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Abstract. In the context of Fully Homomorphic Encryption, which al-
lows computations on encrypted data, Machine Learning has been one
of the most popular applications in the recent past. All of these works,
however, have focused on supervised learning, where there is a labeled
training set that is used to configure the model. In this work, we take the
first step into the realm of unsupervised learning, which is an important
area in Machine Learning and has many real-world applications, by ad-
dressing the clustering problem. To this end, we show how to implement
the K-Means-Algorithm. This algorithm poses several challenges in the
FHE context, including a division, which we tackle by using a natural
encoding that allows division and may be of independent interest. While
this theoretically solves the problem, performance in practice is not op-
timal, so we then propose some changes to the clustering algorithm to
make it executable under more conventional encodings. We show that our
new algorithm achieves a clustering accuracy comparable to the original
K-Means-Algorithm, but has less than 5% of its runtime.
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1 Introduction

1.1 Motivation

Fully Homomorphic Encryption (FHE) schemes can in theory perform arbitrary
computations on encrypted data. Since the discovery of FHE, many applica-
tions have been proposed, ranging from medical over financial to advertising
scenarios. The underlying idea is mostly the same: Suppose Alice has some con-
fidential data X which she would like to utilize, and Bob has an algorithm A
which he could apply to Alice’s data for money. However, conventionally, either
Alice would have to give her confidential data to Bob, or run the algorithm her-
self, for which she may not have the know-how or computational power. FHE
allows Alice to encrypt her data to C' := Enc(X) and send it to Bob. Bob can
convert his algorithm A into a function A’ over the ciphertext space and apply
it to the encrypted data, resulting in R := A’(C). He can then send this result
back to Alice, who can decrypt it with her secret key. FHE promises that in-
deed Dec(R) = Dec(A'(Enc(X))) = A(X). Since Alice’s data was encrypted the



whole time, Bob learns nothing about the data entries. Note that the function-
ality where Bob’s algorithm is also kept secret from Alice is not traditionally
guaranteed by FHE, but can in practice be achieved via a property called circuit
privacy, in the sense that Alice learns nothing except the result A(X).

One of the most popular applications of FHE has been Machine Learning,
with many works focusing on Neural Networks and different variants of regression
(see Related Work in Section [2). To our knowledge, all works in this line are
concerned with supervised learning. This means that there is a training set with
known outcomes, and the algorithm tries to build a model that matches the
desired outputs to the inputs as well as possible. When the training phase is done,
the algorithm can be applied to new instances to predict unknown outcomes.

However, there is a second branch in Machine Learning that has not been
touched by FHE research: Unsupervised learning. For these kinds of algorithms,
there are no labeled training examples, there is simply a dataset on which some
kind of analysis shall be performed. An example of this is clustering, where
the aim is to group data entries that are similar in some way. The number of
clusters might be a parameter that the user enters, or it may be automatically
selected by the algorithm. Clustering has numerous applications like genome
sequence analysis, market research, medical imaging or social network analysis,
to name a few, some of which inherently involve sensitive data — making a
privacy-preserving evaluation with FHE even more interesting.

1.2 Contribution

In this work, we approach this unexplored branch of Machine Learning and show
how to implement the K-Means-Algorithm, an important clustering algorithm,
on encrypted data. We discuss the problems that arise when trying to evaluate
the K-Means-Algorithm on encrypted data, and show how to solve them. To this
end, we first present a natural encoding that allows the execution of the algorithm
as it is (including the usually challenging division by an encrypted value), but is
not optimal in terms of performance. We then present a modification to the K-
Means-Algorithm that performs comparably in terms of clustering accuracy, but
is much more FHE-friendly in that it avoids division by an encrypted value. We
include another modification that trades accuracy for efficiency in the involved
comparison operation, and compare the runtimes of these approaches.

2 Related Work

Encryption schemes that allow one type of operation on ciphertexts have been
around for some time and have a comprehensive security characterization [3].
Fully Homomorphic Encryption however, which allows both unlimited additions
and multiplications, was only first solved in [19]. Since then, many other schemes
have been developed, for example [I5], [37], [8], [14], [18], [12], [I3] and [20], to
name just a few. An overview can be found in [2]. There are several libraries
offering FHE implementations, like [23], [1I], [16], and the one we use, [3§].



Machine Learning as an application of FHE was first proposed in [35], and
subsequently there have been numerous works on the subject, to our knowledge
all concerned with supervised learning. The most popular of these applications
seem to be (Deep) Neural Networks (see [26], [21], [10], [36], and [7]) and (Linear)
Regression (e.g., [32], [I7], [4] or [22]), though there is also some work on other
algorithm classes like decision trees and random forests ([41]), or logistic regres-
sion ([6],[30],[29] and [5]). In contrast, our work is concerned with the clustering
problem from unsupervised Machine Learning.

The K-Means-Algorithm has been a subject of interest in the context of
privacy-preserving computations for some time, but to our knowledge all pre-
vious works like [9], [25], [24], [3I] and [42] require interaction between several
parties, e.g. via Multiparty Computation (MPC). For a more comprehensive
overview of the K-Means-Algorithm in the context of MPC, we refer the reader
to [34]. While this interactivity may certainly be a feasible requirement in many
situations, and indeed MPC is likely to be faster than FHE in these cases, we
feel that there are several reasons why a non-interactive solution as we present
it is an important contribution.

1. Client Economics: In MPC, the computation is split between different
parties, each performing some computations in each round and combining
the results. In FHE computations, the entire computation is performed by
the service provider — even if this computation on encrypted data is more ex-
pensive than the total MPC computation, the client reduces his effort to zero
this way, making this solution more attractive to him and thus generating a
demand for it.

2. Function Privacy: To see this, imagine the K-Means-Algorithm in this
paper as a placeholder for a more complex proprietary algorithm that the
service provider executes on the client’s data as a service. This algorithm
could utilize building blocks from the K-Means-Algorithm that we present
in this paper, or involve the K-Means-Algorithm as a whole in the context of
pipelining several algorithms together, or be something completely new. In
this case, the service provider would want to prevent the user from learning
the details of this algorithm, as it is his business secret. While FHE per se
does not guarantee this functionality, all schemes today fulfill the require-
ment of circuit privacy needed to achieve it. Thus it seems that for this case,
FHE would be the preferred solution.

3. Future Efficiency Gain: The field of MPC is much older than that of
FHE, and efficiency for the latter has increased by a factor of 10* in the
last six years alone. To argue that MPC is faster and thus FHE solutions
are superfluous seems premature at this point, and our contributions are
not specific to any one implementation, but work on all FHE schemes that
support a {0, 1} plaintext space.

Also, many of these interactive solutions rely on a vertical (in [40]) or hor-
izontal (in [28]) partitioning of the data for security. In contrast, FHE allows
a non-interactive setting with a single database owner who wishes to outsource
the computation.
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Fig. 1. An illustration of the K-Means-Algorithm.

3 Preliminaries

In this section, we cover underlying concepts like the K-Means-Algorithm, en-
coding issues, our choice of implementation library, and the datasets we use.

3.1 The K-Means Algorithm

The K-Means-Algorithm is one of the most well-known clustering algorithms in
unsupervised learning. Published in [33], it is considered an important bench-
mark algorithm and is frequently the subject of current research to this day.
The K-Means-Algorithm takes as input the data X = {zi,...,z,} and
a number K of clusters to be used. It begins by choosing either K random
values in the data range or K randomly chosen data entries as so-called cluster
centroids c;. We will use the latter approach. Then, in a step called Cluster
Assignment, it computes for each data entry x; which cluster centroid ¢y is



nearest regarding Euclidean distance, and assigns the data entry to that centroid.
When this has been done for all data entries, the second step begins: During the
Move Centroids step, the cluster centroids are moved by setting each centroid
as the average of all data entries that were assigned to it in the previous step.
These two steps are repeated for a set number of times 7" or until the centroids do
not change anymore. We use the first method. A visualization of the K-Means-
Algorithm can be seen in Figure [I]

The exact workings of the K-Means-Algorithm are presented in Algorithm
where operations like addition and division are performed component-wise if
applied to vectors.

Algorithm 1: The K-Means-Algorithm

Input: Data set X = {z1,...,zm} // x; € R® for some /¢
Input: Number of clusters K
Input: Number of iterations T'
// Initialization
1 Randomly reorder X;
2 Set centroids ¢, = xy, for k =1 to K;
// Keep track of centroid assignments
3 Generate m-dimensional vector A;
// Keep track of denominators in average computation
4 Generate K-dimensional vector d = (d1,...,dk);
for j =1 to T do
// Cluster Assignment
for i =1 to m do
A = oo;
for k=1 to K do
A= |z — ckll2;
// Check if current cluster is closer than previous closest
10 if A < A then
// If so, update A and assign data entry to current cluster

11 = A;
k;

=

© ® N O

A
12 A; =
13 end
14 end
15 end
// Move Centroids
16 for k =1 to K do
17 cr = 0;
18 d = 0;
19 end
20 for i =1 to m do
// Add the data entry to its assigned centroid
21 CAi +=x; ;

// Increase the appropriate denominator
22 dAi +=1
23 end
24 for k=1 to K do
// Divide centroid by number of assigned data entries to get average
25 cr = ck/dy;
26 end
27 end
Output: {ci,...,cx}




The output of the algorithm is the values of the centroids, or the cluster
assignment for the data entries (which can easily be computed from the former).
We opt for the first approach. Accuracy can either be measured in terms of
correctly classified data entries, which assumes that the correct classification is
known (there might not even exist a unique best solution), or via the so-called
cost function, which measures the (average) distance of the data entries to their
assigned cluster centroids. We opt for the first approach because our datasets are
benchmarking sets for which the labels are indeed provided, and it allows better
comparability between the different algorithms. To aid the reader, we present a
brief recap of the variables that we use:

— K: Number of clusters.

— ¢j: Cluster centroid k.

— m: Number of data points.

— X ={z1,...,2,}: The dataset.

— {: The dimension of the data.

— dj: Denominator of centroid k in the average computation (i.e., the number
of data entries assigned to that cluster).

— T': Number of rounds to run the algorithm.

— A: A number to hold distances (later: a vector).

— A: The cluster assignment vector (m-dimensional), later a boolean matrix
(m x K).

3.2 Encoding

FHE schemes generally have finite fields as a plaintext space, and any rational
numbers (which can be scaled to integers) must be embedded into this plaintext
space. There are two main approaches in literature, which we quickly compare
side by side in Table[I]} Note that for absolute value computation and comparison,
we need to use the digitwise encoding.

Digitwise Embedded

Description For a base p, display the|Choose the plaintext space large enough to
number in p-adiq’| represen-|accommodate all computations.

tation and encrypt each digit
separately.

Supports v X

Comparison?

Supports v X

absolute value?

Supports Division? X X

Effiency Slower Faster

Flexibility Full The function that is being computed must be

known (at least a bound) at setup, as com-
putations fail if the result gets too big. This
is actually Somewhat Homomorphic Encryp-
tion, not Fully Homomorphic Encryption.

Table 1. Two mainstream encoding approaches.

! This can be extended to plaintext spaces GF(p") if the scheme supports them.



3.3 FHE Library Choice

In [27], it was shown that among all bases p for digitwise p-adic encoding in
FHE computations, the choice p = 2 is best in terms of the number of additions
and multiplications to be performed on the ciphertexts. Hence, we use an FHE
scheme with a plaintext space of {0,1}. The currently fastest FHE implemen-
tation TFHE ([38]), which works on this plaintext space {0,1}, states “Since
the running time per gate seems to be the bottleneck of fully homomorphic en-
cryption, an optimal circuit for TFHE is most likely a circuit with the smallest
possible number of gates, and to a lesser extent, the possibility to evaluate them
in parallel.”. Thus, this library is a perfect choice for us, and we will use the
binary encoding for signed integers and tweaks presented in [26] for maximum
efficiency. Our code for the implementations of all presented algorithms using
the TFHE library is available upon request.

3.4 Datasets

To evaluate performance, we use four datasets from the FCPS dataset [39] to
monitor performance:

The Hepta dataset consists of 212 data points of 3 dimensions. There are 7
clearly defined clusters.

The Lsun dataset is 2-dimensional with 400 entries and 3 classes. The clusters
have different variances and sizes.

The Tetra dataset is comprised of 400 entries in 3 dimensions. There are 4
clusters, which almost touch.

The Wingnut dataset has only 2 clusters, which are side-by-side rectangles
in 2-dimensional space. There are 1016 entries.

For accuracy measurements, each version of the algorithm was run 1000 times
for number of iterations T' = 5,10, ...,45,50 on each dataset. For runtimes on
encrypted data, we used the Lsun dataset.

4 Approach 1: Implementing the Exact
K-Means-Algorithm

We now show a method of implementing the K-Means algorithm largely as it
is. To this end, we first discuss challenges that arise in the context of FHE
computation of this algorithm. We then address these challenges by changing
the distance metric, and then present an encoding that supports the division
required in computing the average in the MoveCentroid-step. As this method
is in no way restricted to the K-Means-Algorithm, the result is of independent
interest. As it turns out, there are some issues with this approach, which we will
also discuss.



4.1 FHE Challenges

Fully homomorphic encryption schemes can easily compute additions and mul-
tiplications on the underlying plaintext space, and most also offer subtraction.
Using these operations as building blocks, more complex functionalities can be
obtained. However, there are three elements in the K-Means-Algorithm that
pose challenges, as it is not immediately clear how to obtain them from these
building blocks. We list these (with the line numbers referring to the pseudocode
of Algorithm |1)) and quickly explain how we solve them.

— The distance metric (Line@ Az, y) = ||z —yll2 == />, (@i — yi)?): To our
knowledge, taking the square root of encrypted data has not been imple-
mented yet. In Section we will argue that the Euclidean norm is an arbi-
trary choice in this context and solve this problem by using the L;-distance
A(z,y) = ||z —y||1 := >_;(|zi — yi|) instead of the Euclidean distance.

— Comparison (Line A < A) in finding the centroid with the smallest
distance to the data entry: This has been constructed from bit multiplications
and additions in [26] for bitwise encoding, so we view this issue as solved. A
more detailed explanation can be found in Appendix

— Division (Line ¢k = ¢ /dg) in computing the new centroid value as the
average of the assigned data points: In FHE computations, division by an
encrypted value is usually not possible (whereas division by an unencrypted
value is no problem). We present a way of implementing the division with a
new encoding in Section -3} and propose a modified version of the Algorithm
in Section [5] that only needs division by a constant.

4.2 The Distance Metric

Traditionally, the distance measure used with the K-Means Algorithm is the
Euclidean Distance A(z,y) = ||z — yll2 :== />_; (2 — y:)?, also known as the
Lo-Norm, as it is analytically smooth and thus reasonably well-behaved. How-
ever, in the context of K-Means Clustering, smoothness is irrelevant, and we
may look to other distance metrics. Concretely, we consider the Ll—Nornﬂ (also
known as the Manhattan-Metric) A(z,y) := >_,(Jz; — y;|). This has a consid-
erable advantage over the Euclidean distance: Firstly, we do not need to take
a square root, which to our knowledge has not yet been achieved on encrypted
data. Secondly, of course one could apply the standard trick and not take the
root, working instead with the sum of squared distances — however, this would
mean a considerable efficiency loss. To see this, first note that multiplying two
numbers takes significantly longer than taking the absolute value. Also, recall
that multiplying two numbers of equal bitlength results in a number of twice
that bitlength. These much longer numbers then have to be summed up, and al-
ready the summation step is a bottleneck of the whole computation on encrypted
data even when working with short numbers in the L; norm. The result of the

2 [1] in fact argues that for high-dimensional spaces, the Li-Norm is more meaningful
than the Euclidean Norm.



summation is an input to the algorithm that finds the minimum (Algorithm
on page |15)), which also takes a significant amount of time and would likely more
than double in runtime if the input length doubled.

Taking the absolute value can easily be achieved through a digit-wise encod-
ing like the binary encoding which we use: We can use the MSB as the conditional
(it is 1 if the number is negative and 0 if it is positive) and use a multipleerEl
gate applied to the value and its negative. The concrete algorithm can be seen
in Algorithm [5] in Appendix Thus, using the L;-Norm is not only justified
by the arbitrariness of the Euclidean Norm, but is also much more efficient. We
compare the clustering accuracy in Figure
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Fig. 2. Difference in percent of data points mislabeled for L;-norm compared to the
Ly-norm ((% mislabeled L1)-(% mislabeled Lz)).

For both versions of the distance metric, we calculated the percentage of
wrongly labeled data points for 1000 runs, which we can do because the datasets
we use come with the correct labels. We then plotted histograms of the difference
(in percent mislabeled) between the Li-norm and the Lo-norm for each run.
Thus, a value of 0.5 means that the L; norm version misclassified 0.5% more
data entries than the Lo-version, and —2 means that the Lq version misclassified
2% less data entries than the La-version. Each subplot corresponds to one of the
four datasets we used.

We see that indeed, it is impossible to say which metric is better — for the
Hepta dataset, the performance is very balanced, for the Lsun dataset, the Li-

a, c=1

3 MUX(c,a,b) =
b, ¢c=0
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norm performs much better, for the Tetra dataset, they nearly always perform
exactly the same, and for the Wingnut dataset, the Lo-norm is consistently
better.

4.3 Fractional Encoding

Suppose we have routines to perform addition, multiplication and comparison
on numbers that are encoded bitwise — we denote these routines with Add(a, b),
Mult(a,b) and Comp(a,b), where the latter returns 1 (encrypted) if @ < b and 0
otherwise. The idea is to express the number we wish to encode as a fraction
and encode the numerator and denominator separately. Concretely, to encode
a number a, we choose the denominator a4 randomly in a certain range (like
aq € [2%,2F+1) for some k) and compute the nominator a, as a, = |a - as]. We
then encode both separately, so we have a = (ay, aq)-

If we then want to perform computations (including division) on values en-
coded in this way, we can express the operations using the subroutines from the
binary encoding through the regular computation rules for fractions:

— a+b:FracAdd((an, aq), (bn,ba))
= (Add(Mult(ay,bg),Mult(ag, by)), Mult(aq, ba))

— a-b:FracMult((an, aq), (bn,ba)) = (Mult(an, by), Mult(ag, ba))

— a/b: FracDiv((an, aq), (bn,ba)) = (Mult(ay,,bq), Mult(aq, by,))

— a < b:FracComp((an,aq), (bn,baq)) :
This is slightly more involved. Note that the MSB determines the sign of the
number (1 if it is negative and 0 otherwise). Let

¢ := Sign(aq) ® Sign(bg),

and let
a, c=1

b, ¢=0

be the multiplexer gate.
Then we set
d := MUX (¢, Mult(an, bq), Mult(aq, by))

and
e := MUX(c¢, Mult(ag, by,), Mult(an, ba))

and output the result as Comp(e, d).
To make this comparison operation clearer, consider the following: We basi-
cally want to compare Z—Z and Z—Z, so we instead ask whether

an~bd§bn~ad.

However, if the sign of exactly one of the denominators is negative, this
changes the direction of the inequality operator, so that we would need to
compute

bn “ag < ap - bd
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instead. Thus, we assign the values conditionally through the multiplexer
gate before comparing them: If the XOR of the sign bits is 0, we compare

(e:=ap - by) < (d:=by-aq),
and if it is 1, i.e., exactly one of the denominators is negative, we compare

(e :=by - aq) < (d:=ay - by).

Controlling the Bitlength Notice that every single one of these operations
requires a multiplication of some sort, which means that the bitlengths of the
nominators and denominators doubles with each operation, as there is no can-
cellation when the data is encrypted. However, note that in bitwise encoding,
deleting the last k least significant bits corresponds to dividing by 2* and trun-
cating. Doing this for both nominator and denominator yields roughly the same
result as before, but with lower bitlengths. As an example, suppose that we
have encoded our integers with 15 bits, and after multiplication we thus have
30 bits in nominator and denominator, e.g. 651049779/1053588274 ~ 0.617936.
Then dividing both nominator and denominator by 2'® and truncating yields
19868/32152, which evaluates to 0.617939 ~ 0.617936. The accuracy can be set
through the original encoding bitlength (15 here).

4.4 Evaluation

While this new encoding theoretically allows us to perform the K-Means-Algorithm
and solves the division problem in FHE, we now discuss the practical perfor-
mance in terms of accuracy and runtime.

Accuracy To see how the exact algorithm performs, we use the four datasets
from Section [3.:4] We ran the exact algorithm 1000 times for number of itera-
tions T' = 5,10, ...,45, 50, and for sake of completeness we include both distance
metrics. The results in this section were obtained by running the algorithms in
unencrypted form. We first examine the effect of T' on the exact version of the
algorithm by looking at the average (over the 1000 runs) misclassification rate
for both metrics. The result can be seen in Figure [3|

We can see that the rate levels off after about 15 rounds in all cases, so there
is no reason to iterate further.

In practice, however, our Fractional Encoding does have some problems. The
first issue encountered in Fractional Encoding is the procedure to shorten the
bitlengths that was described in Subsection [£:3] While it works reasonably well
for short computations, we found it nearly impossible to set the number of bits
to delete such that the entire algorithm ran correctly. The reason is simple: If
not enough bits are cut off, the bitlength grows, propagating with each operation
and resulting in an overflow when the number becomes too large for the allocated
bitlength. If too many bits are cut off, one loses too much accuracy or may even
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L1-Norm L2-Norm

= Hepta = Hepta
34 * Lsun 34 * Lsun

Tetra Tetra
+ Wingnut

+ Wingnut

Misclassification Rate
Misclassification Rate

Number of Rounds Number of Rounds

Fig. 3. Misclassification rate with increasing rounds for exact algorithms.

end with a 0 in the denominator. Both these cases result in completely arbitrary
and unusable results. The reason why it is so hard to set the shortening parameter
properly is that generally, nominator and denominator will not require the same
number of bits. Concretely, this will only be the case when the value of the
number being in encoded is in the interval (1/2,2), and even so, this interval
is not closed under addition or multiplication, so this problem can arise even if
plaintexts are scaled into this interval.

The problem is that because the data is encrypted, we cannot see the actual
size of the underlying data, so the shortening parameter cannot be set dynam-
ically — in fact, if it were possible to set it dynamically, this would imply that
the FHE scheme is insecure. Also, even setting the parameter roughly requires
extensive knowledge about the encrypted data, which the data owner may not
want to share with the computing party.

Runtime The second issue with this encoding is the runtime. Even though
TFHE is the most efficient FHE library with which many computational tasks
approach practically feasible runtimes, the fact that this encoding requires sev-
eral multiplications on binary numbers for each elementary operation slows it
down considerably. We compare the runtimes of all our algorithms in Section
[7] and as we will see, running the K-Means-Algorithm on a real-world dataset
with this Fractional Encoding would take almost 1.5 years on our computer.

4.5 Conclusion

In conclusion, this encoding is theoretically possible, but we would not recom-
mend it for practical use due to its inefficiency and hardness of setting the short-
ening parameter (or even higher inefficiency if little to no shortening is done).
However, for very flat computations (in the sense that there are not many suc-
cessive operations performed), this encoding that allows division may still be of
interest. For the K-Means-Algorithm, we instead propose to change the algo-
rithm in a way that avoids the problematic division, which we present in the
rest of this paper.
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5 Approach 2: The Stabilized K-Means-Algorithm

In this section, we present a modification of the K-Means algorithm that avoids
the division in the MoveCentroid-step. Concretely, recall that conventional en-
codings in FHE, like the binary one we will use, do not allow the computation of
c1/co where ¢; and cq are ciphertexts, but it is possible to compute ¢; /a where
a is some unencrypted number. Our algorithm uses this fact to exchange the
ciphertext division in Line of Algorithm [1| (page [5]) for a constant division,
resulting in a variant that can be computed with more established and efficient
encodings than the one from Section [I.3] Note that this approach of approxi-
mating or replacing a function that is hard to compute on encrypted data is not
unusual in the FHE context — for example, [21] does this for several different
functions in building a neural network on encrypted data.

We present this new algorithm in Section [5.2] and compare the accuracy of
the returned results to the original K-Means-Algorithm in Section [5.3]

5.1 Encoding

The dataset we use to evaluate our algorithms consists of rational numbers. To
encode these so that we can encrypt them bit by bit, we scaled them with a fac-
tor of 220 and truncated to obtain an integer. We then used Two’s Complement
encoding to accommodate signed numbers, and switched to Sign-Magnitude En-
coding for multiplication. Note that deleting the last 20 bits corresponds to
dividing the number by 22° and truncating, so the scaling factor can remain
constant even after multiplication, where it would normally square.

5.2 The Algorithm

Recall that in the original K-Means-Algorithm, the MoveCentroid-step consists
of computing each centroid as the average of all data entries that have been
assigned to it. More specifically, suppose that we have a (m x K)-dimensional
cluster assignment matrix A, where

A =

1, Data entry z; is assigned to centroid cj
0 else.

Then computing the new centroid value ¢ consists of multiplying the data en-
tries x; with the corresponding entry A;; and summing up the results before
dividing by the sum over the respective column k of A:

o= wi-Ain) Y Ai.
i=1 i=1

Our modification now replaces this procedure with the following idea: To
compute the new centroid cg, add the corresponding data entry z; to the running
sum if A;, = 1, otherwise add the old centroid value ¢ if A;;z = 0. This can be
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Algorithm 2: The Stabilized K-Means-Algorithm

Input: Data set X = {z1,...,2m} // z; € RY for some ¢
Input: Number of clusters K
Input: Number of iterations T'
// Initialization
1 Randomly reorder X;
2 Set centroids ¢, = zy, for k =1 to K;
// Keep track of centroid assignments
Generate (m X K)-dimensional boolean matrix A set to 0;
4 for j=1to T do
// Cluster Assignment
for i =1 to m do

w

o

6 A = oo;

7 for k=1 to K do
// Compute distances to all centroids
Ay = |lwi — cklly;

9 end

// The i*" row of A has all 0’s except at the column corresponding to the
centroid with the minimum distance

10 Ali, -] + FindMin(Aq, ..., Ag);
11 end
// Move Centroids
12 for k =1 to K do
// Keep old centroid value
13 Cip = Ck;
14 cr = 05
15 for i =1 to m do
// 1f A;jpx == 1, add z; to ck, otherwise add ¢x to cp
16 ck += MUX(Aix, Ti, Ck);
17 end
// Divide by number of terms m
18 ck = ck/m
19 end
20 end
Output: {ci,...,ckx}

easily done with a multiplexer gate (or more specifically, by abuse of notation,
a multiplexer gate applied to each bit of the two inputs) with the entry A;x as
the conditional boolean variable:

m
L = Z MUX (A, 24, c‘k)/m.

i=1

The sum now always consists of m terms, so we can divide by the unen-
crypted constant m. It is also now obvious why we call it the stabilized K-
Means-Algorithm: We expect the centroids to move much more slowly, because
the old centroid values stabilize the value in the computation (more so with
fewer data entries that are assigned to a centroid). The details of this new algo-
rithm can be found in Algorithm [2] with the changes compared to the original
K-Means-Algorithm shaded.

Computing the Minimum As the reader may have noticed in Line we
have replaced the comparison step in finding the nearest centroid for a data entry
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Algorithm 3: FindMin(4,,..., Ak)

Input: Distances Aq, ..., Ag of current data entry 4 to all centroids ¢; ..., ck
Input: Row ¢ of Cluster Assignment matrix A, denoted A[z, -]
// Set all entries 0 except the first
1 Set Afi,-] =[1,0,...,0[;
// Set the minimum to A;
2 Set minval = Aq;
3 for k=2 to K do
// C is a Boolean value, C = 1 iff minval < Ag

a C = Compare(minval, Ag);
5 for r=1to k—1do
// Set all previous values to O if new min is Aj, don’t change if new min is
old min
6 Ali,r] = Ali,r] - C;
7 end
// Set Ali,k] to 1 if Ay is new min, O otherwise
8 Ali, k] = =C ;
9 if kK # K then
// Update the minval variable unless we’re done
10 minval = MUX(C,minval, Ay);
11 end
12 end
Output: Ali, -]
with a new function FindMin(Ay,..., Ax) due the change in data structure of

A (from an integer vector to a boolean matrix) and for readability. This new
function outputs

Ali, -] < FindMin(44,..., Ak)

such that the i*" row of A, A[i,-], has all 0’s except at the column corresponding
to the centroid with the minimum distance to z;. The idea is to run the Compare
circuit to obtain a Boolean value:

1, =<y,

Compare(z,y) = {0’ r>y
We start by comparing the first two distances A; and A, and setting the Boolean
value as C := Compare(A;, Az). Then we can write Afi, 1] = C and A[i, 2] = -C
and keep track of the current minimum through minval := MUX(C, Ay, Ay). We
then compare minval to Aj etc. until we have reached A . Note that we need
to modify all entries A[i, k] with k smaller than the current index by multiplying
them with the current Boolean value, preserving the indices if the minimum
doesn’t change through the comparison, and setting them to 0 if it does. The
exact workings can be found in Algorithm

To better see how this algorithm works, consider the following example:

We now present an example of how the FindMin algorithm from Section [5.2
works.

Ezxample: Suppose we have

r; =5,¢1 =3,c0 =9,c3 =4 and ¢4 = 0.



16

Then the distance vector, i.e., the distance between z; and the centroids, is

A=(2,4,1,5).
We start with
A; =11,0,0,0]
and
minval = A, = 2.
Round 1:
Compute
C' = Compare(minval, Ay) = Compare(2,4) = 1.
Set
A=A C=1-1=1
and
Ai2] = -C =~1=0.
Set
minval = MUX(C,minval, Ag) = MUX(1,2,4) = 2,
A; is now
A; =11,0,0,0].
Round 2:
Compute
C = Compare(minval, Az) = Compare(2,1) = 0.
Set
Al =A1-C=1-0=0,
Ai[2) = A;2]-C=0-0=0,
and
A3 = ~C=-0=1
Set
minval = MUX(C,minval, A3) = MUX(0,2,1) =1,
A; is now
A; =10,0,1,0].
Round 3:
Compute
C' = Compare(minval, A;) = Compare(1,5) = 1.
Set



17

and
A;[4] =-C =-1=0.

A; is now
A; =10,0,1,0].

This means that centroid 3 (c3 = 4) has the smallest distance to x; = 5,
which can be easily verified.

Note that if the encryption scheme is one where multiplicative depth is im-
portant, it is easy to modify FindMin to be depth-optimal: Instead of comparing
Ay and As, then comparing the result to As, then comparing that result to Ay
etc., we could instead compare A; to Ay and Az to A4 and then compare those
two results etc., reducing the multiplicative depth from linear in the number of
clusters K to logarithmic.

Since depth is not important for our implementation choice TFHE (recall
from Section that the number of gates is the bottleneck), we implemented
the function as described in Algorithm [3]

5.3 Evaluation

In this section, we will investigate the performance of our Stabilized K-Means-
Algorithm compared to the traditional K-Means-Algorithm.

Accuracy The results in this section were obtained by running the algorithms
in unencrypted form. As we are interested in relative performance as opposed
to absolute performance, we merely care about the difference in the output of
the modified and exact algorithms on the same input (i.e., datasets and starting
centroids), not so much about the output itself. Recall that we obtained T' = 15
as a good choice for number of rounds for the exact algorithm — however, as we
have already explained above, the cluster centroids converge more slowly in the
stabilized version, so we will likely need more iterations here.

We now compare the performance of the stabilized version to the exact ver-
sion. We perform this comparison by examining the average (over the 1000 it-
erations) difference in the misclassification rate. Thus, a value of 2 means that
the stabilized version mislabeled 2% more instances than the exact version, and
a difference of —1 means that the stabilized version miscassified 1% less data
points than the exact version.

The results for both distance metrics can be seen in Figure [l We see that
while behavior varies slightly depending on the dataset, T = 40 iterations is a
reasonable choice since the algorithms do not generally seem to converge further
with more rounds. We will fix this parameter from here on, as it also exceeds
the required amount of iterations for the exact version to converge.

As the reader may have noticed, while the values in Figure [ do converge,
they do not generally seem to reach a difference of 0, which would imply similar
performance. However, this is not surprising - we did significantly modify the
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Fig. 4. Average difference in misclassification rate between the stabilized and the exact
algorithm ((average % mislabeled stabilized) - (average % mislabeled exact)).

original algorithm, not with the intention of improving clustering accuracy, but
rather to make it executable under an FHE scheme at all. This added function-
ality naturally comes as a tradeoff, and we will now examine the magnitude of
the loss in accuracy in Figure 5} The corresponding histogram for the Lo-norm
can be found in Appendix
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Fig. 5. Distribution of the difference in misclassification rate for stabilized vs. exact
K-Means-Algorithm ((% mislabeled stabilized) - (% mislabeled exact)), Li-norm.

We can see that in the vast majority of instances, the stabilized version per-
forms exactly the same as the the original K-Means-Algorithm. We also see that
concrete performance does depend on the dataset. In some cases, the modified
version even outperforms the original one: Interestingly, for the Lsun dataset, the
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stabilized version is actually slightly better than the original algorithm in about
30% of the cases. However, most of the time, we feel that there will be a slight
performance decrease. The fact that there are some outliers where performance
is drastically worse can easily be solved by running the algorithm several times
in parallel, and only keeping the best run. This can be done under homomorphic
encryption much like computing the minimum in Section but will not be
implemented in this paper.

Runtime While we will have a more detailed discussion of the runtime of all our
algorithms in Section [7] we would like to already present the performance gain
at this point: Recall that we estimated that running the exact algorithm from
Section [4] would take almost 1.5 years. In contrast, our Stabilized Algorithm can
be run in 25.93 days, or less than a month. This is less than 5% of the runtime
of the exact version. Note that this is single-thread computation time on our
computer, which could be greatly improved as detailed in Section [7| (though
these improvements would apply to both algorithms, but we expect the ratio
between the two algorithms to stay the same).

Conclusion In conclusion to this Section, we feel that by modifying the K-
Means-Algorithm, we have traded a very small amount of accuracy for the ability
to perform clustering on encrypted data in a more reasonable amount of time,
which is a functionality that has not been achieved previously. The next section
will deal with an idea to improve runtimes even more.

6 Approach 3: The Approximate Version

In this section, we present another modification which trades in a bit of accu-
racy for slightly improved runtime: Since the Compare function is linear in the
length of its inputs, speeding up this building block would make the entire com-
putation more efficient. To do this, first recall that we encode our numbers in a
bitwise fashion after having scaled them to integers. This means that we have
access to the individual bits and can, for example, delete the S least significant
bits, which corresponds to dividing the number by 2% and truncating. Let X
denote this truncated version of a number X, and Y that of a number Y. Then
Compare(X,Y) = Compare(X,Y) if |[X — Y| > 25, and may or may not return
the correct result if | X — Y| < 2°. However, correspondingly, if the result is
wrong, the centroid that is wrongly assigned to the data entry is no more than
25 further from the data entry than the correct one. We propose to pick an initial
S and decrease it over the course of the algorithm, so that accuracy increases as
we near the end. The exact workings of this approximate comparison, denoted
ApproxCompare, can be seen in Algorithm [4]
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Algorithm 4: ApproxCompare(X,Y,S)

Input: The two arguments X, Y, encoded bitwise
Input: The accuracy factor S
// Corresponds to X = | X/2%|
1 Remove last S bits from X, denote X;
// Corresponds to Y = |Y/25|
2 Remove last S bits from Y, denote Y;
// Regular comparison function, C € {0,1}
3 C = Compare(X,Y);
Output: C

6.1 Evaluation

In this section, we compare the performance of the stabilized K-Means-Algorithm
using this approximate comparison, denoted simply by “Approximate Version”,
to the original and stabilized K-Means-Algorithm on our data sets.

Accuracy Recall from Section [5.1] that we scaled the data with the factor 229
and truncated to obtain the input data. This means that for S = 5, a wrongly
assigned centroid would be at most 2° further from the data entry than the
correct centroid on the scaled data - or no more than 27! on the original data
scale. We set S = min{7, (T'/5) — 1} where T is the number of iterations, and
reduce S by one every 5 rounds. We again examine the average (over 1000
iterations) difference in the misclassification rate to both the exact algorithm
and the stabilized algorithm.
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Fig. 6. Average difference in misclassification rate between the approximate and the
exact algorithm ((average % mislabeled approximate) - (average % mislabeled exact))

The results for both distance metrics can be seen in Figures [6] and [7} We see
that again, T' = 40 iterations is a reasonable choice because the algorithms do
not seem to converge further with more rounds.

We now again look at the distribution of the ratios in Figure [§] (for the
approximate versus the exact K-Means-Algorithm, figures for the Lo-norm are
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in Appendix

Means-Algorithm, figures for the Lo-norm in Appendix |B.1)).
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We see that usually, the approximate version performs only slightly worse
than the stabilized version. There is still the effect in the Lsun dataset that the
approximate version outperforms the original K-Means-Algorithm in a signifi-
cant amount of cases (though this effect mostly occurs for the L;-norm), but it
rarely does better than the stabilized version. This is not surprising, as it is in
essence the stabilized version but with an opportunity for errors.
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Runtime We now examine how much gain in terms of runtime we have from
this modification. Recall that it took about 1.5 years to run the exact algorithm,
and 25.93 days to run the stabilized version. The approximate version runs in
25.79 days, which means a difference of about 210.7 minutes.

Obviously, the effect of the approximate comparison is not as big as an-
ticipated. This is due to the bottleneck actually being the computation of the
Li-norm rather than the FindMin-procedure. Thus, for this specific application,
the approximate version may not be the best choice - however, for an algorithm
that has a high number of comparisons relative to other operations, there can
still be huge performance gains in terms of runtime. To see this, we ran just the
comparison and approximate comparison functions with the same parameters
as in our implementation of the K-Means-Algorithm (35 bits, 5 bits deleted for
approximate comparison). The average (over 1000 runs each) runtime was 3.24
seconds for the regular comparison and 1.51 seconds for the approximate com-
parison. We see that this does make a big difference, which is why we choose to
present the modification even though the effect was outweighed by other bottle-
necks in the K-Means-Algorithm computation.

Conclusion In conclusion, the approximate comparison provides the user with
an easy method of trading in accuracy for faster computation, and most im-
portantly, this loss of accuracy can be decreased as computations near the end.
However, for the specific application of the K-Means-Algorithm, these gains were
unfortunately swallowed by the rest of the computation.
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7 Implementation Results

We now present the runtimes for the stabilized and approximate versions of
the K-Means-Algorithm, along with the times for the exact version with the
Fractional Encoding. Computations were done in a virtual machine with 20 GB
of RAM and 4 virtual cores, running an Intel i7-3770 processor with 3.4 GHz. We
used the TFHE library [38] without the SPQLIOS_FMA-option, as our processor
did not support this (runtimes might be faster when using this option).

The dataset we used was the Lsun dataset from [39], which consists of 400
rational data entries of 2 dimensions, and K = 3 clusters. We encoded the binary
numbers with 35 bits and scaled to integers using 22° (i.e., 20 bits were used for
the numbers after the decimal point). The timings we measured were for one
round, and the approximate version used a deletion parameter of S = 5. For the
Fractional Encoding, the initial data was encoded with nominator in [2!!,2!2)
and denominator in roughly the same range, as the data is reasonable small. We
also allotted 35 bits total for nominator and denominator each to allow a growth
in required bitlength, and set the shortening parameter to 12, but shortened
by 11 every once in a while (we derived this approach experimentally, see the
discussion of the shortcoming of this approach in Section . The Fractional
exact version was so slow that we ran it only on the first 10 data entries of the
dataset - we will extrapolate the runtimes in Section

7.1 Runtimes for the Entire Algorithm on a Single Core

In this subsection, we present the runtimes for the entire K-Means-Algorithm on
encrypted data on our specific machine with single-thread computation. There
is some extrapolation involved, as the measured runtimes were for one round (so
we multiplied by the round number, which differs between the exact version and
the other two, see Sections[5.3|and [6.1), and in the Fractional (exact) case, only
for 10 data entries, so we multiplied that time by 40. Note that these times are
with no parallelization, so there is much room for improvement as discussed in
Section [T.2l The times can be found in Table 21

Exact (Fractional) Stabilized Approximate
Runtime per Round 873.46 hours (36.39 days) 15.56 hours 15.47 hours
Rounds required 15 40 40
Total Runtime 545.91 days 25.93 days 25.79 days

~ 17.95 months ~ 0.85 months ~ 0.85 months

Table 2. Single-thread runtimes (extrapolated) on our machine.

Note that the approximate version (always with S = 5 deleted bits in the
comparison) would save about 210.7 minutes (3.5 hours) here - this may be
negligible compared to the total runtime, but significant in absolute terms.
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7.2 Further Speedup

At this point, we would like to address the subject of parallelism. At the moment
(last accessed January 24*" 2018), the TFHE library only supplies single-thread
computations - i.e., there is no parallelism. However, version 1.5 is expected soon,
and this will allegedly support multithreading. We first explain why this would
make an enormous difference for the runtime, and then quantify the involved
timings.

Parallelism Looking at all our versions of the K-Means-Algorithm, it is easy
to see that they are highly parallelizable: The Cluster Assignment step triv-
ially so over the data entries (without any time needed for recombination of the
individual results), and the Move Centroids similarly over the cluster centroids
(the latter could also be parallelized over the data entries with a little recom-
bination effort, which should still be negligible compared to the total running
time). Since both steps are linear in the number K of centroids, the number
m of data entries, and the number T of round iterations, we thus present our
runtimes in this subsection as per centroid, per data entry, per round, per core.
This allows a more flexible estimate for when multithreading is supported, as
the ability to actually use our 4 allotted cores would lead to only about 1/4 of
the total runtimes presented in Section [7.1

Round Runtimes We now present the runtime results for each of the three
variants on encrypted data per centroid, per data entry, per round, per core
in Table [3] We do not include runtimes for encoding/encryption and decryp-
tion/decoding, as these would be performed on the user side, whereas the com-
putation would be outsourced (encoding/encryption is ca. 1.5 seconds, and de-
coding/decryption is around 5 ms). We see that the Fractional Encoding is ex-
tremely slow, which motivated the Stabilized Algorithm in the first place.

Exact (Fractional) Stabilized Approximate
Cluster Assignment 1650.91 s =~ 27.5 min 35.59 s 35.39 s
Move Centroids 969.47 s &~ 16.2 min 11.09 s 11.03 s
Total 2620.38 s & 43.7 min 46.68 s 46.42 s

Table 3. Runtimes per centroid, per data entry, per round, per core.
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A Function Building Blocks

In this section, we present some building blocks used in our algorithms.

A.1 Taking the Absolute Value

We present Algorithm [5) which shows exactly how to take the absolute value of
a number in binary encoding.



27

Algorithm 5: Absolute Value

Input: Value a = a,, ...a1ap in binary encoding
// Set the conditional variable as the MSB
1 C=MSB(a) = an;
// Apply the MUX gate
2 d=MUX(C,—a,a);
// If C =1, i.e., a is negative, d = —a. If C =0, i.e., a is positive, d =a. So
d=|lal.
Output: d

A.2 Comparison

While comparison is not natively supported by FHE schemes, it can be built
from additions and multiplications. We will detail how to do this for Two’s
Complement Encoding. We first show how to compare two natural numbers in
Algorithm [6] and then use that as a building block to compare signed numbers.

Algorithm 6: NatComp(a, b)

Input: Natural number a =
Input: Natural number b =
// Set result to 0

1 res = 0;

2 for i =0 to n do

// Set temp to 0 if a; # b; and to 1 if a; = b;

3 temp = X NOR(a;, by);

// If temp =1 (inputs are equal), don’t change res. If temp = 0 (inputs are
unequal), set res = b;
res = MUX (temp, res, b;);

Ay ...a100
b ...bibo

5 end
// res=1&a<b
Output: res

The idedd is that the variable res is set to 0 and then in each iteration of
the for-loop it denotes the result of the comparison on the previous bits. Thus,
if the two bits at position ¢ are equal (a; = b;), the result res of the comparison
does not change. If they are unequal, the lower bits do not matter anymore and
the result is set to res = b;. This works because if b; = 1, that means a; = 0,
so the number q; . ..aj1aq is smaller than b; . ..b;bg. Thus the outcome should be
1 = b;. If, on the other hand, b; = 0, then a;=1 and the number a;...a1aq is
larger than b; .. .b1bg, so the outcome is 0 = b;.

We now use this comparison of natural numbers as a building block when
comparing signed numbers (concretely, in Two’s Complement encoding), as can
be seen in Algorithm [7}

As can easily be verified, the formula in Line [2| evaluates to c if a,, = by, i.e.,
the signs are equal — in this case, the result of NatComp(a, b) is correct. If a,, = 0
and b, = 1, i.e., b is negative and a is positive, the formula evaluates to 0, which

4 Credited to https://tfhe.github.io/tfhe/tuto-cloud.html| for this elegant no-
tation.


https://tfhe.github.io/tfhe/tuto-cloud.html
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Algorithm 7: Compare(a, b)

Input: Signed number a = a, ...a1a9

Input: Signed number b = b,, ...b1bo

// Compare as if natural numbers, result is correct if signs are equal
1 ¢ = NatComp(a, b);

// The sign bits are a, and b,
2 res=ap - (bn +1)+ (an +bn +1) ¢

Output: res

is correct because b < a. Lastly, if a,, = 1 and b, = 0, i.e., b is positive and «a is
negative, the formula evaluates to 1, which is also correct because a < b.

B Supplemental Figures

This section presents some supplemental Figures.

B.1 Histograms for Ly-Norm

We now present the counterparts of the performance histograms for the Ly-norm.

Stabilized versus Exact Here, we present Figure[I0} which compares the per-
formance of the stabilized to the original algorithm, for the L, distance metric.
The original figure for the L;-norm is Figure [§| on page [I8
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Fig. 10. Distribution of the difference in misclassification rate for stabilized vs. exact
K-Means-Algorithm ((% mislabeled stabilized) - (% mislabeled exact)), Lz-norm.
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Approximate versus Exact We now do the same thing for Figure [§] which
compares the approximate to the exact version.
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Fig. 11. Distribution of the difference in misclassification rate for approximate vs. exact
K-Means-Algorithm ((% mislabeled approximate) - (% mislabeled exact)), Lz-norm.
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Approximate versus Stabilized Lastly, we also present the counterpart of
Figure [9] comparing the approximate to the stabilized version, for the Ly-norm

in Figure [12]
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Fig. 12. Distribution of the difference in misclassification rate for approximate vs.
stabilized K-Means-Algorithm ((% mislabeled approx.) - (% mislabeled stab.)), La-
norm.
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