
On the feasibility of an ECDLP algorithm

Sergey Grebnev∗

HSE Tikhonov Moscow Institute of Electronics and Mathematics
(MIEM HSE)

Saturday 28th April, 2018

Abstract

We study the properties of an algorithm for solving the elliptic curve discrete
logarithm problem presented by A. Yu. Nesterenko at the CTCrypt 2015 session. We
show that for practically important instances of the problem its average complexity
is not less than that of Pollard’s ρ-method.

Keywords: elliptic curves, discrete logarithm problem, multiplicative or-
ders, Pollard’s lambda, Pollard’s rho.

1 Introduction

For an elliptic curve E given over the field GF (p) by the equation

y2 = x3 + ax+ b, (1)

we define the discrete logarithm problem: for given P,Q ∈ E(GF (p)), find

x : 0 ≤ x ≤ #E(GF (p)) such that Q = xP, (2)

if one exists.
The problem is believed to be computationally hard: the best generic

algorithm, Pollard’s ρ-method proposed in [4], as well as its efficient paral-
leling [7], both have the asymptotic complexity of O(#E(GF (p))) elliptic

∗sgrebnev@hse.ru

1

curve additions. Therefore, operations in the group of points of an elliptic
curve allow to implement a number of cryptographic primitives, e.g. digital
signature schemes such as GOST R 34.10-2012 a.k.a. ECRDSA, ECDSA,
EdDSA etc.

In 2016 A. Yu. Nesterenko proposed an algorithm which exploits the
properties of the multiplicative group modulo q, where q is the prime order
of a subgroup of the group of points of an elliptic curve, to speed up the
computation of the discrete logarithm problem for x with a small multi-
plicative order modulo #E(GF (p)).

We proceed with the description of the algorithm, study its complexity
and briefly discuss its applicability to the real-world cryptosystems.

2 Discrete logarithm using the multiplicative prop-

erties of the variable

The algorithm proposed in [3] exploits the properties of the multiplicative
group modulo a prime q. We recall the algorithm following the original
paper.

Without loss of generality we suppose that #E(GF (p)) = q, with q
prime.

For an integer x coprime to a prime q its order modulo q is defined as
an integer r such that

xr ≡ 1 (mod q) and xl 6≡ 1 (mod q), for each 1 ≤ l < r.

We have that r|(q − 1). Hence, there exist α and n such that

αn ≡ x (mod q), 0 ≤ n < r. (3)

We have α ≡ g
q−1
r (mod q), where g is a primitive root modulo q.

Now we use equation (3) to rewrite (2) as

αnP = Q, (4)

so by finding n we can determine x.

2

We put h = d
√
re and write n as n1h−n0, where 0 ≤ n0 < h, 0 < n1 ≤ h.

Then we have for (4)
(αh)n1P = αn0Q;

now, by Hellman’s method [2], we determine n0, n1 to find n and x. The
procedure requires at most 2h scalar multiplications and O(

√
q) memory.

For practical evaluation the paper [3] proposes a modification of Pol-
lard’s λ-method.

We fix an integer s = dlog2 re, choose random ξ0, . . . , ξs−1 such that
0 < ξi < r, i = 0, . . . , s− 1, and define a map f : E → E in the following
manner. For a point R = (xR, yR) ∈ E let

f(R) = ζiR, where i ≡ xR (mod s), ζi ≡ aξi (mod q). (5)

We may consider f as a random map.
At the stage I of the algorithm we fin an integer β and construct the

orbit of P under the map f , that is, the finite sequence

Rk+1 = f(Rk), R0 = P, k = 0, 1 . . . , β. (6)

We have that

Rk+1 = ζkRk = ζkζk−1Rk−1 = · · · = µk+1P,

where µk+1 ≡
∏k

j=0 ζj (mod q), and ζj are pseudorandom values from the
set defined by (5).

Starting from an index k0, we store the set S of points Rk0+1, . . ., Rk0+β

and the corresponding values µk0+1, . . . , µk0+β. We call these points ¡¡traps¿¿,
following [4], and S is the ¡¡trap-set¿¿.

At the stage II of the algorithm we construct the orbit of a point U0 =
αξQ for a random ξ such that 0 < ξ < r, under the map f :

Uk+1 = f(Uk), U0 = αξQ, k = 0, 1, . . . , 0 < ξ < r. (7)

Now we also have that the following relationships hold:

Uk+1 = ζkUk = ζkζk−1Uk−1 = · · · = νk+1Q,

where νk+1 ≡ αξ
∏k

j=0 ζj (mod q).

3

Now for every point Uk we check whether Uk ∈ S. If for an index j we
have that

µjP = Pj = Uk = νkQ,

we conclude that µj ≡ νkx (mod q), and hence

x ≡ µjν
−1
k (mod q).

If we have failed to find a trap among all the indexes k ≤ h, we restart
the stage II of the algorithm with another random value ξ such that 0 <
ξ < r.

3 Complexity analysis

Recall that for Pollard’s ρ-method we have (see [4, 6]) the following com-
plexity estimate independent of x:√

πq

2#G
, (8)

elliptic curve points additions, where G is the group of efficiently com-
putable automorphisms.

The automorphisms may be exploited for the method described above
just like the Pollard’s ρ: we define the map f on the equivalency classes
E(GF (p))/G and fix a specific representative of an equivalence class to
store traps.

Thus, for a given unknown x such that ordq x = r the algorithm de-
scribed in section 2 has the complexity

T (x) =

√
π ordq x

2#G
· log2 q (9)

where the factor log2 q is determined by the complexity of the scalar mul-
tiplication αξiP , see [3].

We suppose that the group G is generated by the map ψ : P 7→ −P
and thus #G = 2. This is always the case for a non-anomalous, non-
supersingular Weierstrass curve (1) defined over GF (p) with p > 3, where

4

1728 4a3

4a3+27b2 6= 0, 1728 (mod p). In particular, this assumption holds for
the family of elliptic curves allowed by the national standard [1].

Now we estimate the average complexity S of the algorithm:

S =
1

q − 1

∑
0<x<q

T (x), (10)

where T (x) is the complexity of determining the specific discrete logarithm
x.

Note that we may omit the term corresponding to q− 1, since we obvi-
ously have (q− 1)P = −P , and thus T (q− 1) = 0 elliptic curve additions.

Now write (10) as

S =
1

q − 1

∑
r|ϕ(q)

(#{x : ordq x = r})T (r) =

=

√
π log2 q

2(q − 1)

∑
r|ϕ(q)

ϕ(r)
√
r

 (11)

We note that the exact value S in (11) depends on the factorization of
ϕ(q):

ϕ(q) = q − 1 = rα1
1 · · · · · r

αk

k .

We may, however, obtain a lower bound for (11). Recall that we have q
prime, which is the case for most cryptographic applications. Consider the
sum

√
π log2 q

2(q − 1)

∑
r|ϕ(q)

ϕ(r)
√
r

 . (12)

For prime q we have ϕ(q) = q − 1 is divided by (q − 1)/2. Then the
largest term of (11) relating to (q − 1)/2 equals to

√
π log2 q

2(q − 1)
· ϕ((q − 1)/2)

√
(q − 1)/2.

Since for any integer l ≥ 3 we have (see [5]) the inequality

l > ϕ(l) >
ln 2

2
· l

ln l
,

5

we estimate (12) in the following manner:
√
π log2 q

2(q − 1)
· ln 2

2
· (q − 1)/2

ln(q − 1/2)
·
√

(q − 1)/2 ≥
√
π

4
√

2
· log2 q

log2(q − 1)
·
√
q − 1 = O(

√
q);

thus, we deduce that the lower asymptotical bound for the average com-
plexity of the algorithm is the same as of Pollard’s original method.

4 Conclusion

We conclude that for cryptographically significant cases the average com-
plexity of the method for solving the elliptic curve discrete logarithm prob-
lem proposed in [3] is at least as large as that of Pollard’s original method.
This fact makes it unfeasible for attacking most of the real-word cryptosys-
tems, including ECRDSA [1], where 2508 < q < 2512.

References

[1] GOST R 34.10-2012. Information technology. Cryptographic protection. The processes of
generation and validation of digital signatures (in Russian), Moscow:Standartinform, 2013.

[2] Hellman M., “A cryptanalytic time-memory trade-off”, IEEE Trans. Inform. Theory, IT-
26:4 (1980), 401-406.

[3] A. Yu. Nesterenko, “Some remarks on the elliptic curve discrete logarithm problem”, Mat.
Vopr. Kript, 7:2 (2016), 115–120.

[4] Pollard J.M., “Monte Carlo methods for index computation (mod p)”, Math. Comp., 32:143
(1978), 918–924.

[5] Sandor J., Mitrinovic D., Crstici B., Handbook of number theory I, Springer, 2005.

[6] Teske E., “Square-root algorithms for the discrete logarithm problem (a survey)”, Public-key
cryptography and computational number theory (Warsaw, 2000), Springer, 2000, 283-301.

[7] van Oorschot P.C., Wiener M.J., “Parallel collision search with cryptanalytic applications”,
J. Cryptology, 12:1 (1999), 1–128.

6

	Introduction
	Discrete logarithm using the multiplicative properties of the variable
	Complexity analysis
	Conclusion
	References

