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Abstract. In modern as well as ancient ciphers of public key cryptography, substitution boxes find a permanent seat. Generation
and cryptanalysis of 4-bit as well as 8-bit crypto S-boxes is of utmost importance in modern cryptography. In this paper, a
detailed review of cryptographic properties of S-boxes has been illustrated. The generation of crypto S-boxes with 4-bit as well as
8-bit Boolean functions (BFs) and Polynomials over Galois field GF(p%) has also been of keen interest of this paper. The detailed
analysis and comparison of generated 4-bit and 8-bit S-boxes with 4-bit as well as 8-bit S-boxes of Data Encryption Standard
(DES) and Advance Encryption Standard (AES) respectively, has incorporated with example. Detailed analysis of generated S-
boxes claims a better result than DES and AES in view of security of crypto S-boxes.
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1. Introduction. Substitution box or S-box in block ciphers is of utmost importance in public key cryptography from the initial
days. A 4-bit S-box has been defined as a box of (2* =) 16 elements varies from 0 to F in hex, arranged in a random manner as
used in Data Encryption Standard or DES [AT90][HF71][NT77][NT99]. Similarly for 8 bit S-box, number of elements are 22 or
256 varies from 0 to 255 as used in Advance Encryption Standard or AES [DR0O0][VMB95]. So the construction of S-boxes is a
major issue in cryptology from initial days. Use of Irreducible Polynomials to construct S-boxes had already been adopted by
crypto community. But the study of IPs has been limited to almost binary Galois field GF(2%) as used in AES S-boxes
[DROOJ[VM95]. So it is important to study 4-bit BFs, 8-bit BFs and polynomials over Galois Field GF(p“) where p>2 in public
key cryptography. A brief literature study on Security in cryptography and polynomials has been elaborated in sec.2.

A 4-bit Boolean Function (BF) gives 1-bit output for 4 input bits [AT90]. represented in the form of a 16-bit output
(column) vector. The Truth Table of a 4-bit BF has been represented by a 16-bit output vector each of whose bit is an output bit
corresponding to 16 possibilities of 4-bit sequential inputs from ‘0000’ to ‘1111°. The 16 rows of the 4-bit sequential inputs, each
bit at the same column position comprises of 16 bits and thereby four 16-bit columns provide four 4-bit input vectors which are
common for all 4-bit BFs. Since there are 16 output bits so there are 2 (=65536) different possibilities whose decimal equivalent
vary between 0 and 65535 [AT90]. Hence, 4-bit BFs have four 16-bit input vectors and 65536 possible 16-bit output vectors.
Where an 8-bit BF gives 1-bit output for 8 input bits [DR0O0]. represented in the form of a 256-bit output (column) vector. The
Truth Table of a 8-bit BF is represented by a 256-bit output vector each of whose bit is an output bit corresponding to 256
possibilities of 8-bit sequential inputs from ‘00000000’ to ‘11111111°. The 256 rows of the 8-bit sequential inputs, each bit at the
same column position comprises of 256 bits and thereby eight 256-bit columns provide eight 8-bit input vectors which are
common for all 8-bit BFs. The 256 output bits, there are 22% different possibilities whose decimal equivalent vary between 0 and
2261 [VMO5]. Hence, 8-bit BFs have eight 256 bit long 8-bit input vectors and 22°® possible 256-bit output vectors. Hence for
generation and security analysis of 4-bit or 8-bit S-boxes it is an urgent need to study cryptographic properties of S-boxes as well
as security of S-boxes with 4-bit or 8-bit BFs. In other words a 4-bit S-box can be represented by a four valued 4-bit BF. If the 1%
bit of the 4 output bits is taken sequentially for each element of the 16 elements of an S-box, one gets the 1% BF; 2nd sequence of
output bit, the 2™ BF; 3" sequence of output bit, the 3™ BF and 4™ sequence of output bit, the 4™ BF [AT90] respectively. Some
cryptographic properties and security analysis of 4-bit S-boxes such as Output Bit Independence Criterion (BIC) of 4-bit S-boxes,
SAC of 4-bit S-boxes, Higher order SAC of 4-bit S-boxes, Extended SAC of 4-bit S-boxes, Linear Cryptanalysis of 4-bit S-
boxes, Differential Cryptanalysis of 4-bit S-boxes, and Differential Cryptanalysis with 4-bit BFs of 4-bit S-boxes as well as
Linear Approximation Analysis of 4-bit S-boxes has been reported below in brief.

A 4-bit S-box consists of four 4-bit BFs. In Output Bit Independence Criterion or BIC the difference or xored BFs of all
two possible 4-bit BFs of the concerned S-box has been taken under consideration. If all 6 difference 4-bit BFs have been
balanced then the criterion has been satisfied for the concerned S-box. Since all 6 difference 4-bit BFs have been balanced so the
prediction of a bit value to be one or zero is in at most uncertainty [AT90]. A brief review of BIC of 4-bit as well as 8-bit S-boxes
has been illustrated in subsec.3.10f sec 3.

In Strict Avalanche Criterion, 4 IPVs of a 4-bit BF has been complemented one at a time. If in complemented four 4-bit
BFs 8 bit values has been changed and 8 bit values remains same then the 4-bit BF has been said to satisfy Strict Avalanche
Criterion of 4-bit BFs [AT90][CA90]. Complementing 4™ IPV means interchanging each distinct 8 bit halves of a 4-bit Output
BF, whereas complementing 3™ IPV means interchanging each distinct 4 bit halves of each distinct 8 bit halves, whereas
complementing 2™ IPV means interchanging each distinct 2 bit halves of each distinct 4 bit halves of each distinct 8 bit halves
and complementing 1% IPV means interchanging each bit of all distinct 2-bit halves of a 16 bit long 4-bit BF. In this paper this
shifting property has been used to construct an algorithm of SAC of 4-bit BFs. Another new algorithm with flip of index bits has
also been introduced in this paper. If all four 4-bit BFs of a 4-bit S-box satisfy SAC for 4-bit BFs then the concerned S-box has
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been said to satisfy SAC of 4-bit S-boxes [AT90][CA90]. A detailed Review of old algorithm and new algorithms of SAC has
been described in subsec.3.2 of section 3.

In Higher Order Strict Avalanche Criterion (HO-SAC) of 4-bit BFs four IPVs of a 4-bit S-box have been
complemented two or three at a time [BS96]. If in complemented ten 4-bit BFs 8 bit values has been changed and 8 bit values
remains same then the 4-bit BF has been said to satisfy HO-SAC of 4-bit BFs. A detailed review of old as well as two new
algorithms with previous shift method and flip of index bits method has been introduced in this paper in subsec.3.3. of sec.3. In
this Paper a detailed review of a new algorithm entitled Extended HO-SAC has been introduced in which four IPVs have been
complemented at a time. An Analogy of Extended HO-SAC and Differential Cryptanalysis of 4-bit S-boxes have also been
elaborated in subsec.3.3. of section.3.

In Differential Cryptanalysis of 4-bit crypto S-boxes the 16 distant input S-boxes have been obtained by xor operation
with each of 16 input differences varies from 0 to F in hex to all 16 elements of input S-box one at a time. The 16 distant S-boxes
have been obtained by shuffling the elements of the original S-box in a certain order in which the elements of the input S-boxes
have been shuffled in concerned distant input S-boxes. The 16 elements of each S-box and the elements in corresponding position
of corresponding distant S-box has been xored to obtain the Difference S-box. The Difference S-box may or may not be a Crypto
S-box since it may not have all unique and distinct elements in it. The count of each element from 0 to F in Difference S-box
have been noted and put in Difference Distribution Table (DDT) for security analysis of the S-box [HH96][HHO02]. The concept
has been reviewed in detail in subsec.3.4 of sec. 3.

In this paper a review of the new algorithm using 4-bit BFs for Differential Cryptanalysis of 4-bit crypto S-boxes have
been reviewed. An input S-box can be decomposed into four 4-bit Input Vectors (IPVs) with Decimal Equivalents 255 for 4"
IPV, 3855 for 3™ IPV, 13107 for 2nd IPV, and 21845 for 1st IPV respectively. Now we complement all IPVs one, two, three and
four at a time to obtain 16 4-bit Distant input S-boxes. Each of four Output BFs is shifted according to the Shift of four IPVs of
input S-boxes to form four IPVs of Distant input S-boxes to obtain Distant S-boxes. The four 4-bit output BFs of S-boxes are
xored bitwise with four 4-bit BFs of Distant S-boxes to obtain four 4-bit Difference BFs. For 16 Distant Output S-boxes there are
64 Difference BFs. Difference BFs are checked for balanced-ness i.e. for at most uncertainty. The Table in which the balanced-
nesses of 64 Difference BFs have been noted has been called as Differential Analysis Table (DAT). The Theory has been
elaborated in subsec. 3.5 of sec.3.

In Linear Cryptanalysis of 4-bit crypto S-boxes, every 4-bit linear relations have been tested for a particular 4-bit
crypto S-box. The presence of each 4-bit unique linear relation is checked by satisfaction of each of them for all 16, 4-bit unique
input bit patterns and corresponding 4-bit output bit patterns, generated from the index of each element and each element
respectively of that particular crypto S-box. If they are satisfied 8 times out of 16 operations for all 4-bit unique input bit patterns
and corresponding 4-bit output bit patterns, then the existence of the 4-bit linear equation is at a stake. The probability of
presence and absence of a 4-bit linear relation both are (= 8/16) %. If a 4-bit linear equation is satisfied 0 times then it can be
concluded that the given 4-bit linear relation is absent for that particular 4-bit crypto S-box. If a 4-bit linear equation is satisfied
16 times then it can also be concluded that the given 4-bit linear relation is present for that particular 4-bit crypto S-box. In both
the cases full information is adverted to the cryptanalysts. The concept of probability bias was introduced to predict the
randomization ability of that 4-bit S-box from the probability of presence or absence of unique 4-bit linear relations. The result is
better for cryptanalysts if the probability of presence or absences of unique 4-bit linear equations are far away from %2 or near to 0
or 1. If the probabilities of presence or absence of all unique 4-bit linear relations are % or close to %%, then the 4-bit crypto S-box
has been said to be linear cryptanalysis immune, since the existence of maximum 4-bit linear relations for that 4-bit crypto S-box
is hard to predict [HH96][HHO02]. Heys also introduced the concept of Linear Approximation Table (LAT) in which the numbers
of times, each 4-bit unique linear relation have been satisfied for all 16, unique 4-bit input bit patterns and corresponding 4-bit
output bit patterns of a crypto S-box have been noted. The result is better for a cryptanalysts if the numbers of 8s in the table are
less. If numbers of 8s are much more than the other numbers in the table then the 4-bit crypto S-box has been said to be more
linear cryptanalysis immune [HH96][HHO02].

In another look an input S-box can be decomposed into four 4-bit Input Vectors (IPVs) with Decimal Equivalents 255
for 4th IPV, 3855 for 3™ IPV, 13107 for 2nd IPV, and 21845 for 1st IPV respectively. The S-box can also be decomposed into 4,
4-bit Output BFs (OPBFs). Each IPV can be denoted as a input variable of a linear relation and OPBF as a output variable and
4+’ as xor operation. Linear relations have been checked for satisfaction and 16-bit output variables (OPVs) due to linear relations
have been checked for balanced-ness. Balanced OPVs indicates, out of 16 bits of IPVs and OPBFs, 8 bits satisfies the linear
relation and 8 bits is out of satisfaction, i.e. best uncertainty. 256 4-bit linear relations have been operated on 4, 16-bit IPVs and
4, 16-bit OPBFs and 256 OPVs have been generated. The count of number of 1s in OPVs have been put in Linear Approximation
Table or LAT. Better the number of 8s in LAT, better the S-box security[HH96][HHO2]. The concept has been reviewed in brief
in subsec. 3.6. of sec.3.

In this paper a detailed review of a new technique to find the existing Linear Relations or Linear Approximations for a
particular 4-bit S-box has been reviewed. If the nonlinear part of the ANF equation of a 4-bit output BF is absent or calculated to
be 0 then the equation is termed as a Linear Relation or Approximation. Searching for number of existing linear relations through
this method is ended up with number of existing linear relations. I.e. the goal to conclude the security of a 4-bit crypto S-box has
been attended in a very lucid manner by this method. The method has been reviewed in subsec.3.7. of sec.3.

Polynomials over Finite field or Galois field GF(p%) have been of utmost importance in Public Key Cryptography
[BS96]. The polynomials over Galois field GF(p“) with degree g have been termed as Basic Polynomials or BPs over Galois field
GF(pY) and Polynomials with degree <q have been termed as Elemental Polynomials or EPs over Galois field GF(p%) [SJ15]. The



EPs over Galois field GF(p") with only constant terms have been termed as Constant Polynomials or CPs over Galois field
GF(pY). The BPs over Finite field or Galois field GF(p“) that cannot be factored into at least two non-constant EPs have been
termed as Irreducible polynomials or IPs over Finite field or Galois field GF(p®) and the rest have been termed as Reducible
polynomials or RPs over Finite field or Galois field GF(p“) [SJ15]. The polynomials over Galois field GF(p%) with coefficient of
the highest degree term as 1 have been termed as monic polynomials over Galois field GF(p“) and rest have been termed as non-
monic Polynomials over Galois field GF(p%) [SJ15].

g bit crypto Substitution box or S-box have 29 elements in an array where each element is unique and distinct and
arranged in a random fashion varies from 0 to 2% Polynomials over Galois field GF(p®) have been termed as binary polynomials
if p = 2. The binary number that has been constructed with binary coefficients of all q values with g =0 at LSB and q = q at MSB
has been termed as binary Coefficient Number or BCN of g+1 bits. The Binary Coefficient Number or BCN over Galois field
GF(pY) has been similar with log , %** bit BFs. The log , %** bit S-boxes have been generated using log ,%** bit BCNs. In this paper
crypto 4 and 8 hit S-boxes have been generated using BCNs and the procedure has been continued as a future scope to generate
16 and 32 bit S-boxes. The non-repeated coefficients of BPs over Galois field GF(p?), where p = 2 9,93 and q = p-1 have been
used to generate log , % bit S-boxes. In this paper proper 4 and 8 bit S-boxes have been generated using BCNs and the procedure
has been continued as a future scope to generate 16 and 32 bit S-boxes. In this paper polynomials over Galois Field GF(p%) and
roll of IPs to construct substitution boxes have been reviewed in subsec. 4.1 and respectively of section.4. The generation of 4
and 8 bit S-boxes using BCNs have been elaborated in subsec 4.2 of section 4.. The generation of 4-bit and 8-bit S-boxes with
coefficients of non-binary Galois Field polynomials has been depicted in subsec.4.3 of section 4. The cryptographic and security
analysis of 32 DES 4-bit S-boxes has been given in subsec.4.4 of sec.4. Detailed cryptographic and security analysis of generated
10 4-bit S-boxes with discussed crypto related cryptographic properties and security criterion have also been given in subsec.4.4.
of sec.4. Results have been discussed in Result and Discussion section in subsec.4.5 of sec.4.

Concluding remarks, Acknowledgement and Reference has been given in section 5, 6 and 7 respectively.

2. Literature Survey. In this section an exhaustive relevant literature survey with their specific references has been introduced
to crypto literature. in subsec 2.1. the relevant topic has been cryptography and cryptology, in subsec 2.2. the topic has been
Linear Cryptanalysis, in subsec 2.3 the topic has been Differential Cryptanalysis, in subsec 2.4 the topic has been cryptanalysis of
stream ciphers and in subsec 2.5. the relevant topic has been Strict Avalanche Criterion (SAC) of substitution boxes. At last a
literature study on IPs and primitive polynomials have been given in subsec. 2.6.

2.1 Cryptography and Cryptology. In End of Twentieth Century a bible of Cryptography had been introduced [MP96].The
various concepts involved in cryptography and also some information on cryptanalysis had been provided to Crypto-community
in late nineties [BS96].a simplified version of DES. that has the architecture of DES but has much lesser rounds and much lesser
bits had also been proposed at the same time. The cipher has also been better for educational purposes [SC96]. Later in early
twenty first century an organized pathway towards learning how to cryptanalyze had been charted [BS00]. Almost at the same
time a new cipher as a candidate for the new AES, main concepts and issues involve in block cipher design and cryptanalysis had
also been proposed [BS99] that is also a measure of cipher strength. A vital preliminary introduction to cryptanalysis has also
been introduced to cryptanalysts [FM00]. At the same time somewhat similar notion as [FMO00] but uses a more descriptive
approach and focused on linear cryptanalysis and differential cryptanalysis of a given SPN cipher had been elaborated [HHOO0].
Particularly, it discusses DES-like ciphers that had been extended with it [SHO0]. Comparison of modes of operations such as
CBC, CFB, OFB and ECB had also been elaborated [PL00]. A new cipher called Camelia had been introduced with its
cryptanalysis technique to demonstrate the strength of the cipher [AMOO]. History of Commercial Computer Cryptography and
classical ciphers and the effect of cryptography on society had also been introduced in this queue [SS00].The requirements of a
good cryptosystem and cryptanalysis had also been demonstrated later [LS00]. Description of the new AES by Rijndael, Provides
good insight into many creative cryptographic techniques that increases cipher strength had been included in literature. A bit later
a highly mathematical path to explain cryptologic concepts had also been introduced [PGO1]. investigation of the security of Ron
Rivest’s DESX construction, a cheaper alternative to Triple DES had been elaborated [KRO1]. A nice provision to an
encyclopedic look at the design, analysis and applications of cryptographic techniques had been depicted later [CY01] and last
but not the least a good explanation on why cryptography has been hard and the issues which cryptographers have to consider in
designing ciphers had been elaborated [BSO1]. Simplified Data Encryption Standard or S-DES is an educational algorithm
similar to Data Encryption Standard (DES) but with much smaller Parameters [ES96][OV02]. The technique to analyze S-DES
using linear cryptanalysis and differential cryptanalysis had been of interest of crypto-community later [ES96][OV02]. The
encryption and decryption algorithm or cipher of twofish algorithm had been introduced to crypto community and a cryptanalysis
of the said cipher had also been elaborated in subject to be a part of Advance Encryption Algorithm proposals [BE99].

2.2 Some Old and Recent References on Linear Cryptanalysis. The cryptanalysis technique to 4-bit crypto S-boxes
using linear relations among four, 4-bit input Vectors (IPVs) and four, output 4-bit Boolean Functions (OPBFs) of a 4-bit S-box
have been termed as linear cryptanalysis of 4-bit crypto S-boxes [HH96][HHO02]. Another technique to analyze the security of a
4-bit crypto S-box using all possible differences had also been termed as Differential Cryptanalysis of 4-bit crypto S-boxes
[HH96][HHO02].The search for best characteristic in linear cryptanalysis and the maximal weight path in a directed graph and
correspondence between them had also been elaborated with proper example [BV95]. It had also been proposed that the use of
correlation matrix as a natural representation to understand and describe the mechanism of linear cryptanalysis [DG95]. It was
also formalized the method described in [MM94] and showed that at the structural level, linear cryptanalysis has been very
similar to differential cryptanalysis. It was also used for further exploration into linear cryptanalysis [EB94]. It had also been
provided with a generalization of linear cryptanalysis and suggests that IDEA and SAFER K-64 have been secure against such
generalization [HG95]. It had been surveyed to the use of multiple linear approximations in cryptanalysis to improve efficiency



and to reduce the amount of data required for cryptanalysis in certain circumstances [KR94]. Cryptanalysis of DES cipher with
linear relations [MM94] and the improved version of the said cryptanalysis [MM94] with 12 Computers had also been reported
later [MM941].The description of an implementation of Matsui’s linear cryptanalysis of DES with strong emphasis on efficiency
had also been reported [PJ98]. In early days of this century the cryptanalytic attack based on multiple Linear Approximations to
AES candidate Serpent had also been reported [BCO08]. Later a technique to prove security bounds against Linear and Differential
cryptanalytic attack using Mixed-Integer Linear Programming (MILP) had also been elaborated [NM12]. Later to this on the
strength of two variants of reduced round lightweight block cipher SIMON-32 and SIMON-48 had been tested against Linear
Cryptanalysis and had been presented the optimum possible results [MA15]. Almost at the same time The strength of another
light weight block ciphers SIMECK had been tested against Linear Cryptanalysis [NB15].The fault analysis of light weight block
cipher SPECK and Linear Cryptanalysis with zero statistical correlation among plaintext and respective cipher text of reduced
round lightweight block cipher SIMON to test its strength had also been introduced in recent past [XY16].

2.3 Some Old and Recent References on Differential Cryptanalysis. The design of a Feistel cipher with at least 5
rounds that has been resistant to differential cryptanalysis had been reported to crypto community [AC97].The exploration of the
possibility of defeating differential cryptanalysis by designing S-boxes with equiprobable output XORs using bent functions had
been reported once [CA92].The description of some design criteria for creating good S-boxes that are immune to differential
cryptanalysis and these criteria are based on information theoretic concepts had been reported later [DT91]. It had been
Introduced that the differential cryptanalysis on a reduced round variant of DES [EA90] and broke a variety of ciphers, the fastest
break being of two-pass Snefru [EA91] and also described the cryptanalysis of the full 16-round DES using an improved version
[EA90] [EA92]. It had been shown that there have been DES-like iterated ciphers that does not yield to differential cryptanalysis
[NK91] and also introduced the concept of Markov ciphers and explained its significance in differential cryptanalysis. It had also
been Investigated that the security of iterated block ciphers shows how to and when an r-round cipher is not vulnerable to attacks
[LM91]. It had also been proposed that eight round Twofish can be attacked and investigated the role of key dependent S-boxes
in differential cryptanalysis [SMOQ]. It had been on the same line with [CA92] but proposed that the input variables be increased
and that the S-box be balanced to increase resistance towards both differential and linear cryptanalysis [YT95]. Early in this
century in previous decade estimation of probability of block ciphers against Linear and Differential cryptanalytic attack had
been reported. Later a new Algebraic and statistical technique of Cryptanalysis against block cipher PRESENT-128 had been
reported [MAQ9]. Almost 3 year later a new technique entitled Impossible Differential Cryptanalysis had also been reported
[CB12]. A detailed Comparative study of DES based on the strength of Data Encryption (DES) Standard against Linear and
Differential Cryptanalysis had been reported later [RK13]. At last Constraints of Programming Models of Chosen Key
Differential Cryptanalysis had been reported to crypto community [DG16].

2.4 Linear and Differential Cryptanalysis of stream ciphers. In late 20th century a stepping stone of the Differential-
Linear cryptanalysis method that is a very efficient method against DES had also been grounded [MS94]. The relationship
between linear and differential cryptanalysis and present classes of ciphers which are resistant towards these attacks had also
been elaborated [VM95]. Description of statistical cryptanalysis of DES, a combination and improvement of both linear and
differential cryptanalysis with suggestion of the linearity of S-boxes have not been very important had been depicted [VS95].
Later in 21% century description of analysis with multiple expressions and differential-linear cryptanalysis with experimental
results of an implementation of differential-linear cryptanalysis with multiple expressions applied to DES variants had also been
proposed [AGO00]. At the same time the attack on 7 and 8 round Rijndael using the Square method with a related-key attack that
can break 9 rounds Rijndael with 256 bit keys had been described [NFO1]. In Late or almost end of 20th century the strength of
stream ciphers have been tested against Differential Cryptanalytic attack [DG93]. Later the strength of them had also been tested
against Linear Cryptanalytic attack [GC94]. A separate method of linear cryptanalytic attack had been reported once [MT98]. At
least 6 years later The strength of stream cipher Helix had been tested against Differential Cryptanalytic attack [FMO04]. Later the
strength of stream ciphers Py, Py6, and Pypy had also been tested again Differential Cryptanalytic attack [HWO7]. Recently the
test of strength of stream cipher ZUC against Differential Cryptanalytic attack had also been reported to crypto community
[HW12].

2.5 Strict Avalanche Criterion (SAC) of S-boxes. In beginning Strict Avalanche Criterion of 4-bit Boolean Functions and
Bit Independence Criterion of 4-bit S-boxes had been introduced [AW86] and Design of Good S-boxes based on these criteria
had also been reported later [CA90]. In end of 20th century the construction of secured S-boxes to satisfy Strict Avalanche
Criterion of S-boxes had been reported with ease [KK91]. The test of 4-bit Boolean Functions to satisfy higher order strict
Avalanche Criterion (HOSAC) have had also been illustrated [TC94]. In early twenty first century the analysis methods to Strict
Avalanche Criterion (SAC) had been reported. A new approach to test degree of suitability of S-boxes in modern block ciphers
had been introduced to crypto-community [IL12]. 16! 4-bit S-boxes had also been tested for optimum linear equivalent classes
later [OS12]. The strength of several block ciphers against several Cryptanalytic attacks had been tested and reported later
[HA15]. Recently the Key dependent S-boxes and simple algorithms to generate key dependent S-boxes had been reported
[KK16]. An efficient cryptographic S-box design using soft computing algorithms have had also been reported [MA16]. In recent
past the cellular automata had been used to construct good S-boxes [MM16].

2.6. Polynomials. In early Twentieth Century Radolf Church initiated the search for irreducible polynomials over Galois Field
GF(p%) forp=2, 3,5 and 7 and for p = 2, g = 1 through 11, for p =3, q = 1 through 7, for p =5, g = 1 through 4 and forp=7, q =
1 through 3 respectively. A manual polynomial multiplication among respected EPs gives RPs in the said Galois field. All RPs
have been cancelled from the list of BPs to give IPs over the said Galois field GF(p“) [RC35]. Later The necessary condition for a
BP to be an IPs had been generalized to Even 2 characteristics. It had also been applied to RPs and gives Irreducible factors mod



2 [RS62]. Next to it Elementary Techniques to compute over finite Fields or Galois Field GF(pY) had been descried with proper
modifications [TD63]. In next the factorization of Polynomials over Galois Field GF(p%) had been elaborated [EB67]. Later
appropriate coding techniques of Polynomials over Galois Field GF(p%) had been illustrated with example [TK68]. The previous
idea of factorizing Polynomials over Galois Field GF(p%) [EB67] had also been extended to Large value of P or Large Finite
fields [EB70]. Later Few Probabilistic Algorithms to find IPs over Galois Field GF(p%) for degree q had been elaborated with
example [MR80]. Later Factorization of multivariate polynomials over Galois fields GF(p) had also been introduced to
mathematics community [AL85]. With that the separation of irreducible factors of BPs [EB67] had also been introduced later
[RM87]. Next to it the factorization of BPs with Generalized Reimann Hypothesis (GRH) had also been elaborated [LR88]. Later
a Probabilistic Algorithm to find irreducible factors of Basic bivariate Polynomials over Galois Field GF(p®) had also been
illustrated [DW90]. Later the conjectural Deterministic algorithm to find primitive elements and relevant primitive polynomials
over binary Galois Field GF(2) had been introduced [MR90]. Some new algorithms to find IPs over Galois Field GF(p) had also
been introduced at the same time [VS90]. Another use of Generalized Reimann Hypothesis (GRH) to determine irreducible
factors in a deterministic manner and also for multiplicative subgroups had been introduced later [LR92]. The table binary
equivalents of binary primitive polynomials had been illustrated in literature [MZ94]. The method to find roots of primitive
polynomials over binary Galois field GF(2) had been introduced to mathematical community [1S96]. A method to search for IPs
in a Random manner and factorization of BPs or to find irreducible factors of BPs in a random fashion had been introduced later
[PX96]. After that a new variant of Rabin's algorithm [MR80] had been introduced with probabilistic analysis of BPs with no
irreducible factors [GP97]. Later a factorization of univariate Polynomials over Galois Field GF(p) in sub quadratic execution
time had also been notified [EV98]. Later a deterministic algorithm to factorize IPs over one variable had also been introduced
[EJO1]. An algorithm to factorize bivariate polynomials over Galois Field GF(p) with hensel lifting had also been notified
[GAO02]. Next to it an algorithm had also been introduced to find factor of Irreducible and almost primitive polynomials over
Galois Field GF(2) [BZ03]. Later a deterministic algorithm to factorize polynomials over Galois Field GF(p) to distinct degree
factors had also been notified [SE04]. A detailed study of multiples and products of univariate primitive polynomials over binary
Galois Field GF(2) had also been done [SMO5]. Later algorithm to find optimal IPs over extended binary Galois Field GF(2™)
[MS07] and a deterministic algorithm to determine Pascal Polynomials over Galois Field GF(2) [CF08] had been added to
literature. Later the search of IPs and primitive polynomials over binary Galois Field GF(2) had also been done successfully
[AAQ09]. At the same time the square free polynomials had also been factorized [CR09] where a work on divisibility of trinomials
by IPs over binary Galois Field GF(2) [RWO09] had also been notified. Later a probabilistic algorithm to factor polynomials over
finite fields had been introduced [SM11]. An explicit factorization to obtain irreducible factors to obtain for cyclotomic
polynomials over Galois Field GF(p“) had also been reported later [LQ12]. A fast randomized algorithm to obtain IPs over a
certain Galois Field GF(p“) had been notified [JC13]. A deterministic algorithm to obtain factors of a polynomial over Galois
field GF(p“) had also been notified at the same time [DM14]. A review of construction of IPs over finite fields and algorithms to
Factor polynomials over finite fields had been reported to literature [GH14][NC14]. An algorithm to search for primitive
polynomials had also been notified at the same time [WJ14]. The residue of division of BPs by IPs must be 1 and this reported to
literature a bit later [SJ15]. The IPs with several coefficients of different categories had been illustrated in literature a bit later
[HJ16]. The use of zeta function to factor polynomials over finite fields had been notified later on [BP17] At last Integer
polynomials had also been described with examples [EWNN].

3. Review of crypto relevant properties of 4-bit and 8-bit Crypto S-boxes. In this section crypto relevant property of
4-bit BFs as well as 4-bit S-boxes has been reviewed. The subsec.3.1 has been dedicated to (Output) Bit Independence Criterion.
In subsec. 3.2. Strict Avalanche Criterion (SAC) of 4-bit BFs and 4-bit S-boxes with new methods has been reviewed. The
Higher order SAC or HO-SAC has been elaborated in subsec.3.3. A review of Differential Cryptanalysis of 4-bit S-boxes,
Differential Cryptanalysis of 4-bit S-boxes with 4-bit BFs, Linear Cryptanalysis of 4-bit S-boxes and Linear Cryptanalysis of 4-
bit S-boxes with 4-bit BFs or Linear Approximation Analysis has been reviewed in subsec.3.4, subsec.3.5, subsec.3.6, and
subsec.3.7 respectively.

3.1 A Brief Review of (Output) Bit Independence Criterion (BIC) of 4, 8 bit S-boxes. A short description of a 4-bit
crypto S-box has been given in subsec.3.1.1 of sec 3. The four Input Vectors (IPVs) and four Output Boolean Functions (OPBFs)
and the derivation of four IPVs and four OPBFs from elements of Index of 4-bit crypto S-box and elements of 4-bit crypto S-box
respectively have been illustrated in subsec.3.2.2.0f sec.3. The (Output) Bit Independence Criterion (BIC) of 4-bit S-box has been
described with example and Pseudo code in subsec.3.3. of sec.3.

3.1.1 4-bit Crypto S-boxes. A 4-bit Crypto S-box can be written as follows in Table.1, where the each element of the first
row of Table.1, entitled as index, have been the position of each element of the crypto S-box within the given crypto S-box and
the elements of the 2™ row, and entitled as S-box have been the elements of the given Substitution box. It can be concluded that
the 1% row is fixed for all possible crypto S-boxes. The values of each element of the 1% row are distinct, unique and vary
between 0 to F in hex. The values of the each element of the 2™ row of a crypto S-box are also distinct and unique and also vary
between 0 to F in hex. The values of the elements of the fixed 1® row are sequential and monotonically increasing where for the
2" row they can be sequential or partly sequential or non-sequential. Here the given Substitution box is the 1% 4-bit S-box of the
1% S-box out of 8 of Data Encryption Standard [AT90][NT77][NT99].



Row | Column | 1 2 13|]4|5]|6|7|8|9|A|B|C|D|E|JF|G
1 Index 0 1/2|3|4|5|6|7|8|]9|A|B|C|D|E]|F
2 S-box E|4|D|1|2|F|B|8|3|]A|6 |C|5]|]9]0]7

Table.1. 4-bit crypto S-box.

3.1.2 Relation between 4-bit S-boxes and 4-bit Boolean Functions (4-bit BFs). Index of Each element of a 4-bit
crypto S-box and the element itself has been a hexadecimal number and that can be converted into a 4-bit bit sequence that have
been given in column 1 through G of row 1 and row 6 under row heading Index and S-box respectively. From row 2 through 5
and row 7 through A of each column from 1 through G of Table.2. shows the 4-bit bit sequences of the corresponding
hexadecimal numbers of the index of each element of the given crypto S-box and each element of the crypto S-box itself. Each
row from 2 through 5 and 7 through A from column 1 through G constitutes a 16 bit, bit sequence that is a 16 bit long input
vectors (IPVs) and 4-bit output BFs (OPBFs) respectively. column 1 through G of Row 2 has been termed as 4™ IPV, Row 3 has
been termed as 3™ IPV, Row 4 has been termed as 2™ IPV and Row 5 has been termed as 1% IPV whereas column 1 through G of
Row 7 has been termed as 4™ OPBF, Row 8 has been termed as 3™ OPBF, Row 9 has been termed as 2" OPBF and Row A has
been termed as 1% OPBF [AT90]. The decimal equivalent of each IPV and OPBF has been noted at column H of respective rows.

Row | Column [ 1|2 | 3|4 |5 6 7189 |A|B|C|D|E|F|G]| H. Decimal
1 Index 0|12 |3]|4 5 6| 7|89 |A|B|C|D]|E/|F]| Equivalent
2 IPV4 0|0|O0O|O0O|0O]| O ofoj1|1}j1]|1]1]1|1]1 00255
3 IPV3 000|001 1 1(1(0|0|0|J0O]2]21]1]|1 03855
4 IPV2 o|jo0|1]1]0]| 0 1100|212 ]|1]0]0]1]|1 13107
5 IPV1 0|1(0|1]|0 1 o(1j0|1j0|1|0|1]|0]|1 21845
6 S-box E|4|D|1]|2 F|B|8|3|A|6|C|5]|]9|0]|7
7 OPBF4 |1 0| 1|00 1 1)]1(0|1|0j1|0]1]|]0]0O 42836
8 OPBF3 |1 |1 |1|0]|0 1 o|jojojoj1|(1(1|0|0]|1 58425
9 OPBF2 |1 |0 | 0| 0|1 1 1(0(1|1|1|]0]|]0]0]0]|1 36577
A OPBF1L [0 | 0|1 |10 1 1]1]0(1]0|0jO0O|21]1]|]0]|1 13965

Table.2. Decomposition of 4-bit input S-box and given S-box (1% 4-bit S-box of 1% S-box out of 8 of DES) to 4-bit BFs.

3.1.3. (Output) Bit Independence Criterion (BIC) of 4, 8-bit S-boxes. If all possible or total six xored 4-bit BFs or
DBFs (Derived BFs) have been balanced for a particular 4-bit crypto S-box or 30 xored 8-bit DBFs have been balanced for a
particular 8-bit crypto-S-box then the said 4-bit or 8-bit S-box has been said to satisfy output BIC of S-boxes [ST86][AT90]. The
example of BIC of 4-bit S-boxes has been given in Table.3. below and Pseudo code with time complexity analysis have been
given in subsec. 3.1.3.1,

Row | Column | 1|2 |3[4]|5|/6|7|8/9|A B|/C|DE|F|G
1 S-box E|4|D/1|2|F|B|8|3|A|6/C|5]9|0]7
2 OPBF4 |1 |0 |1]0]j0jJ21]1]1/0]1]0fj1|0]1|0]0
3 OPBF3 |1 |1 |1/0]0j1]0]0Oj0O]jO]1j2]1]0|0]1
4 OPBF2 |1 |0 |0OjO]1)2]1]0fJ2]1]1/0]0]0O|O]1
5 OPBF1L |0 | O |1]1]0j1]1]0j1]0j0OjO]1]1|0]1
6 DBF41 |1 |0 |0[1]0/O|O]1|21]1]0fj21]1]0f0]1
7 DBF42 | 0|0 |1/0|1/0]0O]1|21]0]1j1]0]1|0]1
8 DBF43 | 0|1 |0j0|OjO]1]1|/0]1]1j0]1]1|0]1
9 DBF32 | 0|1 |1]0]1/0]1]0fj1]1]0fj21]1]0j0]0O
A DBF3,1 |1 |1 |0j1]0/0]1]0fj1]0]1j1]0]1|0]0
B DBF2,1 |1 |0 |1]1]1/0]0j0OfJ0O]1]1|j0]|1]1|0]0

Table.3. BIC Analysis of 1% 4-bit S-box out of 4 of 1** S-box of DES.

In Table.3. each column from column 1 through G of row 1 represents each element of 1% 4-bit S-box of Data Encryption
Standard or DES. Column 1 through G of each row 2 through 5 has been each of four OPBFs, OPBF4, OPBF3, OPBF2, OPBF1
respectively. Column 1 through G of each row 6 through B has been each of six DBFs, DBF4,3, DBF4,2, DBF4,1, DBF3,2,
DBF3,1 and DBF2,1 respectively. The analysis shows that 6 DBFs have been balanced i.e. consists of 8 0s and 8 1s, so at most
uncertainty to determine the occurrence of 0 and 1 value in all four OPBFs. So the given 4-bit S-box has been said to satisfy
(Output) Bit Independence Criterion of 4-bit S-boxes.



3.1.3.1. Pseudo Code of BIC with time complexity Analysis.
Start.
Step 0: int BF[4][16], DBF[16]; // The two dimensional array BF[4][16] stores each OPBF of a 4-bit crypto S-box in each row
and array DBF[16] stores Difference BFs.

int i,j; // Loop Variables.

Int count = 0; // Variable to count number of balanced DBFs.
//'In step 1. 6 possible two OPBFs have been xored to obtain DBFs.
Step 1: for i=0:3; // 1% OPBF selection

for j = 3: (i+1) // 2" OPBF selection
DBF[16] = BFi][16]" BF[j][16]; // Derivation of DBFs from two OPBFs
If (DBF == Balanced). count++; // count number of balanced DBFs.
End for.

Enf for.
Step 2. If (count ==6) then the crypto 4-bit S-box Satisfies BIC of 4-bit S-boxes;

else. does not satisfy BIC of 4-bit S-boxes;
Stop.
Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n?) since the body contains two
nested loops.
3.2. A brief Review on Strict Avalanche Criterion (SAC) of 4-bit BFs and SAC of 4-bit S-boxes [AT90][CA90]. The Strict
Avalanche Criterion or SAC of 4-bit BFs with pseudo code have been reviewed in sec. 3.2.1.and the new technique to find SAC
of 4-bit BFs with pseudo code has been described in sec.3.2.2. and another technique of SAC of 4-bit BFs and SAC of 4-bit S-
boxes with pseudo code has also been reviewed in sec.3.2.3

3.2.1. A brief Review on Strict Avalanche Criterion (SAC) of 4-bit BFs. A 4-bit BF has been said to satisfy SAC of
4-bit BFs if distances of OPBF from the complemented OPBFs (COPBFs) after complementation of four IPVs individually have
been balanced. In Strict Avalanche Criterion of 4-bit BFs, IPV4, IPV3, IPV2 and IPV1 that have been shown in column 1
through G of row 2, 3, 4 and 5 in Table.2, have been complemented individually one at a time. If due to said operation on OPBF
the number of bits has been changed for change of bits in each IPV in COPBF has been 8 or half of the number of bits in a 4-bit
BF then the OPBF has been said to satisfy SAC of 4-bit BFs.

IPV4, CIPV4, IPV3, CIPV3, IPV2, CIPV2, IPV1, CIPV1 have been shown in column 2 thorough H of row 1,
3,7,9, D, F, J, L respectively of table.4. The OPBFs and COPBFs due to complementation of CIPV4, CIPV3, CIPV2 and
CIPV1 have been shown in column 2 thorough H of row 2, 4, 8, A, E, G and K, M respectively. The Difference BFs or DBFs
more specifically, DBF4, DBF3, DBF2, DBF1 have been shown in column 2 thorough H of row 5, B, H, N respectively. Now
change in Number of bits in COPBFs from OPBF due to change of bits in CIPV4, CIPV3, CIPV2 and CIPV1 have been 12, 8, 4,
12. So the given OPBF does not satisfy SAC of 4-bit BFs. To Satisfy SAC of 4-bit BFs change in Number of bits in four
COPBFs from OPBFs due to change of bits in CIPV4, CIPV3, CIPV2 and CIPV1 must be 8, 8, 8, 8. If four OPBFs of a
particular crypto S-box satisfy SAC of 4-bit BFs individually then the said crypto S-box has been said to satisfy SAC of 4-bit
crypto S-boxes.
Pseudo Code. Let BF[16].bit0 has been a bit level array of 16 bits of a 4-bit BF out of 65536 4-bit BFs. and BF[16] has been an array of 16
bits of a 4-bit BF. CV[16].bit0 has been a bit level array of 16 bits to store either 00FF, OFOF, 3333, 5555 in hex. CVC[16].bit0 has been a
bit level array of 16 bits to store either FF00, FOFO, CCCC, AAAA in hex. Here " represents Bitwise Xor operation. NL represents Number
of bits changed in Lower Halves and NU represents Number of bits changed in Upper Halves.
Start.
Step OA: For 1:16 BF[16].bit0 = BF[16].
Step OB: For 1:16 CV[16].bit0 = 00FF, OFOF, 3333, 5555.
Step 0C: For 1:16 CVC[16].bit0 = FF00, FOF0, CCCC, AAAA.
/I Next five steps demonstrates the algorithm.
Step 01: wt{(BF[16].bit0 & 00FF)"(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)"(BF[16].bit0>>8&FF00)}= N= NL3 + NU3 .
Step 02: wt{(BF[16].bit0 & OFOF)(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&FOF0)(BF[16].bit0>>4&FO0F0)}= N = NL2 +NU2 .
Step 03: wt{(BF[16].bit0 & 3333)"(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)"(BF[16].bit0>>2&CCCC)}=N= NL1 +NU1.
Step 04: wt{(BF[16].bit0 & 5555)(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)NBF[16].bit0>>1&AAAA)}=N=NLO + NUO .
Step 05: If N=8 for Step 01, Step 02, Step 03, Step 04.

then BF[16].bit0 Satisfies SAC.
else BF[16].bit0 Does not Satisfies SAC.

Stop.
Time complexity of the algorithm has been O(n).
3.2.2. New Method for Strict Avalanche Criterion (SAC) of 4-bit BFs. Since complement of 4" IPV means
interchanging each distinct 8 bit halves of 16 bit long 4™ IPV so the 2, 8 bit halves of OPBF has been interchanged due to
complement of 4™ IPV or CIPV4 in COPBF. Next to it since complement of 3 IPV means interchanging each distinct 4 bit
halves of each distinct 8 bit halves of IPV3 in CIPV3 so each distinct 4 bit halves of each distinct 8 bit halves of OPBF have been
interchanged due to complement of IPV3 in COPBF. Now complement of 2™ IPV means interchanging each distinct 2 bit halves



of each distinct 4 bit halves of each distinct 8 bit halves of OPBF in COPBF and complement of 1% IPV means interchanging

each bit of each distinct 2 bit halves of 16 bit long OPBF in COPBF.

IPV4, CIPV4, IPV3, CIPV3, IPV2, CIPV2, IPV1, CIPV1 have been shown in column 2 thorough H of row 1, 3, 7,9,

D, F, J, L respectively of table.4. The OPBFs and COPBFs due to complementation of CIPV4, CIPV3, CIPV2 and CIPV1 have

been shown in column 2 thorough H of row 2, 4, 8, A, E, G and K, M respectively. The Difference BFs or DBFs more

specifically, DBF4, DBF3, DBF2, DBF1 have been shown in column 2 thorough H of row 5, B, H, N respectively. Now change
in Number of bits in COPBFs from OPBF due to change of bits in CIPV4, CIPV3, CIPV2 and CIPV1 have been 12, 8, 4, 12. So
the given OPBF does not satisfy SAC of 4-bit BFs. To Satisfy SAC of 4-bit BFs change in Number of bits in COPBFs from

OPBFs due to change of bits in CIPV4, CIPV3, CIPV2 and CIPV1 must be 8, 8, 8, 8. If four OPBFs of a particular crypto S-box

satisfy SAC of 4-bit BFs individually then the said crypto S-box has been said to satisfy SAC of 4-bit crypto S-boxes.

Pseudo Code.

Start.

Step 00: For 1:16 BF[16].bit0 = BF[16]. // Each bit of 16 bit long OPBF has been relocated to bit level array BF[16].bit0.

Step 1A: CBF[16].bit0 = (BF[16].bit0>>8); // OPBF has been circularly shifted by 8 bits and complemented BF or COPBF has been

located to bit level array CBF[16].bit0.

Step 1B: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF has been obtained by xor of each bit of OPBF and COPBF.

Step 1C: Count = IF(DBF[16].bit0==1); // Number of 1s in DBF has been counted.

Step 2A: CBF[16].bit0 = (BF[8A].bit0>>4)&& (BF[8B].bit0>>4); // Each distinct 8 bit halves of OPBF has been circularly shifted by 4
bits and complemented BF or COPBF has been located to bit level
array CBF[16].bit0.

Step 2B: DBF[16].bit0 = CBF[16].bit0™ BF[16].bit0; // Difference BF has been obtained by xor of each bit of OPBF and COPBF.

Step 2C: Count = IF(DBF[16].bit0==1); // Number of 1s in DBF has been counted.

/I'In next step Each distinct 4 bit halves of each distinct 8 bit halves of OPBF has been circularly shifted by 2 bits and complemented BF or

COPBF has been located to bit level array CBF[16].bit0.

Step 3A: CBF[16].bit0 = (BF[4A].bit0>>2)&& (BF[4B].bit0>>2)&& (BF[4C].bit0>>2)&& (BF[4D].bit0>>2);

Step 3B: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF has been obtained by xor of each bit of OPBF and COPBF.

Step 3C: Count = IF(DBF[16].bit0==1); // Number of 1s in DBF has been counted.

/I In next step each bit of each distinct 2 bit havles have been circularly shifted by 1 bits and complemented BF or COPBF has been located

to bit level array CBF[16].bit0.

Step 4A: CBF[16].bit0 = (BF[2A].bit0>>1)&&(BF[2B].bit0>>1)&&(BF[2C].bit0>>1)&&(BF[2D].bit0>>1)&&

(BF[2E].bit0>>1)&&(BF[2F].bit0>>1)&&(BF[2G].bit0>>1)&&(BF[2H].bit0>>1);

Step 4B: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF has been obtained by xor of each bit of OPBF and COPBF.

Step 4C: Count = IF(DBF[16].bit0==1); // Number of 1s in DBF has been counted.

Step 05 : IF Count = 8 for Step 1C, Step 2C, Step 3C, Step 4C. BF[16] Satisfies SAC of 4-bit BFs.

ELSE BF[16] does not Satisfy SAC of 4-bit BFs. // Test of SAC criterion.

Stop.

Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested

loops.

3.2.3. Review of a new method of Strict Avalanche Criterion (SAC) of 4-bit BFs and 4-bit S-boxes

[AT90][ST86]. Each and every column of 1 through G from row 2 through 5 and row 7 through A of 4 IPVs and 4 OPBFs in

Table.2 constitutes 16 4-bit input binary numbers and 16 4-bit output binary numbers respectively. The binary value of OPBF

before and after flip of 16 input binary numbers sequentially in same position 1 bit at a time has been equated. If they are equal 8

times [discarding same occurrences] and out of equality 8 times for flip of 1 bit at a time in the same position of 16 Input binary

numbers sequentially for four positions one by one then the 4-bit BF has been said to satisfy SAC of 4-bit BFs.
All elements of the given S-box in hex, Index of each element of the given S-box in hex (INH) and 4 bit binary form

(INB) have been given in column 2 through H of row 3, 1, 2 of Table.5 respectively. Each Output BF, OPBF1, OPBF2, OPBF3,

OPBF4 has been shown in column 2 through H of row 4, 5, 6, 7 Table.5 respectively.

Now 16 INBs before flip and 16 INBs after flip in one bits particularly in bit position 1, 2, 3, 4 have been shown in row

2 through H of column 1, 2, 6, 7, B, C, G, H respectively of Table.6. The each corresponding bits of OPBF1, OPBF2, OPBF3,

OPBF4 before and after flip have been shown in row 2 through H of column 3, 4, 8, 9, D, E, I, J respectively in Table.6. 1 in any

position in row 2 through H of column 5, A, F, K illustrate dissimilarity in bits in corresponding positions of OPBF1, OPBF2,

OPBF3 and OPBF4 duly before and after flip in one bits in bit positions 1, 2, 3 and 4 respectively.

If out of 16 positions in each row from 2 through H column of column 5, A, F, K there are 8 1s and 8 0Os then the given

BF is said to Satisfy SAC of 4-bit BFs. If all four BFs of a given 4-bit crypto S-box satisfy SAC of 4-bit BFs then the S-box has

been said to satisfy SAC of 4-bit S-boxes. Here in Table.6. row | shows the number of bits changed in OPBF1, OPBF2, OPBF3,

OPBF4 before and after flip in pos. 1, pos. 2, pos. 3 and pos. 4 respectively. Since the value is not equal to 8 in at least one

position for the given OPBF so the concerned OPBF and the given 4-bit S-box does not satisfy SAC of 4-bit BFs and SAC of 4-

bit S-boxes respectively.



R|C 1 2(3|4|5/6|7|8|9|A|B|C|D|E|F|G|H
1 1IPV4 ojojojojojojojojrjrj1j1j1j1j1]1
2 OPBF |1 |0]|1|0|0|1]|1|1|J0(|2|0|2]0|1]0]0
3 CIPV4 |1 |1|1]1|1]1}j1|1]|]0]0O]JOfjO|JO|JO]JO]O
4 |COPBF|0|1]|]0|1|0|J1]|0j0O]jJ1]O0|1|0O0]|O]|1 |1 |1
5 DBF |1 ]1]1]1|0]|J0]21]2]1]1]1|1]0]|0O0]|1 |1
6 Number of bits changed in COPBF 12
RIC 1 2/3|4|/5|/6|7|8|9|A|B|C|D|E|F|G|H
7 IPV3 o(jofojof1j1y12y1j0l0f0j0|2]1]1]|1
8 OPBF |1 |0]|1|0|0|1]|1|1|J0(|2|0O|2]|0|1]0]0
9 CIPV3 |1 |1|1]1|0]0OjOJO]2]1]1]j1|0|0O]JO]O
A |COPBF|O|1|1(|1|1|0|12(0|0|2]|0|0]|0O |1 |01
B DBF |1|1(0|1|21j1f(0|12|0|J0]|O0O |1 |00 |01
C Number of bits changed in COPBF 8
RIC 1 2/3|/4|/5|/6|7|8|9|A|B|C|D|E|F|G|H
D IPV2 o(jo0f212j12f0j0f12j1j0|j0f21j1j0j0]1]1
E OPBF |1|0|1|0|0Oj2|1]|1]|0|212|0 |1 |01 |0]0
F Clpv2 (110|021 |212|j0j0Of1]2]J0|0]|1|1]0]|O0
G |COPBF|1]|0|1]|0|1]|1|0|1]j0 (2|02 |0 |0]|0]|1
H DBF |[0]0]|0|0|1]|0]21]|0]|0O]|O]O|O]|O]|1 |01
I Number of bits changed in COPBF 4
R|C 1 2|13/4|5|/6|7|8|9|/A|B|C|D|E|F|G]|H
J IPV1 ofj1/0j2j0j12j0j1jo0fj1f0j1j0j1]0]1
K OPBF |1|0|1|0|0Oj2|1]|1]|0|212|0 |1 |01 |0]0
L Cclpvi (1|01 |0]J1|0]J2}(0|1]0]2|0]1|0]1]|O0
M |COPBF|O|1|0|1]21f0|1|1|1|0|1 |01 |0]|0]|0O
N DBF |1 ]1|1|1|1|1j0j0j1]j1j1 (|1 |1|1]0]|0O
0 Number of bits changed in COPBF 12
Table.4. SAC Criterion for 4-bit BFs.
R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H
1 Hex Index 0 1 2 3 4 5 6 7 8 9 A B C D E F
Pos INB 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321
2 INB 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
3 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7
4 OBF1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0
5 OBF2 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1
6 OBF3 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1
7 OBF4 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1

Table.5. S-box and OBFs for SAC Test of 4-bit BFs as well as 4-bit Crypto S-boxes.

Col | Flip of 1 bit of Index at Pos. 1 Flip of 1 bit of Index at Pos. 2 | Flip of 1 bit of Index at Pos. 3 Flip of 1 bit of Index at Pos. 4

Row 1 2 3 4 5 6 7 8 9 | A B C D|E]|F G H 11 J | K
1 B-Flip A-Flip 1 1’ | C B-Flip | A-Flip 2 | 22| C | B-Flip A-Flip 3 |13 | C | B-Flip A-Flip 414 | C
2 0000 0001 1 0 1 0000 0010 1 110 0000 0100 11071 0000 1000 101
3 0001 0000 0 1 1 0001 0011 0 0|0 0001 0101 011 0001 1001 0|1 ]1
4 0010 0011 1 0 1 0010 0000 1 110 0010 0110 111710 0010 1010 101
5 0011 0010 0 1 1 0011 0001 0 00 0011 0111 0|11 0011 1011 0] 11
6 0100 0101 0 1 1 0100 0110 0 111 0100 0000 011 0100 1100 0jo0]oO
7 0101 0100 1 0 1 0101 0111 1 110 0101 0001 11011 0101 1101 11]1]0
8 0110 0111 1 1 0 0110 0100 1 0|1 0110 0010 1]11]0 0110 1110 1(0 (1
9 0111 0110 1 1 0 0111 0101 1 1[0 0111 0011 11011 0111 1111 1101
A 1000 1001 0 1 1 1000 1010 0 0|0 1000 1100 0/[0]O 1000 0000 0|1 ]1
B 1001 1000 1 0 1 1001 1011 1 110 1001 1101 1]1]1]0 1001 0001 11011




C 1010 1011 0 1 1 1010 1000 0 0 0 1010 1110 0 [N 1010 0010 0 1 1
D 1011 1010 1 0 1 1011 1001 1 110 1011 1111 1101 1011 0011 1101
E 1100 1101 0 1 1 1100 1110 0 0 0 1100 1000 0 0|0 1100 0100 0] 0 0
F 1101 1100 1 0 1 1101 1111 1 0|1 1101 1001 1]1]0 1101 0101 1110
G 1110 1111 0 0 0 1110 1100 0 0|0 1110 1010 0]0]O 1110 0110 0111
H 1111 1110 0 0 0 1111 1101 0 1 1 1111 1011 0 1 1 1111 0111 0 1 1
[ No of Bits Changed due to Flip 12 No of Bits Changed due to Flip4 |  No of Bits Changed due to Flip 8 No of Bits Changed due to Flip 12

Table.6. SAC Test of 4-bit BFs and 4-Bit Crypto S-boxes.

Pseudo Code. The flipping of bits on particular positions are made by proposing 1-bit in four ev vectors as, eo {0001},
e1{0010}, e2{0100} and es{1000}. The Algorithm can be written as,
Start.
Step OA: For 1=0:16 For J=0:16 D[I][J] = 0; // Initializing two dimensional array D[16][16].
Step 0B: ev[4] ={{0,0,0,1},{0,0,1,0},{0,1,0,0},{1,0,0,0}}; // Initializing e, vextor
Step 01: For S=0:4 For 1=0:16 For J=0:16 t[S][I][J] = 16bt4x[S][1][J] ~ ev[S] // Array of input index after flip.
Step 02: For S=0:4 For 1=0:16 For J=0:16 r=16bt4bf[S][I][J] ~ 16bt4bf[t[S][1][J]]; // obtain DBFs by xor operation.
Step 04: if (r==1) D[f][v]++; // Count of 1s in DBFs
/l Evaluation of SAC criterion.
Step 05: IF D[f][v]==8, for All cases 4-bit BF Satisfies SAC of 4bit BFs.

ELSE 4-bit BF does not Satisfy SAC.
Step 06: IF all four BFs Satisfy SAC of 4-bit BFs then the given S-Box Satisfies SAC of 4-bit S-Box.

ELSE the given S-Box does not Satisfy SAC of 4-bit S-Box.
Stop.
Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested
loops.
3.3. A brief Review of old and new methods of Higher Order SAC (HO-SAC) and Extended SAC Criterion of 4-bit
Crypto S-boxes [CF90]. The Method and algorithm of HO-SAC of 4-bit BFs has been reviewed in subsec 3.3.1. The two new
methods and algorithms of HO-SAC of 4-bit BFs and HO-SAC of 4-bit crypto S-boxes have been described in subsec 3.3.2. The
new SAC criterion entitled Extended SAC criterion of 4-bit BFs and 4-bit S-boxes has been illustrated with its review and
algorithm in subsec. 3.3.3.
3.3.1 Review of Higher Order SAC of 4-bit BFs. If two or three IPVs have been complemented at a time and the Difference BF
of complemented OPBFs and OPBF have been balanced for all possible 10 conditions then the OPBF has been said to satisfy
HO-SAC of 4-bit BFs. If four OPBF of particular crypto S-box satisfy HO-SAC of 4-bit BFs individually then the concerned S-
box has been said to satisfy HO-SAC of 4-bit crypto S-boxes. The Given S-box and INB with position of each bits of it and a
review of HO-SAC of 4-bit BFs have been illustrated in Table. 7. and Table.8. respectively.

R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H
1 Hex Index 0 1 2 3 4 5 6 7 8 9 A B C D E F
Pos INB | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321 | 4321
2 INB 0000 | 0001 | 0010 | 0011 [ 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
3 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7
4 OPBF1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0
5 OPBF2 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1
6 OPBF3 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1
7 OPBF4 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1
Table.7. S-box and OBFs for HO-SAC Test of 4-bit BFs as well as 4-bit crypto S-boxes.
RIC 8-A 2/3|/4|5|/6|7|8|9|A|B|C|D|E|F]|G]|H
1 IPVv4 |0|0O0|O]JOjJOJOJOj|O|21 2|11 ]1]1]1]1
2 IPV3 o{ojojoj1j1j1j1jo0jojoOojojr]1]1]1
3 OPBF [1|0|1)|0|0O|1]1|1|0|1]0]|1|0]|1|0]0O
4 ClPv4 |1 |1|1|1|1]1|]1]1/0]0|J0|0OJO]O]JO]O
5 cipv3d |1 |1|1(1{0f(0j0OfO|2 2|1 |2|0|0]|0|O0
6 Stepl ([0 (212(0|2|/0|1]0|0|21|0|2 |0 |0 |1 |1]1
7 Step2 (0210|001 ]|0|1|0 |11 |1 |12|0|1]0
8 |CcoOPBF|O0|1|0f0O|O|2|0O]J1|O]|1 (2|11 ]0]|1]|0O
9 DBF l1j1j1(0j0j0f2]0|O0O]JOf2 |02 |01 |0
A Number of bits changed in COPBF 6
RIC 8-B 2/3|/4|5|/6|7|8|9|A|B|C|D|E|F]|G]|H
1 1PV4 o(jofojofojojojojr|1f1j1|1j1]11|1
2 IPV2 ojoj1j1j0j0j1j1jojoj1r1j1j0j0j1]1
3 OPBF (1 (0|1|j0|O0O|1]|1|1|{0|1]|0 |1 |0 |1 |0]0O
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8 Stepl |0]|1|1]1|1|0|1]|]0|0|2]|0 |0 |0 |1 ]0]1
9 Step2 |1]1|/0]1|1|0|1]|]0|0|0O|O |1 |0 |1 ]0]1
A | Step3 |1]|1|1]0j0|1|0]2|0|0O]J2|0|212|0]|1]0O
B |copBF|1|1|1|0|0|1|0]|12|0|0O]1|0|212|0]|1]0
C DBF |0|1|0|0|0|O]1]0|O |1 |21 |1 1|1 |1]0
D Number of bits changed in COPBF 8

Table.8. Table of HO-SAC Test and Complement Method of HO-SAC Test of 4-bit BFs

All elements of the given S-box, Index of each element of the given S-box in hex (INH) and 4 bit binary form (INB)
with position of each bit from 1 to 4 have been given in column 2 through H of row 3, 1, 2 of Table.7 respectively. Each Output
BF, OPBF1, OPBF2, OPBF3, OPBF4 has been shown in column 2 through H of row 4, 5, 6, 7 Table.7 respectively.

If 2 IPVs have been complemented at a time then the Higher Order SAC or HO-SAC of 4-bit BFs can be termed as 2™
Order HO-SAC of 4-bit BFs illustrated in sub table 8-A to 8-F. If the Number of IPVs complemented at a time is 3 then the
Higher Order SAC or HO-SAC of 4-bit BFs can be termed as 3™ Order HO-SAC of 4-bit BFs illustrated in sub table 8-G to 8-J.

In 2™ Order HO-SAC, any 2 IPVs shown in column 2 through H of row 1, 2 of sub table 8-A to 8-F of Table.8 have
been complemented at a time. The complemented IPVs or CIPVs have been shown in column 2 through H of row 4, 5 of sub
table 8-A to 8-F of Table.8.The OPBF has been shown in column 2 through H of row 3 of sub table 8-A to 8-F of Table.8. Now
due to complement of 1% IPV the resultant complemented OPBF has been shown in row column 2 through H of row 6 and due to
complement of 2 IPV at a time the resultant OPBF of the complemented OPBF have been shown in column 2 through H of row
7 of sub table 8-A to 8-F of Table.8 respectively. The obtained complemented OPBF or COPBF and bitwise xor or Hamming
distance (Difference BF or DBF) between OPBF and COPBF have been shown in column 2 through H of row 8, 9 of sub table 8-
A to 8-F of Table.8 respectively. The count of 1s in DBF or dissimilar bits in OPBF and COPBF due to complement of two IPVs
at a time have been shown in sub table 8-A to 8-F of Table.8. For the given OPBF and for all 6 possible 2™ order HO-SAC tests
the counts of 1s in DBF have been shown in row A of sub table 8-A to 8-F of Table.8 have been 8 then the given OPBF has been
said to satisfy 2" order HO-SAC of 4-bit BFs. But in table 8 all counts have not been equal to 8 so the given OPBF does not
satisfy 2™ order HO-SAC of 4-bit BFs.

In 3" Order HO-SAC, any 3 IPVs shown in column 2 through H of row 1, 2, 3 of sub table 8-G to 8-J of Table.8 have
been complemented at a time. The complemented IPVs or CIPVs have been shown in column 2 through H of row 5, 6, 7 of sub
table 8-G to 8-J of Table.8.The OPBF has been shown in column 2 through H of row 4 of sub table 8-G to 8-J of Table.8. Now
due to complement of 1% IPV the resultant complemented OPBF has been shown in row column 2 through H of row 8 and due to
complement of 2" IPV at a time the resultant OPBF of the complemented OPBF have been shown in column 2 through H of row
9 and for 3" IPV COPBF has been shown in column 2 through H of row A of sub table 8-G to 8-J of Table.8 respectively. The
obtained complemented OPBF or COPBF and bitwise xor or Hamming distance (Difference BF or DBF) between OPBF and
COPBF have been shown in column 2 through H of row B, C of sub table 8-G to 8-J of Table.8 respectively. The count of 1s in
DBF or dissimilar bits in OPBF and COPBF due to complement of three IPVs at a time have been shown in sub table 8-G to 8-J
of Table.8. For the given OPBF and for all 4 possible 3" order HO-SAC tests the counts of 1s in DBF have been shown in row D
of sub table 8-G to 8-J of Table.8 have been 8 then the given OPBF has been said to satisfy 3 order HO-SAC of 4-bit BFs. But
in table 8 all counts have not been equal to 8 so the given OPBF does not satisfy 3" order HO-SAC of 4-hit BFs.

If the given OPBF satisfy both 2™ order HO-SAC and 3™ Order HO-SAC for 4-bit BFs together then the Given OPBF
has been said to satisfy total HO-SAC for 4-bit BFs. If Four BFs of a crypto 4-bit S-box satisfy total HO-SAC of 4bit BFs
individually then the S-box has been said to satisfy HO-SAC of 4-bit Crypto S-boxes.

Pseudo code. Let BF[16].bit0 has been a bit level array of 16 bits of a 4-bit BF out of 65536 4-bit BFs. and BF[16] has been an array of 16
bits of a 4-bit BF. CV/[16].bit0 has been a bit level array of 16 bits to store either 00FF, OFOF, 3333, 5555 in hex. CVC[16].bit0 has been a
bit level array of 16 bits to store either FF00, FOFO, CCCC, AAAA in hex. Here " represents Bitwise Xor operation. NL represents Number
of bits changed in lower halves and NU represents Number of bits changed in upper halves.
Start.
lInitialization of Variables.
Step 0OA: For 1:16 BF[16].bit0 = BF[16].
Step 0B: For 1:16 CV[16].hit0 = 00FF, OFOF, 3333, 5555.
Step 0C: For 1:16 CVC[16].bit0 = FF00, FOFO, CCCC, AAAA.
/I Next 10 steps have been evaluated to obtain 10 complemented COPBFs and weight of DBFs
Step 01: wt[{(BF[16].bit0 & 00FF)"(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)"(BF[16].bit0>>8&FF00)}
~(BF[16].bit0 & OFOF)"(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&FOF0)(BF[16].bit0>>4&F0F0)}]  =N.
Step 02: wt[{(BF[16].bit0 & 00FF)"(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)"(BF[16].bit0>>8&FF00)}
~N(BF[16].bit0 & 3333)"(BF[16].bit0>>2&3333)}+WT{(BF[16].hit0& CCCC)(BF[16].hit0>>2&CCCC)}] =N.
Step 03: wt[{(BF[16].bit0 & 00FF)"(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)"(BF[16].bit0>>8&FF00)}

~{(BF[16].bit0 & 5555)(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)NBF[16].bit0>>1&AAAA)}] = N.
Step 04: wt[{(BF[16].bit0 & OFOF)*(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&FOF0)"(BF[16].bit0>>4&F0F0)}

~(BF[16].bit0 & 3333)"(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0& CCCC)(BF[16].bit0>>2&CCCC)}] =N
Step 05: wt[{(BF[16].bit0 & OFOF)"(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&FOF0)"(BF[16].bit0>>4&F0F0)}

(BF[16].bit0 & 5555)(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)NBF[16].bit0>>1&AAAA)} =N.



Step 06: wt[{(BF[16].bit0 & 3333)"(BF[16].hit0>>2&3333)}+WT{(BF[16].hit0& CCCC)(BF[16].bit0>>2&CCCC)}

N (BF[16].bit0 & 5555)(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)NBF[16].bit0>>1&AAAA)}] = N.
Step 07: wt[{(BF[16].bit0 & 00FF)"(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)"(BF[16].bit0>>8&FF00)}

~{(BF[16].bit0 & OFOF)"(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&FOF0)"(BF[16].hit0>>4&FOF0)}

M (BF[16].bit0 & 3333)"(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)NBF[16].bit0>>2&CCCC)}] =N.
Step 08: wt[{(BF[16].bit0 & 00FF)"(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)"(BF[16].bit0>>8&FF00)}

~{(BF[16].bit0 & OFOF)(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&FOF0)*(BF[16].bit0>>4&FOF0)}

~{(BF[16].bit0 & 5555)(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)NBF[16].bit0>>1&AAAA)}] =N
Step 09: wt[{(BF[16].bit0 & 00FF)"(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)"(BF[16].bit0>>8&FF00)}
AN (BF[16].bit0 & 3333)"(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0& CCCC)(BF[16].bit0>>2&CCCC)}

~{(BF[16].bit0 & 5555)*(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)N(BF[16].bit0>>1&AAAA)}] = N.
Step 10: wt[{(BF[16].bit0 & OFOF)"(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&FOF0)"(BF[16].bit0>>4&F0F0)}

~(BF[16].bit0 & 3333)"(BF[16].bit0>>2&3333)}+WT{(BF[16].hit0&CCCC)"(BF[16].bit0>>2&CCCC)}

~{(BF[16].bit0 & 5555)*(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)N(BF[16].bit0>>1&AAAA)}] = N.
Il Test of HO-SAC criterion.
Step 11: If N=8 for Step 01, to Step 15. Then BF[16].bit0 Satisfies HO-SAC of 4-bit BFs.

ELSE BF[16].bit0 Does not Satisfies Extended HO-SAC of 4-bit BFs..
Stop.
Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested
loops.
3.3.2. Two new Methods of Higher Order SAC or HO-SAC of 4-bit BFs and 4-bit Crypto S-boxes. The Shift Method to do
HO-SAC test of 4 bit BFs has been described in section 3.3.2.1. The Flip Method to do the same test of 4-bit BFs and of 4-bit S-
boxes has been described in sec. 3.3.2.2.
3.3.2.1 Shift Method of HO-SAC of 4-bit BFs and 4-bit Crypto S-boxes. Complement of IPV4 has been equivalent of
interchanging two distinct 8 bit halves of OPBF. Complement of IPV3 has been equivalent of interchanging each distinct 4 bit
halves of each distinct 8 bit halves of the given OPBF. Now Complement of IPV2 means interchanging each distinct 2 bit halves
of each distinct 4 bit halves of each distinct 8 bit halves of given OPBF and finally Complement of IPV1 means interchanging
each two distinct bits of all distinct two bit halves of given OPBF.

If two IPVs have been complemented at a time then the Higher Order SAC or HO-SAC of 4-bit BFs can be termed as
2" Order HO-SAC of 4-bit BFs illustrated in sub table 8-A to 8-F. If the Number of IPVs complemented at a time has been three
then the Higher Order SAC or HO-SAC of 4-bit BFs can be termed as 3™ Order HO-SAC of 4-bit BFs illustrated in sub table 8-G
to 8-J.

In 2" Order HO-SAC, any 2 IPVs shown in column 2 through H of row 1, 2 of sub tables 8-A to 8-F of Table.8 have
been complemented at a time. The complemented or shifted IPVs or CIPVs have been shown in column 2 through H of row 4, 5
of sub tables 8-A to 8-F of Table.8.The OPBF has been shown in column 2 through H of row 3 of sub tables 8-A to 8-F of
Table.8. Now due to complement of 1% IPV the resultant OPBF have been shown in column 2 through H of row 6 after shift
operation and due to complement of 2™ IPV at a time the complemented OPBF of the resultant OPBF of the first operation have
been shown in column 2 through H of row 7 of sub tables 8-A to 8-F of Table.8 respectively. The obtained complemented OPBF
or COPBF and bitwise xor or Hamming distance (Difference BF or DBF) between OPBF and COPBF have been shown in
column 2 through H of row 8, 9 of sub tables 8-A to 8-F of Table.8 respectively. The count of 1s out of 16 bits in DBF or
dissimilar bits in COPBF than OPBF due to complement of 2 IPVs at a time have been shown in row A of sub table 8-A to 8-F of
Table.8. If for the given OPBF and for all 6 possible 2" order HO-SAC tests the counts have been shown in A of sub table 8-A to
8-F of Table.8 have been 8 then the given OPBF has been said to satisfy 2™ order HO-SAC of 4-bit BFs. But in table 8 all counts
have not been equal to 8 so the given OPBF does not satisfy 2™ order HO-SAC of 4-bit BFs in this case.

In 3" Order HO-SAC, any 3 IPVs shown in column 2 through H of row 1, 2 and 3 of sub tables 8-G to 8-J of Table.8
have been complemented at a time. The complemented or shifted IPVs or CIPVs have been shown in column 2 through H of row
5, 6 and 7 of sub tables 8-G to 8-J of Table.8.The OPBF has been shown in column 2 through H of row 4 of sub tables 8-G to 8-J
of Table.8. Now due to complement of 1% IPV the resultant OPBF have been shown in column 2 through H of row 8 after shift
operation and due to complement of 2" IPV at a time the complemented OPBF of the resultant OPBF of the first operation have
been shown in column 2 through H of row 9 and the complemented OPBF of the resultant OPBF of the 2™ operation have been
shown in column 2 through H of row A of sub tables 8-G to 8-J of Table.8 respectively. The obtained complemented OPBF or
COPBF and bitwise xor or Hamming distance (Difference BF or DBF) between OPBF and COPBF have been shown in column 2
through H of row B, C of sub tables 8-G to 8-J of Table.8 respectively. The count of 1s out of 16 bits in DBF or dissimilar bits in
COPBF than OPBF due to complement of 3 IPVs at a time have been shown in row D of sub table 8-G to 8-J of Table.8. If for
the given OPBF and for all 6 possible 2™ order HO-SAC tests the counts have been shown in D of sub table 8-G to 8-J of Table.8
have been 8 then the given OPBF has been said to satisfy 3™ order HO-SAC of 4-bit BFs. But in table 8 all counts have not been
equal to 8 so the given OPBF does not satisfy 3™ order HO-SAC of 4-bit BFs in this case.

If the given OPBF satisfy both 2" order HO-SAC and 3™ Order HO-SAC for 4-bit BFs together then the OPBF has
been said to satisfy Total HO-SAC for 4-bit BFs. If four 4-bit BFs of a Crypto 4-bit S-box satisfy total HO-SAC of 4bit BFs
individually then the S-box has been said to satisfy HO-SAC of 4-bit crypto S-boxes.



Start.

Step 00: For 1:16 BF[16].bit0 = BF[16].// Relocate the 16 bits of OPBF to bit level array BF[16].bit0.

Step 1A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.

Step 1B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].hit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.

Step 1C: DBF[16].hit0 = CBF[16].bit0" BF[16].hit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 1D: Count = IF(DBF[16].bit0==1);// Count Number of 1s in DBF.

Step 2A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.

/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.

Step 2B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2);

Step 2C: DBF[16].hit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 2D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

Step 3A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.

/I In next step each bit of each distinct two bit halves has been circularly shifted.

Step 3B: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1) & &
(CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1) &&(CBF[2H].bit0>>1);

Step 3C: DBF[16].hit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 3D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

Step 4A: CBF[16].bit0 = (BF[8A].bit0>>4)&& (BF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.

/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.

Step 4B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].hit0>>2)&& (CBF[4D].bit0>>2);

Step 4C: DBF[16].bit0 = CBF[16].hit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 4D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

Step 5A: CBF[16].bit0 = (BF[8A].bit0>>4)&& (BF[8B].hit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.

/I In next step each bit of each distinct two bit halves has been circularly shifted.

Step 5B: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].hit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&&
(CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].hit0>>1) &&(CBF[2H].bit0>>1);

Step 5C: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 5D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.

Step 6A: CBF[16].bit0 = (BF[4A].bit0>>2)&& (BF[4B].bit0>>2)&& (BF[4C].bit0>>2)&& (BF[4D].bit0>>2);

/I In next step each bit of each distinct two bit halves has been circularly shifted.

Step 6B: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].hit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&&
(CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].hit0>>1)&&(CBF[2H].bit0>>1);

Step 6C: DBF[16].bit0 = CBF[16].bit0" BF[16].hit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 6D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

Step 7A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.

Step 7B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].hit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.

/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.

Step 7C: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2);

Step 7D: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 7E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

Step 8A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.

Step 8B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.

/I In next step each bit of each distinct two bit halves has been circularly shifted.

Step 8C: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].hit0>>1)&&
(CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1);

Step 8D: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 8E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

Step 9A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.

/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.

Step 9B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].hit0>>2);

/I In next step each bit of each distinct two bit halves has been circularly shifted.

Step 9C: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&&
(CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1) &&(CBF[2H].bit0>>1);

Step 9D: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 9E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

Step 10A: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.

/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.

Step 10B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2);

/I In next step each bit of each distinct two bit halves has been circularly shifted.

Step 10C: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].hit0>>1)&&

(CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G] .bit0>>1)&& (CBF[2H].bit0>>1);



Step 10D: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.
Step 10E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.
// Evaluation of HO-SAC criterion.
Step 11 : IF Count = 8 for Step 1D, TO 6D and 7E to 10E. BF[16] Satisfies HO-SAC of 4-bit BFs.

ELSE BF[16] does not Satisfy HO-SAC of 4-bit BFs.
Stop.
Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested
loops.
3.3.2.2 Flip Method of HO-SAC of 4-bit BFs and 4-Bit Crypto S-boxes. In Flip Method two or three bits in all possible
particular positions of all of 16 INBs have been flipped at a time. The bit values of OPBF before and after flip of bits in INB have
been checked for equality. If they are same then in DBF the corresponding bit value appears as 0 else 1. If 10 DBFs have been
balanced i.e. it contains equal number of 0s and 1s then the OPBF has been said to satisfy HO-SAC of 4-bit BFs. If four 4-bit BFs
of a crypto S-box satisfy HO-SAC of 4-bit BFs individually then the concerned S-box has been said to satisfy HO-SAC of 4-bit
crypto S-hoxes.

All the elements of the given S-box, Index of each element of the given S-box in hex (INH) and 4 bit binary form
(INB) with position of each bit from 1 to 4 of each INB have been given in column 2 through H of row 3, 1, 2 of Table.7
respectively. Each Output BF, OPBF1, OPBF2, OPBF3, OPBF4 has been shown in column 2 through H of row 4, 5, 6, 7 Table.7
respectively.

Now 16 INBs before flip and 16 INBs after flip in two and three bits at a time particularly in 16 INBs bit position 1, 2,
3 and 4 have been shown in row 2 through H of column 1, 2, 6, 7, B, C, G, H respectively of Table.9-A, Table.9-B and Table.9-
C respectively . The each corresponding bits of OPBF1, OPBF2, OPBF3, OPBF4 before and after flip have been shown in row 2
through H of column 3, 4, 8, 9, D, E, I, J respectively in Table.9-A, Table.9-B and Table.9-C respectively. If flip occurs in 2 bit
positions of INB at a time then the test has been termed as 2™ Order HO-SAC of 4-bit BFs and if flip occurs in 3 bit positions of
INB at a time then the test has been termed as 3" Order HO-SAC of 4-bit BFs.

1 in any position in row 2 through H of column 5, A, F, K illustrate dissimilarity in bits in corresponding positions of
OPBF1, OPBF2, OPBF3 and OPBF4 duly before and after flip in one bits in bit positions 1, 2, 3, 4 respectively.

If out of 16 positions in each row from 2 through H of column 5, A, F, K of table.9-A and table.9.B and from row 2
through H of column 5, A of table.9.C, there are 8 1s and 8 Os then the given OPBF has been said to Satisfy HO-SAC of 4-bit
BFs. If all four BFs of a given 4-bit crypto S-box satisfy HO-SAC of 4-bit BFs then the S-box has been said to satisfy HO-SAC
of 4-bit S-boxes. Here in Table. 9. row I shows the Number of Bits changed in OPBF1, OPBF2, OPBF3, OPBF4 before and after
flip in pos. 1, pos. 2, pos. 3 and pos. 4 respectively. Since the value is 12 in all or at least one for the given OPBF so the

concerned OPBF and the given 4-bit S-box does Satisfy HO-SAC of 4-bit BFs and HO-SAC of 4-bit S-boxes respectively.

Table.9-A

Col | Flip of 2 bit of INB at Pos. 21 Flip of 2 bits of INB at Pos. 31 Flip of 2 bits of INB at Pos. 41 Flip of 2 bits of INB at Pos. 32

Row 1 2 3 4 5 6 7 8 9 | A B C D|E]|F G H 11 J | K
1 B-Flip A-Flip 1 1’ C B-Flip | A-Flip 2 2> | C | B-Flip A-Flip 3 3% | C| B-Flip A-Flip 414 | C
2 0000 0011 1 0 1 0000 0101 1 1 0 0000 1001 1 |1 0 0000 0110 1)1 0
3 0001 0010 0 1 1 0001 0100 0 0 0 0001 1000 0|0 0 0001 0111 0[1 1
4 0010 0001 1 0 1 0010 0111 1 1 0 0010 1011 1 |1 0 0010 0100 10 1
5 0011 0000 0 1 1 0011 0100 0 1 1 0011 1010 0|0 0 0011 0101 0]1 1
6 0100 0111 0 1 1 0100 0001 0 0 0 0100 1101 0 |1 1 0100 0010 0[1 1
7 0101 0110 1 1 0 0101 0000 1 1 0 0101 1100 110 1 0101 0011 1]0 1
8 0110 0100 1 1 0 0110 0011 1 0 1 0110 1111 110 1 0110 0000 1(1 0
9 0111 0101 1 0 1 0111 0010 1 1 0 0111 1110 1 ]0 1 0111 0001 1]0 1
A 1000 1011 0 1 1 1000 1101 0 1 1 1000 0001 0|0 0 1000 1110 0|0 0
B 1001 1010 1 0 1 1001 1100 1 0 1 1001 0000 1 |1 0 1001 1111 10 1
C 1010 1001 0 1 1 1010 1111 0 0 0 1010 0011 0|0 0 1010 1100 0|0 0
D 1011 1000 1 0 1 1011 1100 1 0 1 1011 0010 1 |1 0 1011 1101 1(1 0
E 1100 1111 0 0 0 1100 1001 0 1 1 1100 0101 0 |1 1 1100 1010 0|0 0
F 1101 1110 1 0 1 1101 1000 1 0 1 1101 0100 110 1 1101 1011 111 0
G 1110 1100 0 1 1 1110 1011 0 1 1 1110 0111 0 |1 1 1110 1000 0|0 0
H 1111 1101 0 0 0 1111 1010 0 0 0 1111 0110 0|1 1 1111 1001 0]1 1
[ No of Bits Changed due to Flip 12 No of Bits Changed due to Flip 8 No of Bits Changed due to Flip 8 No of Bits Changed due to Flip 8

Table.9-B

Col | Flip of 2 bit of INB at Pos. 42 Flip of 2 bits of INB at Pos. 43 | Flip of 2 bits of INB at Pos. 321 Flip of 2 bits of INB at Pos. 421

Row 1 2 3 4 5 6 7 8 9 | A B C D|E]|F G H 11 J | K
1 B-Flip A-Flip 5 5 C B-Flip | A-Flip 6 6’ | C | B-Flip A-Flip 1 |2 | C | B-Flip A-Flip 2|22 | C
2 0000 1010 1 0 1 0000 1100 1 0 1 0000 0111 1 |1 0 0000 1011 1(1 0
3 0001 1011 0 1 1 0001 1101 0 1 1 0001 0110 0 |1 1 0001 1010 0|0 0
4 0010 1000 1 0 1 0010 1110 1 0 1 0010 0101 1 |1 0 0010 1001 1(1 0
5 0011 1001 0 1 1 0011 1111 0 0 0 0011 0100 0|0 0 0011 1000 0|0 0




6 0100 1110 0 0 0 0100 1000 0 0 0 0100 0011 0|0 O 0100 1111 0|0 0
7 0101 1111 1 0 1 0101 1001 1 1 0 0101 0010 1 |1 ]0 0101 1110 10 1
8 0110 1100 1 0 1 0110 1010 1 0 1 0110 0001 1 (0 1 0110 1101 1)1 0
9 0111 1101 1 1 0 0111 1011 1 1 0 0111 0000 1 |1 ]0 0111 1100 10 1
A 1000 0010 0 1 1 1000 1100 0 0 0 1000 1111 0|0 |O 1000 0011 0|0 0
B 1001 0011 1 0 1 1001 1101 1 1 0 1001 1110 110 1 1001 0010 1)1 0
C 1010 0000 0 1 1 1010 1110 0 1 1 1010 1101 0 |1 1 1010 0001 0|0 0
D 1011 0001 1 0 1 1011 1111 1 1 0 1011 1100 110 1 1011 0000 1)1 0
E 1100 0110 0 1 1 1100 1000 0 1 1 1100 1011 0 |1 1 1100 0111 01 1
F 1101 0111 1 1 0 1101 1001 1 0 1 1101 1010 110 1 1101 0110 1)1 0
G 1110 0100 0 0 0 1110 1010 0 1 1 1110 1001 0 |1 1 1110 0101 0]1 1
H 1111 0101 0 1 1 1111 1011 0 0 0 1111 1000 0|0 |O 1111 0100 0|0 0
| No of Bits Changed due to Flip 12 No of Bits Changed due to Flip 8 | No of Bits Changed due to Flip 8 No of Bits Changed due to Flip 4

Start.

Step OA: For 1=0:16 For J=0:16 D[I][J] = O; // Initialization of two dimensional Array D[16][16].
/I Initialization of e, vector.
Step 0B: ev[4] ={{0,0,1,1},{0,1,0,1},{1,0,0,1},{1,1,0,0},{1,0,1,0}.,{0,1,1,0},{0,1,1,1} {1,1,0,1},{1,1,1,0},{1,0,1,1}};

Table.22. Description of Flip Method of HO-SAC Test of 4-bit BFs.

Table.9-C

Col | Flip of 2 bit of INB at Pos. 431 Flip of 2 bits of INB at Pos. 432

Row 1 2 3 4 5 6 7 8 9 | A
1 B-Flip A-Flip 3 3| C B-Flip | A-Flip 4 |4 | C
2 0000 1101 1|1 0 0000 1110 110 1
3 0001 1100 0 |0 0 0001 1111 0 |0 0
4 0010 1111 1 0 1 0010 1100 1 0 1
5 0011 1110 0 0 0 0011 1101 0 1 1
6 0100 1001 0 |1 1 0100 1010 0 |0 0
7 0101 1000 1 0 1 0101 1011 1 1 0
8 0110 1011 1 1 0 0110 1000 1 0 1
9 0111 1010 1 0 1 0111 1001 1 1 0
A 1000 0101 0 |1 1 1000 0110 0 |1 1
B 1001 0100 1 0 1 1001 0111 1 1 0
C 1010 0111 0 |1 1 1010 0100 0 |0 0
D 1011 0110 1 1 0 1011 0101 1 1 0
E 1100 0001 0 |0 0 1100 0010 0 |1 1
F 1101 0000 1 1 0 1101 0011 1 0 1
G 1110 0011 0 |0 0 1110 0000 0 |1 1
H 1111 0010 0 1 1 1111 0001 0 0 0
| No of Bits Changed due to Flip 8 No of Bits Changed due to Flip 8

Table.9. Description of Flip Method of HO-SAC Test of 4-bit BFs (Continued..).

Step 01: For $=0:4 For 1=0:16 For J=0:16 t[S][I][J] = 16bt4x[S][1][J] ~ ev[S]// Array of index after flip.

Step 02: For S=0:4 For 1=0:16 For J=0:16 r=16bt4bf[S][1][J] * 16bt4bf[t[S][I][J]]; // obtain DBFs

Step 04: if (r==1) D[f][v]++; // count 1 in DBFs

//In next two steps SAC criterion has been evaluated.
Step 05: IF D[f][v]==8, for All cases 4-bit BF Satisfies SAC of 4bit BFs.
ELSE 4-bit BF does not Satisfy SAC.

Step 06: IF all four BFs Satisfy SAC of 4-bit BFs then the given S-Box Satisfies SAC of 4-bit S-Box.

Stop.

Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested

loops.

3.3.3. Extended HO-SAC Criterion of 4-bit BFs and 4-bit Crypto S-boxes. If one IPV out of four at a time, two IPVs out of
four at a time, three IPVs out of four at a time and all of four IPVs have been complemented at a time or flip of one bit of INB at
a time, flip of two bits of INB at a time or flip of three bits of INB at a time, and flip of all of four bits in INB at a time and all
resultant DBFs have been balanced then the 4-bit BF has been said to satisfy Extended SAC of 4-bit BFs. If all four 4-bit BFs of
a 4-bit crypto S-box satisfy Extended SAC of 4-bit BFs then the S-box has been said to satisfy Extended SAC of 4-bit S-boxes.
Complement of one, two, or three bits at a time or flip of one, two or three INBs at a time is similar to table 6, 7, 8 and 9
respectively for the given 4-bit BF. The rest Criterion of 4 IPVs have been complemented at a time have been shown in sub table

ELSE the given S-Box does not Satisfy SAC of 4-bit S-Box.

10-A of table. 10. The rest flip of all INBs at a time have been shown in sub table 10-B of table. 10 .

R|C 10-A 2|13|4|5|6|7|8|9|A|B|C|D|E|F|G]|H
1 IPV4 ojojojojojojojojrjrj1j1j1j1j1]1
2 IPV3 oj{ojojojrj1j1j1jojojojojrj1j1 1
3 IPV2 ojoj1j1j0j0j1j1jojoj1r1j1jo0jo0j1]1




4 IPVLZ |Of21|0f212|0f2|0}2|0|2]|0|1 |0 |1 |01
5 OPBF |1 |0|212|0jO0O|1|212|1|0|2|0|21|0|1]|0]O
6 ClIpv4 |1 |1)]1|1])1|1)]12}j1(0]0]JO0O|JO0O]O|JO0O]O0O]O
7 ciPv3 |1|1|1}1|0(0j0|0O}j2|2]1|2]|0|0]0]|O0
8 Cipv2 |1]1|0}(0|1(2]0|0}j2|2]0|0 |1 |2]0]0
9 CIPV1T |O|1|0]1|0]1j0f1]0O0]1]0fj1|0O0|1]0]1
A Stepl (0 (212}(0|2|/0|1]0|0|21|0|2 |0 |0 |1 |11
B Step2 (0O |(1}(0|J0|J0O|1]|0|1|0 |11 |1 |1 |0|1]0
C Step3 (0O (0OjO0O|2|0|1]j0|1|1 1|0 |1 |1 |0 |1]0
D Step4 (00|20 |2(0|2|0|21 (1|12 |0|0 |1 |0]1
E |COPBF|O|O|1|0j1|0f2(0Oj2|2]|212]|0]|0]|21]|0]1
F DBF |1|(0|0f0O|21|12(0]1|2]|0(|2|1|0]|0]|0]|1
G Number of bits changed in COPBF 8
10-B
Col | Flip of 2 bit of INB at Pos. 4321
Row 1 2 3 4 5

1 B-Flip A-Flip 3 3 C

2 0000 1111 1 0 1

3 0001 1100 0 0 0

4 0010 1101 1 1 0

5 0011 1100 0 0 0

6 0100 1011 0 1 1

7 0101 1010 1 0 1

8 0110 1001 1 1 0

9 0111 1000 1 0 1

A 1000 0111 0 1 1

B 1001 0100 1 1 0

C 1010 0101 0 1 1

D 1011 0100 1 0 1

E 1100 0011 0 0 0

F 1101 0010 1 1 0

G 1110 0001 0 0 0

H 1111 0000 0 1 1

| No of Bits Changed due to Flip 8

Table.10. Table of Extension to SAC and HO-SAC of 4-bit BFs and 4-bit Crypto
S-boxes in both Complement and Flip Method.

Pseudo code. Let BF[16].bit0 has been a bit level array of 16 bits of a 4-bit BF out of 65536 4-bit BFs. and BF[16] has been an array of 16
bits of a 4-bit BF. CV[16].bit0 has been a bit level array of 16 bits to store either 00FF, OFOF, 3333, 5555 in hex. CVC[16].bit0 has been a
bit level array of 16 bits to store either FF00, FOFO, CCCC, AAAA in hex. Here ” represents Bitwise Xor operation. NL represents Number
of bits changed in lower halves and NU represents Number of bits changed in upper halves.

Start.

lnitialization of Variables.

Step OA: For 1:16 BF[16].bit0 = BF[16].

Step 0B: For 1:16 CV[16].bit0 = 00FF, OFOF, 3333, 5555.

Step 0C: For 1:16 CVC[16].bit0 = FF00, FOFO, CCCC, AAAA.

/I In next 15 steps DBFs and weight of DBFs have been obtained by xor of OPBF and COPBFs.

Step 01:
Step 02:
Step 03:
Step 04:
Step 05:
Step 06:
Step 07:
Step 08:

Step 09:

Wt{(BF[16].bit0 & 00FF)*(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)*(BF[16].bit0>>8&FF00)}
Wt{(BF[16].bit0 & OFOF)"(BF[16].bit0>>4&0FO0F)}+WT{(BF[16].bit0&FOF0)*(BF[16].bit0>>4&FOF0)}
wt{(BF[16].bit0 & 3333)"(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC) (BF[16] hit0>>2&CCCC)} =N
Wt{(BF[16].bit0 & 5555)(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAAN(BF[16] bit0>>1&AAAA)} =N
WH[{(BF[16].bit0 & 00FF)N(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)*(BF[16] bit0>>8&FF00)}
A{(BF[16].bit0 & OFOF)(BF[16].bit0>>4&0F0F) }+WT{(BF[16] bit0&FOF0) (BF[16].bit0>>4&FOF0)}]  =N.
WH[{(BF[16].bit0 & 00FF)N(BF[16].bit0>>8&00FF) }+WT{(BF[16].bit0&FF00)*(BF[16] bit0>>8&FF00)}
A{(BF[16].bit0 & 3333)(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)\(BF[16].hit0>>2&CCCC)}] =N.
WH[{(BF[16].bit0 & 00FF)\(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)"(BF[16].hit0>>8&FF00)}
~{(BF[16].bit0 & 5555)"(BF[16].bit0>>1&5555)}+WT{(BF[16] bit0&AAAA)N(BF[16].bit0>>1&AAAA)}] = N.
WH[{(BF[16].bit0 & OFOF)(BF[16].bit0>>4&0F0F) }+WT{(BF[16].bit0&FOF0)(BF[16].hit0>>4&FOF0)}
A{(BF[16].bit0 & 3333)"(BF[16].hit0>>2&3333)}+WT{(BF[16].bit0&CCCC)N(BF[16].bit0>>2&CCCC)}] =N
WH[{(BF[16].bit0 & OFOF)(BF[16].bit0>>4&0F0F) }+WT{(BF[16].bit0&FOF0)"(BF[16].hit0>>4&FOF0)}
A{(BF[16].bit0 & 5555)"(BF[16].bit0>>1&5555)}+*WT{(BF[16].bit0&AAAA)NBF[16].bit0>>1&AAAA)} = N.

=N
=N



Step 10: wt[{(BF[16].bit0 & 3333)"(BF[16].hit0>>2&3333)}+WT{(BF[16].hit0& CCCC)(BF[16].bit0>>2&CCCC)}
N (BF[16].bit0 & 5555)(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)NBF[16].bit0>>1&AAAA)}] = N.

Step 11: wt[{(BF[16].bit0 & 00FF)"(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)"(BF[16].bit0>>8&FF00)}
~{(BF[16].bit0 & OFOF)"(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&FOF0)"(BF[16].hit0>>4&FOF0)}
~N(BF[16].bit0 & 3333)"(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0& CCCC)*(BF[16].hit0>>2&CCCC)}] =N.

Step 12: wt[{(BF[16].bit0 & 00FF)"(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)"(BF[16].bit0>>8&FF00)}
~{(BF[16].bit0 & OFOF)(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&FOF0)*(BF[16].bit0>>4&FOF0)}
~{(BF[16].bit0 & 5555)(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)NBF[16].bit0>>1&AAAA)}] = N

Step 13: wt[{(BF[16].bit0 & 00FF)"(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)"(BF[16].bit0>>8&FF00)}

AN (BF[16].bit0 & 3333)"(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0& CCCC)(BF[16].bit0>>2&CCCC)}

~{(BF[16].bit0 & 5555)*(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)N(BF[16].bit0>>1&AAAA)}] = N.

Step 14: wt[{(BF[16].bit0 & OFOF)"(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&FOF0)"(BF[16].bit0>>4&F0F0)}
~(BF[16].bit0 & 3333)"(BF[16].bit0>>2&3333)}+WT{(BF[16].hit0&CCCC)"(BF[16].bit0>>2&CCCC)}
~{(BF[16].bit0 & 5555)*(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)N(BF[16].bit0>>1&AAAA)}] = N.

Step 15: wt{(BF[16].bit0 & 00FF)"(BF[16].bit0>>8&00FF)}+WT{(BF[16].hit0&FF00)"(BF[16].bit0>>8&FF00)}
wit{(BF[16].bit0&0FOF)"(BF[16].bit0>>4&0FO0F) }+WT{(BF[16].bit0&FOF0)(BF[16].hit0>>4&FOF0)}
wi{(BF[16].bit0&3333)(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0& CCCC)(BF[16].bit0>>2&CCCC)}
~wi{(BF[16].bit0 & 5555)*(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)NBF[16].bit0>>1&AAAA) =N

/I In next step Extended SAC criterion has been evaluated.

Step 16: If N=8 for Step 01, to Step 15. Then BF[16].bit0 Satisfies Extended SAC of 4-bit BFs.
ELSE BF[16].bit0 Does not Satisfies Extended SAC of 4-bit BFs..

Stop.

Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested

loops.

Pseudo code of Extended SAC of 4-bit BFs Using Shift Method.

Start.

Step 00: For 1:16 BF[16].bit0 = BF[16].

Step 1A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.

Step 1B: DBF[16].bit0 = CBF[16].bit0™ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 1C: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

Step 2A: CBF[16].bit0 = (BF[8A].bit0>>4)&& (BF[8B].hit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.

Step 2B: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 2C: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.

Step 3A: CBF[16].hit0 = (BF[4A].bit0>>2)&& (BF[4B].bit0>>2)&& (BF[4C].bit0>>2)&& (BF[4D].hit0>>2);

Step 3B: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 3C: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

/I'In next step each bit of each distinct two bit halves has been circularly shifted.

Step 4A: CBF[16].bit0 = (BF[2A].bit0>>1)&&(BF[2B].bit0>>1)&&(BF[2C].bit0>>1)&&(BF[2D].bit0>>1)&&

(BF[2E].bit0>>1)&&(BF[2F].bit0>>1)&&(BF[2G].bit0>>1)&&(BF[2H] .bit0>>1);

Step 4B: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 4C: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

Step 5A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.

Step 5B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.

Step 5C: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 5D: Count = IF(DBF[16].bit0==1);// Count Number of 1s in DBF.

Step 6A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.

/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.

Step 6B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].hit0>>2);

Step 6C: DBF[16].bit0 = CBF[16].bit0" BF[16].hit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 6D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

Step 7A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.

/I'In next step each bit of each distinct two bit halves has been circularly shifted.

Step 7B: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].hit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&&

(CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bhit0>>1)&& (CBF[2H].bit0>>1);

Step 7C: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 7D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.

Step 8A: CBF[16].bit0 = (BF[8A].bit0>>4)&& (BF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.

/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.

Step 8B: CBF[16].hit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2);

Step 8C: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.

Step 8D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.



Step 9A: CBF[16].bit0 = (BF[8A].bit0>>4)&& (BF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.
/I In next step each bit of each distinct two bit halves has been circularly shifted.
Step 9B: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].hit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&&
(CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1) &&(CBF[2H].bit0>>1);
Step 9C: DBF[16].hit0 = CBF[16].bit0" BF[16].hit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.
Step 9D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.
/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.
Step 10A: CBF[16].bit0 = (BF[4A].bit0>>2)&& (BF[4B].bit0>>2)&& (BF[4C].bit0>>2)&& (BF[4D].bit0>>2);
/I In next step each bit of each distinct two bit halves has been circularly shifted.
Step 10B: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].hit0>>1)&&
(CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bhit0>>1)&&(CBF[2H].bit0>>1);
Step 10C: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.
Step 10D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.
Step 11A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.
Step 11B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.
/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.
Step 11C: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].hit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2);
Step 11D: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.
Step 11E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.
Step 12A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.
Step 12B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].hit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.
/I In next step each bit of each distinct two bit halves has been circularly shifted.
Step 12C: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bhit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&&
(CBF[2E].bit0>>1)&&(CBF[2F] .bit0>>1)&&(CBF[2G].bit0>>1) & &(CBF[2H].bit0>>1);
Step 12D: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.
Step 12E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.
Step 13A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.
/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.
Step 13B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].hit0>>2);
/I In next step each bit of each distinct two bit halves has been circularly shifted.
Step 13C: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&&
(CBF[2E].bit0>>1)&&(CBF[2F] .bit0>>1)&&(CBF[2G].bit0>>1) & &(CBF[2H].bit0>>1);
Step 13D: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.
Step 13E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.
Step 14A: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.
/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.
Step 14B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].hit0>>2);
/I'In next step each bit of each distinct two bit halves has been circularly shifted.
Step 14C: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&&
(CBF[2E].bit0>>1)&&(CBF[2F].hit0>>1)&&(CBF[2G] .bit0>>1)&&(CBF[2H].bit0>>1);
Step 14D: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.
Step 14E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.
Step 15A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs.
Step 15B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs.
/I In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted.
Step 15C: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2);
/I'In next step each bit of each distinct two bit halves has been circularly shifted.
Step 15D: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&&
(CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1) &&(CBF[2H].bit0>>1);
Step 15E: DBF[16].bit0 = CBF[16].bit0" BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.
Step 15F: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF.
/I In next step Extended SAC criterion has been evaluated.
Step 16 : IF Count = 8 for Step 1C, TO 4C, 5D to 10D and 11E to 14E and 15F BF[16] Satisfies Extended-SAC of 4-bit BFs.
ELSE BF[16] does not Satisfy Extended SAC of 4-bit BFs.
Stop.
Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested loops.
Pseudo code of Extended SAC of 4-bit BFs Using Flip Method.
Start.
Step OA: For 1=0:16 For J=0:16 D[I][J] = 0; // Initialization of two dimensional array D[16][16].
Step 0B: ev[4] ={{0,0,0,1},{0,0,1,0},{0,1,0,0},{1,0,0,0},// Initialization of e, vector
{0,0,1,1},{0,1,0,1},{1,0,0,1},{1,1,0,0},
{1,0,1,0},{0,1,1,0},{0,1,1,1},{1,1,0,1},



{1,1,1,0},{1,0,1,1}{1,1,1,1}};

Step 01: For S=0:4 For 1=0:16 For J=0:16 t[S][1]1[J] = 16bt4x[S][11[J] ~ ev[S] // Array of index after flip.
Step 02: For S=0:4 For 1=0:16 For J=0:16 r=16bt4bf[S][I][J] ~ 16bt4bf[t[S][1][J]];// DBFs generation for 16 e,s.
Step 04: if (r==1) D[f][v]++; // count of 1s in DBF.
/I In next two steps Extended SAC criterion has been evaluated.
Step 05: IF D[f][v]==8, for All cases 4-bit BF Satisfies SAC of 4bit BFs.

ELSE 4-bit BF does not Satisfy SAC.
Step 06: IF all four BFs Satisfy Extended SAC of 4-bit BFs then the given S-Box Satisfies Extended SAC of 4-bit S-Box.

ELSE the given S-Box does not Satisfy Extended SAC of 4-bit S-Box.
Stop.
Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested
loops.
3.4. A Brief Review of Differential Cryptanalysis of 4-bit S-boxes and a new Technique with Boolean
Functions for Differential Cryptanalysis of 4-bit S-boxes. The given 4-bit Crypto S-box has been described in sub-
section 3.4.1. The relation Between 4-bit Crypto S-boxes and 4-bit BFs has been illustrated in subsec. 3.4.2., The Differential
Cryptanalysis of 4-bit Crypto S-boxes and DDT or Differential Distribution Table has been illustrated in subsec. 3.4.3. The
Differential Cryptanalysis of 4-bit S-boxes with 4-bit BFs has been described in subsec.3.4.4.

3.4.1 4-bit Crypto S-boxes: A 4-bit Crypto S-box can be written as Follows in Table.11, where the each element of the first row
of Table.11, entitled as index, are the position of each element of the S-box within the given S-box and the elements of the 2"
row, entitled as S-box are the elements of the given Substitution box. It can be concluded that the 1* row is fixed for all possible
Crypto S-boxes. The values of each element of the 1% row are distinct, unique and vary between 0 to F in hex. The values of the
each element of the 2™ row of a Crypto S-box are also distinct and unique and also vary between 0 to F in hex. The values of the
elements of the fixed 1% row are sequential and monotonically increasing where for the 2™ row they can be sequential or partly
sequential or non-sequential. Here the given Substitution box is the 1% 4-bit S-box of the 1% S-box out of 8 of Data Encryption
Standard [AT90][NT77][NT99].

Row | Column | 1 213|4|5|6|7|8|9|A| B|C|D|E|F|G
1 Index 0 1 2134567819 A |B|C|D|E F
2 S-box E|4|D|1|2|F|B|8|3|A|6|C|5]|]9|0]|7

Table.11. 4-bit crypto S-box.

3.4.2 Relation between 4-bit S-boxes and 4-bit Boolean Functions (4-bit BFs). Index of Each element of a 4-bit
Crypto S-box and the element itself is a hexadecimal number and that can be converted into a 4-bit bit sequence that are given in
column 1 through G of row 1 and row 6 under row heading Index and S-box respectively. From row 2 through 5 and row 7
through A of each column from 1 through G of Table.12. shows the 4-bit bit sequences of the corresponding hexadecimal
numbers of the index of each element of the given Crypto S-box and each element of the Crypto S-box itself. Each row from 2
through 5 and 7 through A from column 1 through G constitutes a 16 bit, bit sequence that is a 16 bit long input vectors (IPVs)
and 4-bit output BFs (OPBFs) respectively. column 1 through G of row 2 is termed as 4™ IPV, Row 3 is termed as 3" IPV, Row 4
is termed as 2™ IPV and Row 5 is termed as 1% IPV whereas column 1 through G of Row 7 is termed as 4™ OPBF, Row 8 is
termed as 3" OPBF, Row 9 is termed as 2™ OPBF and row A is termed as 1% OPBF [AT90]. The decimal equivalent of each IPV
and OPBF are noted at column H of respective rows.

Row | Column |1 ]2 ]| 3|45 6 718 |9 |A|B|C|D|E|F|G]| H. Decimal
1 Index 0[1]2|3[|4]|5|6]|]7|8|9|A|B|C|D]|E]|F]| Equivalent
2 IPV4 0|0|O0O|O0O|0O]| O o(o|1 (1|11 ]1]1|1]1 00255
3 IPV3 000|001 1 1]1]1(0|0|0jO0O|21]|1]|1]1 03855
4 IPV2 o|0|1|1|0]| O 1]1]1(0|]0|212|1|0]0]|1]1 13107
5 IPV1 0|10 |1]0 1 oj(1j0j1j0|1|0|1]|0]1 21845
6 S-box E|4|D|1]2 F|B|8|3|A|6|C|5]|]9]|0]|7
7 OPBF4 |1 |0 | 1|00 1 1]112(0|1|0|1|0|1]|]0]|0O0 42836
8 OPBF3 |1 |1 |1|0]|O0 1 ofo0ojoO0o|jO|1]|1]1]0|O0]1 58425
9 OPBF2 |1 |0 |0 |01 1 1]0(1]1|12]0|0]0]|O0]|1 36577
A OPBF1L [0 | 0|1 |10 1 1(0(1|0|0|J0]2]1]0]1 13965

Table.12. Decomposition of 4-bit input S-box and given S-box (1% 4-bit S-box of 1 S-box out of 8 of DES) to 4-bit BFs.



3.4.3 Review of Differential Cryptanalysis of 4-bit Crypto S-boxes [HH96][HH02]. In Differential Cryptanalysis of 4-
bit Crypto S-boxes, Elements of 4-bit input S-box (ISB) have been xored with a particular 4-bit Input Difference (ID) to obtain a
Distant input S-box (DISB). The Distant S-boxes (DSB) have been obtained from original S-box (SB) by shuffling the elements
of SB in such order in the way in which the elements of ISB have been shuffled to obtain DISB for a Particular ID. Each element
of Difference S-box (DFSB) have been obtained by the xor operation of corresponding elements of SB and DSB. The Count of
each Hexadecimal number from 0 to F have been put into the concerned cell of Differential Distribution Table or DDT. As the
number of Os in DDT increases, information regarding concerned Output Difference (OD) increases so the S-box has been
determined as weak S-box. The 4-bit Sequence of each element of ISB, ID, DISB, DSB, DFSB have been given in BIN ISB, BIN
ID, BIN DISB, BIN DSB, BIN DFSB respectively.

The column.l. in Table.13. from row 1 through G shows the 16 elements of ISB in a monotonically increasing
sequence or order. The ISB can also be concluded as an Identity 4-bit S-box. The elements of 1% 4-bit S-box, out of 4 of 1% S-box
of Data Encryption Standard (DES) out of 8, has been considered as S-box (SB), in column 7 from row 1 through G. The
elements of ID, DISB, DSB, DFSB has been shown in row 1 through G of column. 3, 5, 9 and C of Table.3 respectively. The 4-
bit Binary equivalents of each elements of ISB, ID, DISB, SB, DSB, DFSB, has been shown in row 1 through G of column. 2, 4,
6, 8, A and B of Table.13 respectively.

The review has been done in two different views; The S-box view has been described in subsec.3.4.3.1. in which the
concerned column of interest are row 1 through G of column 1, 3, 5, 7, 9 and C respectively. The 4-bit binary pattern view has
also been described in subsec.3.4.3.2 in which concerned column of interest are row 1 through G of column 2, 4, 6, 8, A and b
respectively. The Pseudo Code of two algorithms with their time complexity comparison has been illustrated in subsec.3.4. 3.3.

CoL |1 2 3 4 5 6 7 8 9 A B C
R | Bin I Bin | D | Bin s Bin D Bin Bin D
O S| ISB D ID IS | DISB B OSB | S DSB | DFSB | FS
W B | 4321 4321 | B | 4321 4321 | B | 4321 | 4321 B
1 0 | 0000 | B|1011 | B | 1011 | E | 1110 | C | 1100 | 0010 2
2 1 (0001 |B|1011 | A | 1010 | 4 | 0100 | 6 | 0110 | 0010 | 2
3 210010 | B| 1011 | 9 | 1001 | D | 1101 | A | 1010 | Oo0O1 7
4 30011 | B |1011| 8 | 1000 | 1 | 0001 | 3 | 0011 | 0010 | 2
5 4 | 0100 | B | 1011 | F | 1111 | 2 | 0010 | 7 0111 | 0101 5
6 510101 |B|1011 | E | 1110 | F | 1111 | O 0000 | 1111 F
7 6 | 0110 | B | 1011 | D | 1101 | B | 1011 | 9 1001 | 0010 2
8 7 (10111 | B | 1011 | C | 1100 | 8 | 1000 | 5 0101 | 1101 | D
9 8 | 1000 | B | 1011 | 3 | 0011 | 3 | 0011 | 1 0001 | 0010 2
A 9| 1001 | B |1011| 2 | 0010 | A | 1010 | D | 1101 | 0001 7
B A | 1010 | B | 1011 | 1 | 0001 | 6 | 0110 | 4 | 0100 | 0010 2
C B | 1011 | B | 1011 | O | 0000 | C | 1100 | E | 1110 | 0OO10 2
D C|1100 | B | 1011 | 7 | 0111 | 5| 0101 | 8 1000 | 1101 | D
E D| 1101 | B |1011 | 6 | 0110 | 9 | 1001 | B | 1011 | 0010 2
F E | 1110 | B | 1011 | 5 | 0101 | O | 0000 | F 1111 | 1111 F
G F | 1111 | B | 1011 | 4 | 0100 | 7 | 0111 | 2 0010 | 0101 5

Table.13. Table of Differential Cryptanalysis of 1°* 4-bit S-box of 1% S-box out of 8 of DES.

3.4.3.1 S-box View of Differential Cryptanalysis of 4-bit Crypto S-boxes. The S-box with a particular input
difference or ID from 0 to F in which all elements have the same value ‘B’ in hex, is not a Crypto Box but an S-box and is shown
in row 1 through G of column. 3. of Table.13. The Distant input S-box (DISB) is shown in row 1 through G of column.5 of the
said table. In DISB each row element from row 1 through G is obtained by the xor operation of the elements in corresponding
positions of each element of DISB from row 1 through G of column.1. (ISB) and Column.3. (ID) respectively. In ISB for each
row element from row 1 through G of column.1.just in corresponding position from row 1 through G of column.7, there is an
element of SB. Now in DISB the elements of ISB have been shuffled in a particular order and In DSB the corresponding
elements of SB has also been shuffled in that particular order. Each element of the Difference S-box or DFSB from row 1
through G of column.C. has been obtained by xor operation of each element in corresponding positions from row 1 through G of



column.7. and row 1 through G of column.9. respectively. The repetition of each existing elements in DSB have been counted
and put into Difference Distribution Table or DDT. It is shown in Table.14. as follows,

R|C 1 2|13|4|5|6|7|8]|9|A|B|C|D|E|F]|G]|H
DSBel |01 ]2|3|4|5|6|7|8|9|A|B|C|DJE]|F
2 | Count o0j0|8j0j0)J2]|]0]2]|]0]0|JO|J0O]J0O]2]|0]2

Table.14. Count of repetition of each existing element in DSB.
The count of each existing elements in DFSB have been put into Difference Distribution Table. as follows, in row 2 of Table.15.
For Input Difference (ID) = ‘B’ and Output Difference from 0 through F of row 1.

Row 1 Output Difference
1 Input Difference |0 |1 |2|3]4|5|6|7|8|9|A|B|C|DJ|E]|F
2 B 0/2|8|/0]0]2|0|0O0|JO]J0O]J]O]O|JO]2]0]2

Table.15. The Part of DDT with Input Difference ‘B’.

3.4.3.2. 4-bit binary Pattern View of Differential Cryptanalysis of 4-bit Crypto S-boxes. The corresponding four bit
bit patterns of input S-box elements (ISB) has been shown from row 1 through G of column.2 in Table.13. and termed as Bin
ISB. The Particular Input Difference ‘1101° is shown in each row from 1 through G of column. 4. in Table.13. The Distant 4-bit
input bit patterns are shown from row 1 through G of column.6. (Bin DISB) are obtained by the xor operation of the elements in
corresponding positions of each element of BIN DISB from row 1 through G of column.2. (Bin ISB) and Column.4. (Bin ID)
respectively. In Bin ISB for each element from row 1 through G of column.2. in corresponding position from row 1 through G of
column.8, there is an element of Bin SB. Now in Bin DISB the elements of ISB have been shuffled in a particular order and in
Bin DSB the corresponding elements of SB has also been shuffled in that particular order. Each element from row 1 through G of
column.11. has been obtained by xor operation of each element in corresponding positions from row 1 through G of column.8.
and row 1 through G of column.10. respectively. The repetition of each existing elements in Bin DFSB have been counted and
put into Difference Distribution Table or DDT. It is shown in Table.16. as follows,

RIC 1 2 3 4 5 6 7 8 9 A B C D E F G H
1 DFSB el 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
2 Count 0 2 8 0 0 2 0 0 0 0 0 0 0 2 0 2

Table.16. Count of repetition of each existing element in Bin DSB.

The count of each existing elements in Bin DFSB have been put into the Differential Distribution Table. as follows, in row 2 of
Table.17a. for Binary Input Difference (Bin ID) ‘1101 and Output Difference from 0 through F of row 1.

Row 1 Output Difference (In Hex)
1 Input Difference |0 |1 ]2]|3|4|5|/6|7|8|9|A|B|C|DJ|E]|F
2 1101 0j]2|8|0|0|2|0|j0O|JO]JOJO|jO]O|2]0]2

Table.17a. The Part of DDT with Input Difference ‘1101°.

The Total DDT or Difference Distribution table for 16 1Ds for the given S-box has been shown below in table 17b.

Table.7b Output Difference
DDT 8
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D 0 |4][]0]0]J]0|J0|0|4]2]|]0]2]0]2]0O0
e E 0|0|2]4]2|]0|0]j0]6]|]0]0]0O]O0]O
F 0|l2|]0]0)]6|]0|J]0]|]0]0O|4]0]2]|]0]0]2]0O0
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Table.17b. Difference Distribution Table or DDT of the Given S-box.
3.4.4 Pseudo Code for Differential Cryptanalysis of 4-bit Crypto S-boxes and its Time Complexity Analysis.
The Pseudo Code of Algorithm for 4-bit binary pattern view with Time Complexity has been depicted in subsec. 3.4.4.1., the
Pseudo Code of algorithm for S-box view with Time Complexity has been depicted in subsec. 3.4.4.2. and The comparison of
time complexity of two algos has been given in subsec 3.4.4.3.
3.4.4.1 Pseudo Code of Algorithm of Differential Cryptanalysis 4-bit binary pattern view.
The Pseudo Code has been given as follows,
Start.  // Start of Pseudo Code
/I Variable Declarations, Two Dimensional Array ISB[4][16] is for 4-bit bit patterns for Input S-box, IDIFF[4][16] is for 4-bit bit
patterns of Input Difference, Three Dimensional Array ODIFF[4][16][16] is for all 4-bit bit patterns of Output Difference for 16
IDIFFs.
Step OA: int ISB[4][16]; int IDIFF[4][16]; int ODIFF[4][16][16];
/] Variable Declarations, ISB’[4][16][16] is for 4-bit bit patterns of All elements of 16 distant ISBs. OSB[4][16] is for 4-bit bit
patterns of the given S-box or Output S-box , OSB’[4][16][16] is for 4-bit bit patterns of All elements of 16 distant OSBs,
DDT[16][16] is for Difference Distribution Table, and Count[16] is for count of each element in ODIFF for 16 OSBs.
Step OB: int ISB’[4][16][16]; int OSB[4][16]; int OSB’[4][16][16]; int DDT[16][16]; int Count[16];
/I Differential Cryptanalysis Block.
Step 01: For | =1:16 ; For J =1:16 ; For K =1:4; // Start of For Loop I, J, K respectively
ISB’[K][I][J] = ISB[K][J]"IDIFF[K][1];
OSB’[K][][J] = OSB[ISB’[K][1][J]];
ODIFF[K][I][J] = OSB[K][J]* OSB’[K][1][J];
End For K. End For J. End For 1.// End of For loop K, J, | respectively
/I Generation of Difference Distribution Table.
Step 02: For | =1:16 For J =1:16 For K =1:4 // Start of For Loop I, J, K respectively
DDTI[I][J]= Count[ISB[K][J]];
End For K. End For J. End For 1. // End of For loop K, J, | respectively
Stop. // End of Pseudo Code

Time Complexity of the Given Algorithm. Since Differential Cryptanalysis block contains 3 nested loops so the time
Complexity of the Algorithm has been O(n®).

3.4.4.2. Pseudo Code of Algorithm of Differential Cryptanalysis S-box View.
The Pseudo Code has been given as follows,
Start. // Start of Pseudo Code
/I Variable Declarations, One Dimensional Array ISB[16] is for for Input S-box in Hex, IDIFF[16] is for Input Difference in Hex,
Three Dimensional Array ODIFF[16][16] is for all Output Difference in Hex for 16 IDIFFs.
Step OA: int ISB[16]; int IDIFF[16]; int ODIFF[16][16];
I/l Variable Declarations, ISB’[16][16] is for All elements in Hex of 16 distant ISBs. OSB[16] is for elements in Hex of the given
S-box or Output S-box , OSB’[16][16] is for All elements in Hex of 16 distant OSBs, DDT[16][16] is for Difference Distribution
Table, and Count[16] is for count of each element in ODIFF for 16 OSBs.
Step OB: int ISB’[16][16]; int OSB[16]; int OSB’[16][16]; int DDT[16][16]; int Count[16].
/I Differential Cryptanalysis block
Step 01: For | =1:16; For J =1:16; // For Loop I and J respectively.

ISB’[1][J] = ISB[J]"IDIFF[I];

OSB’[1][J] = OSB[ISB’[1][J]];

ODIFF[I][J] = OSB[J]" OSB’[1][J];

End For J. End For 1.// End of For Loop J and | respectively.

Step 02: For | =1:16; For J =1:16 // For Loop | and J respectively.

DDTI[I][J]= Count[ISB[J]];

End For J. End For 1. // End of For Loop J and | respectively.

Stop. // End of Pseudo Code
Time Complexity of the Given Algorithm. Since Differential Cryptanalysis block contains 2 nested loops so the time
Complexity of the Algorithm has been O(n?).
3.4.4.3 Comparison of Time Complexity of Two views of Differential Cryptanalysis of 4-bit S-boxes.

The Comparison of time complexity of two algos has been given in Table.17C as follows,
View 4-bit BP View | S-box View
Time Complexity o) 0o(n?

Table.17C. Time Complexity Comparison of Two Algos.



It can be concluded from the comparison that the Execution Time reduces in S-box view than the 4-bit Binary Pattern view. So in
can be concluded from above review work that the execution time of Differential Cryptanalysis depends upon the view of the
algorithm and the S-box view has been proved to be a better algorithm than 4-bit binary pattern view algorithm.

3.5 Differential Cryptanalysis of 4-bit Bijective Crypto S-boxes with 4-bit BFs. The Procedure to obtain four Input Vectors
(IPVs) and Four Output BFs (OPBFs) from the elements of a particular 4-bit Crypto S-box has been described in sec.2.1. The
procedure to obtain distant Input Vectors (DIPVs) and Distant Output BFs (DOPBFs) for a particular Input Difference (ID) of the
said S-box has been described with example in sec.3.5.1. Generation of Difference 4-bit BFs, Analysis of Algorithm and
Generation of Difference Analysis Algorithm in subsec.3.5.2, subsec.3.5.3 and subsec.3.5.4. respectively. The Differential
Analysis Table of the given S-box, Pseudo Code of Algorithm with Time Complexity and Comparison of Time complexity of
three Algos. have been given in subsec.3.5.5, subsec.3.5.6 and subsec.3.5.7. respectively.

3.5.1. Distant Input BFs (DIBFs) and Distant Output BFs (DOBFs) Generation from IBFs and OBFs for a
specific ID. Within 4 bits of binary input difference (Bin ID), 1 in position p means do complement of p™ IPV and 0 means no
operation on p' IPV. Similarly in the given example 1 in position 4 of Bin 1D, as in position 4 from row 1 through G of column 4
of table.13. indicates do complement of 4-bit IPV, IPV4 i.e. CIPV4 and 0 in position 3 as in position 3 from row 1 through G of
column 4 of table.13. means no operation on 4-bit IPV, IPV3 (CIPV3) or CIPV3 = IPV3. Similarly 1 in respective positions 2
and 1 as in positions 2 and 1 from row 1 through G of column 4 of table.13. means do complement 4-bit IPV, IPV2 (CIPV2) and
do complement of 4-bit IPV, IPV1 (CIPV1) respectively. CIPV4, CIPV3, CIPV2 and CIPV1 for Input S-box (ISB) and Input
Difference (ID) have been shown from row 1 through G of column.1. and column.3. of Table.13. respectively.

Here the 4™ OPBF has been taken as an example of OPBF and termed as OPBF. Since complement of 4™ IPV means
interchanging each 8 bit halves of 16 bit long 4™ IPV so The 2, 8 bit halves of OPBF have been interchanged due to complement
of 4" IPV. The resultant OPBF has been shown from column 1 through G of row 6 in Table.19. Again No Operation on 3 IPV
means CIPV3 = IPV3 so resultant OPBF is as same as STEP1 and has been shown from column 1 through G of row 7 in
Table.19. Next to it, the complement of 2™ IPV means interchanging each 2 bit halves of each 4 bit halves of each 8 bit halves of
resultant OPBF. The resultant OPBF has been shown from column 1 through G of row 8 in Table.19. Again the complement of
1% IPV means interchanging each bit of each 2 bit halves of each 4 bit halves of each 8 bit halves of resultant OPBF, The
resultant OPBF After operation has been shown in column 1 through G of row 9 in Table.19. The Complemented OPBF has been
the resultant OPBF of STEP4 and has been shown from column 1 through G of row A in Table.19.

ID 110 (1)1
Complement | C| N | C | C
Table.18. Complement of IPVs Due to a Particular 1D

Row | Col 112(3|/4|5|6|7|8|9|A|B|C|D|EJF]|G
1|/CIPV4 |1 |1)1]1]1)]1]1|1]|0j0|0O]|0O]j0O]0O]0O]O
2|/ CIPV3 |1 |1|1]1|0|0]OjJO|2)1]1]1]0]0O]|O]O
3|/ CIpv2 |0O|0OJ1]1|0]J0]21]1]|0j0]J1]1]|[0]0O]|1]1
4|/ ClPV1 |1 |0]1)0|1j0O0]1j0]J1j0|1]0]J1]0]1]O0
5| OPBF |1|0|1]|]0OfjO|1]21)1|0j1]0]1]0]1|0]0O
6 | STEP1 |0 |1|0|1|0]J1]0|J0O|1]0]J1]0O0[0O]1]|1]1
7| STEP2 |O|1|0|1|0O0]J1]0|J0O|1]J0]J1]0O0[0O]1]|1]1
8 | STEP3 |0 |1|0|1|0]J0]O]J1|1]j]0]J1]O0[1]1]|0]1
9| STEP4 |1 |0|1|0|j0O|J0O]2|0O|0OjJ1]J0O]1]1]1|1]0
A|COPBF|1|0]|1|0]0O]|0OJ1]j0OJO]2]OJ1]1]1]1]0

Table. 19. Construction of DIBFs and DOBFs.
3.5.2 Generation of Difference Boolean Functions or DBFs for a certain ID.
The DBFs of each OPBF have been generated by bitwise Xor of OPBFs and the corresponding COPBFs. The
corresponding DBFs of OBPF4, OBPF3, OBPF2, OPBF1 are denoted as DIFF4, DIFF3, DIFF2, DIFF1 respectively. Generation
of 4" DBF of ID ¢1011” has been shown in column 1 through G of row 3 of Table.20.

R|C 112|3|4]|5|/6|7|8|9|A|B|C|D|EJF]|G
1] OPBF |1|0|1]0jOj1)1]1]0]1]0]1]0O0|1|0]0O
2| COPBF|1]|0]1]|0]|0O|0OJ1]0O)j0O]2j0O]21]2]1]1]0
3| DIFF |[0)0]J0O|0O]0O]1j0j1|0]J0OJO]O]1]O]1]O

Table.20. DBF Generation.
3.5.3 Analysis:

If the DBFs are balanced then the number of bits changed and remains unchanged among corresponding bits of OPBFs
and COPBFs is maximum. So uncertainty of determining a particular change in bits is maximum. As the number of balanced
DBFs are increased among 64 (=2*x4) possible DBFs then the security will increase. The number of 1s or balanced-ness of the
above DBF shown from row 1 through G of row 3 of table.20. has been shown in column. 2. of row 2 of table.21.



R|C 1 2
1 Difference BF Total Number of 1s
2 DIFF 4

Table. 21. Balanced-ness of DBFs.

3.5.4 DBFs Generation and Derivation of a Particular Row of Differential Analysis Table (DAT) for a
Certain ID. Four IPVs in the order IPV4, IPV3, IPV2 and IPV1 for the S-box given in Table.1. and four CIPVs, CIPV4,
CIPV3, CIPV2 and CIPV1 for a certain ID ‘1011’ have been shown from column 1 through G of row 1, 2, 3,4, 5,6, 7 and 8
respectively in Table.22. Four OPBFs in the order OPBF4, OPBF3, OPBF2 and OPBF1 for the S-box given in Table.11. and four
COPBFs COPBF4, COPBF3, COPBF2 and COPBF1 for a certain ID ‘1011’ have been shown from column 1 through G of row
9, A B, C, D, E, Fand G respectively in Table.22. The resultant DBFs, DIFF4, DIFF3, DIFF2, DIFF1, have been shown in
column 1 through G of row H, I, J, K of Table.22. The number of 1s or Balanced-ness of four DBFs have been shown in row
from column.2 through 5 of row 1 in Table.23.

Row|Col 112|3|4|5|6|7|8]|9|A|B|C|DJEJF]|G
1 | IBF4 ojojojojojojojoj1j1r 111 j1j1)1
2 | IBF3 ojojojojrj1j1j1j0jojojof1j1j1)1
3 | IBF2 ojoj1j1jo0ojoj1j1j0jo0Jj1j1jojoj1)1
4 | IBF1 oj1jo0j1joj1joj1joj1joj1joj1jo]1
5 |CIBF4 |1|1]1 |1 ]1}]1]1]1]0]j0|0O]O|0O]0O]JO]O
6 |[CIBF3 |0j0]O O |21]1]1]1]0]j0Of0O]O|2 |21 ]1]1
7|CIBF2 |1 |1]0|0]|21]1]0]0O)J1]120]0O|1 ]1]0]O
8 |[CIBF1 |1/0]1 |0 ]1]j0]j2]0Oj1]j0 (1 ]0Oj1]0J1]0O
9 | OBF4 1/j0/j1J/0(f0OJ1]1]J1]0]1]|O0j1]0O0|1]|0]0O
A | OBF3 1/1/1/0(|0J1]0]J0O]JO]jO]1T |11 |O0|O]1
B | OBF2 1/j0/j0JO0O(f2|J1]1]J0]1]1]1]0]J0O|O]O]|1
C | OBF1 ojoj1j1j0oj1f12joj1j0Jjo0ojof1]1j0]1
D| COBF4 (1|01 |0 |0O|O[2j0O]j0Oj1 O |11 ]1]O0
E|COBF3 |1|1|0|0O[21|0[0Oj1]0Oj1 |11 ]0]0O]J1]O
F|COBF2 |[O)1(1 |1 |1/0[0j0O]OjOJO]1T |01 1|1
G|COBF1 |Oj0O]O |1 ]1]j0]2 1)1 ]1j0]Oj0O]1]1]O
H|DIFF4 |0)j0fj0O O |O|1]|0Oj1]0j0OJ0O]O]1T ]0OJ1]O
| |DIFF3 |0]O|1 O 1|10 [1jO0|1]O]JO]J1]0]1]1
J|DIFF2 11|11 /011|011 j1]1)j0]1]1]O0
K|DIFF1 |0|0Oj1 |0 ]1j1]0jJ1]j0OjJ1]JOJOf1]0O]1]1

Table. 22. Generation of a Particular Row of Differential Analysis Table (DAT).

R|C 1 2 3 4 5
Difference BFs DIFF4 | DIFF3 | DIFF2 | DIFF1
1 No. of ones. 4 8 C 8

Table.23. Balanced-ness of four DBFs.

3.5.5. Differential Analysis Table or DAT. The Balanced-ness of four DBFs for each ID have been shown from column 2
through 5 of row 2 through H of DAT or Table.24.

R|C 1 2 3 4 5
1 IDinHex | DIFF1 | DIFF2 | DIFF3 | DIFF4
2 0 0 0 0 0
3 1 8 8 8 C
4 2 C 8 C 4




5 3 8 8 8 C
6 4 8 C 8 8
7 5 8 8 8 8
8 6 C 8 C 8
9 7 8 C 8 8
A 8 C C C C
B 9 8 8 8 8
C 10 4 8 4 C
D 11 8 C 8 4
E 12 C 4 C 8
F 13 8 8 8 8
G 14 4 8 4 8
H 15 8 4 8 8

Table.24. DAT for 1% 4-bit S-box of 1* S-box of DES

3.5.6 Pseudo Code for Differential Cryptanalysis of 4-bit Crypto S-boxes and its Time Complexity Analysis.
The Pseudo Code has been given as follows,
Start. // Start of Pseudo Code
/I Variable Declarations, One Dimensional Array ISB[16] is for for Input S-box in Hex, IDIFF[16] is for Input Difference in Hex,
Three Dimensional Array ODIFF[16][16] is for all Output Difference in Hex for 16 IDIFFs. Bin_ODIFF[4][16][16] is for all 4-
bit bit patterns of Output Difference for 16 IDIFFs.
Step OA: int ISB[16]; int IDIFF[16]; int ODIFF[16][16];
/I Variable Declarations, ISB’[16][16] is for All elements in Hex of 16 distant ISBs. OSB[16] is for elements in Hex of the given
S-box or Output S-box , OSB’[16][16] is for All elements in Hex of 16 distant OSBs, DAT[16][16] is for Difference Analysis
Table, and Count[16] is for count of each element in ODIFF for 16 OSBs.
Step 0B: int ISB’[16][16]; int OSB[16]; int OSB’[16][16]; int DAT[4][16]; int Count[16].
/I Differential Cryptanalysis block
Step 01: For | =1:16; For J =1:16; // For Loop I and J respectively.

ISB’[1][J] = ISB[J]\IDIFF[I];

OSB’[I][J] = OSB[ISB’[1][J]];

ODIFF[I][J] = OSB[J]* OSB’[1][J];

For K=1:4 Bin_ODIFF[K][I][J] = Hex to Binary(ODIFF[I][J])

End For J. End For 1.// End of For Loop J and | respectively.

Step 03: For | =1:4; For J =1:16; For K = 1:16 // For Loop | and J respectively.

DATI[I][J]= Count[Bin_ODIFF[I][J][KII;

End For J. End For 1. // End of For Loop J and | respectively.

Stop. // End of Pseudo Code
Time Complexity of the Given Algorithm. Since Differential Cryptanalysis block contains 2 nested loops so the time
Complexity of the Algorithm has been O(n?).
3.5.7 Comparison of Time Complexity of Two views of Differential Cryptanalysis of 4-bit S-boxes and Differential
Cryptanalysis with 4-bit BFs.
The Comparison of time complexity of three algos has been given in Table.25 as follows,

View 4-bit BP View | S-box View | With 4-bit BFs
Time Complexity o) 0o(n?) 0o(n?)

Table.25. Time Complexity Comparison of Three Algos.

It can be concluded from the comparison that the Execution Time reduces in S-box view and With 4-bit BFs than the 4-bit Binary
Pattern view. So in can be concluded from above review work and new algorithm that the execution time of Differential
Cryptanalysis depends upon the view of the algorithm and the S-box view has been proved to be a better algorithm than 4-bit
binary pattern view algorithm. The With 4-bit BFs Algo has also been proved to be the better one since The DAT table
construction is less time consuming than DDT construction since DDT constitutes of 256 entries while DAT constitutes of 64
entries so in can also be concluded from comparison that Differential Cryptanalysis with 4-bit BFs has been proven to be the best
algorithm among 3 Algorithms since it takes less execution time among three algorithms.

3.6 A Brief Review of Linear Cryptanalysis of 4-bit Crypto S-boxes and a new Technique With Boolean
Functions for Linear Cryptanalysis of 4-bit Crypto S-boxes or Linear Approximation Analysis. The review of
related relevant property of 4-bit BFs, Algebraic Normal form of 4-bit BFs has been illustrated in subsec.3.6.1. The review of
Linear Cryptanalysis of 4-bit Crypto S-boxes has been described in brief in subsec.3.6.2. At last the new technique to analyze 4-
bit S-boxes by 4-bit Linear Approximations or Linear Approximation Analysis has been described in brief in subsec. 3.6.3.

3.6.1 A review of Boolean Functions (BF) and its Algebraic Normal Form (ANF)



A 4-bit Boolean Function (BF) accepts 4 bits as input {x;x,XsX,}having 16 combinations of decimal values varying
between 0 and 15 and provides 1-bit output for each combination of input. The input-output relation is given in a Truth Table
which provides 16-bit output vector corresponding to four 16-bit input vectors, each one attached to Xy, X,, X3 and x4. The 4-bit
BF is a mapping from (0,1)* to (0,1)*and its functional relation, F(x) can be expressed in Algebraic Normal Form (ANF) with 16
coefficients as given in eq. (1) below,

F(X) = ag + (ag.Xy + @p.Xp + A3.X3 + @4.Xg) + (85.X1. X + 8g.X1.X3 + 87.X1. X4 + 8g.X2.X3 + 89.X2. X4 + 810.X3.X,) +
+ (811.X1.X2. X3 + 812.X1.X2. X4 + 813.X1.X3. X4+ 814.X2.X3.X4) + 815.X1.X2.X3. X4 1)

where x represents the decimal value or the hex value of 4 input bits represented by {X;x,XsX4}, BF assumes 1-bit output, ‘.” and
‘+” represent AND and XOR operations respectively. Here a; is a constant coefficient, (a; to a,) are 4 linear coefficients, and (as
to a;s) are 11 nonlinear coefficients of which (as to a;g) are 6 non-linear coefficients of 6 terms with 2-AND-operated-input-bits,
(a11 to ay4) are 4 nonlinear coefficients of 4 terms with 3-AND-operated-input-bits and a5 is a non-linear coefficient of one term
with 4-AND-operated-input-bits. The 16 binary ANF coefficients, from ag to a;5 are marked respectively as anf.bit0 to anf.bit15
in ANF representation and are evaluated from the 16-bit output vector of a BF designated as bf.bit0 to bf.bitl5 using the
following relations as given in eq.(2),

anf.bit0 = bf.bit0;
anf.bitl = anf.bit0 + bf.bit8;
anf.bit2 = anf.bit0 + bf.bit4;
anf.bit3 = anf.bit0 + bf.bit2;
anf.bit4 = anf.bit0 + bf.bit1;
anf.bit5 = anf.bit0 + anf.bitl + anf.bit2 + bf.bit12;
anf.bité = anf.bit0 + anf.bitl + anf.bit3 + bf.bit10;
anf.bit7 = anf.bit0 + anf.bitl + anf.bit4 + bf.bit9;
anf.bit8 = anf.bit0 + anf.bit2 + anf.bit3 + bf.bit6;
anf.bit9 = anf.bit0 + anf.bit2 + anf.bit4 + bf.bit5;
anf.bit10 = anf.bit0 + anf.bit3 + anf.bit4 + bf.bit3;
Oanf.bitll = anf.bit0 + anf.bitl + anf.bit2 + anf.bit3 + anf.bit5 + anf.bit6 + anf.bit8 + bf.bit14;
anf.bit12 = anf.bit0 + anf.bitl + anf.bit2 + anf.bit4 + anf.bit5 + anf.bit7 + anf.bit9 + bf.bitl3;
anf.bit13 = anf.bit0 + anf.bitl + anf.bit3 + anf.bit4 + anf.bit6 + anf.bit7 + anf.bit10 + bf.bitl1;
anf.bitl4 = anf.bit0 + anf.bit2 + anf.bit3 + anf.bit4 + anf.bit8 + anf.bit9 + anf.bit10 + bf.bit7;
anf.bitl5 = anf.bit0 + anf.bitl + anf.bit2 + anf.bit3 + anf.bit4 + anf.bit5 + anf.bit6 + anf.bit7
+ anf.bit8 + anf.bit9 + anf.bit10 + anf.bitll + anf.bit12 + anf.bit1l3 + anf.bit14 + bf.bit15 N )]

The DEBF (Decimal Equivalent of BF) varies from 0 through 65535 and each decimal value is converted to a 16-bit binary
output of the Boolean function from bf.bit0 through bf.bitl5. Based on the binary output of a BF, the ANF coefficients from
anf.bit0 through anf.bit15 are calculated sequentially using eq. (2).

3.6.2 A Review on Linear Cryptanalysis of 4-bit Crypto S-boxes [HH96][HHO02]. The given 4-bit Crypto S-box has
been described in sub-section 3.6.2.1. The relation of 4-bit S-boxes with 4 bit BFs and with Linear Approximations are described
in sub-section 3.6.2.2 and 3.6.2.3 respectively. LAT or Linear Approximation Table has also been illustrated in sec 3.6.2.4.
Algorithm of Linear Cryptanalysis with Time Complexity Analysis has been described in sec. 3.6.2.5.

3.6.2.1. 4-bit Crypto S-boxes: A 4-bit Crypto S-box can be written as Follows in Table.26, where the each element of the first
row of Table.26, entitled as index, are the position of each element of the S-box within the given S-box and the elements of the
2" row, entitled as S-box, are the elements of the given Substitution box. It can be concluded that the 1% row is fixed for all
possible Crypto S-boxes. The values of each element of the 1% row are distinct, unique and vary between 0 to F in hex. The
values of the each element of the 2" row of a Crypto S-box are also distinct and unique and also vary between 0 to F in hex. The
values of the elements of the fixed 1% row are sequential and monotonically increasing where for the 2™ row they can be
sequential or partly sequential or non-sequential. Here the given Substitution box is the 1% 4-bit S-box of the 1% S-box out of 8 of
Data Encryption Standard [AT90][NT77][NT99].

Row [Column | 1 | 2 |3 |4[|5|6|7|8|9 | A|B|C|D|E|JF]|G
1 Index 0 |1]2)|3|4|5|]6|7|8|]9]|A|B|JC|D|E]F
2 S-box E|4|D|1|2|F|B|8|3|]A|6|C|5]|]9]0]7

Table.26. 4-bit Crypto S-box.

3.6.2.2. Relation between 4-bit S-boxes and 4-bit Boolean Functions (4-bit BFs). Index of Each element of a 4-bit
Crypto S-box and the element itself is a hexadecimal number and that can be converted into a 4-bit bit sequence that are given in
column 1 through G of row 1 and row 6 under row heading Index and S-box respectively. From row 2 through 5 and row 7



through A of each column from 1 through G of Table.27. shows the 4-bit bit sequences of the corresponding hexadecimal
numbers of the index of each element of the given Crypto S-box and each element of the Crypto S-box itself. Each row from 2
through 5 and 7 through A from column 1 through G constitutes a 16 bit, bit sequence that is a 16 bit long input vectors (IPVs)
and 4-bit output BFs (OPBFs) respectively. column 1 through G of Row 2 is termed as 4™ IPV, Row 3 is termed as 3 IPV, Row
4 is termed as 2™ IPV and Row 5 is termed as 1 IPV whereas column 1 through G of Row 7 is termed as 4 OPBF, Row 8 is
termed as 3" OPBF, Row 9 is termed as 2" OPBF and Row A is termed as 1% OPBF [AT90]. The decimal equivalent of each
IPV and OPBF are noted at column H of respective rows.

Row | Column [ 1|2 |3 |4 |5 6 7/8|9|A|B|C|D|E|F| G| H. Decimal
1 Index 0l1]2|3|4]|5|6|7|8|9|A|B|C|D]|E]|F]| Equivalent
2 1PV4 oj0|J0|O0]O 0 ojoj1|]1]|1]1]1]|1 1|1 00255
3 1PV3 0O(0|0]O0]|1 1 1/11/0|(0|O0OjO0O|1 |2 |1]1 03855
4 1PV2 0|0|1]|1]0 0 1100|212 ]|1]J0]0]1]|1 13107
5 1PV1 0|1|10|1]|0 1 o(1j0(1j0|1|0|1|0]|1 21845
6 S-box E|4|D|1]|2 F B|8|3|A|6|C|5|9]|0]|7
7 OPBF4 1/0(1]01|0 1 1{1/0j1|0j212|0|21|0]O 42836
8 OPBF3 |1 |1|1|0]|J0]J21]|]0]JO0O]O]|]O|1|1]|1]|]0]|O0]|1 58425
9 OPBF2 1/]0(0|0|1 1 1(0(1|1|1|]0]0]0]0]|1 36577
A OPBFL |0 | 0|1 |1]|]0] 1 1]j]0(1]j]0|0jO0O|21]1]|]0]|1 13965

Table.27. Decomposition of 4-bit input S-box and given S-box (1% 4-bit S-box of 1 S-box out of 8 of DES) to 4-bit BFs.

3.6.2.3. 4-bit Linear Relations. The elements of input S-box have been shown under column heading ‘I’ and the Input
Vectors have been shown under field IPVs (Input Vectors) and subsequently under column headings 1, 2, 3 and 4. The 4" input
vector has been depicted under column heading ‘4, 3" input vector has been depicted under column heading ¢3°, 2™ input vector
has been depicted under column heading ‘2’ and 1% input vector has been depicted under column heading ¢1°. The elements of S-
box have been shown under column heading ‘SB’ and the Output 4-bit BFs are shown under field OPBFs (Output Boolean
Functions) and subsequently under column headings 1, 2, 3 and 4. The 4" Output BF has been depicted under column heading
‘4>, 3 Output BF has been depicted under column heading ¢3°, 2™ Output BF has been depicted under column heading ‘2 and
1% Output BF has been depicted under column heading “1° of table.28.

| IPVs S| OPBFs
413|2(1|B|l4]3]|2]|1
0/|0|O0|O0O|O|E|2|1|1|0
1/0{0|0|1|4|0[1|0|0
2/0]/0{1(0|Dj1{1|0]|1
3/0{0|1(1]|1/0]/0]0|1
4(0(1|0{0|5/0|1|0|1
5/0]/1{0(1|9|1({0|0]|1
6/0{1|1{0|{0|0]|0]|0|O
710(1|1(1|7|/0]1]|1|1
8/1|/0[0(0|2|0(0|1|0
911|0|0|1|F|1{1|1|1
All1|0(1(0|Bl1|0|1]1
B|1(0|1|1{8{1|/0[{0|0
C/1l|1|0|0|3|0|0|1]|1
D/1{1|0|1|Al1|0|1|0
E|1|1|1|0|6|0|1|1]|0
Fl1|1]1|1|C|1|1|0]|0

Table. 28. IPVs and OPBFs for given S-box

The IPEs or Input Equations are all possible xored terms that can be formed using four IPVs 4, 3, 2 and 1. On the other hand
OPEs are possible xored terms that can be formed using four OPVs 4, 3, 2 and 1. All possible IPEs and OPEs are listed under the
column and also row heading (IPE = OPE) from row 2 through H and column 1 through G respectively. Each cell is a linear
equation equating IPE to OPE. Such as Lj.p.4+3 is the linear equation formed by IPE ‘1+2+3 i.e. the xored combination of three
IPVs 1, 2 and 4 and OPE ‘2+3’ i.e. the xored combination of two OPBFs 2 and 3. The 256 possible 4-bit Linear Equations are
shown in Table 29.



Rows Columns 1 2 3 4 5 6 7 8 9 A B
1 IPE = OPE 0 1 2 3 4 1+2 1+3 1+4 2+3 2+4 3+4
2 0 Loo Loy Lo Los Loa Loa+2 Loa+s Lo+a Loz2+a Lo2+a Lo+a
3 1 Lio Lig Lio Li3 Lia Lii+2 Lii+s L1144 Li2+3 L1244 L1344
4 2 Loo L2 L2z Los Loas L2142 L2143 Lo1+a L2243 Lo2+a Lo 3+a
5 3 Lso Ls1 Ls2 L33 L34 L3142 L3143 L3144 L33 Ls2+a L33+a
6 4 Lso Las L2 Lag Lsa La1+2 Ls1+3 La+a Laz2+s La2+a Lazea
7 1+2 Li+20 Livo1 Liw22 Liv23 Litoa Li21+2 L1243 L1144 L1243 Li22+4 L1234
8 l+3 L1+3,0 L1+3,1 L1+3,2 L1+3,3 L1+3,4 L1+3,1+2 L1+3,1+3 L1+3,1+4 L1+3,2+3 L1+3‘2+4 L1+3,3+4
9 l+4 L1+4,0 L1+4,1 L1+4,2 L1+4,3 L1+4,4 L1+4,1+2 L1+4,1+3 L1+4,1+4 L1+4,2+3 L1+4‘2+4 L1+4,3+4
A 2+3 L2+3,0 L2+3,1 L2+3,2 L2+3,3 L2+3,4 L2+3,1+2 L2+3,1+3 L2+3,1+4 L2+3,2+3 L2+3‘2+4 L2+3,3+4
B 2+4 Lo+a0 Lo Loz Loia3 Lo+aa Lo+a 142 L2+a143 Lo+4,144 Lova2es Lo+4244 Lovs 344
C 3+4 L3+a0 L3ia1 L3ig2 L3ia3 L3+aa L3ia1+2 L3+a143 L3+s,144 Lavs 243 L3+4,244 L3+s 344
D l+2+3 L1+2+3,O L1+2+3,1 L1+2+3,2 L1+2+3,3 L1+2+3,4 L1+2+3,1+2 L1+2+3,1+3 L1+2+3,1+4 L1+2+3‘2+3 L1+2+3,2+4 L1+2+3‘3+4
E l+2+4 L1+2+4,O L1+2+4,1 L1+2+4,2 L1+2+4,3 L1+2+4,4 L1+2+4,1+2 L1+2+4,1+3 L1+2+4,1+4 L1+2+4‘2+3 L1+2+4,2+4 L1+2+4‘3+4
F l+3+4 L1+3+4,O L1+3+4,1 L1+3+4,2 L1+3+4,3 L1+3+4,4 L1+3+4,1+2 L1+3+4,1+3 L1+3+4,1+4 L1+3+4‘2+3 L1+3+4,2+4 L1+3+4‘3+4
G 2+3+4 Lo+a+a0 L2+3441 L2+34a2 L2+34a3 Lo+3eaa Lovaiane2 Lo+aian43 Lovaea1+a Lo+a+a2+3 Lo+aeazea Lo+a+azea
H 1+2+3+4 Lisoezeao | Lisosaeas | Lasoessaz | Lis2sseas | Livowseas | Lisossrasee | Livosssanss | Livowseanea | Livosseazes | Liszsseazes | Lisosseasea

Rows Columns C D E F G
1 IPE=OPE 1+2+43 1+2+4 1+3+4 2+3+4 1+2+3+4
2 0 Lo1+2+3 Lo,1+2+4 Lo,1+3+4 Lo2+3+a Lo+2+3+4
3 1 Li11+243 L1142+ L1143+ L1 2+34a L1 1+24344
4 2 Lo1+2+43 L2142+ Lo1+3+4 Lo2+3+a Lo 1+243+4
5 3 L3 14243 L3142+ L3143+ L3 24344 L3 1424344
6 4 L4‘1+2+3 I—4,1+2+4 I—4,1+3+A L4‘2+3+4 L4‘1+2+3+4
7 1+2 Lis+2,14243 Li+2,142+4 Li+2,143+4 Li+2,24344 Li+2,142¢344
8 1+3 Li+314243 Li+3.142+4 L1+3143+4 Li+32+344 Li+3 1424344
9 1+4 Li+a14243 Li+a,142+4 Li+4,143+4 Li+a.243+4 Li+a142+344
A 2+3 L2+3 14243 L2+3 14244 L2+3143+4 L 24324344 L2+3142+3+4
B 2+4 Lo+a,14243 Lo+g142+4 Lo+4,143+4 L2+4.24344 Lo+a14243+4
C 3+4 L3+a14243 L3+g,14244 L3+4,143+44 L3vs 20344 L3va 1424344
D l+2+3 L1+2+3,1+2+3 L1+2+3,1+2+4 L1+2+3,1+3+4 L1+2+3,2+3+4 L1+2+3,1+2+3+4
E 1+2+4 Li+2+a14243 Li+2+4,142+4 Li+2+4,1+3+a Li+2+a24344 Liso+a142+344
F 1+3+4 L1+3+4,14243 Li+3+4,142+4 L1+3+4,143+4 L1+3+4,243+4 L4344, 1424344
G 2+3+4 Loisea 4243 Lo+3+4,142+4 Losata14304 Lo+3e42+344 Los344,1424344
H 1+2+3+4 Lisorasansoes | Lisoearaieona Lisosarateara | Lisorarazeara | Livosaes 124344

Table.29. 256, 4-bit Linear Equations with input Equations (IPE) and output Equations (OPE).
3.6.2.4 Linear Approximation Table (LAT) [6].

According to Heys each linear equation is tested for each of 16 4-bit patterns shown in each row under the field IPVs
and subsequently under the column headings 1, 2, 3 and 4 and the corresponding 16 4-bit patterns under field OPBFs and
subsequently under the column headings 1, 2, 3 and 4. If a linear equation satisfies 8 times out of 16 then the existence of the
linear equation is highly unpredictable. That is the probability is %. If the numbers of satisfaction of each linear equation is noted
in respective cells of Table.20. then it is called as Linear Approximation Table or LAT. The Linear Approximation Table for the

given S-box has been shown in table.30.




Output Sum

0 I 2 3 4 5 6 7 8 9 A B C D E F
0o]+8] o o/ o] o] o o o o] o] ol 0| 0| 0] 0/ 0O
1 o] ol 22 o] ol 2/+6|+2[+2] o] o|+2[+2] 0 o
20 ol ol 22 o] o 22| o] ofl+2][+2] 0| 0|-6]|+2
I 31 0] ol o]l 0] of 0] 0] 0|+2| 6l |2 x|+ =2
“al o2l o2 242l 0l 02 022 4[+2] 0
bosl o[22 02| 0|+ [+ 2| 0|4 +2] 0 2][2] 0
¢ 6| o[+2] 2|+ [+2] o ol+2] o 2]|+2|+[=2] o] 0] =
7 O(-2| O 42| 42| 4[+2| 0| -2| O|+2| O 4 |+2] 0] +2
s sl o]l o o] o] o] o/ of o] 2|+2|+2 22|22 -6
u of ol o222 o] o] 2 2]-4] ol 2]+2| o] #4222
m A 0|+ | 2142 | -4 0| +2| =2|+2|+42| 0| O[+2|+2| 0 O
Bl 0|+ 0/ —4|+4| 0/+4| 0| 0| o] ol o/ o o] 0o/ o
cl o[22+ 22 of+2] o|+2] ol+2]+| 0o|+2] 0 22
D 0|42 |42 0| 2|+ 0| +2| 4| -=2|+2| 0| +2| Of O] +2
El o|+2+2] o 2[4 ol+22 o] ol 2|« |+«2[=2] 0
Fl o242 2] ol+2] 0ol 0/ 21+ 22 o[+ 0

Table.30. Linear Approximation Table (LAT) for given S-box

3.6.2.5 Pseudo Code of Algorithm with Time Complexity Analysis of Linear Cryptanalysis of 4-bit Crypto S-
boxes. The algorithm to execute the linear cryptanalysis for 4-bit Crypto S-boxes following Heys [HH96][HHO02] considers 4—
bit Boolean variables Ai and Bj whose i and j are the decimal indices varying from 0 to 15 and Ai and Bj are taking
corresponding bit values from [0000] to [1111]. The algorithm to fill the (16 x 16) elements of the LAT is,

for (1i=0;i<16;i++) {
A=0;
for (k=0;k<16;k++) A=A+ (Ai0.Xk0+A1i1l.Xk1+A1i2.Xk2+A13.Xk3)%2;
for (3=0;3<16;3++) {

B=0;

for (k=0;k<16;k++)B= B+(Bj0.Yk0O+Bj1l.Yk1+Bj2.Yk2+Bj3.Yk3)%2;
Sij = (A+B)%2;

if (Sij==0) Cij++; Nij = Cij - 8;

}

Time Complexity of the given Algorithm. Since the Pseudo Code contains two nested loops so the time complexity of the given
algorithm has been O(n?).
3.7 Linear Approximation Analysis:

A Crypto 4-bit S-box (1% 4-bit S-box out of 32 4-bit S-boxes of DES) has been described in sub-section 3.7.1. The
Table for four input vectors, Output 4-bit BFs and corresponding ANFs has been depicted in sub-section 3.7.2. The analysis has
been described in sub-section 3.7.3. The result of Analysis has been given in sub-section 3.7.4.
3.7.1 4-bit Crypto S-boxes: A 4-bit Crypto S-box can be written as Follows in Table.31, where the each element of the first row
of Table.31, entitled as index, are the position of each element of the S-box within the given S-box and the elements of the 2nd
row, entitled as S-box, are the elements of the given Substitution box. It can be concluded that the 1% row is fixed for all possible
Crypto S-boxes. The values of each element of the 1% row are distinct, unique and vary between 0 to F in hex. The values of the
each element of the 2™ row of a Crypto S-box are also distinct and unique and also vary between 0 to F in hex. The values of the



elements of the fixed 1% row are sequential and monotonically increasing where for the 2™ row they can be sequential or partly
sequential or non-sequential. Here the given Substitution box is the 1% 4-bit S-box of the 1% S-box out of 8 of Data Encryption
Standard [AT90][NT77][NT99].

Row | Column | 1 213|4|5|6|7|8|9|A| B|C|D|E|F|G
1 Index 0 1 213|456 ]|7]8]9 A|B|C|DJ|E F
2 S-box E 4 |D|1|2|F|B|8|3]|A 6 C|5]9 0 7

Table.31. 4-bit Crypto S-box.

3.7.2 Input Vectors (IPVs)-Output BFs (OPBFs)-Algebraic Normal Forms (ANFs). The elements of input S-box have been
shown under column heading ‘ISB’ and the Input Vectors have been shown under the field IPVs (Input Vectors) and
subsequently under column headings 1, 2, 3 and 4. The 4™ input vector has been depicted under column heading ‘4°, 3™ input
vector has been depicted under column heading ¢3°, 2™ input vector has been depicted under column heading 2° and 1% input
vector has been depicted under column heading “1°. The elements of S-box have been shown under column heading ‘OSB’ and
the Output 4-bit BFs have been shown under field OPBFs (Output Boolean Functions) and subsequently under column headings
1, 2, 3 and 4. The 4™ Output BF has been depicted under column heading “4’, 3" Output BF has been depicted under column
heading ‘3°, 2™ Output BF has been depicted under column heading 2’ and 1% Output BF has been depicted under column
heading ‘1°. The corresponding ANFs for 4 OPBFs, OPBF-4™" , OPBF-3rd, OPBF-2™ , OPBF-lSt, are depicted under field ‘ANFs’
subsequently under column heading 4, 3, 2 and 1 respectively of Table.32..

IPVs OPBFs | ANFs

I1SB 4321 OSB 4321 4321
0 0000 E 1110 1110

1 0001 4 0100 1010

2 0010 D 1101 0011

3 0011 1 0001 1100

4 0100 2 0010 1101

5 0101 F 1111 0110

6 0110 B 1011 0111

7 0111 8 1000 0011

8 1000 3 0011 1010

9 1001 A 1010 0110

A 1010 6 0110 1010
B 1011 C 1100 1000

C 1100 5 0101 0101

D 1101 9 1001 0010

E 1110 0 0000 1010

F 1111 7 0111 0000

Table32. Input and Output Boolean Functions
With Corresponding ANF Coefficients of the given S-box.

3.7.3 Linear Approximation Analysis (LAA). An Algebraic Normal Form or ANF equation is termed as Linear Equation
or Linear Approximation if the Nonlinear Part or NP (i.e. The xored value of all product terms of equation 2 for corresponding 4
bit values of IPVs, with column heading 4, 3, 2, 1) is 0 and The Linear part or LP for corresponding 4 bit values of IPVs, with
column heading 4, 3, 2, 1 is equal to corresponding BF bit values. The corresponding ANF coefficients of output BFs F(4), F(3),
F(2), and F(1) are given under row heading ANF(F4), ANF(F3), ANF(F2) and ANF(F1) respectively from row 2 through 5 and
column 4 through J. In which Column 4 of row 2 through 5 gives the value of Constant Coefficient (ay according to eqn.2.) of
ANF(F4), ANF(F3), ANF(F2) and ANF(F1) respectively. Column 5 through 8 of row 2 through 5 gives the value of respective
Linear Coefficients more specifically aj, a,, as, a4 (according to eqn. 2.) of ANF(F4), ANF(F3), ANF(F2) and ANF(F1). They
together termed as LP or Linear Part of the respective ANF Equation. Column 9 through J of row 2 through 5 gives the value of
respective Non-Linear Coefficients more specifically as to a;s (according to eqgn. 2.) of ANF(F4), ANF(F3), ANF(F2) and
ANF(F1). They together termed as NP or Non-Linear Part of the respective ANF Equation.

The 4™, 3 2" 1% IPV for the given S-box have been noted in the Field ‘IPVs’ under column heading 4, 3, 2, 1
respectively from row 8 through M of Table.23. The 4 output BFs F4, F3, F2, F1 are noted at column 4, 8, C, G from row 8
through M respectively. The corresponding LP, NP, Satisfaction (SF) values (LP = BF)are noted at column 5 through 7, 9
through B, C through F and H to J from row 8 through M respectively of Table.33.



RIC [1] 2 [3]4]5]6]7[8[9]ABJ[C/DE[F[GIHI]J
1 Co-Effs | C LP NP
2 ANF(F4) |1|1/0(1/1/0{0]|0]|1|0|21]1]0|0]|1|0
3 ANF(F3) |1/0/0|1|1|/1{1]0]/0{1{0|0|1]0]|0|0
4 ANF(F2) |1|11/0f/0f1f1|1|1|1|1|0]|0]1]1|0
5 ANF(F1) |0/0/1/0[/1|/0[{1]|1]0{0{0|0|1]0]|0|0
6 I| IPVs | S| F| LI NS F|L N S F|L N S F|L NS
7 | D 4321 |B|4|P|P|F|3|P|P|F|2|P|P|F|1|P|P|F
8 |0/ 0000 |E|1|0|0O|2|1{0|/0|1]|1|1]|{0|0|l0|1]|0|1
9 |1/ 0001 |4|0|0|0|0O|1|0|0|1]|0|l2|0|1|0]|0|O0OfO
A |2/ 0010 |Df1]j1|0]|0]j1/1|0|0|0|1]j0|1]|1]|0|0]|1
B |3/ 0011 (1({0f1|1|1j0/1|0|1fj0|1|j1f1|1]|1|0]0
C |4/ 0100 |2|0|1|0f2|0|1|{0|1|1|0|0]|1]|0|l1|0|1
D |5/ 0101 |F|1|0f(0O|1|1j0|2|1j1|/0|1|1|1]|1]0f0O
E |6/ 0110 |B|1|1|1|1|/0|1{0|1|1|0|1|1]1|1]|0]|0
F |7/0111 |8|1|0|1|1|0|0|1|1|0|l0|0|0O|0O|1]|0|1
G |8 1000 |3|0|/0|0|O|O|1|0f1]|1|0|0|1]|1|0]|0|1
H |9 1001 |Aj1|1({0|0|0|0|0O|O]|21|0|1|1|/0|0]|1|1
RIC | I|IPVs |S|F|LIN/S|FIL N S|F|L N/S|F|L|N|S
D 4321 |B|4|P|P|F|3|P|P|F|2|P|PlF|1|P|P|F
I | A 1010 |[6|0|0|0O|O|21|1|1{1/2|0|1|1]|{0]|0|1|1
J |B 1011 |C|1|1|1|1|1|{0|1|1j0|/0|0|0O|0O|0O]|Of|O
K |C 1100 |5|0|0f(0O|0O|1f{1|2|1j0f2|1|1|1|1]|0f0O
L |D 1101 |9|1|1|0fl0|0|0O|2|1|0f2|1|1|1]|1]|0f0
M | El 1110 |[O|O|0O|0O|0O|0O|2|0|1|0|1]j1|1]|0|1|1|1
N | Ff 1111 |7|0|1|{0|1|1j0|0|1j1|1|0|0|2]|1]|1|1
Table.33. Linear Approximation Analysis
3.7.4. Result
No. of LA with BF1 No. of LA with BF2 No. of LA with BF3 No. of LA with BF4
7 4 2 8

Total Number of Existing Linear Approximations: 21.

3.7.5 Pseudo Code with Time Complexity Analysis of the Linear Approximation Analysis Algorithm: The
Nonlinear Part for the given analysis has been termed as NP. The ANF coefficients are illustrated through array anf[16]. IPVs are
termed as Xy, Xp, X3, X4 for IPV1, IPV2, IPV3, IPV4 respectively. The Pseudo Code of algorithm of the above analysis is given
below,

Start.
Step 1. NP = (anf[5].6&x16&x%,) " (anf[6]&x;  &x3)+( anf[7]&x; &x4)+(anf[8] &%,
&x3)+(anf[9]&x, &x4)+(anf[10] &x3 &x4) (anf[11]6&x;4 &X5 &x3)+(anf[l12]&x, &Xo
&x4) +(anf[13]6&x; &x3 &x4) +t(anf[l4d] &x, &xX3 &xy4)+(anf[15]&x; &X, &X3 &Xy4))
Step 2. LP= anf[0] "~ (anf[l].&x;)" (anf[2].&x,)" (anf[3].&x3)" (anfl4].&xy).
Step 3. if (NP==0&& BF (x;X,x3%4) == LP) then Linear equation.

else Nonlinear equation.
Stop.
Time Complexity. Since the analysis contains no loops so the Time complexity of the algorithm has been O(n).
3.7.6. Comparison of Execution time Complexity of Linear Cryptanalysis of 4-bit Crypto S-boxes and Linear
Approximation Analysis of 4-bit S-boxes. The Comparison of time complexity of two algorithms has been given in
Table.34 as follows,

View 4-bit LC 4-bit LA
Time Complexity o(n?) o(n)
Table.34. Time Complexity Comparison of Two Algos.




It can be concluded from the comparison that the Execution time reduces in Linear Approximation Analysis than the Linear
Cryptanalysis of 4-bit Crypto S-boxes. So in can be concluded from above review work that the execution time of 4-bit LA
Algorithm is much less that 4-bit LC Algorithm so 4-bit LA algorithm has been proved to be much better algorithm.

4. S-box Generation. In this section polynomials over Galois Field GF(p?) and roll of IPs to construct substitution
boxes have been reviewed in subsec. 4.1 of section.4. The generation of 4 and 8 bit S-boxes using BCNs have been elaborated in
subsec 4.2 of section 4.. The generation of 4-bit and 8-bit S-boxes with Coefficients of non-binary Galois Field Polynomials has
been depicted in subsec.4.3 of section 4. The cryptographic and security analysis of 32 DES 4-bit S-boxes has been given in
subsec.4.4 of sec.4. Detailed cryptographic and security analysis of generated 10 4-bit crypto S-boxes with discussed crypto
related cryptographic properties and security criterion have also been given in subsec.4.4. of sec.4. Results have been discussed
in Result and Discussion section in subsec.4.5 of sec.4.

4.1. Polynomials over Galois field GF(p® and log , ®** bit S-boxes. In this section the sub section 4.1.1. has been
devoted to a small review of Polynomials. The sub section 4.1.2. has been of utmost importance since in it a four bit crypto or
proper S-box has been defined in brief. At last in sub section 4.1.3. The equation among 2*° Galois field Polynomials and a 4-bit
crypto S-box has been elaborated in details.

4.1.1. Polynomials over Galois field GF(p“). Polynomials over Galois field GF(p%) have been of utmost importance in
cryptographic applications. Polynomials with degree q have been termed as Basic Polynomials over Galois field GF(p%) and
Polynomials with degree less than q have been termed as Elemental Polynomials over Galois field GF(p9). Polynomials with
leading coefficient as 1 have been termed as Monic Polynomials irrespective of BPs and EPs over Galois field GF(p%). An
example, of the said criteria have been described as follows, the Example of Basic Polynomial or BP over Galois field GF(p%) has
been given below,

BP(X) = €0 X + COqq X+ COqg XF 2+ FC0p X2+ €O X F Bt 0)

In equation (i) BP(x) has been represented as Basic Polynomial or BP over Galois field GF(p“) since the highest degree term of
the said polynomial over Galois field GF(p“) has been g. The BP has been called as a Monic BP over Galois field GF(p?) if co, -
1. The number of Terms in a BP over Galois field GF(p") has been (g+1). The number of possible values of a particular
coefficient co, where 0<p<q has been from 0 to p i.e. (p+1). If the value of q has been <q then The polynomial over Galois field
GF(pY) has been termed as Elemental Polynomial or EPs over Galois field GF(p%). If a BP or EP contains only constant term then
the polynomial has been termed as Constant Polynomial or CP over Galois field GF(p%). If a BP over Galois field GF(p%) can be
factored into two non-constant EPs then the BP can be termed as Reducible Polynomials or RPs over Galois field GF(p9). If the
two factor of a BP over Galois field GF(p“) have been the BP itself and a constant Polynomial or CP then The BP have been said
as an Irreducible Polynomial or IP over Galois field GF(p9).

4.12.  4-bit Crypto S-boxes: A 4-bit crypto S-box can be written as Follows, where the each element of the first row of
Table.35, entitled as index, are the position of each element of the S-box within the given S-box and the elements of the 2" row,
entitled as S-box, are the elements of the given Substitution box. It can be concluded that the 1% row is fixed for all possible
crypto S-boxes. The values of each element of the 1% row are distinct, unique and vary between 0 and F. The values of the each
element of the 2™ row of a crypto S-box have also been distinct and unique and also vary between 0 and F. The values of the
elements of the fixed 1% row are sequential and monotonically increasing where for the 2™ row they can be sequential or partly
sequential or non- sequential. Here the given Substitution Box is the 1% 4-bit S-box of the 1% S-box out of 8 of Data Encryption
Standard [AT9O][NT77][NT99].

Row [Column | 1 |2 |3 |4 |5|6|7|8|9|A]|B
1 Index 0O|1|2|3|4|5|6|7|8]9]A
2 S-box E|4|D|1|2|F|B|8|3|A]|EG6

(@]
O
m
T
(@)

w
(@]
O
m
T

Table.35. 4-bit bijective Crypto S-box.

4.1.3 Relation between 4-bit S-boxes and Polynomials over Galois field GF (2*). Index of Each element of a 4-bit
crypto S-box and the element itself is a hexadecimal number and that can be converted into a 4-bit bit sequence. From row 2
through 5 and row 7 through A of each column from 1 through G of Table.36. shows the 4-bit bit sequences of the corresponding
hexadecimal numbers of the index of each element of the given S-box and each element of the S-box itself. Each row from 2
through 5 and 7 through A from column 1 through G constitutes a 16 bit, bit sequence that is a Basic Polynomial or BP over
Galois field GF(2'°). column 1 through G of Row 2 has been termed as 4™ IGFP, Row 3 has been termed as 3" IGFP, Row 4 has
been termed as 2™ IGFP and Row 5 has been termed as IGFP whereas column 1 through G of Row 7 has been termed as 4"
OGFP, Row 8 has been termed as 3™ OGFP, Row 9 has been termed as 2™ OGFP and Row A has been termed as 1% OGFP. The
decimal equivalents of each IGFP and OGFP have been noted at column H of respective rows. Here IGFP stands for Input Galois
Field Polynomial and OGFP stands for Output Galois Field Polynomials. The respective Polynomials have been shown in Row 1
through 8 of column 3 of Table.3.

Row Column 112 |3]|4 A|B|C|D|E|F|G H. Decimal
1 | Index |0]1]2[|3]|4|5|6|7]|8|9|A|B|C|D]|E]|F]| Equivalent

(&)
»
~
o
©




2 IGFP4 [oJoJoJoJoJoJoJoJaJaJaJala]aT1]1 00255
3 IGFP3 |o0]JofoJof1] 1 f1]r]JofoJofJol1]21]1]1 03855
4 IGFP2 oo [1]1Jo]lof1]1fJofolaJ1]oJof1]1 13107
5 IGFP1 JofJ1]oJ1fJol 1 Jo]1Jof1]ofJ1]o]1]o]1 21845
6 | Sbox |E[4]DJ1[2] F|[B|8[3]A]l6]Cc|5]9]0]7
7 OGFP4 [1]oJ1fJoJol 1 JaJ1]oJafJol1]of1]o0]o0 42836
8 OGFP3 [1]1]1fojJol1]ofJofoJof[1]1]1]olo]1 58425
9 OGFP2 [1]oJofJol1] 1 JaJof1]a2[1]o]Jofolo]1 36577
A OGFPL JoJoJ1J1]ol 1 JrJol1]ofJo]oJ1]1]o0]1 13965
Table.36. Input and Output BCNs of the Substitution Box
Col 1 2 3
Row | Index | DCM Eqgv. Polynomials over Galois Field GF(2Y).

1 IGFP4 00255 BP(X) = X :XPHC+x HCHx+x 41,

2 IGFP3 03855 BP(X) = X +xP B+ +x+1.

3 IGFP2 13107 BP(X) = XxB+xP x>+ x x+1.

4 IGFP1 21845 BP(x) = X"+ xPx 033+ x8+x +x3+1.

5 OGFP4 42836 BP(x) = XxP+xE+x P x +xEHxC+x M+ X,

6 OGFP3 58425 BP(x) = X +x +xBx O+ X+ 1.

7 OGFP2 36577 BP(X) = xP+xx O +x +xC+x+1,

8 OGFP1 13965 BP(x) = xB+xP+x 0 +x +xC+x%+1,

Table.37. Respective Polynomials of IGFP4 through IGFP1 and OGFP4 through OGFP1

4.2 4 and 8 bit S-box Generation by respective BCNs over Binary Galois Field GF(2% where q €(15 and 255)
respectively. In this paper 4 and 8 bit identity S-boxes have been taken for example for generation of 4 and 8 bit S-boxes over
binary Galois Fields GF(2%) where q €(15 and 255) respectively. The generation of identity 4-bit S-box from four BCNs over
binary Galois Field GF(2") have been elaborated in sub section 4.2.1 and The generation of identity 8-bit S-box from Eight
BCNSs over Binary Galois Field GF(2%°) have been elaborated in sub section 4.2.2. The Algorithm for generation of log , % bit
S-boxes over Binary Galois Field GF(2%) has been depicted with Time Complexity of the algorithm in sub section 4.2.3.
4.2.1. Generation of 4-bit Identity Crypto S-box from four Polynomials over Binary Galois Field GF(2%®).
The Concerned 4-bit identity S-box has been shown in table.38 where each element of the first row of Table.38, entitled as index,
have been the position of each element of the S-box within the given S-box and the elements of the 2" row, entitled as S-box, are
the elements of the given identity Substitution box. It can be concluded that the 1% row has been fixed for all possible crypto S-
boxes. The values of each element of the 1st row are distinct, unique and vary between 0 and F. The values of the each element of
the 2" row of the identity crypto S-box have also been distinct and unique and also vary between 0 and F. The values of the
elements of the fixed 1% row are sequential and monotonically increasing where for the 2™ row, they are also sequential and
monotonically increasing for this identity S-box. Here the given Substitution Box is the 4-bit identity crypto S-box.

Row [Column | 1 |2 | 3|4 |5|6|7|8|9|A|B|C|D|E|F|G
1 Index 0|1]2)|3|4]|]5]|6|7|8|]9]|A|B|JC|D|E]F
2 S-box 0|]1]2)3|]4]|]5]|]6|]7|8]9]A|B|JC|D|E]F

Table.38. 4-bit Identity Crypto S-box.

Index of Each element of a 4-bit crypto S-box and the element itself is a hexadecimal number and that can be converted into a 4-
bit bit sequence. From row 2 through 5 and row 7 through A of each column from 1 through G of Table.39. shows the 4-bit bit
sequences of the corresponding hexadecimal numbers of the index of each element of the given S-box and each element of the S-
box itself. Each row from 2 through 5 and 7 through A from column 1 through G constitutes a 16 bit, bit sequence that is a Basic
Polynomial over Galois field GF(2'®). column 1 through G of Row 2 has been termed as 4" IGFP, Row 3 has been termed as 3"
IGFP, Row 4 has been termed as 2™ IGFP and Row 5 has been termed as IGFP whereas column 1 through G of Row 7 has been
termed as 4™ OGFP, Row 8 has been termed as 3" OGFP, Row 9 has been termed as 2™ OGFP and Row A has been termed as
1% OGFP. The decimal equivalents of each IGFP and OGFP have been noted at column H of respective rows. Where IGFP stands
for Input Galois Field Polynomials and OGFP stands for Output Galois Field Polynomials. The respective Polynomials have been
shown in Row 1 through 8 of column 3 of Table.40.

Row Column 1(2 (34|65 6 7189 |A|B|C|D|E|F]|G H. Decimal
1 Index 0|12 |3]|4]| 5 6| 7|/8|9|A|B|C|D|E|F Equivalent
2 IBCN4 0|J0|J0]0]O0 0 ojofj1|1|1|1(1(1 |11 00255
3 IBCN3 0|0|]0]|]0]1 1 1({1(0|0|0|0O]|2]|]21]1]|1 03855
4 IBCN2 0O|0|1]|1]0 0 1]1]1(0|0|212|1|0]|0]|1]1 13107
5 IBCN1 0(1]0 1|0 1 0 1|0 1|0 1|0 1101 21845
6 S-box 0|1|2|3]|4]| 5 6| 7|8|9|A|B|C|D|E|F
7 OBCN4 0| 0|0 |O0]O 0 ojofj1|1|1|1(1(1 |11 00255




8 J oBcN3a JoJoJoJoJ1] 1 J1JaJoJoJoJo1Ja1]1]1 03855
9 | oBcN2 |[ofJof1]1fo]lof1]rfofolaf1]oof1]1 13107
A | oBcNL [oJ1fof1Jol1fofaJof1]ofJ1]o]1]o]1 21845
Table.39. Input and Output BCNs of the Identity Substitution Box
Col 1 2 3
Row | Index | DCM Egy. Polynomials over Galois Field GF(2").
1 IGFP4 00255 BP(X) = X -+ HCHx+x 41,
2 IGFP3 03855 BP(x) = X +xP0-x B+ +x+1.
3 IGFP2 13107 BP(X) = XxB+xP x>+ x x+1.
4 IGFP1 21845 BP(X) = XX +xP+x0xE+xC+x x+1.
5 OGFP4 00255 BP(X) = X +X* 3 +x +xC+x2+x+1.
6 OGFP3 03855 BP(x) = X +xP0-x B+ +x1+1.
7 OGFP2 13107 BP(x) = xB+xPZHxEHC+x +x+1.
8 OGFP1 21845 BP(X) = XX +xP+x0xE+xBx x+1.

Table.40. Respective Polynomials of IGFP4 through IGFP1 and OGFP4 through OGFP1
4.2.2 Generation of 8-bit Identity Crypto S-box from Eight Polynomials over Binary Galois Field GF(2%®).
The concerned 8-bit identity S-box has been shown in table.41 where each element of the first row of Table.41, entitled as index,
are the position of each element of the S-box within the given S-box and the elements of the column 1 through G of 2™ to 17
row, entitled as S-box, have been the elements of the given 8-bit identity Substitution box sequentially. It can be concluded that
the 1% row is fixed for all possible 8-bit bijective crypto S-boxes. The values of each element of the 1st row are distinct, unique
and vary between 0 and F. The values of the each element of the column 1 through G of 2™ row to 17" row of the 8-bit identity
crypto S-box are also distinct and unique and vary between 0 and 256. The values of the elements of the fixed 1% row are
sequential and monotonically increasing where for the 2" to 17" row, they can be sequential or partly sequential or non-
sequential and for this case elements are sequential and monotonically increasing. Here the given substitution box has been the 8-
bit identity crypto S-box.

Row | Column 1 2 3 4 5 6 7 8 9 A B C D E F G
1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F
2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
4 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
5 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | 63.
6 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79
7 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95
8 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111
9 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127
10 S-box 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143
11 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159
12 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175
13 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191
14 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207
15 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223
16 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239
17 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255

Table.41. 8-bit identity crypto S-box.

Index of Each element of an 8-bit crypto S-box and the element itself is a hexadecimal number and that can be converted into a
256-bit long 8 bit bit sequence. From row 2 through 9 and row A through H of column 2 of Table.42. shows the 8-bit bit
sequences of the corresponding hexadecimal numbers of the index of each element of the given S-box and each element of the S-
box itself. Each row from 2 through 9 and A through H of column 2 constitutes a 256 bit, bit sequence that is a Basic Polynomial
over Galois field GF(22%%). column 2 of Row 2 has been termed as 8" IGFP, Row 3 has been termed as 7" IGFP, Row 4 has been
termed as 6™ IGFP ,Row 5 has been termed as 5" IGFP, Row 6 has been termed as 4™ IGFP, Row 7 has been termed as 3" IGFP,
Row 8 has been termed as 2™ IGFP and Row 9 has been termed as 1% IGFP whereas column 2 of Row A has been termed as 8"
OGFP, Row B has been termed as 7" OGFP, Row C has been termed as 6" OGFP, Row D has been termed as 5™ OGFP, Row E
has been termed as 4™ OGFP, Row F has been termed as 3™ OGFP, Row G has been termed as 2™ OGFP and Row H has been
termed as 1% IGFP. The Binary Coefficient Number of each IGFP and OGFP from MSB [256™ bit] to LSB [0™ bit] have been
given in corresponding rows of each IGFP and OGFP. Where IGFP stands for Input Galois Field Polynomials and OGFP for
Output Galois Field Polynomials. The respective polynomial for IGFP8 and OGFP8 has been shown in Table.43
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Row Col.

1 1

2 IGFP8
3 IGFP 7
4 IGFP 6
5 IGFP 5
6 IGFP 4
7 IGFP 3
8 IGFP 2
9 IGFP 1
A OGFP8
B OGFP 7
C OGFP 6
D OGFP 5
E OGFP 4
F | OGFP3
G OGFP 2
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0011001100110011001100110011001100110011001100110011001100110011
0011001100110011001100110011001100110011001100110011001100110011
0011001100110011001100110011001100110011001100110011001100110011
0101010101010101010101010101010101010101010101010101010101010101
0101010101010101010101010101010101010101010101010101010101010101
0101010101010101010101010101010101010101010101010101010101010101
0101010101010101010101010101010101010101010101010101010101010101
Table.42. BCNs for 8 IGFPs and OGFPs.

H OGFP 1

BCNs of Polynomial
X127+ X126+ X125+ )(124+ )(123+ )(122+ X121+ X120+ X119+ X118+ X117+ X116+ X115+ X114+ X113+ X112+
X111+ X110+ X109+ X108+ X107+ X106+ )(105+ X104+ X103+ )(102+ X101+ XlOO+ X99+ X98+ X97+ X96+

X95+ X94+ X93+ X92+ X91+ X90+ X89+ X88+ X87+ X86+ X85+ X84+ X83+ X82+ X81+ X80+

X79+ X78+ X77+ X76+ X75+ X74+ X73+ X72+ X71+ X70+ X69+ X68+ X67+ X66+ X65+ X64+

X63+ X62+ X61+ X60+ X59+ X58+ X57+ X56+ X55+ X54+ X53+ X52+ X51+ X50+ X49+ X48+

X47+ X46+ X45+ X44+ X43+ X42+ X41+ X40+ X39+ X38+ X37+ X36+ X35+ X34+ X33+ X32+

X31+ X30+ X29+ X28+ X27+ X26+ X25+ X24+ X23+ X22+ X21+ X20+ X19+ X18+ Xl7+ X16+

X15+X14+ X13+ X12+ X11+X10+ X9+ X8+X7+ X6+ X5+ X4+X3+X2+ X+ 1.
Table.43. Respective Polynomial of IGFP8 and OGFP8 of the Given 8 bit S-box.

4.2.3 Algorithm to generate S-box from Polynomials over Galois field GF(2%%) or GF(2%%).
START.
Step OA. Choose 4 Galois field Polynomials over Galois field GF(2'°) or 8 Galois field Polynomials over Galois field GF(2%%%).
Step.01. If Number of Terms in BCNs are Half of Number of total terms Then Step 02. Else Step 0A.
Step.02. Convert to decimal the 4 or 8 bit binary number generated by bits in same position of 4 BCNs for Galois field
Polynomials over Galois field GF(2'®) or 8 Galois field Polynomials over Galois field GF(22%%).
STOP.
Time Complexity of the given Algorithm. O(n).

IGFP8 &OGFP8

4.3. 4 and 8 bit S-box Generation by respective BCNs over Non Binary Galois Field GF(16°) and Galois Field GF(256%°)
respectively. The coefficients of each polynomial over non binary Galois Field GF(16°) forms a 4-bit S-box. The Coefficient of
highest or lowest degree term must be the 1 element in 4-bit S-box, the value of other elements are the value of coefficients with
immediate degree less than or greater than the previous one. Let The Polynomial be,

BP(X) = Ox+1x*+2x 3 +3x 2 +4x 45X 0+6x 7+ 7x3+8x +9x3+10x°+ 11X +12x3+13x%+ 14x+15.............. (ii)
For the above Polynomial The Constituted 4-bit S-box have been given in Table 44.

Row | Column | 1 213|4|5|6|7|8|]9|A|B|C|D|E|JF|G
1 Index 0 112|3|4|5|6|7|8|]9|A|B|C|DJE|F
2 S-box 0 112|3|4|5|6|7|8|9|A|B|C|DJ|E/|F
Table.44. constituted 4-bit Crypto S-box.
The Polynomial with coefficients in reverse order,
BP(x) = 15x"5+14xM+13x 3 +12x 2+ 11x 410X 2 +9x°+8x3+7 X +6 X5 +5X5+AX +3x3+2x%+1x+0................ (iii)
For the above Polynomial The Constituted 4-bit S-box have been given in Table 45.
Row | Column | 1 2 314|5|6|7|8|]9|A|B|C|D|E|F|G
1 Index 0 1 2 3/14]|]5|6|]7]|8]9]A|B|C|DJ]E]|F
2 S-box 15114113 (1211|109 |8 ] 7|6 514132110

Table.45. constituted 4-bit Crypto S-box.

The coefficients of each polynomial over non binary Galois Field GF(256%%%) forms an 8-bit S-box. The Coefficient of highest or
lowest degree term must be the 1% element in 4-bit S-box, the value of other elements are the value of coefficients with
immediate degree less than or greater than the previous one. Let The Polynomial be, Let the Polynomial be given in Table.46.,

Polynomial BP(x) =

0.X255+ l.X254+ 2.X253+ 3.X252+ 4.X251+ 5.X250+ 6.X249+ 7.X248+ 8.X247+ 9.X246+ 10.X245+ 11.X244+ 12.X243+ 13.X242+ 14.X241+ 15.X240+16.X239+
17.x%8+ 18. X%+ 19.x7%+ 20.x%5+ 21.x%%+ 2273+ 23.x%2+ 247+ 25.x%0+ 26.x7%%+ 27.x%%8+ 28x%2T+ 29.x%%5+ 30.x°%+ 31.x%%4+32.
X224 33, X%+ 347+ 3520+ 36.x%%%+ 37.x%%8+ 38.x%Y7+30. xP6+40. x¥5+ 41.x%+ 42X+ 43724+ 44.°+ 4570+ 46.x%%%+
47 x2%+48 X2+ 49.x%%+ 50.x°%+ 51.x%%+ 5225+ 53.x%%+ 54.x%+ 55.x%%+ 56.x %%+ 57.x'%+ 5819+ 59.xM%+ 60.x1%+ 61.x1%+
62.x'%%+ 6312+ 64.x"+ 65.x10+ 66.x1+ 67.x1%+68.x18+ 69.x180+ 70.xM+ 71.x¥4+ 72.x¥8+ 73 x1%2+ 74 x84+ 75180+ 76.x1 70+
7778+ 78.xM 7+ 79.x176+80. X%+ 81.x4+ 82.xM 3+ 83.x12+84. x' '+ 85.xM%+ 86.x1%%+ 87.x1%%+88. X7+ 89.x1%6+ 90.x %5+ 91.x™4+




92.x™%%+ 93.x%2+ 94 .1+ 95.x1%0+96 X%+ 97 x™+ 98.x1°"+ 99.x%%+ 100.x™°+ 101.x™*+ 102.x7%+ 103.x™%+ 104.x3°1+105.x0+106.x**+
107.x18+108. x*7+109.x16+110. x5+ 111.xM4+112.XM3+113.x12+114. x4 +115.x0+116.x*%+117. x**¥+118. x'¥7+119. x!%¥+120.
x1+121 x1¥4+122 x123+123 x132+124 x1¥1+125 104126 x12°+127 x18+128 x127+129. x'?%+ 130.x1+131.x1%*+ 132.x13+133.x122+134 x1+
135.x1%%+ 136.xM%+ 137.xM8+ 1387+ 139.xM0+ 1405+ 141.xM4+ 142.x3+ 143 xM2+144 x4+ 145 xM0+ 146.x1%°+ 147 x1%8+
148 x197+ 149 x1%+ 150.x1%5+ 151.x1%+ 152.x1%+ 153 x192+ 154 x1%%+ 155.x1%0+ 156.x%+ 157.x%+ 158.x%+ 159.x%+160.x%°+ 161.x%+
162.x%3+ 163.x%+ 164.x°+ 165.x%%+ 166.x%%+ 167.x%8+ 168.x%7+ 169.x%+ 170.x35+ 171.x%+ 172.x8+ 173.x%2%+ 174.x%+ 175.x8°+176. X%+
177.x78+ 178X+ 179.x%+ 180.x"%+ 181.x™*+ 182.x"°+ 183.x"%+ 184.x"'+ 185.x"%+ 186.x°+ 187.x%+ 188.x8"+ 189.x%+ 190.x%+
191 x%4+192.x%3+193. x%+ 194.x5%+ 195.x%+ 196.x3°+ 197.x%8+ 198.x°"+ 199.x%6+ 200.x%+ 201.x%+ 202.x%3+ 203.x%%+ 204.x5 + 205.x%+
206.x%%+ 207.x*+208.x*7+ 209.x%+ 210.x%+ 211.x*%+ 212.x*3+ 213 x*%+ 214.x*+ 215.x*%+ 216.x%+ 217.x%¥+ 218.x37+219.x%8+ 220.x%+
221 X%+ 222 X33+ 223.x32+224 X3+ 22530+ 226.x%%+ 227 x28+ 228 X%+ 229.x%%+ 230.x%+ 231.x%*+ 232.x%%+ 233.x%%+ 234.x°%+ 235.x%+
236.x39+ 237.x18+ 238.x17+ 239.x18+240.x15+ 241.xM+242. X3+ 243.x12+ 244X+ 2450+ 246 x°+ 247 X8+ 248.x"+ 249.x°+ 250.x%+
251.x*+ 252 x3+ 253 x%+ 254x+ 255,

Table.46. Polynomial to Construct 8-bit Identity S-box.
For the above Polynomial The Constituted 8-bit S-box have been given in Table 47.

Row | Column 1 2 3 4 5 6 7 8 9 A B Cc D E F G
1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F
2 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
3 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31
4 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47
5 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63.
6 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79
7 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95
8 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111
9 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127
10 S-box 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143
11 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159
12 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175
13 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191
14 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207
15 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223
16 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239
17 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255

Table.47. Constituted Identity 8-bit S-box.

Note. The 32-bit S-boxes can be constituted by polynomials over Galois field GF[(2%2)©2] and the 64-bit S-boxes can be

constituted by polynomials over Galois field GF[(254)?"641),

4.4. Cryptographic analysis of 32 DES 4-bit S-boxes and 10 better 4-bit S-boxes with relevant cryptographic
properties of 4-bit crypto S-boxes. In subsec.4.4.1.the cryptographic analysis procedures of the said cryptographic
properties have been described. The cryptographic analysis of 32 DES 4-bit S-boxes has been evaluated in subsec.4.4.2.
cryptographic analysis of 10 generated better S-boxes has been described in subsec.4.4.3

4.4.1.  Analysis Procedure. For SAC, HO-SAC and Extended SAC of 4-bit S-boxes as the numbers of satisfied COPBFs

have been increased it will give better security and optimum value gives at most security.

In Difference Distribution Table there have been 256 cells, i.e. 16 rows and 16 columns. Each row has been for each
input difference varies from 0 to F. Each column in each row represents each output difference varies from 0 to F for each input
difference. 0 in any cell indicates absence of that output difference for subsequent input difference. Such as 0 in 2™ cell of
Table.7.b of relevant DDT means for input difference 0 the corresponding output difference o has been absent. If number of 0 is
too low or too high it supplies more information regarding concerned output difference. So an S-box is said to be immune to this
cryptanalytic attack if number of 0s in DDT is close to 128 or half of total cells or 256. In the said example of 1% DES 4-bit S-box
total numbers of Os in DDT are 168. That is close to 128. So the S-box has been said to be almost secure from this attack.

As total number of balanced 4-bit BFs increases in Difference Analysis Table or DAT the security of S-box increases
since balanced 4-bit BFs supplies at most uncertainty. Since Number of Os and 1s in balanced 4-bit BFs are equal i.e. they are
same in number means determination of each bit has been at most uncertainty. In the said example of 1% DES 4-bit S-
box total numbers of 8s in DAT are 36. That is close to 32 half of total 64 cells. So the S-box has been said to be almost less
secure from this attack.

In Linear Analysis Table or LAT there are 256 cells for 256 possible 4-bit linear relations. The count of 16 4-bit binary
conditions to satisfy for any given linear relation has been put into the concerned cell. 8 in a cell indicate that the particular linear
relation has been satisfied for 8 4-bit binary conditions and remain unsatisfied for 8, 4-bit binary conditions. That is at most
uncertainty. In the said example of 1% DES 4-bit S-box total numbers of 8s in LAT have been 143. That is close to 128. So the S-
box has been said to be less secure from this attack.

The value of "C, has been maximum when the value of r is % of the value of n (when n is even). Here the maximum
number of linear approximations is 64. So if the total satisfaction of linear equation is 32 out of 64 then the number of possible




sets of 32 linear equations has been the largest. Means if the total satisfaction is 32 out of 64 then the number of possible sets of
32 possible linear equations is ®*Cj, That is maximum number of possible sets of linear equations. If the value of total No of
Linear Approximations is closed to 32 then it is more cryptanalysis immune. Since the number of possible sets of linear equations
are too large to calculate. As the value goes close to 0 or 64 it reduces the sets of possible linear equations to search, that reduces
the effort to search for the linear equations present in a particular 4-bit S-box. In this example total satisfaction is 21 out of 64.
Which means the given 4-bit S-Box is not a good 4 bit S-Box or not a good Crypt analytically immune S-Box.
If the values of total number of Existing Linear equations for a 4-bit S-Box are 24 to 32, then the lowest numbers of

sets of linear equations are 250649105469666120. This is a very large number to investigate. So the 4-bit S-Box is declared as a
good 4-bit S-Box or 4-bit S-Box with good security. If it is between 16 through 23 then the lowest numbers of sets of linear
equations are 488526937079580. This not a small number to investigate in today’s computing scenario so the S-boxes are
declared as medium S-Box or S-Box with medium security. The 4-bit S-Boxes having existing linear equations less than 16 are
declared as Poor 4-bit S-Box or vulnerable to cryptanalytic attack.
4.4.2. Cryptographic analysis of 32 DES 4-bit S-boxes. The cryptographic analysis of 32 DES 4-bit S-boxes with the
said relevant cryptographic properties of 4-bit BFs has been given below in table.48. Here in table 48. column heading ‘noelr
gives numbers of existing linear relations in a particular 4-bit crypto S-box. Column heading ‘nobal’ gives numbers of balanced
DBFs in linear cryptanalysis. ‘n0dif” gives numbers of Os in difference distribution table or DDT and ‘nodif* gives numbers of 8s
in DAT. 'nosac’ gives numbers of COPBFs satisfy SAC of 4-bit BFs and ‘n3sac’,’n3sac’ and ‘nalsac’ gives numbers of COPBFs
satisfy 2" order SAC of 4-bit BFs, 3" order SAC of 4-bit BFs and Extended SAC of 4-bit BFs respectively.

S-box noelr | nobal | nOdif | nodif | nosac | n2sac | n3sac | nalsac
e4d12fb83a6¢5907 | 21 143 168 36 15 11 36
0f74e2d1a6ch9538 | 29 143 168 36 17 9 36
41e8d62bfc973a50 | 23 138 168 36 15 11 36
fc8249175b3eal6d | 25 154 166 42 20 12 42

f18e6b34972dc05a | 24 132 162 30 12 9 30
3d47f28ec01a69b5 | 21 143 166 30 12 7 30
Oe7ba4d158c6932f | 31 143 166 21 10 6 21
d8a13f42b67c05e9 | 20 126 168 36 12 12 36
a09e63f51dc7h428 | 17 133 162 30 12 8 30
d709346a285echfl | 22 133 168 30 13 8 30
d6498f30b12c5ae7 | 23 151 166 21 9 4 21

1ad069874fe3b52c | 28 158 174 30
7de3069a1285bcaf | 22 136 168 36
d8b56f03472clae9 | 22 136 168 36
a690ch7df13e5284 | 20 136 168 36
3f06a1d8945bc72e | 22 136 168 36

11 10 30
16 10 36
16 10 36
16 10 36
16 10 36

2c417ab6853fd0e9 | 25 137 162 30 14 8 30
eb2c47d150fa3986 | 20 143 166 36 16 9 36
421bad78f9c5630e | 30 130 160 27 11 7 27
b8c71e2d6f09a453 | 21 134 166 18 7 6 18

c1af92680d34e75b | 30 141 159 36
af427c9561de0b38 | 29 127 164 36

16 10 36
15 11 36

030'1QOOJOOJ\l\ICDU'I\lOJ(A)CDOJCDOJOJOJOOO’)O’)\I\IOO#OOO’)BOO\I\I

9ef528c3704aldh6 | 24 127 168 18 7 5 18
432c95fabel7608d | 24 130 162 30 12 9 30
4b2ef08d3c975a61 | 26 134 168 30 13 8 30
d0b7491ae35c2f86 | 27 145 166 30 14 7 30
14bdc37eaf680592 | 28 137 168 36 16 10 36
6bd814a7950fe23c | 25 135 173 0 0 0 0
d2846fb1a93e50c7 | 23 144 161 30 14 7 30
1fd8a374c56b0e92 | 20 147 174 27 12 4 27
7b419ce206adf358 | 27 132 166 18 7 5 18
21e74a8dfc90356b | 28 138 168 39 16 12 39

Table.48. Cryptographic analysis of 32 DES S-boxes.

4.4.3. Cryptographic analysis of 10 generated better 4-bit S-boxes. The cryptographic analysis of 10 generated better
4-bit S-boxes with the said relevant cryptographic properties of 4-bit BFs has been given below in table.49. Here in table 49.
column heading ‘noelr gives numbers of existing linear relations in a particular 4-bit crypto S-box. Column heading ‘nobal’ gives
numbers of balanced DBFs in linear cryptanalysis. ‘n0dif” gives numbers of Os in difference distribution table or DDT and
‘nodif” gives numbers of 8s in DAT. 'nosac’ gives numbers of COPBFs satisfy SAC of 4-bit BFs and ‘n3sac’,’n3sac’ and ‘nalsac’
gives numbers of COPBFs satisfy 2™ order SAC of 4-bit BFs, 3" order SAC of 4-bit BFs and Extended SAC of 4-bit BFs
respectively.



S-box noelr | nobal | nOdif | nodif | nosac | n2sac | n3sac | nalsac
01235h8694ca7def 33 162 189 39 16 7 16 39
01235h86a4f97edc 33 200 206 45 16 13 16 45
10324a967b8fced5 27 156 175 39 16 11 8 39
103268957abcfde4 31 147 167 42 16 12 11 42
0132c5794a86fbed 26 164 189 39 16 7 16 39
1032c5684a97ebfd 28 162 189 39 16 7 16 39
1032¢c56879a4dbfe 27 196 206 39 16 7 16 39
1023c46a5b87e9fd 35 148 182 42 16 9 16 42
0123c7495b86eadf 23 149 170 42 16 11 13 42
103249adc65be87f 30 134 166 39 16 8 13 39

Table.49. cryptographic analysis of 10 generated Better 4-bit S-boxes

4.5. Results and Discussion. In table.49. out of 32 DES S-boxes 1 have 17, 3 have 21, 4 have 22, 1 have 23, 3 have 24, 3
have 25, 1 have 26, 2 have 27, 3 have 28, 2 have 29, 2 have 30 and 1 have 31 Existing Linear Relations i.e. 24 S-boxes out of 32
have been less secure from this attack and 8 out of 32 have been immune to this attack. Again out of 32 DES S-boxes 1 have 126,
2 have 127, 2 have 130, 1 have 132, 2 have 133, 2 have 134, 1 have 135, 4 have 136, 2 have 137, 2 have 138, 1 have 141, 5 have
143, 1 have 144, 1 have 145, 1 have 147, 1 have 151, 1 have 154 and 1 have 158 8s in LAT. That is All S-boxes are less immune
to this attack. Again out of 32 DES S-boxes 1 have 159, 1 have 160, 1 have 161, 4 have 162, 1 have 164, 8 have 166, 13 have
168, 1 have 173 and 2 have 174 0s in DDT. That is all S-boxes have been secured from this attack. At last out of 32 DES S-boxes
1 have 0, 3 have 18, 2 have 21, 2 have 27, 10 have 30, 12 have 36, 1 have 39 and 1 have 42 8s in DAT i.e. they have been less
secure to this attack. The comparative analysis has proved that Linear Approximation analysis has been the most time efficient
cryptanalytic algorithm for 4-bit S-boxes. In ‘nosac’ the lowest value is 0 and maximum value is 10 where in ‘n2sac’, ‘n3sac’ and
‘nalsac’ lowest values are 0, 0, 0 and maximum values are 16, 12 and 39 respectively. But numbers of optimum as well as better
result i.e. 16 for ‘nosac’ is absent, close to 24 for ‘n2sac’, close to 16 for ‘n3sac’ and close to 64 for ‘nalsac’ has been very less in
numbers. So the 32 DES 4-bit S-boxes has been observed to be less secure.

But in table.49. out of 10 generated better 4-bit S-boxes range of ‘noelr’ has been 27 to 33 so it can be concluded that
these S-boxes have been more immune to this attack. Now range of ‘nobal’ has been 134 to 200 i.e. very secure to linear
cryptanalysis since number of 8s in LAT is very large in number. Again range of ‘n0dif* has been 166 to 206 i.e. the result is very
similar to 32 DES 4-bit S-boxes. Now All 10 4-bit S-boxes ‘nosac’ have been 16. i.e. they satisfy SAC of 4-bit S-boxes. Again
the ranges of ‘n2sac’, ‘n3sac’, ‘nalsac’ have been 7 to 13, 13 to 16 and 39 to 45 respectively. I.e. most of them satisfies 3" order
SAC of 4-bit S-boxes and for 2™ order SAC of 4-bit S-boxes the results have been very similar to DES 4-bit S-boxes. In case of
‘nalsac’ or Extended SAC the results are better than DES 32 4-bit S-boxes.

Now it is to be noted that all non-crypto S-boxes and 16! Crypto S-boxes can be generated by these two procedures by
IPs over Galois field GF(pY). The crypto S-boxes have then be chosen through the analysis of relevant cryptographic properties of
4-bit S-boxes. The procedure is same for 8, 16, 32 and 64 bit S-boxes. The generated 8, 16, 32 or 64 bit S-boxes can be chosen
like the way the way the 4-bit S-boxes have been chosen in this paper.

5. Conclusion. From results and discussion it can be concluded that generated and analyzed 4-bit S-boxes are better S-boxes
than the 32 4-bit DES S-boxes. All algorithms of cryptographic properties and S-box generation have been given in the paper.
The review and algorithms have been presented in a very lucid manner in the paper for convenient understanding of readers. The
generation of 4-bit and 8-bit S-boxes has been very easy and lucid and the chosen generated 4-bit S-boxes can be claimed to be
the best 4-bit and 8-bit S-boxes.
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