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Abstract. Fiat currency implemented as a blockchain can enable multi-
ple benefits such as reduced cost compared to expensive handling of cash
and better transparency for increased public trust. However, such de-
ployments have conflicting requirements including fast payments, strong
user privacy and regulatory oversight. None of the existing blockchain
transaction techniques supports all of these three requirements. In this
paper we design a new blockchain currency, called PRCash, that addresses
the above challenge. The primary technical contribution of our work is a
novel regulation mechanism for transactions that use cryptographic com-
mitments. We enable regulation of spending limits using zero-knowledge
proofs. PRCash is the first blockchain currency that provides fast pay-
ments, good level of user privacy and regulatory control at the same
time.

1 Introduction

Over the last ten years, decentralized cryptocurrencies based on blockchains have
gained significant attention. The primary technical primitives of blockchains are
consensus and transactions. Currencies like Bitcoin [1] leverage permissionless
consensus schemes and therefore operate without any trusted authority. The
main drawback of permissionless consensus is low performance. Permissioned
blockchains, such as ones based on Byzantine agreement, achieve better perfor-
mance, but require pre-assigned validators. Regardless of the chosen consensus
model, most blockchains use transactions that offer some level of anonymity. Ad-
ditionally, blockchains provide transparency of money creation and transaction
correctness.

While blockchains were originally envisioned to operate without any trusted
parties, recently the idea of central banks issuing a fiat currency on a blockchain
has gained popularity [2,3,4,5,6,7,8,9]. A fiat currency implemented as a blockchain
could provide multiple benefits to the society, including reduced cost compared
to expensive handling of cash, improved privacy over current non-anonymous
digital payments like credit card payments, and transparency for increased pub-
lic trust.

Fiat currencies have critical requirements. The first is high performance, as
the such systems must be able to handle high transactions loads fast (e.g., process
thousands of payment transactions per second overall and confirm individual



payments within seconds). The second requirement is user privacy. The third
is regulation, as without any regulatory oversight, criminal activities such as
money laundering are difficult to prevent. The lack of regulatory support is a
major obstacle for the adoption of cryptocurrencies as fiat money.

High performance, strong anonymity and regulatory oversight are conflicting
requirements and current blockchain transaction techniques provide only some
of them. For example, transactions that use plaintext identities and amounts are
fast to process and easy to regulate but provide no privacy. Usage of pseudonyms,
similar to Bitcoin transactions, improves user privacy, but makes regulation in-
effective. Novel transaction techniques like Confidential Transactions [10] and
Mimblewimble [11] leverage cryptographic commitments for increased privacy
protection. Such transaction enable hidden payment identities and values and
easy transaction mixing but no regulation. More sophisticated cryptographic
schemes like Zerocash [12] provide full transaction unlinkability which is of-
ten considered the strongest notion of privacy for blockchain currencies. Recent
research has also shown how regulatory oversight can be added to such pay-
ments [13]. However, such techniques suffer from poor performance. For example,
creation of Zerocash transactions takes up to minutes and requires downloading
the entire ledger which may be infeasible on resource-constrained mobile devices.
Therefore, such solutions cannot easily replace cash or card payments.

In this paper, we design a new blockchain currency, called PRCash, that ad-
dresses the above conflict between performance, privacy and regulation. The
main use case for our solution is to enable deployment of fiat money on a
blockchain by a trusted authority like a central bank. We focus on the permis-
sioned blockchain model where transactions are confirmed by a set of appointed
validators, because permissioned consensus provides significantly better perfor-
mance. We assume that money is issued by a central authority. However, we
emphasize that our solution is orthogonal to how consensus is achieved or how
money is issued.

The primary technical contribution of our work is a novel regulation mecha-
nism. We use commitment-based Mimblewimble transactions [11] as a starting
point for our solution, because such transactions provide attractive hiding prop-
erties and sufficient performance. We add regulatory support to such transac-
tions using a novel zero-knowledge proof construction and improve the privacy
of Mimblewimble with small modifications to the transaction creation protocol.

In our regulation scheme, we limit the total amount of money that any user
can receive anonymously within an epoch. Such limits are implemented using
verifiable pseudorandom identifiers and range proofs. We choose to control re-
ceiving of money, to mimic existing laws in many countries (e.g., in the US,
received cash transactions exceeding $10,000 must be reported to the IRS), but
our solution can be easily modified to limit spending as well. The user can choose
for each payment if it should be made anonymous as long as he stays within the
allowed limit, chosen by a regulatory authority. Anonymous transactions preserve
the privacy properties of Mimblewimble, i.e. they hide payer identity, recipient
identity and the transaction value. While validators of the blockchain system



have limited ability to link transactions with the same recipient issued within a
short period of time, privacy towards third parties is even improved compared
to Mimblewimble due to validators mixing transactions which removes the link
between transaction inputs and outputs.

We implemented a prototype of PRCash and evaluated its performance.
Transaction creation and verification is fast. For example, creation of a typical
transaction and associated proofs takes less than 0.1 seconds and verification of
1000 transactions per second is possible with modest computing infrastructure
(e.g., 4 validators with 25 quad-core servers each). When standard Byzantine
agreement is used for consensus, transactions can also be confirmed quickly (e.g.
within a second), which makes PRCash suitable for real-time payments.

Our regulation mechanism maintains the core privacy properties of Mim-
blewimble transactions, namely hidden sender and recipient identities and trans-
action amounts and easy mixing. Similar to Mimblewimble, our solution does
provide full unlinkability of transactions. To the best of our knowledge, PRCash
is the first blockchain currency that provides high performance, significantly
improved privacy and regulation support at the same time.

Regulation based on zero-knowledge proofs has been previously proposed
for coin-based currencies by Camenisch et al. [14]. In contrast to our solution,
coin-based currencies used in [14] do not hide the recipient identity or provide
transparency. Regulation extensions have also been designed for Zerocash [13].
While such schemes provide stronger anonymity guarantees and more expressive
regulatory policies than our solution, their performance is significantly inferior
which prevents usage in many practical scenarios. Finally, centrally-issued cryp-
tocurrencies, like RSCoin [7], have been proposed prior to us. The main focus of
such works is on consensus performance while our work focuses on transaction
privacy and regulation.

To summarize, in this paper we make the following contributions:

– Novel regulation mechanism. We propose PRCash, a new blockchain cur-
rency. The primary technical contribution of this solution is a novel regula-
tion mechanism that leverages zero-knowledge proofs for commitment-based
transactions.

– Implementation and evaluation. We show that our transactions and regula-
tion mechanism enable fast, fault-tolerant, large-scale deployments.

The rest of this paper is organized as follows. Section 2 gives an overview of our
solution. Section 3 describes our currency in detail. We analyze the security in
Section 4 and explain our implementation and evaluation in Section 5. Section 6
reviews related work and Section 7 concludes the paper.

2 PRCash Overview

Our goal in this paper is to design a new blockchain currency that enables fast
payments at large scale, strong user privacy and regulatory support. The primary
deployment model we consider is one where our solution is used by a central bank
to implement fiat money on a blockchain. In this section we give an overview of
our solution, PRCash.



2.1 System and Trust Model

Figure 1 shows our system model. We consider a standard permissioned blockchain
model that is complemented with a regulatory authority and a central issuer of
money. Here, we describe the involved entities:

Issuer. In our currency new money is created by a central entity called the
issuer. For simplicity the primary model we consider in this paper is one
where the issuer is a single entity like a central bank. In Appendix B.5 we
explain how this role can be distributed if needed.

Users. Users in our system can act in two roles: as payers and as payment
recipients. Users of the currency can be private individuals or organizations.

Validators. We assume a set of permissioned validators that maintain the
ledger. The role of the validators could be taken, e.g., by commercial banks
or other institutions appointed by the central bank.

Regulator. The flow of money is regulated by a central entity called the reg-
ulator. For simplicity, we assume that the role of the regulator is taken by
a single entity, e.g., by a public authority like the IRS. In Appendix B.6 we
explain how this role can be distributed among multiple parties.

If PRCash is used for a privately-issued currency, these roles can be assigned
differently.

We consider an adversary that controls all networking between the users and
from users to validators. The validators and the regulator are connected with
secure links. Users are in possession of the public keys of the validators and
the regulator and can establish secure connections to them. We otherwise rely
on the standard assumptions of permissioned consensus (i.e., honest two-thirds
majority of validators).

2.2 High-Level Operation and Regulation Main Idea

In many countries, the law requires reporting of large financial transactions.
For example, in the US companies and individuals are mandated to report any
received cash transaction that exceeds $10,000 [15]. To enable enforcement of
such laws, we design a regulation mechanism that limits the total amount of
anonymous payments any user can receive within a time period (epoch). By ad-
justing the amount and the period, authorities can control the flow of anonymous
money, e.g., reception of anonymous payments up to $10,000 could be allowed
within a month. With small changes, limits can also be put on spending instead
of receiving.

Figure 1 illustrates the high-level operation of PRCash. To supply new money,
the issuer creates signed issuance transactions that it sends to the validators, who
verify them and publish them to the ledger. Each user enrolls in the system by
obtaining a payment credential (certificate) from the regulator. As the user may
lose his certificate, or the corresponding private key, we limit their validity to
I∆ epochs.

Payments involve two parties: the payer (Alice) and the recipient (Bob). To
initiate a payment, Alice and Bob first agree on the transaction value. Each pay-
ment transaction consists of inputs and outputs (where the inputs are outputs
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Fig. 1. System model and operation. In PRCash, new money is created centrally
by the issuer. Users enroll in the system by obtaining certificates from the regulator.
In each payment, the payer (Alice) and the recipient (Bob) prepare a transaction that
is sent to permissioned validators who verify its correctness and add it to the next
block in the public ledger. If the transaction exceeds the allowed amount of anonymous
payments for Bob, he has to reveal his identity to the regulator by encrypting it with
the regulator’s public key.

from previous transactions) that are cryptographic commitments that hide payer
and recipient identities and transferred amounts, similar to Mimblewimble [11].
The blinding factors for the output commitments are chosen such that the sum
of the input commitments is equal to the sum of the output commitments, if the
sum of the input values is equal to the sum of the output values. This allows
verifying the correctness of a transaction without knowledge of the transferred
values. One of the outputs is a special non-spendable output to which no value
is attached. This allows the recipient of a transaction to create output commit-
ments without the payer knowing the blinding factor, i.e., the blinding factor of
the commitment is only known to the recipient of a payment, and can thus be
used to authenticate a following payment.

To realize regulation for such transactions, for each payment the user has
two choices. First, if the user wants that the transaction remains anonymous, he
must prove without disclosing his identity that he does not exceed the limit va in
the current epoch e. Second, if the user wants to exceed his anonymous receiving
limit, he must connect his identity encrypted with the regulator’s public key to
the transaction.

For anonymous transactions within the limit, each user computes a pseudo-
random ID per epoch (PIDe) that he attaches to his transaction outputs. He



additionally attaches a zero-knowledge proof that the ID was computed cor-
rectly and a range proof over the sum of all transaction outputs from this PID.
These values are sent together with the transaction outputs to the validators.
The proofs are checked by the validators and after verifying their correctness,
the PIDs and the corresponding proofs are not published with the transactions
for efficiency and to preserve unlinkability towards third parties.

Note that, if they choose to use non-anonymous outputs, the attached proof
contains their identity encrypted with the regulator’s public key, i.e. towards any
other entity, they remain anonymous. Bob prepares his part of the transaction
(that includes value outputs and proofs) and sends it to Alice, who completes
the transaction (by adding inputs, change outputs, proofs, and an encrypted
identifier in case of a non-anonymous transaction). Alice sends the complete
transaction to the validators.

The validators work in rounds. In each round, the validators collect incoming
transactions, verify their correctness, mix the order of transaction inputs and
outputs for increased privacy, and agree on the set of transaction that should be
published. Consensus among validators is achieved through standard (Byzantine
fault tolerant) protocols. At the end of the round, the validators publish a set
of verified transactions as a new block on the ledger. Once the recipient (Bob)
verifies the presence of the transaction in the ledger, he considers the payment
confirmed. Bob can then use the value outputs from this transaction as inputs
in the next payment.

If a transaction does not pass the verification (e.g., Alice or Bob attempts
to create a transaction that exceeds the allowed anonymity limit, transaction
inputs and outputs do not match, or one of the attached proofs is invalid), the
transaction is rejected by the validators and not included in the next block. If
the transaction contains any non-anonymous outputs, the validators first verify
its correctness, and then forward the encrypted identifier to the regulator, who
can recover the identity of Alice or Bob, depending on which transaction output
was made non-anonymous.

Since anonymous change outputs are indistinguishable from anonymous value
transferring outputs, they count towards the receiving limit. However, as users
are in control of the size of the outputs they receive, they can mitigate this issue
by using smaller received outputs, by splitting larger outputs in non-anonymous
transactions, or by creating large change outputs non-anonymously.

3 PRCash Details

In this section, we describe PRCash in further detail. Our solution uses a number
of cryptographic techniques as building blocks. We provide background on them
in Appendix A.

3.1 System Initialization

Our system uses two groups G = 〈g〉 and G = 〈g1〉 = 〈g2〉 = 〈h〉 of the same
order, where the discrete logarithms of g1, g2, and h with respect to each other
are unknown. The involved entities perform the following initialization steps:



Regulator. The regulator generates a keypair (pkR,S , skR,S) for randomizable
signatures (cf. Appendix A.4), an encryption keypair (pkR,E , skR,E) for El-
gamal encryption, and publishes the public keys as part of the system setup.

Validators. Each validator creates a keypair and publishes the public key as
part of the system setup. Validators can use the private keys for signing new
blocks. Users use the validator public keys to send transactions securely to
the validators. We assume the typical permissioned blockchain model where
a trusted authority dynamically assigns a set of validators, i.e. the set of
validators can be updated.

Issuer. The issuer also creates a keypair that he uses for transactions that create
and delete money. The issuer publishes his public key as part of the system
setup.

3.2 User Enrollment

Every new user obtains the system setup that includes the public keys of the
regulator, issuer, and validators. To enroll in the system, the user generates a
keypair (pkU , skU ) = (g1

skU , skU ) for regulation proofs and sends the public key
to the regulator while proving knowledge of the secret key (cf. Appendix A.2).
To ensure that a user cannot enroll multiple identities, and thus circumvent
the regulation, the regulator has to verify the identity of the user. If a PKI is
already in place, this can be used for identification, otherwise users could, e.g.,
be required to visit a registration office in person.

The regulator then creates a certificate consisting of a randomizable signature
σ on (skU , IV ) based on the user’s public key pkU and IV , the index of the first
epoch in which the certificate is valid, and sends the signature σ to the user.
Recall that a randomizable signature is a signature on a list of committed values
(cf. Appendix A.4). Using values pkU and IV , the regulator creates and signs
the commitment pkU · g2

IV hr = g1
skUg2

IV hr where r is chosen at random.

3.3 Transaction Creation

Blockchain transactions based on cryptographic commitments, such as Confi-
dential Transactions [10] and MimbleWimble [11], have attractive features. They
hide payer and recipient identities and transaction amounts, provide public ver-
ifiability and easy mixing. However, such transaction have also the undesirable
property that the payment recipient necessarily sees the change outputs cre-
ated by the payer. This means that, e.g., a merchant can link two independent
sales if a client uses a change output from a previous transaction with the same
merchant. For these reasons, we use MimbleWimble (cf. Appendix A.6) as our
starting point, but modify transaction creation slightly for improved privacy.

Similar to [10,11], our transactions are based on a group G in which the
discrete logarithm problem is hard, with generators g and h for which the discrete
logarithm to each others base is unknown. These generators are used to represent
transaction inputs and outputs as homomorphic commitments to the associated
value (we use Pedersen commitments [16]), thereby hiding their values from other
parties. The homomorphic commitments have the property that one can easily
add and subtract committed values without opening the commitments, e.g. for



two output commitments Out1 = gr1hv1 and Out2 = gr2hv2 to the values v1 and
v2, one can easily compute a commitment to their sum v1+v2 by multiplying the
commitments: gr1hv1 · gr2hv2 = gr1+r2hv1+v2 . If the blinding factors are chosen
such that the sum of the blinding factors of the inputs is equal to the sum of the
blinding factors of the outputs, this property can be used to check that the sum
of the input values of a transaction is equal to the sum of the output values, and
the knowledge of the blinding factors can be used to authenticate and authorize
payments [11] by creating an additional excess output Ex0 = gr0 such that the
product of the output commitments (including Ex0) is equal to the product of
all input commitments.

In our modified version, the exponent in Ex0 is simply another random value,
but we add an additional output value r∆ which facilitates mixing transactions
and which has to be chosen such that the product of all output commitments
and gr∆ is equal to the product of the inputs. We provide the details of our
modified Mimblewimble construction in Appendix B and show in Appendix B.2
that the knowledge of the blinding factor of an output is a secure method for
payment authorization.

3.4 Regulation Proof Creation

In each epoch e, the user computes a pseudorandom ID as PIDe = fskU (e)
(cf. Appendix A.1) and initializes the value of anonymously spent transaction
outputs to ve = 0. Regulation proofs are created either when Bob creates value
outputs during transaction preparation or when Alice creates change outputs
during transaction completion. For each output, the user can choose if it should
be made anonymous or non-anonymous. For each new output, the user creates
a regulation proof. Depending on whether the output should be anonymous or
not, he does one of the following to construct the proof:

Anonymous Output. If the user wants to create an output anonymously
and the value vo of the transaction output plus the previously (in epoch e)
received amount ve is below the limit va, the user adds PIDe and a zero-knowledge
proof of knowledge (cf. Appendix A.2) of (skU , IV , σ) to the transaction such
that:

(i) The certificate is valid in the current epoch, i.e., a range proof that Icurrent−
I∆ < IV ≤ Icurrent.

(ii) The value PIDe is equal to the output of the pseudorandom function based
on the secret key skU on input e, i.e., PIDe = fskU (e).

(iii) The certificate is valid, i.e. verify(pkR,S , (skU , IV ), σ) = true

In detail, the regulation proof consists of the following steps:

(i) The user creates two commitments A = g1
skuhr1 and B = g2

IV hr2 with
two fresh random values r1 and r2 and proves knowledge of a signature on
the openings of these commitments.

(ii) Prove that B is a commitment to an integer in the range [Icurrent − I∆ + 1, Icurrent].
(iii) Given the commitment A to the value skU , prove that

PIDe = fskU (e) = g1/(e+skU )



i.e., this is the following proof of knowledge:

PK{(α, γ) : A = g1
αhγ ∧ g · PID−ee = PIDαe }

We use the common notation where greek letters correspond to values of
which knowledge is being proven (cf. Appendix A.2). In the proof above, α
corresponds to skU and γ corresponds to the blinding value of the commit-
ment. The second term proves that the ID was computed correctly since

g · PID−ee = PIDαe

⇒ g = PIDe+αe

⇒ g
1

e+skU =
(
PIDe+αe

) 1
e+α = PIDe

The interactive protocol can be easily converted to a non-interactive signa-
ture on the message M = H(o) using the Fiat-Shamir heuristic [17], where
o is the transaction output. Including this message in the zero-knowledge
proof binds the proof to the transaction output.

(iv) The user additionally creates a range proof over the product of all anonymous
outputs that share the same identifier PIDe, proving that their combined
value ve + v0 is below the allowed limit va.

The user then updates ve := ve + vo after completing the transaction.
Non-anonymous Output. If the user does not want to create the output

anonymously or the value vo of the output plus ve is above the transaction
amount limit va, the user adds his public key encrypted with the public key of
the regulator to the transaction, together with a proof that the encryption was
created correctly. The user completes the following steps to create the regulation
proof:

(i) The user creates two commitments A = g1
skuhr1 and B = g2

IV hr2 with
two fresh random values r1 and r2 and proves knowledge of a signature on
the openings of these commitments.

(ii) Prove that B is a commitment to an integer in the range [Icurrent − I∆ + 1, Icurrent].

(iii) Compute C = ENC(pkU , pkR,E) =
(
gy1 , pky1R,E · pkU

)
(iv) Given the commitment A to the value skU , prove that

C = ENC(pkU , pkR,E) =
(
gy1 , pky1R,E · pkU

)
i.e., this is the following proof of knowledge:

PK{(α, γ1, γ2) : A = g1
αhγ1 ∧ C[0] = gγ2 ∧ C[1] = pkγ2R,Eg

α}

Here, α again corresponds to skU and γ1 corresponds to the blinding value
of the commitment, while γ2 corresponds to the random value used for the
Elgamal encryption of the users public key. The interactive protocol can
again be converted to a non-interactive signature on the message M = H(o)
using the Fiat-Shamir heuristic [17], where o is the transaction output, to
bind the proof to the transaction output.



3.5 Transaction Verification

The validators work in rounds and verify every received transaction. A transac-
tion is correct, if

(i) all inputs are unspent outputs of previous transactions,
(ii) the range proofs for all outputs are correct,
(iii) the zero-knowledge proof for excess outputs is correct, and
(iv) the total amount of transaction inputs matches the outputs: Πn

i=1Ini = gr∆ ·
Ex0 ·Πk+m

i=1 Outi

In addition to verifying the correctness of the transaction itself, the validators
verify the regulation proofs. First, the validators verify the randomized certifi-
cate, i.e., they verify the signature on the provided commitments and check if the
range proof for IV is correct. If the verification fails, the transaction is discarded.

Otherwise, for anonymous transaction outputs, the validators verify that
PIDe has been computed correctly and that the proof is bound to the associated
output. If this check succeeds, they compute the product of all outputs from
epoch e that share the pseudorandom identifier PIDe and check if the provided
range proof holds for this product. If this is the case, the total associated value
is below the allowed limit and the transaction can be included in the next block.
Otherwise, the transaction is discarded.

For non-anonymous transaction outputs, the validators verify the correspond-
ing regulation proof, i.e., that the public key of the user has been encrypted
correctly with the public encryption key of the regulator and that this proof is
bound to the associated transaction output. If these verifications are successful,
the validators include the transaction in the next block and forward the output
and the proof to the regulator, otherwise the transaction is discarded.

When the regulator receives transaction outputs with their corresponding
proofs, he can decrypt the encrypted public key which serves as identifier for the
user. The regulator also checks the proofs to ensure that the output was indeed
created by the owner of the corresponding public key. Since the regulator knows
the real-world identities associated with each public key, he can then take action
as required.

In Appendix B, we provide details on how transactions in a block can be
mixed by the validators, how blocks can be structured and on how the issuer
can create and destroy currency.

4 Security Analysis

In this section, we provide an informal security analysis of PRCash. We first
discuss the integrity guarantees of the system. Then we discuss the provided
privacy properties, in particular, how our modifications of Mimblewimble [11]
(which provides value and identity hiding, but not full unlinkability) and the
added regulation impact privacy.

Payment authorization. We first consider an attacker that tries to spend
an output belonging to another user without the knowledge of the corresponding
blinding factor. We show in Appendix B.2 that if an adversary capable of such an



attack exists, our assumptions are violated, namely either the discrete logarithm
problem can be solved efficiently in the used group or the adversary knows the
discrete logarithm of h to base g, where g and h are the generators used for the
commitments. The intuition behind this is that, to create a valid transaction,
the outputs require range proofs for which knowledge of the blinding factor is
needed and the outputs have to be chosen such that their product is equal to
that of the inputs.

Double-spending protection. During each round, each non-compromised
validator discards transactions with previously used or otherwise invalid inputs
(cf. Section 3.5), and then all validators run a Byzantine fault tolerant consen-
sus protocol. Thus, compromised validators cannot produce a block that would
contain conflicting transactions and will be accepted by the network.

Creation of money. Only the issuer can create new money. Creation of
money using normal transactions is prevented as the validators verify (i) the
range proofs of all outputs for overflow and (ii) that the sum of inputs values
matches the sum of output values, and only include compliant transactions in
the next block. The underlying consensus protocol guarantees that each block
contains only compliant transactions.

Regulation enforcement. The security of our regulation system relies on
the security of the underlying zero-knowledge proofs and the pseudorandom func-
tion. The pseudorandom function (cf. Appendix A.1) is secure under the deci-
sional Diffie-Hellman inversion assumption (DDHI). The zero-knowledge proofs
rely on the hardness of the discrete logarithm problem (which is implied by
DDHI) and they are secure as non-interactive proofs in the random oracle model
using the Fiat-Shamir heuristic [17,18].

Privacy towards third parties. Transaction values are completely hidden
and can therefore not leak any information about a transaction. Additionally,
all transactions are mixed by the validators, and since the delta outputs of all
transactions are summed up (cf. Section 3.3) and not published individually, it
becomes impossible for third parties examining the ledger to determine which
outputs belong to which inputs, even for a merchant receiving a transaction.
PRCash therefore provides k-anonymity [19] against third parties, where k is the
number of transactions in a block. For example, even if an adversary knows that
Alice payed Bob in a transaction with output Out1 contained in a block with 500
transaction inputs, he can only guess Alice’ input with probability of at most
1

500 . If more privacy is desired, blocks can be made larger and validators could
even add dummy transactions (with a tradeoff in efficiency).

Privacy between users. As the payer finalizes the transaction, the recipient
only sees his own outputs, i.e. he is in the same position as the third party entity
with partial information as described above. The payer additionally sees output
commitments from the recipient which allows him to see when the output is
spent. However, once the output has been used, no more information is leaked
to the user.

Privacy towards validators. Recall that we assume the standard trust
model for permissioned consensus where up to one third of the validators may



be malicious or get compromised by the adversary. Malicious validators do not
learn transaction amounts or user identities, as our transactions are based on
cryptographic commitments. Malicious validators can link transaction inputs to
the corresponding outputs for all the transactions that they receive, but they
cannot link inputs to their outputs for transactions that are mixed by other
validators. Additionally, malicious validators are able to link multiple outputs
from the same epoch that share the same pseudorandom ID. Therefore our so-
lution does not provide full unlinkability towards validators. If combined with
additional out-of-band information, this could potentially lead to some loss of
privacy towards validators. The expected number of outputs sharing the same
PID can be controlled by adjusting the length of the epoch (shorter epochs means
fewer transactions with the same PID). Transaction linking can be addressed by
using third party mixing services.

5 Evaluation

We implemented a prototype of PRCash to evaluate its performance. In this
section, we describe our implementation, transaction verification models, veri-
fication overhead, and overall performance in terms of throughput and latency.
We concentrate on performance in terms of verification time as opposed to proof
generation time here, since verification is the limiting factor in our system.
Note, however, that proof generations times are similar to verification times
for all proofs, i.e. transactions can be created efficiently, even on devices with
restricted performance such as mobile phones. On a standard PC, creation of a
typical transaction takes less than 0.1 seconds.

5.1 Implementation

We implemented a prototype that covers the generation and verification of trans-
actions, including regulation proofs. Our implementation uses the randomizable
signature from Pointcheval and Sanders [20] for the generation of certificates.
Other signatures with efficient protocols, such as CL-Signatures [21,22], could
be used as well. We use the RELIC toolkit [23] for the elliptic curve and bilin-
ear map operations. Our implementation makes use of the 256-bit elliptic curve
BN-P256 as the base curve of a type-3 pairing that we use for the random-
izable signatures. Our range proofs use commitments to digits in base 4 (cf.
Appendix A.3) as this is in practice the most efficient base for the size and com-
putation of bit-commitment based proofs. Size and computation required for the
proofs could be optimized using bulletproofs from Bünz et al. [24].

5.2 Verification Models

The throughput and latency of PRCash depends on the used transaction verifica-
tion model. For our evaluation, we consider the following two verification models,
to give examples of performance under different assumptions and requirements.

VM1: Full replication. In this model, all validators verify all transactions,
including the regulation proofs, and consensus is needed on the validity of
all transactions and proofs. This model guarantees transaction correctness,



double-spending protection, and enforcement regulation at all times, assum-
ing our standard permissioned consensus trust model (at most one third
malicious or compromised validators).

VM2: Partitioned regulation, replicated verification. In this model, all
validators verify correctness of all transactions including their range proofs,
but excluding the regulation proofs. Verification of regulation proofs is in-
stead partitioned evenly among the validators. If one validator attests to
the validity of a regulation proof, it is accepted by the other validators. If a
validator gets compromised, users can transact anonymously above the regu-
latory limit. This model may be used, if it is acceptable to lose the ability to
enforce regulation momentarily. Transaction correctness (i.e., no new money
is created and no double-spending occurs) is guaranteed regardless of the
compromise. This model may be suitable, if e.g. regulation is delegated to
commercial banks that act as validators and check the regulation proofs for
their customers.

5.3 Transaction Verification Overhead

We measured the verification overhead (shown in Table 1), averaged over 1000
runs on a single core of an Intel Core i7-4770 CPU, for the following proof types:

ZKPoK of discrete log. This is a zero-knowledge proof of knowledge (ZKPoK)
of the discrete logarithm and is required to verify that an excess output has
no value attached.

PIDProof. This is the proof that the pseudo-random ID was constructed cor-
rectly, i.e., the user who created the proof is in possession of a valid certificate
on his key and that the PID was derived correctly from this key. Depending
on the number of epochs for which the signature is valid, the computation
time differs, due to the included range proof. In Table 1, the measurements
for epoch ranges between 26 and 210 are shown.

EncIDProof. This is the proof that the user who created the proof is in pos-
session of a valid certificate on his key and that his corresponding public
key was correctly encrypted with the public key of the regulator. Again, the
verification time differs depending on the number of epochs for which the
certificate is valid.

RangeProof. The range proof by itself is used to show that an output is in
the correct range, which is necessary to show that no overflow occurs, and to
prove that the sum of anonymous outputs with the same PID are below the
allowed threshold. The size and verification time of the range proof depend
on the size of the range. For example, with a granularity of cents, a range of
232 would allow transaction outputs of up to 43 million dollars.

Most commonly, transactions will have one value-transferring output, one change
output, one or more inputs, plus an excess and a delta output. Since inputs do
not require range proofs, and the time required to compute the commitment to
the sum of their values is negligible compared to the proof verification time, we
can estimate the time required to validate a standard transaction independently



Table 1. The average time for proof verification for different proof types and their
sizes.

Proof Type Time [s] Size [bytes]

ZKPoK of discrete log (DLProof) 0.00038 64
PIDProof (epoch range = 26) 0.01067 1033
PIDProof (epoch range = 28) 0.01235 1226
PIDProof (epoch range = 210) 0.01404 1419
EncIDProof (epoch range = 26) 0.01115 968
EncIDProof (epoch range = 28) 0.01284 1161
EncIDProof (epoch range = 210) 0.01452 1354
RangeProof (range = 28) 0.00665 722
RangeProof (range = 216) 0.01345 1544
RangeProof (range = 220) 0.01678 1930
RangeProof (range = 232) 0.02722 3088

of the number of inputs. In the case of a transaction with two anonymous outputs
(different PIDs each), a full verification of the transaction requires verifying one
ZKPoK of a discrete logarithm, two PID proofs, and four range proofs (one for
each individual output and one per PID).

Since the maximum amount for anonymous transactions is limited, one can
use a smaller range proof than for non-anonymous transactions. For example,
the US requires reporting for transactions above $10,000 [15]. An equivalent
regulatory rule with a granularity of cents would approximately correspond to a
range of 220. Assuming a certificate validity of 210 epochs, this leads to a total
verification time of 0.096 seconds.

For transactions with non-anonymous outputs, we can allow a much larger
range (e.g., 232), since in this case the goal is not to limit transaction size but to
prevent overflows. Such a transaction requires two range proofs, giving, in the
same setting as before, a verification time of 0.084 seconds. Combinations, where
one output is anonymous and one is not, are, of course, also possible. Given this
transaction verification overhead, within one second, roughly ten transactions
can be fully verified on a single core. From this value we can in turn estimate
the required computing resources to handle the expected transaction load.

In verification model VM1, each validator checks all transactions and proofs.
To verify 1000 tps, each validator would require approximately 25 quad-core
servers. In VM2, transactions and range proofs are verified by all validators to
protect against overflows in outputs, but verification of regulation proofs can be
partitioned across the validators. Assuming 16 validators, each of them would
require 15 quad-core servers to process 1000 tps.

In Appendix C, we estimate figures for latency and throughput given a
standard consensus protocol (PBFT [25]) using measurements from Croman
et al. [26]. The numbers show that using 16 validators, a throughput of 480
transactions per second can be achieved. Since the nodes in the experiment by
Croman et al. were globally distributed and only had limited bandwidth, it is
reasonable to assume that higher throughputs can be achieved in the setting
we consider, if validators are geographically close and may even be connected
through dedicated lines.



6 Related Work

Regulation in coin-based currencies. Camenisch et al. introduced an e-cash
system where a trusted authority can control the total amount of anonymously
spent money [14]. We use similar zero-knowledge proof techniques for PRCash.
However, these two solutions have noteworthy differences. In their scheme, it
suffices to limit the number of transactions, since the system is coin-based, i.e.,
the number of spent coins is equal to the amount. In our solution, we also need
to take into account the values of the transactions, while keeping them secret. In
a coin-based scheme, the size of the transaction and the computation required to
verify the proofs grows with the transaction value. Additionally, such a system
is not transferable and thus leaks the total amount received by the merchant
to the bank once it is deposited. Partial value secrecy is possible when offline
payments are allowed, but this option ensures only double-spending detection (no
prevention). In comparison, PRCash provides better privacy, constant payment
overhead, and more transparency.

Regulation in blockchain currencies. Zerocash [12] is a sophisticated
decentralized anonymous payment scheme that leverages a blockchain. Zerocash
provides what is commonly considered the strongest level of anonymity, i.e., it
hides transaction identities and values and makes transactions unlinkable. Gar-
man et al. [13] have proposed a solution for regulation for Zerocash payments.
However, as with regular Zerocash transactions, while verification is efficient,
transaction creation is prohibitively expensive in terms of computation, which
makes it unusable for replacement of cash or card payments, where transaction
should be finalized within seconds. Additionally, Zerocash-style transactions re-
quires full nodes, as a client has to download the entire ledger and decrypt every
transaction to determine whether it is the recipient of the transaction. These
requirements make anonymous transactions unpractical for resource constrained
devices and causes most participants to use unshielded transactions in practice
(i.e. in Zcash [27]), which decreases anonymity overall [28].

Centrally-issued currencies. RSCoin [7] is a centrally-issued cryptocur-
rency solution. The main technical contribution of their work is scalability of
consensus, while the primary contribution of our work is a novel regulation mech-
anism that address the conflict between performance, privacy and regulation.

7 Conclusion

Despite more than three decades of research on digital currencies, their adoption
as fiat money issued by a central bank has not become a reality. While the
reasons for this may be numerous, and not always purely technical, a major
obstacle for their adoption is the fact that such deployments have conflicting
technical requirements. In this paper, we have presented PRCash that is the first
blockchain currency with transactions that are fast, private and regulated at the
same time.
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A Background

In this appendix, we provide background information on the cryptographic prim-
itives that we use as building blocks for our currency.

A.1 Dodis-Yampolskiy Pseudorandom Functions

Dodis and Yampolskiy introduced a pseudorandom function [29] which, for a
secret key sk and a generator g of a group G is defined as

fsk(x) = g1/(x+sk)

This construction is secure if the Decisional Diffie-Hellman Inversion assump-
tion holds in group G.

A.2 Zero-Knowledge Proofs of Knowledge

A zero-knowledge proof of knowledge (ZKPOK) [30] allows one party (the prover)
to prove to another party (the verifier) that a certain statement is true, without
revealing any other information. Well-known techniques for proving knowledge of
a discrete logarithm in zero-knowledge exist, such as [31,32]. We use the notation
introduced in [33] for proofs of knowledge. For example

PK{(α, β) : x = gα1 h
β ∧ y = gα2 }

is a zero-knowledge proof of integers α and β, s.t. x = gα1 h
β and y = gα2

where g1, h, x are elements of a group G1 = 〈g1〉 = 〈h〉 and g2, y are elements
of a group G2 = 〈g2〉. In this notation, the values of which knowledge is proven
are denoted by greek letters and all other values are known to the verifier. Using
the Fiat-Shamir heuristic [17], such proofs can be converted to non-interactive
proofs of knowledge.

A.3 Range Proofs

A range proof [34,35] is a specific type of zero knowledge proof that allows to
prove to a verifier that a committed value lies within a given range. A simple
range proof can consist of proving that the committed value is one of the values
in the interval, e.g., to prove that a commitment C is a commitment grhx where
x ∈ [0, 7] and r is a random blinding factor, one can prove this with the following
proof of knowledge:

PK{(α) : C = gα ∨ C · h−1 = gα ∨ C · h−2 = gα ∨ · · · ∨ C · h−7 = gα}

Clearly, this becomes inefficient with larger ranges. Instead one can decom-
pose the value into multiple commitments to the powers of two (bit commit-
ments), for example, such that the product of these commitments is equal to
the original commitment. It then suffices to prove for every commitment that it
either commits to zero or the correct power of two [36]. The proof above then be-
comes the following proof by splitting the commitment into three commitments
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Fig. 2. Blockchain compression. Given a set of unspent transaction outputs
(UTXOs) the blockchain can be easily compressed when adding new blocks (here
Bk,Bk+1,Bk+2). All inputs of the new blocks are removed from and new outputs are
added the UTXO set. The inputs and outputs can then be removed from the individual
blocks, thus compressing the chain.

C0, C1, C2:

PK{(α, β, γ) :(C0 = gα ∨ C0 · h−1 = gα)

∧(C1 = gβ ∨ C1 · h−2 = gβ)

∧(C2 = gγ ∨ C2 · h−4 = gγ)}

This approach can be generalized to proofs in any base [34].

A.4 Randomizable Signatures

A randomizable signature scheme provides the ability to prove the possession
of a signature on committed values. The signature schemes by Camenisch and
Lysyanskaya [21,22] or the scheme by Pointcheval and Sanders [20] allow to
obtain a signature on a list of committed values without disclosing the values to
the signer. The recipient of the signature can then prove efficiently that he is in
possession of a signature on these values using fresh commitments on the same
values.

A.5 Elgamal Encryption

Elgamal encryption [37] is an encryption scheme based on the difficulty of
the discrete logarithm and thus compatible with standard techniques for zero-
knowledge proofs. Elgamal encryption is secure in a group G if the Decisional
Diffie-Hellman assumption holds in that group. To encrypt a message m ∈ G
with the public key pk ∈ G, a value r is chosen at random and the ciphertext
is then computed as (gr,m · pkr). The recipient of a ciphertext (c1, c2) can then
decrypt the message using the secret key sk (corresponding to the public key
pk) as m = c2 · (csk1 )−1.

A.6 Confidential Transactions and MimbleWimble

In a transaction-based digital currency, Confidential Transactions [10] represent
the transaction input and output values as homomorphic commitments. As the
commitments are homomorphic, one can choose the blinding factors for the
outputs such that the sum of the input commitments is equal to the sum of



the output commitments, if the sum of the input values is equal to the sum of
the output values. This allows verifying the correctness of a transaction without
knowledge of the transferred values.

MimbleWimble [11] uses the same approch, but adds an additional non-
spendable output to which no value is attached. This allows the recipient of
a transaction to create output commitments without the payer knowing the
blinding factor, i.e., the blinding factor of the commitment is only known to
the recipient of a payment, and can thus be used to authenticate a following
payment.

MimbleWimble has the property that the blockchain can be easily com-
pressed. Our solution inherits this property from MimbleWimble. The signed
part of each block contains a hash of the previous block, all excess outputs of
the block, and the sum of the delta outputs. The auxiliary part of the block
contains all transaction inputs and all transaction outputs. Outputs of previ-
ous transactions that are used as inputs in the new block can be removed from
the set of unspent transaction outputs (UTXOs) while new outputs are added.
All spent outputs and inputs can be completely removed from storage once the
UTXO set has been updated. Using the UTXOs, excess and delta outputs of all
blocks, and the values of issuance and deletion transactions, the full chain can
still be verified. All of this combined can be interpreted as one large transaction
that, if valid, implies the validity of the whole blockchain. An example for how
this compression works in PRCash is shown in Figure 2.

B Transaction Details & Block Creation

In this Appendix, we provide the details of the modifications made to Mim-
blewimble [11] transactions, prove that knowledge of the blinding factors can be
used for payment authorization, and we give an overview of how transactions
can be mixed and blocks can be created.

B.1 Transaction Creation

To prevent the transaction tracking of Mimblewimble [11] transactions, men-
tioned in Section 3, we modify the transaction creation such that the payer
finalizes the transaction. To increase payment anonymity further, we also in-
clude another output (r∆) that does not have a value attached. This additional
output is submitted to the validators as a scalar such that multiple transactions
can be merged. Inclusion of such additional output makes it impossible to later
match transaction inputs to corresponding outputs.3

Our transaction creation protocol, that includes the regulation proofs ex-
plained above, is shown in Figure 3. The protocol proceeds as follows:

(i) The recipient, Bob, creates k value outputs Outi = gr
′
ihv

′
i (1 ≤ i ≤ k), for

the payment value vT =
∑k
i=1 v

′
i. For each of the value outputs, he also

3 Matching transaction inputs to outputs after reordering is in general already an NP-
complete problem (subset sum). However, most transactions will only have few inputs
and outputs, which can make linking feasible in practice without this additional
measure.
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Fig. 3. Transaction and block creation. In this example transaction, Alice pays an
amount vT to Bob. First, Bob creates a partial transaction that he sends to Alice, who
completes it by adding her inputs, outputs and proofs. Alice then sends the complete
transaction over a secure connection to a validator. The validators verify and mix the
transactions and reach consensus on a block that they then sign and publish as part
of the ledger. The block in this example consists of the two transactions shown in
Figure 4.

creates a range proof to prove that the value is in a valid range (i.e., that
no overflow occurs where money is created out of nothing). He additionally
attaches a regulation proof to each output as described above in Section 3.4.
He then creates an excess output Ex0 = gr

′
0 that has no value attached,

proves knowledge of r′0 by proving knowledge of the discrete log of Ex0 to
base g (DLProof(Ex0)) and sends his outputs (including range proofs, proof

of knowledge of r′0 and regulation proofs), vT and r′ = r′0 +
∑k
i=1 r

′
i to Alice.

The additional excess output Ex0 is required to ensure that only Bob can
spend his newly created outputs. Otherwise Alice would know the sum of
the blinding factors of his outputs and could thus spend them. An example
for such a partial transaction is shown in Figure 3, where Bob creates one
value output (Out1).

(ii) If Alice agrees with the transaction value vT , with her inputs Ini = grihvi

(1 ≤ i ≤ n), s.t. v =
∑n
i=1 vi and r =

∑n
i=1 ri, she creates m change outputs



Outi = gr
′
ihv

′
i (k < i ≤ k + m), s.t. v −

∑k+m
i=k+1 v

′
i = vT and range proofs

and regulation proofs for these outputs. She then computes a delta output
r∆ = r−

∑k+m
i=k+1 r

′
i−r′ and combines all of her inputs, Bob’s and her outputs

(including all proofs) and r∆ into a complete transaction. Alice’ inputs are
outputs of previous transactions that can be money issuing transactions as
described in Appendix B.5. In the example in Figure 3, Alice uses one input
(In1) and one change output (Out2) in the transaction.

(iii) Finally, Alice sends the complete transaction to one or more validators, as
shown in Figure 3 encrypted under their public keys. The number of valida-
tors depends on the used transaction validation strategy (see Section 5).

Ex0 Out1 Out2 r∆ Ex1 Out3 Out4 r′∆

In1 In2 In3

(a) A transaction from Alice to Bob (on the left) and a transaction from Charlie to
Dave (on the right). The transactions fulfill the conditions In1 = gr∆Ex0Out1Out2 and

In2In3 = gr
′
∆Ex1Out3Out4, respectively.

r∆ + r′∆ Ex0 Ex1 Out4 Out2 Out3 Out1

In1In3 In2

(b) The two transactions from above can be merged as shown here. The merged trans-

actions fulfills the condition Π3
i=1Ini = gr∆+r′∆Ex0Ex1Π

4
i=1Outi and is thus still a valid

transaction. Since the order of inputs and outputs is irrelevant for the validity condi-
tion, inputs and outputs can be reordered arbitrarily (e.g. ordered in binary order).

Fig. 4. Transaction combining. Shown above are two transactions before and after
combining. The first transaction (on the left) goes from Alice to Bob, the second
transaction (on the right) from Charlie to Dave. Outputs created by Alice are marked

, outputs created by Bob , outputs created by Charlie and outputs created by
Dave .

The validators then verify the transaction as described in Section 3.5. Two
example transactions are shown in Figure 4a. For the transaction from Alice to
Bob, the validators check if In1 = gr∆Ex0Out1Out2 and if the proof of knowledge
of the discrete logarithm of Ex0 (DLProof(Ex0)), as well as the range proofs for
Out1 and Out2 are correct.



B.2 Payment Authorization Proof

In this Appendix, we show that, given a group G = 〈g〉 = 〈h〉, a transaction
output Out = grhv can only be spent by an authorized entity, i.e. an entity who
knows the secret blinding factor r.

Theorem 1. If the discrete logarithm problem is hard in G and the discrete
logarithm of h to base g is unknown, the probability that an output Out = grhv

can be spent by an adversary without knowing r is negligible.

Proof. For our proof, we distinguish the following two cases:

Case 1: W.l.g. assume that an attacker is able to create three outputs Out′ =
gr

′
hv, Ex′ = gr

′′
and r∆ s.t. Out = gr∆Ex′Out′, i.e. grhv = gr∆gr

′′
gr

′
hv with

non-negligible probability. For the transaction to be valid, the adversary needs to
attach a proof of knowledge of r′′ and a range proof for v, i.e. a proof of knowledge
of r′, v s.t. v is in the allowed range. As the zero knowledge proofs are sound
if the discrete logarithm problem is hard, the adversary knows r′, r′′, v (and of
course r∆). Consider a game where the adversary wins, if on input (grhv, v)
the adversary outputs values r′, r′′, r∆ s.t. grhv = gr∆gr

′′
gr

′
hv. Clearly, the

adversary considered above can win this game with non-negligible advantage.

We now show how to construct a solver for the discrete logarithm problem
given this adversary. On input X = gx, the solver creates a randomized instance
(X · gr1hr2 , r2) = (gx+r1hr2 , r2) with r1, r2 chosen uniformly at random. On
output (y, z, w) from the adversary, the solver computes and outputs x′ = y +
z+w−r1. If the adversary wins the game, clearly x = x′, i.e. the solver correctly
computes the discrete logarithm of the input X and thus, if the adversary has
a non-negligible probability to be able to create a valid transaction, the discrete
logarithm problem can be solved efficiently in group G. As this violates our
assumption, it follows that an attacker cannot create such a valid transaction
with non-negligible probability.

Case 2: W.l.g. assume that an attacker is able to create three outputs
Out′ = gr

′
hv

′
, Ex′ = gr

′′
and r∆ s.t. v 6= v′ and Out = gr∆Ex′Out′, i.e.

grhv = gr∆gr
′′
gr

′
hv

′
, with non-negligible probability. For the transaction to

be valid, the adversary needs to attach a proof of knowledge of r′′ and a range
proof for v′, i.e. a proof of knowledge of r′, v′ s.t. v′ is in the allowed range. As the
zero knowledge proofs are sound if the discrete logarithm problem is hard, the
adversary knows r′, r′′, v′ (and of course r∆). We consider the game where the
adversary wins, if on input (grhv, v) the adversary outputs values (r′, r′′, r∆, v

′)
s.t. grhv = gr∆gr

′′
gr

′
hv

′
and v 6= v′.

We now show how this adversary can be used to compute DLg(h). The solver
creates a randomized instance (gr1hr2 , r2) with r1, r2 chosen uniformly at random
and gives this as input to the adversary. On output (y, z, w, u) from the adversary,
the solver computes and outputs x = (y+z+w− r1)(r2−u)−1. If the adversary
wins the game, this corresponds to DLg(h), which violates our assumption, i.e.
an attacker cannot create such a valid transaction.



B.3 Mixing and Consensus

The validators collect a set of verified transactions and in the end of the round
mix them by using two merging properties of our transactions. The first merging
option is to combine two valid transactions together which creates another valid
transaction. Combining several transactions into one large transaction breaks the
direct correlation between inputs and outputs in the original transactions. The
more transactions are combined in one round, the harder it is for third parties to
link inputs and outputs based on published, combined transactions. An example
for this process is shown in Figure 4 where two transactions are combined into
one and the inputs and outputs are reordered. Since the order of inputs and
outputs is irrelevant for the correctness of a transaction, they can be reordered
arbitrarily (e.g. ordered in binary order). Additionally, by only publishing the
sum of the delta outputs instead of the individual values, deciding which set of
transaction outputs belong to which set of inputs becomes impossible.

The second merging option is compacting. If an output of one transaction
appears as an input in another transaction, the matching input-output pair can
be simply be removed, resulting in a smaller but still valid transaction. Com-
pacting makes transaction linking more difficult and improves storage efficiency.
Once the validator has verified and merged (mixed) all received transactions in
the current round, the remaining inputs and outputs can be simply sorted as a
list for publishing.

The validators then need to achieve consensus over the content of the next
block depending and we assume that they run a Byzantine fault tolerant consen-
sus protocol to protect against double spending. Validators can cache unspent
transaction outputs from all previous blocks to speed up verification of new
transactions (needed for double-spending protection). After achieving consensus
over a block, validators can remove all inputs of the block from their cached set
and add all new outputs to it.

B.4 Block Structure

Each block consists of a first part signed by the validators and a second part
containing auxiliary information. The first signed part contains the sum of all
delta outputs, all excess outputs including the zero-knowledge proofs of their
exponents, and the hash of the previous block. Additionally, if the block contains
an issuance or a deletion transaction, the signed part also contains the explicit
amounts of money that are added or removed. As auxiliary information, the
block contains a list of inputs and a list of outputs including their range proofs.

An example block that consists of two transactions is shown in Figure 3.
The signed part of the block only contains the excess outputs and the sum of
the delta outputs of all transactions (Ex0, Ex1 and r∆ + r′∆ in the example).
The transaction inputs and transaction outputs with a value do not need to be
included in the signed part, but they still need to be published including the
range proofs of the outputs, so that other parties can verify the correctness of
the blockchain.



This block structure allows compression of the blockchain by compacting
transactions across blocks. Outputs of previous transactions that are used as
inputs in the new block can be removed from storage without losing the ability
to verify the complete chain. All that is required for the verification is the set
of unspent transaction outputs, excess and delta outputs of all blocks, and the
values of issuance and deletion transactions. All of this combined can be inter-
preted as one large transaction that, if valid, implies the validity of the whole
blockchain. This makes the storage required to verify the full chain very small
and slowly growing for third parties that do not want to store all transactions.
An example for this is shown in Figure 2 (Appendix A).

B.5 Issuance

Our currency provides an explicit mechanism for the issuer to increase, or de-
crease, the amount of currency in circulation. This can be done with a special
transaction type that requires a signature from the issuer.

Specifically, the issuer can publish an issuance transaction with an explicitly
stated amount v. The issuer creates k transaction outputs Outi = gr

′
ihv

′
i (1 ≤

i ≤ k), such that v =
∑k
i=1 v

′
i, and which all have a range proof attached. The

issuer then additionally creates an excess output Ex0 = gr
′
0 , s.t. r′0 +

∑k
i=1 r

′
i = 0

and proves knowledge of r′0. The transaction is valid, if hv is equal to the sum
of the outputs. The outputs created by such an issuing transaction could, e.g.,
be transferred to commercial banks who can then further distribute the newly
created money. The issued amount v is published in plaintext to the next block
with the issuance transaction.

The role of the issuer can easily be distributed among multiple parties by
requiring signatures from multiple parties for issuance transactions. This may
be particularly interesting for private deployments, where there is no central
bank that can be assumed to be trusted.

B.6 Distributing Regulation

The role of the regulator can be distributed between multiple parties without
changes to the rest of the system by using a threshold cryptosystem. In such a
scheme, a set of n parties would be responsible for regulation, of which at least
a threshold number k must cooperate to decrypt an encrypted identity. To set
up the system, the regulator parties would run a key generation protocol that
creates a public key and distributes shares of the corresponding secret key to
the parties. The created public key is then used as the regulator public key in
our system.

Since we use Elgamal encryption in our system, which can be used for thresh-
old encryption (e.g. [38]), the process of encrypting identities and creating proofs
does not differ from the system described in Section 3.4. In order to decrypt the
ciphertexts without reconstructing the shared secret key, the regulator parties
then again need to run a decryption protocol (e.g. [39]).



Table 2. The latency given the number of validators and batch size (from [26]).
Estimated values for the throughput given the verification model. Batch size would
correspond to the block size in our system.

# Validators Batch Latency VM1 VM2

4 (1 region) 6.2MB 0.288s 2000 tx/s 3400 tx/s
8 1.6MB 0.58s 250 tx/s 420 tx/s
8 6.2MB 1.48s 390 tx/s 670 tx/s
16 1.6MB 0.69s 210 tx/s 360 tx/s
16 3.1MB 1.04s 280 tx/s 480 tx/s
32 0.4MB 0.48s 80 tx/s 130 tx/s
32 1.6MB 0.925s 160 tx/s 270 tx/s
64 0.4MB 0.824s 40 tx/s 70 tx/s
64 1.6MB 1.79s 80 tx/s 140 tx/s

C Consensus Performance

The validators also need to run a consensus protocol to agree on the set of
transactions that are published to the ledger. We use the measurements from
Croman et al. [26] to estimate the performance of a standard consensus proto-
col (PBFT [25]). As their measurements become bandwidth bound with larger
batches, we can use their numbers for latency and throughput to estimate the
throughput in our system if the batch size in bytes remains the same.

The sizes of our proofs are summarized in Table 1. Note that the transaction
outputs can be reconstructed from their range proofs, i.e., the size for range
proofs includes the transaction output. Since a normal transaction, consisting
of multiple inputs and two outputs with an attached value, has a size of ap-
proximately 10.8kB (anonymous outputs) or 9.0kB (non-anonymous outputs)
including all proofs, and the numbers from [26] use 190 byte transactions, the
throughput in terms of transactions per second (tx/s) has to be adjusted con-
servatively by a factor of 0.018 if we require consensus on all proofs (VM1).
In a deployment where no consensus on the validity of the regulation proofs is
required (VM2), the transaction size reduces to approx. 4.0kB (anonymous) or
6.3kB (non-anonymous), i.e., we conservatively adjust by a factor of 0.030.

The achieved values for throughput and latency for the two verification mod-
els are shown in Table 2. For example, with 16 validators and a batch size of
3.1MB, the latency of consensus is 1.04s and the throughput is 480 tps (VM2)
and 280 tps (VM1), respectively. Note that the measurements on which our es-
timations are based, were conducted with nodes that were globally distributed in
8 regions (except for the 4 node experiment). Croman et al. [26] used t2.medium
Amazon EC2 instances which have limited bandwidth. If the validators are geo-
graphically close and have a higher bandwidth or dedicated lines between them
(which would be reasonable for a digital fiat currency), the throughput could be
increased and the latency could be reduced further.
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