editors, Public-Key Cryptography - PKC 2019 - 22nd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Proceedings, Part II,
volume 11443 of Lecture Notes in Computer Science, pages 441–471. Springer, 2019.

[KY16] Shuichi Katsumata and Shota Yamada. Partitioning via non-linear polynomial func-
tions: More compact ibes from ideal lattices and bilinear maps. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd In-
ternational Conference on the Theory and Application of Cryptology and Information
Security, volume 10032 of Lecture Notes in Computer Science, pages 682–712, 2016.

[LLP17] Kwangsu Lee, Dong Hoon Lee, and Jong Hwan Park. Efficient revocable identity-based
encryption via subset difference methods. Des. Codes Cryptography, 85(1):39–76, 2017.

[LNWZ17] San Ling, Khoa Nguyen, Huaxiong Wang, and Juanyang Zhang. Revocable predicate
encryption from lattices. In Tatsuaki Okamoto, Yong Yu, Man Ho Au, and Yannan
Li, editors, Provable Security - 11th International Conference, ProvSec 2017, volume
10592 of Lecture Notes in Computer Science, pages 305–326. Springer, 2017.

[LNWZ18] San Ling, Khoa Nguyen, Huaxiong Wang, and Juanyang Zhang. Server-aided re-
vocable predicate encryption: Formalization and lattice-based instantiation. CoRR,
abs/1801.07844, 2018.

42

[LP18] Kwangsu Lee and Seunghwan Park. Revocable hierarchical identity-based encryption
with shorter private keys and update keys. Des. Codes Cryptography, 86(10):2407–
2440, 2018.

[LV09] Benôıt Libert and Damien Vergnaud. Adaptive-ID secure revocable identity-based
encryption. In Marc Fischlin, editor, Topics in Cryptology - CT-RSA 2009, The Cryp-
tographers’ Track at the RSA Conference 2009. Proceedings, volume 5473 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2009.

[ML19] Xuecheng Ma and Dongdai Lin. A generic construction of revocable identity-based
encryption. IACR Cryptology ePrint Archive, 2019:299, 2019.

[MLC+15] Xianping Mao, Junzuo Lai, Kefei Chen, Jian Weng, and Qixiang Mei. Efficient revo-
cable identity-based encryption from multilinear maps. Security and Communication
Networks, 8(18):3511–3522, 2015.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptol-
ogy - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, volume 7237 of Lecture Notes in Computer
Science, pages 700–718. Springer, 2012.

[NMS12] Juan Manuel González Nieto, Mark Manulis, and Dongdong Sun. Fully private re-
vocable predicate encryption. In Willy Susilo, Yi Mu, and Jennifer Seberry, editors,
Information Security and Privacy - 17th Australasian Conference, ACISP 2012, vol-
ume 7372 of Lecture Notes in Computer Science, pages 350–363. Springer, 2012.

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for
stateless receivers. In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001,
21st Annual International Cryptology Conference. Proceedings, volume 2139 of Lecture
Notes in Computer Science, pages 41–62. Springer, 2001.

[NWZ16] Khoa Nguyen, Huaxiong Wang, and Juanyang Zhang. Server-aided revocable identity-
based encryption from lattices. In Sara Foresti and Giuseppe Persiano, editors, Cryp-
tology and Network Security - 15th International Conference, CANS 2016, volume
10052 of Lecture Notes in Computer Science, pages 107–123, 2016.

[PLL15] Seunghwan Park, Kwangsu Lee, and Dong Hoon Lee. New constructions of revocable
identity-based encryption from multilinear maps. IEEE Trans. Information Forensics
and Security, 10(8):1564–1577, 2015.

[QDLL15] Baodong Qin, Robert H. Deng, Yingjiu Li, and Shengli Liu. Server-aided revocable
identity-based encryption. In Günther Pernul, Peter Y. A. Ryan, and Edgar R. Weippl,
editors, Computer Security - ESORICS 2015 - 20th European Symposium on Research
in Computer Security, volume 9326 of Lecture Notes in Computer Science, pages 286–
304. Springer, 2015.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 84–93. ACM, 2005.

43

[RLPL15] Geumsook Ryu, Kwangsu Lee, Seunghwan Park, and Dong Hoon Lee. Unbounded
hierarchical identity-based encryption with efficient revocation. In Howon Kim and
Dooho Choi, editors, Information Security Applications - 16th International Work-
shop, WISA 2015, volume 9503 of Lecture Notes in Computer Science, pages 122–133.
Springer, 2015.

[SE13] Jae Hong Seo and Keita Emura. Revocable identity-based encryption revisited: Se-
curity model and construction. In Kaoru Kurosawa and Goichiro Hanaoka, editors,
Public-Key Cryptography - PKC 2013 - 16th International Conference on Practice
and Theory in Public-Key Cryptography. Proceedings, volume 7778 of Lecture Notes
in Computer Science, pages 216–234. Springer, 2013.

[SE14] Jae Hong Seo and Keita Emura. Revocable hierarchical identity-based encryption.
Theor. Comput. Sci., 542:44–62, 2014.

[SE16] Jae Hong Seo and Keita Emura. Revocable hierarchical identity-based encryption via
history-free approach. Theor. Comput. Sci., 615:45–60, 2016.

[TW17] Atsushi Takayasu and Yohei Watanabe. Lattice-based revocable identity-based encryp-
tion with bounded decryption key exposure resistance. In Josef Pieprzyk and Suriadi
Suriadi, editors, Information Security and Privacy - 22nd Australasian Conference,
ACISP 2017, volume 10342 of Lecture Notes in Computer Science, pages 184–204.
Springer, 2017.

[WES17] Yohei Watanabe, Keita Emura, and Jae Hong Seo. New revocable IBE in prime-order
groups: Adaptively secure, decryption key exposure resistant, and with short public
parameters. In Helena Handschuh, editor, Topics in Cryptology - CT-RSA 2017 -
The Cryptographers’ Track at the RSA Conference 2017. Proceedings, volume 10159
of Lecture Notes in Computer Science, pages 432–449. Springer, 2017.

A Definitions

A.1 Revocable Identity-Based Encryption

Here, we formally define revocable identity-based encryption (RIBE). Basically, the definitions we
give here are done in the same way as those for RHIBE, except that the depth of the identity
hierarchy is fixed to be 1.

Syntax. An RIBE scheme Π consists of the six algorithms (Setup,Encrypt,GenSK,KeyUp,GenDK,
Decrypt) with the following interface:

Setup(1λ)→ (PP, skkgc) : This is the setup algorithm that takes the security parameter 1λ as
input, and outputs a public parameter PP and the KGC’s secret key skkgc (also called a
master secret key).
We assume that the plaintext space M, the time period space T , and the identity space
ID are determined only by the security parameter λ, and their descriptions are contained
in PP.

Encrypt(PP, ID, t,M)→ ct : This is the encryption algorithm that takes a public parameter PP,
an identity ID, a time period t, and a plaintext M as input, and outputs a ciphertext ct.

44

GenSK(PP, skkgc, ID)→ (skID, sk
′
kgc) : This is the secret key generation algorithm that takes a

public parameter PP, the KGC’s secret key skkgc, and an identity ID ∈ ID as input, and
may update the KGC’s secret key skkgc. Then, it outputs a secret key skID for the identity
ID and also the KGC’s “updated” secret key sk′kgc.

KeyUp(PP, t, skkgc,RLt)→ (kut, sk
′
kgc) : This is the key update information generation algorithm

that takes a public parameter PP, a time period t, the KGC’s secret key skkgc, and a
revocation list RLt ⊆ ID as input, and may update the KGC’s secret key skkgc. Then, it
outputs a key update kut and also the “updated” KGC’s secret key sk′kgc.

GenDK(PP, skID, kut)→ dkID,t or ⊥ : This is the decryption key generation algorithm that takes
a public parameter PP, a secret key skID, and a key update kut as input, and outputs a
decryption key dkID,t for the time period t or the special “invalid” symbol ⊥ indicating that
ID has been revoked.

Decrypt(PP, dkID,t, ct)→ M : This is the decryption algorithm that takes a public parameter PP,
a decryption key dkID,t and a ciphertext ct as input, and outputs the decryption result M.

Correctness. We require the following to hold for an RIBE scheme. Informally, we require a
ciphertext corresponding to a user ID for time period t to be properly decrypted by user ID if
the user is not revoked on time t. To fully capture this, we consider all the possible scenarios
of creating the secret key for user ID. Namely, for all λ ∈ N, (PP, skkgc) ← Setup(1λ), ID ∈ ID,
t ∈ T , M ∈ M, and RLt ⊆ ID \ {ID}, we require M′ = M to hold after executing the following
procedures:

(1) (skID, skkgc)← GenSK(PP, skkgc, ID).
(2) (kut, skkgc)← KeyUp(PP, t, skkgc,RLt).
(3) dkID,t ← GenDK(PP, skID, kut).
(4) ct← Encrypt(PP, ID, t,M).
(5) M′ ← Decrypt(PP, dkID,t, ct).

We note that, the most stringent way to define correctness would be to also capture the fact that
the secret key skkgc could be updated after executing GenSK. In particular, the output of KeyUp,
which takes as input the KGC’s secret key skkgc, may differ in general before and after GenSK
is run. Therefore, to be more precise, we should also allow an arbitrary (polynomial) number
of executions of GenSK in between steps (1) and (2). However, we defined correctness as above
for the sake of simplicity and readability. We note that our scheme satisfies the more stringent
correctness (which will be obvious from construction).

Security Definitions. Here, we give the security definitions of an RIBE scheme Π = (Setup,
Encrypt,GenSK,KeyUp,GenDK,Decrypt). Our default security definition captures the so-called
decryption key exposure resistance (DKER). However, since we consider a generic transformation
that converts any RIBE without DKER into the one with DKER, we also introduce security
without DKER. (We will simply refer to security without DKER as weak security.) Furthermore,
for each notion, we consider selective-identity security and adaptive-identity security, which results
in four security notions in total.

We first give the formal definition of selective-identity security (with DKER) via a game
between an adversary A and the challenger C. (The remaining security notions are derived by
appropriately changing the game.) The game is parameterized by the security parameter λ, and
has the global counter tcu, initialized with 1, that denotes the “current time period” with which
C’s responses to A’s queries are controlled. The game proceeds as follows:

45

At the beginning, A sends the challenge identity/time period pair (ID∗, t∗) ∈ ID × T to
C. Next, C runs (PP, skkgc) ← Setup(1λ), and prepares a list SKList that initially contains
(kgc, skkgc), and into which identity/secret key pairs (ID, skID) generated during the game will be
stored. From this point on, whenever a new secret key is generated for an identity ID ∈ ID or
the secret key skkgc is updated due to the execution of GenSK or KeyUp, C will store (ID, skID)
or update the corresponding entry (kgc, skkgc) in SKList, and we will not explicitly mention
this addition/update. Then, C executes (kukgc,1, sk

′
kgc) ← KeyUp(PP, tcu = 1, skkgc,RL1 = ∅) for

generating the initial time period tcu = 1. After that, C gives PP and ku1 to A.
From this point on, A may adaptively make the following five types of queries to C:

Secret Key Generation Query: Upon a query ID ∈ ID from A, where it is required that
(ID, ∗) /∈ SKList, C executes (skID, sk

′
kgc) ← GenSK(PP, skkgc, ID) (and returns nothing to

A).
We require that all identities ID appearing in the following queries (except the challenge
query) be “activated” in the sense that skID is generated via this query and hence (ID, skID) ∈
SKList.

Secret Key Reveal Query: Upon a query ID ∈ ID from A, C checks if the following condition
is satisfied:

– If tcu ≥ t∗ and ID∗ /∈ RLt∗ , then ID ̸= ID∗.

If this condition is not satisfied, then C returns ⊥ to A. Otherwise, C finds skID from SKList,
and returns it to A.

Revoke & Key Update Query: Upon a query RL ⊆ ID (which denotes the set of identities
that are going to be revoked in the next time period) from A, C checks if the following
conditions are satisfied simultaneously:

– RLtcu ⊆ RL.
– If tcu = t∗ − 1 and skID∗ for the challenge ID∗ has been revealed to A via a secret key

reveal query ID∗, then ID∗ ∈ RL.

If these conditions are not satisfied, then C returns ⊥ to A.
Otherwise C increments the current time period by tcu ← tcu + 1. Then, C sets RLtcu ← RL,
and runs (kutcu , sk

′
kgc)← KeyUp(PP, tcu, skkgc,RLtcu). Finally, C returns kutcu to A.

Decryption Key Reveal Query: Upon a query (ID, t) ∈ ID × T from A, C checks if the
following conditions are simultaneously satisfied:

– t ≤ tcu.
– ID /∈ RLt.
– (ID, t) ̸= (ID∗, t∗).

If these conditions are not satisfied, then C returns ⊥ to A. Otherwise, C finds skID from
SKList, runs dkID,t ← GenDK(PP, skID, kut), and returns dkID,t to A.

Challenge Query: A is allowed to make this query only once. Upon a query (M0,M1) from
A, where it is required that |M0| = |M1|, C picks the challenge bit b ∈ {0, 1} uniformly at
random, runs ct∗ ← Encrypt(PP, ID∗, t∗,Mb), and returns the challenge ciphertext ct∗ to A.

At some point, A outputs b′ ∈ {0, 1} as its guess for b and terminates.

The above completes the description of the game. In this game, A’s selective-security advan-
tage AdvRIBE-selΠ,A (λ) is defined by AdvRIBE-selΠ,A (λ) := 2 · |Pr[b′ = b]− 1/2|.

46

Definition 3. We say that an RIBE scheme Π satisfies selective-identity security, if the advan-
tage AdvRIBE-selΠ,A (λ) is negligible for all PPT adversaries A.

The more desirable security notion, called adaptive-identity security, is defined in the same
way as selective-identity security, except that in the security game the adversary A chooses the
pair of the challenge identity and time period (ID∗, t∗) not at the beginning of the game, but
at the time it makes the challenge query. More formally, the response to the challenge query is
defined differently as follows:

Challenge Query: A is allowed to make this query only once. Upon a query (ID∗, t∗,M0,M1)
from A, where it is required that the following conditions are satisfied simultaneously:

– |M0| = |M1|,
– if t∗ ≤ tcu, then A has not submitted (ID∗, t∗) as a decryption key reveal query, and
– if skID∗ has been revealed to A, then it is required that ID∗ ∈ RLt∗ ,

C picks the challenge bit b ∈ {0, 1} uniformly at random, runs ct∗ ← Encrypt(PP, ID∗, t∗,Mb),
and returns the challenge ciphertext ct∗ to A.

The adaptive-identity security advantage AdvRIBE-adΠ,A (λ) of the adversary A is defined analo-
gously to that for selective-identity security.

Definition 4. We say that an RIBE scheme Π satisfies adaptive-identity security, if the advan-
tage AdvRIBE-adΠ,A (λ) is negligible for all PPT adversaries A.

The weak security notions (i.e. security without DKER) are defined by changing the corre-
sponding games so that an adversary A is not allowed to make any decryption key reveal query.18

We denote the weak selective-identity (resp. adaptive-identity) security advantage of the adver-
sary A by AdvRIBE-sel-weakΠ,A (λ) (resp. AdvRIBE-ad-weakΠ,A (λ)).

Definition 5. We say that an RIBE scheme Π satisfies weak selective-identity security, if the
advantage AdvRIBE-sel-weakΠ,A (λ) is negligible for all PPT adversaries A.

We define weak adaptive-identity security analogously.

A.2 2-Level Hierarchical Identity Based Encryption

In this work, we use a 2-level HIBE scheme as a building block for our security-enhancing generic
transformation for RIBE, and thus we recall it here. Our definition here is customized from a
typical definition of HIBE. Specifically, since we only consider 2-level HIBE, we differentiate the
key generation by the KGC and by each user, and refer to the key generation algorithm for the
latter as the delegation algorithm. Also, we consider the encryption and decryption algorithms
only for level-2 users. To the best of our knowledge, all the existing HIBE scheme satisfy the
modification.

Syntax. A 2-level HIBE scheme Π consists of the five algorithms (Setup,Encrypt,GenSK,Delegate,
Decrypt) with the following interface:

18In other words, if an adversary A in the weak security game wants to obtain decryption keys dkID∗,t for any
t ̸= t∗, it should make a secret key reveal query on ID∗. Hence, ID∗ will be revoked before t∗. On the other hand,
an adversary A in the standard security game with DKER can obtain the decryption keys dkID∗,t without revoking
ID∗ by t∗.

47

Setup(1λ)→ (PP, skkgc) : This is the setup algorithm that takes the security parameter 1λ as
input, and outputs a public parameter PP and the KGC’s secret key skkgc (also called a
master secret key).
We assume that the plaintext spaceM and the element identity space ID are determined
only by the security parameter λ, and their descriptions are contained in PP.

Encrypt(PP, ID = (id1, id2),M)→ ct : This is the encryption algorithm (for a level-2 user) that
takes a public parameter PP, a level-2 user’s identity ID = (id1, id2) ∈ (ID)2, and a plaintext
M as input, and outputs a ciphertext ct.

GenSK(PP, skkgc, id1)→ skid1 : This is the secret key generation algorithm that takes a public
parameter PP, the KGC’s secret key skkgc, and a first-level identity id1 ∈ ID as input, and
outputs a secret key skid1 .

Delegate(PP, skid1 , id2)→ skid1,id2 : This is the delegation algorithm that takes a public parameter
PP, a secret key skid1 (of a first-level user with id1 ∈ ID), and a second-level (element)
identity id2 ∈ ID as input, and outputs a secret key skid1,id2 .

Decrypt(PP, skid1,id2 , ct)→ M : This is the decryption algorithm that takes a public parameter PP,
a decryption key dkid1,id2 (for a level-2 user with identity ID = (id1, id2)), and a ciphertext
ct as input, and outputs the decryption result M.

Correctness. We require the following to hold for a 2-level HIBE scheme. For all
λ ∈ N, (PP, skkgc) ← Setup(1λ), ID = (id1, id2) ∈ (ID)2, skid1 ← GenSK(PP, skkgc, id1),
skid1,id2 ← Delegate(PP, skid1 , id2), M ∈ M, and ct ← Encrypt(PP, ID,M), it holds that
Decrypt(PP, skid1,id2 , ct) = M.

Security Definition. Here, we give the security definitions of a 2-level HIBE scheme Π = (Setup,
Encrypt,GenSK,Delegate,Decrypt). We first give the definition of selective-identity security, which
is defined via the following game between an adversary A and the challenger C:

At the beginning, A sends the challenge identity ID∗ = (id∗1, id
∗
2) ∈ (ID)2 to C. Next, C

runs (PP, skkgc) ← Setup(1λ), and prepares a list SKList that initially contains (kgc, skkgc), and
into which identity/secret key pairs (ID, skID) generated during the game will be stored. From
this point on, whenever a new secret key is generated for an identity ID ∈ (ID)≤2, C will store
(ID, skID) in SKList, and we will not explicitly mention this procedure. After that, C gives PP to
A.

From this point on, A may adaptively make the following four types of queries to C:

Level-1 Secret Key Generation Query: Upon a query id1 ∈ ID from A, C checks if
(id1, ∗) ∈ SKList, and returns ⊥ to A if this is the case. Otherwise, C executes skid1 ←
GenSK(PP, skkgc, id1) (but returns nothing to A).19

Level-1 Secret Key Reveal Query: Upon a query id1 ∈ ID from A, C checks if (id1, skid1) ∈
SKList for some skid1 and id1 ̸= id∗1. If this is not the case, then C returns ⊥ to A. Otherwise,
C returns skid1 to A.

Level-2 Secret Key Reveal Query: Upon a query (id1, id2) ∈ (ID)2 from A, C checks if
(id1, skid1) ∈ SKList for some skid1 , ((id1, id2), skid1,id2) /∈ SKList, and (id1, id2) ̸= (id∗1, id

∗
2).

If this is not the case, then C returns ⊥ to A. Otherwise, C executes skid1,id2 ←
Delegate(PP, skid1 , id2), and returns skid1,id2 to A.

19Note that just making this query does not return skid1 to A. Revealing skid1 to A is captured by the next query.
This treatment is to allow A to obtain level-2 secret keys of the form skid∗1 ,id2 with id2 ̸= id∗2.

48

Challenge Query: A is allowed to make this query only once. Upon a query (M0,M1) from
A, where it is required that |M0| = |M1|, C picks the challenge bit b ∈ {0, 1} uniformly at
random, runs ct∗ ← Encrypt(PP, ID∗ = (id∗1, id

∗
2),Mb), and returns the challenge ciphertext

ct∗ to A.

At some point, A outputs b′ ∈ {0, 1} as its guess for b and terminates.

The above completes the description of the game. In this game, A’s selective-identity security
advantage AdvHIBE-selΠ,A (λ) is defined by AdvHIBE-selΠ,A (λ) := 2 · |Pr[b′ = b]− 1/2|.

Definition 6. We say that a 2-level HIBE scheme Π satisfies selective-identity security, if the
advantage AdvHIBE-selΠ,A (λ) is negligible for all PPT adversaries.

The game for adaptive-identity security is defined in the same way as the selective-identity
security game, except that the adversary A chooses the challenge identity ID∗ = (id∗1, id

∗
2) not

at the beginning of the game, but at the time it makes the challenge query. More formally, the
response to the challenge query is defined differently as follows:

Challenge Query: A is allowed to make this query only once. Upon a query (ID∗ =
(id∗1, id

∗
2),M0,M1) from A, where it is required that the following conditions are satisfied

simultaneously:

– |M0| = |M1|,
– ((id∗1, id

∗
2), ∗) /∈ SKList,

– skid∗1 has not been revealed to A.

C picks the challenge bit b ∈ {0, 1} uniformly at random, runs ct∗ ← Encrypt(PP, ID∗ =
(id∗1, id

∗
2),Mb), and returns the challenge ciphertext ct∗ to A.

The adaptive-identity security advantage AdvHIBE-adΠ,A (λ) of the adversary A is defined analo-
gously to that for selective-identity security.

Definition 7. We say that a 2-level HIBE scheme Π satisfies adaptive-identity security, if the
advantage AdvHIBE-adΠ,A (λ) is negligible for all PPT adversaries A.

49

Contents

1 Introduction 2

2 Technical Overview 6

3 Preliminaries 13

4 Formal Definitions for Revocable Hierarchical Identity-Based Encryption and
a Supporting Lemma 15
4.1 Revocable Hierarchical Identity-Based Encryption 15
4.2 Strategy-Dividing Lemma . 19

5 Generic Construction of RIBE with DKER 21

6 RHIBE from Lattices 26
6.1 Construction . 27
6.2 Security . 31

A Definitions 44
A.1 Revocable Identity-Based Encryption . 44
A.2 2-Level Hierarchical Identity Based Encryption . 47

50

	Introduction
	Technical Overview
	Preliminaries
	Formal Definitions for Revocable Hierarchical Identity-Based Encryption and a Supporting Lemma
	Revocable Hierarchical Identity-Based Encryption
	Strategy-Dividing Lemma

	Generic Construction of RIBE with DKER
	RHIBE from Lattices
	Construction
	Security

	Definitions
	Revocable Identity-Based Encryption
	2-Level Hierarchical Identity Based Encryption

