
1

Cryptanalysis on the HHSS Obfuscation
Arising from Absence of Safeguards

Jung Hee Cheon, Minki Hhan, Jiseung Kim, Changmin Lee

Abstract—Indistinguishability Obfuscation (iO) is a hopeful
tool which obfuscates a program with the least-possible leakage,
and produces various applications including functional encryp-
tion and deniable encryption. Recently, Halevi et. al. proposed a
state-of-the-art obfuscator implementation, called HHSS obfus-
cation, in ACM-CCS’17.

In this work, we describe a polynomial time distinguishing
attack on HHSS obfuscation. In other words, we show that
there exist two functionally equivalent branching programs but
obfuscated programs are actually distinguishable. This attack
implies that HHSS obfuscation fails to achieve a general purpose
of iO security. The idea of the attack is quite simple; we
multiply a left kernel vector of the branching program P to
an evaluation of obfuscated matrix, which yields a small value
when the program P is obfuscated. Our attack algorithm is also
applicable even if evasive functions are obfuscated.

Index Terms—graded encoding scheme, indistinguishability
obfuscation

I. INTRODUCTION

The program obfuscator, also called software obfuscator,
is a compiler which takes a program P as an input, and
outputs a new program O(P) which preserves its functionality
but it is infeasible to extract information of the program P
other than natural leakage of program. The most significant of
the obfuscation is that the obfuscated program can withstand
reverse engineering.

The indistinguishability obfuscation (iO), also known as
best-possible obfuscation [1], makes a program leak as little
information as any other program with the same functionality
and a similar size. Equivalently, any adversary cannot dis-
tinguish two obfuscated programs which are obfuscation of
functionally equivalent program with the same size in a poly-
nomial time. Indeed, it implies that there are many applications
of iO. When there exists an indistinguishability obfuscation,
it realizes functional encryption, deniable encryption, multi-
party secure computation, etc [2].

In 2013, Garg et. al. first suggested a plausible candidate of
iO [3] based on the graded encoding schemes [4]–[6] and a
matrix branching program (BP) which represents the program
by several matrices and an input function. Subsequently, many
variants of Garg et. al.’s construction are suggested [7]–[11].

Recently, BP obfuscation over GGH15 graded encoding
scheme has been in the spotlight because several schemes
claim provable security under the LWE assumption [12], [13].
On top of that, Halevi et. al. presented a new construction of

Authors contributed equally to this work. Authors except for C.Lee were
with the Department of Mathematical sciences, Seoul National University,
Republic of Korea. C.Lee were with the Research Institute of Basic Sciences,
Seoul National University, Korea.

iO which was successful in implementation of bfuscatation of
read-once branching programs [14].

At the same time, cryptanalyses on obfuscations of general
branching programs over three graded encoding schemes [4]–
[6] have been suggested [15]–[20]. Thus, there is no iO
candidates for general purpose over graded encoding schemes.
Instead, the special purpose of iO candidates have still pro-
posed [12], [13], [20]–[22].

Among those candidates, obfuscations of evasive functions
have several important applications.1 For example, the devel-
oper employs the obfuscation of the evasive function to update
software patches without leaking additional information. (See
[21] for more details). In addition, obfuscations of evasive
functions can withstand all known polynomial time attack
since these attacks employ several encodings of zero from
honest evaluations.

This work. In this work, we propose a noteworthy polynomial
time distinguishing attack on HHSS obfuscation. In other
words, we show that there exist two functionally equivalent
branching programs but obfuscated programs of them are
distinguishable.

In particular, our attack can distinguish between obfusca-
tions of two evasive functions on HHSS obfuscation since
it only depends on the left kernel of the matrix branching
program.

More specifically, we select one of the two programs which
has the short vector belonging to the left kernel. This vector
is then multiplied to the matrix obtained by evaluation of the
obfuscation. If the given obfuscated program originated from
our chosen program, the norm of the output vector is smaller
than certain value, otherwise it returns a larger value. Thus, we
can find the origin of the given obfuscated program through
the size of the newly computed vector.

In addition, we observe variants of HHSS obfuscation are
also distinguishable.
• Original HHSS: left kernel attack
• Add scalar bundling without left bookend vector to

HHSS: left kernel attack
• Add left bookend vector without scalar bundling to

HHSS: in this case, by employing matrix zeroizing attack
proposed by Cheon et. al. [18].

Comparison to concurrent and independent work. Re-
cently, Chen, Vaikuntanathan and Wee proposed another attack

1Evasive function is a function f : {0, 1}∗ → {0, 1} that outputs 0 with
overwhelming probability. Some authors use the term to denote functions that
output 1 with overwhelming probability. An example of evasive functions is
password checker.

2

on HHSS obfuscation and its variant. The main idea of their
attack is to construct a certain form of matrix using several
encodings of zero from evaluation and then compute its rank
for distinguishing attack. Indeed, their attack, rank attack, is
applicable to original version of BP obfuscation over GGH15.

The rank attack requires several encodings of zero from
honest evaluations, which is hard to get in evasive programs.
Therefore, obfuscated evasive programs are secure against the
rank attack, whereas our attack is well applied to obfuscated
evasive programs by HHSS construction. Our attack is not
applicable to GGH15 BP obfuscation with all safeguards.

A. Overview of the Attack

We briefly present the GGH15 graded encoding scheme,
HHSS obfuscation and our left kernel attack.

The GGH15 graded encoding scheme. First, we simply
describe the construction of the GGH15 graded encoding
scheme. The scheme consists of encoding process and zerotest-
ing procedure.

Let G = (V,E) be a a directed acyclic graph which has a
single source node 0 and a single sink node `. The encoding
process takes as input matrices Mi,b ∈ Zd×d under a path
(i− 1)→ i, and outputs the matrices Ci,b ∈ Zm×mq such that

Ai−1 ·Ci,b ≈Mi,b ·Ai (mod q),

for all i ∈ [`], b ∈ {0, 1}. Note that Ai ∈ Zd×mq for all i ∈ [`].
The symbol ≈ means the difference of two matrices are almost
zero. Moreover, we sometimes denote Ci,b by ENCi(Mi,b).

The zerotesting procedure of encoding C for some matrix
M relative to the path 0→ ` is to compute

A0 ·C ≈M ·A` (mod q).

using the published matrix A0, and if ‖A0 · C‖ is small,
determines M = 0d. Otherwise, M is not the zero matrix.

Read-once branching program and (simplified) HHSS
obfuscation. A read-once branching program with a dimen-
sion d for an `-bit input is the set of integral matrix P =
{Mi,b}1≤i≤`, b∈{0,1} ⊂ Zd×d. With input x ∈ {0, 1}`, P can
be evaluated as follows

P(x) =

{
0 if

∏`
i=1 Mi,xi

= 0d

1 otherwise,

where xi is the i-th bit of x. The (simplified) HHSS obfus-
cation then consists of the set of an encoded matrix and A0,
which is the public matrix of the GGH15 graded encoding
scheme.

O(P) = {ENCi(R−1i−1 ·Mi,b ·Ri)} for 1 ≤ i ≤ `, b ∈ {0, 1},

where Ri’s are random invertible matrices except R0 = R` =
Id. More precisely, the encoding of HHSS is a m×m matrix
and it is of the form of [6] graded encoding scheme

Ai−1·ENCi(R−1i−1·Mi,b·Ri) ≈ R−1i−1·Mi,b·Ri·Ai (mod q),

where the Ai is d×m random matrices (m� d), respectively,
and q is an integer. In addition, the evaluation of the encoded
matrices C =

∏`
i=1 ENCi(R

−1
i−1 ·Mi,b · Ri) on input x ∈

{0, 1}` is to compute A0 ·C and it is approximately computed
as follows

A0 ·C ≈
∏̀
i=1

Mi,xi
·A`.

Left kernel attack. To explain our idea, we describe our attack
for simplified HHSS obfuscation. The detailed decryption of
the left kernel attack is in Section IV.

Let P = {Mi,b} and P ′ = {Ni,b} (1 ≤ i ≤ `, b ∈ {0, 1})
be two functionally equivalent read-once branching pro-
gram matrices, and let O(X) = {ENCi(R−1i−1 · Xi,b ·
Ri)}1≤i≤`,b∈{0,1} be given encoded matrices for P or P ′.

Our goal is to determine whether the obfuscated program
OX is originated by P or P ′. For the simplicity, we assume
M1,1 and N1,1 have different left kernel. Let v be a short
vector in the left kernel of M1,1, not in N1,1. Then, for
an input x satisfying P(x) = 1, we observe the following
property.

v ·A0 ·
∏̀
i=1

ENCi(R
−1
i−1 ·Xi,xi ·Ri) ≈ v ·

∏̀
i=1

Xi,xi ·A`.

Thus, we can distinguish between the obfuscation of two
functionally equivalent read-once branching programs by cal-
culating the norm of v ·A0 ·

∏`
i=1 ENCi(R

−1
i−1 ·Xi,xi ·Ri). If

the size is small, X equals to the program P . Otherwise, X
is the program P ′.
Organization. The preliminaries related to obfuscation are
presented in Section II. The scheme description of HHSS
obfuscation is discussed in Section III. Next, our distinguish-
ing attack on HHSS obfuscation is in Section IV and finally
Section V gives the conclusion.

II. PRELIMINARIES

Notation. For an integer q ≥ 2, Zq is the set of integer modulo
q and all integers in Zq are regarded as integers in (−q/2, q/2].
We use the notation Zn×m or Zn×mq to denote the set of n×m
matrices over integers or Zq , respectively. The set {1, 2, · · · , t}
is denoted by [t] for a positive integer t.

Throughout this paper, we regard bold font as a vector or a
matrix. Specially, Id is the identity matrix of dimension d and
0d is the d-dimensional zero matrix. Moreover, we sometimes
abuse the notation 0 as the zero vector. The transpose of a
matrix A is denoted by AT . The 2-norm of a vector x is de-
noted by ‖x‖2 and the operator norm of a matrix A ∈ Rn×m
is defined as ‖A‖op = sup{‖A·x‖ : x ∈ Rm with ‖x‖2 = 1}.
It induces that the largest singular value of a matrix A is the
same as ‖A‖op and ‖v‖op ≤ ‖v‖2 for any vector v. For
an n-dimensional vector x and an n′-dimensional vector y,
let (x||y) denote an n + n′-dimensional vector formed by
concatenating x and y.

Definition 1 (Indistinguishability Obfuscation). For a security
parameter λ ∈ N, an indistinguishability obfuscation O is a
uniform PPT machine for a circuit class {Cλ} which satisfies
the followings:
• For all circuits C ∈ {Cλ} and for all input x,

Pr[C(x) = C ′(x) : C ′ ← O(C, λ)] = 1

3

• For two circuits C1, C2 ∈ {Cλ} having the same func-
tionality and for any PPT distinguisher D, there exists a
negligible function negl such that

|Pr[D(O(C1, λ) = 1]− Pr[D(O(C2, λ) = 1]| ≤ negl(λ)

Security model of iO. Let P and P ′ be given two functionally
equivalent matrix branching programs whose outputs are the
same for all inputs x. Then, the security model of iO ensures
that any PPT distinguisher D cannot distinguish whether an
obfuscated program comes from P or P ′.

Moreover, we say “O does not have indistinguishability”
if there exists two functionally equivalent branching programs
P , P ′ such that a PPT distinguisher D can determine the given
obfuscated programO is an obfuscation of P or an obfuscation
of P ′.

III. HHSS OBFUSCATION

Since the advent of [3], the construction of candidate iO
is largely composed of two steps; matrix randomization and
encoding using a graded encoding scheme. To instantiate ob-
fuscation and other various applications, three graded encoding
schemes are suggested [4]–[6].

Halevi et. al. proposed and implemented an obfusca-
tion [14]. They applied several randomization steps on the
matrix branching program and encoded the randomized ma-
trices by the GGH15 graded encoding scheme.

In this section, we briefly review the GGH15 graded en-
coding scheme and HHSS obfuscation construction. For more
details, refer to [14].

A. GGH15 graded encoding scheme

the GGH15 graded encoding scheme, which is a graph-
induced cryptographic graded encoding scheme, is used to
construct HHSS obfuscation. A directed acyclic graph G =
(V,E) for vertex set V and edge set E are used to initiate
the GGH15 graded encoding scheme. In particular, we only
consider a directed graph G which consists of two chains
of length ` with a common source vertex 0 and a common
sink vertex `. They set the vertices as V = {0, 1, 2, · · · , (`−
1), 1′, 2′, · · · , (`− 1)′, `} and the edges consist of two chains
defined as

0→ 1→ · · · (`− 1)→ ` and 0→ 1′ → · · · (`− 1)′ → `

E = {(i, (i+1)), (i′, (i+1)′)|i ∈ [`−2]}∪{(0, 1), (0, 1′), ((`−
1), `), ((`− 1)′, `)}.

Let m,n, and q be integers (n� m� q). For each vertex
v ∈ V , assign a random matrix Av ∈ Zn×mq with its trapdoor
τv which is needed to efficiently encode a matrix. An encoding
of small plaintext M ∈ Zn×n with respect to edge u → v is
a small matrix C ∈ Zm×mq such that

Au ·C = M ·Av +E (mod q),

for a small error matrix E ∈ Zn×m. Note that we can easily
compute a small matrix C using the trapdoor τu [23].

In HHSS obfuscation, the public parameters of the GGH15
graded encoding scheme are the graph G = (V,E) and m,n, q

and only the source-node matrix A0. From the encodings and
public parameters, we can compute the following with public
parameters:

1) Addition: C1+C2 and negation −C1 of two encodings
C1,C2 with respect to edge v → w

2) Multiplication: C1·C2 of encodings C1,C2 with respect
to u→ v, v → w, respectively.

3) Zerotesting: A0 ·C for an encoding C with respect to
edge 0→ `

The above procedures work well in modulus q. In other
words, the arithmetic operations addition and multiplication
are homomorphic operation, and the zerotesting procedure
checks whether the encoding is encoding of zero matrix or
not. More specifically,
• Let C1 and C2 be two encodings of plaintext matrix

M1 and M2 with respect to edge u → v respectively.
i.e., Au ·Ci = Mi ·Av + Ei (mod q), where norm of
matrices Ci,Ei,Mi are small (i = 1, 2). Then, −C1 and
C1 +C2 are encodings of −M1 and M1 +M2 relative
to edge u→ v. Indeed, we observe

Au · (−C1) = (−M1) ·Av −E1 (mod q), and
Au · (C1 +C2) = (M1 +M2) ·Av + (E1 +E2) (mod q).

• Let C and C′ be two encodings of M and M′ with
respect to edge u → v and v → w respectively. In
other words, Au · C = M · Av + E (mod q) and
Av ·C′ = M′ ·Aw+E′ (mod q) with the small matrices
C,C′,E,E′,M, and M′. Then we have

Au · (C ·C′) = (M ·Av +E) ·C′

= M ·Av ·C′ +E ·C′ (mod q)

= M · (M′ ·Aw +E′) +E ·C′ (mod q)

= (M ·M′) ·Aw +M ·E′ +E ·C′ (mod q)

Note that C1 +C2, M1 +M2, and E1 +E2 are small.
Moreover, M ·M′, C ·C′, and M ·E′ +E ·C′ are still
small.

• The zerotesting procedure can determine whether a plain-
text matrix M is zero or not by estimating ‖A0 ·C‖op for
a given encoding C of M with respect to edge 0 → `.
Specially, if ‖A0·C‖op ≤ q/210, C is an encoding matrix
of M = 0n.

B. Construction of HHSS Obfuscation

Randomizing Branching Program. As noted above, HHSS
obfuscation only support the read-once branching programs
since they remove scalar bundling 2.

Halevi et. al. use two randomization steps called higher-
dimensional embedding and Kilian-style randomization upon
a given read-once branching program P . For i ∈ [`] and
b ∈ {0, 1}, they first embed the matrix Mi,b into a n-
dimensional matrix which is a block diagonal matrix of the
form diag(Mi,b,Ri,b), where Ri,b is a d′×d′ random (small)
matrix. In [14], they picked d′ = d

√
λ/2e. After higher-

dimensional embedding, they apply Kilian-style randomization

2Scalar bundling is used to capture the mixed-input attack, which uses
invalid inputs of the matrix branching program. However, read-once programs
are not threatened by this attack.

4

to the matrix diag(Mi,b,Ri,b) to make it look like a random
matrix. In other words, the randomized matrix M̃i,b is of the
form

M̃i,b = S−1i−1 · diag(Mi,b,Ri,b) · Si, i ∈ [`], b ∈ {0, 1},

where Si ∈ Zn×n is a random invertible matrix and S0 and
S` are identity matrices over dimension n.

Halevi et. al. employ an additional structure which is
called the dummy program for the zerotesting procedure. It
consists of ` pairs of d × d binary matrices M′i,b, where
i ∈ [`] and b ∈ {0, 1}. More precisely, the first matrix
M′1,b and the last matrix M′`,b in the dummy program are of
the form diag(Ibd/2c,0dd/2e) and diag(0bd/2c, Idd/2e) respec-
tively. Other matrices M′i,b are set to Id so that the product∏̀
i=1

M′i,b is always the zero matrix. A dummy program should

be also randomized like a branching program with the same
random matrix Ri,b in the lower-right quadrant. Namely, a
randomized matrix M̃′i,b of M′i,b is of the form

M̃′i,b = S′
−1
i−1 · diag(M′i,b,Ri,b) · S′i, i ∈ [`], b ∈ {0, 1},

where S′i ∈ Zn×n is a random invertible matrix and S′0 and
S′` are identity matrices.

Randomizing techniques are conducted to branching pro-
gram and dummy program, and their functionalities are in-

variant. In other words,
∏̀
i=1

M̃i,xi −
∏̀
i=1

M̃′i,xi
is zero when

∏̀
i=1

Mi,xi
is also zero. Otherwise,

∏̀
i=1

Mi,xi
is not zero.

Encoding using the the GGH15 graded encoding scheme.
We describe how to employ the GGH15 graded encoding
scheme to encode randomized matrices.

After randomization steps, we recall the setting of the
GGH15 graded encoding scheme. Specifically, G = (V,E)
is a two-chain graph and let m,n, and q be integers (d+d′ =
n � m � q). We sample random matrices Ai ∈ Zn×mq

and A′i ∈ Zn×mq with their trapdoors corresponding vertices
i ∈ {1, 2, · · · , (`− 1)} and i′ ∈ {1′, 2′, · · · , (`− 1)′}, respec-
tively. Moreover, random matrices A0 and A` are assigned in
a source node 0 and a sink node `, respectively. In that case,
we define A0 = A′0 and A` = A′` for convenience.

For each i ∈ {0, 1, 2, · · · , `}, we compute two matrices
M̃i,b relative to an edge (i − 1) → i and M̃′i,b relative to an
edge (i− 1)′ → i′.
i.e., we have

Ai ·Ci,b = M̃i,b ·Ai+1 +Ei,b (mod q)

and A′i ·C′i,b = M̃′i,b ·A′i+1 +E′i,b (mod q),

for some small errors Ei,b ∈ Zn×m and E′i,b ∈ Zn×m.
In addition, Halevi et. al. utilize an additional structure,

called outer safeguard, to make attacks harder since its security
is suspect. The outer safeguard uses a Kilian style random-
ization again to the output of encodings. Applying the outer
safeguard step, we have

Ĉi,b = P−1i−1 ·Ci,b ·Pi and Ĉ′i,b = P′
−1
i−1 ·C′i,b ·P′i

for some random invertible small matrices P0, · · · ,P` and
P′0, · · · ,P′` with P0 = P` = P′0= P′` = Im. Note
that a new encoding technique called safeguard does not
affect the output of zerotesting procedure because of telescopic
cancellation and the two matrices corresponding to source and
sink are identity matrices. Hence, the obfuscation consists of
the following matrices:

O(P) =
(
A0, {Ĉi,bĈ

′
i,b}i∈[`],b∈{0,1}

)
.

Evaluation of Obfuscation. For an input x ∈ {0, 1}`, the first

step of evaluation is to compute A0 ·

(∏̀
i=1

Ĉi,xi −
∏̀
i=1

Ĉ′i,xi

)
.

Since it is of the form∏̀
i=1

Mi,xi

0d′

 ·A` + Error,

we can determine whether or not a matrix
∏̀
i=1

Mi,xi is the

zero matrix from its norm. In other words, when
∏̀
i=1

Mi,xi
is

zero A0 ·

(∏̀
i=1

Ĉi,xi −
∏̀
i=1

Ĉ′i,xi

)
is of the form Error−Error′

and thus sufficiently small.
We abuse some notations to describe precisely. For each

vertex i, Ci denotes an encoding of plaintext M̃i = S−1i−1 ·

Mi · Si relative to a path (i − 1) → i, and C =
∏̀
i=1

Ci

denotes an encoding relative to path 0 → `. Then, we have

A0 · C =

(∏̀
i=1

M̃i

)
·A` + Error (mod q), and Error is of

the form ∑̀
j=1

(
j−1∏
i=1

Mi

)
· Sj−1 ·Ej ·

 ∏̀
i=j+1

Ci

 .

The size of the Error term largely depends on the term E1 ·∏̀
i=2

Ci since the size of matrix Ci is larger than that of other

Mi, Sj−1 and noise term Ej for all i, j. Therefore, we can
speculate the norm Error from the construction of trapdoor
sampling and error size Ei,∥∥∥∥∥∥E1 ·

∏̀
j=2

Cj

∥∥∥∥∥∥
op

≈ 27 · σ`−1x ·m`/2 · 2`−1,

where σx is a parameter of spherical Gaussian distribution
used in the trapdoor sampling. For more details of parameters
for trapdoor sampling and error size, refer to Section 5 in [14]
or Appendix.

Halevi et.al. designed a zerotesting procedure by estimating
‖A0 ·C‖. Namely, the obfuscated program O(P)(x) outputs
0 when ‖A0 · C‖ ≤ q/210. Similarly, O(P)(x) outputs 1

5

when ‖A0 · C‖ > q/210. Hence, for the correctness of the
obfuscation program, the following equation should hold.

log q ≥ 7 + log σx · (`− 1) + logm · `/2 + (`− 1) + 10.

In summary, we obtain a circuit O(BP) such that

O(P)(x)3 =

{
0 if ‖A0 ·C‖op ≤ q/210,
1 othersiwe.

Remark. To reduce the size of O(P), Halevi et. al. proposed
a special encoding for sink `. Specially, A` is a vector in
Zn×1q and E` is also a small vector in Zm×1q . If someone
wants to encode a small plaintext matrix M with respect to a
path `− 1→ `, compute [M ·A` +E`]q , and sample a small
vector C such that A`−1 ·C = M ·A`+E` using a trapdoor
to sample a small vector, and finally output Ĉ = P`−1 ·C`.

IV. CRYPTANALYSIS OF THE HHSS OBFUSCATION

In this section we present our attack, which is called left
kernel attack, and further analysis of HHSS obfuscation.

Two functionally equivalent branching programs
{Mi,b,Ni,b}i∈[`],b∈{0,1} are given. We found that the
left-kernel of plaintext matrices leads distinguishing attack
to obfuscated program in the zerotesting procedure. More
precisely, we observe the upper quadrant of the matrix
A0 · C is the product of plaintext matrices related to an
encoding matrix C. Hence, by using a left kernel vector of
the branching program matrix, we can disclose some hidden
information from the obfuscated program.

A. Description of Our Attack.

Let P and P ′ be two functionally equivalent read-once ma-
trix branching programs for `-bit input corresponding Mi,b ∈
Zd×d and Ni,b ∈ Zd×d for i ∈ [`], b ∈ {0, 1} respectively.
Also, we have a program O encoded by the GGH15 graded
encoding scheme, but we do not know whether or not O is
an obfuscation of the branching program P or P ′. We want
to determine whether an obfuscated program O comes from
P or not.

Suppose we have public matrix A0 of the GGH15 graded
encoding scheme and following matrices.

P = {Mi,b}i∈[`],b∈{0,1}, P ′ = {Ni,b}i∈[`],b∈{0,1},
O = {Ĉi,b, Ĉ

′
i,b}i∈[`],b∈{0,1},

where Ĉi,b and Ĉ′i,b are encodings of a matrix and a dummy
branching program relative to paths (i−1)→ i and (i−1)′ →
i′ using the GGH15 graded encoding scheme, respectively.
Note that matrices Ĉi,b, Ĉ

′
i,b are m×m integer matrices with

m ≥ d.
For some input x such that P(x) = 0 and

∏`
i=1 Mi,xi =

0d, there exists at least one singular matrix Mi,xi
for some i.

Let M1,1 be a singular matrix for convenience.4 Thus, there
is a nonzero vector v ∈ Zd such that v ·M1,1 = 0d. Assume

3In their implementation, however, the obfuscated program outputs 1 −
O(P)(x).

4Our attack also work well for the other cases. See remark.

that we can find a short vector v such that v ·M1,1 = 0d and
v ·N1,1 6= 0d. Then, we are able to distinguish an obfuscated
program by employing a vector v ∈ Zd.

From now, let an input x be represented as x1x2 · · ·xn with
x1 = 1 such that P(x) = 1 and P ′(x) = 1. Then, we observe

v·
∏̀
i=1

Mi,xi
= 0d and v·

∏̀
i=1

Ni,xi
6= 0d with high probability.

Let M̃i,b and Ñi,b (with i ∈ [`], b ∈ {0, 1}) be randomized
matrices of Mi,b and Ni,b, respectively. If Ĉ is an encoding
of
∏`
i=1 M̃i,xi relative to the path 0→ `, then we have

v̂ · (A0 · Ĉ) = v̂ ·

(∏̀
i=1

M̃i,xi ·A` + Error

)
(mod q)

=

(
v̂ ·
∏̀
i=1

M̃i,xi

)
·A` + v̂ · Error (mod q)

= v̂ · Error (mod q),

where v̂ = (v||0) is an n (= d + d′)-dimensional vector.
Note that ‖v̂ · Error (mod q)‖ must be small if ‖v̂‖ is small.
Moreover, if Ĉ comes from a plaintext matrix

∏`
i=1 Ñi,xi

,
then we have

v̂ · (A0 · Ĉ) = v̂ ·

(∏̀
i=1

Ñi,xi
·A` + Error

)
(mod q)

=

(
v̂ ·
∏̀
i=1

Ñi,xi

)
·A` + v̂ · Error (mod q).

Note that ‖v̂ · (A0 · Ĉ)‖ looks like a random over Zq since
(v̂·
∏`
i=1 Ñi,xi

)·A` does not vanish. Therefore, a distinguisher
D can output

D(O) =

{
P if ‖v̂ · (A0 · Ĉ)‖op ≤ q/210.
P ′ otherwise.

Remark. Some programs do not exist a short vector v such
that v̂·M1,x1

= 0d, for example, a full rank matrix M1,x1
does

not have a nonzero left kernel vector. However, in that case
we can still apply our attacks by employing a matrix M(1) =(
M1,1

M1,0

)
instead of M1,1. M(1) must have a nontrivial left

kernel because its rank is d with high probability.

B. Examples of Attackable Branching Programs

In this section, we present two concrete examples to under-
stand our attack.

Toy Example. We here give two simple equivalent branching
programs and the results of our attack with specific setting of
implementation. Two branching programs P,P ′, which satisfy
P(x) = P ′(x) = 0 for x = 01 and P(x) = P ′(x) = 1
otherwise, are given as follows

6

M1,0 =

(
1 0
1 0

)
, M2,0 =

(
1 0
0 0

)
,

M1,1 =

(
0 0
1 1

)
, M2,1 =

(
0 0
0 1

)
.

Matrix branching program P

N1,0 =

(
1 0
1 0

)
, N2,0 =

(
1 0
1 1

)
,

N1,1 =

(
0 1
0 1

)
, N2,1 =

(
0 0
1 1

)
.

Matrix branching program P ′

TABLE I: Toy example

Note that for two left kernel vectors v = (1, 0) and w =
(1,−1), the branching programs satisfy

v ·M1,1 = 0, v ·N1,1 6= 0

w ·N1,1 = 0, w ·M1,1 6= 0,

respectively. If we set the security parameter λ = 80 then the
embedding dimension d′ = 55 and q = 34009074817199 and
ε = 10. Let {Ĉi,b} and {D̂i,b} be the obfuscated programs of
M and N, respectively. The evaluation vectors are computed
as follows:

A0 · Ĉ1,1 · Ĉ2,0 =



−10884489
6341880489273
−2809809111564
−9752397591639
−3576418758634
−7724278907092
11995182501421


,

A0 · D̂1,1 · D̂2,0 =



−281520684456
−281549139175
−410308959247
−15011968960796
−5708322256588
−2185335626767
−593005703340


.

At last, the inner product values of the extended left kernel
vectors v̂ = (1, 0||0), ŵ = (1,−1||0) and the evaluation
vectors are

zv,C = v̂ ·A0 · Ĉ1,1 · Ĉ2,0 = −10884489
zv,D = v̂ ·A0 · D̂1,1 · D̂2,0 = −281520684456
zw,C = ŵ ·A0 · Ĉ1,1 · Ĉ2,0 = −6341891373762
zw,D = ŵ ·A0 · D̂1,1 · D̂2,0 = 28454719.

We can easily observe that the inner products are fairly small
if the left kernel vector corresponds to the obfuscated program.

5In the original paper, authors recommend that it should be d′ = 7 to
satisfy d′ = d

√
λ/2e, but their implementation chooses d′ = 5.

Actually the values zv,C, zw,D are less than 2−20 · q, whereas
zv,D and zw,C are larger than 2−10 · q. Therefore, the left
kernel attack works well for this example.

Point Functions. Now we show more complex and lengthy
examples of functionally equivalent branching programs. We
denote an n × n diagonal matrix with i-th diagonal element
ai by diag(a) for vector ~a = (a1, · · · , an). We also denote
an n dimensional all-1 vector by 1n, and n dimensional
standard basis by {ei}1≤i≤n. Then two branching programs
P,P ′ placed in Table 1 satisfies P(0) = P ′(0) = 0 and
P(x) = P ′(x) = 1 for all x ∈ Zn2 \ {0}.

M1,0 = diag(1n+1 − e1 − en+1),
Mi,0 = diag(1n+1 − ei) for 2 ≤ i ≤ n,

Mi,1 = diag(1n+1) for 1 ≤ i ≤ n.

Matrix branching program P

N1,0 = diag(1n+1 − e1 − e2),
Ni,0 = diag(1n+1 − ei+1) for 2 ≤ i ≤ n,

Ni,1 = diag(1n+1) for 1 ≤ i ≤ n.

Matrix branching program P ′

TABLE II: Two point function branching programs

These two programs clearly have different left kernel. For
example, v = en+1 is a left kernel vector of M1,0 whereas
v ·N1,0 = en+1. Therefore the obfuscations of P,P ′ would
be distinguished by our attack.

C. expansion of attack for other safeguards

As presented in Section III-B, we assume that the random-
ized program {M̃i,b}, the dummy program {M̃′i,b}, and a
source node matrix A0 are given in the following form for
the branching program {Mi,b} .

M̃i,b = S−1i−1 · diag(Mi,b,Ri,b) · Si, i ∈ [`], b ∈ {0, 1},

M̃′i,b = S′
−1
i−1 · diag(M′i,b,Ri,b) · S′i, i ∈ [`], b ∈ {0, 1},

Except for the HHSS obfuscation, some obfuscations over
graded encoding schemes carry out an additional randomiza-
tion process such as scalar bundling and bookend vectors. In
this section, we explain how the obfuscated program changes
in each randomization process and explain how to attack
obfuscations accordingly.

Case 1: Add scalar bundling. In the case of scalar bundling,
the randomization of branching program is changed as follows.

M̃i,b = S−1i−1 · diag(αi,b ·Mi,b,Ri,b) · Si, i ∈ [`], b ∈ {0, 1},

M̃′i,b = S′
−1
i−1 ·diag(α′i,b ·M′i,b,Ri,b) ·S′i, i ∈ [`], b ∈ {0, 1},

7

where the αi,b, α
′
i,b (i ∈ [`], b ∈ {0, 1}) are elements of a

ring that contains an integer set and satisfying
∏`
i=1 αi,b =∏`

i=1 α
′
i,b for all b ∈ {0, 1}. Obviously, this modification does

not affect their functionalities. In other words,
∏̀
i=1

M̃i,xi
−

∏̀
i=1

M̃′i,xi
is zero when

∏̀
i=1

Mi,xi
is also zero. Otherwise,

∏̀
i=1

Mi,xi is not zero.

Since the matrix singularity is invariant by scalar multi-
plication, this modification also does not affect our attacks.
More precisely, for an input x such that P(x) = 0 and∏`
i=1 Mi,xi

= 0d, we assume that M1,1 be a singular matrix.
Thus, there exists a nonzero v ∈ Zd such that v ·M1,1 = 0. It
implies that (v||0) ·M̃1,1 = 0. After this, we can get the same
conclusion through the attack process as in section IV-A.

Case 2: Add bookend vector. In this case, instead of a
branching program, the source node matrix A0 is replaced
by a vector. It means that we have public vector A0 ∈ Zm
and following matrices.

P = {Mi,b}i∈[`],b∈{0,1}, P ′ = {Ni,b}i∈[`],b∈{0,1},
O = {Ĉi,b, Ĉ

′
i,b}i∈[`],b∈{0,1},

where Ĉi,b and Ĉ′i,b are encodings of a branching program
matrix and a dummy program relative to paths (i − 1) → i
and (i− 1)′ → i′ using the GGH15 graded encoding scheme,
respectively. Therefore, it is no longer valid to multiply vector
v̂ by A0 ·

∏`
i=1 M̃i,b for v ∈ ker(M1,1), as in Section IV-A.

Instead, we employ the attack called matrix zeroizing attack
proposed by Cheon et. al. [18]. First, we assume 2` is larger
than n2. Then, the matrix set {Bb1,··· ,b` :=

∏`
i=1 Mi,bi : bi ∈

{0, 1}} is dependent set. For the sake of simplicity, we denote
the index set b1, · · · , b` as b. Then, there exists integers vb ∈
Z such that

∑
vb ·Bb = 0 ∈ Zd×d. We additionally assume

that the integers vb are small and satisfy
∑

vb ·
∏`
i=1 Ni,bi 6=

0.
Now if O is an obfuscation of P , we have∑

vb ·A0 ·

(∏̀
i=1

Ĉi,bi −
∏̀
i=1

Ĉ′i,bi

)

=
∑

vb ·

(∏̀
i=1

diag(Mi,bi ,0) ·A` + Error

)
(mod q)

= diag(0,0) ·A` +
∑

vb · Error (mod q)

=
∑

vb · Error (mod q).

Note that ‖
∑

vb ·Error (mod q)‖ must be small if each ‖vb‖
is small. From this property one can distinguish whether the
given obfuscation program is P or not.

V. CONCLUSION

In this paper, we present a polynomial time attack for
HHSS obfuscation of some functionally equivalent branching
programs. We can efficiently distinguish between obfuscations

of branching programs from the left kernel of the branching
program matrices. Since our attack only depends on the left
kernel of the matrix, it is not necessary to obtain several
encodings of zero from evaluations. Therefore, two evasive
functions obfuscated by HHSS obfuscation are distinguishable
although anyone can hardly obtain encodings of zero. We
also observe that the variants of HHSS obfuscation of evasive
functions with the portion of safeguards are distinguishable.
However, distinguishing between the GGH15 obfuscations of
evasive functions with all the safeguards remains as an open
problem.

8

REFERENCES

[1] S. Goldwasser and G. N. Rothblum, “On best-possible obfuscation,”
in Theory of Cryptography, 4th Theory of Cryptography Conference,
TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007,
Proceedings, 2007, pp. 194–213. [Online]. Available: https://doi.org/10.
1007/978-3-540-70936-7 11

[2] B. Barak, “Hopes, fears, and software obfuscation,” Commun.
ACM, vol. 59, no. 3, pp. 88–96, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2757276

[3] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and
B. Waters, “Candidate indistinguishability obfuscation and functional
encryption for all circuits,” in 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, 2013, pp. 40–49. [Online]. Available:
https://doi.org/10.1109/FOCS.2013.13

[4] S. Garg, C. Gentry, and S. Halevi, “Candidate multilinear maps
from ideal lattices,” in Proc. of EUROCRYPT, ser. LNCS, vol. 7881.
Springer, 2013, pp. 1–17.

[5] J. Coron, T. Lepoint, and M. Tibouchi, “Practical multilinear maps over
the integers,” in Advances in Cryptology - CRYPTO 2013, 2013, pp.
476–493.

[6] C. Gentry, S. Gorbunov, and S. Halevi, “Graph-induced multilinear maps
from lattices,” in Theory of Cryptography Conference. Springer, 2015,
pp. 498–527.

[7] P. Ananth, D. Gupta, Y. Ishai, and A. Sahai, “Optimizing obfuscation:
Avoiding barrington’s theorem,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2014, pp. 646–658.

[8] E. Miles, A. Sahai, and M. Weiss, “Protecting obfuscation against
arithmetic attacks.” IACR Cryptology ePrint Archive, vol. 2014, p. 878,
2014.

[9] B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai, “Protecting ob-
fuscation against algebraic attacks,” in Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer,
2014, pp. 221–238.

[10] S. Badrinarayanan, E. Miles, A. Sahai, and M. Zhandry, “Post-
zeroizing obfuscation: New mathematical tools, and the case of evasive
circuits,” in Advances in Cryptology - EUROCRYPT 2016 - 35th
Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part II, 2016, pp. 764–791. [Online]. Available:
https://doi.org/10.1007/978-3-662-49896-5 27

[11] S. Garg, E. Miles, P. Mukherjee, A. Sahai, A. Srinivasan, and
M. Zhandry, “Secure obfuscation in a weak multilinear map
model,” in Theory of Cryptography - 14th International Conference,
TCC 2016-B, Beijing, China, October 31 - November 3, 2016,
Proceedings, Part II, 2016, pp. 241–268. [Online]. Available:
https://doi.org/10.1007/978-3-662-53644-5 10

[12] R. Goyal, V. Koppula, and B. Waters, “Lockable obfuscation,” in
Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual
Symposium on. IEEE, 2017, pp. 612–621.

[13] D. Wichs and G. Zirdelis, “Obfuscating compute-and-compare programs
under lwe,” in Foundations of Computer Science (FOCS), 2017 IEEE
58th Annual Symposium on. IEEE, 2017, pp. 600–611.

[14] S. Halevi, T. Halevi, V. Shoup, and N. Stephens-Davidowitz,
“Implementing bp-obfuscation using graph-induced encoding,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, 2017, pp. 783–798. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3133976

[15] J. Coron, M. S. Lee, T. Lepoint, and M. Tibouchi, “Zeroizing
attacks on indistinguishability obfuscation over CLT13,” in Public-Key
Cryptography - PKC 2017 - 20th IACR International Conference on
Practice and Theory in Public-Key Cryptography, Amsterdam, The
Netherlands, March 28-31, 2017, Proceedings, Part I, 2017, pp. 41–58.
[Online]. Available: https://doi.org/10.1007/978-3-662-54365-8 3

[16] J. Coron, C. Gentry, S. Halevi, T. Lepoint, H. K. Maji, E. Miles,
M. Raykova, A. Sahai, and M. Tibouchi, “Zeroizing without low-level
zeroes: New MMAP attacks and their limitations,” in Advances in
Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part
I, 2015, pp. 247–266. [Online]. Available: https://doi.org/10.1007/
978-3-662-47989-6 12

[17] E. Miles, A. Sahai, and M. Zhandry, “Annihilation attacks for
multilinear maps: Cryptanalysis of indistinguishability obfuscation over
GGH13,” in Advances in Cryptology - CRYPTO 2016 - 36th Annual

International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part II, 2016, pp. 629–658. [Online].
Available: https://doi.org/10.1007/978-3-662-53008-5 22

[18] J. H. Cheon, M. Hhan, J. Kim, and C. Lee, “Cryptanalyses of branching
program obfuscations over ggh13 multilinear map from ntru attack,”
Cryptology ePrint Archive, Report 2018/408, 2018, https://eprint.iacr.
org/2018/408, to appear in Crypto 2018.

[19] Y. Chen, C. Gentry, and S. Halevi, “Cryptanalyses of candidate
branching program obfuscators,” in Advances in Cryptology -
EUROCRYPT 2017 - 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part III, 2017, pp. 278–307.
[Online]. Available: https://doi.org/10.1007/978-3-319-56617-7 10

[20] Y. Chen, V. Vaikuntanathan, and H. Wee, “Ggh15 beyond permutation
branching programs: Proofs, attacks, and candidates,” Cryptology ePrint
Archive, Report 2018/360, 2018, https://eprint.iacr.org/2018/360.

[21] B. Barak, N. Bitansky, R. Canetti, Y. T. Kalai, O. Paneth, and A. Sahai,
“Obfuscation for evasive functions,” in Theory of Cryptography Confer-
ence. Springer, 2014, pp. 26–51.

[22] Z. Brakerski and G. N. Rothblum, “Obfuscating conjunctions,” Journal
of Cryptology, vol. 30, no. 1, pp. 289–320, 2017.

[23] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter,
faster, smaller,” in Proc. of EUROCRYPT, ser. LNCS, vol. 7237.
Springer, 2012, pp. 700–718.

