
Flux: Revisiting Near Blocks for Proof-of-Work Blockchains

Alexei Zamyatin∗,†, Nicholas Stifter†,‡, Philipp Schindler†, Edgar Weippl†, and William J. Knottenbelt∗

∗ Centre for Cryptocurrency Research and Engineering (IC3RE), Imperial College London, United Kingdom
{a.zamyatin, wjk}@imperial.ac.uk

† SBA Research, Austria
{nstifter, pschindler, eweippl}@sba-research.org

‡ Christian Doppler Laboratory for Security and Quality Improvement in the Production System Lifecycle (CDL-SQI), TU Wien, Austria

Abstract—The term near or weak blocks describes Bitcoin
blocks whose PoW does not meet the required target difficulty
to be considered valid under the regular consensus rules of
the protocol. Near blocks are generally associated with proto-
col improvement proposals striving towards shorter transaction
confirmation times. Existing proposals assume miners will act
rationally based solely on intrinsic incentives arising from the
adoption of these changes, such as earlier detection of blockchain
forks.

In this paper we present Flux, a protocol extension for
proof-of-work blockchains that leverages on near blocks, a new
block reward distribution mechanism, and an improved branch
selection policy to incentivize honest participation of miners. Our
protocol reduces mining variance, improves the responsiveness of
the underlying blockchain in terms of transaction processing,
and can be deployed without conflicting modifications to the
underlying base protocol as a velvet fork. We perform an initial
analysis of selfish mining which suggests Flux not only provides
security guarantees similar to pure Nakamoto consensus, but
potentially renders selfish mining strategies less profitable.

I. INTRODUCTION

Attempting to deploy consensus rule changes in cryptocur-
rencies is often a controversial topic as it can introduce the
possibility of permanent forks in the underlying blockchains.
Hence, many of the parametrizations that characterize a cryp-
tocurrency, such as the targeted block interval, total number
of currency units, or maximum permissible block size, are
considered to be virtually unchangeable in practice. However,
a recently proposed protocol upgrade mechanism in Kiayias
et al. [25], referred to as a velvet fork, is aimed at avoiding
the possibility of permanent blockchain forks by rendering
protocol changes only conditionally applying. That is, the
changed rules of the protocol upgrade are not enforced by
consensus participants through discarding legacy blocks, but
are instead only selectively applied to blocks that are fully
valid under the new protocol rules, while still also accepting
all other legacy blocks as valid. Such an approach requires
backward compatibility to be maintained and hence not all
protocol changes can be deployed as a velvet fork [53]. Never-
theless, changes to some of the characteristic parametrizations
of a cryptocurrency, such as the block interval, can still be
rendered compatible with this new scheme.

In this paper we introduce Flux, a protocol extension for
Bitcoin-like proof-of-work blockchains that builds upon the
concept of velvet forks in order to reduce the targeted block
interval. Conceptually, Flux is based on the structure of near

(or weak) blocks and subchains [38], [39], the remunara-
tion approach of the decentralized mining pool P2Pool [2]
and technical aspects of merged mining [46], [9], [23]. The
protocol extension is capable of reducing mining variance
and allows miners to earlier detect conflicting blocks and
forks. Furthermore, upgraded nodes can more quickly gain
confidence that a transaction will be confirmed and included
through the protocol’s extended transaction processing mech-
anism and branch selection policy.

An initial simulation-based analysis shows Flux not only
provides similar security guarantees as Bitcoin, but is po-
tentially capable of improving the robustness of the system
to selfish mining attacks. Additionally, the concept of the
Flux protocol extension can serve as basis for a framework
for conflict-free deployment of protocol extensions, i.e., with-
out necessitating potentially problematic soft or hard forks.
Thereby, compatible protocol updates can be introduced in a
conditional manner, i.e., as velvet forks, such that legacy and
upgraded miners accept the same set of blocks [53], [25].

The rest of this paper is structured as follows. In Section II
we provide the necessary background information on Bitcoin
and proof-of-work blockchains, as well as on the principles of
proof-of-work reusal, near blocks, P2Pool and merged mining.
Section III provides a detailed description of the Flux protocol,
while a security analysis is given in Section IV. We discuss
applications and give an outlook on future work in Section V,
and conclude our paper in Section VI.

II. BACKGROUND

In this section we provide the necessary background infor-
mation on Bitcoin and comparable proof-of-work blockchains,
as well as the general notion of near blocks and subchains. To
gain an overview of the principles surrounding decentralized
ledgers we point the interested reader towards literature such
as [31], [51], [12], [33].

A. Bitcoin and Proof-of-Work Blockchains

Bitcoin was introduced as the first decentralized digital cur-
rency in 2008 by the pseudonymous Satoshi Nakamoto [31].
At its core lies a distributed peer-to-peer network where each
participating node maintains the current state of the system,
defined by the historic transaction record, and communication
is facilitated by a gossip protocol. Transactions are consoli-
dated and grouped together in blocks which in turn are chained



together via the hashes of their predecessors, forming a data
structure referred to as the blockchain.

The set of consensus participants is dynamically changing
and unknown1, and agreement on the current state of the sys-
tem is achieved through a mechanism referred to as Nakamoto
consensus [12]. Hereby, participants are required to solve
computationally intensive cryptographic puzzles, i.e., perform
a so called Proof-of-Work (PoW), which establishes priced
identities that both combats Sybil attacks [15] and also serves
as a leader election mechanism for proposing state updates to
the blockchain. The first consensus participant or miner to find
a puzzle solution, such that it fulfills a pre-defined difficulty
target, becomes leader and updates the state by appending a
new block to the blockchain. The puzzle’s input has to contain
a reference to a previous block which it wants to append to
and can contain new (valid) transactions, such that modifica-
tions to this input would invalidate the puzzle solution. As
remuneration for the invested computational effort, miners are
awarded new units of the underlying cryptocurrency, as well
as fees collected from processed and included transactions.
Consensus is formed by introducing a protocol rule that
leaders only append their solutions to the head of the, to them
known, chain with the most cumulative PoW, where all blocks
are considered valid. Under the assumption that a majority
of consensus participants is acting economically rational by
following these protocol rules, agreement on a common prefix
of the blockchain is eventually reached [18].

B. Sustainability and Future Outlook of Proof-of-Work

Proof-of-work is a well established concept in terms of
providing security and immutability in blockchains, however
its utilization is not without controversy. Although the resource
heavy computations required by PoW increase the cost of
attacks, they result in significant power consumption and raise
the question of long-term sustainability [6], [35]. Furthermore,
while initially any participant could successfully participate in
the mining process, rising competition resulted in the creation
of pooled mining which in turn has led to centralization where
computational resources are bundled under the control of only
a few actors [20], [23], [19]. The introduction of ASICs,
i.e., hardware specifically constructed for performing proof-of-
work computations for (Bitcoin) mining [50], further amplified
this development. As a result, the majority of computational
power in Bitcoin and other cryptocurrencies is concentrated in
a small set of mining pools [10], [20], [23]

While efforts towards replacing the resource-intensive min-
ing process have so far yielded various promising approaches
[7], [26], [30], [54], their viability in practice is yet to be
tested at a larger scale. Furthermore, due to the high degree
of adoption of proof-of-work in various cryptocurrencies and
the difficulties related to changing this consensus critical
component, it can be assumed that PoW will remain an integral
part of the overall cryptocurrency landscape in the foreseeable
future.

1Pseudonymous identities of consensus participants are established once
they find and successfully broadcast a valid puzzle solution.

C. Weak Blocks and Subchains

The general idea of reusing proof-of-work such that the
computational effort invested may also serve to verify a
separate computation was first introduced by Jakobsson and
Juels under the term bread pudding protocols in 1999 [22].
The selected terminology points towards the main idea of the
scheme: reuse computation by-products to minimize wasted
resources. In the context of proof-of-work, this means to
recycle unused or stale computations and utilize them as proof-
of-work for other tasks.

The idea of weak blocks was initially proposed by TierNolan
(pseudonym) in 2013 [38] and later extended in Rizun’s
subchain concept [39]. Weak blocks represent otherwise valid
blocks, which do not meet the target difficulty d of the
underlying cryptocurrency but satisfy some lower difficulty
dweak, i.e. dweak < d. Instead of being discarded, these blocks
can be reused and exchanged between miners to potentially
reduce transaction confirmation times.

Weak blocks form so called subchains between consecutive
full blocks by referencing the header of a preceding weak
block in an additional pointer. As the difficulty target of
weak blocks can, in principle, be chosen arbitrarily (only
requirement is that dweak < d), the interval between such
blocks can be significantly lower than that of full blocks. This
potentially allows faster (weak) transaction confirmations and
can be of advantage for miners: by participating in building
and validating subchains, miners can determine diverging
blockchain branches, i.e., so called forks, earlier. As a result,
they face a lower risk of investing computational effort on a
blockchain branch, which will be later discarded.

Despite having seen active discussion [3], [4], [41], [40],
[29], [43], as of today there exists no implementation of the
weak blocks concept. One possible explanation for the absence
of development in this area is the lack of incentives for miners
to participate in building subchains. The intrinsic rewards in
form of earlier fork detection may be insufficient when put in
contrast to the possible overhead for participating miners in
terms of computation2, bandwidth and maintenance.

D. P2Pool

P2Pool [2] is a decentralized Bitcoin mining pool and was
announced and launched in 2011. In contrast to conventional
mining pools, P2Pool requires no operator to verify each
miner’s contribution to the mining operation of the pool.
Instead, a network of peer-to-peer miner nodes is created
parallel to Bitcoin and the proof-of-work of mining pool shares
is reused for verification of each miner’s contribution.

The key concept behind P2Pool is the so called sharechain.
The sharechain is also a blockchain, which runs in parallel to
Bitcoin but maintains a significantly lower difficulty dshare <
dBTC , targeting a block interval of 30 seconds. Sharechain
blocks are structurally equivalent to Bitcoin blocks, however

2Not proof-of-work, but verification of transactions and additional consen-
sus rules.



they only meet a difficulty target of dshare but not dBTC , i.e.,
equate to shares submitted by miners to a mining pool.

Miners participating in P2Pool initially follow the normal
mining process, as if solo mining. When building the block,
a miner inserts her own payout address(es) in the outputs
of the coinbase transaction and starts to search for solution
candidates for the resulting PoW puzzle. However, in contrast
to solo mining, P2Pool miners do not keep the complete block
reward to themselves. Each time the miner finds a valid PoW
solution where dshare < dPoW < dBTC , i.e., a valid share
but not a full Bitcoin block, she publishes this block to the
network of P2Pool miners. After the majority of the peers has
verified that the block is valid, it is appended to the sharechain
and all miners resume their search for the next Bitcoin block.

However, when building the preliminary block structure,
miners now must include the payout address(es) of the previ-
ous sharechain block in the outputs of the coinbase transaction.
Otherwise, P2Pool peers will discard the block as invalid and
the respective miner will not be rewarded for the submitted
share when a full block is found. Whenever any miner partic-
ipating in the scheme finds a full Bitcoin block, she publishes
it to the Bitcoin network. As a result, all miners who have
submitted sharechain blocks during this round will receive a
portion of the reward, directly distributed through the coinbase
transaction of the block.

E. Bitcoin-NG

Bitcoin-NG, introduced by Eyal et al. [16], is an extension
of Bitcoin aiming at improving latency and bandwidth con-
sumption, while maintaining similar security properties. The
protocol distinguishes between normally mined key blocks
and microblocks, which require no PoW. One of the main
differences to Bitcoin, however, is that key blocks are solely
used for the leader election process, while the transaction
processing is shifted to micro blocks. Each time a node is able
to provide a valid PoW solution matching the require difficulty
target and hence generate a key block, she is identified as the
new leader. Consequently, she is allowed to create and sign
microblocks at will, until the next leader is elected. The rest
of the network can check that the signature provided with
micro blocks belongs to the current leader and hence accept
the corresponding state updates.

To incentivise honest behavior, the block rewards and
transaction fees are split in a 40:60 ratio between each two
consecutive leaders. However, since leaders can decide on the
transactions included in the chain during their ruling period,
they can attempt censor transactions or to perform double
spending attacks. To this end, Bitcoin-NG makes use of fraud
proofs or so called poison transactions, which can be used to
prove malicious behavior of a leader to the rest of the network
(i.e., the following leaders) and as a result invalidate potential
revenue gains of an attacker.

III. THE FLUX PROTOCOL EXTENSION

In this section we provide a comprehensive overview of
the Flux protocol and it’s differences to Bitcoin’s current

implementation. Note that while we use Bitcoin as reference
in the rest of this paper for simplification, Flux can in
principle be implemented on top of any Bitcoin-like proof-of-
work cryptocurrency, such as Bitcoin Cash [1], Litecoin [28],
Namecoin [32] and Zcash [45]. Flux imposes no conflicting
alteration to Bitcoin’s consensus mechanism, but instead acts
as an optional protocol update, i.e., all modifications and
additional rules described in the following sections can be
deployed as a velvet fork [25], [53].

Following TierNolan’s concept of weak blocks [38], ex-
tended upon by Rizun [39], the core idea of Flux is to encour-
age miners to publish near miss PoW solutions as sub-blocks,
forming so called sub-chains between each two consecutive
Bitcoin blocks (c.f. Figure 1). For the sake of clarity, Bitcoin
blocks in their current form are referred to as legacy blocks,
while blocks matching the difficulty target dk = d in Flux
are denoted as key blocks in the rest of this paper. Just like
in a mining pool, the block rewards and transaction fees are
distributed among miners according to their contribution to
solving the PoW of each key block, measured by submitted
sub-blocks. To allow quicker block intervals in sub-chains
and reduce incentives for deliberate forks, we introduce the
heaviest chain branch selection policy, by weighing key and
sub-block differently, based on the difficulty relation dk/ds.

Fig. 1. Simplified visualization of subchains (optionally) constructed from
sub-blocks S between consecutive key-blocks K.

A. Key Blocks

Key blocks are backward compatible to Bitcoin’s legacy
blocks in terms of size, structure and functionality. The
requirement for a hash based proof-of-work over the block
header also remains the same. The required difficulty target
dk is chosen such that a block is found approximately every
10 minutes and is adjusted according to the mining power
present in the network every 2016 blocks. As legacy blocks,
key blocks are responsible for consolidating the transactions
defining the current state of the blockchain and distributing
the block reward and transactions fees.

However, unlike in Bitcoin, each key block contains an addi-
tional reference to the previous sub-block in the blockchain 3.
Furthermore, the distribution of the block reward and trans-
actions fees are now part of the block validation process. In
contrast to the current Bitcoin implementation, they no longer
are paid solely to the miner of the key block. Instead, the

3Can be stored using the OP_RETURN opcode in Bitcoin [8].



remuneration is split between the key block miner and the
miners of sub-blocks included in the subchain between the
current and the previous key block. The coinbase transaction of
each key block hence must contain outputs transferring a part
of the newly minted coins and earned fees to the respective
sub-block miners. We describe the new reward distribution
policy in more detail in Section III-E. Note that neither the
additional block reference, nor the adjusted reward distribution
mechanism affect the consensus rules of the underlying Bit-
coin blockchain, i.e., legacy miners remain oblivious to these
changes.

B. Sub-blocks

Sub-blocks represent otherwise valid key blocks, which
do not meet difficulty target dk but some predefined lower
target ds < dk for the PoW and hence maintain a lower
block interval. When trying to find a key block, miners
iterate over billions of possible solutions until one is found
that matches the difficulty requirements dk of a key block.
Instead of discarding weak solutions, miners broadcast these
“byproducts” if a predefined minimal difficulty target ds is met
in form of sub-blocks, thereby publicly declaring on which key
block they are currently mining on.

Sub-blocks are integrated into the Bitcoin blockchain by
creating subchains between consecutive key blocks. Just like
key blocks, sub-blocks contain an additional reference to the
previous sub-block, the 256-bit hash of the previous sub-
block header. If no sub-block is present, i.e., at the start of
a subchain, the reference points to the previous key block.

The minimal difficulty target ds required for sub-blocks
defines the interval at which the latter are generated by
the network. A higher generation frequency of sub-blocks
leads to a lower mining variance, quicker fork detection and
better responsiveness to transactions. However, this comes
at the cost of a higher accidental fork rate, lowering the
security properties of sub-block confirmations. We note that
the identification of optimal parameters requires detailed game
theoretic analyses and will be subject of future work. Fur-
thermore, alternative and more complex difficulty adjustment
mechanisms, such as adjustment after every block or based on
simulated annealing [52], may provide improved robustness
against adversarial behavior.

C. Transaction Processing

Since the structure of key- and sub-blocks is the same as of
legacy Bitcoin blocks, the current predefined maximum block
size in Bitcoin applies to both. As such, each sub-block and
specifically all sub-blocks in a subchain in total cannot contain
more transactions than the succeeding key block.

Taking into account the high amount of pending Bitcoin
transactions at peak times (ranging from a few thousand to
100.000+ at the time of writing [11]), the first sub-block in
a subchain will very likely already contain all transactions
of the subchain and the following key block respectively. As
a result, in a naive implementation, succeeding sub-blocks

Fig. 2. Simplified visualization the transaction processing mechanism in Flux.
Sub-blocks split transactions into confirmed (green) and unconfirmed (red)
sets. Subsequent sub-blocks copy previously confirmed transactions.

would only serve as additional sub-confirmations to already
included transactions.

However, some use cases may require not only fast transac-
tion confirmations but also the ability to process and confirm
multiple dependent transactions within the 10 minute block
interval. This is already possible in Bitcoin by spending from
an unconfirmed UTXO (e.g. used in “Child-pays-for-parent”
(CPFP [49] transactions), but confirmations from sub-blocks
may be able to provide stronger security guarantees.

Hence, we propose to allow miners to split transactions of
sub-blocks into two sets: confirmed and unconfirmed. Con-
firmed transactions represent a small subset of all transactions
initially included in the block and, once included in a sub-
block, receive a sub-confirmation. The set of all sub-confirmed
transactions in a subchain will receive a full confirmation
through the next key block. In total, the number of such sub-
confirmed transactions cannot exceed the bound set by the
maximum size of a key block. A simplified visualization is
provided in Figure 2.

As a result, clients can reference outputs of such confirmed
transactions as input for transactions in subsequent sub-blocks.
Ignored transactions on the other hand receive no confir-
mations, neither through sub- nor through key blocks, until
they appear in the confirmed transaction set. Clearly, the risk
of double spending still persists and high value transactions
should be performed under recommended confirmation times.
However, the higher interval of sub-blocks allows clients
to select more fine grained confirmation thresholds before
accepting a payment.

D. Mining

The mining process in Flux can be described as follows: If
a miner finds a solution to Bitcoin’s PoW puzzle satisfying
dk, she creates a key block and broadcasts it to the network.
However, upon finding a solution missing dk but satisfying
the weaker target ds the miner now creates a sub-block.
In order to claim remuneration, the miner must add a new
output to the coinbase transaction, which moves a predefined
portion of the revenue to his address. Thereby, a miner must
differentiate between four cases as described in the following.
For simplification, we do not consider forks in this section and
provide a separate discussion in Section III-F.



a) Start of a new subchain: If the mined block is the
first sub-block in a new subchain, the reference to the previous
sub-block must point to the key block the subchain is building
on instead. To claim remuneration, the miner follows the same
pattern as with Bitcoin legacy blocks: she adds an output to the
coinbase transaction transferring fund to his address. However,
she can only claim a part of the block reward and transaction
fees, predefined by the reward distribution policy. The later
is validated by all other Flux nodes, which will discard the
sub-block in case of violations.

b) Sub-block in existing subchain: If the mined block
is a sub-block and there already exists a subchain, the miner
includes a reference to the previous sub-block. To claim re-
wards, the miner copies all existing outputs from the coinbase
transaction of the previous block, thereby re-calculating the
reward distribution. Only then can she append a new output
transferring her share of the remuneration to a chosen address.

c) Key block found: In case the found block fulfills the
requirements to become the next key block, the miner finalizes
the subchain, if present. This is accomplished by referencing
the last sub-block of the subchain and including all outputs
from its coinbase transaction in the coinbase transaction of
the key block. Similar to the previous case, the miner must
re-calculate the reward distribution prior to adding her own
address to the reward payouts.

d) Last block was a legacy block: In a scenario where not
all miners have adopted Flux, it is possible that the previous
N blocks do not adhere to the described new protocol rules.
Hence, the miner will include a reference to the last key or
sub-block adhering to Flux rules, creating a skiplist of new and
legacy blocks. If the last block adhering to Flux rules was a key
block, the miner follows the standard transaction processing
mechanism as described in Section III-C. Otherwise, any
remaining unconfirmed transaction in the pending subchain
must be included in the next key or sub-block. Only then may
the miner include new transactions from the mempool to fill
up the remaining space in the block. This guarantees that once
a transaction was included in a sub-block, it will be at some
point included in a key block, except if the sub-block is pruned
or a conflicting transaction has already been accepted into the
chain earlier.

We note, however, that most transactions contained in the
previous sub-block will have already been included in the
following legacy blocks. A simplified visualization is provided
in Figure 3.

Note that each miner, both of sub- and key blocks, can
specify multiple payout addresses to receive the reward shares,
i.e., split up the reward among multiple receiving addresses,
as long as the revenue distribution remains compliant with the
rules described above.

E. Remuneration Model

Flux makes use of an alternative reward distribution model
that can reduce the variance of mining, in particular for smaller
miners or mining poolsd. Instead of the “the winner takes
it all” approach implemented in most PoW blockchains, the

Fig. 3. Skiplist of key blocks K, sub-blocks S and legacy blocks L. Key
and sub-blocks always have a reference to the last block adhering to the Flux
protocol rules. Transactions remaining unconfirmed by intermediate legacy
blocks must be included in subsequent key/sub-blocks (enforced by protocol
rules).

block reward and transaction fees are distributed among all
miners who have contributed to the latest key block, similar to
the approach used by mining pools. Thereby, we make use of
an approach initially introduced in P2Pool [2]: the hash rate
of each miner is estimated using the number of sub-blocks
submitted to the subchain4.

Hence, the expected revenue E[Ri] of a miner i can be
calculated as follows:

E[Ri] = E[Ri
k] + E[Ri

s] (1)

Thereby, E[Ri
k] is the expected key block revenue of miner

i, defined as

E[Ri
k] = λk ·

Rb

E[s] + 1
=
hi
dk
· Rb

E[s] + 1
(2)

where E[s] = dk

ds
is the expected number of sub-blocks

per subchain, defined by the difficulty relation between key
and sub-blocks, and Rb is the revenue generated by a Bitcoin
block, i.e., block reward and transaction fees. The revenue
a miner i expects to earn from submitting sub-blocks to a
subchain can in turn be calculated as follows:

E[Ri
s] = λs ·

E[si]Rb

E[s] + 1
=
hi
ds
· E[si]Rb

E[s] + 1
(3)

where E[si] represents the number of sub-blocks a miner
i with hash rate hi is expected to find in the time period
tk between two consecutive key blocks. This number can be
calculated as

E[si] = λstk =
hidk
dsH

(4)

where H denotes the combined hash rate of all miners
in the network adhering to Flux protocol rules. By applying
substitution rules to Equation 1 using Equations 2 and 3 we
receive:

E[Ri] = hiRb ·

(
1

1
ds

+ dk
+

hidk
H(ds + dk)

)
(5)

4In the terminology used to describe mining pools, each sub-block would
represent a share submitted to the pool’s operator.



We note that transaction fees are only rewarded for transac-
tions included in a key block. This is specifically relevant, in
case a sub-chain is interrupted by one or more legacy blocks,
since a subset of the transactions included in a subchain may
be ceded to legacy miners (c.f. Figure 3).

The new reward distribution mechanism not only provides
an incentive to publish sub-blocks, but also reduces the vari-
ance of participating miners, as if they were to join a mining
pool. The higher the adoption of Flux, the lower the variance
of income for upgraded miners over the same time frame.

We note, however, that each sub-block appended to a
subchain reduces the reward attributed to miners of previous
sub-blocks. As a result, miners having submitted sub-blocks to
a subchain may have an incentive to prevent new sub-blocks
from being included in the chain, e.g. by ceasing to forward or
forking away sub-blocks. Alternatively, at some point miners
may no longer see extending a subchain as profitable and
decide to turn off their equipment/switch to an alternative
PoW blockchain, until the next key block is found. While the
new branch branch selection policy described in Section III-F
helps mitigate deliberate forking of sub-blocks, a thorough
game theoretic analysis is necessary to predict the behavior
of economically rational5 participants. This, however, goes
beyond the scope of this paper and will be subject for future
work.

F. Mitigating Forks: Heaviest Chain Rule

If two or more different blocks are created at the
same height, i.e., referencing the same preceding block, the
blockchain is split into so called forks. Typically, this can
happen if multiple miners find a block around the same time 6

or a malicious miner attempts to cut off an existing block,
i.e., purposely chooses not to reference the preceding block.
As a result, miners will add blocks to any of the existing
branches, causing the network to diverge into multiple states,
until the conflict is resolved. Branches and blocks which were
not accepted into the blockchain as result of such a fork are
referred to as pruned7.

In Bitcoin, accidental forks were measured to happen every
60 blocks on average [14]. The underlying protocol prescribes
that in the presence of multiple valid conflicting branches,
miners must extend the chain which contains the most accumu-
lated proof-of-work. Thereby, the required PoW difficulty per
block is taken into account, rather than the actually performed
work per block. Originally, ties were resolved by selecting the
first branch the miner was aware of, however, to counteract
the effectiveness of selfish mining branch selection for blocks
at the same height is now performed randomly [17]. Given the
PoW difficulty in Bitcoin is constant every 2016 blocks, the
above rule is reduced to the so called longest chain rule.

5i.e., ready to deviate from the protocol to increase revenue.
6Neither are aware of the existence of the other miner’s block.
7While the term orpahn blocks is often used in this context, it is misleading

since these blocks actually have a parent in the blockchain, as pointed out
in [16]

In Flux, sub-blocks are created at a higher frequency than
key blocks, hence yielding the probability of accidental forks
in subchains significantly higher than in the Bitcoin main
chain. In addition, the different PoW thresholds of key and
sub-blocks require an approach to handle forks consisting of
different typed blocks. To this end, we propose to implement
the heaviest chain rule in Flux, i.e., explicitly evaluate the
accumulated PoW “weight” of a branch including both its
key and sub-blocks. Thereby, the weight of each block is
determined by its difficulty target, i.e., dk for key blocks and
ds for sub-blocks. The resulting weight w of a branch of k
key blocks is hence calculated as

w =

i=0∑
k

(dk +

j=0∑
si

ds) (6)

where si denotes the length of the subchain prepending a key
block i. As a result, if a branch consisting of a single key block
conflicts with a branch of sub-blocks accumulating a greater
weight for the same height, i.e.

∑
ds > dk, the key block

will be discarded. The described modification to the branch
selection policy potentially also provides improved robustness
against selfish mining attacks, as discussed in Section IV.pre

Note, however, that to maintain full compatibility to the
base protocol rules, Flux miners must differentiate between
legacy and upgraded key and sub-blocks. As such, if a legacy
block conflicts with a key block prepended by a subchain,
the heaviest chain rule is not applied, i.e., the weight of the
sub-blocks is not considered. Otherwise, Flux miners would
constantly fork legacy blocks and at some point, namely
at around 25% Flux adoption8, a permanent split of the
blockchain would occur.

IV. SECURITY ANALYSIS

In this section we evaluate the security properties of the Flux
protocol and contrast these to the security guarantees provided
by the current Bitcoin implementation.

A. Selfish Mining

Selfish mining attacks were shown to allow an adversary
to increase their relative revenue by intentionally withholding
blocks and secretly attempting to mine a chain that outper-
forms the one of the rest of the network [17], [44], [21],
[34]. Thereby, the attacker will only occasionally reveal a
selected number of blocks from her secret chain, depending
on the concrete strategy, forcing honest miners to discard their
progress and reorganize their view of the public blockchain.
The success probability of such adversarial strategies depends
on the fraction of computational power controlled by the at-
tacker α and her network connectivity γ. The latter parameter
defines the probability that the majority of honest miners will
accept the attacker’s fork in case of a tie in terms of performed
PoW.

8The exact number depends on the weight relation between key and sub-
blocks.



1) Flux Specific Attacks: Since miners following the Flux
protocol differentiate between key and sub-blocks and take
into account the different PoW requirements, the notion of
selfish mining attacks is slightly different, when compared to
Bitcoin. As such, we identify the following three base attack
strategies, defined by when the adversary starts mining on a
secret chain:

• Always: As described for Bitcoin in previous research
work, a straightforward approach is to perform attacks
always, i.e., without requiring the occurrences of specific
conditions. When following this strategy, an adversary
will constantly attempt to override the public chain.

• Key block triggered: Taking into account the heaviest
chain rule in Flux, an adversary may attempt to exploit
the different weighing of key and sub-blocks. Since key
blocks are attributed a significantly higher PoW weight,
a viable strategy is to launch attacks only after finding a
key block, while remaining honest otherwise.

• Minimal revenue: Attack only after having found the first
N sub-blocks in a (public) subchain, i.e., knowing that a
minimal revenue is guaranteed, even if the attack should
fail.

B. Double Spending
Double-spending spending attacks were one of the first

studied security problems in proof-of-work blockchains [5],
[42], [24], [37]. While the original Bitcoin client implementa-
tion identified transactions as confirmed only after they have
received at least 6 confirmations, the time until acceptance
of a transaction varies from merchant to merchant and is
often dependent on the transferred value. As such, even zero-
confirmation transactions are accepted for payments consid-
ered infeasible to double-spend.

Since sub-blocks require a lower PoW difficulty target than
key blocks, the block interval in sub-chains is expected to
be significantly lower than that of the main chain. As a
consequence, instead of trusting transactions with zero con-
firmations participants can wait for the respective transaction
to be included in a sub-block, as pointed out by Rizun [39].
While sub-block confirmations clearly provide lower security
guarantees than normal block confirmations, performing a
double-spending attack on such a transaction would require
to explicitly fork the subchain. Mainly, however, subchains
allow the definition of finer grained thresholds for security
waiting periods in terms of PoW weight. As such, merchants
can require N sub-block confirmations for payments, instead
of relying on zero-confirmation transactions for small pay-
ments. The transaction processing mechanism described in
Section III-C hereby guarantees transactions confirmed in sub-
blocks will eventually be accepted into the blockchain9 even
if ignored/not seen by legacy miners.

C. Simulation Model
Sapirstein et al. [44], Nayak et al. [34] and Gervais et

al. [21] performed detailed analyses of selfish mining strategies

9As long as no chain reorganization occurs.

using Markov Decision Processes (MDP). Due to the complex-
ity of our model, arising from the variable weighting of blocks
and the new reward distribution policy, i.e., sub-blocks are not
paid out instantly but must be tracked until the next key block
is found on the main chain, we opted for a discrete event based
simulation model for our initial analysis of selfish mining
under the Flux protocol extension. Furthermore, since Markov
Chains, which lie at the core of MDPs, are memory-less, each
state is defined by a set of variables and depends only on
the previous state and the transition between them. However,
since key and sub-blocks are attributed different PoW weights
in Flux, it is necessary to keep track of the entire blockchain
when modeling the adversaries’ decision process. Specifically,
if a MDP were to be used, it would not be possible to construct
more complex strategies known to outperform standard selfish
mining, such as stubborn mining [34], where an attacker inter
alia can decide to reveal only a limited number of blocks
instead of always publishing the entire secret chain. However,
for the interested reader we provide an initial MDP model
of Flux, simplified to cover standard selfish mining strategies
only, i.e., the attacker will always publish her entire secret
chain when overriding the public chain, in Appendix A.

Following the approach of previous research, we differen-
tiate between two actors in our simulation model, namely an
adversary with hash rate α and the rest of the network assumed
to be honest with hash rate β = 1−α. However, honest miners
are in turn split into two categories: legacy miners with hash
rate ε and upgraded miners following Flux protocol rules with
hash rate β−ε. While honest miners always adhere to protocol
rules, the adversary may choose to withhold blocks, attempting
to create a secret chain, and to override the public chain when
in lead.

Blocks are sampled randomly from exponential distributions
with rate parameters defined by the hash rate portions of each
actor and the difficulty relation between key and sub-blocks,
assuming a constant PoW difficulty for the duration of the
simulation. When defining the transition probabilities we must
distinguish between key and sub-blocks, as these have different
requirements in terms of PoW. We denote αs = α · ds

dk
as the

probability of the attacker finding a sub-block and αk = α−αs

as the probability of the attacker finding a key block. The
probability that honest miners find a sub-block shall be defined
as βs = (β−ε)· ds

dk
and βk = β−βs shall denote the probability

of honest miners finding a key block. A summary is provided
in Table IV-C. For simplicity, we set ds = 1 and normalize dk
based on the relation ds/dk: E.g., for ds/dk = 0.1 we receive
dk = 10.

D. Simulating Selfish Mining

We now continue to present the results sampled from our
simulations. In a first step, for comparison purposes and to
validate our simulator with results generated by MDPs in
previous work, we simulate the original selfish mining strategy
in Bitcoin without the Flux protocol extension. As depicted in
Figure 4, the received results correspond with the observations
made by Sapirshtein et al. in [44].



Table I. Summary of state transition probabilities.

α
Percentage of the overall hash rate controlled by the
attacker /probability of the attacker finding a block

αs = α · ds
dk

Attacker finds a sub-block
αk = α− αs Attacker finds a key-block

ε Probability of a legacy miner finding a (key) block

β = 1− α Probability of an honest miner finding a block
βs = (β − ε) · ds

dk
Honest miners find a sub-block

βk = β − βs Honest miners find a key-block

γ
Probability that honest miners extend attacker’s
fork during conflict resolution

Fig. 4. Simulation results for selfish mining in Bitcoin as described by Eyal
and Sirer [17], without the Flux protocol extension (provided for comparison).

Next, we simulate Eyal and Sirer’s original selfish mining
strategy applied to sub-blocks, i.e., override and match actions
take place when the attacker find both a key or sub-block. To
evaluate the impact of different adoption rates of our protocol
extension, we selectively assumed 0%, 25% and 50% of the
hash rate being controlled by legacy miners, ignoring Flux
protocol rules. As visualized in Figure 5, our analysis suggests
selfish mining attacks as described by Eyal and Sirer [17]
are less effective under the deployment of the Flux protocol
extension, than under pure Bitcoin consensus rules. We ob-
serve that lower block intervals in subchains slightly reduce
the effectiveness of selfish mining for adversaries controlling
up to 40% of the overall hash rate. Note, however, that these
evaluations do not yet take into account possible network layer
effects. Applying these results to the current mining power
distribution in Bitcoin, an adversary with currently realistic
hash rate portion of 30%10 and γ = 0.5 will generate between
25% less revenue for subchains of expected length 10 and and
47% for length 50 respectively.

We further simulate key block triggered attacks, specific to
the Flux protocol extension and present the results in Figure 6.
Thereby, we observe a significant improvement in terms of
effectiveness for small and medium attackers. Interestingly,

10Using the block attribution technique introduced in [23], we measured the
largest mining pool in Bitcoin constitutes approximately 30% of the overall
mining power between February and March 2018

the impact of the network connectivity is noticeably lower
than with standard selfish mining. This is explained by the
fact that the adversary performs much less attack attempts,
namely only when she has the advantages of being a “heavy”
key block ahead of the honest miners.

An exemplary comparison of the relative revenue generated
by selfish mining in Bitcoin with (1 = β + α, ε = 0) and
without (1 = ε+α) adoption of Flux protocol rules for γ = 0
is provided in Table II.

E. Simulating Stubborn Mining Strategies

Nayak et al. have previously shown selfish mining is
outperformed by so called stubborn mining strategies, where
the parameters of the adopt and override conditions, as well
as the amount of blocks revealed from the secret chain are
altered. Hence, to extend our evaluation of selfish mining
under the protocol updates introduced by Flux, we simulate
approximately 234.000 stubborn mining strategies with vary-
ing parametrization of the adversary’s decision process. As
explained before, using a finite state MDP for stubborn mining
under variable block weights is not feasible. Hence, due to
the large problem space of this optimization problem, for an
initial analysis in this paper we only simulate the effectiveness
of stubborn mining strategies for attackers with 25%, 30% and
47.5% of the overall hash rate, assuming E(s) = 10, ε = 0
and γ = 0.

In our simulation model, each stubborn mining strategy is
defined by the attack trigger (at) (c.f. Section IV-A1), the
adopt (ad) and override (o) conditions, as well as the published
weight (p) from the secret chain when overriding the public
chain. To correctly model the parameters of the attacker’s
decision process, we must first introduce two new variables:

• wa - Proof-of-work “weight” of the attacker’s secret
chain, i.e., the sum of products of sub- and key-block
PoW difficulties: wa =

∑ka

i=0 dk +
∑sa

i=0 ds, where ka
is the number of key blocks and sa is the number of
sub-blocks present in the attacker’s secret chain.

• wh - Proof-of-work “weight” of the honest miner’s
public chain. Analogous to the attacker’s chain, wh =∑kh

i=0 dk +
∑sh

i=0 ds, where kh is the number of key
blocks and sh is the number of sub-blocks present in
the public chain.

The attack strategy parameters are hence defined as follows:
• Adopt condition (ad): Determines how far (in terms of

PoW weight) an attacker can fall behind until she adopts
the public chain, i.e., wa ≤ wh − ad. In our simulation,
we test for ad ∈ [0, .., 6 · dk].

• Override condition (o): Defines how long the attacker
waits to reveal the secret chain and override the public
chain 11, i.e., how close the gap between wa and wh is
allowed to become: wa > wh+o, tested for o ∈ [0, ..., 6 ·
dk].

• Published weight (p): Determines how much of the secret
chain the attacker is willing to publish, when overriding

11Note that overriding is only feasible if wa ≥ wh.



(a) ε = 0, E(s) = 10 (b) ε = 0.25, E(s) = 10 (c) ε = 0.50, E(s) = 10

(d) ε = 0, E(s) = 50
(e) ε = 0.25, E(s) = 50 (f) ε = 0.50, E(s) = 50

Fig. 5. Visualization of the relative revenue of an attacker following the improved sub-block level version of standard selfish mining strategy[17] for different
α and γ values, simulated for 100.000 blocks for expected subchain length of 10. Results provided for 0% (a, d), 25% (b, e) and 50% (c, f) legacy miner
presence. Red coloring indicates revenue gain, blue coloring indicates loss when compared to the expected revenue, defined by α.

Table II. Effectiveness of selfish mining in Bitcoin before (SM1) and after the Flux protocol extension, exemplary for γ = 0 and ε = 0.

α SM1 in Bitcoin Sub-block level selfish mining Key block triggered selfish mining
[17], [44] E(s) = 10 E(s) = 50 Avg. difference in % E(s) = 10 E(s) = 50 Avg. difference in %

0.30 0.30 0.16 0.16 -46.7 0.29 0.29 -3.3
0.35 0.37 0.23 0.23 -37.8 0.35 0.35 -5.4
0.40 0.42 0.32 0.31 -25.0 0.41 0.4 -3.6
0.45 0.65 0.41 0.4 -37.7 0.48 0.48 -26.2

0.475 0.78 0.46 0.46 -41.0 0.52 0.5 -34.6

the public chain, tested for p ∈ [1, ..., 2 · dk, all ]. Note
that this value must be viewed as a ”target”, as in some
constellations the order of key and sub-blocks in the
secret chain may require the attacker to publish more
weight than defined by p.

Thereby, the values used as upper and lower bounds for the
parametrization of the tested strategies are thereby selected
based the results and discussion of existing research work [17],
[44], [34]. Each performed simulation run again consists of
100.000 blocks.

A first observation is the varying profitability of attack
triggers, depending on the attacker’s hash rate. As such,
an attacker with 47.5% of the overall computational power
achieves the highest revenue gains by constantly attempting
to perform attacks. However, a miner with 30% can achieve

near-optimal12 following a more careful and less detectable
strategy, such as key block triggered selfish mining. As such,
the best observed stubborn mining strategy for an attacker with
25% hash rate is based on the minimal revenue attack trigger.

A visualization of the effects of the attack parameters ad, o,
and p on the relative revenue of the attacker are presented in
Figure 7. As can be seen, a miner controlling a significant
portion of the overall hash rate is incentivised to perform
stubborn mining attacks, i.e., continue attacking even when
falling behind (trail stubborn mining) and wait longer for the
honest miners to catch up before overriding the public chain
(lead stubborn mining), as already pointed out in [34]. The
weight published from the secret, however, does not seem to
significantly impact the effectiveness of attacks.

12Optimal when compared to the simulated problem space. The existence
of even more effective strategies cannot be excluded.



(a) ε = 0, E(s) = 10 (b) ε = 0.25, E(s) = 10 (c) ε = 0.50, E(s) = 10

(d) ε = 0, E(s) = 50
(e) ε = 0.25, E(s) = 50 (f) ε = 0.50, E(s) = 50

Fig. 6. Visualization of the relative revenue of an attacker following the key-block triggered selfish mining strategy (c.f. Section IV-A1) for different α and
γ values, simulated for 100.000 blocks for expected subchain length of 50. Results provided for 0% (a, d), 25% (b, e) and 50% (c, f) legacy miner presence.
Red coloring indicates revenue gain, blue coloring indicates loss when compared to the expected revenue, defined by α.

In Table III we summarize the most effective self-
ish/stubborn mining strategies measured during our simula-
tions and compare them to Eyal and Sirer’s selfish mining
strategy (SM1) [17], as well as Sapirshtein et al.’s optimtimal
strategy (ε-OPT) [44]. A first observation is the notable
effect of the Flux adoption rate on the feasibility of attacks.
For 100% adoption, selfish/stubborn mining is less effective
than currently in Bitcoin, especially for attackers controlling
significant portions of the computational power. Interestingly,
under the presence of legacy miners controlling a significant
portion of the overall hash rate, an adversary following Flux
protocol rules appears to outperform selfish mining strategies
in Bitcoin. We note, however, that we have so far not acquired
exact numerical values for Nayak et al.’s stubborn mining
strategies in Bitcoin. The later, however, have been shown to
outperform standard selfish mining by up to 25%. Hence, we
expect the comparison of stubborn mining in Bitcoin with and
without Flux protocol rules to be similar as the observations
made for standard selfish mining.

Summarizing, we have performed a first analysis of the
effectiveness of selfish and stubborn mining strategies under
the Flux protocol extension, which suggest that the intro-
duction of subchains with an alternative reward distribution
scheme and the heaviest chain branch selection policy could
contribute towards improving the robustness of Bitcoin against

adversarial strategies.

V. OUTLOOK AND FUTURE WORK

Up until now we have primarily outlined Flux as a protocol
upgrade mechanism to reduce the block interval of Bitcoin-
like cryptocurrencies. However, the velvet fork concept and
general framework for protocol updates outlined in Flux is not
necessarily limited to this particular goal. In [48] Sompolinsky
et al. propose a new Greedy Heaviest-Observed Sub-Tree
(GHOST) algorithm for selecting what is considered the best
chain by (honest) miners upon which they will mine new
blocks. Such a mechanism is in particular beneficial to high
block creation rates, however Sompolinsky et al. outline that
increasing this rate in Bitcoin would require a hard fork in
the protocol and therefore the acceptance of a majority of
the mining power. We have shown that the Flux protocol
allows decreasing the block interval without necessitating hard
or soft forks, and hence the question of whether GHOST or
other protocol improvement proposals could also be deployed
in this manner is naturally raised. A modified variant of
GHOST has been successfully implemented in Ethereum [13],
thereby introducing rewards for pruned blocks. Hence, instead
of simply relying on Bitcoin’s longest-chain rule, a variant of
GHOST similar to that of Ethereum could be implemented in



Fig. 7. Visualization of the correlation between different adopt conditions ad (a), override conditions o (b) and, published weights p (c) and attacker’s revenue
for 100% and 50% Flux adoption (ε = 0 and ε = 0.5 respectively). Results sampled from simulations of 100.000 blocks each.

Table III. Summary of best performing selfish/stubborn mining strategies sampled from simulations of 100.000 blocks each with γ = 0 for different Flux
adoption rates, compared to existing selfish mining strategies in Bitcoin.

Attacker’s
Hash Rate

Legacy
Hash Rate Revenue

Flux Strategy
Parametrization

Bitcoin Selfish
Mining

ad at o p SM1 [17] ε-OPT [44]

0.25 0 0.25188 10.0 minimal revenue 0.0 1-20, ALL ? ?

0.5 0.30268 9.0 always 0.0 10-20 - -

0.3 0 0.32114 9.0 always 0.0 10-20 0.3 0.33705
0.5 0.36448 9.0 always 0.0 10-20 - -

0.475 0 0.60337 9.0 always 0.0 ALL 0.78254 0.80172
0.3† 0.93796 60.0 always 57.0 19 -

?These selfish mining strategies are only considered feasible with hash rate portions beyond 30% in Bitcoin.
†We simulate attacks performed by a 47.5% Flux selfish miner only under 30% legacy miner hash rate, as
using 50% would assume the very unlikely case where nearly all Flux miners are a single malicious entity.

the subchain, requiring miners to take into account pruned sub-
blocks when resolving conflicts between auxiliary branches.

Other proof-of-work-based blockchain proposals, such as
DAG-based approaches [27], [47] or modifications intended
to increase the chain quality and discourage selfish mining
such as Fruitchains [36], may also be adaptable such that it
could be deployed in a manner similar to Flux. In this respect
we outline that there remain many open questions regarding
possible reward distribution schemes and ensuring incentive-
compatibility of both velvet forks and Flux-like protocol
upgrades.

VI. CONCLUSION

In this paper we presented Flux, a velvet fork extension for
proof-of-work blockchains, which is based on the concepts
of near blocks and sub-chains and an improved new branch
selection policy. Flux can facilitate faster and better estimates
if particular transactions will be eventually included in the
main chain through its transaction processing mechanism.
Furthermore, Flux introduces an alternative reward distribution
mechanism, thereby reducing the payout variance of partic-
ipating miners compared to the legacy protocol. We have
performed an initial simulation analysis of selfish mining, the
results of which suggest Flux is capable of yielding selfish
and stubborn mining strategies less feasible.

VII. ACKNOWLEDGMENTS

We would like to thank Iain Stewart, Georg Merzdovnik,
Sam Werner, Arthur Gervais, Sjors Provoost, Dominik Harz
and especially Aljosha Judmayer for helpful comments and
insightful discussions.

REFERENCES

[1] Bitcoin Cash. https://www.bitcoincash.org/. Accessed: 2017-01-24.
[2] P2pool. http://p2pool.org/. Accessed: 2017-05-10.
[3] G. Andersen. Comment in ”faster blocks vs bigger blocks”. https:

//bitcointalk.org/index.php?topic=673415.msg7658481#msg7658481,
2014. Accessed: 2017-05-10.

[4] G. Andersen. [bitcoin-dev] weak block thoughts... https:
//lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-September/
011157.html, 2015. Accessed: 2017-05-10.

[5] E. Androulaki, S. Capkun, and G. O. Karame. Two bitcoins at the price
of one? double-spending attacks on fast payments in bitcoin. In CCS,
2012.

[6] J. Becker, D. Breuker, T. Heide, J. Holler, H. P. Rauer, and R. Böhme.
Can we afford integrity by proof-of-work? scenarios inspired by the
bitcoin currency. In WEIS. Springer, 2012.

[7] I. Bentov, R. Pass, and E. Shi. Snow white: Provably secure proofs of
stake. https://eprint.iacr.org/2016/919.pdf, 2016. Accessed: 2016-11-08.

[8] Bitcoin community. OP RETURN. https://en.bitcoin.it/wiki/OP\
RETURN. Accessed: 2017-05-10.

[9] Bitcoin Wiki. Merged mining specification. https://en.bitcoin.it/wiki/
Merged\ mining\ specification. Accessed: 2017-05-10.

[10] Blockchain.info. Hashrate Distribution in Bitcoin. https://blockchain.
info/de/pools. Accessed: 2017-05-10.

[11] Blockchain.info. Unconfirmed bitcoin transactions. https://blockchain.
info/unconfirmed-transactions. Accessed: 2017-05-10.



[12] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten. Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies. In IEEE Symposium on Security and Privacy, 2015.

[13] V. Buterin. Ethereum: A next-generation smart contract and decen-
tralized application platform. https://github.com/ethereum/wiki/wiki/
White-Paper, 2014. Accessed: 2016-08-22.

[14] C. Decker and R. Wattenhofer. Information propagation in the bitcoin
network. In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth
International Conference on, pages 1–10. IEEE, 2013.

[15] J. R. Douceur. The sybil attack. In International Workshop on Peer-to-
Peer Systems, pages 251–260. Springer, 2002.

[16] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Renesse. Bitcoin-ng: A scalable
blockchain protocol. In 13th USENIX Security Symposium on Networked
Systems Design and Implementation (NSDI’16). USENIX Association,
Mar 2016.

[17] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is
vulnerable. In Financial Cryptography and Data Security, pages 436–
454. Springer, 2014.

[18] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Advances in Cryptology-EUROCRYPT
2015, pages 281–310. Springer, 2015.

[19] A. E. Gencer, S. Basu, I. Eyal, R. Renesse, and E. G. Sirer. Decentral-
ization in bitcoin and ethereum networks. In Proceedings of the 22nd
International Conference on Financial Cryptography and Data Security
(FC). Springer, 2018.

[20] A. Gervais, G. Karame, S. Capkun, and V. Capkun. Is bitcoin a
decentralized currency? volume 12, pages 54–60, 2014.

[21] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun. On the security and performance of proof of work
blockchains. https://eprint.iacr.org/2016/555.pdf, 2016. Accessed: 2016-
08-10.

[22] M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols.
In Secure Information Networks, pages 258–272. Springer, 1999.

[23] A. Judmayer, A. Zamyatin, N. Stifter, A. G. Voyiatzis, and E. Weippl.
Merged mining: Curse or cure? In CBT’17: Proceedings of the Interna-
tional Workshop on Cryptocurrencies and Blockchain Technology, Sep
2017.

[24] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Čapkun.
Misbehavior in bitcoin: A study of double-spending and accountability.
volume 18, page 2. ACM, 2015.

[25] A. Kiayias, A. Miller, and D. Zindros. Non-interactive proofs of
proof-of-work. Cryptology ePrint Archive, Report 2017/963, 2017.
Accessed:2017-10-03.

[26] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual
International Cryptology Conference, pages 357–388. Springer, 2017.

[27] Y. Lewenberg, Y. Sompolinsky, and A. Zohar. Inclusive block chain
protocols. In Financial Cryptography and Data Security, pages 528–
547. Springer, 2015.

[28] Litecoin community. Litecoin reference implementation. https://github.
com/litecoin-project/litecoin. Accessed: 2018-05-03.

[29] G. Maxwell. Comment in ”[bitcoin-dev] weak block thoughts...”.
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-September/
011198.html, 2016. Accessed: 2017-05-10.

[30] S. Micali. Algorand: The efficient and democratic ledger.
http://arxiv.org/abs/1607.01341, 2016. Accessed: 2017-02-09.

[31] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf, Dec 2008. Accessed: 2015-07-01.

[32] Namecoin community. Namecoin reference implementation. https://
github.com/namecoin/namecoin. Accessed: 2017-05-10.

[33] Narayanan, Arvind and Bonneau, Joseph and Felten, Edward and Miller,
Andrew and Goldfeder, Steven. Bitcoin and cryptocurrency tech-
nologies. https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/
princeton bitcoin book.pdf?a=1, 2016. Accessed: 2016-03-29.

[34] K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining: General-
izing selfish mining and combining with an eclipse attack. In 1st IEEE
European Symposium on Security and Privacy, 2016. IEEE, 2016.

[35] K. J. O’Dwyer and D. Malone. Bitcoin mining and its energy footprint.
2014.

[36] R. Pass and E. Shi. Fruitchains: A fair blockchain. http://eprint.iacr.org/
2016/916.pdf, 2016. Accessed: 2016-11-08.

[37] C. Pérez-Solà, S. Delgado-Segura, G. Navarro-Arribas, and J. Herrera-
Joancomartı́. Double-spending prevention for bitcoin zero-confirmation

transactions. http://eprint.iacr.org/2017/394, 2017. Accessed: 2017-06-
29.

[38] Pseudonymous(”TierNolan”). Decoupling transactions and pow. https:
//bitcointalk.org/index.php?topic=179598.0, 2013. Accessed: 2017-05-
10.

[39] P. R. Rizun. Subchains: A technique to scale bitcoin and improve the
user experience. Ledger, 1:38–52, 2016.

[40] K. Rosenbaum. Weak blocks - the good and the bad. http://popeller.io/
index.php/2016/01/19/weak-blocks-the-good-and-the-bad/, 2016. Ac-
cessed: 2017-05-10.

[41] K. Rosenbaum and R. Russell. Iblt and weak block propagation
performance. Scaling Bitcoin Hong Kong (6 December 2015), 2015.

[42] M. Rosenfeld. Analysis of hashrate-based double spending. http://arxiv.
org/abs/1402.2009, 2014. Accessed: 2016-03-09.

[43] R. Russel. Weak block simulator for bitcoin. https://github.com/
rustyrussell/weak-blocks, 2014. Accessed: 2017-05-10.

[44] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining
strategies in bitcoin. http://arxiv.org/pdf/1507.06183.pdf, 2015. Ac-
cessed: 2016-08-22.

[45] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza. Zerocash: Decentralized anonymous payments from bitcoin.
In Security and Privacy (SP), 2014 IEEE Symposium on, pages 459–474.
IEEE, 2014.

[46] Satoshi Nakamoto. Comment in ”bitdns and generalizing bit-
coin” bitcointalk thread. https://bitcointalk.org/index.php?topic=1790.
msg28696#msg28696. Accessed: 2017-06-05.

[47] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. Spectre: A fast and
scalable cryptocurrency protocol. Cryptology ePrint Archive, Report
2016/1159, 2016. Accessed: 2017-02-20.

[48] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in
bitcoin. In Financial Cryptography and Data Security, pages 507–527.
Springer, 2015.

[49] Suhas Daftuar. Bitcoin merge commit: ”mining: Select transactions us-
ing feerate-with-ancestors”. https://github.com/bitcoin/bitcoin/pull/7600.
Accessed: 2017-05-10.

[50] M. B. Taylor. Bitcoin and the age of bespoke silicon. In Proceedings
of the 2013 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, page 16. IEEE Press, 2013.

[51] F. Tschorsch and B. Scheuermann. Bitcoin and beyond: A technical
survey on decentralized digital currencies. In IEEE Communications
Surveys Tutorials, volume PP, pages 1–1, 2016.

[52] P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. In Simulated
annealing: Theory and applications, pages 7–15. Springer, 1987.

[53] A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl, and
W. J. Knottebelt. (Short Paper) A Wild Velvet Fork Appears! Inclusive
Blockchain Protocol Changes in Practice. In 5th Workshop on Bitcoin
and Blockchain Research, Financial Cryptography and Data Security
18 (FC). Springer, 2018.

[54] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. Renesse. Rem: Resource-
efficient mining for blockchains. http://eprint.iacr.org/2017/179, 2017.
Accessed: 2017-03-24.

APPENDIX A
MDP-BASED SECURITY MODELING

In this section we present some initial results of the work-
in-progress modeling effort to represent selfish mining attacks
using a Markov Decision Process (MDP), similar to [44], [34],
[21]. State transitions occur each time a key or a sub-block is
found, according to the probabilities defined in Table IV-C.

A. Notation

Each state is defined by the tuple
(wa, wh, ua, ka, wk, fork , last), consisting of the following
variables:

• wa - Proof-of-work ”weight” of the attacker’s secret
chain, i.e., the sum of products of sub- and key-block
PoW difficulties: wa =

∑ka

i=0 dk +
∑sa

i=0 ds, where ka
is the number of key blocks and sa is the number of
sub-blocks present in the attacker’s secret chain.



Table IV. The transition and reward matrices for selfish mining attacks under Flux protocol rules. We use · instead of fork and last to express that in the
current state the value of the respective is irrelevant or remains unchanged. For simplicity, we only track the relative reward earned by the attacker.

State x Action Resulting State Probability Reward (in block reward)

(wa, wh, ua, ka, wk, ·, ·), adopt
(ds, 0, 0, 0, 0, irrelevant , sub) αs

(
ua

(ua+wh)
, wh
(ua+wh)

)
(dk, 0, 0, 1, dk, irrelevant , key) αk

(
ua

(ua+wh)
, wh
(ua+wh)

)
(0, ds, 0, 0, 0, irrelevant , last) βs

(
ua

(ua+wh)
, wh
(ua+wh)

)
(0, dk, 0, 0, 0, irrelevant , last) βk

(
ua

(ua+wh)
, wh
(ua+wh)

)

(wa, wh, ua, ka, wk, ·, sub), override†
(ds, 0, ua +max(wa − wk, wa), 0, 0, irrelevant , sub) αs (ka, 0)

(dk, 0, 0, 1, wa + dk, irrelevant , key) αk

(
ka + ua

(ua+wh)
, 0

)
(0, ds,max(wa − wk, wa), 0, 0, relevant , ·) βs (ka, 0)

(0, dk, 0, 0, 0, relevant , ·) βk

(
ka + ua

(ua+wh)
, 0

)

(wa, wh, ua, ka, wk, ·, key), override†
(ds, 0, 0, 0, 0, irrelevant , sub) αs (ka, 0)
(dk, 0, 0, 1, dk, irrelevant , key) αk (ka, 0)

(0, ds, 0, 0, 0, relevant , ·) βs (ka, 0)
(0, dk, 0, 0, 0, relevant , ·) βk (ka, 0)

(wa, wh, ua, ka, wk, irrelevant , ·),wait
(wa, wh, ua, ka, wk, relevant , ·),wait

(wa + ds, wh, ua, ka, wk, irrelevant , sub) αs (0, 0)
(wa + dk, wh, ua, ka + 1, wa + dk, irrelevant , key) αk (0, 0)

(wa, wh + ds, ua, ka, wk, relevant , ·) βs (0, 0)
(wa, wh + dk, ua, ka, wk, relevant , ·) βk (0, 0)

(wa, wh, ua, ka, wk, active, ·),wait
(wa, wh, ua, ka, wk, relevant , ·),match‡

(wa + ds, wh, ua, ka, wk, active, sub) αs (0, 0)
(wa + dk, wh, ua, ka + 1, wa + dk, active, key) αk (0, 0)

(wa − wh, ds,max(wa − wk, wa), ka, wk, relevant , ·) βs · γ (ka, 0)
(wa, wh + ds, ua, ka, wk, relevant , ·) βs · (1− γ) (0, 0)

(wa − wh, dk, 0, ka, wk, relevant , ·) βk · γ
(
ka + ua

(ua+wh)
, 0

)
(wa, wh + dk, ua, ka, wk, relevant , ·) βk · (1− γ) (0, 0)

†Only feasible if wa > wh
‡Only feasible if wa ≥ wh

• wh - Proof-of-work ”weight” of the honest miner’s
public chain. Analogous to the attacker’s chain, wh =∑kh

i=0 dk +
∑sh

i=0 ds, where kh is the number of key
blocks and sh is the number of sub-blocks present in
the public chain.

• fork - Provides information on the previously mined
block and hence, relevant for the attacker’s decision
process. Can be one of:

– irrelevant - The last block was found by the attacker,
hence match is not feasible

– relevant - The last block was found by the honest
network, match is feasible if wa ≥ wh.

– active - The attacker has performed a match action
and a publicly visible fork is ongoing. Depending on
γ, the honest network will either extend the public
chain or the attacker’s now public fork.

• last - Defines whether the last block found by the
attacker was a key or a sub-block. This is relevant for
the attacker’s decision process, as owning a key-block on
the private chain provides a significant advantage above
the honest miners (key block triggered attack).

– sub - denotes that the last block found by the attacker
was a sub-block

– key - denotes that the last block found by the attacker
was a key-block

• ua - Unpaid sub-blocks in terms of PoW (invertible) of
the attacker. Since rewards are only distributed once a
key block is found and are dependent on the number

of sub-blocks in a subchain (i.e., we cannot predict the
exact reward until a key block closes a subchain), it is
necessary to track how much PoW/ how many sub-blocks
of the attacker’s secret chain have already been accepted
by the honest miners and hence will be rewarded.

• ka - Number of key block in the attacker’s secret chain.
• wk - Proof-of-work weight of the part of the attacker’s

chain, which will be rewarded instantly in case of a
successful override, i.e., payouts already confirmed in key
blocks. Both ka and wk are necessary to determine how
much reward the attacker will receive instantly and how
much will be paid later, as only knowing the number
of key blocks gives no information on the actual PoW
weight of the chain, and vice versa.

1) Actions: Adversary Alice may perform the following
actions when finding a block:

• Adopt - Always feasible. The attacker discards her secret
chain and adopts the public chain of the honest miners,
receiving no rewards.

• Override - Only feasible if wa > wh. The attacker
publishes her secret chain and triggers a chain reorganiza-
tion, after which the honest miners will accept the secret
chain. Depending if the attacker performed this action
after finding a key or sub-block, rewards are either paid
instantly, or delayed to the next key block on the now
public chain.

• Wait - Always feasible. The attacker ignores the public
chain and continues to mine blocks on her secret chain.

• Match - Only feasible if wa ≥ wh. After the honest



miners have found a key or sub-block, the attacker
publishes a block of the same PoW weight for the same
height. Note: the attacker must have had the block ready
before the triggering event on the public chain. Otherwise,
the the honest miners will have accepted the block on the
public chain before the attacker can react.

2) Restrictions: In order to model the selfish mining attack
problem under variable block weights (which implicitly affects
the paid rewards) using a MDP, we must introduce limitations
to the state space, given that Markov Chains cannot easily
capture the order of occurred events, i.e., the ordering of key
and sub-blocks:

• When performing an override action, the attacker always
published her entire secret chain.

A possible workaround would be to store the type of the last
N blocks in additional variables. However, as the state space
increases exponentially with each additional tracked variable,
we do not consider this a feasible approach. As such, it is
unfortunately not feasible to model more complex adversarial
strategies, such as unfortunately stubborn mining [34] using
MDPs under variable block weights.


