
Another Look at Relay & Distance-based Attacks in
Contactless Payments

Ioana Boureanu and Anda Anda

University of Surrey
i.boureanu@surrey.ac.uk, da00448@surrey.ac.uk

Abstract. Relay attacks on contactless e-payments were demonstrated in 2015. Since, counter-
measures have been proposed and Mastercard has recently adopted a variant of these in their
specifications. These relay-counteractions are based on the payment-terminal checking that the
card is close-by. To this end, several other EMV-adaptations have emerged, with the aim to
impede dishonest cards cheating on their proximity-proofs. However, we argue that both the
former and the latter measures are ineffective.
We only sketch possible designs in the right directions, with the idea to pass on the message

that these problems should be look at much more carefully.
We shortly debate what should and should not be the case w.r.t. confirmation of EMV contactless
payments.
We also discuss alternative views onto making contactless payments secure against relay-attacks
via proximity-checking.

1 Introduction

Relay Attacks. Relaying between two legitimate parties A and B is an attack whereby a
man-in-the-middle C simply sends A’s messages to B and/or B’s messages to A, unbeknown
to them. In so doing, C aims to get a privilege that was meant for A or for B. I.e., C could
fraudulently spend A’s funds at a contactless terminal represenedted B. Indeed, the EMV
(Europay, Mastercard and Visa) payment protocols, in their contactless version, are prone to
relay attacks [7].
Proximity Threat-model. Imposing an upper-bound on the round-trip times (RTTs) of
message-exchanges is a known, physical-layer mechanism [5] for effectively lowering the prob-
ability of successful relay attacks. This mechanism is often referred to as distance-bounding
(DB) or sometimes proximity-checking. But, DB comes with its own threat-model, which we
summarise next. In a distance-fraud (DF) attack, a far-away malicious card aims to forge
his proximity proof; traditionally, this was intended to be such that the dishonest far-away
prover acts on his own in this attack. Instead of having the DF attacker mount the at-
tack without exploiting on any other entity, one can imagine an augmentation of DF called
distance-hijacking [8]. In distance-hijacking (DH), a far-away malicious prover P ∗ takes ad-
vantage of on honest close-by prover to mount P ∗’s false proximity-proof. In terrorist fraud
(TF), to make the verifier accept, a far-away malicious card P ∗ colludes with a malicious
man-in-the-middle (MiM) A, positioned close to the reader, but in such a way that A fraud-
ulently authenticates as the card P once yet P ∗ does not favour future, individual attempts
by A to authenticate as P ∗ . Generalisations of these DB-threats exist (see [3]).

This Document. Herein, (1). we will describe how contactless EMV was enhanced with a
proximity-checking dimension into a protocol called PaySafe, to protect against relaying; (2).
we will explain that this may be unsuccessful despite formal claims to the contrary; (3). linked
to the latter, we will discuss the somewhat philosophical aspect of what “proximity-checking”



and “payment authorisation” does and/or should really mean in contactless EMV; (4). we
will describe how PaySafe was further enhanced to protect against DB-attacks; (5). we will
show that the latter EMV-enhancement was also unsuccessful in reaching its goals despite
formal claims to the contrary; (6). we will give a direction towards remedies to point (2)
and (5) above; (7). we will discuss, at high level, some security-alternatives for relay-resilient
contactless EMV.

2 Relaying in EMV & Countermeasures

There are two main flavours of the contactless EMV protocol: PayWave and PayPass, by
Mastercard and Visa respectively [9]. Herein, it suffices that we explain just the transactions
between the card and the terminal in PayWave, given in Fig. 1.

Fig. 1: Visa’s PayWave qVSDC Protocol (as from [9])

The card includes: a private key PrivC ; a symmetric key KM that it shares with the
bank; a certificate CertPrivCA

(PubB) on the bank’s public key PubB signed by a certificate-
authority CA; a certificate signed by the bank CertPrivB(PubC , SSAD) on the card’s public
key PubC and on a hash on the card’s static-data which is called SSAD and includes e.g. the
number on the card (PAN) and the expiry date. The reader has the public key PubCA of the
certificate-authority CA, so it can extract PubB out of CertPrivCA

(PubB), and then use PubB
to extract the card’s public key PubC and its static details out of CertPrivB(PubC , SSAD).



The reader initiates the communication, and, in the 2nd message, the card sends the list of
payment-application identities (AIDs) that it supports. Upon the reader having selected one,
the card sends the PDOL (Processing Options Data Object List); this is information enabling
the reader to send the right instructions latter on. The reader generates a 32-bit nonce UN . It
then sends the GPO (GET PROCESSING OPTIONS) command, which we can conceptually
equate to “here is my nonce UN , you need to pay amount x in currency y”. Then, the card
first generates a 32-bit nonce nC , then it generates a session key KS as the encryption of
its application transaction counter (ATC) under KM . The card is supposed to generate a
“cryptogram” (a.k.a. AC), which the reader can send to the bank to signal a due payment;
the cryptogram AC is a MAC keyed under KS of a series of data including the ATC, the
nonce UN, and the amount. The card also produces the “Signed Dynamic Application Data
(SDAD)”: the card’s signature on a message including UN, amount, currency, ATC, nC , etc.
Finally, in the 6th message in our figure, the card sends the cryptogram AC, the SDAD, as
well as the ATC, the PAN and the AFL (i.e., location of the records on the card) to the
reader. Thereafter, by using AFL, the reader is able to request the certificates. The reader
uses them to the check the signature SDAD and the consistency of the sub-messages inside
(e.g., UN, amount, etc.)

In [7], Chothia et al. showed an effective relay attack against PayPass and PayWave. As
such, they suggested a thuswise improved version of contactless EMV called PaySafe (see
Fig. 2). The main idea is that the reader check the proximity of the card to the reader, in
a timed challenge-response phase. So, the PayWave GPO challenge-response is split in two:
in a first instance, the card responds with the static data plus its nonce is sent, and then
the card generates the cryptogram, the SDAD and sends these. The round-trip time of the
first part of this is measured by the reader and if it is larger than an established bound, the
card is deemed to be afar (hence, relaying being likely) and the protocol is terminated. As
Fig. 2 shows, there is little other change from e.g. PayWave to PaySafe. (The generation of
the nonce nc being done earlier in PaySafe than in PayWave etc. is mainly down to achieving
accurate time-measurements in the timed challenge-response round.)

In [7], the PaySafe protocol was formally verified using ProVerif [1] and shown cor-
rect/secure w.r.t. relay attacks. Mastercard appears to have adopted a relay-counteraction
measure in its new, but not public, v3.1specifications for EMV [11]; this relay-countermeasure
appears to equate to PaySafe1. But, as we explain below, we find that PaySafe is not secure
against all types of relaying; so, if Mastercard indeed deploys its current PaySafe-like relay-
counteraction as is, then this may not be sufficient relay-protection on their new e-payment,
contactless systems.

3 Possibly Failing Relay-Counteraction in EMV

The Question of Payment-Authorisation in Contactless EMV. One question is when
the respective authorisations of the payment from the card’s and the card-holder’s viewpoints
do actually take place in contactless EMV.

The first argument to make is that perhaps the point when the payment-authorisation is
given from a card-holder’s perspective is when this card-holder brings the card in the range

1 The EMV specifications by Mastercard v3.1 are not publicly available. Details of the relay-protection herein
were conveyed to the authors by 3rd parties. As such, the attacks and discussions herein refer primar-
ily/directly to PaySafe [7] and not to these EMV specifications.



Relay Cost Bounding for Contactless EMV Payments 9

Fig. 4 The protocol PaySafe which defends against simple relay attacks

Reader Card

KM , PrivC
CertPrivCA(PubB)
CertPrivB(PubC, SSAD)
SSAD = H(PAN, exDate, . . . )

PubCA

SELECT 2PAY.SYS.DDF01

AID1,AID2,. . .

SELECT PaySafe AID

nC ∈R {0, 1}32

PDOL

UN ∈R {0, 1}32

GPO (UN,amount)

timed AIP,AFL,ATC,nC

GENERATE AC

KS = EncKM
(ATC)

AC = MACKs (amount,ATC,
UN,. . . )
SDAD = SignPrivC(nC ,
UN,AC,. . . )

SDAD,AC

READ RECORD

CertPrivCA(PubB)

READ RECORD

CertP rivB(PubC)

is selected, and before the card sends its request for data to the reader (the PDOL)
the card will generates a nonce. This nonce is not sent to the reader at this point but
just stored on the card.

The next step is a timed GPO command, that gives the card the data it needs
and the reader’s nonce. The card will immediately reply to this message with the
stored nonce. As this does not require any computation the card will reply quickly
and without much variance in the time taken. If this message was relayed, additional
overhead would be introduced by the network communication between the phones
and the communication between a phone and the genuine terminal. The exact timing
will depend on the hardware used; with our hardware the reply to the PayPass GPO
message took 36ms and the PaySafe message is slightly longer. Therefore, we would
suggest a time out of 80ms, as being long enough to make sure all cards are accepted,
but still quick enough to make sure the message cannot be relayed using NFC phones.

To get the cryptogram and Signed Dynamic Application Data (SDAD) from the
card, the reader issues the GENERATE AC command. The card then computes the

Fig. 2: The PaySafe Protocol [7]

of the reader. But, note that a card can be brought in the range of the reader without the
knowledge/realisation of the card-holder. Nonetheless, everyone arguably wishes to maintain
the contactless nature for this version of EMV, i.e., that the card-holder not be asked for any
input.

As such, the second argument is precisely from the card’s perspective (and not the card-
holder’s), or rather from the viewpoint of the protocol-design. And, the case that can be made
here is that there should be some explicit, clear point in the actual EMV-contactless protocol
specification when the paying-card gives “technical authorisation” that the payment should
be taken by the card (that is, w.r.t. the protocol steps undertaken in the card-side of the
EMV protocol). By “technical authorisation”, we mean the point of no-return, with respect
to the payment being taken. An appropriate point of this type is not easy to find, since there
is no physical input from the card. Note that this point could be indeed the moment when
the card is brought in the range of the reader, but –in the way of proximity being actually
checked– then it makes sense that this point be later on in the protocol, once the proximity
was indeed checked. To this end, we do note that [9] states that “as in EMV Contact, [...] the
interaction with the card is completed after the card returns a cryptogram”; this is stated in
the EMV standard as well. So, one can take the view that the “technical authorisation” of the
paying-card to release the funds is made as the card sends the cryptogram.

However, we note that in PaySafe, there is no guarantee that the card is in the reader’s
proximity when the card actually emits the payment (i.e., when it sends SDAD, AC). The



PaySafe protocol technically ensures only that a card is (likely to be) in the proximity of
the reader just as the latter sends the GPO request, i.e., as the “first request for payment is
made”. Because of the fact that the proximity-checking is present only before the AC (i.e, the
cryptogram) is sent over by the card, a relay attack resulting in a fraudulent payment is still
possible, as we detail below.

Our Relay & Payment-Fraud in PaySafe. Let us describe a scenario of such a fund-
stealing, relay attack against someone’s whose EMV-capable card runs PaySafe. At a busy
time, in a supermarket, the attacker and his accomplice are queueing to pay at a payment-
terminal T1. The victim is also waiting to pay, on the immediately neighbouring conveyor
belt, at a different terminal. The accomplice pretends to wish to pick up some carrier bag
from a stand adjacent to the victim’s line; in so doing, the accomplice makes the victim move
slightly such that the victim comes for a short period much closer to the terminal T1, on
the attacker’s line. For the PaySafe protocol between the victim and any reader to initiate,
the distance between these two needs to be of 10cm of less. Some adversarial amplification
equipment should be in place close to the reader T1, such that the actual distance between
the victim and the reader T1 can still remain larger than 10cm, yet the protocol between the
victim and the reader T1 would still initiate. In this way, the victim’s contactless card starts
running the protocol with the reader T1, including the timed round such that this round fall
within the time-bounds. Then, the victim moves back further away from the reader T1, e.g.,
is walking up to some meters further away. As this point the NFC-based protocol should fail.
Instead, the attacker would keep the connection alive (impersonating the reader to the card
and vice-versa); the attacker relays the last three messages from the victim’s card (SDAD,
AC, and the certs) to payment terminal T1. Note that the protocol finishes correctly: the relay
attack will succeed, meaning that an attacker can pay with someone else’s funds even if they
were meters away from the terminal T1 when their card emitted the final, payment-conceding
cryptogram AC and authenticating data SDAD. So, this attacker just needs to get the victim
be close to the terminal some seconds before the fund-stealing relaying starts.

On Relaying in PaySafe or Relay-protecting EMV. Whilst the scenario above is
not tested in practice, it is not quantified by any measurements or approximations in the way
of feasibility and it may even seem far-fetched, the message here is that fraudulently taking
payments via relaying in relay-protecting PaySafe may still be possible. This equates to the
fact that it is still possible to break one of the main goals of EMV, i.e., to protect against
fake payments.

The original, large-distance relay attacks in [7] may indeed no longer be possible in
PaySafe. But as we explained above, PaySafe may not fully solve the problem of relaying
in EMV.

4 More Attacks on Proposed Relay-Protecting EMV Versions

We are aware of the fact in the original paper [7], PaySafe set out to protect just against
relaying. However, when one combines two cryptographic primitives, the attacker-model from
the resulting construction is generally a composition of the threats in the respective initial
primitives. I.e., if one combines proximity-checking with authentication, then the potentially
malicious prover in the former should be accounted for in the entire composition. This was
amply discussed, e.g., in [2], specifically in the context of composing proximity-checking with
authentication, as it is the case in PaySafe too. This would mean that PaySafe should now
be analysed against a threat-model considering dishonest provers as well.



Whilst the above is the view taken in provable-security, one could envisage that Mastercard
(or EMVCo – the consortium behind EMV) may not be not interested (for now) in attacks
mounted by dishonest provers. However, if EMVCo/Mastercard implements a protocol like
PaySafe as suggested by [11], then it means that –with each contactless payment recorded in
a banking-ledger– they are issuing to the corresponding card-holder a proximity receipt, i.e.,
a confirmation that the payee was close to a payment-terminal. Therefore, if a card-holder
can forge the proximity proof then there can be liabilities for Mastercard/EMVCo. Indeed,
in [12], Sjouke Mauw et al. have recently looked at distance-bounding attacks on PaySafe. So,
on balance, we are discussing this here too, in direction relation with [12].

4.1 Proximity-based (In)security in PaySafe

PaySafe did not mean to resist distance-fraud (DF), yet one such attack is extremely obvious.
Indeed, the card’s response in PaySafe’s timed-round does not depend on the challenge sent
by the reader. So, the card can send his answer early and thus appear to be closer than he is.
The virtue of [12] is to have exhibited this DF via the use of a symbolic security-verification
tool [13]. And, [12] proposed a solution to this DF, which we herein dub PaySafe+. In
PaySafe+, compared to PaySafe, the card’s timed response additionally contains the nonce
UN which the reader sent, i.e., the card replies to GPO(...) via AIP,AFL,ATC, nC , UN .

Failing Distance-Fraud-Counteraction [12] on top of PaySafe. It may appear that,
in PaySafe+, the card has to wait to receive UN before answering. However, the card can
sample UN bit by bit, from the MSB (least significant bit) to the LSB (least significant bit).
So, a cheating prover does not need to wait to read all the bits of UN : he can do a distance-
fraud by sending UN ’s bits back one by one, as soon as each is read at his end. Or, he can
do a distance-fraud attack whereby he waits the first x MSBs of UN (x < 32) and guesses
the rest of 32 − x. By choosing x, the cheating prover will tune his success probability but
also the degree of distance-lowering. This type of distance-frauds have been known to the DB
community for a while [6].

However, we do acknowledge that the formal model [12] used to determine whether
PaySafe+ was secure against distance-fraud does not capture the aforementioned bit-by-bit
sampling of the UN nonce, and –instead– assumed that the entire UN is received at once.
So, as such, the results [12] were correct in their model: it is just that the threat-model in [12]
does not encode certain real-life risks such as the one described herein and/or in [6].

The Most “Naive” Solution to Distance-fraud in PaySafe/PaySafe+. This type
of attack is not at all new in DB: its nature is described in 2005 in [6] In the spirit of [6],
we suggest that if distance-fraud is what PaySafe+ aims to counteract, then –in the timed
challenge-response– the card should send back a simple transformation on UN : e.g., reply
with UN in reverse-bit order from how the reader send it, from LSB to MSB. This clearly
lowers the probability of success of the DF we presented above, by intuitively forcing the card
to really wait for (all or most of) UN before sending it back. Note that more sophisticated
measures can be put in place to counteract early-sending attacks by a prover: a Challenge
Reflection with Channel Selection (CRCS) can be implemented [14] (which is very efficient).
Other, very recent solutions (presented from the hardware-implementation perspective) are
given in [15].

Other Proximity-Related Security Issues in PaySafe-like Protocols. PaySafe+
fails to achieve DF-security, but also, as a distance-based primitive, PaySafe+ has other
security-issues w.r.t. distance-based attacks.



For instance, it is clear that a distance-hijacking (DH) attack [8] and terrorist-fraud attacks
exist.

We believe that in context of EMV, a dishonest prover may wish to literally pay something
for the attacker to get the receipt that proves that he was close, when in fact he was not. So,
we believe that a terrorist-fraud attack makes sense in EMV. To mount a terrorist-fraud, a
dishonest prover generates nc and gives it to the attacker, before the timed phase starts. An
attacker A found closer to the terminal then pass the timed challenge-response Then, over
the untimed part, this attacker A sends all the necessary info to the prover so that this one
generates SDAD, AC, and hands it all back to A . Then, A relays this to the reader. This is a
valid TF, under the assumption of nonce freshness. In all nonces are checked for freshness, then
once the accomplices stops helping the terrorist, the latter has no way of passing the protocol
on his own (in any case, not under reasonable cryptographic assumptions such as unforgeable
signatures, etc.). In this document, we offer no immediate solution to this TF attack, i.e.,
not one solution based on the very structure of PaySafe+ (like we had for PaySafer which is
moulded on PaySafe, or for the distance-fraud in PaySafe+). Solutions exist, but not based on
this “almost EMV-identical” type of design where we just add one proximity-checking round
inside the standard contactless EMV.

Yet, w.r.t. DH attacks, we leave this aside. This is due to the fact that a DH attack would
essentially mean that some far-away prover would pay with its funds for a purchase of an
honest prover found close to the verifier. Since the latter is honest and does not collude with
the far-away prover (as in TF), the former will never get the receipt in order to prove that he
was close when he was not. So, in EMV, we do not really see the need to analyse DH.

Our PaySafe-like Solution for Relay-counteraction in EMV. In Fig. 3, we suggest
a possible direction for a better counteraction against the aforementioned relay-attack on
PaySafe. We call this protocol PaySafer. In PaySafer, after the reader sends the“GENERATE
AC” command, it waits an amount δ of time, which is apriori fixed to be the time it takes
cards on the market to generate AC and SDAD. The drawback would be that all cards on
the market would have to implement the generation of the AC and SDAD in this particular
permitted period δ; this would need to be enforced by EMVCo universally. We acknowledge
that this is a big ask, but we believe that it is not impossible to achieve. Further, one can say
that an attacker can overclock a card and thus gain time, yet we believe that this threat-model
is clearly out of scope for relay attacks.

Moreover, it is only after this waiting period elapses that the reader issues our new com-
mand to the card denoted “SEND AC”, accompanied by a nonce UN2. The card responds
with AC, SDAD and UN2∗ which is UN2 sent back processed slightly by the prover: i.e.,
UN2∗ is obtained by at least reversing the bit-order in UN2. Note that we require the same
of UN : i.e., the sent in reverse bit-order as UN∗ after the GPO-request. The sending of UN2∗

and UN∗ in this way is not essential for relay-protection, but we included them for the sake of
the distance-fraud attacks presented above on PaySafe. In other words, if in our PaySafer we
aimed for DF-counteraction, then UN needs to be sent back processed slightly by the prover,
i.e., at least in reverse bit-order, as UN∗, during the first timed challenge-response round,
and UN2 also needs to be is also sent back in reverse bit-order as UN2∗ in the 2nd timed
challenge-response round. If no DF-counteraction is envisaged, them we can remove both UN
and UN2 from PaySafer (and their starred counterparts).

PaySafer is the same as PaySafe, apart from the following: (a) using a 2nd timed round
(which EMV-wise would mean a new command for what we denoted “SEND AC, SDAD”);
(b) using UN∗, UN2, UN2∗ as per explained above.



	
	
	
	

	

Reader Card 
																	.	
																	.	
																	.	
	

!" ∈ {0,1})* 	

���� ����������	�	�

!"2 ∈ {0,1})*�
������D�

																	.	
																	.	
																	.	
	

"�
�	������	�	#������

�����	�	�����!���
�
��
�

�
�
���
����

�
�������������������!�

����������

��
�
��
�

*

*

Fig. 3: PaySafer: A Primer for Better Relay-Counteraction in EMV

So, to PaySafe, we essentially added a timed challenge-response round at the point in
which AC, SDAD are sent, such that we hinder relaying these two after the AC-generation
(as per our attack above). In essence, this means that we check that the payee is close to
terminal when the payment is concluded from the card’s viewpoint (i.e., when AC, SDAD are
sent), not just when the payment is “GPO-initiated” as per PaySafe.

However, note that, with PaySafer, we keep as close as possible to PaySafe and therefore
to contactless EMV, mainly aiming to improve PaySafe w.r.t. achieving only its original goal:
relay-counteraction.

5 Proximity inside EMV...: Far-away?!

We saw that PaySafe [7], which appears to be adopted in Mastercard v3.1 of EMV specs [11],
does not seem to meet its aims of full relay-counteraction in EMV We can debate whether
distance-based attacks (beyond relaying) are a valid concern for EMV. Meanwhile, we also saw
that the current EMV-enhancements against distance-based attacks [12] also fail at achieving
their goals of protecting against proximity-frauds.

Herein, we suggested directions in the way of the first adjustments to mend both failures
in silo, one of which is inspired by “old-school measures” [6] against proximity-faking attacks.

So, all these can only suggest the following: (1) adding relay-counteraction to EMV in the
shape of proximity-checking may not be fully accomplished as of yet; (2) it arguably opens
for new distance-cheating security-threats.



Alternative Relay-Protection Mechanisms for EMV. As such, in Fig. 4, we recall
the mechanism in [4], which is different to PaySafe. This design intends that a symmetric-key
DB protocol is run based on a shared key sym. This key is established between the card and
reader beforehand, by running a key-agreement protocol (KA), based on the card’s a secret
key sk and a public key pk. In [4], it was suggested that after this DB is run the payment is
made. Since, Vaudenay has also instantiated this DB protocol above [16].

46 IEEE Security & Privacy January/February 2015

TRENDS IN CRYPTOGRAPHY

Public-Key Distance Bounding
Distance-bounding protocols in the literature are 
based on a shared key: these protocols assume that 
the prover and the verifier share a secret. But this 
assumption is unreasonable in many applications. For 
instance, a wireless payment terminal at a supermar-
ket is unlikely to share a secret with a customer’s credit 
card. It would make more sense for the credit card to 
hold a secret and have some certified public key. The 
payment terminal would need only this public key to 
verify the proximity proof. Hence, there is a need for 
public key–based protocols.

In the literature, only three public-key distance-
bounding protocols exist. The original Brands and 
Chaum protocol1 doesn’t offer security against 
terrorist fraud. The 2004 Bussard and Bagga pro-
tocol was completely broken by Aslı Bay and her col-
leagues in 2012.14 Jens Hermans, Roel Peeters, and 
Onete’s protocol3 has a security proof but doesn’t 
protect against terrorist fraud. However, it does fea-
ture some privacy protection: the verifier also has a 
public or secret key pair, and an observer can’t detect 
the prover’s identity.

We could wonder why there are only two public-key 
distance-bounding protocols, all without terrorist fraud 
protection. It’s actually easy to transform any symmet-
ric DB into a public-key DB: Run a key agreement (KA) 
protocol (such as the famous Diffie-Hellman protocol 
in semi-authenticated mode) to set up a symmetric key 
sym. Then, run a symmetric DB protocol with key sym 
(see Figure 2). The symmetric DB protocol consists of 
two algorithms, Psymmetric(sym) and Vsymmetric(sym). 
This could, for instance, be Hancke and Kuhn’s proto-
col.15 The KA is semi-authenticated: the prover uses 
KAp(sk), where sk is its long-term secret key, and the 
verifier uses KAv(pk), where pk is the prover’s long-
term public key. However, this solution is vulnerable to 
the terrorist fraud in which the prover just sends sym 
to the nearby adversary who runs the symmetric DB 
protocol without having access to sk. Hence, building 
classic terrorist fraud protection into public-key DB 
doesn’t work.

Thus, the challenge remains in creating a provably 
secure public-key distance-bounding protocol that 
resists the three main types of fraud. 

Integration
Proximity proofs must be integrated into applications 
such as payment systems, access control, and remote 
unlocking devices. The development of the appropriate 
infrastructures for this is still an open problem.

Secure Remote Unlocking
The task appears simple in the case of unlocking cars 
using a wireless key. This is because the prover and the 
verifier are stable points in the infrastructure; one veri-
fier or reader on the car will accept one key belonging 
to the car’s owner. The only problem, then, lies in the 
key distribution. But key distribution could and should 
be completely independent from the proof of proxim-
ity protocol.

Secure Access Control
For access controls settings—for example, entering and 
exiting buildings—the task of incorporating DB might 
seem more difficult. This is because several verifiers 
might authenticate one given prover at different points; 
one person’s badge will be read by different readers, one 
on each door that he or she passes through. Clearly, 
these readers won’t store the secrets of all provers. 
However, we can assume that door readers have secure 
online access to an authentication server that holds all 
the keys.

For such an application, DB could be implemented 
in a straightforward manner: the door reader could 
relay communications between the prover and the 
authentication server and measure the time taken by 
the challenge– response rounds to forward the timer 
values to the server. We could, however, save a few com-
munication steps between the server and the door. Fig-
ure 3 shows an SKI-based protocol that requires only 
one query or response to and from the server. Essen-
tially, the server selects the challenges for the verifier 
and sends a vector t of the commitments of all possible 
responses. That is, ti is a commitment to the response 
ri, which is expected in round i. The commitment will 
be opened with the key pi = PRFx(NP,NV,L,i,ci)—the 
parameters are defined in SKI9,10—which must be 
revealed by the prover. This comes at a cost, though, in 
that the server must compute all commitments and the 
prover must open them.

Secure Contactless Payments
In a contactless payment infrastructure, the prover (an 
NFC credit card or smartphone) tries to pay the veri-
fier. Verifiers or readers are more pervasive, and we 

Figure 2. A DB protocol that uses a shared secret sym is transformed into a 
protocol using a secret key sk and a public key pk. 

Prover
P (sk)

Verifier
V (pk)

sym = KAV (pk) KA sym = KAP (sk)

Vsymmetric (sym)
DB

Psymmetric (sym)
Payment

Card Reader 

Card Reader 

Fig. 4: Symmetric-key DB on top of EMV [4]

There are two advantages to this: (a) one can choose a DB protocol which is also provably
secure against all DB threats, e.g., [3], or make little variations on Fig. 4 to achieve enhanced
security [10]; (b) one can achieve some level of privacy on the card’s side [10].

That said, we are not totally satisfied by this solution either: like with PaySafe, the
proximity-proof happens only before the payment and, during it, relaying could still be pos-
sible. So, to succeed, one would need to embed the DB protocol more intrinsically in the
payment scheme (à la PaySafer). Another issue with the solution in Fig. 4 or its embodiments
as per [10] is that all the EMV readers/cards would have to implement the DB protocol to
be run in combination with the payment, which is a big ask. In this deployment-driven sense,
PaySafe –which keeps extremely close to EMV– is preferable.

6 Conclusions

Whilst we touched on some security-failures of EMV-enhancements with proximity checking,
many aspects remain not explored herein: e.g., active men-in-the-middle, concrete privacy
issues on cards’ side. Our aim was not to formally assess or profess, but rather to draw
immediate attention to this fact : as proximity-checking within EMV may be embraced by
MasterCard and EMVCo, many emerging solutions are failing to different extends. Overall,
we encourage an closer look into this topic, all the while calling for solutions that are as
in-keeping as possible with the original EMV designs and architectures.

References

1. B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In Proc. of the 14th IEEE
Computer Security Foundations Workshop, pages 82–96, Novia Scotia, Canada, 2001. IEEE Computer
Society Press.

2. I. Boureanu, D. Gerault, P. Lafourcade, and C. Onete. Breaking and fixing the HB+DB protocol. In Wisec
2017 - Conference on Security and Privacy in Wireless and Mobile Networks, pages 241 – 246, Boston,
United States, July 2017.



3. I. Boureanu, A. Mitrokotsa, and S. Vaudenay. Practical and Provably Secure Distance-Bounding. Journal
of Computer Security, 23(2):229–257, 2015.

4. I. Boureanu and S. Vaudenay. Challenges in Distance Bounding. IEEE Security & Privacy, 13(1):41–4,
2015.

5. S. Brands and D. Chaum. Distance-bounding protocols (extended abstract). In Proc. of EUROCRYPT,
pages 344–359. Springer, 1993.

6. S. Capkun and J. P. Hubaux. Secure positioning of wireless devices with application to sensor networks. In
Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.,
volume 3, pages 1917–1928 vol. 3, March 2005.

7. T. Chothia, F. D. Garcia, J. de Ruiter, J. van den Breekel, and M. Thompson. Relay cost bounding for
contactless EMV payments. In Financial Cryptography and Data Security - 19th International Conference,
FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers, pages 189–206, 2015.

8. C. Cremers, K. B. Rasmussen, and S. Čapkun. Distance hijacking attacks on distance bounding protocols.
Cryptology ePrint Archive, Report 2011/129, 2011. http://eprint.iacr.org/.

9. E. P. Jordi van den Breekel, Diego A. Ortiz-Yepes and J. de Ruiter Manuscript. Emv in a nutshell.
http://www.cs.ru.nl/~erikpoll/papers/EMVtechreport.pdf, 2016.

10. H. Kilinc and S. Vaudenay. Efficient public-key distance bounding protocol. In Proceedings, Part II, of the
22Nd International Conference on Advances in Cryptology — ASIACRYPT 2016 - Volume 10032, pages
873–901, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

11. MasterCard. Contactless paypass reader specifications v3.1,. not publically available, 2017. Details of
relay-protection herein were conveyed to the authors by 3rd parties.

12. S. Mauw, Z. Smith, J. Toro-Pozo, and R. Trujillo-Rasua. Distance-bounding protocols: Verification without
time and location. In IEEE Symposium on Security and Privacy (Oakland S&P), May 21–23, 2018, San
Francisco, California, USA, pages 1–18, may 2018. (to appear).

13. S. Meier, B. Schmidt, C. Cremers, and D. Basin. The TAMARIN Prover for the Symbolic Analysis of
Security Protocols. In Computer Aided Verification, pages 696–701, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

14. K. B. Rasmussen and S. Čapkun. Realization of rf distance bounding. In Proceedings of the 19th USENIX
Conference on Security, USENIX Security’10, pages 25–25, Berkeley, CA, USA, 2010. USENIX Association.

15. M. Singh, P. Leu, and S. Capkun. Uwb with pulse reordering: Securing ranging against relay and physical
layer attacks. Cryptology ePrint Archive, Report 2017/1240, 2017. https://eprint.iacr.org/2017/1240.

16. S. Vaudenay. Private and secure public-key distance bounding - application to NFC payment. In Finan-
cial Cryptography and Data Security - 19th International Conference, FC 2015, San Juan, Puerto Rico,
January 26-30, 2015, Revised Selected Papers, pages 207–216, 2015.


