
1

Agreement with Satoshi – On the Formalization of Nakamoto Consensus

Nicholas Stifter∗†, Aljosha Judmayer∗, Philipp Schindler∗, Alexei Zamyatin‡∗, Edgar Weippl∗†
∗SBA Research, ‡Imperial College London,

†Christian Doppler Laboratory for Security and Quality Improvement in the Production System Lifecycle (CDL-SQI), TU Wien
Email: (firstletterfirstname)(lastname)@sba-research.org

Abstract—The term Nakamoto consensus1 is generally used
to refer to Bitcoin’s novel consensus mechanism, by which
agreement on its underlying transaction ledger is reached. It
is argued that this agreement protocol represents the core
innovation behind Bitcoin, because it promises to facilitate the
decentralization of trusted third parties. Specifically, Nakamoto
consensus seeks to enable mutually distrusting entities with weak
pseudonymous identities to reach eventual agreement while the
set of participants may change over time. When the Bitcoin white
paper was published in late 2008, it lacked a formal analysis
of the protocol and the guarantees it claimed to provide. It
would take the scientific community several years before first
steps towards such a formalization of the Bitcoin protocol and
Nakamoto consensus were presented. However, since then the
number of works addressing this topic has grown substantially,
providing many new and valuable insights. Herein, we present
a coherent picture of advancements towards the formalization
of Nakamoto consensus, as well as a contextualization in respect
to previous research on the agreement problem and fault tol-
erant distributed computing. Thereby, we outline how Bitcoin’s
consensus mechanism sets itself apart from previous approaches
and where it can provide new impulses and directions to the
scientific community. Understanding the core properties and
characteristics of Nakamoto consensus is of key importance, not
only for assessing the security and reliability of various blockchain
systems that are based on the fundamentals of this scheme, but
also for designing future systems that aim to fulfill comparable
goals.

I. THE IMPORTANCE OF NAKAMOTO CONSENSUS

The recent explosive increase in both economic valua-
tion and technical interest towards Bitcoin, cryptocurrencies,
and distributed ledgers in general, is mirrored by equally
growing research efforts from the scientific community to
better understand, employ and extend upon the fundamental
principles that govern these technologies. Not only has the
body of peer-reviewed literature directly related to Bitcoin
and cryptocurrencies increased substantially as outlined by this
recent taxonomy [XWS+17], but a lot of work is also presented
online in the form of pre-prints, e-prints, and informally as blog
posts, following the publishing spirit of the original Bitcoin
white paper [Nak08a].

Moreover, many other research fields are also exploring
how the underlying concepts behind blockchain technologies
could be applied in their domain. This renders it difficult for
both researchers and practitioners to get a coherent picture
of the state-of-the-art in this emerging field. We therefore

1One of the earliest uses of the term Nakamoto consensus can be attributed
to a blog post by Nick Szabo in [Sza14], after which it appeared in scientific
publications such as [BMC+15], [LTKS15].

believe that further systematization efforts related to Bitcoin
and blockchain technologies, following the comprehensive
overview of research perspectives and challenges for Bitcoin
presented by Bonneau et al. in 2015 [BMC+15], are necessary.

In particular, the study and formalization of the Bitcoin
protocol and its underlying Nakamoto consensus has seen
significant advances in recent years (e.g. [KP15], [GKL16],
[BPS16a]) that are not yet systematically exposed. Recent
work provides a broad overview of different consensus mech-
anisms in the context of blockchain technologies [BSAB+17],
however we feel that a more in-depth analysis of the relation-
ship between Nakamoto consensus and previous approaches
to Byzantine consensus is still outstanding. We hereby narrow
this gap by relating research towards Nakamoto consensus to
other key insights and aspects on the topic of consensus.

Consensus is a fundamental building block in fault tolerant
and distributed computing, and the guarantees a consensus
protocol provides can greatly impact the overall security and
reliability of (distributed ledger) systems [CV17]. Bitcoin
promises to solve the double spending problem in a distributed,
peer-to-peer environment without the necessity to rely on a
trusted third party by enabling participants to reach (eventual)
agreement on the state changes to a shared transaction ledger.
Nakamoto consensus hence lies at the core of this system.

Without an in-depth understanding of this mechanism, entire
categories of newly designed systems, as well as the appli-
cations that are built on top of them, are potentially vulner-
able to attacks [NG16], [CV17]. Modifications to consensus
related rules, even if they appear small or straightforward,
can fundamentally impact underlying incentives and greatly
affect security guarantees [ZP17]. As the ecosystem around
“blockchain“ has grown into a multi-billion dollar industry,
severe failures could have far-reaching consequences and a
long-term negative impact on the entire field.

On the other hand, fundamental insights on Nakamoto
consensus have already spawned novel and hybrid consensus
approaches that exhibit interesting properties and character-
istics, while providing the necessary frameworks to analyze
and evaluate the correctness and security of such approaches.
Combining aspects of “classical“ Byzantine fault tolerant
(BFT) consensus protocols with Nakamoto consensus may
help to address increasing concerns regarding the scalability
and performance of blockchain technologies.

Motivated by this emerging new area of research, we set
out to paint a coherent picture of the insights and findings
that have been presented on the topic of Nakamoto consensus
and the fundamental mechanisms behind Bitcoin and similar
blockchain protocols.



2

II. THE CONSENSUS PROBLEM

“It is not much matter which we say, but mind, we
must all say the same.“

– Lord Melbourne, [Bag00]

The agreement or consensus problem is a long standing
research topic that has, in particular, been the subject of much
discussion in the field of fault tolerant and distributed com-
puting [Fis83]. Consensus lies at the core of many distributed
algorithms and is one of the most fundamental problems in
this field [FLP85]. It can, for instance, serve as a basis for
achieving active replication, such as in the replicated state
machine approach [Sch90], or be used to implement any wait-
free concurrent data object among a set of processes [Her91].
The term distributed in this context does not necessitate large
geo-spatial differences and can also refer to processors within a
single system that communicate via message passing or shared
memory [Lyn96].

To effectively outline how Nakamoto consensus relates to
the consensus problem domain, we first give a brief overview
of the history and some of the key insights that have been
presented in this field before the advent of blockchain tech-
nologies. The presentation of definitions is deferred, where
possible, to the next Subsection (II-B), which places its focus
on consensus problem definitions and outlines how they, as
well as the assumed system model, impact the solvability of
consensus.

A. Brief History of the Consensus Problem

One of the earliest publications associated directly with
the consensus problem was presented in the beginning of
the 1980s by Pease et al. on the topic of interactive consis-
tency [PSL80]. Shortly thereafter, the same set of authors went
on to publish their seminal work on the Byzantine generals
problem [LSP82], which is closely related to interactive con-
sistency. Both works deal with the question of how a (fixed)
group of participants can reach agreement upon a value or set
of values, if participants are allowed to deviate arbitrarily from
the prescribed protocol. Under the assumption of a relatively
strong system model, they were able to show that strictly less
than a third of the participants are allowed to exhibit such
arbitrary behavior, if the defined properties of the problem
specification are to hold. These works played a key role in
stepping loose an entirely new field of research, centered
around formalizing and characterizing various consensus prob-
lems [Fis83].

Another seminal work on the topic of consensus is Fischer
et al. [FLP85], which is referred to as the FLP impossibility
result. It shows that deterministic consensus becomes impossi-
ble in a completely asynchronous system, even if only a single
process is allowed to fail in the crash-stop model and commu-
nication between processes is reliable. The FLP impossibility
result inspired research on the minimal synchrony assump-
tions necessary to be able to reach consensus, leading to the
definition of different models of partial synchrony [DDS87],
[DLS88].

Instead of strengthening the system model and its as-
sumptions, the impossibility result can also be circumvented
by relaxing the problem definition, such as only requiring
probabilistic guarantees for aspects, such as correctness or
termination of the algorithm. In particular, the class of so
called randomized consensus algorithms, pioneered by Ben-
Or [BO83] and Rabin [Rab83], has received particular atten-
tion.

Nevertheless, at the time, the take-away from these results
was that systems for reaching consensus in the presence of
arbitrary, or so called Byzantine failures, while in principle fea-
sible, were largely impractical for real-world scenarios [CL02]
due to the overhead incurred in additional communication and
computation complexity.

It would take over a decade until publications such as
“Practical Byzantine Fault Tolerance“ (PBFT) from Castro
and Liskov [CL+99] showed that so called Byzantine fault
tolerant (BFT) consensus algorithms could indeed be practi-
cable under realistic system assumptions. Nevertheless, while
research on the topic of BFT consensus was ongoing [CKS00],
[CWA+09], [GKQV10], [VCB+13], it remained a compara-
tively isolated topic area, given the broad range of potential
applications. In part, this may be attributed to the fact that
consensus protocols are often discussed in the context of state
machine replication [Lam84], [Sch90] and achieving active
replication for services, such as databases. Here, all replicas, i.e
participants, may be under the control of a single entity and
the more benign crash-fault tolerance can be a tenable sys-
tem model. In particular, Lamport’s crash-fault tolerant Paxos
consensus algorithm [Lam98] and derivations thereof have
found their way into practical applications [CGR07]. Another
important contribution is the concept of using failure detector
abstractions as oracles, instead of relying on concrete timing
assumptions in the design of consensus protocols [CT96].
Different classes of failure detector oracles are formed, that
open up the ability to formally define the minimal guarantees
they need to provide to be able to solve a particular consensus
problem.

Consensus protocols are often considered and formally
analyzed assuming a static set of participants. In practice,
however, it is a desirable property to be able to dynamically
reconfigure this set. Reaching agreement on a dynamically
changing set of processes is, in itself, a problem related to
consensus, namely the Group Membership Problem [Cri91],
[Ric93]. It has been studied primarily in the crash-failure
model, where the introduction of the concept of virtual syn-
chrony by Birman and Joseph [BJ87] in the ISIS system
has been influential and led to a variety of practical group
membership systems [Ban98], [AS98], [MPR01].

So far, the presented works primarily assume a system
model, where processes communicate with each other through
means of message passing over some channel. Agreement
problems have also been studied in alternative models, such
as shared memory, where consensus was shown to be uni-
versal [Her91], [MMRT03]. Depending on the system as-
sumptions, the FLP impossibility result also applies to shared
memory [Her88]. In the context of Nakamoto consensus, the
primary interest lies in the former message passing model, as



3

it more closely resembles the actual system.

B. Defining Agreement Problems

We depict the formalization of consensus problems, loosely
following the general style of work in the field of distributed
algorithms outlined by Lynch [Lyn96], as three distinct steps:

I) Identification and abstraction of (practical) problems of
significance by characterization through a set of properties
and desired guarantees.

II) Assumption of an underlying (mathematical) system
model of the distributed system, in which the problem
is to be solved.

III) Precise specification and proof that the developed al-
gorithms solve I) in II); Analysis of the algorithms’
complexities and proofs of bounds and limitations or their
impossibility.

We outline aspects of these three steps in more detail to
provide a basis for comparison and discussion towards the
formalization efforts on Nakamoto consensus, beginning with
Step II), i.e. the system model, as it offers a good opportunity
to introduce a common terminology.

1) System Models for Consensus Problems: Assuming a
system model that provides very weak guarantees may render
a (consensus) problem very hard or impossible to solve. On
the other hand, while overly strong guarantees might allow for
an easy solution, achieving these guarantees in itself can turn
into a hard problem.

Processes and Connectivity. For consensus problems, the
distributed system is commonly modeled as a static, bounded
number of processes {p1, p2, . . . , pn} = Π, where commu-
nication between processes occurs by message passing over
reliable point-to-point links. A process2 is an abstract unit
able to perform computations in a distributed system [CGR11].
The term correct is used only if during the entirety of an
execution the particular component, such as a process or
communication link, will exhibit no faulty behavior or deviate
from the prescribed protocol rules.

The communication graph is generally assumed to be bidi-
rectional and completely connected, however, other topologies
have also been considered [Dol81], [LSP82]. In [LSP82] a
distinction is made between oral and authenticated3 messages
and they are defined by the following characteristics:

Definition 1: Oral messages:
1) Every message that is sent is delivered correctly.
2) The receiver of a message knows who sent it.
3) The absence of a message can be detected.

In the context of the system model assumed in [Lam84], the
second property, in particular, is needed or else a single mali-
cious process could defeat any distributed consensus algorithm.
Authenticated messages extend oral messages by the following
fourth property:

Definition 2: Authenticated messages:

2Originally referred to as processors [PSL80].
3In [LSP82], Lamport et al. called them signed written messages.

4) a) Messages sent by a correct process cannot be forged,
and any alteration of the contents of these signed
messages can be detected.

b) Anyone can verify the authenticity of a correct pro-
cess’s signature.

Static and Dynamic Distributed Systems. Models where
both the set of processes and their communication links remain
static are referred to as static distributed systems. Interestingly,
there are no widely agreed upon definitions for dynamic system
model counterparts. In [BBRTP07] Baldoni et al. investigate
two attributes which they consider defining characteristics of
dynamic distributed systems, namely the varying size of the
system over time and its topology in terms of the process
neighborhood.

Unless otherwise specified, we assume a static system model
with a fully connected communication graph of reliable point-
to-point links when describing consensus protocols.

Synchrony Assumptions. One essential property of the sys-
tem model that greatly influences the solvability of consensus
are its synchrony assumptions. In their seminal work, Fischer,
Lynch and Patterson show that reaching deterministic agree-
ment in a system with asynchronous communication is impos-
sible, even if message communication is reliable and only a
single process can fail (in the crash-stop model) [FLP85].

Effectively, without bounded delays on message transmis-
sion times, it is impossible to deterministically decide whether
a process has failed or its messages have simply not yet arrived.
To ensure that the Agreement property of consensus under
such conditions cannot be violated, the Termination property
is no longer satisfiable, as a single failed process could require
all correct processes to wait indefinitely for an answer. This
fundamental insight, which is commonly referred to as the
FLP impossibility result, outlines an important limitation of
all problems in the consensus domain. For practical real-
world systems, simply assuming stronger synchrony does not
fully address this issue, because components have a non-zero
probability of failure, and hence also render such synchrony
assumptions at best probabilistic. Therefore, it is necessary
to contemplate the possibility of timing failures and choose a
suitable trade-off between availability and correctness, because
no protocol can exist that guarantees both properties at all
times.

Failures and Failure Detection. To be able to reason about
failures it is first necessary to define how the processes and
communication links that make up the system can actually fail
in a particular system model. A protocol is considered to be
f -resilient if it tolerates no more than f faulty processes of
the n processes that make up the system. The following list is
a (non-exhaustive) generalization of failure types that can be
considered:
• Crash failure. A basic failure model where components

are assumed to crash and never recover.
• Omission failure. Here components may omit actions

such as sending messages or performing computations.
Assuming the ability for crash recovery also falls into
this category.

• Timing failure. Timing failures occur when synchrony
assumptions are violated. In an asynchronous system, this



4

failure is irrelevant.
• Byzantine failure. Byzantine failures (sometimes also

referred to as arbitrary failures) allow a component to
deviate arbitrarily, and hence also maliciously, from its
expected behavior. This includes duplicating or changing
message contents, sending unsolicited messages, and tem-
porarily or permanently exhibiting any of the previously
listed failure characteristics.

As previously outlined in Subsection II-A, Fischer et al.
show the impossibility for deterministic consensus in a fully
asynchronous system model [FLP85] because processes cannot
positively decide if another process has failed.

Chandra and Toueg [CT96] introduces the concept of failure
detectors as a form of oracle, which a process can query.
Here, instead of considering concrete synchrony assumptions,
problems rely on a distributed failure detector abstraction,
based on local unreliable failure detector modules to determine
whether a process has failed. These abstract failure detectors
are characterized by properties such as completeness and
accuracy, while concrete timing assumptions and requirements
are shifted towards implementations that provide the defined
properties. Consensus problems can hence purely rely on,
and be analyzed and classified through, the abstract class of
failure detectors required to solve them. Chandra and Toueg
define eight different classes of failure detectors based on two
completeness and four accuracy properties and show that the
weakest class of failure detectors required to solve consensus
with crash failures in asynchronous systems lies in the class
of �W4.

Doudou et al. [DGG02] outline that the detection of Byzan-
tine behavior of a process p by a Byzantine failure detector
cannot be entirely independent of the algorithm A in which
the failure detector is used. Kihlstrom et al. [KMMS03] also
point out that there is a subset of Byzantine faults that cannot
be detected.

In [MR97], Malkhi and Reiter use an approach where a
Byzantine failure detector class �S(bz) is defined, which only
detects (quiet) behaviors that may prevent progress and defers
all other forms of Byzantine failure detection to upper levels of
the consensus protocol. Failure detector checking if a process
stops sending messages have also been defined by Doudou
et al. as so-called muteness failure detectors, denoted by
�MA [DGG02].

Hybrid System Models. Wormholes, introduced in Veris-
simo [Ver03], are closely related to the notion of architectural
hybridization and encapsulate and provide stronger guarantees
to an otherwise weaker environment [CVNV11]. Instead of
presenting an abstraction that specifies the minimum require-
ments (such as the ability to detect failures), wormholes pro-
vide the ability to introduce controllable levels of predictability
into systems that are otherwise mostly uncertain with regard
to their provided guarantees.

By relying on wormholes, it is possible to further improve
upon bounds, such as the resilience to failures, which would

4More accurately, they show that the weakest class of failure detector is
�S, and present an algorithm that transforms failure detectors of class �W
into �S

otherwise not be possible. Correia et al. [CVL10], for instance,
shows how wormholes can be used to transform any indulgent
consensus algorithm that tolerates crash failures with n ≥ 2f+
1 processes into one that tolerates Byzantine failures with n ≥
2f + 1 processes, even if the system model is assumed to be
asynchronous or partially synchronous.

This result does not contradict previously established lower
bounds for Byzantine consensus in such models, which is n ≥
3f+1, because the system is in fact hybrid, where the stronger
(synchronous) system model of the wormholes renders these
results possible5.

2) Consensus Problem Definitions: Consensus problems and
variations thereof are generally characterized through a set
of properties similar or equal to Definition (3). The Validity
and Agreement properties are referred to as safety properties
because they guard against trivial solutions or solutions violat-
ing the desired consensus assumptions, while the Termination
property ensures liveness, i.e., that the algorithm eventually
makes progress and produces some result [Fuz08].

Definition 3: The agreement- or consensus problem:
• Validity: If a process decides a value v, then v was

proposed by some process.
• Agreement: No two correct processes decide differently.
• Termination: Every correct process (eventually) decides

some value.
In Definition 3 the validity property only ensures the deci-

sion value was the vote of any process partaking in consensus.
A decision is reached once a process irreversibly chooses a
value. However, this constraint in itself does not guarantee that
any meaningful value will be chosen. In [Nei94] the concept of
strong validity is presented, where the particular value agreed
upon must also have been proposed by a correct participant.
The property hence is as follows:
• Strong Validity: If a process decides a value v, then v was

proposed by some correct process
It is shown that solving strong validity in a Byzantine failure

setting requires a trust assumption of n > max(mf, 3f),
where m is the size of the set from which input values to
consensus are chosen, m = |V |. Clearly, strong validity can
greatly increase the necessity for a large proportion of correct
processes, depending on the size of the permissible input
set of values the processes may propose. Other properties,
such as median validity [SW16], may require characteristics
of the proposals such as being orderable to provide more
meaningful guarantees on decision values than the initially
presented validity property, while incurring less overhead than
strong validity.

Consensus protocols terminate when all correct processes
have halted. If this is achieved in the same communication
round, the processes are considered to have reached immediate
agreement, otherwise they reach eventual agreement [Fis83].
For randomized consensus, the termination property of the
consensus problem is weakened to:

Definition 4: Termination property for randomized consen-
sus:

5In a synchronous system with authenticated messages, Byzantine consen-
sus is possible for n ≥ f ≥ 0 [PSL80].



5

• Termination with Probability 1: Every correct process
eventually decides some value with probability 1.

What this means is that, rather than requiring all permissible
executions of a protocol to eventually terminate, executions in
the randomized approach may not actually terminate, but this
occurs with probability 0 as the number of communication
rounds R approaches ∞.

Some randomized consensus solutions may also consider a
model where instead of termination, the agreement property
is weakened, such that consensus is always reached within a
finite number of rounds, albeit only with probability 1−α, and
a probability α of error. Such protocols are sometimes referred
to as Monte Carlo randomized consensus algorithms [IT08].
In [Rab83], for example, Rabin presents a protocol where,
for a fixed number of rounds R, the probability of error is
α = 2−R. Randomized consensus with a non-deterministic
agreement property has been largely overlooked as a topic of
research [CVNV11].

Different agreement problems. There exist various prob-
lems that are either variants of, or are closely related to the
consensus problem, such as:
• Binary consensus, which represents the most reduced

form of consensus, where processes only need to agree on
a single binary digit, i.e., the value v ∈ V that a process
can select as their proposal is in the set V = {0, 1}.
Binary consensus is often encountered when formally
describing or modeling consensus protocols and their
properties [FL82], [BO83], [FLP85] and can be trans-
formed to multivalued consensus where the set of possible
proposal values V can be arbitrarily large [MRT00].

• Reaching agreement on a vector of values, either called
vector consensus [CVNV11] or referred to as interactive
consistency, if agreement should also be reached on
whether participating processes are faulty. The desired
goal is to ensure that a (fixed) set of processes of size
n reaches agreement upon the same vector of values
{v1, v2, . . . , vn} = V , where vi generally corresponds
to some private value of process pi, and where a subset
of at most f processes, f ≤ n, may fail arbitrarily.
Based on the assumed system model, it was shown
that an arbitrary6 number of failures can be tolerated,
i.e., n ≥ f ≥ 0, if authenticated messages are available.
On the other hand, under the assumption that only weaker
oral messages can be used, Pease et al. show that at least
n ≥ 3f + 1 participants are required to tolerate f faulty
processes [PSL80].

• Total Order Broadcast (also referred to as atomic broad-
cast) [DSU04], where messages sent to a set of processes
are to be delivered by processes in the same total order.

• State Machine Replication (SMR) [Sch90], where agree-
ment is generally to be reached on both the input and
its ordering to a set of replicated deterministic state ma-
chines, such that all replicas receive and process the same
sequence of requests. It is clear that atomic broadcast
and SMR are intimately related, and the latter can be
readily implemented by building on top of the former.

6However, the problem becomes vacuous if n < f + 2 [LSP82].

However, depending on the exact problem definition,
ordering constraints for the inputs may be relaxed for
SMR as long as agreement on the state machines’ states
is ensured.

• The Group Membership Problem (GMP) [Ric93], [Cri91],
where agreement by a set of processes on whether they
belong to a particular group is to be reached; thereby
additional processes may join, while existing or failed
processes may be removed from or leave that group.

• Terminating Reliable Broadcast (TRB) [HT94], where
a distinguished sender from a set of processes is to
disseminate a message to this set, so that all correct
processes either agree upon the receipt of the message
or that the sender is faulty.

• The Byzantine Generals Problem which requires the
subset of non-faulty processes to reach consensus either
upon the private value, i.e. message, of a predetermined
leader, or that this leader is faulty. Therein, assuming the
same system model as [PSL80], Lamport et al. show that
the failure bounds of f <

⌈
n
3

⌉
for oral messages, and

f ≤ n for authenticated messages, also apply to this
problem [LSP82].
A priori agreement by all participants on the leader, i.e.
the sender of the message, renders the Byzantine generals
problem a broadcast protocol. In particular in the context
of the Byzantine generals problem the terminology over
the years is inconsistent and Byzantine agreement (BA)
is sometimes used to refer to consensus in a Byzantine
failure model or the Byzantine generals problem. To avoid
confusion we exclusively associate BA with byzantine
consensus.

Some of these agreement problems have been shown to be
equivalent to consensus, such as total-order broadcast, while
others, such as TRB, may be harder [CT96].

III. AGREEMENT PROBLEMS RELATED TO NAKAMOTO
CONSENSUS

This section establishes connections between previous re-
search on consensus problems and some of the characteris-
tic properties and goals attributed to Bitcoin and Nakamoto
consensus. A general overview of both Bitcoin and current re-
search perspectives and challenges in the field is given by pub-
lications such as [BMC+15], [TS16], [Nar16], [YHKC+16].

The Double Spending Problem. To prevent users from
spending the same virtual currency more than once, generally
referred to as double spending, some form of agreement needs
to be reached on the ordering and state of transactions in the
system. Previous proposals for cryptographic currencies either
required some form of trusted third party [CFN90], [Fin04]
or made unrealistic system assumptions [Dei] to deal with the
double spending problem.

Nakamoto consensus is often related to the concept of state
machine replication and it has been shown that the latter
can satisfy the desirable properties of a distributed public
ledger [BPS16a]. To the best of our knowledge there has not
been a formal analysis of how the problem of preventing dou-
ble spending or achieving a public transaction ledger actually



6

relates to other agreement problems, and if these problems are
equivalent or weaker than consensus.

In [Hoe07] Hoepman presents a solution to the distributed
double spending problem for peer-to-peer networks. This is
achieved by employing both deterministic and random clerk
sets of participants for validation, where these sets follow
certain size constraints to reduce the communication overhead
for large-scale systems. The assumed system model is static,
where f of the n participants are assumed to act maliciously.
It has an asynchronous fully connected reliable network, relies
on a Public-Key-Infrastructure (PKI), and coin transmission is
an atomic process, i.e., coins can not be spent concurrently.

It is shown that double spending can be deterministically
prevented with fixed clerk sets of size 2

√
n(f + 1), and

different bounds for random clerk sets are given such that
double spending is prevented with overwhelming probability.

Consensus Finality. Brewer suggests that there is an inher-
ent trade-off between consistency, availability, and partition
tolerance in distributed systems, where only two of the three
properties can be achieved in practice [Bre00]. Gilbert and
Lynch have more formally considered this conjecture and
shown an impossibility result for the asynchronous network
model, and present solutions for the partially synchronous
model [GL02]. In practice synchrony assumptions are at best
probabilistic [CT96], in particular if we consider a peer-to-peer
protocol over the Internet. Termination or agreement properties
can be weakened to hold only probabilistically in order to deal
with asynchrony, as we have outlined in Section II. Bitcoin
does not provide deterministic guarantees for agreement, and
the protocol in itself is not designed to terminate after some
finite amount of steps, in particular trading consistency for
partition tolerance. State changes commited to the transaction
ledger are rendered probabilistic, and a decision on a particular
state change only reaches Pr(1) as the number of rounds r
approaches limr→∞.

This aspect of non-deterministic agreement in Nakamoto
consensus has led to the term consensus finality to characterize
and differentiate between consensus protocols that decide with
certainty and those where a decision only stabilizes eventu-
ally [Vuk16].

In Stabilizing consensus agreement is eventually reached,
however, while the execution proceeds decision values of
processes may changes finitely often until ,after some point,
the system reaches a stable configuration [AFJ06]. The k-
agreement problem [BT16] weakens the agreement problem
to only require that all decisions are in a set of k values.
Another weakened variation is the approximate agreement
problem [DLP+86] which allows inputs, decisions, and mes-
sages to be real numbers and requires the difference between
any two decision values to be within a small tolerance and that
any decision value is within the range of input values.

Dynamic Membership with Byzantine Faults. The so
far presented ”classical” BFT protocols assume a static set
of known processes that make up the consensus participants.
Byzantine fault tolerance in the context of (dynamic) group
membership systems is considered in systems such as Ram-
part [Rei96] and SecureRing [KMMS01]. However, in these
cases either the problem of dealing with potentially Byzantine

processes in the changing membership set is only partially
addressed (Rampart), or relatively strong guarantees on aspects
such as synchrony and the ability to detect Byzantine failures
(SecureRing) are assumed.

In particular, assuming that an adversary can generate mul-
tiple identities renders consensus difficult under a Byzantine
failure model. Such Sybil attacks [LSM06] were first outlined
by Douceur [Dou02], and generally demand strong system
assumptions that seem unrealistic to achieve in decentralized,
peer-to-peer environments. In [AJK05] Aspnes et al. show
that moderately hard puzzles [DN92], [RSW96], [JB99] can
be employed to establish priced identities, such that both
honest and Byzantine participants only generate identities
proportional to their respective computational power in order
to address the Sybil attack. It is argued that after an initial
collection phase these identities can be used for standard
authenticated Byzantine agreement protocols. However, the
model assumes a static set of participants and synchronous
and reliable communication and does not consider a dynamic
system model where processes may join or leave the system.

A model where ”anyone”, i.e., pseudonymous or anonymous
entities, can (in principle) participate in the consensus process
is sometimes referred to as permissionless; systems that rely
on some predetermined set of consensus processes are called
permissioned [Swa15], [Vuk15]. We note, however, that these
terms have not yet been precisely defined and may vary in
their exact meaning.

Unknown and Anonymous Participants.
Consensus problems have also been studied in anonymous

networks and under the assumption that the set of participants
is previously unknown.

Alchieri et al. [ABSFG08] considers Byzantine fault tolerant
consensus with unknown participants (BFT-CUP) and presents
a solution that does not require digital signatures. It is assumed
that the Sybil attack is infeasible and communication is based
on authenticated and reliable point to point channels between
known processes.

In [BR09] different classes of anonymous failure detectors
are introduced for crash-fault tolerant consensus in the anony-
mous setting. Delporte et al. consider Byzantine agreement in
a static system of n participants where processes can have
homonyms, i.e. there is a set of id’s l < n where processes
share the same id [DGFGK10]. They show that in a such
system, Byzantine consensus is only possible if for the set
of all id’s l it holds that l > 3f .

Consensus Scalability. Nakamoto consensus can potentially
support a large number of processes that concurrently partic-
ipate in the consensus process. In [Vuk15], Vukolić outlines
the different properties both the ”classical” BFT consensus
approaches and Nakamoto consensus provide when applied to
the context of distributed ledgers.

The high redundancy requirements for (Byzantine) consen-
sus have generally led to the notion that such systems are
impractical for real-world scenarios [CNV04]. While Castro
et al. were able to show the practicability for byzantine fault
tolerance [CL+99], the problem still remains that the system
must be comprised of n ≥ 3f + 1 participants. Hybrid
system approaches using wormholes manage to reduce this



7

to n ≥ 2f + 1 at the cost of requiring stronger synchrony
assumptions for the wormhole [CVL10], [CNV04].

A problem many classical BFT consensus systems face
is the difficulty of efficiently scaling with respect to the
number of processes that can actively participate in consensus.
The message complexity is usually expected to be quadratic,
i.e., O(n2), and historically BFT systems generally assume a
relatively small number of processes, ranging in the tens to
at most hundreds of participants. Beyond the communication
overhead for a large set of processes, the focus on small
consensus groups may also be attributed to the fact that BFT
protocols were often developed in the context of state machine
replication in order to provide fault-tolerant replication to
some particular service, such as a database. Solutions for
supporting a larger set of processes in such models may
involve the delegation of consensus responsibilities to a select
subset of nodes that are responsible for collecting local peer
information and including it in their consensus votes, as well
as disseminating consensus results.

Player Incentives. Considering that a subset or all consen-
sus participants act rationally instead of taking on the classical
honest or correct and dishonest (i.e. Byzantine) roles, is still
largely an open research question. In [AAC+05] Aiyer et
al. introduce the BAR (Byzantine, Altruistic, Rational) model
as a foundation for reasoning about cooperative services.
Li et al. [LCW+06] present a peer-to-peer data streaming
application that builds upon this BAR model and presents
a BAR-tolerant gossip protocol. In [GKTZ12] Groce et al.
considers Byzantine agreement and broadcast protocols under
the assumption that a subset of the consensus participants are
rational adversaries and there exists either partial or complete
knowledge of the adversary’s preferences. Based on this they
are able to show that many of the known impossibility results
and bounds in the traditional model do not hold in the rational
model.

IV. FORMALIZING NAKAMOTO CONSENSUS

When the Bitcoin white paper was first presented in late
2008, it was met by many researchers with skepticism, as
the paper lacked a formal analysis of the protocol and its
claimed guarantees [BMC+15]. In respect to the previously
outlined approach for defining consensus problems, Nakamoto
neither presented a concise formal problem statement nor a
concrete system model in which the problem is to be solved.
Instead, a practical protocol design was outlined which was
promptly followed by an actual prototype implementation in
early 2009 [Bit]. To this date there exists no official formalized
specification of the Bitcoin protocol.

We first place the focus on attack modeling and its relation
to formalization efforts of Nakamoto consensus. Subsequently,
we outline a brief excerpt of publications that present or
expand upon more formal models of Bitcoin and Nakamoto
consensus in more detail and present a (non-exhaustive) table
of works that relate to the formalization of Nakamoto consen-
sus.

A. Attack Modeling

Nakamoto’s Argument: In the Bitcoin white paper
Nakamoto provides an informal argument of the security
properties of the protocol by modeling the probability for
successful double spending attacks as two competing actors
performing a Binomial random walk [Nak08a]. Nakamoto
draws an analogy to the Gambler’s Ruin problem [Coo09]
and it is outlined that the probability of an attacker being able
to catch up to the honest player decreases exponentially in
the number of steps k, if the probability for honest processes
taking the next step is greater than that of the attacker. While
the topic of consensus itself is not actually addressed in the
white paper, the following sentence suggest Nakamoto is aware
of the Bitcoin protocol’s relation to it:

“Any needed rules and incentives can be enforced
with this consensus mechanism.“ [Nak08a]

Nakamoto provides an informal claim that Bitcoin’s fundamen-
tal mechanism provides a solution to the Byzantine generals
problem in the cryptography mailing list [Nak08b], however
the therein outlined protocol is probabilistic in regard to
reaching agreement and flaws were later pointed out [GKL15].

Block Withholding: Nakamoto’s initial model does not
account for the possibility that an attacker may somehow
split or waste the computational power of honest miners,
thereby affecting the validity property of protocols based on
Nakamoto consensus. Such an attack, referred to as selfish
mining, is outlined by Eyal and Sirer [ES14]. The key idea
behind this strategy is that an adversary initially keeps its
discovered blocks private in an attempt to direct honest miners’
computational power towards extending a chain, which will
later be considered stale. The attack is successful in case
the created private chain exceeds the public chain in terms
of length and the adversary reveals its blocks, forcing honest
miners into chain reorganization, i.e., to adopt the adversary’s
now public branch.

Eyal and Sirer model their system as a static set of miners
1, . . . , n, where each miner i has mining power mi, such
that

∑n
i=1mi = 1. Each miner chooses a chain head to

mine, and finds a subsequent block for that head after a
time interval that is exponentially distributed with mean m−1

i .
Thereby, honest miners are modeled to always extend the
longest chain, while the attacker may deviate from protocol
rules. The characteristics of the communication network are
not explicitly outlined, however a parameter γ is used to denote
the probability of honest miners accepting a block published
by the adversary over that of an honest miner for the same
height, dependent on network connectivity and in particular
message propagation speed.

Based on this abstraction of the protocol, it is shown
that Bitcoin is not incentive-compatible. Specifically, there
exists a threshold of relative mining power after which an
adversary engaging in selfish mining exceeds the expected
relative revenue of honest mining. In this context, the upper
bound on the threshold size is shown to be 1/3, i.e., an attacker
with more than 1/3 of the total mining power will always stand
to benefit from selfish mining.

Sapirshtein et at. later derive ε-optimal selfish mining strate-



8

gies, lowering the requirements with regards to computational
power and extend the initial selfish mining model to consider
network delays [SSZ15]. In the latter scenario, it is argued
any attacker can benefit from deviating from honest mining,
although concrete gains and thresholds are not yet discussed.

Nayak et al. further introduce a new class of so called stub-
born mining attacks, outperforming the original selfish mining
strategy in terms of revenue gain in [NKMS16]. Furthermore,
they extend the attack model by considering combinations of
selfish mining and eclipse attacks as introduced by Heilman et
al. in [HKZG15], i.e., adversarial partitioning of the network
to control communication between segments. Gervais et al. in
turn are able to show how an adversary can deny the delivery
of blocks to a subset of honest participants without network
partitioning in [GRKC15] .

The described attack models are further enhanced by Ger-
vais et al. to account for mining costs in the adversary’s utility
function in [GKW+16]. Furthermore, a detailed empirical and
simulation analysis of block interval and size parametrization
impacts on the success thresholds of selfish mining and double
spending attacks is provided.

B. Formal Analyses and Definitions of Nakamoto Consensus
There is currently no agreed-upon definition of Nakamoto

consensus. One may only consider individual aspects of the
Bitcoin protocol, or its entirety. However, the term is finding
its way into more and more publications and we believe it
is a suitable descriptor for this novel consensus approach.
A fundamental difficulty in providing a good generalized
definition lies in the tight interaction between the various
mechanisms that make up the Bitcoin protocol. We outline
formalization approaches of the Bitcoin protocol in a time-
ordered fashion (taking into account that pre-prints and e-prints
were sometimes published much earlier than the peer-reviewed
publications) to paint a coherent picture how the field has
evolved over the recent years.

Single-Shot anonymous Byzantine consensus: In [MJ14]
Miller and LaViola give the first formal presentation of Bit-
coin’s consensus mechanism in the context of single-shot
instances of Byzantine consensus. Specifically, they relate it to
both Monte Carlo randomized consensus, that is, probabilistic
consensus where there is a negligible but non-zero probability
of error on agreement and anonymous consensus. Their system
model assumes a static set of processes {p1, p2, . . . , pn} = Π
where communication and processing time is assumed to be
synchronous and reliable; however, processes have no way of
determining message origins. The adversary is non-adaptive
and given control over f of the processes, which she must
designate at the outset. Each process may query a random
oracle at most once per round which serves as an abstraction
for the proof-of-work computational puzzle, thereby assuming
processes each have identical computing power q. The model
also assumes an arbitrary set of passive clients in addition to
the n consensus participants which can only receive messages
and decide on an output v.
Monte Carlo Consensus: A (binary) Monte Carlo consensus
protocol for a set of n processes (f of which may be cor-
rupted) begins with each correct process pi receiving an input

value proposedi ∈ {0, 1}∗, and must satisfy the following
properties:

1) Termination: All clients must decide in bounded time.
2) Agreement: All correct processes must decide on the

same value, except with negligible probability.
3) Unanimity: The decided value must be one of the inputs

(with non-negligible probability).
Instead of constructing a concatenated blockchain, processes
exchange their preferences with proofs-of-work and adopt, as
their own preference, the value that appears to have the most
votes. Under these assumptions, Miller and LaViola [MJ14]
shows that such a Bitcoin Consensus Protocol can satisfy the
presented Monte Carlo consensus properties for an adversary
that controls strictly less than half, i.e.,

∑
b∈B(t)m(b) < 50%

of the computing power. If there are no faults, then the
expected number of distinct messages is O(k), however in the
worst case, when the number of Byzantine faults is f = bn−1

2 c,
it is shown that the expected message complexity grows to
O(kn2).

Interestingly, this result regarding failure resilience for sin-
gle shot consensus of what we may consider a variant of
Nakamoto consensus does not easily translate to consensus
for multiple instances, which is required when considering a
blockchain data structure or different system states for state
machine replication. In a multiple instance model, adversaries
may adopt certain strategies such as block-withholding at-
tacks [ES14], [NKMS16] that are not relevant in the single
instance consensus model.

The Backbone protocol: In [GKL15] Garay et al. present
the first formalization of fundamental principles behind the
Bitcoin protocol, which they refer to as the Bitcoin backbone.

Its characteristics are described through two properties,
namely common prefix and chain-quality. The assumed sys-
tem model is synchronous and static with reliable commu-
nication channels, where processes cannot authenticate each
other, implying a weaker message model than oral messages.
The analysis considers trust assumptions where an adaptive
and rushing adversary controls at most f < n

2 processes,
which corresponds to the honest majority of hash-rate initially
assumed by Nakamoto.7 Rushing means that the adversary
knows the messages of all honest users in each round before
he has to decide on his strategy. Adaptive means that the
adversary can take control of different processes “on the fly”
provided it are at most f processes at any point in time. All
of the n participants are allowed the same number of queries
q per round to a random oracle as an abstraction for the hash
function used in hash based proof-of-work, and it is assumed
that the adversary has f ·q, f < n, such queries. The backbone
protocol is parametrized by three external functions, which can
be used to specify applications building on top of it.

Garay et al. base their analyses of the presented protocols on
a multiparty setting employing elements from Canetti [Can00],
[Can01] and Katz et al. [KMTZ13].

Specific applications of the backbone protocol are given
by providing analyses for Byzantine agreement and public

7For reasons of self consistency this paper uses f to refer to the number
of faulty nodes, wheres Garay et al. use the variable t instead of f



9

transaction ledgers based on top the backbone protocol. A
robust transaction ledger is characterized by the two prop-
erties persistence and liveness. Persistence states that once a
transaction goes more than k blocks “deep” into the blockchain
of one honest player, then it will be permanently included in
the blockchain of every honest with overwhelming probability.
Liveness states that all (valid) transactions will eventually
end up at a depth more than k blocks in an honest player’s
blockchain, and hence the adversary cannot selective deny the
inclusion of transactions with high probability.

Persistence and liveness can be derived from the two main
properties of the underlying backbone protocol common-prefix
and chain quality.

The common-prefix and chain-quality properties are quan-
tified by three parameters, γ, β and m, where γ and β
correspond to the collective hashing power per round of honest
nodes and the adversary respectively, and where m represents
the expected number of PoWs that may be found per round
by the participants as a whole.8 The parameter m plays a
critical role and should be small, i.e close to n

2 , so the network
synchronizes significantly faster than the rate of finding PoWs.
If if gets close to 1, i.e the network desynchronizes, achieving
a provable common prefix requires almost all participants to
be honest.

Definition 5: Properties of the backbone protocol9

1) common-prefix: If f
n−f is suitably bounded below 1,

then the local sequence of blocks of honest players has a
large common prefix, i.e. the probability for two honest
processes to maintain mutually equal prefixes of their
blockchains by removing k blocks from the top of their
local chains increases exponentially in k.

2) chain quality: It is shown that the ratio of an adversary’s
blocks in the chains of honest processes are bounded by
f

n−f , nevertheless it can be strictly bigger than β. If an
adversary controls less than 1

3 hashing power, i.e. f < n
3

it is shown that it will provably control less than 50% of
the blocks in the honest processes’ chains. Ideal chain-
quality defines that the ratio of an adversary’s blocks is
exactly proportional to its hash power f

n .
Garay et al. analyze an instantiation of Byzantine Agree-

ment (BA), namely randomized anonymous byzantine binary
consensus, based on the backbone protocol. Specifically, they
outline how the resulting protocol derives the agreement and
validity properties of consensus (with high probability) from
the common-prefix and chain-quality properties of the un-
derling backbone protocol, while the termination property of
consensus is more informally argued to be satisfied.

Definition 6: BA based on the backbone protocol
1) Agreement: There is a round after which all honest par-

ties return the same output if queried by the environment.
2) Validity: The output returned by an honest party P equals

the input of some party P ′ that is honest at the round P s
output is produced.

8Garay et al. use the variable name f instead of m.
9Note that, an updated version of the eprint also contains a third property

called chain growth that was first introduced in [KP15].

Without modifications, the resulting backbone BA protocol
requires the adversary to control f < n

3 of the hash power
in order for the validity property to hold with overwhelming
probability. Else, expanding upon initial observations from
Miller and LaViola in [MJ14], if an adversary has close to
f < n

2 hash power, validity can only be guaranteed with
constant probability. A solution to this problem for the q-
bounded setting is presented through the introduction of a so
called 2-for-1 PoW, which turns two distinct and independent
oracles into a protocol that only requires a single oracle.
Through this 2-for-1 PoW a backbone-based BA algorithm
is outlined where validity can be ensured with overwhelming
probability if f < n

2 . Garay et al. also point out that strong
validity for multi-valued BA, where the input is chosen from
set V , can be ensured if the hash power of adversary is
restricted to 1−δ

|V | .
For the instantiation of a public transaction ledger we

informally outline the persistence and liveness properties that
are shown to hold if f < n

2 . Persistence ensures that once a
transaction is included at least k blocks deep in the sequence
of blocks then any honest process will report the transaction as
stable and in the same position with overwhelming probability.
Liveness guarantees that if a transaction is provided as input to
all honest players continuously for some u consecutive rounds,
then all honest parties will report this transaction at least k
blocks from the end of the ledger. Garay et al. outline that the
proofs for these properties does not show that all of Bitcoin’s
objectives are met and, in particular, participant’s incentives
are not taken into account.

We point out that while Byzantine agreement based on
the backbone protocol requires additional modifications to
retain desirable validity properties for f < n

2 , this is not
the case for the instantiation of a public transaction ledger,
thereby outlining the possibility that the problem of providing
a transaction ledger10 may be weaker than BA.

Speed-Security Tradeoffs: In a subsequent work Ki-
ayias and Panagiotakos [KP15] extends upon the backbone
protocol from [GKL15] with performance aspects in mind, to
also capture questions regarding the security bounds of the
backbone protocol under faster block generation rates. In the
process of modeling and proving that the properties of a robust
transaction ledger hold in this setting, it is recognized that a
third property besides common-prefix and chain-quality would
be helpful to provide a measure for speed. Therefore, they
introduced a new property called chain-growth, which was
only considered implicitly before that in [GKL15]. Note that
an updated version of the e-print of [GKL15] also contains
this third property.

Definition 7: chain-growth: This property requires that the
chain of any honest participant grows by a factor of τ over
time i.e., it holds that for any s ∈ N rounds, there are at least
τ · s blocks added to the chain. This allows to quantify the
number of blocks that are added to the blockchain during any
given number of rounds.

As a result, it is shown that the security guarantees of
such protocols also hold for faster block generation rates

10Of course depending on the problem definition and system model.



10

and degrades as the block generation rate increases to more
than one block per round. A full communication round is
assumed to take 12.6 seconds, which corresponds to the
average Bitcoin block propagation time that was empirically
derived in [DW13]. The overall system model (synchronous
communication, static difficulty and hashrate) is kept the same
as in the previously outlined backbone model [GKL15].

Bitcoin-NG: In [EGSvR16] Eyal et al. define Nakamoto
consensus in the context of state machine replication. In
their model the system is comprised of a set of processes
{p1, p2, . . . , pn} = Π connected by a reliable peer-to-peer net-
work. Each process has access to a random bit source through
a (cryptographic) random oracle. Processes can generate key
pairs but no trusted PKI is assumed. A cryptographic proof-
of-work scheme is assumed, where each process p ∈ Π has
limited computational power. The mining power of process pi,
denoted by m(i), is the number of attempts per second a given
process can make when searching for a solution to the PoW
with respect to its limited compute power. At any time t a
subset of nodes B(t) ⊂ Π are Byzantine where, based on the
previous findings on selfish mining by Eyal and Sirer [ES14],
they assume an upper bound on the combined mining power
of B(t) at any time t that is:

∀t :
∑
b∈B(t)

m(b) <
1

4

∑
p∈Π

m(p)

Or, in other words, the combined mining power of Byzantine
nodes at any time is required to be less than 1

4 . In their model
Nakamoto consensus is expressed through the following three
properties:

Definition 8: Properties of Nakamoto consensus as by Eyal
et al. [EGSvR16]

1) Termination: There exists a time difference function
∆(·) such that, given a time t and a value 0 < ε < 1, the
probability is smaller than ε that at times t′, t′′ > t+∆(ε)
a node returns two different states for the machine at time
t.

2) Agreement: There exists a time difference function ∆(·)
such that, given a 0 < ε < 1, the probability that at time
t two nodes return different states for t−∆(ε) is smaller
than ε.

3) Validity: If the fraction of mining power of Byzantine
nodes is bounded by f , i.e., ∀t :

∑
b∈B(t) m(b)∑
p∈Π m(p) < f , then

the average fraction of state machine transitions that are
not inputs of honest nodes is smaller than f .

Analysis in ∆-bounded Networks: In [PSs16] Pass et
al. analyze and formally prove that the blockchain consensus
mechanism satisfies strong forms of consistency and liveness
in networks with a-priori ∆-bounded delays, i.e. partially
synchronous networks, where the adversary may delay the
delivery of any message for as long as ∆. Specifically, as long
as the adversary controls less than half of the computational
power (ρ < 1

2 ), for every ∆ there exists some sufficiently small
mining-hardness, p ≤ 1

ρn∆ , such that blockchain consensus
satisfies consistency. They also show that in fully asynchronous
network models consistency can not be satisfied without an

upper bound ∆ on the network delay, even if the adversary
only controls a tiny fraction of computational power.11

The assumed system model uses a random oracle as an ab-
straction for the computational puzzles analogous to [GKL15]
and considers adaptive corruption of participants. The network
is assumed to be fully connected, reliable, and messages are
delivered within ∆ rounds.

It is furthermore remarked that since protocol security is
shown to exist for some mining-hardness parameter p for
every n,∆, only a very rough upper-bound on the number
of participants n needs to be known, thereby suggesting the
ability to allow for a dynamic system model. However, a more
formal analysis of the dynamic setting is left for future work.

Additionally, an abstract notion of a blockchain protocol that
should satisfy the following four key properties is formally
defined:

Definition 9: Abstract blockchain
1) consistency: with overwhelming probability (in T )12, at

any point, the chains of two honest players can differ only
in the last T blocks.

2) future self-consistence: with overwhelming probability
(in T ), at any two points r, s the chains of any honest
player at r and s differ only within the last T blocks.

3) g-chain-growth: with overwhelming probability (in T ),
at any point in the execution, the chain of honest players
grows by at least T messages in the last T

g rounds; g is
called the chain-growth of the protocol.

4) the µ-chain quality: with overwhelming probability (in
T ), for any T consecutive messages in any chain held by
some honest player, the fraction of messages that were
”contributed by honest players” is at least µ.

It is demonstrated that any blockchain protocol satisfying
these properties can be used as the basis for a public ledger
that satisfies persistence and liveness properties, such as those
outlined by Garay et al. [GKL15], in a black-box manner.

On Trees, Chains and Fast Transactions: In [KP16]
Kiayias and Panagiotakos extends the upon the backbone
model from [GKL15], [KP15] to also include blockchain pro-
tocols with more tree-like structures such as GHOST [SZ13].
Thereby, they show that GHOST (trees) as well as Bitcoin
(chains) can be described in a new analysis framework that
reduces the properties of the robust transaction ledger, i.e.
common-prefix, chain quality, to a single lemma called the
fresh block lemma. Thereby, this paper presents an orthogonal
proof strategy compared to [GKL15], [KP15], [PSs16].

Definition 10: Fresh Block Lemma: At any point of the
execution and for any past sequence of s consecutive rounds,
there exists an honest block mined in these rounds, that is
contained in the chain of any honest player from this point
on.

Using this lemma, the backbone model from [GKL15] is
adapted to account for trees and is called the GHOST back-
bone, and it is proven that both GHOST and Bitcoin implement

11Specifically when ∆ = 1+δ
ρnp

for some δ > 0, where ρnp is the expected
number of blocks that an attacker can mine in a round.

12T is comparable to the parameter k of the backbone protocol and
represents the number of ”unconfirmed” blocks for which agreement does
not have to hold with high probability



11

a robust transaction ledger in the q-bounded synchronous
setting that satisfies persistence and liveness.

Sleepy Consensus in [BPS16a] Pass et al. introduce the
concept of a “sleepy” model of computation for players that
extends upon the more classical differentiation of honest and
corrupted / adversarial participants, where players can either
be online (alert) or offline (asleep). It is argued that for
“large-scale” consensus protocols with potentially millions of
participants, such as blockchain protocols, an always online
assumption is unrealistic. Their approach relates to previous
work by Micali on the construction of a distributed ledger,
where honest majority assumptions are also only extended
towards currently active participants [Mic16].

The key question that Pass et al. positively show to be
achievable through formal analysis is: “Can we design a
consensus protocol that achieves consistency and liveness as-
suming only that a majority of the online players are honest?”

In this respect the presented formalization and proofs lever-
age on the previous analysis of the Bitcoin protocol in Pass
et al. [PSs16], however the reliance on proofs-of-work is
dispensed of and a static set of participants, i.e. a permissioned
model, assumed. Specifically, the proofs-of-work are replaced
by redefining the puzzle solution to be of the form (P, t),
where P is the player’s identifier, t is the block time, and
a valid puzzle solution is H(P, t) < Dp, where H is a
random oracle and Dp is a parameter such that the hash
outcome is only smaller than Dp with probability p. To protect
against adversaries the following two additional restrictions are
imposed:

1) A valid chain must have strictly increasing block-times
2) A valid chain cannot contain any block-times for the

“future” (where “future” is adjusted to account for nodes’
clock offsets)

Furthermore, to overcome the problem of adaptive cor-
ruption and sleepiness when leader election is predictable,
inspiration is taken from Micali [Mic16]. Players each commit
to a secret seed for the random oracle H13 which enables
players to privately evaluate the puzzle solution and also prove
to other participants in zero-knowledge that the oracle was
correctly evaluated. If leaders only publish this proof as part
of their message an adversary has no better way of trying to
corrupt the next leader than to randomly select from the set of
participants.

Their system model relies, among other, on a Public-Key-
Infrastructure (PKI), the existence of a Common Random
String (CRS) and collision-resistant hash functions. A partially
synchronous timing model analogous to Interactive Turing
Machine (ITM) model [Can01] is considered and the com-
munication network is fully connected and reliable.

Two Protocols are presented and shown to satisfy the
following theorems under the assumption that a majority of
the awake players are honest:
• Theorem 1. Assume the existence of families of a

collision-resistant hash functions (CRH). Then, there ex-
ists a protocol for state-machine replication in the Bare
PKI, CRS and in the timing model, which achieves

13Which can be instantiated through a Pseudo-random function (PRF).

consistency and liveness assuming a static online schedule
and static corruptions, as long as at any point in the
execution, a majority of the awake players are honest.

• Theorem 2. Assume the existence of families of sub-
exponentially secure collision-resistant hash functions
(CRH), and enhanced trapdoor permutations (TDP). Then,
there exists a state-machine replication protocol in the
Bare PKI, CRS and timing model, which achieves con-
sistency and liveness under adaptive corruptions as long
as at any point in the execution, a majority of the awake
players are honest.

Chains of variable difficulty: In [GKL16] Garay et al.
adapts the backbone model from [GKL15] to the dynamic q-
bounded synchronous setting to account for difficulty adjust-
ments. Thereby, they show that a Bitcoin-like target recalcu-
lation function satisfies common prefix and chain quality and
consequently implements a robust transaction ledger if the
change in the number of parties is bounded over a certain
number of rounds, i.e, (γ, s)-respecting. The chain-growth
property is modeled in a lemma and referes to difficulty instead
of number of blocks compared to [KP15]. Informally, it states
that honest parties will make progress proportional to the PoW
they obtain, which ensures that honest parties advance in terms
of accumulated difficulty despite all possible actions of an
adversary. For their proof, they first define a typical execution
in which the successes of the adversary and honest parties do
not deviate too much from their expectations. Then they show
that almost all polynomially bounded execution are typical.
As a result they note that the length of a difficulty adjustment
epoch (m = 2016 in Bitcoin) is a security parameter that
should be large to provide a sufficiently small probability of
attack.

In this paper, the underlying hash function H(·) is modeled
as a random oracle to exclude the unlikely cases that a bad
event, i.e., a collision, happens in their model. This provides
the motivation for the follow up paper [GKP17].

V. NEW AND HYBRID CONSENSUS MODELS INSPIRED BY
NAKAMOTO CONSENSUS

This section gives a brief outlook of some new and hy-
brid approaches that try to unite desirable properties from
classical BFT- as well as Nakamoto consensus. On the one
hand, these are Proof-of-Stake based approaches such as
Ouroboros,Algorand, and Snow White, which are aimed at
avoiding the resource intensive Proof-of-Work mechanism,
on the other hand, we see proposals such as Thunderella,
which intends to gain the resilience and permissionlessness
of Nakamoto consensus while leveraging on the fast confir-
mation/consensus finality of traditional BFT.

In [SZ13] Sompolinsky and Zohar introduce GHOST
(Greedy Heaviest-Observed Sub-Tree) as a new branch se-
lection policy, which evaluates each chain’s weight rather
than length and allows to account for stale blocks, aiming
at reducing the time to converge to a consistent global state.
In this context, they model the network as a directed graph
G = (V,E), where the edges’ values represent the network
propagation delay between adjacent nodes in V . In [LSZ15]



12

Lewenberg et al. extends upon this concept and proposes to
restructure the blockchain into a directed acyclic graph (DAG),
increasing tolerance for large blocks with longer propagation
times and in turn possibly achieving a higher transaction
volume. Consequently, in [SLZ16] the same authors present
SPECTRE, a new DAG-based consensus protocol facilitat-
ing significantly faster transaction confirmation times than in
Bitcoin. However, in contrast to Nakamoto consensus, where
conflicts can be resolved between any pair of transactions
by deciding upon their ordering, SPECTRE can only provide
probabilistic guarantees to some limited set of transaction
pairs. As such, the time to identify the prevailing transaction
in a conflict is said to potentially be arbitrary long.

Micali et al. presents Algorand, a novel approach for
a (permissionless) Proof-of-Stake distributed ledger[Mic16],
[GHM+17]. By leveraging on the player replaceability prop-
erty of a novel BA protocol (BA?) [Mic17] and a leader/verifier
selection algorithm, which is executed privately, Algorand is
able to withstand a powerful adaptive adversary. This con-
struction allows for a strong notion of consistency, where the
probability for disagreement on the underlying ledger, rather
than being dependent on a security parameter in the number
of blocks “confirming” a particular state such as [GKL15],
[PSs16], is a configurable protocol parameter.14 The efficiency
of the protocol is based both on BA?, which the authors
describe as “the most efficient cryptographic BA protocol for
SC [synchronous complete] networks known so far”, and the
fact that the protocol is only executed by a randomly selected
subset of participants.

In [KRDO16] Kiayias et al. introduces Ouroboros, one of
the first Proof-of-Stake protocols based on a rigorous formal
security analysis that extends upon the previously outlined
backbone model of Garay et al. The paper first outlines a
static stake model, where leaders are assigned to blockchain
slots with probability proportional to their fixed stake, which
is later extended to the dynamic stake model. In both cases
the authors first abstract the leader selection process by an
ideal function that is later instantiated with a specific PVSS
based scheme. With Ouroboros Praos [DGKR17], the model
is extended to partially synchronous network settings, while
also accounting for an adaptive adversary.

Concurrently, Bentov et al. [BPS16b] presents Snow White,
a Proof-of-Stake blockchain protocol that extends upon the
previously outlined sleepy model of Pass et al. [BPS16a]. In
particular, the permissionless setting is considered by introduc-
ing a mechanism that relies on the distribution of some form
of stake, i.e. cryptographic currency units, for the periodical
rotation of the consensus committee.

In traditional Nakamoto consensus based blockchains, a
minority attacker can gain rewards higher than their fair share
by utilizing selfish mining strategies. The Fruitchain protocol
[PS16a], presented by Pass and Shi, introduces a new way
of distributing rewards, such that miners are guaranteed a
share of the overall reward approximate to their computational
power, while maintaining identical consistency and liveliness

14[Mic16] considers a parametrization corresponding to a failure probability
of F = 10−12 and F = 10−18.

properties as Bitcoin’s Nakamoto consensus. Thereby, transac-
tions are stored in so called fruits, which are linked to blocks
and require miners to perform two separate Proofs-of-Work in
parallel15. Because the ability to include old, i.e., stale fruits
has to be time-bounded, fairness is only guaranteed to within
some parameterizable ε.

Thunderella [PS17] is an improvement proposal for per-
missionless (PoW) blockchain protocols that leverages on
the notion of optimistic responsiveness to provide both, a
fast asynchronous path, as well as a synchronous fall-back
mechanism in case certain assumptions no longer hold. The
basic idea is to use the underlying blockchain’s Nakamoto
consensus to bootstrap a special player, referred to as the
accelerator, who facilitates faster transaction confirmations.
Under the optimistic assumption that 3

4 of the computational
power as well as the accelerator is honest, transactions are
confirmed as fast as the actual message delay in the network,
providing a fast path. Otherwise, the protocol falls back to the
regular slow path (with honest majority hashrate assumption)
until, eventually, conditions for the optimistic fast path can be
re-established.

VI. CONCLUDING REMARKS

It is becoming evermore clear that Bitcoin, and distributed
ledger technologies in general, are having a significant impact
on various research communities. In this regard we would like
to draw an analogy to the early research on the consensus
problem that was outlined at the beginning of this work.
Based on the desire to solve a practical problem, namely
the synchronization of clocks, stabilization of input from
sensors, and agreement on results of diagnostic tests, Pease et
al. [PSL80] identified a fundamental problem in fault-tolerant
and distributed computing. Similarly, Bitcoin presents a prac-
tical solution to an extension of this fundamental consensus
problem, namely how to reach agreement in a large-scale
decentralized system if some participants behave arbitrarily
or even maliciously.

Understanding the fundamental mechanisms and security
properties of this new class of Nakamoto consensus algorithms
is proving to become increasingly important, as their utilization
is being considered for a broad range of applications.

In consideration of the many new proposals for alternative
consensus mechanisms and distributed ledger designs that
have not yet experienced as much rigorous security analysis
as Bitcoin has endured, our analysis of the current research
efforts towards the formalization of Nakamoto consensus will
hopefully aid in bridging this gap, and motivate protocol
designers to work closely together with the computer security
and distributed systems research community.

15This is achieved by the 2-for-1 trick described by Garay et al. [GKL16]



13

TABLE I. NON-EXHAUSTIVE TIMELINE OF PAPERS RELATED TO THE ANALYSIS OF NAKAMOTO CONSENSUS

Date† Title Ref. Category Overview

2008 Dec Bitcoin: A Peer-to-Peer Electronic Cash
System

[Nak08a] consensus protocol,
PoW

Initial informal description of Nakamoto style consensus. Simulation via Binomial
Random Walk.

2013 Nov Majority is not enough: Bitcoin mining
is vulnerable

[ES14] security analysis Introduces selfish mining attacks and shows Nakamoto consensus is not incentive
compatible.

2013 Dec Accelerating Bitcoin’s Transaction Pro-
cessing. Fast Money Grows on Trees,
Not Chains

[SZ13] consensus protocol,
PoW

Introduces GHOST, a new blockchain branch selection policy, which reduces the time
to converge to a single consistent chain.

2014 Feb Analysis of Hashrate-Based Double
Spending

[Ros14] security analysis Evaluates protection against double-spending and derives success probabilities. Up-
dates Nakamoto’s original protocol description.

2014 Apr Anonymous byzantine consensus from
moderately-hard puzzles: A model for
bitcoin

[MJ14] formalization Gives the first formal presentation of Bitcoin’s consensus mechanism in the context
of single-shot instances of Byzantine consensus.

2014 Sep The Bitcoin Backbone Protocol: Analy-
sis and Applications

[GKL15] formalization Presents the first formalization of fundamental principles behind the Bitcoin protocol.

2015 Jun Optimal selfish mining strategies in Bit-
coin

[SSZ15] security analysis Derives ε-optimal selfish mining strategies, lowering the attack threshold with regards
to computational power and extends the initial selfish mining model to consider
network delays.

2015 Jan Inclusive Blockchain Protocols [LSZ15] consensus protocol,
PoW, DAG

Proposes a DAG-based chain structure, allowing blocks to reference multiple prede-
cessors this way potentially increasing the transaction volume.

2015 Mar Eclipse Attacks on Bitcoin’s Peer-to-
Peer Network

[HKZG15] security analysis Describes eclipse attacks on Bitcoin’s peer-to-peer network, where an adversary
partitions the network to control communication between segments.

2015 Jun Tampering with the Delivery of Blocks
and Transactions in Bitcoin

[GRKC15] security analysis Shows issues, potential attacks and countermeasures of Bitcoin’s current optimizations
and scalability measures.

2015 Jul Optimal selfish mining strategies in Bit-
coin

[SSZ15] security analysis Derives ε-optimal selfish mining policies and evaluates selfish mining in the presence
of communication delays.

2015 Aug Stubborn mining: Generalizing selfish
mining and combining with an eclipse
attack

[NKMS16] security analysis Introduces stubborn mining strategies, outperforming selfish mining, and composed
mining/network level eclipse attacks.

2015 Oct Speed-Security Tradeoffs in Blockchain
Protocols

[KP15] security analysis,
formalization

Extends upon the backbone protocol model and introduces the chain growth property.

2015 Oct The quest for scalable blockchain fabric:
Proof-of-work vs. BFT replication

[Vuk15] systematization Outlines differences between “classical” BFT and Nakamoto consensus approaches.

2015 Oct Bitcoin-NG: A Scalable Blockchain Pro-
tocol

[EGSvR16] consensus protocol,
PoW

Introduces Bitcoin-NG, where transactions are contained in microblocks, published by
a leader/miner between consecutive normal or key blocks.

2016 Feb The honey badger of BFT protocols [MXC+16] consensus protocol,
BFT

Describes a new (randomized) BFT consensus protocol specifically targeted towards
an application for blockchains/many participants.

2016 May Analysis of the Blockchain Protocol in
Asynchronous Networks

[PSs16] formalization Shows blockchain consensus mechanisms satisfy strong forms of consistency and
liveness in partially sync. networks. Introduces the abstract notion of a blockchain with
consistency, future self-consistence, g-chain-growth and µ-chain quality properties.

2016 May Bitcoin’s Security Model Revisited [SZ16] security analysis Analyzes Bitcoin’s security in regard to double spending attacks.

2016 Jun On Trees, Chains and Fast Transactions
in the Blockchain

[KP16] formalization Presents an extension of the backbone model to include tree-like protocols, such as
GHOST.

2016 Jun On the Security and Performance of
Proof of Work Blockchains

[GKW+16] security analysis Extends selfish mining and double spending models to account for mining costs.
Provides empirical and simulation analysis of the impacts of block interval and size
parametrization on attack success thresholds.

2016 Jul ALGORAND: The Efficient and Demo-
cratic Ledger

[Mic16] consensus protocol,
PoS, BFT

Describes a PoS blockchain protocol using novel BA protocol with private
leader/verifier selection in an adaptive adversary model.

2016 Sep Ouroboros: A Provably Secure Proof-of-
Stake Blockchain Protocol

[KRDO16] consensus protocol,
PoS

Introduces a new PoS blockchain protocol and provides formal security proofs that
extend upon the backbone model.

2016 Sep The sleepy model of consensus [BPS16a] formalization Introduction of the sleepy model of consensus and a consensus protocol which achieves
consistency and liveness, given the majority of online nodes are behaving honestly.
Builds upon [PSs16].

2016 Sep Hybrid Consensus: Scalable Permission-
less Consensus

[PS16b] consensus protocol,
PoW, BFT

Analyzes blockchain performance limits, introduces of the responsiveness property and
describes a responsive consensus protocol in the permissionless setting.

2016 Sep Snow White: Provably Secure Proofs of
Stake

[BPS16b] consensus protocol,
PoS

Analyzes requirements for PoS blockchain protocols and presents a new approach
which provably archvies these requirements, extending upon [BPS16a].

2016 Sep Fruitchains: A Fair Blockchain [PS16a] consensus protocol,
PoW

Introduces a new way of distributing rewards, such that miners are guaranteed a share
of the overall reward approximate to their computational power, thereby addressing
the issue of selfish mining.

2016 Nov The Bitcoin Backbone Protocol with
Chains of Variable Difficulty

[GKL16] formalization Adopts the backbone protocol to the dynamic q-bounded synchronous setting to account
for difficulty adjustments

2016 Dec SPECTRE: A Fast and Scalable Cryp-
tocurrency Protocol

[SLZ16] consensus protocol,
PoW, DAG

Introduces a new DAG-based consensus protocol, focusing on faster transaction
confirmation times.

2016 Dec Solidus: A Blockchain Protocol Based
on Reconfigurable Byzantine Consensus

[AMN+16] consensus protocol,
PoW, BFT

Presents a new protocol, which uses a combination of PoW and PBFT to achieve
scalable permissionless Byzantine consensus

2017 Jun Ouroboros Praos: An adaptively-secure,
semi-synchronous proof-of-stake proto-
col

[DGKR17] consensus protocol,
PoS

Extends [KRDO16], considering semi-synchronous communication and an adaptive
adversary model.

2017 Jul Blockchain Consensus Protocols in the
Wild

[CV17] security analysis Outlines the necessity to formalize trust assumptions and security guarantees as well
as analyzes deployed blockchain protocols.

2017 Sep Thunderella: Blockchains with Opti-
mistic Instant Confirmation

[PS17] consensus protocol,
PoW

Introduces a PoW blockchain protocol with optimistic fast confirmations in case of
3/4 honest nodes and honest leader.

†Dates listed correspond to the time the publication was first made available, i.e., in some cases as a pre-print, to paint a more coherent picture.



14

REFERENCES

[AAC+05] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement, Mike
Dahlin, Jean-Philippe Martin, and Carl Porth. Bar fault
tolerance for cooperative services. In ACM SIGOPS operating
systems review, volume 39, pages 45–58. ACM, 2005.

[ABSFG08] Eduardo A Alchieri, Alysson Neves Bessani, Joni Silva Fraga,
and Fabı́ola Greve. Byzantine consensus with unknown par-
ticipants. In Proceedings of the 12th International Conference
on Principles of Distributed Systems, pages 22–40. Springer-
Verlag, 2008.

[AFJ06] Dana Angluin, Michael J Fischer, and Hong Jiang. Stabilizing
consensus in mobile networks. In Distributed Computing in
Sensor Systems, pages 37–50. Springer, 2006.

[AJK05] James Aspnes, Collin Jackson, and Arvind Krishnamurthy. Ex-
posing computationally-challenged byzantine impostors. De-
partment of Computer Science, Yale University, New Haven,
CT, Tech. Rep, 2005.

[AMN+16] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and
Alexander Spiegelman. Solidus: An incentive-compatible
cryptocurrency based on permissionless byzantine consensus.
https://arxiv.org/abs/1612.02916, Dec 2016. Accessed: 2017-
02-06.

[AS98] Yair Amir and Jonathan Stanton. The spread wide area group
communication system. Technical report, TR CNDS-98-4, The
Center for Networking and Distributed Systems, The Johns
Hopkins University, 1998.

[Bag00] Walter Bagehot. The english constitution, volume 3. Kegan
Paul, Trench, Trübner, 1900.

[Ban98] Bela Ban. Design and implementation of a reliable group
communication toolkit for java, 1998.

[BBRTP07] Roberto Baldoni, Marin Bertier, Michel Raynal, and Sara
Tucci-Piergiovanni. Looking for a definition of dynamic
distributed systems. In International Conference on Parallel
Computing Technologies, pages 1–14. Springer, 2007.

[Bit] Bitcoin community. Bitcoin-core source code. https://github.
com/bitcoin/bitcoin. Accessed: 2015-06-30.

[BJ87] Ken Birman and Thomas Joseph. Exploiting virtual synchrony
in distributed systems. volume 21. ACM, 1987.

[BMC+15] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind
Narayanan, Joshua A Kroll, and Edward W Felten. Sok:
Research perspectives and challenges for bitcoin and cryp-
tocurrencies. In IEEE Symposium on Security and Privacy,
2015.

[BO83] Michael Ben-Or. Another advantage of free choice (extended
abstract): Completely asynchronous agreement protocols. In
Proceedings of the second annual ACM symposium on Princi-
ples of distributed computing, pages 27–30. ACM, 1983.

[BPS16a] Iddo Bentov, Rafael Pass, and Elaine Shi. The sleepy model
of consensus. https://eprint.iacr.org/2016/918.pdf, 2016. Ac-
cessed: 2016-11-08.

[BPS16b] Iddo Bentov, Rafael Pass, and Elaine Shi.
Snow white: Provably secure proofs of stake.
https://eprint.iacr.org/2016/919.pdf, 2016. Accessed: 2016-11-
08.

[BR09] François Bonnet and Michel Raynal. The price of anonymity:
Optimal consensus despite asynchrony, crash and anonymity.
In Proceedings of the 23rd international conference on Dis-
tributed computing, pages 341–355. Springer-Verlag, 2009.

[Bre00] EA Brewer. Towards robust distributed systems. abstract. In
Proceedings of the Nineteenth Annual ACM Symposium on
Principles of Distributed Computing, page 7, 2000.

[BSAB+17] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam,
Sarah Azouvi, Patrick McCorry, Sarah Meiklejohn, and
George Danezis. Consensus in the age of blockchains.
arXiv:1711.03936, 2017. Accessed:2017-12-11.

[BT16] Zohir Bouzid and Corentin Travers. Anonymity-preserving
failure detectors. In International Symposium on Distributed
Computing, pages 173–186. Springer, 2016.

[Can00] Ran Canetti. Security and composition of multiparty crypto-
graphic protocols. Journal of CRYPTOLOGY, 13(1):143–202,
2000.

[Can01] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Foundations of
Computer Science, 2001. Proceedings. 42nd IEEE Symposium
on, pages 136–145. IEEE, 2001.

[CFN90] David Chaum, Amos Fiat, and Moni Naor. Untraceable
electronic cash. In Proceedings on Advances in cryptology,
pages 319–327. Springer-Verlag New York, Inc., 1990.

[CGR07] Tushar D Chandra, Robert Griesemer, and Joshua Redstone.
Paxos made live: an engineering perspective. In Proceedings
of the twenty-sixth annual ACM symposium on Principles of
distributed computing, pages 398–407. ACM, 2007.

[CGR11] Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. In-
troduction to reliable and secure distributed programming.
Springer Science & Business Media, 2011.

[CKS00] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random
oracles in constantinople: Practical asynchronous byzantine
agreement using cryptography. In Proceedings of the nine-
teenth annual ACM symposium on Principles of distributed
computing, pages 123–132. ACM, 2000.

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault
tolerance. In OSDI, volume 99, pages 173–186, 1999.

[CL02] Miguel Castro and Barbara Liskov. Practical byzantine fault
tolerance and proactive recovery. ACM Transactions on Com-
puter Systems (TOCS), 20(4):398–461, 2002.

[CNV04] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo.
How to tolerate half less one byzantine nodes in practical
distributed systems. In Reliable Distributed Systems, 2004.
Proceedings of the 23rd IEEE International Symposium on,
pages 174–183. IEEE, 2004.

[Coo09] J. L. Coolidge. The gambler’s ruin. Annals of Mathematics,
10(4):181–192, 1909.

[Cri91] Flaviu Cristian. Reaching agreement on processor-group
membrship in synchronous distributed systems. Distributed
Computing, 4(4):175–187, 1991.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure
detectors for reliable distributed systems. volume 43, pages
225–267. ACM, 1996.

[CV17] Christian Cachin and Marko Vukolić. Blockchain con-
sensus protocols in the wild. arXiv:1707.01873, 2017.
Accessed:2017-09-26.

[CVL10] Miguel Correia, Giuliana S Veronese, and Lau Cheuk Lung.
Asynchronous byzantine consensus with 2f+ 1 processes. In
Proceedings of the 2010 ACM symposium on applied comput-
ing, pages 475–480. ACM, 2010.

[CVNV11] Miguel Correia, Giuliana Santos Veronese, Nuno Ferreira
Neves, and Paulo Verissimo. Byzantine consensus in asyn-
chronous message-passing systems: a survey. volume 2, pages
141–161. Inderscience Publishers, 2011.

[CWA+09] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael
Dahlin, and Mirco Marchetti. Making byzantine fault tolerant
systems tolerate byzantine faults. In NSDI, volume 9, pages
153–168, 2009.

[DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On
the minimal synchronism needed for distributed consensus.
volume 34, pages 77–97. ACM, 1987.

[Dei] Wei Dei. b-money. http://www.weidai.com/bmoney.txt. Ac-
cessed on 03/03/2017.

[DGFGK10] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui,
and Anne-Marie Kermarrec. Brief announcement: Byzantine



15

agreement with homonyms. In Proceedings of the twenty-
second annual ACM symposium on Parallelism in algorithms
and architectures, pages 74–75. ACM, 2010.

[DGG02] Assia Doudou, Benoı̂t Garbinato, and Rachid Guerraoui. En-
capsulating failure detection: From crash to byzantine failures.
In International Conference on Reliable Software Technolo-
gies, pages 24–50. Springer, 2002.

[DGKR17] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexan-
der Russell. Ouroboros praos: An adaptively-secure, semi-
synchronous proof-of-stake protocol. Cryptology ePrint
Archive, Report 2017/573, 2017. Accessed: 2017-06-29.

[DLP+86] Danny Dolev, Nancy A Lynch, Shlomit S Pinter, Eugene W
Stark, and William E Weihl. Reaching approximate agreement
in the presence of faults. volume 33, pages 499–516. ACM,
1986.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Con-
sensus in the presence of partial synchrony. volume 35, pages
288–323. ACM, 1988.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or
combatting junk mail. In Annual International Cryptology
Conference, pages 139–147. Springer, 1992.

[Dol81] Danny Dolev. Unanimity in an unknown and unreliable
environment. In Foundations of Computer Science, 1981.
SFCS’81. 22nd Annual Symposium on, pages 159–168. IEEE,
1981.

[Dou02] John R Douceur. The sybil attack. In International Workshop
on Peer-to-Peer Systems, pages 251–260. Springer, 2002.

[DSU04] Xavier Défago, André Schiper, and Péter Urbán. Total order
broadcast and multicast algorithms: Taxonomy and survey.
ACM Computing Surveys (CSUR), 36(4):372–421, 2004.

[DW13] Christian Decker and Roger Wattenhofer. Information propaga-
tion in the bitcoin network. In Peer-to-Peer Computing (P2P),
2013 IEEE Thirteenth International Conference on, pages 1–
10. IEEE, 2013.

[EGSvR16] Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and Robbert
van Renesse. Bitcoin-ng: A scalable blockchain protocol.
In 13th USENIX Security Symposium on Networked Systems
Design and Implementation (NSDI’16). USENIX Association,
Mar 2016.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin
mining is vulnerable. In Financial Cryptography and Data
Security, pages 436–454. Springer, 2014.

[Fin04] Hal Finney. Reusable proofs of work (rpow). http://web.
archive.org/web/20071222072154/http://rpow.net/, 2004. Ac-
cessed: 2016-04-31.

[Fis83] Michael J Fischer. The consensus problem in unreliable dis-
tributed systems (a brief survey). In International Conference
on Fundamentals of Computation Theory, pages 127–140.
Springer, 1983.

[FL82] Michael J FISCHER and Nancy A LYNCH. A lower bound
for the time to assure interactive consistency. volume 14, Jun
1982.

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson.
Impossibility of distributed consensus with one faulty process.
volume 32, pages 374–382. ACM, 1985.

[Fuz08] Rachele Fuzzati. A formal approach to fault tolerant dis-
tributed consensus. PhD thesis, EPFL, 2008.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos,
and Nickolai Zeldovich. Algorand: Scaling byzantine agree-
ments for cryptocurrencies. Cryptology ePrint Archive, Report
2017/454, 2017. Accessed: 2017-06-29.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The
bitcoin backbone protocol: Analysis and applications. In
Advances in Cryptology-EUROCRYPT 2015, pages 281–310.
Springer, 2015.

[GKL16] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The
bitcoin backbone protocol with chains of variable difficulty.
http://eprint.iacr.org/2016/1048.pdf, 2016. Accessed: 2017-02-
06.

[GKP17] Juan A. Garay, Aggelos Kiayias, and Giorgos Panagiotakos.
Proofs of work for blockchain protocols. Cryptology ePrint
Archive, Report 2017/775, 2017. http://eprint.iacr.org/2017/
775.

[GKQV10] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko
Vukolić. The next 700 bft protocols. In Proceedings of the 5th
European conference on Computer systems, pages 363–376.
ACM, 2010.

[GKTZ12] Adam Groce, Jonathan Katz, Aishwarya Thiruvengadam, and
Vassilis Zikas. Byzantine agreement with a rational adversary.
pages 561–572. Springer, 2012.

[GKW+16] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios
Glykantzis, Hubert Ritzdorf, and Srdjan Capkun. On the
security and performance of proof of work blockchains. https:
//eprint.iacr.org/2016/555.pdf, 2016. Accessed: 2016-08-10.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant web
services. volume 33, pages 51–59. ACM, 2002.

[GRKC15] Arthur Gervais, Hubert Ritzdorf, Ghassan O Karame, and
Srdjan Capkun. Tampering with the delivery of blocks and
transactions in bitcoin. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Se-
curity, pages 692–705. ACM, 2015.

[Her88] Maurice P Herlihy. Impossibility and universality results for
wait-free synchronization. In Proceedings of the seventh an-
nual ACM Symposium on Principles of distributed computing,
pages 276–290. ACM, 1988.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Trans-
actions on Programming Languages and Systems (TOPLAS),
13(1):124–149, 1991.

[HKZG15] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon
Goldberg. Eclipse attacks on bitcoin’s peer-to-peer network.
In 24th USENIX Security Symposium (USENIX Security 15),
pages 129–144, 2015.

[Hoe07] Jaap-Henk Hoepman. Distributed double spending prevention.
In Security Protocols Workshop, pages 152–165. Springer,
2007.

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach
to fault-tolerant broadcasts and related problems. Cornell
University Technical Report 94-1425, 1994.

[IT08] Hideaki Ishii and Roberto Tempo. Las vegas randomized al-
gorithms in distributed consensus problems. In 2008 American
Control Conference, pages 2579–2584. IEEE, 2008.

[JB99] Ari Juels and John G Brainard. Client puzzles: A cryptographic
countermeasure against connection depletion attacks. In NDSS,
volume 99, pages 151–165, 1999.

[KMMS01] Kim Potter Kihlstrom, Louise E Moser, and P Michael Melliar-
Smith. The securering group communication system. ACM
Transactions on Information and System Security (TISSEC),
4(4):371–406, 2001.

[KMMS03] Kim Potter Kihlstrom, Louise E Moser, and P Michael Melliar-
Smith. Byzantine fault detectors for solving consensus. vol-
ume 46, pages 16–35. Br Computer Soc, 2003.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis
Zikas. Universally composable synchronous computation. In
TCC, volume 7785, pages 477–498. Springer, 2013.

[KP15] Aggelos Kiayias and Giorgos Panagiotakos. Speed-security
tradeoff s in blockchain protocols. https://eprint.iacr.org/2015/
1019.pdf, Oct 2015. Accessed: 2016-10-17.

[KP16] Aggelos Kiayias and Giorgos Panagiotakos. On trees, chains



16

and fast transactions in the blockchain. http://eprint.iacr.org/
2016/545.pdf, 2016. Accessed: 2017-02-06.

[KRDO16] Aggelos Kiayias, Alexander Russell, Bernardo
David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol.
https://pdfs.semanticscholar.org/1c14/549f7ba7d6a000d79a7d12255eb11113e6fa.pdf,
2016. Accessed: 2017-02-20.

[Lam84] Leslie Lamport. Using time instead of timeout for fault-tolerant
distributed systems. volume 6, pages 254–280. ACM, 1984.

[Lam98] Leslie Lamport. The part-time parliament. volume 16, pages
133–169. ACM, 1998.

[LCW+06] Harry C Li, Allen Clement, Edmund L Wong, Jeff Napper,
Indrajit Roy, Lorenzo Alvisi, and Michael Dahlin. Bar gossip.
In Proceedings of the 7th symposium on Operating systems
design and implementation, pages 191–204. USENIX Associ-
ation, 2006.

[LSM06] Brian Neil Levine, Clay Shields, and N Boris Margolin. A sur-
vey of solutions to the sybil attack. University of Massachusetts
Amherst, Amherst, MA, 7, 2006.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The
byzantine generals problem. volume 4, pages 382–401. ACM,
1982.

[LSZ15] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. In-
clusive block chain protocols. In Financial Cryptography and
Data Security, pages 528–547. Springer, 2015.

[LTKS15] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena.
Demystifying incentives in the consensus computer. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 706–719. ACM, 2015.

[Lyn96] Nancy A Lynch. Distributed algorithms. Morgan Kaufmann,
1996.

[Mic16] Silvio Micali. Algorand: The efficient and democratic ledger.
http://arxiv.org/abs/1607.01341, 2016. Accessed: 2017-02-09.

[Mic17] Silvio Micali. Byzantine agreement, made trivial.
https://people.csail.mit.edu/silvio/SelectedApr 2017.
Accessed:2018-02-21.

[MJ14] A Miller and LaViola JJ. Anonymous byzantine consensus
from moderately-hard puzzles: A model for bitcoin. https:
//socrates1024.s3.amazonaws.com/consensus.pdf, 2014. Ac-
cessed: 2016-03-09.

[MMRT03] Dahlia Malkhi, Michael Merritt, Michael K Reiter, and Gadi
Taubenfeld. Objects shared by byzantine processes. volume 16,
pages 37–48. Springer, 2003.

[MPR01] Hugo Miranda, Alexandre Pinto, and Luıs Rodrigues. Appia,
a flexible protocol kernel supporting multiple coordinated
channels. In Distributed Computing Systems, 2001. 21st
International Conference on., pages 707–710. IEEE, 2001.

[MR97] Dahlia Malkhi and Michael Reiter. Unreliable intrusion de-
tection in distributed computations. In Computer Security
Foundations Workshop, 1997. Proceedings., 10th, pages 116–
124. IEEE, 1997.

[MRT00] Achour Mostefaoui, Michel Raynal, and Frédéric Tronel. From
binary consensus to multivalued consensus in asynchronous
message-passing systems. Information Processing Letters,
73(5-6):207–212, 2000.

[MXC+16] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn
Song. The honey badger of bft protocols. https://eprint.iacr.
org/2016/199.pdf, 2016. Accessed: 2017-01-10.

[Nak08a] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. https://bitcoin.org/bitcoin.pdf, Dec 2008. Accessed:
2015-07-01.

[Nak08b] Satoshi Nakamoto. Bitcoin p2p e-cash paper, 2008.
[Nar16] Narayanan, Arvind and Bonneau, Joseph and

Felten, Edward and Miller, Andrew and Goldfeder,
Steven. Bitcoin and cryptocurrency technologies.

https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/
princeton bitcoin book.pdf?a=1, 2016. Accessed: 2016-03-29.

[Nei94] Gil Neiger. Distributed consensus revisited. Information
processing letters, 49(4):195–201, 1994.

[NG16] Christopher Natoli and Vincent Gramoli. The blockchain
anomaly. In Network Computing and Applications (NCA), 2016
IEEE 15th International Symposium on, pages 310–317. IEEE,
2016.

[NKMS16] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi.
Stubborn mining: Generalizing selfish mining and combining
with an eclipse attack. In 1st IEEE European Symposium on
Security and Privacy, 2016. IEEE, 2016.

[PS16a] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain.
http://eprint.iacr.org/2016/916.pdf, 2016. Accessed: 2016-11-
08.

[PS16b] Rafael Pass and Elaine Shi. Hybrid consensus: Scalable
permissionless consensus. https://eprint.iacr.org/2016/917.pdf,
Sep 2016. Accessed: 2016-10-17.

[PS17] Rafael Pass and Elaine Shi. Thunderella: Blockchains with
optimistic instant confirmation. Cryptology ePrint Archive,
Report 2017/913, 2017. Accessed:2017-09-26.

[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching
agreement in the presence of faults. volume 27, pages 228–
234. ACM, 1980.

[PSs16] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the
blockchain protocol in asynchronous networks. http://eprint.
iacr.org/2016/454.pdf, 2016. Accessed: 2016-08-01.

[Rab83] Michael O Rabin. Randomized byzantine generals. In Foun-
dations of Computer Science, 1983., 24th Annual Symposium
on, pages 403–409. IEEE, 1983.

[Rei96] Michael K Reiter. A secure group membership protocol.
volume 22, page 31, 1996.

[Ric93] Aleta M Ricciardi. The group membership problem in asyn-
chronous systems. PhD thesis, Cornell University, 1993.

[Ros14] M. Rosenfeld. Analysis of hashrate-based double spending.
http://arxiv.org/abs/1402.2009, 2014. Accessed: 2016-03-09.

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock
puzzles and timed-release crypto. 1996.

[Sch90] Fred B Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. volume 22, pages 299–
319. ACM, 1990.

[SLZ16] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spec-
tre: A fast and scalable cryptocurrency protocol. Cryptology
ePrint Archive, Report 2016/1159, 2016. Accessed: 2017-02-
20.

[SSZ15] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar.
Optimal selfish mining strategies in bitcoin. http://arxiv.org/
pdf/1507.06183.pdf, 2015. Accessed: 2016-08-22.

[SW16] David Stolz and Roger Wattenhofer. Byzantine agreement with
median validity. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 46. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

[Swa15] Tim Swanson. Consensus-as-a-service: a brief report on
the emergence of permissioned, distributed ledger sys-
tems. http://www.ofnumbers.com/wp-content/uploads/2015/
04/Permissioned-distributed-ledgers.pdf, Apr 2015. Accessed:
2017-10-03.

[SZ13] Yonatan Sompolinsky and Aviv Zohar. Accelerating bitcoin’s
transaction processing. fast money grows on trees, not chains,
2013.

[SZ16] Yonatan Sompolinsky and Aviv Zohar. Bitcoin’s security
model revisited. http://arxiv.org/pdf/1605.09193, 2016. Ac-
cessed: 2016-07-04.



17

[Sza14] Nick Szabo. The dawn of trustworthy comput-
ing. http://unenumerated.blogspot.co.at/2014/12/
the-dawn-of-trustworthy-computing.html, 2014. Accessed:
2017-12-01.

[TS16] Florian Tschorsch and Björn Scheuermann. Bitcoin and
beyond: A technical survey on decentralized digital currencies.
In IEEE Communications Surveys Tutorials, volume PP, pages
1–1, 2016.

[VCB+13] Giuliana Santos Veronese, Miguel Correia, Alysson Neves
Bessani, Lau Cheuk Lung, and Paulo Verissimo. Efficient
byzantine fault-tolerance. volume 62, pages 16–30. IEEE,
2013.

[Ver03] Paulo Verı́ssimo. Uncertainty and predictability: Can they be
reconciled? In Future Directions in Distributed Computing,
pages 108–113. Springer, 2003.

[Vuk15] Marko Vukolić. The quest for scalable blockchain fabric:
Proof-of-work vs. bft replication. In International Workshop on
Open Problems in Network Security, pages 112–125. Springer,
2015.

[Vuk16] Marko Vukolic. Eventually returning to strong
consistency. https://pdfs.semanticscholar.org/a6a1/
b70305b27c556aac779fb65429db9c2e1ef2.pdf, 2016.
Accessed: 2016-08-10.

[XWS+17] Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch,
Len Bass, Cesare Pautasso, and Paul Rimba. A taxonomy of
blockchain-based systems for architecture design. In Software
Architecture (ICSA), 2017 IEEE International Conference on,
pages 243–252. IEEE, 2017.

[YHKC+16] Jesse Yli-Huumo, Deokyoon Ko, Sujin Choi, Sooyong Park,
and Kari Smolander. Where is current research on blockchain
technology? – a systematic review. volume 11, page e0163477.
Public Library of Science, 2016.

[ZP17] Ren Zhang and Bart Preneel. On the necessity of a prescribed
block validity consensus: Analyzing bitcoin unlimited mining
protocol. http://eprint.iacr.org/2017/686, 2017. Accessed:
2017-07-20.


