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Abstract. Aggregate signature (AS) allows non-interactively condens-
ing multiple individual signatures into a compact one. Besides the faster
verification, it is useful to reduce storage and bandwidth, and is espe-
cially attractive for blockchain and cryptocurrency. In this work, we first
demonstrate the subtlety of achieving AS from general groups, by a con-
crete attack that actually works against the natural implementations
of AS based on almost all the variants of DSA and Schnorr’s. Then,
we show that aggregate signature can be derived from the Γ -signature
scheme proposed by Yao, et al. To the best of our knowledge, this is
the first aggregate signature scheme from general elliptic curves without
bilinear maps (in particular, the secp256k1 curve used by Bitcoin). The
security of aggregate Γ -signature is proved based on a new assumption
proposed and justified in this work, referred to as non-malleable discrete-
logarithm (NMDL), which might be of independent interest and could
find more cryptographic applications in the future. When applying the
resultant aggregate Γ -signature to Bitcoin, the storage volume of signa-
tures reduces about 49.8%, and the signature verification time can even
reduce about 72%. Finally, we specify in detail the application of the pro-
posed AS scheme to Bitcoin, with the goal of maximizing performance
and compatibility. We adopt a Merkle-Patricia tree based implementa-
tion, and the resulting system is also more friendly to segregated witness
and provides better protection against transaction malleability attacks.

1 Introduction

Bitcoin [50], with the introduction of the blockchain technology, was originally
proposed by Nakamoto Satoshi in 2008. The key characteristics of blockchain
consist in decentralization, openness, unforgeability, and anonymity. After about
ten years of rapid development, blockchain has been more and more popular,
and more applications are advocated into finance, healthcare, storage, education
industries, etc. Nevertheless, there are still quite a lot of deficiencies to overcome.
Taking Bitcoin as an example, below we review some deficiencies or bottlenecks
it faces now.

Currently, due to the 1M-byte limitation of block size, about 7 transactions
are conducted per second in the Bitcoin system. This leads to, in particular,



2 Yunlei Zhao

longer confirmation latency, relatively higher transaction fees, and easier target
of spam attacks [52].1

As the crucial elements of a global consensus system, kept in check by the
ability for every participant to validate all updates to the ledger, the size of
signatures and the computational cost for verifying them are the primary limiting
factors for its scalability [47]. Bitcoin uses the EC-DSA signature scheme [37] over
the secp256k1 curve [22]. According to Bitcoin Stack Exchange, in a standard
“pay to public key hash” (P2PKH) transaction or a “pay to script hash” (P2SH)
transaction, the signatures occupy about 40% of transcript size.2 In addition,
an EC-DSA signature involves non-linear combination of ephemeral secret-key
and static secret-key, which is the source for relative inefficiency and for the
cumbersome in extensions to multi-signatures [8, 47], scriptless scripts [66], etc.
As a consequence, recently there is also renewed interests in deploying Schnorr’s
signature with Bitcoin in the future.

Aggregate signature (AS) [17] can essentially mitigate the above deficien-
cies or bottlenecks faced by Bitcoin (and actually almost all blockchain-based
systems). An AS scheme is a digital signature scheme with the following ad-
ditional property: multiple individual signatures {σ1, · · · , σn}, where σi is a
signature on message mi under public-key pki, 1 ≤ i ≤ n and n ≥ 2, can
be non-interactively collected and condensed into a compact aggregate signa-
ture σ. Here, in general, for any i, j such that 1 ≤ i 6= j ≤ n, it is assumed
that (pki,mi) 6= (pkj ,mj). There is a corresponding aggregate verification pro-
cess that takes input {(pk1,m1), · · · , (pkn,mn), σ}, and accepts if and only if
all the individual signatures are valid. Aggregate signature is useful to reduce
bandwidth and storage volume, and is especially attractive for blockchain where
communication and storage are more expensive than computation.

The differences between aggregate signature and multi-signature should be
noted. With a multi-signature scheme [35, 51, 39, 48, 13, 40, 8, 57, 4, 42, 47, 34, 16],
multiple signers sign the same message, and more importantly they need inter-
active cooperation. Practical multi-signature schemes were built from general
groups on which the discrete logarithm problem is hard [8, 47], in the plain
public-key model where no trusted setup or proof-of-possession of secret key is
needed. However, the known efficient aggregate signature schemes in the plain
public-key model were all built from gap groups with bilinear maps [17, 7]. Ag-
gregate signatures can also be built assuming: signer cooperation and interac-
tion [41, 40], or trusted setup [48], or proof-of-possession of secret key [57], or
synchronous communications [34]. But these assumptions are, in general, less
realistic for decentralized blockchain systems like the Bitcoin.

1 As for spam attacks, if we can put more transactions into a block, the spammer has
to send more transactions with more transaction fee to congest the network, which
increases the attack cost.

2 In more detail, for a standard P2PKH or P2SH transaction with n inputs and m
outputs, its size is about 146n + 33m + 10 bytes where the signatures occupy 72n
bytes. For P2SH multi-signature transactions, the size of signatures may further
scale up.
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1.1 Contributions

In this work, we investigate the applicability of the Γ -signature scheme proposed
by Yao and Zhao [69]. Akin to Schnorr’s, Γ -signature is generated with linear
combination of ephemeral secret-key and static secret-key, and enjoys almost all
the advantages of Schnorr’s signature. Besides, Γ -signature has advantageous
features in online/offline performance, stronger provable security, and deploy-
ment flexibility with interactive protocols like IKE. In this work, we identify one
more key advantage of Γ -signature in signature aggregation, which is particularly
crucial for applications to blockchain and cryptocurrency.

We first demonstrate the subtlety of achieving aggregate signatures from
general elliptic curves (EC). This is illustrated with a concrete attack against
a natural implementation of aggregating Schnorr’s signatures. The attack is a
type of ephemeral rogue-key attack, and actually works against the natural im-
plementations of AS from almost all the variants of DSA and Schnorr’s. It serves
as a good warm-up for achieving aggregate signature from general EC groups
without bilinear maps.

Then, we show that aggregate signature can be derived from the Γ -signature
scheme. To the best of our knowledge, this is the first aggregate signature scheme
from general groups without bilinear maps in the plain public-key model. The
security of aggregate Γ -signature is proved based on a new assumption pro-
posed and justified in this work, referred to as non-malleable discrete-logarithm
(NMDL), which might be of independent interest and could find more cryp-
tographic applications in the future. We provide the implementation of ag-
gregate Γ -signature, with source code (anonymously) available from https:

//github.com/AggregateGammaSignature/source. When applying the resul-
tant aggregate Γ -signature to Bitcoin, the storage volume of signatures reduces
about 49.8%, and the signature verification time can even reduce about 72%.

Finally, we specify in detail the implementation of aggregate Γ -signature for
Bitcoin. The goal is to maximize performance and compatibility with the existing
Bitcoin system. Towards this goal, we adopt a Merkle-Patricia tree (MPT) aided
implementation of our aggregate signature scheme. The implementation only
brings minimal modifications, which are, in turn, more friendly to segregated
witness (SegWit), and provide better protection against transaction malleability
attacks [19].

2 Preliminaries

For prime number q, denote by Zq the additive group of integers modulo q, by
Z∗q the multiplicative group of integers modulo q. If S is a finite set then |S| is
its cardinality, and x ← S is the operation of picking an element uniformly at
random from S. If α is neither an algorithm nor a set then x ← α is a simple
assignment statement. A string or value α means a binary one, and |α| is its
binary length. If α and β are two strings, α||β is their concatenation. If A is
a probabilistic algorithm, A(x1, x2, · · · ; ρ) is the result of running A on inputs
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x1, x2, · · · and random coins (i.e., random bits) ρ. Let y ← A(x1, x2, · · · ; ρ)
denote the experiment of picking ρ at random and letting y be A(x1, x2, · · · ; ρ).
By Pr[E : R1; · · · ;Rn] we denote the probability of event E, after the ordered
execution of random processes R1, · · · , Rn. A function ε(l) is negligible if for
every c > 0 there exists an lc such that ε(l) < 1

lc for all l > lc. Let PPT stand
for probabilistic polynomial-time.

A digital signature scheme consists of three algorithms KeyGen, Sign and
V erify, where the key generation algorithm KeyGen takes a security parameter
l as input and randomly outputs a key pair (sk, pk). The signature algorithm
Sign takes sk,m as input and outputs a signature σ. The signature verification
algorithm V erify takes pk,m, σ as input and outputs ACCEPT or REJECT .
Usually, the algorithms KeyGen and Sign are probabilistic, while the algorithm
V erify is deterministic. The completeness of a signature scheme requires that
V erify(pk,m, Sign(sk,m)) = ACCEPT always holds for any m ∈ {0, 1}∗, as
long as (sk, pk) is a valid key pair generated by running KeyGen.

2.1 Elliptic Curve for Bitcoin

We consider signature implementations over elliptic curve groups. Let E(F ) be
the underlying elliptic curve group defined over finite field F , and the point P
generates a cyclic group of prime order q on which the discrete logarithm problem
is assumed to be hard, where |q| = l is the security parameter. The order of E(F )
is tq, where t is called the cofactor that is usually a small constant. Denote by
∞ the identity element in E(F ).

Bitcoin uses the secp256k1 curve [22]: y2 = x3 + 7 defined over Fp for prime
number p = 2256−232−29−28−27−26−24−1. For the secp256k1 curve, both
p and q have the same length of 256 bits, i.e., l = log q = 256, and the cofactor
t = 1. For a point on the secp256k1 curve, it can be represented with 257 bits
as (x, b), where x ∈ Zp is its x-coordinate and b ∈ {0, 1} indicates the sign of its
y-coordinate. Thanks to the fact that p = 2256−232−29−28−27−26−24−1 = 7
mod 8, recovering y from (x, b) is very efficient for the secp256k1 curve [33, 43].
We remark that compact representation of public key has already been being
employed in the Bitcoin system.

2.2 Schnorr Signature

The Schnorr signature scheme is proposed in [60], and is proven secure in the
random oracle model based on the discrete logarithm assumption [54]. At a high
level, Schnorr’s signature is an instantiation of the Fiat-Shamir transformation
[27] being applied to Σ-protocols (i.e., three-round public-coin honest-verifier
zero-knowledge protocols) in the random oracle model. Let H : {0, 1}∗ → Zq be
a cryptographic hash function, and m ∈ {0, 1}∗ be the message to be signed,
Schnorr’s signature scheme is briefly reviewed in Table 1.
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KeyGen(1l) Sign(X,x,m) Verify(X,m, σ = (e, z))
x← Z∗q r ← Zq R := zP − eX
X := xP R := rP if H(R,m) 6= e then
return(x,X) e := H(R,m) return REJECT

z := r + ex mod q else
return σ = (e, z) return ACCEPT

Table 1. Schnorr’s signature

2.3 Γ -Signature

Under the motivation for achieving signature schemes of better online/offline
performance, flexible and easy deployments (particularly with interactive proto-
cols like IKE), and stronger security, Yao and Zhao introduced a new paradigm
in [69]. Specifically, they proposed a special case of Σ-protocol, which is referred
to as Γ -protocol, and a transformation called Γ -transformation that transforms
any Γ -protocol into a signature scheme in the random oracle model. The resul-
tant signature is named Γ -signature. Below, we briefly review the Γ -signature
scheme based on discrete logarithm problem (DLP), and its security result. The
reader is referred to [69] for more details.

Let Hd, He : {0, 1}∗ → Z∗q be two cryptographic hash functions, and m ∈
{0, 1}∗ be the message to be signed, the DLP-based Γ -signature scheme is briefly
reviewed in Table 2 (page 9). Here, for presentation simplicity, checking z 6= 0 in
signature generation, and checking d, z ∈ Z∗q andA 6=∞ in signature verification,
are not explicitly specified. In the actual implementation, it is also suggested
in [69] that d = Hd(A) is replaced with d = xA mod q, where xA is the x-
coordinate of A. To ease signature verification, we can replace d in σ with d−1.
In this case, d−1 is not needed to computed in signature verification, and the
signature is rejected if Hd(A)d−1 6=∞.

Security of Γ -Signature. Strong existential unforgeability under concur-
rent interactive attacks for a signature scheme

∏
= (KeyGen, Sign, V erify),

where a signature can be divided into two parts (d, z), is defined using the fol-
lowing game between a challenger and a forger adversary F .

– Setup. On the security parameter l, the challenger runs (PK,SK)← KeyGen(1l).
The public-key PK is given to adversary F (while the secret-key SK is kept
private).

– Suppose F makes at most qs signature queries. Each signature query consists
of the following steps: (1) F sends “Initialize” to the signer. The i-th initial-
ization query is denoted as Ii, 1 ≤ i ≤ qs. (2) Upon the i-th initialization
query, the signer responds back di. (3) F adaptively chooses the message
mi to be signed, and sends mi to the signer. (4) The signer sends back zi,
where (di, zi) is the signature on message mi. F is allowed to adaptively and
concurrently interact with the signer in arbitrary interleaved order. As a
special case, F can first make qs initialization queries, and get all the values
in D̄ = {d1, · · · , dqs} before presenting any message to be signed.
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– Output. Finally, F outputs a pair of m and (d, z), and wins the game if (1)
V erify(PK,m, d, z) = 1 and (2) (m, d, z) 6∈ {(m1, d1, z1), · · · , (mqs , dqs , zqs)}.

We define AdvSigsuf-cia∏
,F (1l) to be the probability that F wins in the above

game, taken over the coin tosses of KeyGen, F , and the signer (and the ran-
dom choice of the random oracle). We say the signature scheme

∏
is strongly

existential unforgeable, if AdvSigsuf-cia∏
,F (·) is a negligible function for every PPT

forger F .
It is proved in [69] that the above Γ -signature scheme is strongly existen-

tial unforgeable under the DLP assumption, assuming Hd is a random oracle
while He is target one-way as defined in [69]. Roughly speaking, He is target
one-way w.r.t. an e-condition Re, if for any PPT algorithm A = (A1, A2) it
holds that AdvtowHe,A(1l) = Pr[Re(d, e = He(m), d′, e′ = He(m

′)) = 0 : d ←
Z∗q ; (m, s) ← A1(He, d); d′ ← Z∗q ;m′ = A2(He, d,m, d

′, s)] is negligible, where s
is some state information passed from A1 to A2. Here, the e-condition is defined
as Re(d, e, d

′, e′) = 0 iff d−1e = d′−1e′ mod q. Introducing target one-wayness
in [69] is to mitigate the dependency of provable security on random oracles.
Specifically, for the two hash functions Hd and He used for Γ -signature, only
Hd is assumed to be a random oracle. Detailed discussions on target one-way
hash, including clarifications on the relations among target one-wayness, colli-
sion resistance and preimage resistance, are presented in [69], which show target
one-wayness is a natural and realistic property for cryptographic hash functions.
In particular, target one-wayness is implied by random oracle [69].

3 Aggregate Signature and Motivation

An aggregate signature (AS) scheme is a tuple (KeyGen, Sign, V erify,
Agg,AggV erify), where the last three are deterministic, while the first three
algorithms constitute a standard signature scheme. Given multiple individual
signatures {σ1, · · · , σn}, where σi is a signature on message mi under public-
key pki, 1 ≤ i ≤ n and n ≥ 2, the aggregation algorithm Agg condenses them
into a compact aggregate signature sig. Here, in general, for any i, j such that
1 ≤ i 6= j ≤ n, it is assumed that (pki,mi) 6= (pkj ,mj); but it might be
the case that pki = pkj or mi = mj . The completeness of an AS scheme says
that AggV erify({(pk1,m1), · · · , (pkn,mn)}, sig) returns “ACCEPT”, whenever
V erify(pki,mi, σi) outputs “ACCEPT” for any i, 1 ≤ i ≤ n. Roughly speaking,
the security of an AS scheme says that it is infeasible for any PPT adversary A
to produce a valid forged aggregate signature involving an honest signer, even
when it can play the role of all the other signers (in particular choosing their
public keys), and can mount a chosen-message attack on the target honest signer.

Definition 1 (security of aggregate signature).
Let (pk, sk)← KeyGen(1l) be the public and secret key pair of the target hon-

est signer. The advantage of the attacker A against the AS scheme is defined as
AdvAAS(1l) = Pr[AggV erify({(pk1,m1), · · · , (pkn,mn)}, sig) = ACCEPT ] , where
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n is polynomial in l and pk ∈ {pk1, · · · , pkn}. The probability is taken over the
random coins used by KeyGen and A in the following experiment:

(pk, sk)← KeyGen(1l); (pk1, ..., pkn,m1, ...,mn, sig)← ASign(sk,)(1l, pk) .
To make the security definition meaningful, we only consider adversaries that
are legitimate in the sense that, supposing pk = pki for some i, 1 ≤ i ≤ n, must
never have queried mi to its signing oracle. Then, an AS scheme is said to be
secure if for any PPT adversary A its advantage AdvAAS(1l) is negligible in l.
Note that A can choose pk1, ..., pkn as it wishes, in particular as a function of
the target public key pk. There is also no requirement that the adversary “knows”
the secret key corresponding to a public key it produces.

Practical aggregate signature schemes were proposed [17, 7] in the plain
public-key model. They are derived based on the BLS short signature [18] in
groups with bilinear maps. There have been some discussions on deploying the
pairing-based AS schemes [17, 7] in the Bitcoin system [46], which are briefly
summarized below.

– System complexity. Deploying pairing-based aggregate signature schemes re-
quires the replacement of not only the EC-DSA algorithm but also the un-
derlying elliptic curve. It makes a deployment in practice (such as Bitcoin)
much more invasive than simply shifting algorithms.

– Bilinear group vs. general group. Intractability problems in groups with bi-
linear maps are weaker than the discrete logarithm problem in general EC
groups.

– Verification speed. As an individual signature scheme, the verification of the
pairing-based BLS signature is significantly slower than that of EC-DSA.
Note that the miners still need to verify the correctness of individual BLS
signatures before aggregating them into a block. Some survey indicates that
on a concrete hardware it can verify 70,000 secp256k1 signatures per second,
while it could only verify about 8,000 BLS signatures per second [46].

It is thus highly desirable to develop aggregate signatures, with the following
features simultaneously:

– It can be built from general elliptic curves (without bilinear maps), in the
plain public-key model with fully asynchronous communications.

– The underlying signature scheme has provable security, and moreover, is
more efficient and flexible than EC-DSA.

4 Subtlety and Warm-UP for Achieving Aggregate
Signatures from General Elliptic Curves

Recently, there is renewed interests in deploying Schnorr’s signature in the Bit-
coin system, for its efficiency and flexibility. In comparison with EC-DSA used
in Bitcoin, the linear combination of ephemeral secret-key and static secret-key
with Schnorr’s signature brings more desirable advantages, e.g., multi-signature,
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scriptless scripts (specifically, privacy-preserving smart contracts). However, we
show the subtlety of aggregating Schnorr’s signatures. This is demonstrated by a
concrete fatal attack, which actually works against the natural implementations
of aggregate signature based upon almost all the variants of DSA and Schnorr’s.

We first present the aggregate signature based on Schnorr’s scheme. Suppose
there are n signers, n ≥ 2, and each has the public and secret key pair (Xi, xi)
where Xi = xiP and xi ← Z∗q , 1 ≤ i ≤ n. Denote by σi = (ei, zi) the signature by
user i on message mi ∈ {0, 1}∗. After receiving {(X1,m1, σ1), · · · , (Xn,mn, σn)},
the miner first verifies the correctness of each individual signature (Xi,mi, σi),
during which it gets Ri = ziP −eiXi. If all the individual signatures are correct,
the miner finally outputs R̂ = {R1, · · · , Rn} and z =

∑n
i=1 zi as the resul-

tant aggregate signature. On input (X1, · · · , Xn,m1, · · · ,mn, R̂, z), AggV erify
works as follows: computes ei = H(Xi, Ri,mi), and accepts if zP =

∑n
i=1Ri +∑n

i=1 eiXi.
The above aggregate signature scheme looks fine. But a deep speculation

divulges the following subtle yet fatal attack. Without loss of generality, suppose
the index of the attacker is 1, who possesses the public and secret key pair
(X1, x1) and acts as follows.

– For any j, 2 ≤ j ≤ n, the attacker selects mj and arbitrary Rj (from the
underlying EC group) on behalf of Xj , and computes ej = H(Xj , Rj ,mj).
Note that the attacker does not necessarily know the discrete logarithm of
either Xj or Rj for 2 ≤ j ≤ n.

– The attacker chooses its own message m1, sets the ephemeral rogue-key
R1 = (−

∑n
j=2Rj −

∑n
j=2 ejXj), and computes e1 = H(X1, R1,m1) and

z = e1x1.
– Finally, it outputs (R1, · · · , Rn, z) as the forged aggregate signature.

Note that zP = e1x1P = e1X1 = e1X1 + R1 + (
∑n
j=2Ri +

∑n
j=2 eiXi) =∑n

i=1Ri+
∑n
i=1 eiXi. Thus, the forged aggregate signature is valid, the attacker

can sign arbitrary messages on behalf of the victim users (X2, · · · , Xn). There
is no doubt that such an attack is really fatal, particularly for a cryptocurrency
system like Bitcoin. To stop such an attack, one approach is to require proof of
possession of the discrete logarithms for all the Rj ’s, 1 ≤ j ≤ n [57]. But this
voids the advantage of signature aggregation.

We suggest that the above ephemeral rogue-key attack might implicitly ac-
count for the reason why no previous AS scheme was built from general elliptic
curve groups, though we are unaware of any explicit presentation of such an
attack to the best of our knowledge. Nevertheless, it indeed serves as a good il-
lustration of the subtlety of, as well as warm-up for, achieving AS from general
groups without bilinear maps.

5 Aggregate Γ -Signature

The aggregate Γ -signature scheme is described in Table 2. Here, the algorithms
(KeyGen, Sign, V erify) just constitute the Γ -signature scheme presented in
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Section 2.3. For presentation simplicity, we use a single cryptographic hash func-
tion H : {0, 1}∗ → Z∗q , and the checking of d, z ∈ Z∗q , mi 6= λ and A 6= ∞ is
omitted in the specification of verification algorithms, where λ represents the
empty string. The completeness property can checked directly.

KeyGen(1l) Sign(X,x,m) Verify(X,m, σ = (d, z))
x← Z∗q r ← Z∗q e := H(X,m)
X := xP A := rP A := zd−1P + ed−1X
return (x,X) d := H(A) if H(A) 6= d

e := H(X,m) return REJECT
z := rd− ex mod q else
return σ = (d, z) return ACCEPT

Agg({(X1,m1, σ1), ..., (Xn,mn, σn)}) AggVerify(T̂ , Â, z)

T̂ := ∅, Â := ∅, z := 0 if elements in T̂ are not distinct
for i = 1 to n return REJECT

if V erify(Xi,mi, σi) = ACCEPT ∧ (Xi,mi) /∈ T̂ ∧Ai /∈ Â if elements in Â are not distinct

T̂ := T̂ ∪ {(Xi,mi)} return REJECT

Â := Â ∪ {Ai} if |T̂ | 6= |Â|
z := z + zi mod q return REJECT

return (T̂ , Â, z) n′ := |T̂ | = |Â|
for j = 1 to n′

dj := H(Aj), ej := H(Xj ,mj)

if (zP +
∑n′

j=1(ejXj − djAj)) 6=∞
return REJECT

return ACCEPT

Table 2. Aggregate Γ -signature

Given a list of individual signatures {(X1,m1, σ1 = (d1, z1)), · · · , (Xn,mn, σn =
(dn, zn))}, where n ≥ 2, the aggregation algorithm discards (Xi,mi, σi) if the
signature verification fails, or any one of (Xi,mi) or Ai is repeated. The latter
checking is for provable security, as we shall see. But it still might be the case
that, for some i 6= j, Xi = Xj or mi = mj (this case occurs with Bitcoin P2SH

multi-signature transactions). We assume that the elements in T̂ and those in
Â output by Agg are sorted to ease verification of aggregate signature. More
details about the implementations are discussed in the next subsection. Observe
that T̂ and Â are output and treated separately, and AggV erifier actually does
not care about the correspondence between the elements in Â and those in T̂ .
This flexibility allows for implementations more friendly to SegWit and to being
resistant to transaction malleability attacks, as we shall discuss in Section 6.

The total size of the aggregate signature (Â, z) has n′(l + 1) + l bits, where
each Ai is represented with log p+ 1 = l+ 1 bits. In comparison, the total size of
n′ individual signatures has 2n′l bits. For Bitcoin, l = 256, and n′ is about 4000
on average. Thus, with aggregate Γ -signature, the storage volume of signatures
reduces about 49.8%.

We use the simultaneous point multiplication techniques [33, 30, 26] in com-

puting zP +
∑n′

j=1 ejXj −
∑n′

j=1 djAj . Specifically, we divide the 2n′ + 1 point
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multiplications into d(2n′+ 1)/8e groups, and then apply the simultaneous mul-
tiplication technique to each group of at most 8 point multiplications. Denote
by A (resp., D) the timing cost for performing modular EC addition (resp., dou-
bling), where 1D amounts to about 0.7A (with some optimization techniques,
addition can be as efficient as doubling, i.e., 1A can amount to 1D). The cost for
performing 8 point multiplications separately is about 8lD + 4lA. In comparison,
for performing 8 point multiplication simultaneously, the cost is about l(D + A)
plus at most 256A (for preparing a table of size at most 28 = 256). This way,
the timing cost for verifying signatures can reduce about 72%.

5.1 NMDL Assumption, and Justification

Motivated for breaking some impossibility barriers of black-box cryptography
and for achieving cryptographic schemes of conceptually simple structure and
analysis, the research community has been paying more attention to achiev-
ing cryptographic schemes based on non-black-box assumptions or primitives in
recent years [5, 20, 21, 29, 24, 15]. As a popular non-black-box assumption, the
knowledge-of-exponent assumption (KEA) and its variants have been shown
to be successful and powerful (see, e.g., [23, 32, 9, 10, 55, 38, 25, 56, 1, 49, 20, 21,
31, 28, 29, 67, 24, 15, 68, 70, 58, 59]). In particular, a type of KEA assumption on
pairing groups is used in Zcash [58, 59].

Yao and Zhao introduced and justified a variant of the KEA assumption, re-
ferred to as joint KEA (JKEA) assumption [68]. Let H1, · · · , Hκ : {0, 1}∗ → Zq
be cryptographic hash functions that are modelled as random oracles (RO).
Roughly speaking, the JKEA assumption says that, given X = xP for x← Zq,
the ability of an efficient algorithm A to output {(Y1,m1), · · · , (Yκ,mκ), Z} such
that Z = (

∑κ
i=1 eiYi)

x, where Yi ∈ E(F ) and mi ∈ {0, 1}∗ and ei = Hi(Yi,mi)
for 1 ≤ i ≤ κ, implies knowing (y1, · · · , yκ) simultaneously, where yi is the
discrete logarithm of Yi. Here, “knowing” implies that (y1, · · · , yκ) can be ef-
ficiently extracted by an extractor algorithm E from the input and the ran-
dom tape of A. The JKEA assumption is justified in [68] by the fact that,
assuming Hi’s are random oracles, no efficient algorithm can make the values in
{e1Y1, · · · , eκYκ} correlated. That is, no matter how the PPT algorithm A does,
the values {H1(Y1,m1)y1, · · · , Hκ(Yκ,mκ)yκ} are computationally independent
as defined in [68].

The JKEA assumption implies the following weaker assumption, referred to
as explicit knowledge-of-exponent assumption (EKEA). Specifically, the ability
of outputting {(Y1,m1), · · · , (Yκ,mκ), z}, satisfying z ∈ Zq and zP =

∑κ
i=1 eiYi,

implies knowing (y1, · · · , yκ) simultaneously. That is, (y1, · · · , yκ) can be effi-
ciently extracted. Unlike the JKEA assumption where the algorithm A only
outputs CDH(X,

∑κ
i=1 eiYi), here A explicitly outputs the discrete logarithm

z = log(
∑κ
i=1 eiYi). Clearly, the EKEA assumption is implied by, and weaker

than, the JKEA assumption. It is easy to check that the security of aggregate Γ -
signature can be derived from the EKEA assumption and the discrete logarithm
assumption. But we would like to have a further weaker black-box assumption,
which is proposed below.
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Definition 2 (non-malleable discrete logarithm (NMDL) assumption).
Let G = (E(Fp), P, q) define a cyclic group over E(Fp) generated by P of

order q, where p and q are prime numbers, and l = dlog qe be the security pa-
rameter. Let H1, · · · , Hκ : {0, 1}∗ → Z∗q be cryptographic hash functions, which
may not be distinct. On input (G,X) where X = xP for x ← Z∗q , a PPT algo-
rithm A (called an NMDL-solver) succeeds in solving the NMDL problem, if it
could output {(b1, Y1,m1) · · · , (bκ, Yκ,mκ), z}, satisfying:

– z ∈ Zq, and for any i, 1 ≤ i ≤ κ, Yi ∈ G, mi ∈ {0, 1}∗ that can be the empty
string, and bi ∈ {0, 1}.

– For any 1 ≤ i 6= j ≤ κ, it holds that (Yi,mi) 6= (Yj ,mj). But it might be the
case that Yi = Yj or mi = mj.

– X ∈ {Y1, · · · , Yκ}, and zP =
∑κ
i=1(−1)bieiYi where ei = Hi(Yi,mi).

Then, the NMDL assumption says that, for any PPT algorithm A, the prob-
ability that it succeeds in solving the NMDL problem is negligible in l. The prob-
ability is taken over the random coins used to generate (G, x), the random coins
used by A (and the choices of the random functions H1, · · · , Hκ in the random
oracle model).

It is easy to see that the NMDL assumption is implied by the standard
discrete logarithm assumption and the EKEA assumption. Note also that the
NMDL assumption is itself black-box in nature. Below, we further justify this
assumption by proving that it holds in the generic group and random oracle
model [12, 14, 61, 63], where H1, · · · , Hκ are assumed to be random oracles (RO)
[11]. We suggest the NMDL assumption should be of independent interest, and
could find more cryptographic applications in the future.

Briefly speaking, an algorithm is generic if it does not use the encoding of the
group elements. It can only use group elements for group operations and relation
verifications. There are many groups for which the fastest DL solver algorithms
are generic. For example, general elliptic curves; general hyper-elliptic curves of
genus 2; and subgroups of prime order q in Z∗p when (p − 1)/q is so large that
sieving methods are inefficient [62]. For presentation simplicity, in the following
analysis we use Maurer’s generic group model [44] that is actually equivalent to
Shoup’s model [65, 36].

Theorem 1. For an NMDL-solver algorithm that runs τ generic steps and

makes % RO-queries, its success probability is upper bounded by τ2+%2

q−1 in the
generic group and random oracle model.

Proof. In Maurer’s generic group model for solving the NMDL problem, the
generic group oracle (GG-oracle) O originally keeps two internal states (1, x) in
a list L, where x← Z∗q . For presentation simplicity, we denote by L[i] the value
stored in the i-th entry of L, where 1 ≤ i ≤ τ , and we assume L[1] = 1 and
L[2] = x. The generic NMDL-solver algorithm A is given the indices of (1, x) in
L, i.e., (1, 2), and has black-box access to the GG-oracle O and a random oracle
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(RO) H : {0, 1}∗ → Z∗q . Here, for presentation simplicity, we use a single random
oracle H to represent {H1, · · · , Hκ}.

For the i-th GG-oracle access corresponding to a group operation, 1 ≤ i ≤ τ ,
the value computed by the GG-oracle O can be viewed as a linear polynomial of
the form Fi(x) = aix+ bi mod q, where ai, bi ∈ Zq are determined by previous
GG-oracle accesses. The value Fi is not returned to A directly, but is stored into
a position in the internal list L where the position index for storing Fi is indicated
by A. A is always given the ability of verifying equality relation, by which A
queries O with (i, j) and gets result whether L[i] = L[j] or not. For the k-th RO
query, 1 ≤ k ≤ %, the algorithm A queries the random oracle H with (tk,mk),
where mk ∈ {0, 1}∗ and 1 ≤ tk ≤ τ represents the index of the component
Ftk(x)P that is actually unknown to A in the generic group model. Upon the
k-th RO-query (tk,mk), the random oracle H works as follows: (1) if L(tk) is
undefined, it returns ⊥ indicating invalid RO-query;3 (2) if H(tk,mk) has been
defined, it returns what already defined; (3) otherwise, it defines and returns
a value taken uniformly at random from Z∗q as H(tk,mk). Finally, A outputs
{(b1, i1,mi1), · · · , (bκ, iκ,miκ), z}, and succeeds on the following conditions:

– z ∈ Zq, bα ∈ {0, 1} and mα ∈ {0, 1}∗ where 1 ≤ α ≤ κ, and 1 ≤ iβ ≤ τ for
1 ≤ β ≤ κ. Here, iβ is the index of Fiβ (x)P .

– For any 1 ≤ α 6= β ≤ κ, it holds that (iα,mα) 6= (iβ ,mβ).
– 2 ∈ {i1, · · · , iκ} where the index 2 represents the input X = xP to the

NMDL-solver A in the generic group model, and z =
∑κ
α=1(−1)bαeiαFiα(x)

mod q where eiα = H(iα,miα) ∈ Z∗q .

As discussed in [44], in this generic group model we only need to consider
non-adaptive adversaries, and there are only three approaches for A to succeed
in the generic group model.

– Simply guessing x, which succeeds with probability 1
q−1 .

– Another approach is to cause two different Fi and Fj to collide, 1 ≤ i, j ≤ τ ,
in the sense that aix+ bi = ajx+ bj where (ai, bi) 6= (aj , bj). In other words,
(ai − aj)x + (bi − bj) = 0. By Schwartz-Shoup lemma [64, 65, 45, 44], this
event can occur with probability at most C2

τ
1
q−1 .

– The third approach forA to succeed is to output {(b̂1, î1, m̂î1
), · · · , (b̂γ , îγ , m̂îγ

), ẑ}
such that ẑ =

∑γ
α=1(−1)b̂αeîαFîα(x) mod q, where γ > 1 and eîα = H(̂iα, m̂îα

) ∈
Z∗q . The observation here is that, for any tuple {(b̂1, î1, m̂î1

), · · · , (b̂γ , îγ , m̂îγ
), ẑ},

the probability that ẑ =
∑γ
α=1(−1)b̂αeîαFîα(x) mod q is at most 1

q−1 in the
random oracle model. Then, by the birthday paradigm, the probability that

A succeeds with this approach is at most %2

q−1 , where % is the number of
queries made by A to the random oracle H.

Note that 1
q−1 + C2

τ
1
q−1 + %2

q−1 <
τ2+%2

q−1 . �

3 In this case, H(tk,mk) remains undefined. This is to ensure the independence be-
tween Ftk and H(tk, ·).
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5.2 Security Analysis

Theorem 2. The aggregate Γ -signature scheme presented in Table 2 is secure
under the NMDL assumption.

Proof. According to the security definition of aggregate signature presented in
Section 3, supposing there exists a PPT forger A who breaks the security of
the aggregate Γ -signature with non-negligible probability, we present another
PPT algorithm B who can solve the NMDL problem also with non-negligible
probability. Denote by (X = xP, x) the public and secret key pair of the target
honest user, where x← Z∗q . The algorithm B takes (G,X) as input (where G is
the underlying cyclic group defined in the elliptic curve), runs A as a subroutine,
and works as follows.
B controls and programs the random oracle H. Whenever A asks the tar-

get user to sign a message m, B answers the signing query by running the
Γ -signature simulator as described in [69]. As analyzed in [69], the simula-
tion is statistically indistinguishable from what A gets in reality. Finally, sup-
pose that A outputs a valid aggregate Γ -signature denoted (T̂ , Â, z), where
T̂ = {(X1,m1), · · · , (Xn′ ,mn′)}, Â = {A1, · · · , An′}. Assume that there are
n′′ distinct elements X̄ = {Xi1 , · · · , Xin′′ } in X̂ = {X1, · · · , Xn′}, where Xij

appears tj times in X̂ and
∑n′′
j=1 tj = n′. For each j, 1 ≤ j ≤ n′′, denote by

Ij = {j1, · · · , jtj} the set of indices that Xij appears in X̂ where 1 ≤ jα ≤ n′

for 1 ≤ α ≤ tj ; specifically, Xij = Xj1 = · · · = Xjtj
. B outputs {T̄ , Ā, z}, which

are specified below:

– T̄ = {(b1, Xi1 ,m1), · · · , (bn′′ , Xin′′ ,mn′′)}, where for each j, 1 ≤ j ≤ n′′,
bj = −1 and mj = mj1 || · · · ||mjkj

.

– Ā = {(b′1, A1, λ) · · · , (b′n′ , An′ , λ)}, where for each i, 1 ≤ i ≤ n′, b′i = 1, and
λ represents the empty string.

According to the security analysis of Γ -signature in [69], what seen by A
under the run of B is statistically indistinguishable from what seen in real-
ity. Thus, with also non-negligible probability, A will output a valid aggre-
gate Γ -signature (T̂ , Â, z) under the simulation of B. Consequently, B outputs
(T̄ , Ā, z) with the same probability. Define H ′ : G× ({0, 1}∗)β → Zq as follows:
H ′(X,m1, · · · ,mβ) = H(X,m1)+ · · ·+H(X,mβ) mod q for any β, 1 ≤ β ≤ n′.
It is easy to see that, assuming H{0, 1}∗ → Zq is a random oracle, so is H ′. Fi-
nally, we show that the output {T̄ , Ā, z} by B is a correct solution to the NMDL
problem, by the following observations:

– All the tuples in T̄
⋃
Ā are distinct. This is from the facts that: (1) the

tuples in T̄ are distinct and mj 6= λ, 1 ≤ j ≤ n′′; (2) the tuples in Ā are also
distinct with the same empty string as the third element in each tuple.

– As we assume the aggregate signature (T̂ , Â, z) output by A is valid, we have

that X ∈ X̄ = {Xi1 , · · · , Xin′′}, and zP =
∑n′

i=1 diAi −
∑n′′

j=1 e
′
jXij , where

di = H(Ai) and e′j = H ′(Xij ,mj).
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6 Applications to Bitcoin

In this section, we describe a Merkle-Patricia tree (MPT) aided implementa-
tion of our aggregate signature scheme, and specify its applications to Bitcoin.
The goal is to maximize performance and compatibility with the existing Bitcoin
system, with the least modifications that are inherent in deploying aggregate sig-
natures. Our modifications involve: txid, unlocking script, locking script, Merkle
tree, block construction, block mining and block verification. For presentation
simplicity, we describe our implementation for a hard-fork of Bitcoin (though it
can also be implemented with a soft-fork), in a self-contained manner for ease
of reading.

6.1 Inheritances: Keys, Addresses and Network

Bitcoin uses a specific elliptic curve, as defined in a standard called secp256k1, es-
tablished by NIST. Our aggregate Γ -signature scheme also works on the secp256k1
curve. As for new key pair generation, algorithm KeyGen(1l) is the same as in
the existing Bitcoin system.

As for Bitcoin addresses, we inherit the existing design in Bitcoin. Specifically,
this is the process of generating address from public key through the use of one-
way hash algorithms SHA256 and RIPEMD160,

A=RIPEMD160(SHA256(X)),

where X is the public key and A is the Bitcoin address. The above address is
called P2PKH address. There is another type of address called P2SH address,
which is generated by the following equation:

A=RIPEMD160(SHA256(script)).

We also use the Base58 [3] and Base58Check [6, 2] formats for unambiguously
and compactly encoding Bitcoin data such as addresses, etc.

We adopt the existing Bitcoin network which is structured as a peer-to-peer
(P2P) network on top of the internet. And the Bitcoin network refers to the col-
lection of nodes running the Bitcoin protocol. When a peer receives data, it will
broadcast the data to its neighbouring peers after some necessary verification.
With the usage of P2P network, in a very short period of time, the data such as
transactions and blocks can be efficiently spread all over the network.

6.2 Transactions

Transactions are the most important part of the Bitcoin system. Everything else
in Bitcoin is designed to ensure that transactions can be created, propagated on
P2P network, validated, and finally added to the global ledger of transactions
(i.e., the blockchain).

The Bitcoin transaction consists of fields such as version, in-counter, inputs
list, out-counter, outputs list and locktime, which is shown in Table 3.

Within the inputs list field of transaction, it consists of
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Field Description Size

version Transaction version number 4 bytes
in-counter Counter of inputs 1-9 bytes
inputs-list List of transaction inputs variable
out-counter Counter of outputs 1-9 bytes
outputs-list List of transaction outputs variable
locktime Earliest time that a transaction is valid 4 bytes

Table 3. Structure of Bitcoin transaction

– txid: a pointer to the transaction containing the unspent transaction output
(UTXO).

– vout: the index number of the UTXO to be spent.
– unlocking script: a script that fulfills the conditions of the UTXO locking

script.
– sequence: the block number where the UTXO is recorded in the blockchain.

In the Bitcoin system, txid is the double SHA256 hash of the transaction,
including the witness (i.e., the associated signature). It is inherently impossible to
retrieve the txid whenever aggregate signature is used, where multiple individual
signatures are replaced with the aggregate signature in the block. So, for AS-
based implementations, we modify the txid to be the double SHA256 hash of
the transaction without witness. Note that tampering with the witness data is
the source for launching transaction malleability attacks [19]. Removing it from
the hash input in generating txid also removes the opportunity for transaction
malleability attacks. This can also greatly improve the implementations for many
other protocols, such as payment channels, chained transactions, and lightning
networks.

Unlocking script of P2PKH is in the format of <sig><PubK>, where PubK
is a public key and sig is a signature signed by the private key corresponding
to PubK; The unlocking script of P2SH has a basic format of <sig I><sig
J>, mainly for multi-signature. In our modifications, the sig is generated by
the Sign(X,x,m) of Γ -signature (where m is part of a transaction defined by
SIGHASH flag), which replaces the existing EC-DSA signature.

Within the outputs list field of transaction, it consists of (1) value which
is an amount of Bitcoin; and (2) locking script which is a cryptographic puz-
zle that determines the conditions required to spend the output. As for op-
erations OP CHECKSIG and OP CHECKMULTISIG among locking script of
P2PKH and P2SH, the EC-DSA verification procedure is replaced by running
V erify(X,m, σ = (d, z)) of Γ -signature.

6.3 Block

A block is a container data structure that collects transactions for inclusion in
the public ledger, the blockchain. The block consists of a header, containing
metadata, followed by a long list of transactions, which is shown in Table 4.
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Field Description Size

magic-no Value always 0xD9B4BEF9 4 bytes
blocksize Number of bytes following up to end of block 4 bytes
blockheader Consists of 6 items 80 bytes
tx-counter Counter of transactions 1-9 bytes
transactions List of transactions variable

Table 4. Structure of Bitcoin block

Each block is identified by a hash which is generated by running the SHA256
cryptographic hash algorithm twice on the block header. The size of block header
is 80-bytes, and its structure is shown in Table 5.

Field Description Size

version Block version number 4 bytes
hashPrevBlock Hash of the previous block header 32 bytes
hashMerkleRoot Hash of Merkle tree root in the block 32 bytes
timestamp Current timestamp as seconds 4 bytes
bits Current target in compact format 4 bytes
nonce 32-bit number 4 bytes

Table 5. Structure of Bitcoin blockheader

Every block in blockchain contains a summary of all the transactions using a
Merkle tree. A Merkle tree, also known as a binary hash tree, is a data structure
used for efficiently summarizing and verifying the integrity of large sets of data.
In our modifications, we build Merkle tree with our modified txid which is the
double SHA256 hash of the transaction without witness.

In the existing Bitcoin system, after validating transactions a miner will add
them to the memory pool or transaction pool where transactions await until they
can be included (mined) into a block. We adopt Merkle-Patricia tree (MPT) [53]
to play the role of memory pool and to perform duplication check, as the elements
in T̂ and Â in our aggregate Γ -signature are required to be distinct. MPT can
provide a cryptographically authenticated data structure that can be used to
store (key, value) pairs, and enjoys a faster speed both in element searching and
in outputting ordered elements. The algorithm Agg in our aggregate Γ -signature
can be implemented with MPT as follows.

– Initialize two empty MPT instancesMPTÂ andMPTT̂ , whereMPTÂ (resp.,

MPTT̂ ) is for the set of Â (resp., T̂ ).
– Traverse the received transactions and do the following. For every transac-

tion input, extract the public key Xi and the signature σi = (di, zi) in the
unlocking script, and mi that is the specific part of a transaction defined by
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SIGHASH flag; Then, calculate Ai from σi, and search in MPTA, MPTT to
check whether there already exists Ai or (Xi,mi); Finally, verify (Xi,mi, σi)
with our V erify algorithm.

– If there already existsAi or (Xi,mi), or V erify algorithm outputsREJECT ,
drop the current transaction, and loop to the next transaction.

– Insert Ai and (Xi,mi) to MPTA and MPTT respectively, and set z := z+zi
mod q.

– When all the transactions are traversed, output the ordered list of Ai’s as
Â, the ordered list of (Xi,mi) as T̂ , and a number z ∈ Zq.

Now, we pay attention to P2SH unlocking script multi-signature, where N
public keys are recorded in the script and at least M of them must provide sig-
natures to unlock the funds. In order to aggregate the multi-signature, a Bitcoin
node should extract each tuple (Xj ,m, σj) from the M provided signatures on
the same message m, and deals with it like a normal transaction input.

After collecting enough transactions, the miner constructs a candidate block,
with the only witness of aggregate signature (Â, z) being placed at the end of
block as specified by segregated witness (SegWit).4 This way, our result inherits
all the advantages of SegWitness, besides enjoying a more compact witness.

When a miner finds a solution nonce (that is inserted into the block header)
such that the block header hash is less than the target, the miner transmits the
candidate block to all its peers immediately. By the consensus mechanism of
Bitcoin, every node independently validates the new block before propagating it
to its peers, which ensures that only valid blocks are propagated on the network.
Instead of individually validating all the transactions within the block, with our
modifications, each node only needs to simply verify one aggregate signature
with algorithm AggV erify(T̂ , Â, z), as follows.

– Note that both T̂ and Â are ordered. In order to ensure the elements within
are distinct, just traverse the lists T̂ and Â to confirm that every two adjacent
elements are different and are monotonically incremented.

– If the elements are not distinct in the above step, abort and outputREJECT .
Otherwise, continue with the next procedure.

– Execute the aggregate signature validation, and output ACCEPT if the
verification is successful. Otherwise, output REJECT .

7 Conclusion and Future Work

In this work, we present the first aggregate signature (AS) scheme from general
elliptic curve groups without bilinear maps. Compared to a list of individual
signatures (on potentially pairwise distinct messages), the storage volume of sig-
natures reduces about 49.8% and the signature verification time can even reduce

4 Segregated witness is an architectural change to Bitcoin, which aims to move the
witness data from the field of scriptSig (unlocking script) in a transaction into a
separate witness data structure.



18 Yunlei Zhao

about 72% with the proposed AS scheme. Its provable security is based on a new
assumption, named non-malleable discrete logarithm (NMDL), which is proved
in the generic group and random oracle model (and is also implied by the DL
assumption and a weaker non-black-box assumption). We suggest the NMDL as-
sumption should be of independent interest, and could find more cryptographic
applications in the future. Finally, we specify in detail the application of the
proposed AS scheme to Bitcoin, with the goal of maximizing performance and
compatibility. Towards that, we adopt a Merkle-Patricia tree based implemen-
tation of our AS scheme. Besides security inherited from Bitcoin, the AS-aided
system is also more friendly to segregated witness, and provides better protection
against transaction malleability attacks.

Though using both generic group model and random oracle model is not rare
(particularly for arguing security of practical cryptographic schemes, e.g. [12,
14, 61, 63]), it is interesting to investigate whether practical AS schemes from
general groups can be built with provable security only in the random oracle
model. Note that our aggregate signature only about halves the bandwidth or
storage volume of signatures. Studying the (im)possibility of constant-size AS
from general groups is an important question for future research, on which we
are inclined to a theoretical impossibility result (at least for the case of black-box
security reduction).
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A A Variant of Aggregate Γ -Signature

A variant of the aggregate Γ -signature scheme is described in Table 6.
Here, the algorithms (KeyGen, Sign, V erify) constitute a variant of the Γ -

signature scheme presented in Section 2.3, where the value A (rather than d =
H(A) in the original Γ -signature) is output as part of the signature. This change
does not affect the provable security of Γ -signature, but the result signature, i.e.,
(A, z), is one bit longer than (d, z). Specifically, the bit length of d is l = log q =
256, while that of A is l + 1 = 257 over the secp256k1 curve. This variant has
some advantages, on the following grounds: (1) the verification of individual
signatures and that of aggregate signature are more compatible; (2) it can be
more efficient for signature aggregation.



22 Yunlei Zhao

KeyGen(1l) Sign(X,x,m) Verify(X,m, σ = (A, z))
x← Z∗q r ← Zq d := H(A)
X := xP A := rP e := H(X,m)
return (x,X) d := H(A) if (zP + dA+ eX) 6=∞

e := H(X,m) return REJECT
z := −(rd+ ex) mod q else
return σ = (A, z) return ACCEPT

Agg({(X1,m1, σ1), ..., (Xn,mn, σn)}) AggVerify(T̂ , Â, z)

T̂ := ∅, Â := ∅, z := 0 if elements in T̂ are not distinct
for i = 1 to n return REJECT

if V erify(Xi,mi, σi) = ACCEPT ∧ (Xi,mi) /∈ T̂ ∧Ai /∈ Â if elements in Â are not distinct

T̂ := T̂ ∪ {(Xi,mi)} return REJECT

Â := Â ∪ {Ai} if |T̂ | 6= |Â|
z := z + zi mod q return REJECT

return (T̂ , Â, z) n′ := |T̂ | = |Â|
for j = 1 to n′

dj := H(Aj), ej := H(Xj ,mj)

if(zP +
∑n′

j=1(djAj + ejXj)) 6=∞
return REJECT

return ACCEPT

Table 6. Variant of Aggregate Γ -signature


