
Homomorphic Secret Sharing:
Optimizations and Applications?

Elette Boyle??, Geoffroy Couteau? ? ?, Niv Gilboa†, Yuval Ishai‡, and Michele Orrù§

Abstract. We continue the study of Homomorphic Secret Sharing (HSS), recently
introduced by Boyle et al. (Crypto 2016, Eurocrypt 2017). A (2-party) HSS scheme
splits an input x into shares (x0, x1) such that (1) each share computationally hides x,
and (2) there exists an efficient homomorphic evaluation algorithm Eval such that for
any function (or “program”) P from a given class it holds that Eval(x0, P)+Eval(x1, P) =
P (x). Boyle et al. show how to construct an HSS scheme for branching programs, with
an inverse polynomial error, using discrete-log type assumptions such as DDH.

We make two types of contributions.

Optimizations. We introduce new optimizations that speed up the previous optimized
implementation of Boyle et al. by more than a factor of 30, significantly reduce the
share size, and reduce the rate of leakage induced by selective failure.

Applications. Our optimizations are motivated by the observation that there are nat-
ural application scenarios in which HSS is useful even when applied to simple compu-
tations on short inputs. We demonstrate the practical feasibility of our HSS implemen-
tation in the context of such applications.

1 Introduction

Fully homomorphic encryption (FHE) [RAD78,Gen09] is commonly viewed as a “dream
tool” in cryptography, enabling one to perform arbitrary computations on encrypted
inputs. In the context of secure multiparty computation (MPC) [Yao86, GMW87,
BGW88,CCD88], FHE can be used to minimize the communication complexity and
the round complexity, and shift the bulk of the computational work to any subset of
the participants.

However, despite exciting progress in the past few years, even the most recent
implementations of FHE [HS15,DM15,CGGI16] are still quite slow and require large
ciphertexts and keys. This is due in part to the limited set of assumptions on which FHE
constructions can be based [vDGHV10,BV14,GSW13], which are all related to lattices
and are therefore susceptible to lattice reduction attacks. As a result, it is arguably
hard to find realistic application scenarios in which current FHE implementations
outperform optimized versions of classical secure computation techniques (such as
garbled circuits) when taking both communication and computation costs into account.

Homomorphic secret sharing. An alternative approach that provides some of the
functionality of FHE was introduced in the recent work of Boyle et al. [BGI16a] and
further studied in [BGI17]. The high level idea is that for some applications, the tra-
ditional notion of FHE can be relaxed by allowing the homomorphic evaluation to be
distributed among two parties who do not interact with each other.
? This is a preliminary full version of [BCG+17].
?? IDC Herzliya, Israel. Email: eboyle@alum.mit.edu

? ? ? KIT, Germany. Email: geoffroy.couteau@kit.edu. Work mostly done while at ENS Paris.
† Ben-Gurion University, Israel. Email: gilboan@bgu.ac.il
‡ Technion, Israel. Email: yuvali@cs.technion.ac.il. Work mostly done while at UCLA.
§ ENS Paris, France. Email: michele.orru@ens.fr

2

This relaxation is captured by the following natural notion of homomorphic secret
sharing (HSS). A (2-party) HSS scheme randomly splits an input x into a pair of shares
(x0, x1) such that: (1) each share xb computationally hides x, and (2) there exists a
polynomial-time local evaluation algorithm Eval such that for any “program” P (e.g.,
a boolean circuit, formula or branching program), the output P (x) can be efficiently
reconstructed from Eval(x0, P) and Eval(x1, P).

As in the case of FHE, we require that the output of Eval be compact in the
sense that its length depends only on the output length |P (x)| but not on the size
of P . But in fact, a unique feature of HSS that distinguishes it from traditional
FHE is that the output representation can be additive. That is, we require that
Eval(x0, P) + Eval(x1, P) = P (x) mod β for some positive integer β ≥ 2 that can
be chosen arbitrarily. This enables an ultimate level of compactness and efficiency
of reconstruction that is impossible to achieve via standard FHE. For instance, if P
outputs a single bit and β = 2, then the output P (x) is reconstructed by taking the
exclusive-or of two bits.

The main result of [BGI16a] is an HSS scheme sfor branching programs under the
Decisional Diffie-Hellman (DDH) assumption.1 At a small additional cost, this HSS
scheme admits a public-key variant, which enables homomorphic computations on
inputs that originate from multiple clients. In this variant, there is a common public
key pk and two secret evaluation keys (ek0, ek1). Each input xi can now be separately
encrypted using pk into a ciphertext cti, such that cti together with a single evaluation
key ekb do not reveal xi. The homomorphic evaluation can now apply to any set of
encrypted inputs, using only the ciphertexts and one of the evaluation keys. That is,
Eval(ek0, (ct1, . . . , ctn), P) + Eval(ek1, (ct1, . . . , ctn), P) = P (x) mod β.

The HSS scheme from [BGI16a] has been later optimized in [BGI17], where the
security of the optimized variants relies on other discrete-log style assumptions (in-
cluding a “circular security” assumption for ElGamal encryption). These HSS schemes
for branching programs can only satisfy a relaxed form of δ-correctness, where the (ad-
ditive) reconstruction of the output may fail with probability δ and where the running
time of Eval grows linearly with 1/δ. As negative byproducts, the running time of Eval
must grow quadratically with the size of the branching program, and one also needs
to cope with input-dependent and key-dependent leakage introduced by selective fail-
ure. The failure probability originates from a share conversion procedure that locally
converts multiplicative shares into additive shares. See Section 3 for a self-contained
exposition of the HSS construction from [BGI16a] that we build on.

The main motivating observation behind this work is that unlike standard FHE,
HSS can be useful even for small computations that involve short inputs, and even in
application scenarios in which competing approaches based on traditional secure com-
putation techniques do not apply at all. Coupled with the relatively simple structure
of the group-based HSS from [BGI16a] and its subsequent optimizations from [BGI17],
this gives rise to attractive new applications that motivate further optimizations and
refinements.

Before discussing our contribution in more detail, we would like to highlight the
key competitive advantages of HSS over alternative approaches.
1 HSS for general circuits can be based on LWE via multi-key FHE [DHRW16] or even threshold
FHE [BGI15, DHRW16]. Since these enhanced variants of FHE are even more inefficient than
standard FHE, these constructions cannot get around the efficiency bottlenecks of FHE. We provide
a brief comparison with LWE-based approaches in Appendix B.

3

Optimally compact output. The optimal compactness feature discussed above en-
ables applications in which the communication and computation costs of output recon-
struction need to be minimized, e.g., for the purpose of reducing power consumption.
For instance, a mobile client may wish to get quickly notified about live news items
that satisfy certain secret search criteria, receiving a fast real-time feed that reveals
only pointers to matching items. HSS also enables applications in which the parties
want to generate large amounts of correlated randomness for the purpose of speeding
up an anticipated invocation of a classical secure computation protocol. Generating
such correlated randomness non-interactively provides a good protection against traffic
analysis attacks that try to obtain information about the identity of the interacting
parties, the time of the interaction, and the size of the computation that is about to
be performed. This “low communication footprint” feature can be used more broadly
to motivate secure computation via FHE. However, the optimal output compactness
of HSS makes it the only available option for applications that involve computing long
outputs (or many short outputs) from short secret inputs (possibly along with public
inputs). We explore several such applications in this work. Other advantages of group-
based HSS over existing FHE implementations include smaller keys and ciphertexts
and a lower start up cost.

Minimal interaction. HSS enables secure computation protocols that simultaneously
offer a minimal amount of interaction and collusion resistance. For instance, following
a reusable setup, such protocols can involve a single message from each “input client”
to each server, followed by a single message from each server to each “output client.”
Alternatively, the servers can just publicize their shares of the output if the output
is to be made public. The security of such protocols holds even against (semi-honest)
adversaries who may corrupt an arbitrary subset of parties that includes only one of
the two servers. MPC protocols with a minimal interaction pattern as above cannot
be obtained using classical MPC techniques.

Two-round MPC protocols were constructed in a sequence of works under indis-
tinguishability obfuscation [GGHR14] (or witness encryption [GLS15]), special types
of fully homomorphic encryption [MW16,DHRW16], and HSS [BGI17,BGI+18]. Very
recently, 2-round MPC protocols were constructed via a general “protocol garbling”
paradigm under the minimal assumption that 2-round oblivious transfer protocol ex-
ists [GS17, GS18, BL18]. However, the latter protocols do not directly apply to the
client-server setting considered here, they require a non-black-box use of the underlying
cryptographic primitives, and do not enjoy some other efficiency features of HSS-based
protocols. See [BGI+18] for discussion.

1.1 Our Contribution

We make two types of contributions, extending both the efficiency and the applicability
of the recent constructions of group-based HSS from [BGI16a,BGI17].

Optimizations. We introduce several new optimization ideas that further speed up
the previous optimized implementation from [BGI17], reduce the key and ciphertext
sizes, and reduce the rate of leakage of inputs and secret keys.

Computational optimizations. We show that a slight modification of the share conver-
sion procedure from [BGI17] can reduce the expected computational cost by a factor
16 or more, for the same failure probability. (As in [BGI17], the failure is of a “Las
Vegas” type, namely if there is any risk of a reconstruction error this is indicated by

4

the outputs of Eval.) Together with additional machine-level optimizations, we reduce
the computational cost of Eval by more than a factor of 30 compared to the optimized
implementation from [BGI17].

Improved key generation. We describe a new protocol for distributing the key gener-
ation for public-key HSS, which eliminates a factor-2 computational overhead in all
HSS applications that involve inputs from multiple clients.

Ciphertext size reduction. We suggest a method to reduce the ciphertext size of group-
based HSS by roughly a factor of 2, relying on a new entropic discrete-log type assump-
tion. Using bilinear maps, we show how to make HSS ciphertexts extremely succinct
(at the cost of a higher evaluation time) by applying a prime-order variant of the
Boneh-Goh-Nissim encryption scheme [BGN05].

Reducing leakage rate. We suggest several new methods to address input-dependent
and key-dependent failures introduced by the share conversion procedure, mitigating
the risk of leakage at a lower concrete cost than the previous techniques suggested
in [BGI16a,BGI17]. These include “leakage-absorbing pads” that can be used to reduce
the effective leakage probability from δ to O(δ2) at a low cost.

Extensions and further optimizations. We exploit the specific structure of group-based
HSS to enrich its expressiveness, and to improve the efficiency of homomorphic natural
types of functions, including low-degree polynomials, branching programs, and boolean
formulas. One particularly useful extension allows an efficient evaluation of a function
that discloses a short bit-string (say, a cryptographic key) under a condition expressed
by a branching program.

Applications. As noted above, our optimizations are motivated by the observation
that there are natural application scenarios in which HSS is useful even for simple
computations. These include small instances of general secure multiparty computation,
as well as distributed variants of private information retrieval, functional encryption,
and broadcast encryption. We demonstrate the practical feasibility of our optimized
group-based HSS implementation in the context of such applications by providing
concrete efficiency estimates for useful choices of the parameters.

Secure MPC with minimal interaction. Using public-key HSS, a set of clients can
outsource a secure computation to two non-colluding servers by using the following
minimal interaction pattern: each client independently sends a single message to the
servers (based on its own input and the public key), and then each server sends a single
message to each client. Alternatively, servers can just publish shares of the output if
the output is to be made public. The resulting protocol is resilient to any (semi-honest)
collusion between one server and a subset of the clients, and minimizes the amount
of work performed by the clients. It is particularly attractive in the case where many
“simple” computations are performed on the same inputs. In this case, each additional
instance of secure computation involves just local computation by the servers, followed
by a minimal amount of communication and work involving the clients.

Secure data access. We consider several different applications of HSS in the context of
secure access to distributed data. First, we use HSS to construct a 2-server variant of
attribute based encryption, in which each client can access an encrypted file only if its
(public or encrypted) attributes satisfy an encrypted policy set up by the data owner.
We also consider a 2-server private RSS feed, in which clients can get succinct notifica-
tions about new data that satisfies their encrypted matching criteria, and 2-server PIR

5

schemes with general boolean queries. The above applications benefit from the optimal
output compactness feature of HSS discussed above, minimizing the communication
from servers to clients and the computation required for reconstructing the output.

Unlike competing solutions based on classical secure computation techniques, our
HSS-based solutions only involve minimal interaction between clients and servers and
no direct interaction between servers. In fact, for the RSS feed and PIR applications,
the client is free to choose an arbitrary pair of servers who have access to the data
being privately searched. These servers do not need to be aware of each other’s identity,
and do not even need to know they are participating in an HSS-based cryptographic
protocol: each server can simply run the code provided by the client on the (relevant
portion of the) data, and return the output directly to the client.

Correlated randomness generation. HSS provides a method for non-interactively gener-
ating sources of correlated randomness that can be used to speed up classical protocols
for secure two-party computation. Concretely, following a setup phase, in which the
parties exchange HSS shares of random inputs, the parties can locally expand these
shares (without any communication) into useful forms of correlated randomness. As
discussed above, the non-interactive nature of the correlated randomness generation
is useful for hiding the identities of the parties who intend to perform secure com-
putation, as well as the time and the size of the computation being performed. The
useful correlations we consider include bilinear correlations (which capture “Beaver
triples” as a special case) and truth-table correlations. We also study the question of
compressing the communication in the setup phase by using local PRGs, and present
different approaches for improving its asymptotic computational complexity. However,
this PRG-based compression is still too slow to be realized with good concrete running
time using our current implementation of group-based HSS.

For all applications, we discuss the applicability of our general optimization tech-
niques, and additionally discuss specialized optimization methods that target specific
applications.

1.2 Related work

The first study of secret sharing homomorphisms is due to Benaloh [Ben86], who
presented constructions and applications of additively homomorphic secret sharing
schemes.

Most closely relevant to the notion of HSS considered here is the notion of function
secret sharing (FSS) [BGI15], which can be viewed as a dual version of HSS. Instead
of evaluating a given function on a secret-shared input, FSS considers the goal of
evaluating a secret-shared function on a given input. For simple function classes, such
as point functions, very efficient FSS constructions that rely only on one-way functions
are known [BGI15,BGI16b]. However, these constructions cannot be applied to more
complex functions as the ones we consider here except via a brute-force approach that
scales exponentially with the input length. Moreover, current efficient FSS techniques
do not apply at all to computations that involve inputs from two or more clients, which
is the case for most of the applications considered in this work.

2 Preliminaries

2.1 Homomorphic Secret Sharing

We consider homomorphic secret sharing (HSS) as introduced in [BGI16a]. By de-
fault, in this work, the term HSS refers to a public-key variant of HSS (known as

6

DEHE in [BGI16a]), with a Las Vegas correctness guarantee. To enable some of the
optimizations we consider, we use here a slight variation of the definition from [BGI17]
that allows for an output to be computed even when one of the two parties suspects
an error might occur.

Definition 1 (Homomorphic Secret Sharing). A (2-party, public-key, Las Ve-
gas δ-failure) Homomorphic Secret Sharing (HSS) scheme for a class of programs P
consists of algorithms (Gen,Enc,Eval) with the following syntax:

– Gen(1λ): On input a security parameter 1λ, the key generation algorithm outputs
a public key pk and a pair of evaluation keys (ek0, ek1).

– Enc(pk, x): Given public key pk and secret input value x ∈ {0, 1}, the encryption
algorithm outputs a ciphertext ct. We assume the input length n is included in ct.

– Eval(b, ekb, (ct1, . . . , ctn), P, δ, β): On input party index b ∈ {0, 1}, evaluation key
ekb, vector of n ciphertexts, a program P ∈ P with n input bits and m output bits,
failure probability bound δ > 0, and an integer β ≥ 2, the homomorphic evaluation
algorithm outputs yb ∈ Zmβ , constituting party b’s share of an output y ∈ {0, 1}m, as
well as a confidence flag γb ∈ {⊥,>} to indicate full confidence (>) or a possibility
of failure (⊥). When β is omitted it is understood to be β = 2.

The algorithms Gen,Enc are PPT algorithms, whereas Eval can run in time polyno-
mial in its input length and in 1/δ. The algorithms (Gen,Enc,Eval) should satisfy the
following correctness and security requirements:

– Correctness: For every polynomial p there is a negligible ν such that for every
positive integer λ, input x ∈ {0, 1}n, program P ∈ P with input length n, failure
bound δ > 0 and integer β ≥ 2, where |P |, 1/δ ≤ p(λ), we have:

Pr[(γ0 = ⊥) ∧ (γ1 = ⊥)] ≤ δ + ν(λ),

and
Pr[((γ0 = >) ∨ (γ1 = >)) ∧ y0 + y1 6= P (x1, . . . , xn)] ≤ ν(λ),

where probability is taken over

(pk, (ek0, ek1))← Gen(1λ); cti ← Enc(pk, xi), i ∈ [n];

(yb, γb)← Eval(b, ekb, (ct1, . . . , ctn), P, δ, β), b ∈ {0, 1},
and where addition of y0 and y1 is carried out modulo β.

– Security: For b = 0, 1, the distribution ensembles Cb(λ, 0) and Cb(λ, 1) are compu-
tationally indistinguishable, where Cb(λ, x) is obtained by sampling (pk, (ek0, ek1))←
Gen(1λ), sampling ctx ← Enc(pk, x), and outputting (pk, ekb, ctx).

We implicitly assume each execution of Eval to take an additional nonce input, which
enables different invocations to have (pseudo)-independent failure probabilities. (See [BGI16a]
for discussion.)

Remark 2 (Variant HSS Notions). Within applications, we additionally consider the
following HSS variants:

1. Secret-Key HSS: a weaker notion where the role of the public key pk is replaced by
a secret key sk, and where security requires indistinguishability of (ekb,Enc(sk, x1)
. . .Enc(sk, xn)) from (ekb,Enc(sk, x

′
1) . . .Enc(sk, x

′
n)) for any pair of inputs x =

(x1, . . . , xn) and x′ = (x′1, . . . , x
′
n). Here we also allow Enc to produce a pair of

shares of x, where each share is sent to one of the parties. This variant provides
better efficiency when all inputs originate from a single client.

7

2. Non-binary values: in some applications it is useful to evaluate programs with
non-binary inputs and outputs, typically integers from a bounded range [0..M] or
[−M..M]. The above definition can be easily modified to capture this case.

2.2 Computational Models

The main HSS scheme we optimize and implement naturally applies to programs P
in a computational model known as Restricted Multiplication Straight-line (RMS) pro-
gram [Cle91,BGI16a].

Definition 3 (RMS programs). An RMS program consists of a magnitude bound
1M and an arbitrary sequence of the four following instructions, sorted according to a
unique identifier id:

– Load an input into memory: (id, ŷj ← x̂i).
– Add values in memory: (id, ŷk ← ŷi + ŷj).
– Multiply memory value by input: (id, ŷk ← x̂i · ŷj).
– Output from memory, as Zβ element: (id, β, Ôj ← ŷi).

If at any step of execution the size of a memory value exceeds the bound M , the output
of the program on the corresponding input is defined to be ⊥. Otherwise the output is the
sequence of Ôj values modulo β, sorted by id. We define the size (resp., multiplicative
size) of an RMS program P as the number of instructions (resp., multiplication and
load input instructions).

RMS programs with M = 2 are powerful enough to efficiently simulate boolean
formulas, logarithmic-depth boolean circuits, and deterministic branching programs
(capturing logarithmic-space computations) [BGI16a]. For concrete efficiency purposes,
their ability to perform arithmetic computations on larger inputs can also be useful.
We present an optimized simulation of formulas and branching programs by RMS
programs in Section 4.6.

3 Overview of Group-Based HSS

In this section we give a simplified overview of the HSS construction from [BGI16a].
For efficiency reasons, we assume circular security of ElGamal encryption with a 160-
bit secret key. This assumption can be replaced by standard DDH, but at a significant
concrete cost.

3.1 Encoding Zq Elements

Let H be a prime order group, with a subgroup G of prime order q. Let g denote
a generator of G. For any x ∈ Zq, we consider the following 3 types of two-party
encodings:

Level 1: “Encryption.” For x ∈ Zq, we let [x] denote gx, and JxKc denote ([r] , [r · c+ x])
for a uniformly random r ∈ Zq, which corresponds to an ElGamal encryption of x with
a secret key c ∈ Zq. (With short-exponent ElGamal, c is a 160-bit integer, for con-
jectured 80 bits of security.) We assume that c is represented in base B (B = 2 by
default) as a sequence of digits (ci)1≤i≤s (where s = d160/ log2Be). We let [[[x]]]c denote
(JxKc , (Jx · ciKc)1≤i≤s). All level-1 encodings are known to both parties.

8

Level 2: “Additive shares.” Let 〈x〉 denote a pair of shares x0, x1 ∈ Zq such that x0 =
x1+x, where each share is held by a different party. We let ⟪x⟫c denote (〈x〉 , 〈x · c〉) ∈
(Z2

q)
2, namely each party holds one share of 〈x〉 and one share of 〈x · c〉. Note that

both types of encodings are additively homomorphic over Zq, namely given encodings
of x and x′ the parties can locally compute a valid encoding of x+ x′.

Level 3: “Multiplicative shares.” Let {x} denote a pair of shares x0, x1 ∈ G such that
the difference between their discrete logarithms is x. That is, x0 = x1 · gx.

3.2 Operations on Encodings

We manipulate the above encodings via the following two types of operations, per-
formed locally by the two parties:

1. Pair(JxKc , ⟪y⟫c) 7→ {xy}. This pairing operation exploits the fact that [a] and 〈b〉
can be locally converted to {ab} via exponentiation.

2. Convert({z} , δ) 7→ 〈z〉, with failure bound δ. The implementation of Convert is
also given an upper bound M on the “payload” z (M = 1 by default), and its
expected running time grows linearly with M/δ. We omit M from the following
notation.

The Convert algorithm works as follows. Each party, on input h ∈ G, outputs
the minimal integer i ≥ 0 such that h · gi is “distinguished,” where roughly a δ-
fraction of the group elements are distinguished. Distinguished elements were picked
in [BGI16a] by applying a pseudo-random function to the description of the group
element. An optimized conversion procedure from [BGI17] (using special “conversion-
friendly” choices of G ⊂ Z∗p and g = 2) applies the heuristic of defining a group element
to be distinguished if its bit-representation starts with d ≈ log2(M/δ) leading 0’s. Note
that this heuristic only affects the running time and not security, and thus it can be
validated empirically. Correctness of Convert holds if no group element between the
two shares {z} ∈ G2 is distinguished. Finally, Convert signals that there is a potential
failure if there is a distinguished point in the “danger zone.” Namely, Party b = 0
(resp., b = 1) raises a potential error flag if h · g−i (resp., h · gi−1) is distinguished
for some i = 1, . . . ,M . Note that we used the notation M both for the payload upper
bound in Convert and for the bound on the memory values in the definition of RMS
programs (Definition 3). In the default case of RMS program evaluation using base 2
for the secret key c in level 1 encodings, both values are indeed the same; however,
when using larger basis, they will differ. To avoid confusion, in the following we will
denote MRMS the bound on the memory values, and M the bound on the payload.

Let PairConv be an algorithm that sequentially executes these two operations:
PairConv(JxKc , ⟪y⟫c , δ) 7→ 〈xy〉, with error δ. We denote by Mult the following al-
gorithm:

– Mult([[[x]]]c, ⟪y⟫c , δ) 7→ ⟪xy⟫c
• Parse [[[x]]]c as (JxKc , (Jx · ciKc)1≤i≤s).
• Let 〈xy〉 ← PairConv(JxK , ⟪y⟫c , δ′) for δ′ = δ/(s+ 1).
• For i = 1 to s, let 〈xy · ci〉 ← PairConv(JxciKc , ⟪y⟫c , δ′).
• Let 〈xy · c〉 =

∑s
i=1B

i−1 〈xy · ci〉.
• Return (〈xy〉 , 〈xy · c〉).

9

3.3 HSS for RMS programs

Given the above operations, an HSS for RMS programs is obtained as follows.

– Key generation: Gen(1λ) picks a group G of order q with λ bits of security,
generator g, and secret ElGamal key c ∈ Zq. It output pk = (G, g, h, JciKc)1≤i≤s,
where h = gc, and (ek0, ek1)← 〈c〉, a random additive sharing of c.

– Encryption: Enc(pk, x) uses the homomorphism of ElGamal to compute and
output [[[x]]]c.

– RMS program evaluation: For an RMS program P of multiplicative size S, the
algorithm Eval(b, ekb, (ct1, . . . , ctn), P, δ, β) processes the instructions of P , sorted
according to id, as follows. We describe the algorithm for both parties b jointly,
maintaining the invariant that whenever a memory variable ŷ is assigned a value
y, the parties hold level-2 shares Y = ⟪y⟫c.
• ŷj ← x̂i: Let Yj ← Mult([[[xi]]]c, ⟪1⟫c , δ/S), where ⟪1⟫c is locally computed

from (ek0, ek1) using 〈1〉 = (1, 0).
• ŷk ← ŷi + ŷj : Let Yk ← Yi + Yj .
• ŷk ← x̂i · ŷj : Let Yk ← Mult([[[xi]]]c, Yj , δ/S).
• (β, Ôj ← ŷi): Parse Yi as (〈yi〉 , 〈yi · c〉) and output Oj = 〈yi〉+ (r, r) mod β

for a fresh (pseudo-)random r ∈ Zq.
The confidence flag is ⊥ if any of the invocations of Convert raises a potential error
flag, otherwise it is >.

The pseudorandomness required for generating the outputs and for Convert is obtained
by using a common pseudorandom function key that is (implicitly) given as part of
each ekb, and using a unique nonce as an input to ensure that different invocations of
Eval are indistinguishable from being independent.

The secret-key HSS variant is simpler in two ways. First, Enc can directly generate
[[[x]]]c from the secret key c. More significantly, an input loading instruction ŷj ← x̂i
can be processed directly, without invoking Mult, by letting Enc compute Yj ← ⟪xi⟫c
and distribute Yj as shares to the two parties. Note that in this variant, unlike our
main public key variant, the size of the secret information distributed to each party
grows with the input size.

Performance. The cost of each RMS multiplication or input loading is dominated by
s+ 1 invocations of PairConv, where each invocation consists of Pair and Convert. The
cost of Pair is dominated by one group exponentiation with roughly 200-bit exponent
for 80 bits of security. (The basis of the exponent depends only on the key and the
input, which allows for optimized fixed-basis exponentiations when the same input is
involved in many RMS multiplications.) When the RMS multiplications apply to 0/1
values (this is the case when evaluating branching programs), the cost of Convert is
linear in BS/δ, where the B factor comes from the fact that the payload z of Convert
is bounded by the size of the basis. When δ is sufficiently small, the overall cost is
dominated by the O(BS2s/δ) conversion steps, where each step consists of multiplying
by g and testing whether the result is a distinguished group element.

4 Optimizations

4.1 Optimizing Share Conversion

In [BGI17], the share conversion algorithm Convert (see Section 3.2) was heuristically
improved by changing the way in which distinguished group elements are defined.

10

Instead of independently deciding whether a group element is distinguished by applying
a PRF to its description, as originally proposed in [BGI16a], the method proposed
in [BGI17] considers the sequence stream of most significant bits of the group elements
h, hg, hg2, hg3, . . ., where h is the given starting point, and looks for the first occurrence
of the pattern 0d in stream.

The advantage of this approach is that stream can be computed very efficiently
for a suitable choice of “conversion-friendly” group. Concretely, the groups proposed
in [BGI17] are of the form G ⊆ Z∗p, where p is close to a power of 2 and g = 2 is
a generator. Combined with an efficient implementation of searching for the pattern
0d in stream, a single conversion step can be implemented at an amortized cost of
less than one machine word operation per step. This provides several orders of magni-
tude improvement over a generic implementation of the original conversion algorithm
from [BGI16a], which requires a full group multiplication and PRF evaluation per step.

In this section, we describe two simple modifications that allow us to further im-
prove over this method. In the context of RMS multiplications, the improvement is by
at least a factor of 16.

Separating Distinguished Points. The first optimization ensures that an actual
failure happens in the computation if and only if the two parties raise a flag. This is
done simply by declaring any point in the danger zone (which corresponds toM points
forward for the first party, and M points backward for the second party, where M is
the payload bound) to be non-distinguished if it is located less than 2M steps after
a distinguished point. This modification has only a marginal impact on the running
time as it only affects the start of the Convert algorithm, where the parties search
for distinguished points in the danger zone. Before starting the conversion, we also let
both parties multiply their local share by gM (this avoids having to compute inversions
when looking for distinguished points backward). This is to be compared with [BGI17],
where roughly half of the distinguished points are immediately followed by another
distinguished point (this happens if the bit following the 0d pattern is 0). Hence, the
event of two parties raising a flag was highly correlated with the event of the first party
raising a flag, even when the actual payload is 0 (which corresponds to a case where
no actual failure can occur).

Changing the Pattern. We suggest a second, seemingly trivial, modification of the
Convert algorithm: searching for the pattern 10d instead of 0d. We explain below how
this improves the construction.

First, recall that the conversion algorithm proceeds by looking for the first distin-
guished point in a sequence stream defined by the most significant bits of the group
elements h, hg, hg2, Searching for the modified pattern is almost the same: as be-
fore, we search for the first occurrence of 0d in the sequence; when this sub-sequence
is found, it necessarily holds that the bit that precedes it is 1. The only actual change
is in the initial check, which ignores an initial sequence of 0’s and searches the danger
zone for the pattern 10m (instead of 0m) when deciding whether to raise a potential
error flag. Changing the pattern 0d to 10d improves the failure probability by a factor
of 2 (since it reduces the probability of a distinguished point in the danger zone by
a factor of 2) without significantly changing the running time. Thus, it effectively re-
duces the expected running time required for achieving a given failure probability by
a factor of 2.

11

We now formally describe and analyze the optimized conversion algorithm that
incorporates the above two modifications.

Convert∗({z} ,M, d) 7→ 〈z〉. Let Convert∗ denote the Convert algorithm from [BGI17] (see Section 3.2)
modified as follows: given a payload bound M and failure parameter d, the algorithm searches for the
pattern 10d instead of 0d, where points in the danger zone within 2M steps backward of a distinguished
point are considered to be non-distinguished.

Referring by “failure” to the event of both parties raising a potential failure flag,
we can therefore state the following lemma, which corresponds to a factor-(2M/z)
improvement over the conversion algorithm of [BGI17] for a payload z and payload
bound M :

Lemma 4. If Convert∗ is run on a random stream with payload z, payload bound
M , and failure parameter d, the expected number of steps performed by each party is
T ≤ 2d+1 + 2M and the failure probability is ε ≤ z · 2−(d+1).

Proof. The expected number of steps required for finding the first occurrence of 0d in
a random bit-sequence stream is X = 2d+1 − 2, see, e.g., [Nie73] or Appendix A.2 for
a self-contained proof. As it is clear that T ≤ X + 2M , where the additive 2M term
captures the cost of checking for distinguished points within 2M steps backward, the
first part of the lemma follows. Let us now bound ε. Let Ei be the event of party i
raising a flag. The first party raises a flag if it finds a distinguished point within M
steps of his point, which happens with probability Pr[E1] ≤ M/2d+1. Let t1 be the
number of steps performed by the first party before reaching a distinguished point. The
second party raises a flag if it finds a distinguished point within M steps backward
from his point; we have

Pr[E2 | E1] = Pr[E2 | t1 ≤M] (1)
= Pr[E2 ∧ (t1 ≤ z) | t1 ≤M] + Pr[E2 ∧ (t1 > z) | t1 ≤M] (2)
= Pr[t1 ≤ z | t1 ≤M] + 0, (3)

where Equation 3 comes from the fact that when t1 ≤ z, as z ≤ M , the second party
necessarily raises a flag; when t1 > z, as we ensure that the distance between two
distinguished points is at least 2M , there cannot be a distinguished point within M
steps backward of the second party. Therefore, we get Pr[E1 | E2] = Pr[t1 ≤ z | t1 ≤
M] = z/M , hence ε ≤M/2d+1 · z/M = z/2d+1, which concludes the proof. ut

For comparison, in the Las Vegas variant of the optimized conversion algorithm
from [BGI17], the expected running time is the same, whereas the failure probability
bound is ε ≤M · 2−d.

Note that our heuristic assumption that stream is uniformly random has no impact
on security, it only affects efficiency and has been empirically validated by our im-
plementation. Given Lemma 4, and denoting Mult∗ the Mult algorithm using Convert∗

instead of Convert, we can now bound the failure probability in an RMS multiplication:

Lemma 5. If Mult∗ is run with base B, length s for the secret key c, payload bound
M , and outputs y, the expected number of conversion steps performed by each party is
T ≤ (s+ 1) · 2d+1, the failure probability ε, expected over the randomness of the secret
key c, satisfies

ε ≤ y ·
1 + s(B−1)

2

2d+1
+

(
s+ 1

2d+1

)2

.

12

Note that the payload in the first Convert∗ algorithm is y and the average payload
in the s last Convert∗ invocations is (B − 1)y/2; the failure probability is also taken
over the random choice of the secret key.

Proof. The expected running time directly follows from Lemma 4. By a union bound,
ε is bounded by p0 + p1, where p0 denotes the probability of both parties raising a
flag during two different conversions (recall that an RMS multiplication requires s+ 1
conversions), and p1 denotes the probability of both parties raising a flag during the
same conversion algorithm.

The probability for a party to raise a flag in a given conversion is 1/2d+1, indepen-
dently of any other information. By the union bound, the probability of raising a flag
during an RMS multiplication is bounded by (s+1)/2d+1. As different conversions can
be made perfectly independent, we can therefore bound p0 by ((s+ 1)/2d+1)2.

By Lemma 5, the probability of both party raising a flag in the first conversion
(where the payload is y) is bounded by y/2d+1, and the probability of both parties
raising a flag in any of the remaining conversions (where each payload is y · ci) is
yci/2

d+1. By a union bound, we can upper bound p1 by y · (1 +
∑

i ci)/2
d+1. As the

secret key c is uniformly random over {0, · · · , B − 1}s, the expected value of
∑

i ci is
s(B − 1)/2, which concludes the proof. ut

Randomizing the Conversion of Bit Inputs. Using the above method, the two
parties raise a flag if a failure actually occurs or if both parties raise a flag in differ-
ent executions of Convert∗; the latter situation occurs only with quadratically smaller
probability ((s + 1)/2d+1)2. In addition, let z be a shared value used in a conversion
step with failure parameter δ. Observe that the actual probability of a failure occur-
ring is δz. In [BGI16a], the failure probability was analyzed by using a bound on the
maximal size of the shared value. A typical conversion occurs after a pairing between
an encryption of a value x · ci, where x is an input and ci is a component of the secret
key (in some base B), and a level 2 share of a value y; in most applications, x and y
are bits (this corresponds to using memory bound MRMS = 1 for the RMS program),
hence the maximum value of xyci is B− 1. As the secret key is random, we previously
observed that the average size of ci is (B − 1)/2.

In addition, we will show in this section that we can randomize the conversion
algorithm, so as to ensure that each of x and y is equal to 0 with probability 1/2. This
ensures that the average size of z = xyci in a typical conversion step is (B−1)/8, hence
that the event of a failure occurring is on average δ(B − 1)/8, independently of the
actual distribution of the inputs. Because of our previous optimization, which ensures
that a failure occurs if and only if two flags are raised, this allows to set the parameter
δ to be 8 times bigger to reach a fixed failure probability, effectively reducing the
number of steps in a conversion algorithm by a factor of 8. Therefore, cumulated with
the previous optimization, this improves the computational efficiency of conversions in
most applications by a factor 16.

We now describe our randomization technique. First, we modify the key generation
algorithm as follows: we set the evaluation keys (ek0, ek1) to be (〈ci〉)i≤s (the parties
hold shares of each bit of c over the integers, rather than holding integer shares of c).
Second, we assume that the parties have access to a stream of common random bits
(which can be heuristically produced by a PRG), and that they hold level 2 shares
of each input bit. In the case of secret key HSS, these level two shares can be part
of the encryption algorithm of the HSS; for public key HSS, they can be computed

13

(with some failure probability) from level 1 shares and the shares of the secret key. Let
PairConv∗ be the PairConv algorithm modified to use the new Convert∗ algorithm.

Functionality: RandMult(pk, [[[x]]]c, ⟪x⟫c , ⟪y⟫c , δ, b0, b1) 7→ ⟪xy⟫c
Description: Parse [[[x]]]c as (JxKc , (JxciKc)i≤s), and use the public values (b0, b1) to

compute Jb0 ⊕ xKc, (J(b0 ⊕ x)ciKc)i≤s, and ⟪b1 ⊕ y⟫c. Let c0 = 1. For i = 0 to
s, call PairConv∗(J(b0 ⊕ x)ciKc , ⟪b1 ⊕ y⟫c , δ), which returns 〈(b0 ⊕ x)(b1 ⊕ y)ci〉.
Compute

〈xyci〉 ← (−1)b0+b1(〈(b0 ⊕ x)(b1 ⊕ y)ci〉−b0b1 〈ci〉−b0(−1)b1 〈yci〉−b1(−1)b0 〈xci〉)

Reconstruct ⟪xy⟫c ← (〈xyc0〉 ,
∑

i 2i−1 〈xyci〉).

The correctness immediately follows from the fact that b0⊕x and b1⊕y are uniform
over {0, 1} if (b0, b1) are random bits. Therefore, we get the following corollary to
Lemma 5:

Corollary 6. The (Las Vegas) probability ε of a failure event occurring in an RMS
multiplication on bit inputs using base B and length s for the secret key is

ε ≤
1 + s(B−1)

2

2d+3
+

(
s+ 1

2d+1

)2

.

Remark 7. The above method should be avoided when there is an a-priori knowledge
that the RMS values are biased towards 0 (or 1). In this case, one can gain better error
reduction by applying our optimized conversion directly without any randomization.
We also note that the above method does not generalize immediately to MRMS > 1:
while xoring with a public value can be done homomorphically in the case MRMS = 1,
this does not extend to general modular addition. However, a weaker version of the
result can be achieved, using (r0, r1)

$← {0, · · · ,MRMS− 1}2 and randomizing (x, y) as
(x′, y′) = (x− r0, y − r1). While (x′, y′) are not uniformly distributed and belong to a
larger set {1−MRMS, · · · ,MRMS − 1}, we can lower bound the probability of x′y′ = 0
as

Pr[x′y′ = 0] ≥ 1−
(
MRMS − 1

MRMS

)2

,

which is sufficient to improve over the basic Convert algorithm.

4.2 Distributed Protocols

In this section, we suggest new protocols to improve the key generation, and to dis-
tributively generate level 2 shares of inputs under a shared key. The former protocol
allows to save a factor two compared to the solution outlined in [BGI17], while the
latter is extremely useful for computation of degree-two polynomials (intuitively, this
allows to avoid encoding each input with a number of group elements proportional to
the size of the secret key – see e.g. Section 5.3).

Distributed Key Generation. When using HSS within secure computation appli-
cations, the parties must generate an HSS public key in a secure distributed fashion.
Applying general-purpose secure computation to do so has poor concrete efficiency
and requires non-black-box access to the underlying group. A targeted group-based

14

key generation protocol was given in [BGI17], where each party samples an indepen-
dent ElGamal key, and the system key is generated homomorphically in a threshold
ElGamal fashion. However, a negative side-effect of this procedure is that encryptions
of key bits from different parties combine to encrypted values in {0, 1, 2} instead of
{0, 1} (since homomorphism is over Zq, not Z2), and these larger payloads incur a fac-
tor of 2 greater runtime in homomorphic multiplications to maintain the same failure
probability.

We present an alternative distributed key generation procedure which avoids this
factor of 2 overhead, while maintaining black-box use of the group, at the expense
of slightly greater (one-time) setup computation and communication. We focus here
on the primary challenge of generating encryptions of the bits of a shared ElGamal
secret key c. We use a binary basis for concreteness, but the protocol can be easily
generalized to an arbitrary basis. Roughly the idea is to run an underlying (standard)
secure protocol to sample exponents of the desired ElGamal ciphertext group elements,
but which reveals the exponents masked by a random value (ai or bi) generated by the
other party. The parties then exchange gai and gbi , which enables each to locally
reconstruct the ElGamal ciphertext, while computationally hiding the final exponents.
Most importantly, the resulting protocol requires only black-box operations in the
group.

HSS Distributed Key Generation ΠGen

1. For each i ∈ [s]:
A samples ai, a′i

$← Zq, sends gai , ga
′
i to B; B samples bi, b′i

$← Zq, sends gbi , gb
′
i to A.

2. Execute secure 2PC for (randomized) functionality:
Input: A inputs (ai, a′i)i∈[s]. B inputs (bi, b′i)i∈[s].
Compute:

Sample s random key bits: ∀i ∈ [s], ci ← {0, 1}.
Let c =

∑s
i=1 2

i−1ci ∈ Zq.
For each i ∈ [s]:
(a) Sample encryption randomness ri ← Zq.
(b) Compute xi = ric+ ci ∈ Zq.

Output: A receives (ri − bi, xi − b′i)i∈[s]; B receives (ri − ai, xi − a′i)i∈[s].
3. A outputs

(
(gbi)g(ri−bi), (gb

′
i)g(xi−b

′
i)
)
i∈[s]

, B outputs
(
(gai)g(ri−ai), (ga

′
i)g(xi−a

′
i)
)
i∈[s]

.

Fig. 1. 2-party protocol ΠGen for distributed HSS public key generation.

Proposition 8. The protocol ΠGen in Figure 1 securely evaluates the group-based HSS
Gen algorithm (from Section 3.3).

Proof (Proof Sketch). By construction (and correctness of the underlying 2PC), both
parties will correctly output ElGamal ciphertexts (gri , gxi)i∈[s] of each bit ci of the
generated secret key, as desired. Regarding security, the view of each party consists of
a collection of random group elements (received from the other party) together with
the exponent offsets from each value and its target. This can be directly simulated
given freshly sampled target ciphertexts, by choosing a random offset and computing
the group elements in the first step accordingly.

Observe that it is immediate to modify the protocol ΠGen to additionally output
additive shares (cA, cB) of the secret key c.

15

Comparison to [BGI17]. ΠGen requires the additional 2PC execution and 2s addi-
tional exponentiations per party (from Step 3) over the [BGI17] solution. The 2PC is
composed of s linear operations over Z2, and s multiplications and 2s additions over
Zq. In exchange, ΠGen guarantees the encrypted system key bits ci remain in {0, 1},
whereas in [BGI17] the corresponding terms ci will take values in {0, 1, 2}, yielding x2
speedup in homomorphic evaluation of RMS multiplications.

We remark that while one may be able to effectively address this larger payload in
specific cases (e.g., leveraging that the value ci ∈ {0, 1, 2} is 1 with probability 1/2),
such fixes will not extend to general usage settings, or when implementing further HSS
optimizations, such as using a larger basis for the key.

Distributed Generation of Level 2 Shares. In this section, we present a simple
distributed protocol for generation of level 2 shares (additive shares) of a secret input
under a shared key. Namely, we consider two parties, A and B, holding additive shares
cA and cB of the secret key c (where addition is in Zq). We assume that each share
statistically masks c over the integers (for 80 bits of security, each share can be 240
bits long, instead of requiring 1536 bits to describe a truly random element in Zq). The
protocol is represented in Figure 2; it assumes access to an oblivious transfer primitive.

Distributed Level 2 Shares Generation ΠL2S

1. A’s input is (x, cA), with x ∈ {0, 1}, and B’s input is cB , such that cA + cB = c. Let t
be the bitlength of cA and cB .

2. B picks r $← Z2t+λ and runs as sender in an oblivious transfer protocol with input
(r, r + cB). A runs as receiver with selection bit x and get an output r′.

3. A outputs (x, r′ + x · cA). B outputs (0,−r).

Fig. 2. 2-party protocol ΠL2S for distributed level 2 shares generation.

Proposition 9. The protocol ΠL2S in Figure 2 securely generates level 2 shares ⟪x⟫c
of the input x.

Correctness follows easily by inspection, and the (statistical) privacy of the inputs
directly reduces to the security properties of the oblivious transfer (OT).

For each input bit x encoded in this fashion, the required communication corre-
sponds to a single 1-out-of-2 string OT, with string length ` = 240 bits and security
parameter λ = 80. Leveraging OT extension techniques, n input bits can then be
encoded with 2n(λ+ `) = 640n bits of communication.

4.3 Compact Ciphertexts from BGN

An issue of the group-based homomorphic secret sharing scheme of [BGI16a,BGI17]
is the large size of the ciphertexts. Two natural optimizations in this regard have been
already outlined in [BGI16a,BGI17]: the first is to assume the circular security of the
ElGamal encryption, leading to a construction with ciphertexts considerably shorter
than the original construction of [BGI16a], and the second is to use a larger basis B for
the secret key, reducing the ciphertext size by a factor log2(B). In addition, another
heuristic optimization was suggested in [BGI16a] to further reduce the size of the

16

ciphertexts by a factor two, by generating all the first components gr of each ciphertext
from a short seed, using a pseudorandom generator. This optimization applies only in
the secret key setting, as one need to know the secret key to generate ciphertexts this
way.

The ciphertext size of group-based HSS can be strongly reduced using the prime
order variant of the Boneh-Goh-Nissim encryption scheme [BGN05,Fre10], which en-
hances the ElGamal encryption scheme with one level of multiplicative homomorphism
using an asymmetric bilinear map e : G1 ×G2 7→ Gt.

The large ciphertext size of group-based HSS schemes essentially comes from the
necessity to encrypt all products x · ci for elements ci of the secret key, for each in-
put x. We observe that the ciphertexts can be made considerably more succinct by
relying on the Boneh-Goh-Nissim (BGN) encryption scheme [BGN05], which extends
the homomorphic properties of the ElGamal encryption scheme to support one level
of multiplications in composite-order elliptic curves with a bilinear map. While bi-
linear maps over composite-order elliptic curves are known to be very inefficient, the
BGN encryption scheme can be instantiated over prime-order elliptic curves with an
asymmetric bilinear map e : G1 × G2 7→ Gt, using the transformation of [Fre10]. The
transformed scheme allows to encrypt exponents in either G2

1 or G2
2, and to map pairs

of ciphertexts (c1, c2) ∈ G2
1×G2

2 encrypting plaintexts (m1,m2) to a ciphertext ct ∈ G4
t

encrypting m1m2. Decryption in G4
t follows the same “linear algebra in the exponent”

structure that the ElGamal encryption scheme, which allows to implement the Pair
algorithm in this target group in a natural way. While the secret key in the abstract
framework of [Fre10] is represented as a tensor product between two 2×2 matrices, and
hence consists of 16 exponents, it directly follows from the description of the scheme
given in [Fre10] that the first column of this tensor product (a vector of 4 exponents)
is in fact sufficient to perform decryption.

This gives rise to an HSS scheme with extremely compact ciphertexts, at the ex-
pense of a bigger public key, and having to perform the PairConv operation in the target
group Gt (in which operations are more expensive). We have the following lemma:

Lemma 10. Let (G1,G2) be prime-order groups equipped with an asymmetric bilinear
map e : G1×G2 7→ Gt, such that the prime-order variant of the BGN encryption scheme
is circularly secure over (G1,G2). Then there exists a correct and secure 2-party public-
key Las Vegas homomorphic secret sharing scheme with the following parameters:

– The public key pk consists of 2(s+ 1) elements of G2, where s is the length of the
BGN secret key (which is 4 times longer than a standard ElGamal secret key).

– The ciphertexts consists of 2 group elements over G1.
– The Pair algorithm requires four exponentiations and 3 multiplications over Gt.
– A level two share of a value x consist of 4 shares (〈x · ai〉)i≤4, where (a1, a2, a3, a4)

is the first column of the tensor product between the two secret-key matrices.

The public key of the scheme is the public key of a BGN scheme, together with
encryptions in G2

2 of the components of the secret key. An input x is encrypted using
the encryption algorithm in G2

1. Given an encryption of an input x, the parties first
extend it by homomorphically computing encryptions in Gt of x ·ci for i = 1 to s using
the asymmetric bilinear map between G1 and G2 (this step is only performed once per
encrypted input).

Randomness Reuse. A common method to reduce the size of ElGamal ciphertexts
in exchange for a larger public key is to use randomness reuse, which was introduced

17

in [Kur02] in the context of multi-recipient encryption schemes: instead of having a
short public key (g, h) and encrypting a vector (x1, · · · , xn) as (gri , hrigxi)i≤n, which
requires 2n group elements, one can have a large public key (g, h1, · · · , hn) and en-
crypt (x1, · · · , xn) as (gr, (hri g

xi)i≤n), which requires only n+ 1 group elements. This
method can be used to further reduce the ciphertext size in the BGN-based HSS
scheme: increasing the public key size (as well as the amount of computation in pair-
ing operations) by a factor n allows to reduce the size of ciphertexts from 2 group
elements to 1 + 1/n group elements (asymptotically), saving almost a factor 2. Over-
all, if one is willing to trade computational efficiency for succinctness, HSS ciphertexts
can be made as small as about 200 bits.

4.4 Generic Ciphertext Compression for Public-Key HSS

While we can apply randomness reuse to reduce the size of the ciphertexts in the BGN-
based HSS, in many applications one might want to work in groups where conversions
will be computationally more efficient (such as the conversion-friendly groups discussed
in [BGI17]), and where bilinear maps are not available. However, in such groups, the
randomness reuse method cannot be used as each ciphertext is of size proportional
to the number of components of the secret key. Having a large number of secret keys
would therefore blow up their size. In [BGI16a], a heuristic method to compress the
ciphertext size by a factor two was suggested, by generating all first components gr

of ciphertexts using a PRG; however, this method only applies to secret-key HSS. In
this section, we outline a method to achieve a comparable trade-off (ciphertexts size
reduced by a factor of 2 in exchange for a larger key) for public-key HSS in groups
that are not equipped with bilinear maps (such as conversion-friendly groups [BGI17],
or standard elliptic curves) under a new assumption that we introduce below.

Entropic Span Diffie-Hellman Assumption. Let • denote the inner product oper-
ation, and let B ≥ 2 be a basis. Given a group family G = G(λ) where |G(λ)| = q(λ),
the entropic span Diffie-Hellman assumption (ESDH) states the following.

Assumption 11 For all polynomials t = t(λ), k = k(λ), and sequence of vector sets
vλ = {v1, · · · , vk} ∈ (Ztq)k the following holds. Suppose that for any non-zero v in the
span of vλ it holds that H∞(Xv) ≥ ω(log λ), where H∞ denotes min-entropy and Xv

is the distribution of v • c for c $← {0, · · · , B − 1}t where the inner product is taken
modulo q. Then the following distributions are computationally indistinguishable:

D0 = {v1, · · · , vk, g, gv1•c, · · · , gvk•c | c $← {0, · · · , B − 1}t}

D1 = {v1, · · · , vk, g, g1, · · · , gk | (g1, · · · , gk) $← Gk}

Note that a necessary condition for this assumption to hold is that all non-zero
vectors in the span of v1, · · · , vk have ω(log λ) exponentially large non-zero entries.
If s denotes the length of a standard ElGamal secret key (e.g. using base 2, s = 160
for 80 bits of security), natural parameters for the ESDH assumption are t ≈ s+

√
s,

λ = s, and k ≈
√
s, and each component of each vector is s-bit long: with overwhelming

probability, the vector with the smallest Hamming weight in the span of random vectors
v1, · · · , vk has s large coefficients.

Lemma 12. (Generic Security of ESDH) The entropic span Diffie-Hellman assump-
tion holds in the generic group model.

18

A proof of Lemma 12 is sketched in Appendix A.

Randomness Reuse under ESDH. Under the above assumption, we get the following
lemma:

Lemma 13. Let G be a group and (t, k) be two integers such that the ElGamal en-
cryption scheme is circularly secure, and the ESDH assumption with parameters (t, k)
holds over G. Then there exists a correct and secure 2-party public-key Las Vegas ho-
momorphic secret sharing scheme with the following parameters:

– The public key pk consists of k + 1 elements of G, and a short prg seed
– The ciphertexts are of length t+ dt/ke+ 1 group elements

Proof (Sketch). The HSS scheme is constructed as previously, with the following mod-
ifications: the secret key is a vector c = (ci)i≤t. The public key now contains k vectors
(v1, · · · , vk) ∈ (Ztq)k (which can be heuristically compressed using a pseudorandom
generator) and group elements (h1, · · · , hk) ← (gv1•c, · · · , gvk•c). Encryption is done
with the standard randomness reuse method, using a single random coin and the k
public keys to encrypt k consecutive values of (x, (x · ci)i≤t). We modify level 2 shares
to be of the form (〈y〉 , (〈ci · y〉)i≤t) (which simply means that the reconstruction with
powers of 2 is not executed at the end of the Mult algorithm). To evaluate the pairing
algorithm Pair on an input (JxKc , ⟪y⟫c), the parties compute 〈vj • c〉j≤q and use the
jth share to decrypt components of level 1 shares encrypted with the key hj . Using
the natural parameters previously mentioned, this optimization reduces the ciphertext
size from 2s + 1 group elements to s + 2d

√
se + 1 group elements. For s = 160, this

corresponds to a reduction from 321 to 187 group elements, whereas for s = 40 (ob-
tained by using a base-16 representation) this corresponds to a reduction from 81 to
55 group elements.

Reduced Computation for a Given Memory. The randomness reuse method does
not only reduces the size of HSS ciphertexts, but also improves the computational ef-
ficiency for a given amount of available memory. Evaluating RMS programs involves
a large number of exponentiations; more precisely, two kinds of exponentiations are
required: exponentiations with a small exponent (involving the second component of
an ElGamal ciphertext with the first component of a level 2 share, which is a small in-
teger), and exponentiations with large exponents (involving the first component of an
ElGamal ciphertext with the second component of a level 2 share, which is an integer
of size at least s bits). To reduce the amount of computation during exponentiations,
a standard technique is to use precomputation. A lookup table of size O(n) allows to
reduce the amount of computation required for an exponentiation by O(log n). How-
ever, this can require a lot of memory, as a table must be precomputed for each first
component of ElGamal ciphertexts. An important advantage of the randomness reuse
method is that the same first component of an ElGamal ciphertext, which is the one
involved in exponentiations with large exponents, will be reused across many cipher-
texts; hence, a single precomputed lookup can be used to speed up exponentiations
in many ciphertexts. For a given maximal amount of available memory, this allows to
precompute larger lookup tables and provides an important speedup.

4.5 Reducing the Leakage Rate

A crucial issue with current group-based HSS schemes is that the failure event de-
pends on secret information, which may depend both on the inputs and the secret key.

19

Therefore, in scenarios where the computing parties get to know whether the compu-
tation failed, the secrecy of the inputs and the key can be compromised. The amount
of private information that leaks during a computation is directly proportional to the
failure probability δ. We discuss methods to mitigate the leakage in this section.

Leakage-Absorbing Pads. In this section, we introduce a technique to reduce the
dependency between the failure probability and the amount of leakage, from linear
to quadratic. Note that a technique was also proposed in [BGI17] to deal with the
leakage, by compiling the RMS program into a leakage-resilient circuit. This technique
is incomparable to our new technique: it allows reduce the leakage on the input by
any desired amount, but it gives no security guarantee for the secret key and it comes
at the cost of a large computational overhead, while the current technique we develop
allows only to square the leakage probability, but it does protect both the input and
the secret key with essentially no additional computation.

Masked Pairing Algorithm. To handle the leakage more efficiently, we introduce a
masked pairing algorithm, which takes in addition some level 2 share of a pseudoran-
dom bit b, which we call leakage-absorbing pad, so that any value that can leak during
a conversion is XOR-masked with b. This ensures that failures do not leak private in-
formation, unless two failure events occur on computation involving the same pad. In
various scenarios, this allows us to make the amount of leakage quadratically smaller
than the failure probability.

Functionality. MPair(JxKc , ⟪b⟫c , ⟪y ⊕ b⟫c) 7→ 〈xy ⊕ b〉
Description. Compute J1− xKc from JxKc homomorphically. Compute Pair(JxKc , ⟪b⟫c)×

Pair(J1− xKc , ⟪y ⊕ b⟫c) to get {x(y ⊕ b)} × {(1− x)b} = {xy ⊕ b}, and compute
Convert({xy ⊕ b}) to get 〈xy ⊕ b〉.

We extend this masked pairing algorithm to a masked multiplication algorithm,
that returns ⟪xy ⊕ b⟫c. However, the latter is more involved, as we must compute
〈c(b⊕ xy)〉 using onlyMPair to avoid non-masked leakage. In addition to pk, we assume
that the parties hold shares (〈ci〉)i≤s of the coordinates of c.

Functionality. MMultpk([[[x]]]c,c, ⟪b⟫c , ⟪y ⊕ b⟫c) 7→ ⟪xy ⊕ b⟫c
Description. Compute for i = 1 to s

〈b⊕ ci〉 ← MPair(JciKc , ⟪b⟫c , ⟪1⊕ b⟫c)

This part correspond to a precomputation phase, which depends only on the pad
b and can be reused in any execution of MMult with the same pad. Parse [[[x]]]c,c
as (JxKc , (Jx · ciKc)i≤s) and perform the following operations:
1. 〈b⊕ xy〉 ← MPair(JxKc , ⟪b⟫c , ⟪y ⊕ b⟫c)
2. 〈b⊕ cixy〉 ← MPair(JxciKc , ⟪b⟫c , ⟪y ⊕ b⟫c) for i = 1 to s
3. 2 〈ci(b⊕ xy)〉 ← 2 · 〈b⊕ xyci〉+ 〈ci〉 − (〈b〉+ 〈b⊕ ci〉) for i = 1 to s
4. 〈c(b⊕ xy)〉 ←

∑s
i=1 2i−1 〈ci(b⊕ xy)〉

5. Return (〈b⊕ xy〉 , 〈(b⊕ xy) · c〉).

Masked Evaluation of an RMS Program. Let P be an RMS program with d inputs,
which we assume to be a circuit with XOR gates and restricted AND gates. We denote
by MaskedEval an algorithm that takes as input pk, a bit t, an evaluation key ek, a

20

failure parameter δ, an RMS program P , a leakage-absorbing pad ⟪b⟫c, and d encoded
inputs ([[[xi]]]c)i≤d, which outputs a level-2 share of P (x1, · · · , xd):

MaskedEval(t, ⟪b⟫c , ([[[xi]]]c)i≤d, P, δ) 7→ ⟪P (x1, · · · , xd)⟫c
The algorithm MaskedEval proceeds as follows: each masked monomial is computed

using the MMult algorithm for each product of the monomial. To compute a masked
XOR of two intermediate values M1 and M2,

1. Compute ⟪b⊕M1⟫c, ⟪b⊕M2⟫c, and ⟪b⊕M1M2⟫c using several invocations of
the MMult algorithm

2. Compute ⟪b⊕ (M1 ⊕M2)⟫c as
⟪b⟫c + ⟪b⊕M1⟫c + ⟪b⊕M2⟫c − 2 ⟪b⊕M1M2⟫c .

Generating the Pads. In scenarios where secret-key HSS is sufficient, the leakage ab-
sorbing pads can simply be generated as part of any HSS ciphertext. For scenarios that
require public-key HSS, a number of leakage-absorbing pads can be generated as part
of the key distribution protocol, and re-generated later on if too many pads have been
compromised. Generating a pad can be done using two oblivious transfers: the two
parties (P0, P1) hold shares (c0, c1) of the secret key c, and pick respective random bits
(b0, b1). With one OT, P0 transmits r0−2b0b1 and (c0−2b0c0)b1+r′0 to P1, for random
(r0, r

′
0) ∈ Z2

q , by letting P1 choose between the pairs (r0, r
′
0) and (−2b0 + r0, c0(1 −

2b0) + r′0) with selection bit b1. Conversely, P1 transmits c1(1− 2b1)b0 + r1 to P0, for
a random r1 ∈ Zq, using one OT. Note that (r0 + b0, b1 + r0 − 2b0b1) form additive
shares of b0 ⊕ b1, and (b0c0 − r′0 + c1(1 − 2b1)b0 + r1, b1c1 − r1 + c0(1 − 2b0)b1 + r′0)
form additive shares of c · (b0 ⊕ b1). Therefore, the two players obtain level 2 shares of
a random bit.

Protecting the Secret Key. Leakage pads can be used to equally reduce the leakage
rate of both input bits and secret key bits. However, protecting key bits is more impor-
tant for two reasons. First, key bits are typically involved in a much larger number of
conversions than input bits. Second, in applications that involve distributed key gener-
ation, replacing a compromised key requires additional interaction. A natural approach
suggested in [BGI17] for protecting the secret key c is to split it into k random additive
shares ci ∈ Zq such that c =

∑k
i=1 c

i, and modify the level 1 share of an input x to
include encryptions of x ·cij for i ∈ [k] and j ∈ [s]. This ensures that the jth component
of c remains unknown unless the k components at the jth positions of the (cij)i≤k are
compromised. However, this increases the ciphertext size and the evaluation time by
a factor k. In this section, we discuss more efficient sharing methods to protect the
secret key, that offer comparable security at a cost which is only additive in k.

Computational Approach. The simplest method is to increase the size of the secret
key, and to rely on entropic variants of the Diffie-Hellman assumption, stating that
indistinguishability holds as long as the secret exponent has sufficient min-entropy
(see [Can97,BR13]). Assume for simplicity that the secret key is written in base 2; let
s be the key length corresponding to the desired security level. Extending the key to be
of size s + k ensures, under an appropriate variant of the Diffie-Hellman assumption,
that a leakage of up to k bits of the secret key does not compromise the security.

Information Theoretic Approach. The above method becomes inefficient if one wants
to be able to handle a very large amount of leakage. We outline a better approach

21

to protect the secret key c against an amount of leakage bounded by k. Let ` ←
dlog qe+ k+ 2dlog(1/ε)e, where ε denotes a bound on the statistical distance between
the distribution of the secret key and the uniform distribution from the view of an
adversary getting up to k bits of information. In the key setup, a large vector (vi)i≤`
of elements of Zq is added to the public key (it can be heuristically compressed to
a short seed using a PRG), as well as encryptions of random bits (c′i)i≤` satisfying∑

i c
′
ivi = c mod q. An HSS ciphertext for an input x now encrypts (x, (xc′i)i). After

an invocation of Convert with input y, 〈yc〉 can be reconstructed as
∑

i vi 〈yc′i〉. By the
leftover hash lemma, an arbitrary leakage of up to k bits of information on the c′i can
be allowed, without compromising the key c. This method is more efficient than the
previous one for large values of k and offers unconditional security; as a byproduct,
it offers information-theoretic security and allows to handle leakage of arbitrary form,
which simplifies the concrete security analysis of protocols that use it.

4.6 Extending and Optimizing RMS Programs

In this section, we describe optimizations that take advantage of the specificities of
group-based HSS schemes when evaluating RMS programs, to allow for richer seman-
tics and efficiency improvements for certain types of computation.

Terminal Multiplications. The Mult algorithm, which allows to multiply a level
1 share of x with a level 2 share of y and produces a level 2 share of xy, involves
s+ 1 calls to PairConv: one to generate 〈xy〉, and s to generate 〈xy · c〉. We make the
following very simple observation: let us call terminal multiplication a multiplication
between values that will not be involved in further multiplications afterward. Then
for such multiplications, it is sufficient to call PairConv a single time, as the second
part 〈xy · c〉 of a level 2 share is only necessary to evaluate further multiplications. For
low depth computation with a large number of outputs, this results in large savings
(in particular, it reduces the amount of computation required to evaluate degree-two
polynomials with some fixed failure probability by a factor (s+1)2). Moreover, terminal
multiplications have additional benefits that we outline below, which provides further
motivation for treating them separately.

Short Ciphertexts for Evaluation of Degree-Two Poynomial with Secret-Key HSS. Un-
like public-key HSS, a ciphertext in a secret-key HSS scheme can be directly generated
together with a level 2 share of its plaintext. This implies that it is not necessary
to “download” the inputs at all to reconstruct such level 2 shares. Therefore, when
computing degree-two polynomials with secret-key HSS, which involves only terminal
multiplications, it is not necessary anymore to encrypt the products between the bits
of the secret key and the input: a single ElGamal encryption of the input is sufficient.

For public-key HSS, level 2 shares of secret inputs cannot be generated by a party
directly, as no party knows the HSS secret key. However, if we are in a setting with two
parties who hold shares of the secret key, then the parties can jointly generate level 2
shares of their input by the protocol described in Section 4.2.

Handling Large Inputs in Terminal Multiplications. In general, all inputs manipulated
in RMS programs must be small, as the running time of conversion steps depend on
the size of the inputs. However, the semantic of RMS programs can be extended to
allow for a terminal multiplication where one of the inputs can be large, by outputting
the result of the pairing operation without executing the final conversion step. This

22

simple observation has interesting applications: it allows to design RMS programs in
which a large secret key will be revealed if and only if some predicate is satisfied. More
specifically, it allows to evaluate programs with outputs of the form KF (x1,··· ,xn) where
K is a large input, and (x1, · · · , xn) are short input: the key K will be revealed if and
only if F evaluates to 1 on (x1, · · · , xn).

Reduced Failure Probability in Terminal Multiplications. Consider terminal multipli-
cations in the evaluation of an RMS program where the output is computed modulo
β. If a party detects a risk of failure, he must return a flag ⊥. However, observe that
such a failure occurs when the two parties end up on different distinguished points in
a conversion step; but if the distance between the two possible distinguished points
happens to be a multiple of β in a terminal multiplication, then the reduction modulo
β of the result will cancel this failure. In this case, the party can simply ignore the
risk of failure. For the most commonly used special case of computation modulo 2, this
observation reduces the number of failures in terminal multiplication by a factor 2.

Evaluating Branching Programs and Formulas. As pointed out in [BGI16a], a
branching program can be evaluated using two RMS multiplications for each node. A
simple observation shows that in fact, a single RMS multiplication per node is sufficient.
Each node N is computed as x·N0+y ·N1, where (N0, N1) are values on the two parent
nodes, and (x, y) are multipliers on the edges (N0, N) and (N1, N). Observe that the
two edges leaving N0 carry the values x and x̄, and that given (N0, x ·N0), the value
x̄·N0 can be computed as N0−x·N0 at no cost. Therefore, the two RMS multiplications
used to compute N can be reused in the computation of two other nodes, saving a
factor two on average compared to the simulation of a branching program by an RMS
program given in Claim A.2 of [BGI16a].

As boolean formulas can be efficiently simulated by branching programs, a fan-in-2
boolean formula with n internal AND and OR gates can be evaluated using exactly n
RMS multiplication in the setting of secret-key HSS. In the setting of public-key HSS,
where the encryption of the inputs must be converted to level 2 shares, and additional
RMS multiplication per input is required. In both cases, NOT gates incur no additional
cost.

Evaluating Threshold Formulas. Threshold functions (that return 1 if at least
some number n of inputs, out of N , are equal to 1) are useful in many applications. An
n-out-of-N threshold function can be evaluated using (N−n+1) ·n non-terminal RMS
multiplications, and 1 terminal RMS multiplication (for example, the majority function
requires essentially (N+1)2/4−1 RMS multiplications), using their natural branching
program representation. Applying an n-out-of-N threshold function to the N outputs
ofN size-k boolean formulas requires k(N−n+1)·n non-terminal RMS multiplications.
This class of functions captures a large number of interesting applications, such as
evaluating policies on encrypted data, or searching for fuzzy matches with encrypted
queries.

5 Applications

In this section, we outline a number of natural scenarios in which group-based HSS
seems particularly attractive, and describe how the optimizations from the previous
section apply in these scenarios. The efficiency estimates given in this section are based

23

on the running time of our implementation, described Section 7 (see Remark 24), using
a single thread of an Intel Core i7 CPU. Our implementation could perform roughly
5 × 109 conversion steps per second on average, and 6.4 × 105 modular multiplica-
tions per second, on a conversion-friendly group with a pseudo-Mersenne modulus
p = 21536 − 11510609, which is estimated to provide roughly 80 bits of security. We
summarize in Table 1 the optimizations of Section 4 that apply to each application
described in this section. Some of the subsections of Section 4 refer to several distinct
possible optimizations; a 3 mark indicates that at least one of the optimizations apply
to the application. Note also that leakage-absorbing pads (Section 4.5) and ciphertext
compression (Section 4.4) cannot be used simultaneously; for applications where both
optimizations possibly apply, only one of the two optimizations can be used in a given
instantiation. Finally, for some applications, there are optimizations that are not rel-
evant in general, but could be applied in some specific scenario; those optimizations
are still marked with a 7 for simplicity.

MPC (5.1) File System (5.2) RSS Feed (5.2) PIR (5.2) Correlations (5.3)

Share Conversion (4.1) 3 3 3 3 3

Rand. Conversion (4.1) 3 3 3 3 3

Key Generation (4.2) 3 7 7 7 3

Compression (4.4) 3 3 7 7 7

Leakage (4.5) 3 3 7 3 7

Terminal Mult. (4.6) 3 3 3 3 3

Large Inputs (4.6) 3 3 7 7 7

Table 1. Summary of the optimizations of Section 4 that apply to the applications of Section 5.

5.1 Secure MPC with Minimal Interaction

Suppose that a set of clients wish to outsource some simple MPC computation to two
servers, with a simple interaction pattern that involves a message from each input
client to each server and a message from each server to each output client. Security
should hold as long as the two servers do not collude, and should hold even if when
an arbitrary set of clients colludes with one server. HSS provides a natural solution in
this scenario. Before the set of clients or their inputs are known, the two servers Sb
obtain a common public key pk and local secret evaluation keys ekb. This (reusable)
setup can be implemented via a trusted dealer or via an interactive protocol between
the servers or another set of parties. (When the setup is implemented using external
parties, the servers do not ever need to interact or know each other’s identity.) The
clients, who do not need to know which or how many other clients participate in the
protocol, can compute a program P on their inputs xi in the following way.

– Upload inputs. Each client Ci with input xi computes cti ← Enc(pk, xi) and
sends cti to both servers. (Alternatively, the encrypted inputs cti can be posted in
a public repository and downloaded by the servers.)

– Local evaluation. Each server Sb, given encrypted inputs (ct1, · · · , ctn) and
a program P , locally computes zb ← Eval(b, ekb, (ct1, · · · , ctn), P, δ), where δ is a
given failure probability bound.

24

– Download output. Each server Sb sends zb to each output client. (Alterna-
tively, zb can be made public if the output is public.) The output P (x1, . . . , xn) is
recovered, except with δ failure probability, by computing z ← z0 ⊕ z1.

A simple example for this kind of secure computation can be a small-scale vote:
multiple clients encrypt their vote and upload them on a public repository. The two
servers retrieve the encrypted votes and evaluate the voting function (say, majority,
conjunction, or another threshold function), without having to interact. The local
nature of this computation mitigates risks of collusions and reduces latency. Shares of
the result of the vote are then sent to the clients, who can reconstruct the result by
performing a simple XOR. In case of a failure, the vote can be recomputed using the
same encrypted inputs.

Managing the Leakage. Note that the event of a failure in our group-based HSS con-
structions is correlated with both the private inputs of the clients and the secret evalua-
tion keys. In some cases, this might not be an issue: the private inputs are compromised
only when a leakage occurs while a server is corrupted. In scenarios where a server has
a low probability of being corrupted, this conjunction of events can be acceptably rare.

To further mitigate the risk associated with such leakage, the parties can use the
techniques described in Section 4.5 to reduce the dependency between a failure event
and a leakage event. The key randomization techniques can be used to ensure that
the same setup can be used for many computations without compromising the secret
key. Moreover, leakage-absorbing pads can be generated as part of the distributed
key setup to protect inputs encrypted with this setup, where Eval is replaced by the
MaskedEval algorithm. To minimize the number of pads, the same pad can be used in
each computation until one of the servers detects possible failure; when this happens,
the compromised pad is replaced by a new pad in subsequent computations. This
makes the leakage probability quadratically smaller than the failure probability. Note
that while communication between the servers may still be occasionally required for
generating new leakage pads, such an interaction will typically be very infrequent and
has a small amortized cost.

Efficiency Estimations. Consider for example the case of n clients who want to com-
pute the majority of their private inputs. The majority function can be implemented
using an RMS program with (n+ 1)2/4− 1 non-terminal multiplications. Each client
sends one ciphertext encrypting his input, with basis B = 2 if using leakage-absorbing
pads (for XOR-masking), and B = 16 otherwise. Figure 3 shows the time required to
compute the majority function on n inputs, using either Eval directly, or using leakage-
absorbing pads andMaskedEval. Without leakage-absorbing pads, a ciphertext is of size
10.6kB. With leakage-absorbing pads, a ciphertext is of size 35.9kB. The parameters
are chosen to ensure a 10−4 leakage probability, and allow for the evaluation of about
104 functions before refreshing the key. In the setting with leakage-absorbing pads, this
requires generating a number N = 100 of pads during the setup. Note that the failure
probability corresponding to a 10−4 leakage probability is 1% with leakage pads, and
0.01% without leakage pads. However, one can easily mitigate this issue by setting
the leakage probability of the pad-based protocol to 10−4/2 and re-running it when a
failure occurs, which allows to maintain a 10−4 leakage probability while making the
failure probability comparable to that of the protocol without pads, at essentially no
cost in efficiency (as the protocol is re-run only when a failure actually occurs).

Advantage over alternative approaches. This HSS-based approach has the advantage
of being particularly efficient for the clients, without requiring interaction between

25

5 10 15 20 25

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

Number of inputs n

T
im

e
in

se
co
nd

s

Using leakage pads
no leakage pads

Fig. 3. Time to compute majority of n inputs with 10−4 leakage probability, with and without leakage-
absorbing pads, on a single thread of an Intel Core i7 CPU. See Remark 24 for further implementation
details.

the servers (or requiring infrequent interaction for refreshing secret key or leakage
absorbing pads). Standard alternative techniques for performing secure computation
in this setting break down if a client colludes with one of the servers. For instance, this
applies to solutions where one of the servers generates a garbled circuit, or to solutions
that employ a standard FHE scheme whose secret key is known to all clients.

5.2 Secure Data Access

In this section, we discuss three natural applications of HSS to secure data access:
policy-based file systems, private RSS feeds, and private information retrieval.

Policy-Based File System. Consider the following scenario: a data owner wants
to maintain a file system where users, identified by a set of attributes, can access
encrypted files according to some policy.

Basic Setting. A data owner D generates the keys of a secret-key Las Vegas HSS and
sends them to two servers (S0, S1), together with some encrypted vectors that indicates
how permissions to access the files should be granted given the vector of attributes of
some client. A public repository contains encrypted files EK(m), where the key K is
derived from a large value r encrypted by the data owner. An RMS program P deter-
mines whether access should be granted to a client. We use the enhanced semantic of
section 4.6 to allow the program P to handle the large input r in a terminal multipli-
cation. In practice, this will correspond to setting K ← R(gr), where g is part of the
public key pk and R(·) is a randomness extractor, evaluating Pair between Enc(pk, r)
and ⟪b⟫c, where b is a bit that determines whether access should be granted, and out-
putting the result {b · r} = (v, vgrb) for some group element v, without performing the
final Convert procedure. From the multiplicative shares of grb, the client can recover
K = R(gr) (and therefore access the file m) if and only if b = 1. This basic scenario is
represented in Figure 4.

Enhanced Scenarios. The key reconstruction in the above procedure will fail with some
probability δ even for an authorized client. While the client can then simply ask the

26

servers to re-run the authorization procedure, this reveals that a failure occurred, which
leaks information on the encrypted permission vector, as well as on the secret key. A
simple solution to that is to set the failure parameter to be small enough, so that a
very large number of messages can be delivered before the leakage accumulates and
the data owner must refresh the setup.

A better solution is to use the leakage-absorbing pads introduced in Section 4.5.
The data owner simply generates some number of leakage-absorbing pads and sends
them to the servers. The two servers use each leakage-absorbing pad for some fixed
number of computations, and throw them away afterward. These pads are very easy
to generate (they essentially consist in either random shares of zero, or random shares
of the secret key), so the data owner can just regularly regenerate some pads and send
them to the server. That way, the key setup must be refreshed only when too many
leakage-absorbing pads have been involved in two simultaneous failures.

The protocol can easily be enhanced to allow for multiple data owners, each pro-
viding their own permission vector, by using public-key HSS instead of secret-key. In
that case, the data owner can use the distributed key generation protocol described
in Section 4.2, as well as generate leakage-absorbing pads using standard interactive
protocols.

Efficiency Estimations. A leakage-absorbing pad is about 200 bit long. Assuming that
the policy is, e.g., sending files subject to approval of two managers (conjunction of two
encrypted bits – considering the simplest possible scenario), answering a file request
with failure probability 10−6 takes about 0.05 seconds on a server running with 32
cores. Assuming an initial pool of a thousand leakage-absorbing pads (of total size
25kB), where each pad is used for answering 10 requests, the pool must be recharged
after answering about 105 requests (which requires a single 25kB message from the
data owner), and the key setup must be refreshed only after 1010 request answers.

Policy-Based File System for a data oner D and two servers (S0, S1):

Setup: D runs (pk, ek0, ek1) $← Gen(1λ) and sends (pk, ekb) to each server Sb.
File Upload: Pick a large value r and compute ct ← Enc(pk, r). Upload (ct, EK(m)), where m is

the file to upload, E is a symmetric encryption algorithm, and K is a key derived from {r} via
some randomness extraction procedure.

Permission Upload: D sends to (S0, S1) an encrypted vector ctp corresponding to some permission.
Query Answer: For all possible pairs (ct, a), where a is a public vector of attributes associated to

some client C, each server Sb precomputesKb ← Eval(b, ekb, ctp, ct, P [a], δ), where P [a] is a policy
function with a hardcoded whose output allows to reconstruct K depending on the permission
vector. When C wants to access the file m, he retrieves EK(m) from a public repository, and
each server Sb sends him Kb.

Fig. 4. Policy-Based File System Protocol.

Private RSS Feed. Consider the following scenario: a client has subscribed to a
(potentially large) number of RSS feeds, and would like to receive regular updates on
whether new data might interest him. Typical examples could be getting newspapers
relevant to his center of interest, or job offers corresponding to his abilities. Each data
is categorized by a set of tags, and the client wishes to retrieve data containing specific
tags (one can also envision retrieving data according to more complex predicates on

27

the tags) in a private way (without revealing to the servers his topics of interest, or
his curriculum vitae).

The trivial solution in this scenario would be to let the servers send regular digests
to the client, containing the list of all tags attached to each newly arrived data, so
as to let the client determine which data interest him. But with the potentially large
number of tags associated to each data, and the large quantity of new data, the client
would have to receive a large volume of essentially non-relevant information, which
consumes bandwidth and power.

In this section, we show how homomorphic secret sharing can be used to optimally
compress such digest while maintaining the privacy of the client. After a setup phase,
in which the client encrypts a query that indicates his area of interests, he will receive
on average a two bits from each of two servers maintaining the database, from which
he can learn whether a new record is likely to interest him.

Basic Setting. A database publicly maintained by two servers (S0, S1), who hold re-
spective evaluation keys (ek0, ek1) for a secret-key Las Vegas HSS scheme, is regularly
updated with new records R. Each record comes with a size-n string of bits, indicating
for each possible tag whether it is relevant to this record. In the most basic scenario,
the client sends an encryption of the list of bits indicating all tags that interest him
in a setup phase. For each new record, the client wants to know whether the record
contains all tags that interest him. The protocol is represented Figure 5. Each string
(ri)i≤n associated to a record contains typically a very large number of zeros, and the
corresponding RMS program P [r1, · · · , rn] is essentially a conjunction of n′ inputs,
where n′ is close to n.

A nice feature of this private RSS feed protocol is that the servers do not need to
interact at all – they do not even need to know each other, which strongly reduces the
risk of collusions and can be used in the setup phase to mitigate hacking, by secretly
choosing the two servers.

Enhanced Scenario. Once he finds out that a new record interests him, the client will
likely want to retrieve it privately. This can be done very efficiently using the two-
server PIR protocol of [GI14] that relies on distributed point functions (which can be
built from any one-way function). The servers can also apply more complex permission
policy functions, such as a disjunction of conjunctions, which can be easily translated to
RMS programs. The group-based public-key HSS scheme also easily supports inputs
from multiple clients, which allows to append for example an encrypted permission
string, coming from e.g. the news provider, to the encrypted query of the client. The
RMS program would then indicate to the client that a record is likely to interest him
only if his permission data indicates that he is authorized to get this record.

Efficiency Estimations. Using the algorithmic optimizations of Section 4 together with
our optimized implementation, an RMS program with 50 non-terminal multiplicative
gates (e.g. a conjunction of 51 inputs, a majority of 13 inputs, or any branching program
or boolean formula with 51 gates) can be evaluated with a 1% failure probability on
an encrypted query in less than 0.1 second on a single thread of an Intel Core i7 CPU,
using B = 16 as the basis for the ElGamal secret key. An encrypted bit amounts to
about 10kB, using the generic ciphertext compression method of section 4.4.

Comparison with Alternative Approaches. A number of alternative approaches can be
envisioned for the above application. An attractive approach for small values of n
is to use distributed point functions [GI14] (DPF), which can be implemented very
efficiently using block ciphers such as AES [BGI16b], by letting the servers match the

28

Private RSS feed for two servers S0, S1 and one client C:

Global Setup: Let (pk, ek0, ek1) $← Gen(1λ). S0 gets (pk, ek0), S1 gets (pk, ek1), and C gets pk.
Client Setup: For each of n possible tags, C computes cti ← Enc(pk, wi) where wi = 1 if the ith

tag matches the interests of C, and wi = 0 otherwise. C sends (cti)i≤n to (S0, S1).
Digest Generation: For each new record Rj added to the database, associated to a list of

n bits (ri)i≤n identifying the tags of the record, each server Sb computes (xbj , γ
b
j) ←

Eval(b, ekb, (ct1, . . . , ctn), P [r1, · · · , rn], δ) where P [r1, · · · , rn] is an RMS program with (ri)i≤n
hardcoded that returns 1 iff it holds that ri = 1 for all j such that wi = 1. Once N new records
have been added, each server Sb sends (I, (xbj , γbj)j≤N) to C, where I is a unique identifier of the
digest.

Parsing the Digest: C computes xj ← x0j ⊕ x1j for each j such that (γ0
j , γ

1
j) 6= (⊥,⊥).

Fig. 5. Private RSS Feed Protocol.

private query with all 2n possible vectors of length n. This solution becomes clearly
impractical as soon as n becomes large, while our HSS-based solution can handle values
of n ranging from a few dozens to a few hundreds.

Private Information Retrieval. Private Information Retrieval (PIR) allows a client
to query items in a database held by one or more servers, while hiding his query
from each server. This problem has been extensively studied in the cryptographic
community, see [CGKS95,KO97]. In this section, we outline how homomorphic secret
sharing can be used to construct efficient 2-server PIR schemes supporting rich queries
that can be expressed by general formulas or branching programs.

The setting is comparable to the setting of the private RSS feed protocol described
in Section 5.2: the client applies the HSS sharing algorithm to split the query q between
the servers. (Here the more efficient secret-key variant of HSS suffices.) The servers use
the HSS evaluation algorithm to non-interactively compute, for each attribute vector of
database item, a secret-sharing of 0 (for no match) or 1 (match). The main challenge
is for the servers to send a single succinct answer to the client, from which he can
retrieve all items that matched his query (possibly with some additional items). We
describe below a method to achieve this.

Retrieving a Bounded Number of Items. We start by assuming that the client wishes
to retrieve items matching his query, up to some public bound n on the number of
matching items. let N be the size of the database, and let (mb

i)i∈[N] be the output
shares of each server Sb obtained by matching the encrypted query with each vector
of attributes ai from the database. Let (mi)i∈[N] be the corresponding outputs. Each
server Sb interprets his shares (mb

i)i≤N as a vector over (F2k)N , for some large enough
k (e.g. k = 40). Both servers replace each share for which they raised a flag, indicating
a potential failure, by a uniformly random value over F2k . This ensures that each item
mi for which a failure occurred will be delivered except with 2−k probability.

Then, the servers can non-interactively reconstruct shares of the database entries
Di for with mi 6= 0, up to the bound n on the number of such entries, using a suitable
linear sketch, each sending a vector vb, b ∈ {0, 1}, to the client. For instance, using the
syndrome of a Reed-Solomon code we have vb ∈ F2n and using the power sum method
from [CBM15] we have vb ∈ Fn. Alternatively, if there is no publicly known bound n
on the number of matches, a sample of matching items can be obtained by repeating
the above procedure using successive powers of 2 as guesses for the bound. Concretely,
for n = 1, 2, 4, 8, ..., N , the servers use common (pseudo-)randomness to replace each

29

entry in the vector by 0 except with 1/n probability, repeating several times to reduce
the failure probability (see, e.g., [OS05]).

The generalized PIR protocol described above provides a tunable tradeoff between
communication and computation. Concretely, if the HSS failure probability is set to,
say 1%, this results in a similar expected number of false matches, which requires in-
creasing the bound n by roughly N/100. This can still provide a good enough compres-
sion rate in practice. Decreasing the failure probability results in better compression
rate but proportionally higher running time.

5.3 Generating Correlated Randomness

Special forms of correlated randomness serve as useful resources for speeding up cryp-
tographic protocols. HSS techniques provide a promising means for generating large
instances of certain correlations while requiring only a small amount of communica-
tion. This approach is particularly effective for correlations evaluable in low depth,
and with long output, by homomorphically “expanding” out encoded input values into
shares of the output.

In this section, we discuss a few sample correlation classes that are HSS amenable.
In each case, when generating the correlation, we assume the parties have run a (one-
time) distributed HSS key generation (as in Section 4.2), yielding keys (pk, ek0, ek1).

Bilinear Form Correlations. Consider the following 2-party “bilinear form” corre-
lation, parameterized by abelian groups Gx, Gy, Gz and a bilinear mapM : Gx×Gy →
Gz. In the correlation, Party A holds a random x ∈ Gx, partyB holds a random y ∈ Gy,
and the parties hold additive secret shares (over Gz) of the image M(x, y) ∈ Gz. In-
tuitively, by taking appropriate linear combinations of the shares of xiyj (which can
be performed locally), this correlation encodes additive sharings of all possible bilinear
forms on x and y.

Generating Bilinear Form Correlations via HSS. Consider for simplicity Gx =
Gy = G (the protocol extends straightforwardly). The parties will begin with ran-
dom bit-strings a, b ∈ {0, 1}m, for m somewhat larger than log |G|, and generate the
correlation via two primary steps.

First: Shares of pairwise the aibj products can be computed via m2 terminal RMS
multiplications, using the procedure described in Section 4.2 for “loading” the inputs
bj as level 2 HSS shares via an OT-based protocol (avoiding the need for an additional
homomorphic multiplication to do so). As described in Section 4.6 (Terminal Multi-
plication discussion), this means just a single pairing and conversion is required per
multiplication, and the HSS encoding of each bit can be given by a single ElGamal
ciphertext. More specifically, it suffices to send ElGamal encryptions of Party A’s bits
and to perform the OT-based protocol for encoding the bits of Party B.

For correctness, after the first step, the parties exchange and discard indices i, j ∈
[m] with error. However, this may leak information on a subset of non-discarded values
ai, bj .

Second: The (partly leaked) a, b ∈ {0, 1}m bits are converted to random G elements
x, y, while removing the effects of leakage, by taking the corresponding subset sums of
fixed public random G elements. The output shares of M(x, y) can then be computed
locally from shares of the {aibj}, relying on bilinearity of M .

30

More explicitly, consider the following protocol, for m = dlog |G|e + 4σ + E +
L, where σ = 40 is statistical security parameter, L,E are chosen parameters, and
(ri)i∈[m], (sj)j∈[m] ∈ G are randomly chosen public parameters.

1. Each party samples a respective vector, a, b← {0, 1}m.
2. Party A encodes his input a bitwise using HSS: i.e., ∀i ∈ [m], ctai ← Enc(pk, ai),

and sends the resulting ciphertexts (ctaii)i∈[m] to Party B.
3. The parties run the OT-based protocol described in Section 4.2 (Figure 2) to load

Party B’s input b bitwise into HSS memory as level 2 encodings.
4. Locally, each party runs Las Vegas homomorphic evaluation of the RMS program
Pbilin that computes m2 RMS multiplications between input value ai and memory
value bj , for each i, j ∈ [m], and outputs the value modulo β = q (DDH group
modulus). The error for each multiplication is set to E/m2. Each result is sharei,j ∈
Zq ∪ {⊥}.

5. Party B: Let Err = {(i, j) : shareBi,j = ⊥}. Send Err to party A. Let Erra,Errb be
the respective projections of Err onto the 1st and 2nd coordinate.

6. (Discard errs): Locally, for every i ∈ Erra and j ∈ Errb: Party A sets ai = 0,
shareAi,j = 0, Party B sets bj = 0, shareBi,j = 0.

7. PartyA: Output x =
∑

i∈[m] airi ∈ G and (M(x, y))A =
∑

i,j∈[m]M(ri, sj)(share
A
i,j) ∈

Gz (in Gz as Z-module).
Party B: Output y =

∑
j∈[m] bjsj ∈ G, and corresponding (M(x, y))B ∈ Gz. Note

each M(ri, sj) is publicly computable.

Correctness: By Las Vegas correctness (Definition 1), with overwhelming probabil-
ity (1/q) the HSS shares of aibj for all kept positions i /∈ Erra, j /∈ Errb each satisfy
shareAi,j = shareBi,j + aibj over the integers Z (instead of just Zq). Suppose this is the
case. Then we have M(x, y) = M(

∑
i airi,

∑
j bjsj) =

∑
i,j aibjM(ri, sj) (over Gz)

=
∑

i,j(share
A
i,j − shareBi,j)M(risj) = (M(x, y))A − (M(x, y))B.

Secrecy: Entropy loss in a, b comes from (i) discarding erred positions (Step 6), and
(ii) leakage on non-discarded bj values from learning Err. For (i): HSS correctness gives
|Err| ≤ E+σ except with probability ∼ 2−σ. For (ii): leaked values are restricted to bj
for which j /∈ Errb but shareAi,j = ⊥ for some i ∈ [m] (“danger zone” but no error), also
bounded in number by L + σ (= E + σ) with probability ∼ 2−σ. So, conditioned on
Party A’s view, b maintains min-entropy dlog |G|e + 2σ (and vice versa for a). Thus,
the linear combinations x =

∑
i airi and y =

∑
j bjsj are 2−σ-close to uniform over G,

conditioned on the public ri, sj values and view.
Communication: 640 × m bits for the input-encoding OTs for Party B (see Sec-

tion 4.2), plus m ElGamal ciphertexts for Party A, which correspond to 2m group
elements (each 1536 bits). In total, 640×m+ 1536×2m = 3712m bits. (Note that the
random elements ri, sj ∈ Gz can be generated pseudorandomly from a short shared
seed and need not be directly communicated.)

Computation: We focus on the required cryptographic operations (e.g., dominating
the subset sums over G). The local HSS evaluation runtime corresponds to m2 ter-
minal RMS multiplications, i.e. m2 total exponentiations and share conversions. Each
terminal multiplication is performed with failure probability E/m2.

Applications of Bilinear Form Correlations. This bilinear correlation distribution
can aid the following sample applications.

Generating Beaver triples over rings. Beaver triple correlations [Bea95] over a ring
R are comprised of a pair of random elements x, y ∈ R where each element is known by

31

one party, as well as additive secret shares of their product xy ∈ R (where addition and
multiplication are over the ring). Given such multiplication triples, one can obtain se-
cure computation protocols for computations over R with near-optimal computational
complexity (e.g., [Bea92,BDOZ11,DPSZ12,KOS16]).

Beaver triples over R are exactly bilinear correlations with Gx = Gy = Gz = R
and bilinear map M multiplication over the ring, thus generating a triple from HSS
can be achieved with costs as described above. Let n = dlog |R|e, and consider for
instance L = E = n/8 in the parameters above. Then the HSS approach requires
3712(5n/4 + 160) bits of communication.

For n ≥ 128, required computation is less than (9n/4)2 terminal RMS multiplica-
tions, each with failure (n/8)/(9n/4)2 = 2/(81n). In this regime, the RMS multiplica-
tions are dominated by conversions. Estimating a baseline of 5× 109 conversion steps
per second (see Section 7), together with effective ×8 speedup from the relevant opti-
mizations in Section 4 (×4 for expected payloads, ×2 for 10d−1 distinguished points),2

to generate an m-bit Beaver triple ∼ m3/226.5 seconds; for example, for 128-bit inputs
(i.e., n = 27) this is roughly 135kB communication and 22ms computation time.

Consider the following alternative Beaver triple approaches.

– Paillier based. Beaver triples can be generated using an encryption scheme that
supports homomorphic addition and multiplication by scalars, such as the Paillier
cryptosystem.3 This approach requires notably less communication than the HSS-
based approach, as only 2 ciphertexts are required as opposed to one ciphertext per
input bit (where Paillier ciphertexts with 80 bits of security are comparable size to
ours), and computationally requires a small constant number of group operations.
However, this approach does not fully subsume HSS techniques (and may be less
preferred in some applications), as it yields a qualitatively different protocol struc-
ture. In this approach, the parties must exchange information, perform a heavy
“public key” computation (homomorphic evaluation), exchange information once
again, and then perform another heavy computation (ciphertexts to be locally de-
crypted). In particular, the computation and second exchange must be performed
if there is a chance the parties will wish to engage in secure computation in the
future.
In contrast, using HSS, the parties need only exchange information once; this
means a party can exchange HSS shares with many others, and only later decide
which from among these he wishes to expend the computation to “expand” the
shares into correlated randomness. The expansion of shares only involves local
computation without communication, which can be useful for mitigating traffic
analysis attacks. Another advantage of the HSS-based approach is that it can use
the same setup for generating correlations over different rings. This can be useful,
for instance, for secure computation over the integers where the bit-length of the
inputs is not known in advance.

– Coding based.Assuming coding-based intractability assumptions such as the pseudo-
randomness of noisy Reed-Solomon codes, there are protocols for generating Beaver
triples of n-bit field elements at an amortized cost of O(n) bits per triple [NP06,

2 Note we cannot take advantage of the ×2 speedup for even/odd failure recovery since this requires
shares in a field of characteristic 2 whereas here shares are over Zq.

3 For example, a Beaver triple can be generated from 2 executions of oblivious linear evaluation
(OLE), each of which achieved as: Party A generates a key pair (pk, sk)← GenEnc(1

λ) and sends an
encryption Enc(x) of x ∈ R to Party B, who replies with the homomorphic evaluation Enc(ax+ b)
for his a, b ∈ R, back to Party A who can decrypt and learn ax+ b.

32

IPS09, ADI+17, GNN17]. These constructions rely on relatively nonstandard as-
sumptions whose choice of parameters may require further scrutiny. Moreover,
amortization only kicks in when the number of instances is large (at least a few
hundreds). In contrast, the HSS-based approach can apply to a small number of
instances and, as noted before, can use the same setup for generating correlations
over different fields.

– OT based. Perhaps the best comparison approach for generating Beaver triples of
n-bit ring elements (without requiring amortization across a very large number
of instances) is achieved by evaluating n 1-out-of-2 OTs of n-bit strings [Gil99,
KOS16]. While this computation can be heavily optimized for large n using OT
extension, it requires communication of 2n(λ+`) bits per such OT, for λ = 80 and
` = n. For n ≥ 4096 = 212 this is greater communication than our approach (and
we expect this crossover to drop substantially with future optimizations); note
in our current implementation (on a single core of a standard laptop), a 212-bit
Beaver triple correlation can be generated via HSS in ∼ 12.1 minutes.
We remark that the crossover point is lower when instantiating the HSS using El-
Gamal over elliptic-curve groups. As discussed in Section 7.3, homomorphic eval-
uation over an elliptic-curve group presently runs slower than over a conversion-
friendly group by roughly a factor of 5×103 (approx 106 conversions per second as
opposed to 5×109), but the corresponding ciphertext size is approximately 8 times
smaller. In this setting, the HSS-based solution requires 1504n bits of communi-
cation (in the place of 3712n), yielding a crossover of n = 672 ≈ 29.4. The current
implementation of HSS over elliptic curves would run notably longer at this size
(∼ 4.5 hours), but discovery of “conversion-friendly” elliptic curve techniques may
make this approach more competitive.

Preprocessing for matrix multiplication. Similar online speedups can be achieved for
secure n×n matrix multiplication given an extension of the bilinear form correlations
with 2n random (n-bit) input vectors; Generating this correlation via HSS with failure
probability δ requires communication of 2n2 group elements (one ElGamal CT for
each input bit of one party) plus 640 × n2 bits (for n2 input-loading OTs, for the
other party), altogether 3712n2 bits. The required computation is n3 terminal RMS
multiplications each with failure δ/n3.

To our knowledge, the best existing approach is via n2 1-out-of-2 OTs of n-bit
strings [Gil99,KOS16]. Using OT extension, this requires communication of 2n2(λ+ `)
bits, for λ = 80 and ` = n. For the same crossover value as above n ≥ 1776 ≈ 210.8

this is greater communication than our approach. The required computation time of
the HSS-based solution at this crossover point is presently quite large; however, this
will improve greatly with time and additional computing power.

Universal bilinear forms. An appealing property of the HSS-based generation pro-
cedure that sets it apart from competing techniques is its universality: The same fixed
communication and computation can be used to speed up online evaluation of any
collection of bilinear maps on a set of inputs, and the identity of the maps need not
be known during the preprocessing phase.

For example, suppose parties hold respective inputs x, y ∈ {0, 1}n, and wish to
securely evaluate xTAy for a collection of many different matrices A ∈ {0, 1}n×n,
possibly not known at setup time. For instance, each A may be an adjacency matrix
representing possible connectivity structures between n locations, so that the above

33

product computes correlation information along the graph between the resource distri-
bution of the two parties (encoded by x and y). Given an instance of the bilinear form
correlation (shares of rx, ry ∈ {0, 1}n and each rxi r

y
j ∈ {0, 1}), then for each desired

A = (aij) the parties can take the appropriate linear combination of their rxi r
y
j shares

(with coefficients aij) to yield a corresponding “bilinear Beaver triple.” This can be
done even if the identity of matrices A is not determined until runtime.

To the best of our knowledge, in this regime of universality, the best competition is
generic Yao/GMW for securely evaluating all n2 products. Even utilizing optimized OT
extension techniques [KK13], this will require more than 100n2 bits of communication,
indicating that an HSS-based approach wins in communication already for n ≥ 84.
The computation required for a 84-bit Beaver triple correlation can be generated via
HSS in ∼ 6.3ms.

Truth Table Correlations. Given access to a preprocessed “one-time truth-table”
correlation, one can securely evaluate any function with polynomial-size domain by
a single memory lookup and short message exchange [IKM+13,DNNR16]. Executing
this technique on small chosen sub-computations within a larger secure computation
can provide helpful speedups [DNNR16].

For function f : [N1] × [N2] → [M], a one-time truth-table correlation gives the
two parties a random x-offset rx ← [N1] and y-offset ry ← [N2], respectively, and gives
the parties additive secret shares (over ZM) of the shifted truth table (f(w − rx, z −
ry))w∈[N1],z∈[N2]. To securely evaluate f on inputs x, y at runtime, the parties exchange
the masked values (x − rx), (y − ry), and then use the shares in the corresponding
position of their respective truth tables as their output shares of the f computation.

HSS can be used to generate one-time truth table correlations for functions of
relatively small size domains, e.g. 128× 128. We assume the truth table of f is public.
One approach is a further instance of bilinear form correlations. Each party samples
his random offset, e.g. rx ← [128], HSS-encodes the corresponding 128-bit unit vector,
and sends the encoding. Locally, each party homomorphically expands the (128)2-bit
tensor of the encoded vectors, to obtain shares ai,j . His output share for the (x, y)th
position in the shifted truth table is the linear combination

∑
i,j∈[128] f(i, j)ai−x,j−y

over the output space of f (say {0, 1}). The cost analysis of the RMS portion of this
procedure is equivalent to that of the Beaver triples.

5.4 Cryptographic Capsules

As a direction of future research, we propose HSS as a promising approach for generat-
ing many (pseudo-)independent instances of useful correlations given a short, one-time
communication between parties. The idea is for parties to exchange a single short “cap-
sule” of HSS-encoded randomness, then locally apply HSS evaluation of the computa-
tion that first expands the seed into a long sequence of pseudo-random bits and then
uses the resulting bits within the sampling algorithm for the desired correlation. Com-
bined with high-stretch local PRGs [IKOS08,App13,AL16], this may yield compression
schemes for many useful types of correlations. A natural application of cryptographic
capsules is to execute the preprocessing phase of a multiparty computation protocol,
using short communication (of size O(C1/k) for generating the material for evaluating
a circuit of size C, where k is the locality parameter of the high-stretch local PRG;
all known protocols for generating such preprocessing material have communication
O(C)).

34

Additional challenges arise in this setting when dealing with HSS error, since the
number of homomorphic multiplications will be much greater than the size of the HSS-
encoded seed. We introduce two new techniques for addressing the effects of leakage.
The first is a method of “bootstrapping” leakage pads (as in Section 4.5), enabling the
parties to homomorphically generate fresh pseudorandom pads from a small starting set
via homomorphic evaluation. The second is a more sophisticated variant of punctured
OT from [BGI17], making use of prefix-punctured PRFs. Combined, we are able to drop
the cost of expanding an n-bit seed to m bits of correlation (for m� n) from O(m/n)
per output using [BGI17] to O(

√
m/n) using our new techniques. This application

being more theoretical and involving non-trivial additional tools, we devote a full
section to its study.

6 Cryptographic Capsules

In this section, we expand on the concept of cryptographic capsules, outlined in Sec-
tion 5. A cryptographic capsule is a method to encode a long stream of correlated
pseudorandomness into a short string. More specifically, it allows two players to gen-
erate, as an interactive protocol with O(n) communication (up to poly(λ) factors), a
capsule of size n, from which the two players can later non-interactively extract m� n
bits of correlated randomness, that can later be used to speedup secure computation
protocols. Due to the inverse-polynomial failure probability of group-based HSS, a
sanitization phase is necessary to remove faulty outputs. For efficiency, we require this
phase to be information-theoretic and with communication O(m), with small constant
factors.

Advantages over Standard Preprocessing. Correlated randomness is typically
generated as part of preprocessing protocols for multiparty computation; special forms
of correlated randomness allow for information-theoretic secure computation of arbi-
trary circuits, with optimal communication up to small constant factors. Standard
preprocessing protocols usually involve a larger communication, typically O(λ · |C|) for
a circuit C. We outline below some theoretical advantages of cryptographic capsules
over standard preprocessing protocol (such as oblivious-transfer-based preprocessing
protocols).

Low communication. Generating a capsule involves a sublinear communicationO(n)�
|C|. Therefore, generating a cryptocapsule can be done without investing a large
amount of resources. In addition to being communication-efficient, which saves band-
width, this suggests that cryptocapsule can be used to hide the communication fin-
gerprint of standard preprocessing protocols: two parties can generate a cryptocapsule
without revealing whether they will actually want to perform a joint computation. On
the other hand, standard preprocessing protocols leak non-trivial informations to any
external observer: it leaks the fact that the two parties are willing to execute a secure
protocol, as well as an upper bound on the size of the computation they will perform.

Universality. The purpose of preprocessing is to speedup secure computation. However,
the need to execute a secure computation protocol with someone is typically something
that might arise without anticipation. In a classical business context, parties willing
to execute a secure computation protocol might not have planned it long before the
actual computation should take place. With standard preprocessing, this leaves them
with two alternatives:

35

– executing the protocol directly when the need for it arise, loosing the advantage
of using preprocessed material to speed it up, or

– performing preprocessing protocols in advance with all parties that could someday
want to execute a secure computation with them, which requires to invest a large
computational effort to generate material that might never be actually used.

Cryptographic capsules offer a better alternative to the above. Generating a capsule
involves only a short communication, way smaller than the amount of correlated ran-
domness that can be extracted from it, and very little computation. This suggests
to use cryptocapsules as a form of “business cards” that parties who might later be-
come interested in performing a computation would exchange: two parties can jointly
generate a cryptocapsule without actually knowing what amount of preprocessed ma-
terial they will need, what kind of correlated randomness will be appropriate, nor even
whether they will eventually want to perform a secure computation protocol. They
do not commit to doing a computation by generating a cryptocapsule, but this gives
them a universal source of a variable amount of near-arbitrary types of correlated
randomness, which they can extract once needed without any further interaction.

General Structure. Homomorphic secret sharing suggests a natural approach for
building cryptographic capsule: the capsule is generated as a level 1 encoding of the
seed of a pseudorandom generator, together with shares of the appropriate secret key.
Extracting correlated randomness is done by locally evaluating a function on this
encoding that stretches pseudorandom bits with a PRG and compute a simple function;
the shares of the output that the players get are exactly the correlated randomness.
Consider for example the following function: on input a short seed x, f outputs many
triples (ai, bi, aibi)i, where the (ai, bi)i are pseudorandom bits stretched from x. Shares
of those triples are called Beaver triples, and can be used to speedup a variety of secure
computation protocols for boolean circuits.

By the structure of group-based HSS, one must choose an appropriate PRG from a
low-complexity class: the resulting function f must be efficiently expressed as an RMS
program. The inverse-polynomial failure probability implies that the parties also have
to sanitize the output to remove faulty triples. Even though the parties are notified of
failures in the computation, they cannot simply inform each other about these failures:
as the amount of pseudorandom bits m stretched from the capsule of size O(n) is very
large (m � n), the number of failures can potentially be way larger than n, hence
revealing these failures could leak the entire seed x, or even the ElGamal secret key of
the HSS scheme. Therefore, sanitizing the output must be done carefully to manage
the leakage while maintaining the security. Our constructions focus on this natural
approach, and our goal will be to design efficient algorithms to manage the leakage of
cryptocapsules that follow this design strategy.

6.1 Definition

In this section, we define cryptographic capsules and introduce the efficiency and se-
curity notions it must satisfy. In the following, we call a correlation an efficiently
computable function that, on input a uniformly random string, returns two correlated
strings which are independently random. For example, the functionQ : (x, y, x′, y′, z) 7→
((x, y, x′y′⊕z), (x⊕x′, y⊕y′, z)) returns independently random strings that form xor-
shares of (x′, y′, x′y′), which corresponds to Beaver triples.

36

Definition 14 (Cryptographic Capsule for a Correlation Q). A two-party cryp-
tographic capsule CC for a correlation Q is a triple of polynomial-time algorithms
(CC.Generate,CC.Extract,CC.Sanitize) (which are implicitely assumed to take a secu-
rity parameter 1λ as input) such that

– Generate(m) : on common input a bound m, as a randomized interactive protocol
between parties (P1, P2), outputs c1 to P1 and c2 to P2;

– Extract(Q,m, ci) : on input a correlation Q, a bound m, and a capsule ci, outputs
r1 to P1 and r2 to P2, with |r1| = |r2| = O(m);

– Sanitize(Q,m, r1, r2) : on input a correlation Q, r1 from P1, and r2 from P2, as
a randomized interactive protocol between (P1, P2), outputs r′1 to P1 and r′2 to P2,
with |r1| = |r2| = m;

which satisfies the security and efficiency requirements defined below.

We stress that Generate and Sanitize are interactive protocols that have a random-
ized outputs (alternatively, they can take as input random coins from the parties), and
Extract is a local procedure. In the following, we denote by (r′1, r

′
2)

$← CC[Q,m] the ran-
domized two-party protocol obtained by successively running (c1, c2)

$← Generate(m),
(ri)i≤2 ← (Extract(Q,m, ci))i≤2, and (r′1, r

′
2)

$← Sanitize(Q,m, r1, r2), and outputting
(r′1, r

′
2).

Definition 15 (Security of Cryptographic Capsules). A two-party cryptographic
capsule CC for a correlation Q with bound m is secure if the protocol CC[Q,m] securely
realizes the ideal functionality Fcorr represented Figure 6.

Functionality Fcorr

The functionality is parametrized by a correlation Q and a bound m. On input
(start, sid) from both parties, where start is a token and sid is a session identifier,
pick a uniformly random string x such that |Q(x)| = 2m, and compute (y1, y2)←
Q(x). Return y1 to P1 and y2 to P2.

Fig. 6. Ideal functionality for the generation of m correlated random bits for a correlation function Q

The above definition can be defined with respect to passive adversaries, or ac-
tive adversaries; however, we will focus on the case of passively secure cryptographic
capsules in this work.

Definition 16 (Efficiency of Cryptographic Capsules). A two-party cryptographic
capsule CC for a correlation Q is efficient if the following conditions hold:

1. the protocol Generate(m) has communication complexity o(m);
2. the protocol Sanitize(Q,m, r1, r2) is optimally efficient regarding both communi-

cation and computation, up to small constants (i.e., it has communication and
computation O(m) with small constants).

Regarding item 2, we will in fact construct cryptographic capsules that use no public-
key operations whatseover in the Sanitize protocol. Below, we introduce several tools
that will be used in our constructions.

37

6.2 Preliminaries on Local Pseudorandom Generators

Our first ingredient for cryptographic capsules are local pseudorandom generators,
which will be used to homomorphically expand the capsule into a long stream of
correlated bits with low-complexity computation.

Definition of Local PRGs. Pseudorandom generators (PRGs) allow to expand a
short seed seed into a long bitstring r, so that the distribution obtained by applying
a PRG on a random short seed is computationally indistinguishable from the uni-
form distribution. An important efficiency measure for pseudorandom generators is
their parallelizability. Pseudorandom generators achieving the most extreme form of
parallelizability are known as local pseudorandom generators.

Definition 17. (Local Pseudorandom Generator) A local pseudorandom generator PRG :
{0, 1}n 7→ {0, 1}m with locality ` is a pseudorandom generator in which each output bit
depends on at most ` input bits.

It follows from the definition that local PRGs are highly parallelizable: all output
bits can be computed in parallel from the input bits. This also puts local PRGs into the
low complexity class NC0 of constant-depth fan-in-2 boolean circuits, which implies in
particular that each output bit of a local PRG can be computed by an RMS program
of constant size.

Candidate Local PRGs. The study of local one-way functions (later generalized
to local PRGs) was initiated by Goldreich in [Gol00]. The goal of Goldreich was to
construct a one-way function with the simplest possible design, to facilitate crypt-
analytic attempts and to allow for a better understanding of the source of hardness
in cryptographic primitives. All known candidate local one-way functions and local
pseudorandom generators follow the same simple template advocated by Goldreich in
his paper, that we describe below. Let PRG : {0, 1}n 7→ {0, 1}m be a pseudorandom
generator with locality `.

– Select m size-` subsets S1, . . . , Sm of [n] (each subset Si correspond to the indices
of the input bits that will be used to compute the ith output bit).

– On input x = x1 . . . xn, compute the ith output bit yi as P (xSi), where P :
{0, 1}` 7→ {0, 1} is a fixed boolean predicate, and xSi denotes the ` bits of x whose
indices are in Si.

It is conjectured that if the bipartite hypergraph G = (S1, . . . , Sm), with an hy-
peredge from each i ∈ [m] to the corresponding subset Si of [n], is highly expand-
ing, and if the predicate P is sufficiently non-degenerate, then the above template
leads to a secure pseudorandom generator. Highly expanding means that every sub-
set of hyperedges that is not too large is almost pair-wise disjoint; in practice, one
usually picks the subsets Si uniformly at random, which generates a good expander
graph with reasonable probability (see e.g. [ADI+17]). The choice of an appropri-
ate predicate P requires more care and has been the subject of a large body of re-
search [MST03,AHI04,CEMT09,CEMT14,OW14,AL16]. Below, we outline two fami-
lies of predicates which satisfy the properties that are currently conjectured to lead to
secure local PRGs, and which can be efficiently evaluated with group-based HSS.

38

Example 1: The XOR-MAJ Predicate. The (α, β)-XOR-MAJ predicate is defined as

P : (x1, . . . , xα+β) 7→ x1 ⊕ . . .⊕ xα ⊕majority(xα+1, . . . , xα+β)

Evaluating the majority of β inputs requires (β + 1)2/4 RMS multiplications, see
Section 4.6. Evaluating a xor is free when the output will not be reused in further com-
putation (the parties can perform local integer addition and a final modular reduction).
If the output must be reused (hence the parties have to compute level 2 shares of the
output), a xor requires one RMS multiplication and integer addition, using the formula
x⊕ y = x+ y − 2xy. Therefore, evaluating the (α, β)-XOR-MAJ predicate requires at
most α+(β+1)2/4+1 RMS multiplications. This candidate predicate was considered
in several works, and was advocated e.g. in [AL16] for its good properties.

Example 2: The XOR-
a

Predicate. The (α, β)-XOR-
a

predicate is defined as

P : (x1, . . . , xα+β(β+1)/2) 7→ x1 ⊕ . . .⊕ xα ⊕
a
β(xα+1, . . . , xα+β(β+1)/2)

Where
a
β denotes the βth triangular function, which takes β(β + 1)/2 inputs and

returns

a
β : (x1, . . . , xβ(β+1)/2) 7→ x1 ⊕ x2x3 ⊕ x4x5x6 ⊕ . . .⊕

β(β+1)/2∏
i=β(β−1)/2

xi.

The (α, β)-XOR-
a

predicate can be evaluated with α+ β(β + 1)/2 + 1 RMS multipli-
cation; however, if the output needs not be reused, it requires only (β − 1)(β − 2)/2
non-terminal RMS multiplications. When the XOR-MAJ and the XOR-

a
predicates

are instantiated with parameters that give them comparable resistance to known at-
tacks, the XOR-MAJ predicate (which was considered more often in the literature)
has a better locality, while the XOR-

a
predicate requires less RMS multiplications.

Boolean functions based on triangular functions were recently studied as natural can-
didate for the design of symmetric primitives well suited for homomorphic evaluation,
see [MJSC16].

6.3 Preliminaries on Pseudorandom Functions

Our second ingredient for cryptographic capsules are special types of pseudorandom
functions (PRFs) known as puncturable pseudorandom functions and constrained pseu-
dorandom functions; they will be used to mask faulty outputs (that might leak infor-
mation) in a computationally efficient way.

Definitions. Let K denote the key space, X denote the domain, and Y denote the
range. A pseudorandom function is an efficiently computable deterministic function
F : K×X 7→ Y, together with a key generation algorithm F.KeyGen which, on input 1λ,
outputs a random key from K. The core property of PRFs is that, on a random choice
of key K, no probabilistic polynomial-time adversary should be able to distinguish
F (K, ·) from a truly random function, when given black-box access to it. Puncturable
PRFs (pPRFs) have the additional property that some keys can be generated punctured
at some point, so that they allow to evaluate the PRF at all points except the punctured
point.

39

Definition 18 (Puncturable Pseudorandom Function). A puncturable pseudo-
random function is a pseudorandom function F with an additional punctured key space
Kp and three probabilistic polynomial-time algorithms (F.KeyGen, F.Puncture, F.Eval)
such that

– F.KeyGen(1λ) outputs a random key K ∈ K,
– F.Puncture(K,x), on input K ∈ K, x ∈ X , outputs a punctured key K{x} ∈ Kp,
– F.Eval(K{x}, x′), on input a key K{x} punctured at a point x, and a point x′,

outputs F (K,x′) if x′ 6= x, and ⊥ otherwise,

such that no probabilistic polynomial-time adversary wins the experiment Exp-s-pPRF
represented Figure 7 with non-negligible advantage over the random guess.

Definition 18 corresponds to a selective security notion for puncturable pseudoran-
dom functions; adaptive security can also be considered, but will not be required in
our work. Note also that we only considered puncturing at a single point in the above
definition; one can easily extend it to define t-puncturable pseudorandom functions,
in which a key can be punctured at up to t points. In this work, will we use a natural
construction of a t-pPRF from t instances of a 1-pPRF. Puncturable pseudorandom
functions are a special type of constrained pseudorandom functions, that we define
below, for the class of point functions.

Experiment Exp-s-pPRF

Setup Phase. The adversary A sends x∗ ∈ X
to the challenger. When it receives x∗, the
challenger picks K $← F.KeyGen(1λ) and a
random bit b $← {0, 1}.

Challenge Phase. The challenger sends
K{x∗} ← F.Puncture(K,x∗) to A. If
b = 0, the challenger additionaly sends
F (K,x∗) to A; otherwise, if b = 1, the
challenger picks a random y∗

$← Y and
sends it to A.

Experiment Exp-s-cPRF

Setup Phase. The adversary A sends x∗ ∈ X
to the challenger. When it receives x∗, the
challenger picks K $← F.KeyGen(1λ) and a
random bit b $← {0, 1}.

Query Phase. Each time A queries a circuit
C ∈ C such that C(x∗) = 0, the challenger
sends K{C} ← F.Constrain(K,C) to A.

Challenge Phase. If b = 0, the challenger
sends F (K,x∗) to A; otherwise, if b = 1,
the challenger picks a random y∗

$← Y and
sends it to A.

Fig. 7. Selective security game for puncturable pseudorandom functions and constrained pseudoran-
dom functions. At the end of each experiment, A sends a guess b′ and wins if b′ = b.

Definition 19 (Constrained Pseudorandom Function). A constrained pseudo-
random function for a class of circuits C a pseudorandom function F with an ad-
ditional punctured key space KC and three probabilistic polynomial-time algorithms
(F.KeyGen, F.Constrain, F.Eval) such that

– F.KeyGen(1λ) outputs a random key K ∈ K,
– F.Puncture(K,C), on input K ∈ K, C ∈ C, outputs a constrained key K{C} ∈ KC,
– F.Eval(K{C}, x), on input a key K{C} constrained at a circuit C, and a point x,

outputs F (K,x) if C(x) = 1, and ⊥ otherwise,

such that no probabilistic polynomial-time adversary wins the experiment Exp-s-cPRF
represented Figure 7 with non-negligible advantage over the random guess.

40

In this work, we will consider constrained PRFs for the class of prefix functions,
i.e., the functions Cz such that Cz(x) returns 1 if z is a prefix of x, and 0 otherwise.
For simplicity, we will denote K{z} a constrained key for the prefix function Cz.

Construction of pPRFs and cPRFs. We recall below the GGM construction [GGM86]
of a pseudorandom function F : {0, 1}k × {0, 1}` 7→ {0, 1}` from any length-doubling
pseudorandom generatorG : {0, 1}k 7→ {0, 1}2k. As observed in [BGI14,BW13,KPTZ13],
this construction also leads a puncturable PRF, and a constrained PRF for prefix func-
tions. On input a keyK and a point x = x1x2 . . . x`, setK(0) ← K and perform the fol-
lowing iterative evaluation procedure: for i = 1 to `, compute (K

(i)
0 ,K

(i)
1)← G(K(i−1)),

and set K(i) ← K
(i)
xi . Output K(`).

– F.KeyGen(1λ) : output a random seed for G.
– F.Constrain(K, z) : on input a key K ∈ {0, 1}k and a prefix z ∈ {0, 1}`′ (with `′ ≤
`), apply the above procedure for `′ steps and return K{z} = (K

(1)
1−z1 , . . . ,K

(`′)
1−z`′).

– F.Eval(K{z}, x), on input a constrained keyK{z} with z ∈ {0, 1}`′ and a point x ∈
{0, 1}`, if z is a prefix for x, output⊥. Otherwise, parseK{z} as (K

(1)
1−z1 , . . . ,K

(`′)
1−z`′)

and start the iterative evaluation procedure from the first K(i)
1−zi such that xi =

1− zi.

Note that the above construction gives a puncturable PRF by constraining at
a prefix of length `. To obtain a t-puncturable PRF, run t instances of the above
puncturable PRF and set the output of the PRF to be the bitwise xor of the output
of each instance. With this construction, the length of a key punctured at t points is
tk`.

6.4 First Construction

While our work is the first to consider cryptographic capsules, the work of [BGI17]
develops tools that provide a natural (although already non-trivial) construction of
cryptocapsules. In this section, we describe this natural candidate, which we use later
as a baseline to compare our improved construction to.

Naive Construction. As a starting point, let us consider the following simple con-
struction. As previously suggested, the Generate algorithm is constructed as a two-party
generation of a level 1 share of a random seed x of size n (this involves O(n) communi-
cation, up to poly(λ) factors). Let s be the length of the secret key of the HSS scheme.
Given a bound m� n on the number of correlated coins to generate, the Extract algo-
rithm locally evaluates a function that stretches x into O(m) pseudorandom bits and
evaluates a simple correlation function on these random bits, with failure probability
p per output bit. We assume that the function used to compute each output bit can
be described by a constant-size circuit.

We then let the parties execute a sanitization phase, in which they securely remove
the faulty correlated coins. To sanitize the coins, one of the parties simply notifies
his opponent of faulty outputs, which are dropped. On average, this leaks O(pm) bits
to this party. To make this leakage harmless, the parties set p to O(1/m) (this costs
ignores the factor coming from the size of the ElGamal secret key, counting it leads to
p = O(1/sm)): this ensures that with overwhelming probability, the amount of leakage
will be at most logarithmic in n (as well as in the length of the secret key). Assuming

41

some entropic variant of the security assumption for the ElGamal ciphertexts, and
using leakage-resilient local PRGs, one can simply instantiate this construction with
primitives (encryption and PRG) which ensure that this amount of leakage can be
tolerated. In spite of its simplicity, this solution has an obvious issue: computing each
output involves a computation proportional to O(s/p) = O(s2m). Therefore, to com-
pute each output bit, each party must perform a computation proportional to the total
number of output bits that he wants to generate. This makes this solution highly ineffi-
cient as soon as the parties wish to generate a large amount of correlated randomness.
Below, we outline an improved strategy that stems from the work of [BGI17].

Punctured Oblivious Transfer. A k-out-of-m oblivious transfer (OT) protocol in-
volves a sender, with a database D = (d1, . . . , dm), and a receiver holding a subset
S ⊂ [m] of size |S| = k. The receiver should learn all entries (di)i∈S , without learn-
ing the entries indexed by [m] \ S, while the sender should not learn which entries
the receiver got. Standard k-out-of-m OT protocols involve O(λ · (m + k)) bits of
communication. In [BGI17], the authors observed that when k is very close to m
(m� m−k), this primitive can be implemented more efficiently, using only m+o(m)
bits of communication. We outline the construction below; it relies on a general two-
party computation protocol (modeled as an oracle Π) and a k-puncturable PRF F
with domain [m].

1. The parties invoke Π on a randomized functionality that, on input S from the
receiver, outputs a random PRF key K to the sender, and the key K{[m] \ S}
punctured at all points in [m] \ S to the receiver.

2. For i = 1 to m, the sender computes and sends d′i ← di ⊕ F (K, i).
3. The receiver outputs (i, d′i ⊕ F.Eval(K{S}, i)) for all i ∈ [m] \ S.

Plugging in Yao’s protocol for Π, and the GGM construction for F , this leads to
a protocol with m + (m − k) · logm · poly(λ) bits of communication. Setting (m − k)
to be sufficiently small leads to (m− k) · logm · poly(λ) = o(m), hence the result.

Cryptocapsule from Punctured OT. Punctured OTs offer a way to sanitize the
output while hiding faulty outputs, limiting the leakage by letting a party reconstruct
non-faulty outputs while preventing himself from seeing faulty outputs. To ensure
correct reconstruction of the output, we rely on an efficient error-correcting code with
the following properties:

Lemma 20 (Lemma 5.2 from [BGI17]). There is a randomized linear encoding
function Er : {0, 1}m 7→ {0, 1}m+m/λ that can correct a 1/λ2 rate of random erasures,
with all but m · negl(λ) probability.

Using the above lemma, we proceed with the description of a cryptographic capsule
from punctured OT. Let m be the bound. Let PRG : {0, 1}n 7→ {0, 1}m+m/λ be a local
pseudorandom generator, with seed length n� m. Let Q be the target correlation.

– Generate(m). As an interactive protocol, the two parties generate level 1 shares
of a uniformly random seed ρ||ρ1 of length 2n, where ρ1 is known to P1 and ρ is
unknown to both parties. Denote ci the encoding share of party Pi.

42

– Extract(Q,m, ci). Party Pi locally evaluates, on his share ci of the cryptographic
capsule, an RMS program for the function f that stretches x and x1 into long
pseudorandom strings z, z1 using PRG, evaluates the correlation Q on (z, z1), and
encodes it with a randomized linear encoding function Er, using a failure parameter
p = O(n/m) (this ignores poly(λ) factors). It obtains as output a string ri, which
contains on average n′ = O(n) faulty outputs.

– Sanitize(Q,m, r1, r2). The parties execute a punctured oblivious transfer protocol
to let P2 recover all outputs of P1 excepts the ones for which P2 raised a flag, using
m+ o(m) bits of communication (as the number of faulty outputs is n′ � m). P2

reconstruct all outputs, correcting the n′ erasures with the decoding procedure of
Er, and get a sanitized output r′2. P1 sets r′1 ← PRG(ρ1).

Remark 21 (poly(λ) Factor). To guarantee a total number n′ = O(n) of faulty outputs,
the parties must use 1/p = O(c ·s ·m/n), where c denotes the size of the RMS program
computing each output bit, and s denotes the length of the ElGamal secret key. As
PRG, Q, and Er are computed by constant-size boolean circuits, c is constant, hence
one can use p = O(n/sm). Note that the erasure correcting code requires p < 1/λ2,
which holds as soon as sm > λ2n.

Remark 22 (Preprocessing the Sanitizing Phase). In the above protocol, the Eval proto-
col is not information-theoretically secure, as it involves a punctured oblivious transfer;
hence, it requires public-key operations. To remove all cryptographic operations from
this protocol, the parties can preprocess the step 1 of the punctured OT protocol, by
letting the receiver input a uniformly random subset S of the appropriate size O(n).
This preprocessing adds O(n logm · poly(λ)) = Õ(n · poly(λ)) bits to the communica-
tion complexity of the Generate protocol, preserving its sublinearity. In the sanitization
phase, the receiver can first send a permutation σ of [m] that maps all flagged out-
puts to S, and the sender applies σ to his output before executing the step 2. As S is
random, this leaks nothing about failures. However, this increases the communication
of the sanitization phase (in the Eval protocol) to m logm, contradicting the efficiency
requirement of cryptographic capsules.

The increased communication of Eval can be avoided as follows. The parties par-
tition [m] into m/t logm blocks (for some constant t), indexed by [m/t logm], and
execute the first step of a k-out-of-m/t logm punctured OT, where the receiver’s input
is a uniformly random subset of [m/t logm]. In the extraction phase, the parties set
p = O(n/(sm logm)) = Õ(n/sm), which ensures that at most n′ = O(n) blocks con-
tain a faulty output. In the sanitization phase, the receiver first sends a permutation
σ of the set [m/t logm] of indices of the blocks, which maps each block containing a
flagged output to S. This permutation can be described with m/t bits.

Asymptotic Complexity. Computing each output bit in the extraction phase re-
quires O(c · s · 1/p) = O(s/p) conversion steps, which dominate the total cost. Using
p = O(n/sm) leads to a cost of O(s2m/n), improving over the naive approach by a fac-
tor of n. As the punctured OT protocol involvesm+n logm·poly(λ) bits of communica-
tion, the sanitization phase has the required efficiency as soon asm/n� logm·poly(λ),
where the poly(λ) factor depends on the two-party computation protocol used to im-
plement step 1 of the punctured OT. With the above preprocessing for the sanitization
phase, the total number of bits exchanged in the Sanitize protocol is m+m/t, for some
arbitrary constant t.

43

6.5 Second Construction

As the main issue of cryptographic capsules is the need to deal with the leakage
efficiently, it is natural to examine to what extend leakage-absorbing pads, that we
introduced in Section 4.5, could be used for this application. The ideal situation one
could hope for would be to use leakage-absorbing pads to reduce the amount of leakage
by a quadratic factor: O(mp) faulty outputs would correspond to only O(mp2) bits of
leakage, which leads to quadratic savings in efficiency. However, a naive use of leakage-
absorbing pads fails to result in such significant savings. The reason for that is that
the pads are consumed by masked evaluation algorithm, hence to compute m outputs
with these algorithms, one would have to use O(m) leakage-absorbing pads, jointly
generated ahead of time by the parties. Including these pads in the cryptographic
capsule would increase its size to O(m), hence the capsule would become at least as
long as the entire output that must be extracted from it.

Alternatively, the parties can jointly generate O(n) leakage-absorbing pads as part
of the cryptocapsule generation procedure, and use each pad in the computation of
O(m/n) output bits with the masked evaluation algorithms MaskedEval of Section 4.5.
A quick analysis shows that this method leads to an overall complexity ofO(s2m/n) per
output bit, comparable to the above method with punctured OT. We now describe
an improved strategy that combine leakage-absorbing pads with a generalization of
punctured OT in a non-trivial way. This strategy allows to obtain optimal efficiency
improvements from leakage-absorbing pads, reducing the cost by a quadratic factor.
We introduce below the core ingredients of our improved strategy.

Bootstrapping Leakage-Absorbing Pads. The first idea is to use a kind of boot-
strapping approach to generate a large number of (pseudorandom) leakage-absorbing
pads from an initial pool of O(n) pads. Specifically, recall that a leakage absorbing
pad is essentially a level 2 share of a random bit. The cryptocapsule will contain an
encoding of a random seed and some number N = O(n) pads. Each pad will be used in
MaskedEval to homomorphically stretch the seed into a slightly larger number of pseu-
dorandom bits, say 2N ; by the structure of the group-based HSS scheme, the output of
this evaluation is shared between the parties in the form of level 2 shares, hence these
outputs can be directly seen as leakage-absorbing pads. The initial pool of N pads is
then dropped, and replaced by the 2N new pseudorandom leakage pads. The process
is repeated, generating 4N pseudorandom pads from the 2N previous pseudorandom
pads, and so on, until the pool contains m pseudorandom pads. Eventually, the m
target output bits are computed with MaskedEval, where each output bit is computed
with a different pseudorandom pad from the pool. The computation of the pool of
pseudorandom pads follows a tree structure, that is represented Figure 8.

Directly applying the above bootstrapping strategy would not result in any saving
by itself. The reason is that a random pad does reduce leakage, but if a failure occur in
the computation of a pseudorandom pad, then it does not offer any security guarantee
anymore: any output computed from any pad contained in the subtree starting from
this pad could be compromised. Our second ingredient is therefore an improved punc-
turing strategy that allows to puncture compromised pads directly at the tree level,
so that puncturing a node of a tree also removes all nodes of the subtree starting from
this node.

Prefix-Punctured Oblivious Transfer. Prefix-punctured oblivious transfers gener-
alize the construction of punctured oblivious transfer given in [BGI17]. In a k-out-of-m

44

⟪b⟫c

⟪b0⟫c

⟪b00⟫c

...
...

⟪b01⟫c

...
...

⟪b1⟫c

⟪b10⟫c

...
...

⟪b11⟫c

...
...

Fig. 8. Creation of the pool of pseudorandom pads. Each pad from the initial size-N pool is used in
masked evaluations to stretch two new pads from the encoded seed, and this process is recursively
applied. Each pad of the initial pool eventually generates m/N pseudorandom pads, which are the
leaves of a tree of depth log(m/N).

prefix-punctured OT, the sender holds a database D = (d1, . . . dm). We identify the
set [m] to {0, 1}logm. The input of the receiver is a size-k set S of prefixes, each prefix
being of length bounded by logm (the prefixes need not have all the same length). The
receiver should learn all entries di ∈ D with i = i1i2 . . . ilogm for which there exists
` such that i1i2 . . . i` ∈ S (i.e., S contains a prefix of i). It is immediate to obtain a
prefix-punctured oblivious transfer protocol, by taking the BGI construction of punc-
tured OT and replacing the puncturable PRF by a constrained PRF for the class of
prefix functions. As the GGM construction of puncturable PRF is already a prefix-
constrained PRF, the instantiation suggested in [BGI17] and recalled in Section 6.4
can be directly used as a prefix-punctured OT.

Putting Pieces Together. We now combine the bootstrapping approach on leakage-
absorbing pads with prefix-punctured oblivious transfer. As in the first construction,
we let m be the bound, Q be a correlation, and PRG : {0, 1}n 7→ {0, 1}m+m/λ be a
local pseudorandom generator, with seed length n� m.

– Generate(m). As an interactive protocol, the two parties generate level 1 shares of
a uniformly random seed ρ||ρ1||ρ′ of length 3n, where ρ1 is known to P1 and (ρ, ρ′)
are unknown to both parties, and a number N = O(n) of leakage-absorbing pads.
Denote ci the encoding share of party Pi.

– Extract(Q,m, ci). Party Pi recursively uses each pad of the initial size-N pool of
leakage-absorbing pads as input to MaskedEval, to stretch two pseudorandom pads
from the encoded seed ρ′, and replaces the used pad by the two newly generated
pads, until a total number of m pads have been generated that way. The m pseu-
dorandom pads are ordered in N blocks of m/N pads, each block containing all
pads computed from the same pad of the initial pool.
Afterward, party Pi locally evaluates an RMS program for the function f that
stretches ρ and ρ1 into long pseudorandom strings z, z1 using PRG, evaluates the
correlation function Q on z, xor the result with z1, and encodes it with a random-
ized linear encoding function Er, using a failure parameter p = O(

√
n/m · 1/s).

The computation is performed with MaskedEval, using a different pseudorandom
pad from the pool to compute each output bit. Pi obtains as output a string ri.

45

– Eval(Q,m, r1, r2). The parties execute a prefix-punctured oblivious transfer proto-
col to let P2 recover all outputs of P1, at the exception of all outputs involved in
a MaskedEval computation with a faulty leakage-absorbing pad, using the punc-
turing strategy described below. The purpose of the puncturing strategy will be to
carefully puncture at a minimal number of points, to hide only faulty outputs that
could create leakage. This uses m + o(m) bits of communication. P2 reconstruct
all outputs, correcting the erasures with the decoding procedure of Er, and get a
sanitized output r′2. P1 sets r′1 ← PRG(ρ1).

Puncturing Strategy. Let p be the probability of an error occuring when computing
a pseudorandom pad from the pad associated to its parent node. Let us call black
nodes the nodes of the tree for which (at least) an error occured, and white nodes the
remaining nodes. Suppose now that we encounter some black node, let us call it BN, for
the first time when analysing the tree from the root to the leaves. As an error occured
on BN, it will leak a values of the form b⊕X, where X is some private value, and b is
the pseudorandom pad associated to its parent (which is indeed pseudorandom as no
error occured yet). We need to distinguish three cases:

– If the brother node of this black node is also black, then we have to puncture their
parent node, as two leakages from those two nodes would cancel the pad.

– If at least one of the node in the subtree starting from BN is also black (or if two
errors occured on BN), then we have to puncture BN, as the error in BN implies
that the pseudorandom pads derived from BN are incorrect and cannot be assumed
to mask the private inputs.

– If none of the above happens, we do not need to puncture.

Asymptotic Complexity. In each of the N trees (each tree having m/N leaves and
being of depth log(m/N)), there are 2i−1 pairs of nodes (with the same parent) at level
i, and for each such pair we need to puncture on average log(m/N)21−ip2 values, hence
the total number of points to puncture is m/N · log(m/N) · p2 on average. Puncturing
a point at level i costs O(λi) bits (the λ factor comes from the size of a GGM PRF
key), hence the total cost of puncturing the tree is on average:

λ

log(m/N)∑
i=1

i

 ·m/N · p2 = λ
log(m/N)(log(m/N)− 1)

2
m/N · p2

= O(λ log2(m/N)m/Np2)

= Õ(λmp2/N) = Õ(λmp2/n) (as N = O(n))

Therefore, to hide all failures in the computation (except perhaps for a constant num-
ber of failures, which can be handled by assuming some leakage-resilience from the
primitives), the parties must set p so that the total number of points to puncture
N · Õ(mp2/n) = Õ(mp2) remains bounded by O(n) (up to logarithmic and poly(λ)
factors), which requires to set p to Õ(

√
n/m · 1/s). Therefore, the cost of comput-

ing each output bit is reduced to Õ(s2
√
m/n), which improves quadratically over the

previous method (up to logarithmic factors).

Remark 23 (Preprocessing the Sanitization Phase). As in the previous method, the
sanitization phase can be preprocessed during the cryptocapsule generation phase by
applying the prefix-punctured OT protocol on a random subset S of prefixes, without

46

significantly increasing the communication, and increasing the computational overhead
by a O(logm) = Õ(1) factor.

7 Concrete Efficiency

In this section we discuss the concrete performance of our HSS implementation, provid-
ing both analytical predictions and empirical data. Our implementation builds on the
optimized conversion algorithm from [BGI17], but incorporates additional optimiza-
tions that significantly improve the system’s performance. The optimizations include
the algorithmic improvements discussed in Section 4 and some additional machine-level
optimizations we describe in this section.

We assume RMS multiplications are performed in the context of an application
which specifies a target error probability ε for each multiplication. The performance
of an RMS multiplication given ε is determined by the performance of its two main
components, exponentiations in the underlying group G (we will use multiplicative
notation for the group operation) and multiplicative-to-additive share conversions in
this group.

Similarly to [BGI17], we take G to be a large sub-group of Z∗p for a prime p that is
pseudo-Mersenne, safe and ±1 mod 8. That is, p = 2n−γ for a small γ and p = 2q+ 1
for a prime q. If p is such a prime then 2 is a generator of a group of size q in which
the DDH problem is assumed to be hard. One specific prime of this type on which we
ran our measurements is 21536 − 11510609.

The optimized implementation from [BGI17] viewed any element with d leading
zeros, i.e. an integer in the range 0, . . . , 2n−d−1, as a distinguished point. The problem
of locating a distinguished point in the sequence h, 2h, . . . , 2w−1h, where w is the word
size of the underlying computer architecture, is reduced to searching for the pattern
0d in the first word of the representation of h. Computing h2w from h requires with
high probability only one multiplication and one addition, if γ < 2w.

As discussed in Section 4.1, we improve on the approach of [BGI17] for conversion
in several ways. First a distinguished point begins with the pattern 10d, i.e. all integers
in the range 2n−1, . . . , 2n−12n−d − 1. By Lemma 4 the probability of error is z · 2−d−1
for a payload z while the expected running time is 2d+1. Based on this lemma and
on Corollary 6 the average probability of error in a single conversion on bit inputs is
(B − 1)/16. This is a factor 16 improvement over the worst-case analysis of [BGI17].
In fact, replacing the pattern 0d by 10d is necessary for this improvement. Finally,
a series of low level optimizations, described in Section 7.2 reduces the running time
by another factor of two. Altogether, we improve the running time of the conversion
procedure for a given failure probability by a factor of 32 over the conversion procedure
of [BGI17].

Three optimizations that were introduced in [BGI16a, BGI17] and which we use
are short-keys, time-memory trade-off for fixed-base exponentiation and large-basis
for key representation. The secret key c which we used for ElGamal encryption is
short, 160 bits in our implementation, which is sufficiently secure given known crypt-
analytic attacks. Trading memory for time in fixed base exponentiation for base h,
and maximum exponent length e is possible for a parameter R by storing h2Ri+j for
i = 0, . . . , de/Re − 1, j = 0, . . . , R − 1. Exponentiation can be computed by roughly
de/Re − 1 modular multiplications of stored elements. The secret key c can be rep-
resented in base B instead of in binary, reducing the number of ElGamal ciphertexts
encrypting integers of the form xc(i) from 160 per input bit to 160/ logB. This op-

47

timization reduces the storage and the number of exponentiations at the expense of
increasing the number of conversion steps required for the same error probability δ by
a factor of B.

7.1 Analytic Expression

We describe the number of RMS multiplications per second as a function of the target
error probability ε and the feasible trade-offs. Loosely speaking, if ε is very small then
the number of conversion steps until finding a distinguished point is expected to be
high and is the bottleneck of each RMS multiplication. Conversely, if ε is relatively
high then the exponentiations are the performance bottleneck.

Let s be the length of the secret key; note that s = s(λ,B) is a function of the
security parameter and the base B. Typically, s = d2λ/ logBe gives λ bits of secu-
rity; setting λ = 80 gives s(B) = d160/ logBe. The number of ElGamal ciphertexts
involved in an RMS multiplication is s + 1. In a non-terminal RMS multiplication
there is one pairing operation PairConv∗ for each ciphertext, including one conversion
and two exponentiations. We refer to a partial RMS multiplication in which only the
conversion (or exponentiation) component is executed as a conversion semi-RMS (or
an exponentiation semi-RMS).

Let Nε be the number of steps per Convert∗ operation required to get an average
failure probability ε per RMS multiplication (Nε = 2d+1 for an appropriate pattern
length parameter d). By Corollary 6, we can bound Nε by solving

ε ≤
1 + s·(B−1)

2

4Nε
+

(
s+ 1

Nε

)2

=
1

4Nε
+

20 · d B−1logB e
Nε

+

⌈

160
logB

⌉
+ 1

Nε

2

.

Solving for Nε, we get

Nε ≤
1

8ε
·
(

1 +
s · (B − 1)

2

)
+

√√√√(1 + s·(B−1)
2

8ε

)2

+
(s+ 1)2

ε
.

For a small enough failure probability ε, a good approximation of the left side of
the inequality is (1 + s · (B − 1)/2)/4ε, hence the pattern length d can be taken as

d =

⌈
log

(
1

4ε
·
(

1 +
s · (B − 1)

2

))⌉
− 1.

An RMS multiplication involves s + 1 Convert∗ operations. If µ denotes the num-
ber of conversion steps per second in the underlying architecture then the number of
conversion semi-RMS multiplications per second is

ρc =
µ · 4ε

(1 + s) · (1 + s · (B − 1)/2)
.

In order to estimate the performance of an exponentiation semi-RMS we note that
one of the exponentiations in PairConv∗ raises an element to the power of an additive
share of cy and the other raises an element to the power of additive share of y for a
memory variable y. Each share of y is the number of conversion steps until reaching a
distinguished point, which can be bound in practice by 232. Therefore, the length of the
share of y is at most 32 bits and the length of the share of cy is at most 160+32 = 192

48

bits. This implies that number of multiplications for one PairConv is at most d224/Re.
If ν is the number of modular multiplications per second in our architecture then the
number of exponentiation semi-RMS multiplications per second is

ρe =
ν⌈

224
R

⌉
· (s+ 1)

.

For fixed values B and R the number of RMS multiplications per second is ρcρe
ρc+ρe

.
The more the failure probability is reduced, the more the conversions become the
bottleneck; the crossover failure probability ε̄ for which ρc = ρe is given by

ε̄ =
ν

4µ
·
(

1 +

⌈
80 · (B − 1)

logB

⌉)
· 1⌈

224
R

⌉ .
As the error grows and exponentiations become the bottleneck, the value of B

should be increased to reduce the overall time. As ε tends to 0 the value of B should
be set to B = 4 or B = 5 to minimize the running time of the conversions.

For secret key HSS, using the heuristic optimization of [BGI16a], the ciphertext
size is dlog pe·

⌈
160
logB +2

⌉
bits. For public key HSS, using the optimization of Section 4.4

under the ESDH assumption, the ciphertext size is dlog pe ·
(⌈

160
logB + 1

⌉
+ 2

⌈√
160
logB

⌉)
bits. Table 2 sums up the parameters of a single RMS multiplication.

Parameter Analytic expression

Failure probability (1 + s(B − 1)/2)/2d+3

Group operations (s+ 1) `+2d
R

Expected conv. steps (s+ 1)2d+1

Public key size (DEHE) s+ 3d
√
se+ 2

Share size per input (HSS) s+ 2
Ciphertext size per input (DEHE) s+ 2d

√
se+ 1

Preprocessing memory (s+ 1)(`+ 2d)(2R − 1)/R

Table 2. Parameters of a single RMS multiplication of binary values as a function of B (basis
size for representing secret key), s = d160/ logBe (for 160-bit ElGamal secret key), R (modular
exponentiation preprocessing parameter), and d (zero-sequence length for the conversion algorithm).
All sizes are measured in group elements.

7.2 Low Level Optimizations

We were able to obtain substantial - more than double - improvements in the im-
plementation of conversion algorithm compared to the method described in [BGI17].
Boyle et al. look for the distinguishing pattern by considering “windows” of size w = 32
bits in the binary representation of the group element. Each window, once fixed, is di-
vided into strips of length d/2 and to look first for a zero-strip of length d/2, then
incrementally count zeros on the left and on the right.

A straightforward improvement over the reported implementation of [BGI17] is to
extend the window size to w = 64, and use the 64-bit arithmetic offered by any modern
CPU. Furthermore, we noticed that with the aid of a partial match lookup table, it is
possible to avoid counting zeros on the left and on the right.

For an integer i, let l(i) be the number of trailing zeros in the binary representation
of i. Consider a table T of 2d/2 elements such that T (i) = 2l(i)− 1 for all 0 ≤ i < 2d/2.

49

If the j-th strip is 0d/2, the value of the preceding strip is i and the value of the
subsequent strip is k then a strip of d zero occurs if and only if k < T (i), as the
binary representation k of the next strip has at least d/2− l(i) leading zeros. With the
above optimization, and with a word size w = 64 bits, we were able to achieve roughly
5 billion conversion steps per second, using seven cycles for pattern-matching and
eight for the modular multiplication by 2w (relying on the synthetic 128-bit arithmetic
offered by the compiler).

All remaining arithmetic operations were based on the GNU Multiple Precision
library4, on top of which we optimized some primitives. For example, modular reduc-
tions can be improved by a factor of 2 just by exploiting the structure of the prime
modulus, using a single 64-bit multiplication and one addition.

Basic HSS operations, such as conversions and fixed-base group operations, add up
to less than 150 lines of code and run on a single thread, meaning that all the following
results can be easily scaled linearly with the number of available processors. Our library
is publicly available, together with the raw benchmarks data. Our implementation is
released into the public domain.

7.3 Measured Results

Using our optimized implementation for modular multiplication, we were able to report
about 106 modular multiplications per second. In order to obtain time estimates for
conversions on elliptic-curve groups, we benchmarked OpenSSL’s implementation of
SECG curves secp160k1 and secp160r1 [SEC10], both providing 80 bits of security. In
both cases, we were able to measure about 4.1 · 106 group operations per second. This
is three orders of magnitude slower than what can be achieved on conversion-friendly
groups; in the low-error regime, where conversions dominate, elliptic-curve based HSS
should therefore be about a thousand times slower that their counterpart based on
conversion-friendly groups. On the other hand, it is worth noting that the size of the
HSS ciphertexts in the elliptic curve implementation are smaller by roughly a factor
of 10 (1.1kB vs. 10.6kB).

Remark 24. We summarize below the parameters and assumptions on which our con-
crete efficiency analysis is based.

Processor: Benchmarks have been performed on an Intel Core i7-3537U @ 2.00GHz
processor running Debian stretch - Linux 4.9 patched with Grsecurity, and on a
Intel Xenon E5-2650 @ 2.00GHz running Ubuntu 16.04.2 LTS.

Group: We used a conversion-friendly group with a pseudo-Mersenne modulus p =
21536 − 11510609 (hence group elements are 1536 bits long).

Cost of operations: With the above settings, we were able to perform roughly 5·109

conversion steps per second and 106 mod-p multiplications per second on average.
Optimizations: Improvements from Section 4 where assumed when relevant, such as

ciphertext size reduction under the ESDH assumption, and randomized conver-
sions.

Parameters: Experiments were run for bases B = 2, 4, 16 for the secret key, and with
precomputation parameter R = 1, 8, 12 for exponentiations.

Figure 9 provides the experimental validation of the heuristic running time esti-
mate of our optimized conversion procedure; the estimate is heuristic in that it as-
sumes that the sequence stream (namely, the MSB sequence of the group elements
4 https://gmplib.org/

https://gmplib.org/

50

h, hg, hg2, hg3, . . ., for a random starting point h), behaves like a totally random bit
sequence. The graph shows that the empirical measurements closely match the heuris-
tic prediction: the average number of steps needed to find the pattern 10d of length
d+ 1 is 2d+1 − 2. A similar behavior can be observed for the standard deviation.

5 9 13 17 21 25

5

9

13

17

21

25

29

Pattern length (d+ 1)

lo
g(
#
St
ep

s)
(a
ve
ra
ge
)

Fig. 9. Experimental validation of the random stream assumption. using the group G ⊆ Z∗p specified
in Remark 24. The graph represents the average number of steps to find the pattern 10d in the MSB
sequence of group elements h, hg, hg2, hg3, . . ., with a random starting point h ∈ G.

We also compared our implementation using a partial match table with a naïvely
optimized version of [BGI17] with extended window size, obtaining roughly a 50%
factor of improvement for the Intel Core i7 cpu.

We conclude with Figure 10, which shows the number of full RMS multiplications
that can be performed in one second for a given failure probability per RMS multipli-
cation. The curves are based on an analytical formula derived from the data obtained
in the previous experiment. Additional analysis, graphs, and benchmarks, are avail-
able at [URL omitted to maintain author anonymity]. Some concrete numbers are also
given in Table 3.

Failure Base Tradeoff Length of Share RMS mult.
param. dist. point (kB) per second

ε = 2−5

B = 4 R = 1 d = 9 18.8 55
B = 4 R = 8 d = 9 18.8 438
B = 16 R = 1 d = 11 10.6 109
B = 16 R = 8 d = 11 10.6 856

ε = 2−10

B = 4 R = 1 d = 14 18.8 54
B = 4 R = 8 d = 14 18.8 361
B = 16 R = 1 d = 16 10.6 101
B = 16 R = 8 d = 16 10.6 562

ε = 2−15

B = 4 R = 1 d = 19 18.8 29
B = 4 R = 8 d = 19 18.8 55
B = 16 R = 1 d = 21 10.6 34
B = 16 R = 8 d = 21 10.6 47

Table 3. Performance of RMS multiplications, see Remark 24 for implementation details.

51

2−192−172−152−132−112−92−72−5

1

2

6
10

20

60
100

200

600
1,000

Failure probability per RMS mult

R
M
S
m
ul
ts

pe
r
se
co
nd

B = 16
B = 4

B = 16, [BGI17] version

Fig. 10. Number of RMS multiplication per second given the failure probability per RMS multipli-
cation with R = 8. The ciphertext size for B = 4 (resp., B = 16) is 18.8kB (resp., 10.6kB). See
Remark 24 for implementation details. The [BGI17] version assumes 2 × 109 conversion steps per
second.

Acknowledgements. We thank Josh Benaloh, Florian Bourse, Ilaria Chillotti, Henry
Corrigan-Gibbs, Ranjit Kumaresan, Pierrick Meaux, and Victor Shoup for helpful
discussions, comments, and pointers.

First, third, and fourth authors supported by ERC grant 742754 (project NTSC).
First author additionally supported by ISF grant 1861/16, AFOSR Award FA9550-
17-1-0069, and ERC grant 307952. Second author supported by ERC grant 339563
(project CryptoCloud). Third author supported by ISF grant 1638/15, a grant by
the BGU Cyber Center, and by the European Union’s Horizon 2020 ICT program
(Mikelangelo project). Fourth author was supported by a DARPA/ARL SAFEWARE
award, DARPA Brandeis program under Contract N66001-15-C-4065, NSF Frontier
Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, NSF-BSF grant
2015782, ISF grant 1709/14, BSF grant 2012378, a Xerox Faculty Research Award, a
Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foun-
dation Research Grant. This material is based upon work supported by the Defense
Advanced Research Projects Agency through the ARL under Contract W911NF-15-
C-0205. Fifth author supported by ERC grant 639554 (project aSCEND).

References

ADI+17. B. Applebaum, I. Damgård, Y. Ishai, M. Nielsen, and L. Zichron. Secure arithmetic
computation with constant computational overhead. In Crypto’17, pages 223–254, 2017.

AHI04. M. Alekhnovich, E. A. Hirsch, and D. Itsykson. Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. In ICALP 2004, LNCS 3142,
pages 84–96. Springer, Heidelberg, July 2004.

AJLA+12. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multi-
party computation with low communication, computation and interaction via threshold
FHE. In Eurocrypt’12, pages 483–501, 2012.

52

AL16. B. Applebaum and S. Lovett. Algebraic attacks against random local functions and
their countermeasures. In STOC, pages 1087–1100, 2016.

App13. B. Applebaum. Pseudorandom generators with long stretch and low locality from ran-
dom local one-way functions. SIAM J. Comput., 42(5):2008–2037, 2013.

BCG+17. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and M. Orrù. Homomorphic secret sharing:
Optimizations and applications. In CCS 2017, pages 2105–2122, 2017.

BDOZ11. R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and
multiparty computation. In EUROCRYPT 2011, LNCS 6632, pages 169–188. Springer,
Heidelberg, May 2011.

BDPMW16. F. Bourse, R. Del Pino, M. Minelli, and H. Wee. FHE circuit privacy almost for free.
In Crypto’16, pages 62–89, 2016.

Bea92. D. Beaver. Foundations of secure interactive computing. In CRYPTO’91, LNCS 576,
pages 377–391. Springer, Heidelberg, August 1992.

Bea95. D. Beaver. Precomputing oblivious transfer. In CRYPTO’95, LNCS 963, pages 97–109.
Springer, Heidelberg, August 1995.

Ben86. J. C. Benaloh. Secret sharing homomorphisms: Keeping shares of A secret sharing. In
CRYPTO, pages 251–260, 1986.

BGI14. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom functions.
In PKC 2014, LNCS 8383, pages 501–519. Springer, Heidelberg, March 2014.

BGI15. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In EUROCRYPT, pages
337–367, 2015.

BGI16a. E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for secure computation
under DDH. In CRYPTO, pages 509–539, 2016. Full version: IACR Cryptology ePrint
Archive 2016: 585 (2016).

BGI16b. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing: Improvements and extensions.
In ACM CCS, pages 1292–1303, 2016.

BGI17. E. Boyle, N. Gilboa, and Y. Ishai. Group-based secure computation: Optimizing rounds,
communication, and computation. In Eurocrypt’17, pages 163–193, 2017.

BGI+18. E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro. Foundations of homomorphic
secret sharing. In ITCS 2018, pages 21:1–21:21, 2018.

BGN05. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In
TCC 2005, LNCS 3378, pages 325–341. Springer, Heidelberg, February 2005.

BGW88. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC,
pages 1–10, 1988.

BL18. F. Benhamouda and H. Lin. k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In EUROCRYPT 2018, Part II, pages 500–532,
2018.

BR13. Z. Brakerski and G. N. Rothblum. Obfuscating conjunctions. In CRYPTO 2013, Part II,
LNCS 8043, pages 416–434. Springer, Heidelberg, August 2013.

BV14. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput., 43(2):831–871, 2014.

BW13. D. Boneh and B. Waters. Constrained pseudorandom functions and their applications. In
ASIACRYPT 2013, Part II, LNCS 8270, pages 280–300. Springer, Heidelberg, December
2013.

Can97. R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In CRYPTO’97, LNCS 1294, pages 455–469. Springer, Heidelberg, August
1997.

CBM15. H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte: An anonymous messaging
system handling millions of users. In 2015 IEEE Symposium on Security and Privacy,
SP, pages 321–338, 2015.

CCD88. D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols
(extended abstract). In STOC, pages 11–19, 1988.

CEMT09. J. Cook, O. Etesami, R. Miller, and L. Trevisan. Goldreich’s one-way function candi-
date and myopic backtracking algorithms. In TCC 2009, LNCS 5444, pages 521–538.
Springer, Heidelberg, March 2009.

CEMT14. J. Cook, O. Etesami, R. Miller, and L. Trevisan. On the one-way function candidate
proposed by goldreich. ACM Transactions on Computation Theory (TOCT), 6(3):14,
2014.

CGGI16. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In Asiacrypt’16, pages 3–33, 2016.

53

CGKS95. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In
FOCS’95, pages 41–50, 1995.

Cle91. R. Cleve. Towards optimal simulations of formulas by bounded-width programs. Com-
putational Complexity, 1:91–105, 1991.

DHRW16. Y. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. Spooky encryption and its appli-
cations. In CRYPTO, pages 93–122, 2016.

DM15. L. Ducas and D. Micciancio. FHEW: bootstrapping homomorphic encryption in less
than a second. In EUROCRYPT, pages 617–640, 2015.

DNNR16. I. Damgård, J. B. Nielsen, M. Nielsen, and S. Ranellucci. Gate-scrambling revisited -
or: The TinyTable protocol for 2-party secure computation. Cryptology ePrint Archive,
Report 2016/695, 2016. http://eprint.iacr.org/2016/695.

DPSZ12. I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In CRYPTO 2012, LNCS 7417, pages 643–662.
Springer, Heidelberg, August 2012.

Fre10. D. M. Freeman. Converting pairing-based cryptosystems from composite-order groups
to prime-order groups. In EUROCRYPT 2010, LNCS 6110, pages 44–61. Springer,
Heidelberg, May 2010.

Gen09. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178,
2009.

GGHR14. S. Garg, C. Gentry, S. Halevi, and M. Raykova. Two-round secure MPC from indistin-
guishability obfuscation. In TCC, pages 74–94, 2014.

GGM86. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal
of the ACM, 33(4):792–807, October 1986.

GI14. N. Gilboa and Y. Ishai. Distributed point functions and their applications. In EURO-
CRYPT 2014, LNCS 8441, pages 640–658. Springer, Heidelberg, May 2014.

Gil99. N. Gilboa. Two party RSA key generation. In CRYPTO’99, LNCS 1666, pages 116–129.
Springer, Heidelberg, August 1999.

GLS15. S. D. Gordon, F. Liu, and E. Shi. Constant-round MPC with fairness and guarantee of
output delivery. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages
63–82, 2015.

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

GNN17. S. Ghosh, J. B. Nielsen, and T. Nilges. Maliciously secure oblivious linear function
evaluation with constant overhead. IACR Cryptology ePrint Archive, page 409, 2017.

Gol00. O. Goldreich. Candidate one-way functions based on expander graphs. Cryptology
ePrint Archive, Report 2000/063, 2000. http://eprint.iacr.org/2000/063.

GS17. S. Garg and A. Srinivasan. Garbled protocols and two-round MPC from bilinear maps.
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 588–599, 2017.

GS18. S. Garg and A. Srinivasan. Two-round multiparty secure computation from minimal
assumptions. In EUROCRYPT 2018 , Part II, pages 468–499, 2018.

GSW13. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Crypto’13, pages 75–92,
2013.

HS15. S. Halevi and V. Shoup. Bootstrapping for HElib. In EUROCRYPT, pages 641–670,
2015.

IKM+13. Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-Cherniavsky. On the
power of correlated randomness in secure computation. In TCC 2013, LNCS 7785, pages
600–620. Springer, Heidelberg, March 2013.

IKOS08. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with constant
computational overhead. In 40th ACM STOC, pages 433–442. ACM Press, May 2008.

IPS09. Y. Ishai, M. Prabhakaran, and A. Sahai. Secure arithmetic computation with no honest
majority. In TCC’09, pages 294–314, 2009.

KK13. V. Kolesnikov and R. Kumaresan. Improved OT extension for transferring short secrets.
In CRYPTO 2013, Part II, LNCS 8043, pages 54–70. Springer, Heidelberg, August 2013.

KO97. E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In 38th FOCS, pages 364–373. IEEE
Computer Society Press, October 1997.

KOS16. M. Keller, E. Orsini, and P. Scholl. MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 830–842, 2016.

http://eprint.iacr.org/2016/695
http://eprint.iacr.org/2000/063

54

KPTZ13. A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable pseu-
dorandom functions and applications. In ACM CCS 13, pages 669–684. ACM Press,
November 2013.

Kur02. K. Kurosawa. Multi-recipient public-key encryption with shortened ciphertext. In
PKC 2002, LNCS 2274, pages 48–63. Springer, Heidelberg, February 2002.

LTV12. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In 44th ACM STOC, pages
1219–1234. ACM Press, May 2012.

MJSC16. P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet. Towards stream ciphers for
efficient FHE with low-noise ciphertexts. In Eurocrypt’16, pages 311–343, 2016.

MSS11. S. Myers, M. Sergi, and A. Shelat. Threshold fully homomorphic encryption and secure
computation. IACR Cryptology ePrint Archive, 2011.

MST03. E. Mossel, A. Shpilka, and L. Trevisan. On e-biased generators in NC0. In 44th FOCS,
pages 136–145. IEEE Computer Society Press, October 2003.

MW16. P. Mukherjee and D. Wichs. Two round multiparty computation via multi-key FHE. In
Proc. EUROCRYPT 2016, pages 735–763, 2016.

Nie73. P. T. Nielsen. On the expected duration of a search for a fixed pattern in random data
(corresp.). IEEE Trans. Information Theory, 19(5):702–704, 1973.

NP06. M. Naor and B. Pinkas. Oblivious polynomial evaluation. SIAM J. Comput., 35(5):1254–
1281, 2006.

OS05. R. Ostrovsky and W. Skeith III. Private searching on streaming data. In Proc. CRYPTO
2005, pages 223–240, 2005.

OW14. R. ODonnell and D. Witmer. Goldreich’s prg: evidence for near-optimal polynomial
stretch. In Computational Complexity (CCC), 2014 IEEE 29th Conference on, pages
1–12. IEEE, 2014.

PS16. C. Peikert and S. Shiehian. Multi-key FHE from LWE, revisited. In TCC’16, pages
217–238, 2016.

RAD78. R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homomor-
phisms. In Foundations of secure computation (Workshop, Georgia Inst. Tech., Atlanta,
Ga., 1977), pages 169–179. Academic, New York, 1978.

SEC10. SECG. Sec 2: Recommended elliptic curve domain parameters, version 2. http://www.
secg.org, 2010.

vDGHV10. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryp-
tion over the integers. In Proc. EUROCRYPT 2010, pages 24–43, 2010.

Yao86. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In FOCS,
pages 162–167, 1986.

http://www.secg.org
http://www.secg.org

55

A Deferred Proofs

A.1 Proof Sketch of Lemma 12

The generic group model allows to provide heuristic security arguments by restricting
the adversary to perform only basic group operations (multiplications and inversions)
on a given group element, without being able to exploit any further information from
the particular structure of the group. A security proof for an assumption in the generic
group model shows that any attack on the assumption must use the group in a non-
black-box way, suggesting that the assumption might be secure when isntantiated on
an appropriate group. In this section, we sketch a proof that the entropic-span Diffie-
Hellman assumption (Assumption 11 from Section 4) holds in the generic group model.

Generic Group Model. We implement the generic group model by choosing a ran-
dom deterministic encoding σ : G 7→ {0, 1}n for some large enough n. For two group
elements (g1, g2), given their encodings (σ(g1), σ(g2)), the only information available
is whether g1 = g2. Group operations are made available through two oracles, Omult

(which, on input σ(g1), σ(g2), returns σ(g1g2)) and Oinv (which, on input σ(g), returns
σ(g−1)). By choosing n to be sufficiently large so that a random element of {0, 1}n is a
valid encoding of a group element with negligible probability, we can assume without
loss of generality that any adversary in the generic group model will only submit to the
oracles encodings of elements that he has previously received (as input or as answers
from the oracles).

ESDH Assumption. For a distribution X with finite support, we denote

H∞(X) = − log
(

max
x

(Pr[X = x])
)

the min-entropy of X. We recall the ESDH assumption below. Let • denote the inner
product operation, and let B ≥ 2 denote any basis. For any integer t and any vector
v ∈ Ztq, we let Xv denote the distribution ensemble

Xv = {x ∈ Zq | c $← {0, · · · , B − 1}t, x← v • c}

The entropic span Diffie-Hellman assumption (ESDH) states that for any polynomials
t = t(λ), k = k(λ), and any v1, · · · , vk ∈ Ztq such that for any non-trivial linear combi-
nation v of (v1, · · · , vk), it holds that H∞(Xv) ≥ ω(log λ), the following distributions
are indistinguishable:

D0 = {v1, · · · , vk, g, gv1•c, · · · , gvk•c | c← {0, · · · , B − 1}t}

D1 = {v1, · · · , vk, g, g1, · · · , gk | (g1, · · · , gk) $← Gk}

Security in the Generic Group Model. Let A be a polynomial-time adversary
in the generic group model. Consider a simulator Sim which is given as input k vec-
tors (v1, · · · , vk) of size t (satisfying the above requirements), playing the following
game. Sim picks k + 1 uniformly random strings σ0, · · · , σk $← {0, 1}n and sends
(v1, · · · , vk, σ0, · · · , σk) to A. Then, Sim simulates the oracle queries as follows:

– Sim maintains a list L of pairs (P, σ), where P is a multivariate polynomial over
Fq[X1, · · · , Xk], and σ is an encoding. Sim initially sets

L← ((σ0, 1), (σ1, X1), . . . , (σk, Xk))

56

– On input (σ, σ′) from A, Sim simulates Omult as follows: he retrieves (P, P ′) asso-
ciated to (σ, σ′) from L, and search L for an encoding σ′′ associated to P + P ′.
If Sim finds such an encoding, he returns σ′′; otherwise, Sim picks σ′′ $← {0, 1}n,
returns σ′′ and adds (σ′′, P + P ′) to L.

– On input σ from A, Sim simulates Oinv as follows: he retrieves P associated to σ
from L, and search L for an encoding σ associated to −P . If Sim finds such an
encoding, he returns σ′; otherwise, Sim picks σ′ $← {0, 1}n, returns σ′ and adds
(σ′,−P) to L.

After making Q queries to the oracle, A returns a guess bit b′. Then, Sim picks a
uniformly random bit b. If b = 0, Sim picks c← {0, · · · , B − 1}t and sets

(X1, · · · , Xk) = (v1 • c, · · · , vk • c);

otherwise, Sim picks uniformly random (x1, · · · , xk) and sets

(X1, · · · , Xk) = (x1, · · · , xk).

We now show that the simulation is correct with overwhelming probability in the case
b = 0; it follows immediately that no information leaks about b from the game.

In the case b = 0, all the encodings A can get by querying the oracles are of
the form σ(µ0 +

∑k
i=1 µi(vi • c)), for some coefficients µ0, · · · , µk. Let us denote by

V = [v1| . . . |vk] the matrix of dimension t × k whose column-vectors are the various
vi-s. For any query with constant term µ0 and coefficients column-vector µ ∈ Zkq , it
is easy to see that the simulation fails only if a collision happen, i.e., A obtains two
encodings σ(µ0 + cV µ and σ(µ′0 + cV µ′) such that µ 6= µ′ and

µ0 + cV µ = µ′0 + cV µ′.

The above equation reduces to cV (µ−µ′) = µ′0−µ′0. The probability that two queries
out of the Q queries of A satisfy this equality can be bounded by(

Q

2

)
· 2−H∞(Xλ,t,V (µ−µ′)).

As V (µ−µ′) is a non-trivial vector (as µ 6= µ′) in the span of (v1, · · · , vk), by assump-
tion it holds that H∞(XV (µ−µ′)) = ω(log λ). As A runs in polynomial time, it makes a
polynomial number of queries to the oracle, hence the probability that the simulation
fails is bounded by (

poly(λ)

2

)
· 2−ω(log λ) = negl(λ)

which concludes the proof.

A.2 Expected Number of Steps to Find the Sequence 0d

In this section we give a self-contained proof that the expected number of steps X for
finding the first pattern 0d in a random bit-sequence stream is 2d+1 − 2.

– For k = 1 · · · d, if the k’th bit is the first 1 encountered, then it will take an
expected number X of additional steps to find the pattern from this point. In this
case, which happens with probability 1/2k, k steps have been already performed.

– If the first d bits are all 0, which happens with probability 1/2d, then the pattern
is found after d steps.

57

By linearity of expectation, we can therefore obtain X by solving

X =
d

2d
+

d∑
k=1

X + k

2k

from which we get X = 2d+1 − 2.

B Homomorphic Secret Sharing from LWE

As previously observed in [BGI16a,BGI17], an alternative approach to build a homo-
morphic secret sharing scheme is to rely on (threshold) fully-homomorphic encryp-
tion [MSS11,AJLA+12]. This gives rise to an HSS scheme for any circuit under the
LWE assumption. In this section, we discuss the specificities of the LWE-based ap-
proach for building HSS schemes, and provide some comparison to the group-based
approach studied in this paper.

The intuition behind the threshold FHE-based approach for HSS is the following:
key generation and encryption for FHE-based HSS are just the standard key generation
and encryption algorithms of the FHE scheme. Distributed evaluation is performed by
letting the two computing parties homomorphically evaluate the desired program over
the ciphertexts, then performing a local threshold decryption procedure. Using existing
LWE-based FHE scheme, where ciphertexts follow a simple linear algebra structure,
applying the standard decryption algorithm with shares of the secret key leads to noisy
shares of the output. Then, the computing parties locally round their noisy share of the
outputs, obtaining boolean shares of the result (with some probability that depends
on the parameters of the scheme).

We provide below further details on two natural directions that can be envisioned
to implement this approach, using fully homomorphic encryption with bootstrapping,
or using leveled fully homomorphic encryption.

B.1 Fully Homomorphic Encryption Approach

To our knowledge, the fastest existing implementation of fully homomorphic encryption
was described in [CGGI16]. It relies on a “bootstrapping at each gate” paradigm, and
allows to perform a bootstrapping operation at the impressive speed of 20ms on a
standard computer (the paper reports 52ms, but these number where improved in the
implementation reported on the corresponding github project). The paper reports a
ciphertext size of 8kB, comparable to what we get using group-based HSS, by relying
on an external product procedure to considerably reduce the ciphertext size compared
with previous constructions of FHE. However, the FHE-based approach also has several
downsides, that we outline below.

Large size of the Keys. A well known issue with known fully homomorphic en-
cryption schemes is the total size of the keys (bootstrapping key and key switch-
ing key), which exceeds 50MB in [CGGI16], making this approach considerably less
communication-efficient than the group-based approach in most scenarios.

Distributed Key Generation. Our group-based HSS protocol enjoys a simple dis-
tributed key generation protocol. Distributed key generation for threshold FHE has
been previously studied in the context of multikey FHE [LTV12,PS16]. However, exist-
ing methods rely on very expensive noise-flooding procedure, to compensate for the fact

58

that locally generated shares of the FHE secret key do not add up to a well-distributed
secret key, and are mainly of theoretical interest. We point out, nonetheless, that re-
cent works on circuit-private FHE [BDPMW16] seem to suggest that more efficient
alternative methods could be envisioned, adding a small gaussian noise to the shares
of the key.

Error Probability. The local decryption and rounding procedure incur an error prob-
ability proportional to the inverse of the modulus. In efficient FHE implementations
such as [CGGI16], the modulus is typically a small number (e.g. 2048), which means
that, as for group-based HSS, efficient FHE-based HSS have a non-negligible error prob-
ability (and similarly, those errors can leak information on the secret key). However,
unlike in the group-based approach, those errors cannot be detected by the players,
which makes it considerably harder to correct them; the techniques that we developed
to deal with the leakage crucially rely on the fact that the parties get notified of risks
of errors, which is not the case for the FHE-based approach, hence requiring expen-
sive protocols for obliviously reconstructing the erroneous outputs. In addition, the
error probability ε in group-based HSS can be decreased at a cost linear in 1/ε. On
the other hand, decreasing the error for the FHE based approach requires increasing
the modulus size, which results in a very large overhead in the running time of the
bootstrapping, and in both the size of the ciphertexts and of the keys.

B.2 Leveled Homomorphic Encryption Approach

Due to the previously mentioned issues, HSS based on fully homomorphic encryp-
tion are likely to provide poorer performances than the group-based approach in most
scenarios. An alternative to the above approach is to rely on level homomorphic en-
cryption, avoiding the need to use bootstrapping. However, this comes at the cost
of larger ciphertexts, as the bootstrapping keys in the previous approach allow to
implement the homomorphic operations as external products between LWE samples
and GSW samples, where the ciphertexts are encoded with LWE samples while GSW
samples (which are way larger) are confined to the bootstrapping key. GSW-based
leveled homomorphic encryption enjoys faster homomorphic operations, but has larger
ciphertexts. A common approach to mitigate this issue is to use leveled FHE in a batch
setting, where each ciphertext contains a large number of slots, and computation is
performed in a SIMD fashion. For most applications that we considered in this pa-
per, the batch setting is not relevant, but it might be interesting in other scenarios, if
threshold decryption and local rounding can be made compatible with the techniques
used to encode several plaintexts in a single ciphertexts.

	Homomorphic Secret Sharing: Optimizations and Applications

