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Abstract

The problem of Byzantine Agreement (BA) is of interest to both distributed computing and
cryptography community. Following well-known results from the distributed computing liter-
ature, BA problem in the asynchronous network setting encounters inevitable non-termination
issues. The impasse is overcome via randomization that allows construction of BA protocols in
two flavours of termination guarantee – with overwhelming probability and with probability one.
The latter type termed as almost-surely terminating BAs are the focus of this paper. An eluding
problem in the domain of almost-surely terminating BAs is achieving a constant expected running
time. Our work makes progress in this direction.

In a setting with n parties and an adversary with unbounded computing power controlling at
most t parties in Byzantine fashion, we present two almost-surely terminating BA protocols in
the asynchronous setting:

◦ With the optimal resilience of t < n
3 , our first protocol runs for expected O(n) time. The

existing protocols in the same setting either runs for expected O(n2) time (Abraham et
al, PODC 2008) or requires exponential computing power from the honest parties (Wang,
CoRR 2015). In terms of communication complexity, our construction outperforms all the
known constructions that offer almost-surely terminating feature.

◦ With the resilience of t < n
3+ε for any ε > 0, our second protocol runs for expected O(1ε )

time. The expected running time of our protocol turns constant when ε is a constant fraction.
The known constructions with constant expected running time either require ε to be at least
1 (Feldman-Micali, STOC 1988), implying t < n/4, or calls for exponential computing
power from the honest parties (Wang, CoRR 2015).

We follow the traditional route of building BA via common coin protocol that in turn reduces
to asynchronous verifiable secret-sharing (AVSS). Our constructions are built on a variant of
AVSS that is termed as shunning. A shunning AVSS fails to offer the properties of AVSS when
the corrupt parties strike, but allows the honest parties to locally detect and shun a set of corrupt
parties for any future communication. Our shunning AVSS with t < n/3 and t < n

3+ε guarantee
Ω(n) and respectively Ω(εt2) conflicts to be revealed when failure occurs. Turning this shunning
AVSS to a common coin protocol efficiently constitutes yet another contribution of our paper.
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1 Introduction

Byzantine Agreement (BA) [20] is a fundamental problem in secure distributed computing. Informally, a
BA protocol allows a set of n parties, each holding a private bit, to agree on a common bit, tolerating a
computationally unbounded adversary who can corrupt any t parties in a Byzantine fashion. In the literature,
BA has been studied in two prominent network setting – synchronous and asynchronous. In the synchronous
setting, it is assumed that the delay of messages over the channels of the network is bounded by a known
constant. In contrast, in the asynchronous setting, the channels may have arbitrary delays and may deliver
messages in any arbitrary order, with the only restriction that every sent message is eventually delivered.
To model the worst case, the adversary is allowed to control the scheduling of messages in the network.
While the BA problem has been investigated extensively in the synchronous setting (see [17, 15, 2] and their
references), the progress for the asynchronous setting that models real-world networks like the Internet more
appropriately, has been rather slow. The primary difficulty in designing a distributed protocol in the latter
setting comes from the fact that it is impossible for an honest party to distinguish between a slow but honest
sender (whose messages are delayed) and a corrupt sender (who did not send any message). Hence, at any
stage of an asynchronous protocol, a party cannot wait to receive messages from all the n parties (to avoid
endless waiting) and the communication from t (potentially slow but honest) parties may have to be ignored.

The condition t < n/3 is necessary and sufficient for asynchronous BA (ABA) [20]. An ABA protocol
designed with exactly n = 3t+ 1 parties is thus termed as optimally-resilient. From [14], any ABA protocol
must have non-terminating runs, where some honest party(ies) may not terminate at all. Use of randomization
helps circumvent this impasse [4, 21, 6], leading to two types of constructions. The first kind, known as (1−
λ)-terminating ABA [9, 8, 19], allow the honest parties to terminate with probability at least (1−λ), for some
λ that is non-zero yet negligible. The second kind, referred to as almost-surely terminating ABA protocols
[1], ensure turning the probability of the occurrence of a non-terminating execution to asymptotically zero,
making the honest parties terminate with probability 1. Our focus in this paper is the latter kind of ABA.
The historical constructions [4, 6] in this domain require an exponential expected running time (ERT) (and
therefore requires exponential expected communication as well as computation complexity). The work of
[13] reduces the ERT to a constant at the expense of non-optimal resilience of t < n/4. The state-of-
the-art constitutes the works of [1] and [22]. The former presents the first construction that offers optimal
resilience and polynomial (O(n2), to be specific) ERT simultaneously. The latter reduces the ERT to O(n)
at the expense of requiring exponential computation from the honest parties. A side result in the same paper
makes the ERT O(1/ε) while decreasing the resilience to t < n

3+ε for any ε > 0. Since then constructing
an optimally-resilient, polynomial computation complexity ABA with a constant ERT remains an eluding
problem. Our work, elaborated below, makes progress in this direction.

Our Results. We present two almost-surely terminating polynomial-time ABA protocols. With t < n
3 , our

first protocol has O(n) ERT, improving the ERT of [1] by a factor of n. With t < n
3+ε for any ε > 0, our

second protocol has ERT O(1ε ). The ERT becomes a constant when ε is a constant fraction. Previously,
constant ERT was achieved either with ε ≥ 1 (implying t < n/4) [13] or at the cost of exponential computing
power from honest parties [22]. In terms of expected communication, both our constructions outperform all
the known constructions in their respective settings. Our results put in the context of relevant existing results
are presented below. F denotes a finite field over which computations are done.

Reference Resilience ERT (R) Expected Communication Complexity Computation Complexity (in n)
[13] n > 4t O(1) O(n6 log n log |F|) Polynomial
[1] n > 3t O(n2) O(n10 log |F|) Polynomial
[22] n > 3t O(n) O(n7 log |F|) Exponential
[22] n > (3 + ε)t, ε > 0 O(1/ε) O(n7 log |F|) Exponential
This paper n > 3t O(n) O(n6 log |F|) Polynomial
This paper n > (3 + ε)t, ε > 0 O(1/ε) O(n6 log |F|) Polynomial
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Our Approach. Most randomized ABA protocols follow the blueprint of [4, 21, 6] by reducing ABA to
the design of a common coin (CC) protocol, which allows the parties to output common randomness with a
certain success probability. The success probability that inversely impacts the running time of the ABA is
desired to be a constant fraction, for an ABA protocol to have a constant expected running time. [13] showed
how to implement CC with a constant success probability using an asynchronous verifiable secret sharing
(AVSS) scheme. AVSS is a two phase protocol (Sharing and Reconstruction) carried out among n parties
with a designated party called dealer D in the presence of an adversary who can corrupt up to any t parties
including the dealer. The goal is to let D share a secret s, among the n parties during the sharing phase in a
way that would later allow for a unique reconstruction of s in the reconstruction phase, irrespective of whether
D is honest or corrupt (correctness), while preserving the secrecy of s until the reconstruction phase, if D is
honest (privacy).

[13] shows a perfect (no error) AVSS protocol with t < n/4 and turns it into an almost-surely terminating
ABA with the same resilience. AVSS protocols with t < n/3 and with λ probability of non-termination are
proposed in [9, 19] and are used for building (1−λ)-terminating ABA with a constant expected running time.
The work of [1] introduces a weaker form of AVSS called shunning asynchronous verifiable secret sharing
(SAVSS) with just t < n/3 that suffices to construct an almost-surely terminating ABA. An SAVSS fails to
offer the correctness property of AVSS when the corrupt parties strike, but allows some honest party to locally
detect and shun at least one corrupt party for all future communication. Importantly, the SAVSS scheme
always terminates. Building on the SAVSS scheme, [1] designs a shunning common coin (SCC) protocol.
Being a shunning variant of CC, it ensures that either the properties of CC are satisfied or at least one local
fault detection occurs along with eventual termination guarantee. Since there are O(n2) pairs of honest and
corrupt parties, there may be O(n2) ‘failed’ (but terminating) SAVSS instances (where the correctness is
violated) before hitting a correct SAVSS instance. Consequently, a correct CC instance may take O(n2)
‘failed’ SCC instances to run, making the ABA protocol of [1] run for O(n2) expected running time. [22]
boosts the fault detection capability of their SAVSS1 and SCC by a factor of Ω(n) to come up with an ABA
protocol with O(n) expected running time, but at the expense of exponential computation complexity. See
Appendix A for the analysis of the protocols of [1, 22].

At the heart of our ABA lies a new SAVSS that catches asymptotically the same number of local faults
as [22] while requiring only polynomial computation complexity. But we get this at the cost of having a
termination guarantee that is weaker than the prior SAVSSs. Namely, there may not be a termination guarantee
at all, but in this case, our protocol helps all the honest parties to shun Ω(t) corrupt parties. This leads to a
weaker form of SCC that inherits the same termination property. We then turn this weak SCC to one that
always terminates by running a constant number of weak SCC instances. The novelty lies in interleaving
these weak SCC instances and combining their outputs in a subtle way to achieve a constant fraction success
probability. Interestingly, we show that 3 instances are sufficient to achieve an SCC with a success probability
of 1

4 . Lastly, we note that our protocol improves over the expected communication complexity of the SAVSS
schemes of [1, 22] and is conceptually simpler than the construction of [1] that is built on top of yet another
primitive called moderated weak SVSS (MW-SVSS). We now elaborate on our SAVSS with t < n/3.

High Level Overview of Our SAVSS. Our starting point is the MW-SVSS of [1], based on the idea of
sharing the secret by embedding it in the constant term of a t-degree symmetric bivariate polynomial F (x, y),
where each party Pi receives fi(x) = F (x, i). The parties then exchange common values with each other to
identify a set of n − t parties referred as V , such that each Pi ∈ V is confirmed by a set of n − t parties, Vi,
about the receipt of consistent polynomials i.e. fi(j) = fj(i) holds for each Pj ∈ Vi. In the reconstruction
phase, the polynomial of every Pi from V is reconstructed from the values produced by any n− t− t = n−2t
parties in Vi. For a guaranteed termination, n − 2t is the maximum number of values that can be waited
for in the asynchronous setting. This construction fails to be an SAVSS, satisfying only a weaker notion of

1In [22], the SAVSS scheme is called inferable verifiable secret sharing (IVSS).
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MW-SVSS due to the following: for a corrupt D and a corrupt Pi from V , an incorrect polynomial of Pi may
get reconstructed leading to the violation of correctness, while none of the corrupt parties are shunned. When
at least one of D or Pi is honest, then either fi(x) is correctly reconstructed or the honest party between D
and Pi can shun the corrupt Pj from Vi that contributes an incorrect value of fi(x). We turn this construction
to an SAVSS that fails to guarantee correctness at the cost of locally catching Ω(n) faults (irrespective of D)
and fails to offer termination at the cost of globally shunning Ω(n) corrupt parties.

While the sharing phase remains to be almost the same, except for the construction of V , we bring the
following modifications in the reconstruction phase. First, n−t− t

2 values (instead of n−2t values) are taken
into account for reconstructing a polynomial. The protocol will not terminate if some t/2 + 1 corrupt parties
from one of the Vi sets do not respond. But all the honest parties can keep a tab and shun the non-responsive
parties for all future instances. This is the guarantee we promised when termination is not met. Second, the
reconstruction of a polynomial is made robust against at most t/4 faulty values. This is achieved via Reed-
Solomon (RS) error-correction [18] (see the next section for the formal details) that allows error correction of
upto t/4 values when at least n − t − t/2 values of a t-degree polynomial are received and indeed up to t/4
values are faulty, provided n = 3t+ 1. More than t/4 parties in some Vi must contribute incorrect values for
Pi’s polynomial to be reconstructed incorrectly, leading to the breach of correctness. But some honest parties
will be able to locally identify those parties who contributed incorrectly and shun them. This is the guarantee
we promised when correctness fails. We note that this guarantee is achieved, even if both D as well as Pi are
corrupt. This is due to our modified construction of V; we defer the details to Section 3.

Other Related Work. In this work, we consider pair-wise secure channel model, where the parties are
assumed to be connected by pair-wise private and authentic channels and the adversary cannot read the mes-
sages exchanged between the honest parties; the adversary can only control message scheduling, without
preventing the messages of honest parties from being delivered indefinitely. In [10, 5, 16], BA protocols in
the full-information model are presented, where adversary is computationally unbounded and can even listen
the communication happening between any pair of honest parties. In [7], computationally-secure ABA pro-
tocols are presented, assuming a computationally bounded adversary and a public-key infrastructure (PKI)
set-up.

2 Preliminaries

We assume a set of n parties P = {P1, . . . , Pn}, connected by pair-wise private and authentic channels. A
computationally unbounded adversary A can corrupt any t < n/3 parties during the execution of a protocol
and force the parties under its control (called corrupted parties) to behave in any arbitrary manner during the
protocol execution. For simplicity, we assume the adversary is static, who decides the set of corrupted parties
at the beginning of the execution of a protocol. However, our protocols remain secure even against a more
powerful adaptive adversary, who decides the set of corrupt parties during the run time, depending upon the
values seen so far during the execution of a protocol. For simplicity, we assume n = 3t+ 1, so that t = Θ(n).
In our protocols, all computation and communication are done over a finite field F, where |F| > 2n.

The communication channels are asynchronous allowing arbitrary, but a finite delay (the messages sent
by the honest parties reach their destinations eventually). The order of the message delivery is decided by
a scheduler, controlled by A. The scheduler can only schedule the messages exchanged between the honest
parties, without having access to the “contents” of these messages. A protocol execution is considered as a
sequence of atomic steps, where a single party is active in each such step. A party is activated when it receives
a message. On receiving a message, it performs an internal computation and then possibly sends messages
on its outgoing channels. The order of the atomic steps is controlled by the scheduler. At the beginning of
a protocol, each party will be in a special start state. A party is said to terminate/complete a protocol if it
reaches a halt state, after which it does not perform any further computation. A protocol execution is said to
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be complete if all the honest parties terminate the computation. We measure the running time of a protocol
following [8]. Consider a virtual “global clock” measuring time in the network, with no party having access to
it. The delay of a message transmission denotes the time elapsed from its sending to its reception. The period
of a finite execution of a protocol is the longest delay of any message transmission during the execution. Let
the duration of a finite execution denote the total time measured by the global clock divided by the period
of this execution. The expected running time of a protocol, is the maximum over all inputs and applicable
adversaries, of the average of the duration of executions of the protocol over the random inputs of the parties.

In our protocols, each Pi maintains a local “block” set Bi for all protocol instances and a “wait” setWi,
which are initialized to ∅. It is to be noted that Pi maintains a single local set Bi, where as a separate set
Wi is maintained for each SAVSS protocol instance. Pi includes Pj in Bi if during some protocol instance,
x is expected from Pj , but instead x′ 6= x is received. An honest Pi is said to be in local conflict with Pj
when Pj ∈ Bi. Pi includes Pj inWi corresponding to some SAVSS protocol instance, if during that instance,
Pi is expecting some communication from Pj . While a party taking entry in Bi remains part of it until the
end of the execution of the ABA protocol, any entry in a wait list is temporary and removed as and when the
expected communication is received. Until the receipt of the desired communication from a party inWi, party
Pi suspends (saves yet does not use) its future communication.

Definition 2.1 (Shunning Asynchronous Verifiable Secret Sharing (SAVSS)). Let (Sh,Rec) be a pair of
protocols for the n parties in P , each maintaining a local Bi andWi set, and for a special party dealer D ∈ P
that has a private input s ∈ F for Sh. (Sh,Rec) is an SAVSS scheme if the following requirements hold for
every possible A.

• Termination: (a): If D is honest and all honest parties participate in Sh, then each honest party even-
tually terminates Sh. (b): If some honest party terminates Sh, then every other honest party eventually
terminates Sh. (c): If all honest parties participate in Rec, then one of the following holds: (c.i): All
honest parties eventually terminate Rec; or (c.ii): Some corrupt parties are included in the W sets of
some honest parties.

• Correctness: If the honest parties terminate Rec, then there is a unique value s̄ where s̄ = s for an
honest D and s̄ ∈ F ∪ {⊥} for a corrupt D, such that one of the following holds: (a): All honest parties
output s̄ at the end of Rec; or (b): Some corrupt parties are included in the B sets of some honest parties.

• Privacy: If D is honest, then the view of A during Sh is independent of s.

Definition 2.2 (Weak Shunning Common Coin (WSCC)). Let Π be a protocol for the n parties in P , each
maintaining a local Bi andWi set, where each party has some local random input and a possible binary output.
Then Π is said to be a (p0, p1)-weak shunning common coin (WSCC) protocol, if the following hold for every
possible A – Correctness: If all the honest parties obtain their output, then one of the following holds: (a):
For every value σ ∈ {0, 1}, with probability at least pσ, all honest parties output σ; or (b): Some corrupt
parties are included in the B sets of some honest parties.

Definition 2.3 (Shunning Common Coin (SCC)). A protocol Π is a p-shunning common coin (SCC) if
it is a (p, p)-WSCC and additionally satisfies the following termination guarantee for every possible A –
Termination: If all honest parties participate in Π, then all honest parties eventually terminate Π.

We stress that we do not explicitly define any termination property for WSCC; the parties may continue
running the protocol, even after obtaining output. Our WSCC will be used as a blackbox to design our SCC
protocol. And the termination of our SCC ensures that all the underlying instances of WSCC also terminate.

Definition 2.4 (Almost-Surely Terminating Asynchronous Byzantine Agreement (ABA)). Let Π be a
protocol for the n parties inP , where each party has a binary input xi and a binary output σi. Then, Π is said to
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be an almost-surely terminating ABA protocol, if the following hold for every possible A – (a) Termination:
If all honest parties participate, then with probability one, all honest parties eventually terminate Π. (b)
Agreement: σi = σj holds for every honest Pi and Pj . (c) Validity: If all honest parties have the same input
x ∈ {0, 1}, then σi = x holds for every honest Pi.

Existing Tools and Primitives. In our protocols, we use univariate and bivariate polynomials over F. A
t-degree univariate polynomial is of the form f(x) = a0 + a1x + . . . + atx

t, where each ai ∈ F. A t-
degree symmetric bivariate polynomial is of the form F (x, y) =

∑i=t
i=0

∑j=t
j=0 rijx

iyj , where rij = rji for
i, j = 1, . . . , t and each rij ∈ F. We use the following property of Reed-Solomon (RS) codes. Let f(x) be an
arbitrary unknown t-degree polynomial and let K = {(i1, vi1), . . . , (iN , viN )} be a set of N points such that
at most c of them do not lie on f(x) i.e. vik 6= f(ik) holds for c pairs. RS decoding algorithm RS-Dec(t, c,K)
allows correct reconstruction of the polynomial f(x) from K if and only if N ≥ t+ 1 + 2c [18].

We use the asynchronous reliable broadcast protocol of Bracha with n = 3t + 1 [6], which allows a
sender S ∈ P to identically send some message m to all the parties in P . It ensures that: (a) if S is honest,
then every honest party eventually terminates the protocol with output m; (b) if S is corrupt and some honest
party terminates with output m?, then every other honest party eventually terminates with output m?. The
protocol has communication complexity of O(n2) bits over point-to-point channels to broadcast a single bit
message. We use the term Pi broadcasts m to mean that Pi acts as S and invokes an instance of Bracha’s
protocol to broadcast m. Similarly, the term Pj receives m from the broadcast of Pi means that Pj (as a
receiver) completes the execution of Pi’s broadcast (namely the instance of broadcast protocol where Pi is
S), with m as output. BC(x) denotes the communication complexity of broadcasting x bits using Bracha’s
protocol.

3 Our SAVSS Protocol with n = 3t+ 1

D hides its secret s in the constant term of a t-degree symmetric bivariate polynomial F (x, y) and gives the
ith t-degree univariate polynomial fi(x) = F (x, i) to each Pi. For an honest D, every pair of honest parties
Pi, Pj should be “pair-wise consistent” and fi(j) = fj(i) should hold. So each Pi is designated as a “guard”
to verify the pair-wise consistency of fi(x) with n − t parties Pj , who are considered as “sub-guards” for
Pi. Each Pi, Pj privately exchanges the common value of fi(x) and fj(x) and then publicly announce the
status of consistency check. The goal is then to identify if D has given t-degree univariate polynomials to at
least n − t guards, say V , such that each guard Pi in V has further verified the pair-wise consistency of its
polynomial fi(x) with at least n − t sub-guards, denoted by Vi. Moreover, for every guard Pi in V , every
sub-guard in Vi should be from V , implying that sub-guard Pj of any guard is itself a guard. To ensure that all
parties identify the same V and sub-guard lists, D is assigned the task of identifying V and the sub-guard lists
and broadcast the same. The parties terminate the sharing phase, if D broadcasts a legitimate V and sub-guard
lists. If D is honest, then the set of honest parties always constitute a candidate V and hence the sharing phase
always terminates for an honest D.

During the reconstruction phase, the goal is to reconstruct back t-degree univariate polynomials of all
the guards in V and then using them, interpolate the t-degree bivariate polynomial committed by D. Due to
asynchrony, the parties cannot afford for each guard in V to reveal its univariate polynomial. Instead, the
univariate polynomial of each guard Pj is reconstructed using the points held by the sub-guards Pk in Vj who
are asked to publicly reveal their respective univariate polynomial fk(x). We wait for n − t − t

2 = 3t
2 + 1

sub-guards in Vj to respond. Then using the 3t
2 + 1 revealed fj(k) values, we try to error-correct t

4 errors
and interpolate back fj(x). When at most t

4 sub-guards out of the 3t
2 + 1 sub-guards produce incorrect

polynomials, the reconstructed polynomial fj(x) is correct. Otherwise, at least t
4 + 1 corrupt sub-guards

Pk who produced wrong polynomials and are also guards will be identified locally as corrupt by at least one
honest sub-guard Pl in Vk. The reconstruction phase may not terminate if less than 3t

2 + 1 parties from Vj
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participate for some guard Pj . But this will lead to communication from at least t
2 + 1 corrupt sub-guards in

Vj being marked as “pending” by all honest parties. As a consequence, in any subsequent SAVSS instance,
there will be at most t2−1 corrupt participants, resulting in at least 3t

2 +1 honest sub-guards in each sub-guard
list. So the adversary cannot disrupt the correctness or fail termination of any further SAVSS reconstruction
instance.

The sharing and reconstruction protocols are presented in Fig 1. Each instance of SAVSS is associated
with a unique id sid ∈ N. All messages communicated during the SAVSS instance sid are tagged with this
id. However, we skip tagging every message explicitly with id for simplicity. In the sharing phase, once V is
agreed upon, then the parties locally populate their respectiveW sets, anticipating the values they expect from
the various guards and sub-guards during the reconstruction phase. At the beginning of each instance of the
SAVSS, a corresponding memory management protocol SAVSS-MM is invoked (Fig 2), according to which
each party locally decides whether to process a received message as per the SAVSS, delay it temporarily or
block it permanently. The SAVSS-MM protocol for id sid examines the messages produced by the various
sub-guards during the reconstruction phase and accordingly theW and B lists of the parties are updated. We
stress that the parties keep executing SAVSS-MM with id sid, even after terminating the (Sh,Rec) protocols
with id sid. This ensures that if some message is pending from a party in instance sid, then its communication
is ignored by the SAVSS-MM protocol in any future instance sid′ > sid. This will be later useful in our WSCC
protocol to ensure that at least t2 +1 corrupt parties are globally shunned, if any Rec instance fails to terminate
in WSCC.

Before we prove the properties of our SAVSS protocol, we prove the properties of the SAVSS memory
management protocol, which will be used while proving the properties of SAVSS. The first property is that
an honest party is never included in the B list of any honest party. The second property states that all pending
messages from any honest party is eventually removed from theW list of every honest party.

Lemma 3.1 (Properties of SAVSS Memory Management Protocol). The following holds for every honest
Pi ∈ P during the SAVSS memory management protocol with id sid for any sid ∈ N:

– If Pj is included in Bi then Pj is corrupt.
– If Pj is honest, then any triplet of the form (?, Pj , ?) present inW(i,sid) will eventually be removed.

Proof. If Pj is honest, then it eventually broadcasts all the messages it is supposed to broadcast during the
reconstruction phase of the SAVSS protocol with id sid and by the properties of broadcast, these messages are
eventually received by every honest Pi. Hence every triplet of the form (?, Pj , ?) will eventually be removed
from W(i,sid). Moreover, an honest Pj correctly broadcasts the same values as received during the sharing
phase. So the condition for including Pj to Bi is never satisfied and hence Pj is never included in Bi.

We next prove the termination property of the SAVSS protocol

Lemma 3.2 (Termination of SAVSS). For any sid ∈ N, the following holds during the (Sh,Rec) protocol
with id sid:

1. If D is honest and all honest parties participate in Sh, then each honest party eventually terminates Sh.
2. If some honest party terminates Sh, then every other honest party eventually terminates Sh
3. If all honest parties participate in Rec, then one of the following holds:

– All honest parties eventually terminate Rec or
– At least t2 + 1 corrupt parties are included inW(i,sid) of every honest party Pi

Proof. We first note that during Sh and Rec, the messages of every honest party is cleared by the SAVSS-MM
protocol and eventually delivered to the honest recipients. When D is honest, every honest Pi eventually
broadcasts (ok, Pj) for every honest Pj , with Pj eventually broadcasting sent. Thus, D eventually includes
every honest Pj in the set Vi of every honest party Pi. D can follow the following steps to find the sets
(V, {Vi}Pi∈V):
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Figure 1: SAVSS with n = 3t+ 1 and id sid.

Protocol Sh(D,P, s)

Distribution by D – Dealer D selects a random, t-degree symmetric bivariate polynomial F (x, y) with
F (0, 0) = s and sends fi(x) = F (x, i) to each Pi ∈ P .
Pair-wise consistency check – Each party Pi ∈ P (including D), executes the following code:

– Wait until a t-degree polynomial f̂i(x) is received from D.
– For j = 1, . . . , n, send f̂i(j) to party Pj . Then broadcast the message sent.
– If a value f̂ji is received from Pj and the message sent is received from the broadcast of Pj , such

that f̂ji = f̂i(j) holds, then broadcast the message (ok, Pj).

Construction of V – The following code is executed only by D:

– Find sets V ⊆ P and Vi ⊆ P , for every Pi ∈ V , such that: |V| ≥ n−t, |V∩Vi| ≥ n−t and for every
Pi ∈ V and Pj ∈ Vi, (ok, Pj) and sent is received from the broadcast of Pi and Pj respectively.

– Redefine V as V = V ∩ (
⋃

Pj∈V
Vj) and Vi = V ∩ Vi. Broadcast the redefined V and Vi sets.

Verifying V and populatingW sets – Each Pi ∈ P (including D) executes the following code:

– Wait to receive V and Vj corresponding to each Pj ∈ V from the broadcast of D. On receiving check
if V =

⋃
Pj∈V
Vj and |V ∩ Vj | ≥ n− t holds for every Pj ∈ V . Accept V if for each Pj ∈ V and each

Pk ∈ Vj , the message (ok, Pk) and sent is received from the broadcast of Pj and Pk respectively.
– Wait until V is accepted. Then populateW(i,sid), initialized to ∅ as follows and terminate:
◦ If Pi = D, then add (Pj , Pk, fj(k)) to W(i,sid) for each Pj ∈ V and each Pk ∈ Vj . This is

interpreted as D expects Pk to reveal fj(k) as a sub-guard for the guard Pj during Rec.
◦ If Pi ∈ V , then add the following triplets toW(i,sid):

– (Pi, Pj , f̂i(j)) for each Pj ∈ Vi. This is interpreted as Pi (as a guard), expects Pj to reveal
f̂i(j) (as a sub-guard) during Rec.

– (Pi, Pj , f̂i(j)) for all Pj such that Pj /∈ Vi, Pj ∈ V and Pi ∈ Vj . This is interpreted as Pi
(as a sub-guard), expects Pj to reveal f̂i(j) (as a sub-guard of some guard) during Rec.

◦ Else add the triplet (Pj , Pk, ?) toW(i,sid) for each Pj ∈ V and each Pk ∈ Vj . This is interpreted
as Pi expects Pk to reveal some value from F as a sub-guard for the guard Pj during Rec.

Protocol Rec(D,P, s)
Making the polynomials public — Each Pi ∈ V broadcasts the t-degree polynomial f̂i(x).
Reconstructing the polynomials of guards: The following code is executed by every party Pi ∈ P:

– For each Pj ∈ V , initialize Kj to ∅. Add (k, f̂k(j)) to Kj , if a t-degree polynomial f̂k(x) is received
from the broadcast of Pk ∈ Vj .

– Wait until |Kj | ≥ n−t− t
2 = 3

2 t+1 for each Pj ∈ V and then execute RS-Dec(t, t4 ,Kj). If for some
Pj ∈ V , RS-Dec(t, t4 ,Kj) does not output a t-degree polynomial, then output ⊥ and terminate.

– Else let f̄j(x) denote the t-degree polynomial obtained by RS-Dec(t, t4 ,Kj), for each Pj ∈ V . If
there exists a t-degree symmetric bivariate polynomial F (x, y), such that F (x, j) = f̄j(x) holds for

each Pj ∈ V , then output s̄
def
= F (0, 0) and terminate. Else output ⊥ and terminate.
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Figure 2: Protocol SAVSS-MM(D): SAVSS memory management protocol with id sid.

The following code is executed by each Pi ∈ P:
Initialization: InitializeW(i,sid) and Bi to ∅. The set Bi is a set that is initialized by the party Pi only once
(when sid = 0) and dynamically updated during the instances of SAVSS-MM. The setW(i,sid) is initialized
in and maintained for SAVSS instance with id sid only.
Blocking messages: If Pj ∈ Bi, discard any message received from Pj during (Sh,Rec) with id sid.
Filtering messages: If Pj /∈ Bi, then any message received from Pj during the SAVSS instance with id
sid is processed as follows:

1. If a t-degree polynomial f̂k(x) is received from the broadcast of Pk ∈ V during Rec with id sid
such that (Pj , Pk, val) ∈ W(i,sid). Then do the following:
◦ If val = ?, remove (Pj , Pk, x) fromW(i,sid) and forward f̂k(x) to the SAVSS instance sid;
◦ If val 6= ? and f̂k(j) = val, then do the same as above;
◦ If val 6= ? and f̂k(j) 6= val, add Pk to Bi.

2. Else forward the received message to the SAVSS instance sid.

– Initialisation: Initialise a dynamic set T to ∅. For every party Pi initialise a dynamic set Vi to ∅.
– Update of V Sets: Include every Pj in Vi for which sent is received from the broadcast of Pj and (ok, Pj)

is received from the broadcast of Pi.
– Update of T : Include a party Pi in T if |Vi| ≥ n− t holds.
– Finding Candidate Solution: If there exists a subset V of T such that |V ∩ Vi| ≥ n − t is true for every

Pi ∈ V , then return (V, {Vi}Pi∈V) and stop. Else wait and verify if the above condition is true after
every update of T or Vis.

As there are at most t corrupt parties, |Vi| ≥ n − t eventually holds for every honest Pi and so every
honest Pi is eventually included in the set T . Hence, D eventually finds a V ⊆ T , such that |V ∩ Vi| ≥ n− t
holds for every Pi ∈ V . As a result, D eventually finds a V and then re-defines this set by restricting it to only
parties in

( ⋃
Pj∈V
Vj
)

. Further, D re-defines the existing Vi sets by restricting them within the re-defined V .

We next claim that the re-defined Vi sets will still have an overlap of size at least n− t with the re-defined set
V . We define VOld and VNew to represent the contents of V before and after re-defining the V set respectively.
Similarly, let VOld

i and VNewi represent the contents of Vi before and after re-defining the set Vi respectively.

We now have that VNew = VOld ∩
( ⋃
Pj∈VOld

VOld
j

)
and VNewi = VNew ∩ VOld

i . By substituting for VNew and

VNew
i , we get that

(
VNew ∩VNewi

)
= VNew ∩

(
VNew ∩VOld

i

)
= VOld ∩

( ⋃
Pj∈VOld

VOld
j

)
∩VOld

i = VOld ∩VOld
i ;

this is because Pi ∈ VOld and hence VOld
i ⊆

( ⋃
Pj∈VOld

VOld
j

)
. This proves the claim that |VNew∩VNewi | ≥ n−t

as it follows from the fact that |VOld ∩VOld
i | ≥ n− t holds. From now on, we simply refer to these re-defined

sets VNew and VNewi as V and Vi respectively as only these sets are needed for the rest of the proof. So, D
eventually broadcasts V and Vi sets corresponding to every Pi ∈ V . By the properties of broadcast, every
honest party eventually receives these sets from the broadcast of D, who is honest, and accepts the same after
verifying them. So, every honest party eventually terminates Sh. This proves the first part.

Let Ph be the first honest party who terminates Sh. This implies that Ph receives and accepts the set
V of size at least n − t and the Vi sets corresponding to every Pi ∈ V from the broadcast of D, such that
|V ∩ Vi| ≥ n − t holds for every party Pi ∈ V . By the properties of broadcast, every other honest party
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eventually receives these sets. It follows easily that every other honest party also eventually accepts the set V
and terminates Sh, proving the second requirement.

For the third part, we first note that honest parties participate in Rec, only after terminating Sh and ac-
cepting V . Moreover, apart from accepting V , each honest party Pi also populatesW(i,sid). That is, for every
Pj ∈ V and every Pk in Vj , there is a corresponding triplet of the form (?, Pk, ?) present inW(i,sid). If a cor-
rupt Pk ∈ Vj does not participate in the reconstruction protocol (by not broadcasting the values it is supposed
to broadcast), then as per the protocol SAVSS-MM, the communication from Pk is marked as pending and
not removed from W(i,sid) forever. Now, if Rec does not terminate for all the honest parties, then it implies
that there is some Pj ∈ V , such that t-degree polynomial f̂k(x) is received from the broadcast of at most
n− t− t

2 − 1 = 3t
2 parties Pk ∈ Vj . This further implies that there are at least t2 + 1 corrupt parties Pk ∈ Vj ,

who do not participate in the Rec protocol. It now follows easily that corresponding to such Pk, a triplet of
the form (?, Pk, ?) will be present inW(i,sid) permanently for every honest Pi .

As a corollary of Lemma 3.2, we can state that if there are at most t
2 − 1 corrupt parties participating during

Rec, then protocol Rec eventually terminates for each honest party. This is because there can be at most t2 − 1
corrupt sub-guards in each Vj , who do not participate during Rec. However, the values from the remaining
3t
2 + 1 honest sub-guards from Vj are eventually received and hence RS-Dec is eventually executed for each
Pj in V .

Corollary 3.3. For any sid ∈ N, if all the honest parties participate during the Rec protocol with id sid and if
there are at most t2−1 corrupt parties participating during the Rec protocol, then the Rec protocol eventually
terminates for each honest party.

We next prove the correctness of SAVSS.

Lemma 3.4 (Correctness of SAVSS). For any sid ∈ N, the following holds during the (Sh,Rec) protocol
with id sid: If honest parties terminate Rec, then there exists a unique value s̄ where s̄ = s for an honest D
and s̄ ∈ F ∪ {⊥} for a corrupt D, such that one of the following holds: all honest parties output s̄ at the end
of Rec or at least t4 + 1 local conflicts occur.

Proof. For the first part of the proof, we consider an honest dealer. Note that if D is honest, then for
every party Pj ∈ V , the polynomial f̂j(x) received by Pj , is the same as t-degree polynomial fj(x), where
fj(x) = F (x, j) and F (x, y) is the t-degree bivariate polynomial selected by D. To prove this lemma, we
need to show that each honest party Pi either reconstructs f̄j(x) = fj(x) during Rec for each Pj ∈ V or
t
4 + 1 local conflicts occur. If, for each Pj ∈ V , the honest Pi reconstructs f̄j(x) = fj(x) during Rec, then
clearly F (x, y) = F (x, y) holds and hence s̄ = s holds. On the other hand, let there exists some Pj ∈ V ,
such that Pi reconstructs f̄j(x) 6= fj(x) during Rec. Note that f̄j(x) is the output of executing RS-Dec

(
with

N = 3t
2 + 1 and c = t

4

)
on the set Kj and if there are at most t4 incorrect values in the set Kj constructed by

Pi, then f̄j(x) = fj(x) holds. So, for f̄j(x) 6= fj(x) to be true, there should be at least t4 + 1 incorrect values
(k, f̂k(j)) in Kj , such that f̂k(j) 6= fj(k) holds. This implies that at least t

4 + 1 corrupt parties Pk ∈ Vj
broadcast t-degree f̂k(x) during Rec, such that f̂k(x) 6= fk(x). We note that if Pk ∈ Vj then it implies that
Pk ∈ V as well because the sub-guards in each sub-guard list is restricted within V . This implies that there
exists a set Vk as well. We claim that if a t-degree polynomial f̂k(x) is received from the broadcast of Pk
during Rec, such that f̂k(x) 6= fk(x), then at least one honest party Pl ∈ Vk will be in local conflict with Pk.
It easily follows from this claim that at least t

4 + 1 local conflicts occur since there are at least t
4 + 1 corrupt

parties Pk, which reveal f̂k(x) 6= fk(x).
To prove our claim, we note that for every party Pk ∈ V , the set Vk has at least n − 2t = t + 1 honest

parties Pl from V because |V ∩ Vk| ≥ n − t is ensured. Let Hk be the set of such honest parties Pl. For
each party Pl ∈ Hk, the condition fk(l) = fl(k) holds. This is because Pl in included in Vk only after

10



Pk broadcasts the message (ok, l), on receiving flk = fl(k) from Pl and locally verifying that fk(l) = fl(k)
holds. Moreover, the values flk corresponding to the parties Pl ∈ Hk uniquely define the t-degree polynomial
fk(x) since |Hk| ≥ t + 1. So, if a polynomial f̂k(x) is received from the broadcast of Pk during Rec, such
that f̂k(x) 6= fk(x), then there are at most t parties Pl from Hk for which f̂k(l) = flk holds. This is because
two different t-degree polynomials f̂k(x), fk(x) can have at most t common values. Hence there exists at
least one party Pl ∈ Hk for which f̂k(l) 6= flk holds. So during SAVSS-MM, party Pl will be in local conflict
with Pk and includes Pk to the set Bl. This proves the claim and hence the lemma for the case of an honest
dealer. We next consider the case of a corrupt dealer to complete the rest of the proof.

We start by defining s̄. Let Ph ∈ P be the first honest party which terminates Sh. This implies that Ph
accepts a V , broadcasted by D, where |V| ≥ n− t. This further implies that there are at least n− 2t = t+ 1
honest parties in V . Let H denote the set of honest parties in V and let f̂j(x) denote the t-degree polynomial
received by each Pj ∈ H from D. If there exists a t-degree symmetric bivariate polynomial, say F (x, y), such
that F (x, j) = f̂j(x) holds for each Pj ∈ H, then we set s̄ = F (0, 0), otherwise we set s̄ =⊥. Now there are
two possible cases.

If s 6=⊥, then the proof of the lemma is exactly the same as in the case of an honest dealer. This is because
in this case, the t-degree univariate polynomials of all the parties in V (including the ones who are outside
H) lie2 on F (x, y), as for each Pj in V \ H, there are at least t + 1 parties Pk from H in Vj , with whom the
polynomial of Pj is pair-wise consistent. That is, f̂j(k) = f̂k(j) holds. And the f̂k(j) values of these honest
parties uniquely define a t-degree polynomial F (x, j). Now, consider the second case when s̄ =⊥. If any
honest party, upon terminating Rec, outputs ¯̄s 6= s̄, then it implies that there exists at least one party from H,
say Pj , such that f̂j(x) is not reconstructed correctly during Rec; i.e. f̄j(x) 6= f̂j(x) holds. Using a similar
reasoning as in the case of an honest dealer, we can conclude that in this case, at least t

4 + 1 local conflicts
occur.
We next prove the privacy of SAVSS.

Lemma 3.5 (Privacy of SAVSS). For any sid ∈ N, if D is honest, then the view of the adversary is indepen-
dent of the input s of D during the Sh protocol with id sid.

Proof. Let C be the set of parties under the control of A, where |C| ≤ t and D 6∈ C. So A will know the
polynomials fi(x), where Pi ∈ C. We first claim that throughout the protocol Sh, the adversary obtains no
additional information other than these polynomials. During the instance Sh, adversary A obtains at most t
shares of the t-degree polynomial fj(x) for an honest party Pj . These t shares are already known to A, as
these can be computed from the row polynomials of the t parties in C. Hence no new information about fj(x)
is revealed to A. We now show that given only the polynomials of the corrupted parties in C, no information
about the secret s = F (0, 0) is revealed to A. The proof follows from the properties of t-degree symmetric
bivariate polynomials, as given in [11]; for the sake of completeness, we recall the proof in the sequel.

To complete the proof, it is sufficient to show that from the view-point of the adversary, for every possible
secret s ∈ F, there are same number of symmetric bivariate polynomials F (x, y) of degree t, with s =
F (0, 0), such that F (x, y) is consistent with the polynomials received by A during Sh; i.e. fi(x) = F (x, i)
holds for every Pi ∈ C. We proceed to do the same in the following.

Let f i(x)
def
= F (x, i). Consider the following polynomial,

h(x) =
∏
Pi∈C

(
−1

i
· x+ 1

)
.

The polynomial h(x) has degree at most t, where h(0) = 1 and h(i) = 0, for every Pi ∈ C. Now, define the
bivariate polynomial Z(x, y) as follows:

Z(x, y)
def
= h(x) · h(y).

2We say a t-degree univariate polynomial fj(x) lie on a t-degree bivariate polynomial F (x, y), if F (x, j) = fj(x) holds.
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Note that Z(x, y) is a symmetric bivariate polynomial of degree t and Z(0, 0) = 1 and zi(x)
def
= Z(x, i) = 0,

for every Pi ∈ C. Now if during the protocol Sh, dealer D has used the polynomial F (x, y), then for every
possible s, the information (namely the polynomials) held by A is also consistent with the polynomial

F (x, y) = F (x, y) + (s− s) · Z(x, y).

Indeed F (x, y) is a symmetric bivariate polynomial of degree t and for every Pi ∈ C,

f i(x) = F (x, i) = fi(x) + (s− s) · zi(x) = fi(x),

and
F (0, 0) = F (0, 0) + (s− s) · Z(0, 0) = s+ s− s = s.

Thus there exists a one-to-one correspondence between the consistent polynomials for the shared secret s and
those for s and so all secrets are equally likely from the view-point of the adversary.

Next we prove the communication complexity of the SAVSS.

Lemma 3.6 (Communication Complexity of SAVSS). For any sid ∈ N, the following holds during the
(Sh,Rec) protocol with id sid: the Sh protocol has communication complexity of O(n4 log |F|) bits. The Rec
protocol has communication complexity of O(n4 log |F|) bits.

Proof. During Sh, dealer D distributes O(n2) values from F and parties also exchange O(n2) values from
F, which amounts to O(n2 log |F|) bits of communication over the point to point channels. In addition, D
broadcasts a V containing the identity of O(n) parties and O(n) Vi sets, each containing the identity of
O(n) parties, where the identity of each part can be represented by log n bits. This amounts to broadcast of
O(n2 log n) bits, which translates to a communication ofO(n4 log n) bits (since broadcast of one bit requires
O(n2) bits of communication). During Rec, each party in V broadcasts its t-degree polynomial, which re-
quires broadcasting O(n) values from F. Hence Rec protocol has a broadcast of O(n2 log |F|) bits, which
requires a communication of O(n4 log |F|) bits.

The following theorem follows from Lemma 3.2-3.6.

Theorem 3.7. For every sid ∈ N, the pair of protocols (Sh,Rec) with id sid is an SAVSS scheme. The Sh and
Rec protocols have a communication complexity of O(n4 log |F|) bits each.

4 Weak Shunning Common Coin (WSCC) Protocol with n = 3t+ 1

Similar to the SCC of [1], our WSCC protocol WSCC has two main stages. In the first stage, each party
attaches itself with a uniform random value that is unknown to all including itself and simultaneously ensures
that a “sufficiently large” number of parties do the same. In the second stage, the secret values are revealed
and a bit is output taking these opened values into account. The first stage is implemented by making each
party act as a dealer to run n instances of Sh and share n random values from F, one for each party. Each
party Pi attaches itself, with the secrets meant for it, to a set of at least t + 1 dealers Ci whose Sh instances
it terminates. Then each Pi decides whether there exists a sufficiently large set of parties Hi, such that the
set Cj has been identified for each Pj in Hi. Once this is done, the next stage is to reconstruct the values
attached to the parties in Hi, based on which each party in Hi is associated with a uniformly random value.
The transition from stage one to stage two is locally marked by setting a local Boolean variable Flagi by each
Pi. Party Pi then decides its outcome based on the values associated to the parties in Hi.
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The SCC protocol of [1] ensures that either all honest parties output the same coin with probability at
least 1

4 or one of the Rec instances fail and at least one local conflict occurs. However, the SCC protocol
always terminates, as their underlying Rec instances always terminate. We depart from the protocol of [1] in
several ways. First, when Rec instance fails and the correctness of common coin is disturbed, at least t

4 + 1
local conflicts, instead of just one, are guaranteed to occur, allowing a faster convergence to a correct instance.
This directly carries over from the correctness of the underlying SAVSS protocol. Second, the parties may
not be able to compute their outcome always, owing to the fact that some underlying Rec instance may not
terminate, in contrast to guaranteed termination of the SCC of [1]. In this case, we ensure that at least t

2 + 1
corrupt parties are shunned by all honest parties. This guarantee ensures that in any subsequent invocation of
WSCC, there can be at most t2 −1 corrupt parties participating, who can never prevent the honest parties from
computing their outcome. Ensuring the above, however, needs an additional step in the existing SCC protocol
and a clever memory management protocol WSCCMM. Specifically, we do it in two steps. First, by using a
“watch-list mechanism” and applying a stricter condition for attaching a party’s shared value, we ensure that
at least t+ 1 honest parties shun at least t2 + 1 corrupt parties when some Rec instance contributing its secret
to some honest party’s output does not terminate. Next, our WSCCMM ensures that all honest parties shun
those t

2 + 1 corrupt parties from participating in any subsequent instance of WSCC. The details follow.
Let Shjk denote the Sh instance with Pj as a dealer to share a secret for Pk and let Recjk denote the

corresponding Rec instance. Each party Pi maintains a local dynamic watch-list Ti, to keep track of instances
Shjk that terminate for Pi. The goal to is to keep their corresponding Rec instances under surveillance so that
Pi shuns at least t

2 + 1 corrupt parties in case Rec instance of some Sh instance from Ti does not terminate.
Now to ensure that not just Pi alone but at least a set of t + 1 honest parties shun the same set of corrupt
parties, the condition for inclusion in Ci and attaching a value is made stricter. Namely, Pi adds Pj to Ci if at
least n− t parties confirm that Shjk for all k = 1, . . . , n terminates for them and is present in their respective
T sets. Now to ensure that every honest party in P (and not just t + 1 honest parties) shuns these corrupt
parties, we do the following. As part of the memory management protocol WSCCMM, a party Pi “approves”
a party Pj locally by broadcasting OK signal only when Pj clears all pending messages as a part of all the Rec
instances corresponding to Ti which is freezed at the time of setting Flagi. Finally, Pi approves Pj globally
and allows it to participate in any subsequent WSCC instance, if at least n− t parties broadcast OK message
for Pj during WSCCMM. As a consequence of these steps, any instance Recjk that contributes to the attached
value of some honest party is watched by at least t + 1 honest parties. These parties will shun and never
broadcast OK signal for the shunned t

2 + 1 corrupt parties when the Recjk instance does not terminate. So
these corrupt parties are never approved globally by any of the honest parties. Consequently, these corrupt
parties are shunned for all subsequent WSCC invocations.

Note that due to asynchrony, the setsHi andHj might be different for Pi and Pj . To ensure that all honest
parties participate in the Rec instances, required to reconstruct the attached values of the parties in Hi and
Hj , every honest party keeps participating in WSCC, even after obtaining its output. This is crucial as there
is no guarantee of termination of a Rec instance, if only a strict subset of honest parties participate in the Rec
instance. Hence, there is no termination condition in WSCC. We next present WSCC, WSCCMM and proof
of the properties of these protocols. We note that our protocol has diffenent probabilities of outputting 0 and
1. Yet, our SCC that uses WSCC as a subprotocol outputs both possible bits with the same probability of 1

4 , a
property achieved traditionally by the existing common coins.

Protocol WSCC and WSCCMM are formally presented in Fig 3 and Fig 4 respectively. Each instance of
WSCC is identified by a unique id of the form (sid, r), where sid ∈ N and r ∈ {1, 2, 3}. Looking ahead, in
our SCC protocol SCC with id sid, three parallel instances of WSCC are executed and we will associate the
ids (sid, 1), (sid, 2) and (sid, 3) to these WSCC instances. Inside the WSCC protocol, each Pi ∈ P acts as a D
and invokes an instance of Sh on the behalf of every party Pj ∈ P . These Sh (and the corresponding Rec and
SAVSS-MM) instances will be associated with id of the form3 (sid, r, Pi, Pj); accordingly, the corresponding

3Recall that during the description of Sh,Rec and SAVSS-MM, we used ids of the form sid; the additional components r, Pi and
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W sets for each Pk will be of the form W(k,sid,r,Pi,Pj). Also, we add additional technicalities in WSCC to
ensure proper working of the watch-list mechanism discussed earlier. Specifically, once Pi sets Flagi to
one, it stops including new Sh instances to Ti, even if those Sh instances terminate for Pi; we stress that
Pi keeps participating in all the Sh instances which has not yet terminated for Pi, even if Pi sets Flagi to
one. Looking ahead, this will be very crucial for the termination of our SCC, where WSCC is used as a
sub-protocol. An instance of WSCCMM accompany each instance of WSCC, according to which each party
locally decides whether to process a received message as per the WSCC protocol, delay it temporarily or
block it permanently.

Figure 3: WSCC protocol with n = 3t+ 1 and id (sid, r).

WSCC(sid, r)

Each Pi ∈ P executes the following code:

1. For 1 ≤ j ≤ n, choose a random secret sij ∈R F on the behalf of Pj and as a D, invoke an
instance Sh(Pi,P, sij) of Sh with id (sid, r, Pi, Pj). Denote this invocation by Shij . Participate in
the invocations Shjk for every Pj , Pk ∈ P .

2. Broadcast (Completed, (sid, r, Pj , Pk)) and add (sid, r, Pj , Pk) to T(i,sid,r), initialized to ∅, on ter-
minating Shjk.

3. Initialize a set Ci to ∅. Add party Pj to Ci, if the following two conditions are satisfied for all
1 ≤ k ≤ n:

– Shjk has terminated and
– The message (Completed, (sid, r, Pj , Pk)) is received from the broadcast of n− t parties.

Wait until |Ci| ≥ t+ 1. Then, assign Ci = Ci and broadcast the message (Attach, Ci, Pi). We say
that that the values {sji|Pj ∈ Ci} represent the secrets attached to party Pi.

4. Accept Pj and include it in the set Gi, if the message (Attach, Cj , Pj) is received from the broadcast
of Pj and Cj ⊆ Ci holds. Wait until |Gi| ≥ n − t. Then, let Gi = Gi and broadcast the message
(Ready, Pi, Gi).

5. Consider Pj to be supportive and include it in the set Si, if Pi receives the message (Ready, Pj , Gj)
from the broadcast of Pj and each party in Gj is accepted (i.e. Gj ⊆ Gi). Wait until |Si| ≥ n − t.
Then, set Flagi = 1 (initialized to 0). Let Si and Hi denote the contents of Si and Gi respectively,
when Flagi becomes 1.

6. Wait until Flagi = 1. Then reconstruct the secrets attached to all the accepted parties. That is, for
each Pj ∈ Ck such that Pk ∈ Gi, start participating in the instances Rec(Pj ,P, sjk). Denote this
instance of Rec as Recjk and let rjk be the corresponding output. (Some parties may be included
in Gi after Flagi is set to 1. In that case, immediately start participating in the corresponding Rec
instances.) In addition, stop executing step 2. That is, only keep participating in any Sh instance
which has not yet terminated, after setting Flagi to one. But upon terminating these Sh instances,
do not include these Sh instances to Ti and do not broadcast any Completed message

7. Let u
def
= d2.22ne. For every Pk ∈ Gi, define vk, the value associated with Pk, to be the sum

modulo u of all the secrets attached to Pk. That is, vk
def
=
(∑

Pj∈Ck rjk

)
mod u.

8. Wait until the values associated will all the parties in Hi are computed. If there exists a party
Pk ∈ Hi where vk = 0, then output 0. Else, output 1. a

a Party Pi keeps executing the protocol even if it obtains its output. Note that the step for computing the
output will be executed at most once, as the set Hi gets fixed, once Flagi is set to 1.

Pj are brought out here to distinguish the various instances of Sh,Rec and SAVSS-MM invoked inside WSCC.
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Figure 4: Memory management protocol for WSCC with id (sid, r).

WSCCMM(sid, r)

Each Pi ∈ P executes the following code:
Initialization: Initialize the set T(i,sid,r) to ∅ and the set A(i,sid,r) to ∅ at the beginning of WSCC instance
with id (sid, r).
Permanently blocking: If Pj ∈ Bi, then all the messages received from Pj during the WSCC instance
with id (sid, r) are discarded.
Filtering messages:

– If r = 1, then forward every message received from Pj during the WSCC instance with id (sid, r) to
the underlying WSCC protocol.

– If r > 1, then any message received from Pj during the WSCC instance with id (sid, r) is processed
as follows:

◦ If Pj ∈ A(i,sid,r′) for all r′ < r, then forward the message to the WSCC instance with id (sid, r).
◦ Else, delay it.

Identifying pending messages from the current WSCC instance:

– If Flagi = 1, then broadcast the message (OK, Pj) if the following conditions hold

◦ Pj /∈ Bi and
◦ For every SAVSS instance (sid, r, Pk, Pl) ∈ T(i,sid,r), there exists no triplet of the form (?, Pj , ?)

in the setW(i,sid,r,Pk,Pl).

– If n− t parties broadcast (OK, Pj), then add Pj to A(i,sid,r).

Before we prove the properties of WSCC, we prove two important properties of WSCCMM (Lemma 4.2),
which will be used while proving the properties of WSCC. The first property states that each honest party is
eventually included in the A set of every honest party. The second property states that if some honest party
fails to terminate any Rec instance while reconstructing the secrets attached to an accepted party, then at least
t
2 + 1 corrupt parties are disapproved by all the honest parties. To prove these properties of the memory
management protocol, we first prove a lemma that will be useful; the lemma states that for every accepted
party Pk in Gi, at least t+ 1 honest parties terminate the instance Shjk, corresponding to each Pj ∈ Ck.

Lemma 4.1. For any (sid, r) with sid ∈ N and r ∈ {1, 2, 3} , the following holds for any honest party Pi
during the WSCC protocol with id (sid, r): if Pk ∈ Gi, then for every Pj ∈ Ck, there are at least t+ 1 honest
parties Pl which include the Sh instance with id (sid, r, Pj , Pk) to T(l,sid,r).

Proof. Let Pi be an arbitrary honest party. As Pk ∈ Gi, it implies that Ck ⊆ Ci holds. This further implies
that every Pj in Ck also belongs to Ci. Since Pi adds party Pj to Ci, it follows that Pi receives the message
(Completed, (sid, r, Pj , Pk)) from the broadcast of n− t different parties. Out of these n− t parties, at least
n − 2t = t + 1 parties Pl are honest. These t + 1 honest parties broadcast the Completed message only
after terminating the Sh instance with id (sid, r, Pj , Pk) and hence the id (sid, r, Pj , Pk) is included to the set
T(l,sid,r).

Lemma 4.2 (Properties of WSCC Memory Management Protocol). For every honest Pi, the following
hold during the WSCCMM protocol with id (sid, r) for any (sid, r), where sid ∈ N and r ∈ {1, 2, 3}:
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• Every honest party Pj is eventually included in the A(i,sid,r) set of Pi.

• For every Pk ∈ Gi and every Pj ∈ Ck, if Recjk does not terminate for Pi, then at least t
2 + 1 corrupt

parties are not included in the set A(l,sid,r) of every honest party Pl.

Proof. If Pj is an honest party, then it follows from lemma 3.1 that there will be no pending communica-
tion from Pj in any Rec instance. Hence every triplet of the form (?, Pj , ?) present in the set W(i,sid,r,?,?),
corresponding to SAVSS instance (sid, r, ?, ?), is eventually removed from the setW(i,sid,r,?,?) of every hon-
est party Pi; this holds irrespective of whether (sid, r, ?, ?) ∈ T(i,sid,r) of every honest party Pi. Moreover,
Pj /∈ Bi holds. So, the conditions for broadcasting the message (OK, Pj) eventually become true for each
honest Pi and hence each honest Pi eventually broadcasts the message (OK, Pj). As there are at least n − t
honest parties Pi, it follows that at least n − t parties eventually broadcast the (OK, Pj) message, which are
eventually received by every honest party. Hence, Pj is eventually included in A(i,sid,r) set of every honest
party Pi. This proves the first part.

For the second part, we first note that if Pk ∈ Gi and Pj ∈ Ck, then it implies that the Sh instance
(sid, r, Pj , Pk) is included in the T set of at least t + 1 honest parties (see Lemma 4.1). Let H denote the
set of these t + 1 honest parties. Now consider the Rec instance Recjk. It follows from Lemma 3.2, that if
the instance Recjk does not terminate, then communication from at least t

2 + 1 corrupt parties are marked as
pending by the parties in H. Let F denote the set of these t

2 + 1 corrupt parties. This implies that for each
Pc ∈ F , there exists triplets of the (?, Pc, ?) in theW setW(h,sid,r,Pj ,Pk) of every party Ph ∈ H, which are
never removed. This implies that no party in H ever broadcasts the (OK, Pc) message during the WSCCMM
protocol, which further implies that there are less than n− t parties who broadcast (OK, Pc) message. Hence
the parties in F are not included in the A(i,sid,r) set of any honest party Pi.

We next prove that in the WSCC protocol, every honest party eventually sets its Flag variable to 1.

Lemma 4.3. For any (sid, r) with sid ∈ N and r ∈ {1, 2, 3}, if all honest parties participate in the WSCC
protocol with id (sid, r), then every honest party Pi eventually sets Flagi = 1.

Proof. We first note that during the WSCC protocol with id (sid, r), the message of every honest party is even-
tually delivered to every other honest party by the WSCCMM protocol. While this is trivially true if r = 1,
for r > 1, this follows from the fact that every honest party is eventually included in the A set of every other
honest party in all the past WSCCMM instances with id (sid, r′), where r′ < r (see Lemma 4.2, part one). This
implies that every honest party participates in the SAVSS instance Shij , corresponding to every pair of honest
parties (Pi, Pj). Hence it follows from the termination property of SAVSS (Lemma 3.2, part one) that every
honest party eventually terminate such Shij instances. As there are at least n− t honest parties, it follows that
Ci eventually becomes t+ 1 for every honest Pi and Pi eventually broadcasts the message (Attach, Ci, Pi).
Hence every honest party Pi eventually receives the message (Attach, Cj , Pj) from the broadcast of every
honest Pj . Moreover, Cj ⊆ Ci eventually holds. This is because if Pk ∈ Cj , then Pj terminates the instance
Shkl for l = 1, ..., n. And from the termination property of SAVSS (Lemma 3.2, part two), every honest
Pi eventually terminates Shkl for l = 1, ..., n as well. This implies that every honest party Pj is eventually
accepted by every honest party Pi and included in the set Gi. Thus the size of Gi eventually becomes n − t
and hence every honest Pi eventually broadcasts the message (Ready, Pi, Gi). Following the same argument,
the support set Si of every honest party Pi eventually becomes of size n− t and hence every honest party Pi
sets Flagi = 1.

We next prove that in WSCC, either every honest party obtains its output or at least t
2 + 1 corrupt parties

are shunned by all the honest parties.

Lemma 4.4 (Output Computation of WSCC). For any (sid, r) with sid ∈ N and r ∈ {1, 2, 3}, if all honest
parties participate in WSCC with id (sid, r), then the following holds:
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1. All honest parties eventually compute their output; or

2. At least t2+1 corrupt parties are shunned by all the honest parties and not included in theA setA(i,sid,r)

of any honest party Pi.

Proof. From Lemma 4.3, it follows that each honest party Pi eventually sets Flagi = 1. So if Pi is able to
terminate all Recjk instances, corresponding to each Pk ∈ Gi and each Pj ∈ Ck, then Pi is able to compute
its output, proving the first part. For the second part, let Recjk does not terminate for Pi, corresponding to
some Pk ∈ Gi and some Pj ∈ Ck. As Recjk does not terminate, it follows from the property of WSCCMM
(Lemma 4.2, part two) that at least t2 +1 corrupt parties are shunned by all the honest parties and not included
in the A set A(i,sid,r) of every honest party Pi.

We next prove that if some honest party Pj obtains its output during WSCC, then for every other honest party
Pi, it holds that Hj ⊆ Gi and Sj ⊆ Si. Looking ahead, this property will be crucial for the termination of our
SCC, where WSCC is used as a sub-protocol.

Lemma 4.5. If all honest parties participate in WSCC with id (sid, r), then the following holds for every
sid ∈ N and r ∈ {1, 2, 3}: If Pj obtains its output during the WSCC protocol with id (sid, r), then Hj ⊆ Gi
and Sj ⊆ Si eventually holds for every honest party Pi.

Proof. The proof follows from the fact that any Sh instance which terminates for Pj , eventually terminates
for Pi (Lemma 3.2, part two). Moreover, any message which is received by Pj as part of some broadcast is
eventually and identically received by Pi. Furthermore, every honest party keeps on participating in WSCC,
even after obtaining its output.

We next prove a few lemmas that are useful for proving the correctness of WSCC; these lemmas are slight
modifications of the lemmas proved in [9] to prove the correctness of their CC protocol.

Lemma 4.6. For any (sid, r) with sid ∈ N and r ∈ {1, 2, 3}, the following holds during WSCC(sid, r): Let

u
def
= d2.22ne. Then, once some honest party Pi receives the message (Attach, Ck, Pk) from the broadcast

of any party Pk, then a unique value vk is fixed such that the following holds:

• If the honest parties are able to compute the associated value of Pk, then one of the following holds:

– All honest parties associate vk with Pk; or

– At least t4 + 1 local conflicts occur during the protocol.

• The value vk is distributed uniformly over [0, . . . , u − 1] and is independent of the values associated
with the other parties.

Proof. Let {s̄jk}Pj∈Ck denote the set of values committed by Pj ∈ Ck (as a D), on the behalf of Pk, during
the instance Shjk. If Pj is honest then s̄jk = sjk holds and hence s̄jk belongs to F. On the other hand,
if Pj is corrupt, then s̄jk ∈ F ∪ {⊥}. We follow the convention that if s̄jk = ⊥, then we replace it by a
publicly known default value from F. Let {rjk}Pj∈Ck denote the values, which are reconstructed during the

instance Recjk. We define vk
def
=
(∑

Pj∈Ck s̄jk

)
mod u. If the set {rjk}Pj∈Ck = {s̄jk}Pj∈Ck , then clearly

all honest parties associate vk with Pk. Otherwise, there exists some pair of instance (Shjk,Recjk), such that
the value rjk reconstructed during Recjk is different from the value s̄jk shared during Shjk. It follows from
the correctness property of SAVSS (Lemma 3.4) that t4 + 1 local conflicts occur during Recjk.

For the second property, we note that the parties start executing the instances {Recjk}Pj∈Ck only after re-
ceiving the broadcasted message (Attach, Ck, Pk). This implies that the set Ck is fixed, before any instance
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in {Recjk}Pj∈Ck is invoked. The set Ck consists of at least one honest party Pj . The privacy property of Sh
(Lemma 3.5) ensures that the view of the adversary during the instance Shjk is independent of the secret sjk
shared by Pj . Now since the secrets shared by honest parties during WSCC are mutually independent and uni-
formly selected from F, it follows that vk is uniformly and independently distributed over [0, . . . , u− 1].

Lemma 4.7. For any (sid, r) with sid ∈ N and r ∈ {1, 2, 3}, the following holds during WSCC(sid, r): Once
some honest party sets its Flag to 1, then there exists a set, sayM, such that:

1. For each Pj ∈M, some honest party receives the message (Attach, Cj , Pj) from the broadcast of Pj .

2. Whenever any honest party Pi sets its Flagi = 1, it holds thatM⊆ Hi.

3. |M| ≥ n
3 .

Proof. Let Pk be the first honest party to set its Flag variable Flagk to one. We setM to be the set of parties
Pm, who belong to Gl set of at least t + 1 parties Pl in the set Sk. We next show that this setM has all the
properties as stated in the lemma.

It is easy to see thatM⊆ Hk. Hence party Pk receives the message (Attach, Cj , Pj) from the broadcast
of every Pj ∈M. Since Pk is assumed to be an honest party, the first part of the lemma is proved.

An honest Pi sets Flagi to one only when Si contains 2t + 1 parties. Now note that Pm ∈ M implies
that Pm belongs to Gl set of at least t + 1 parties Pl in Sk. This ensures that there is at least one such Pl
who belongs to Si, as well as Sk. Now Pl ∈ Si implies that Pi had ensured that Gl ⊆ Gi. This implies that
Pm ∈ M belongs to Gi, before party Pi sets Flagi to one. Since Hi is the instance of Gi at the time when Pi
sets Flagi to one, it is obvious that Pm belongs to Hi as well. This proves the second part of the lemma.

We now proceed to prove the third part of the lemma, for which we use a counting argument. Let h =
|Hk|. We have h ≥ n− t. Now consider an h× n table Λ (relative to party Pk), such that the Λl,i entry of Λ
is one if and only if the following holds: (a) Pk has received the message (Ready, Pl, Gl) from the broadcast
of Pl and included Pl in the set Sk before setting Flagk = 1 and (b)Pi ∈ Gl. Then, as per the definition of
M, the setM is the set of parties Pm such that the mth column in Λ contains one at least at t+ 1 positions.
Notice that each row of Λ contains one at n− t positions. Thus Λ contains one at h(n− t) positions.

Let q denote the minimum number of columns in Λ that contain one at least at t + 1 positions. We will
show that q ≥ n

3 . The worst distribution of one entries in Λ is letting q columns to contain all one entries and
letting each of the remaining n − q columns to contain one at only t locations. This distribution requires Λ
to contain one at no more than qh + (n − q)t positions. But we have already shown that Λ contains one at
h(n− t) positions. So we have

qh+ (n− q)t ≥ h(n− t).

This gives q ≥ h(n−t)−nt
h−t . Since h ≥ n− t and n ≥ 3t+ 1, we have

q ≥ h(n− t)− nt
h− t

≥ (n− t)2 − nt
n− 2t

,

≥ (n− 2t)2 + nt− 3t2

n− 2t
≥ n− 2t+

nt− 3t2

n− 2t
,

≥ n− 2t+
t

n− 2t
≥ n

3
.

This shows that |M| = q ≥ n
3 .
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Lemma 4.8 (Correctness of WSCC). Let u
def
= d2.22ne. If the honest parties are able to compute their

output during the WSCC protocol with id (sid, r), then one of the following holds for any sid ∈ N and
r ∈ {1, 2, 3}:

1. All honest parties output σ = 0 with probability at least p0 = 0.139. And all honest parties output
σ = 1 with probability at least p1 = 0.63; otherwise

2. At least t4 + 1 local conflicts occur during the protocol.

Proof. Let Pi be an arbitrary honest party, which is able to compute its output of WSCC. Recall that in
WSCC, party Pi sets its output bit based on the values associated with the parties in Hi. Moreover, for every
Pk ∈ Hi, party Pi receives the message (Attach, Ck, Pk) from the broadcast of Pk. This further guarantees
that a uniformly and independently distributed value vk ∈ [0, . . . , u−1] is fixed, corresponding to Pk (Lemma
4.6). Now there are two possible cases:

1. Case I : For every Pk ∈ Hi, party Pi correctly associates the corresponding vk. Here we show that
party Pi outputs zero with probability at least 0.139 and one with probability at least 0.63. There are
two possible sub-cases:

• Let M be the set of parties, as discussed in Lemma 4.7. From the same lemma, it holds that
M ⊆ Hi. If vk = 0 holds for some Pk ∈ M, then party Pi outputs 0 in WSCC. The probability
that for at least one party Pk ∈ M, the associated value vk = 0 is 1 − (1 − 1

u)|M|. Since
u = d2.22ne and |M| ≥ n

3 (Lemma 4.7, part three), we have 1−(1− 1
u)|M| ≥ 1−e−0.15 ≥ 0.139.

So, the probability that Pi outputs σ = 0 is at least 0.139.

• If vk 6= 0 for every party Pk ∈ Hi, then Pi outputs σ = 1. The probability of this event is at least
(1− 1

u)n ≥ e−0.45 ≥ 0.63.

2. Case II : For some Pk ∈ Hi, party Pi associates v′k 6= vk. In this case, from the first part of the
Lemma 4.6, it holds that at least t4 + 1 local conflicts occur, proving the second part of this lemma.

The following theorem follows from Lemma 4.4-4.8. The communication complexity follows from the fact
that n2 instances of (Sh,Rec) are executed inside WSCC.

Theorem 4.9. For any id (sid, r) with sid ∈ N and r ∈ {1, 2, 3}, protocol WSCC with id (sid, r) is a
(0.139, 0.63)-WSCC scheme with communication complexity of O(n6 log |F|) bits.

5 The Shunning Common Coin (SCC) Protocol with n = 3t+ 1

Here we present our SCC protocol SCC. In SCC, the parties execute three parallel instances of WSCC and
it is guaranteed that each party obtains its output in at least two WSCC instances, based on which it decides
its outcome for SCC and terminates. Note that different parties may end up using different pairs of WSCC
instances to decide their outcome for SCC. Despite this, we ensure that the output of SCC for all honest parties
is the same with a probability of at least 0.25. It is precisely to achieve this property for which the parties need
to consider the outcome of two WSCC instances. The intuition behind the guaranteed output delivery in two
out of the three WSCC instances is as follows: if there is an WSCC instance for which no honest party obtains
its output, then the corresponding WSCCMM protocol ensures that communication from at least t2 +1 corrupt
parties are ignored by all the honest parties in the remaining WSCC instances. As a consequence, there can be
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at most t2 − 1 corrupt parties participating in the remaining WSCC instances. And these many corrupt parties
are not sufficient to prevent output delivery in the remaining WSCC instances.

There might be a problem if a Pj terminates SCC (and the underlying WSCC instances) immediately
after obtaining its output in two WSCC instances. This is because a different party, say Pi, may be still in the
process of obtaining its outcome in two WSCC instances. And the participation of all honest parties is required
for the output delivery in every WSCC instance. This is because output delivery in WSCC instances depend
upon the termination of the underlying Rec instances, which is not guaranteed if only a strict subset of honest
parties participate in the Rec instances. To deal with this problem, as soon as an honest Pj obtains its output
from two WSCC instances, it broadcasts the identity of these WSCC instances, along with the corresponding
Hj and Sj sets and then terminates SCC. Every party Pi who has not yet obtained its output from two WSCC
instances check if the broadcasted Hj and Sj sets are subset of its own Gi and Si sets respectively, which
eventually happens (see Lemma 4.5). As a result, Pi can now decide its outcome for the WSCC instances
based on the received Hj sets, instead of basing them on Hi sets (a similar idea is also used in the SCC
protocol of [22] to ensure guaranteed termination). Protocol SCC is presented in Fig 5. Each instance of SCC
is identified by a unique id sid ∈ N . Inside SCC, there are three invocations of the WSCC protocol with ids
of the form (sid, r), where r ∈ {1, 2, 3}.

Figure 5: Protocol SCC(sid): the shunning common coin protocol with n = 3t+ 1 and id sid.

Each Pi ∈ P executes the following code:

1. Invoke WSCC(sid, r) for r = 1, 2, 3. Denote the instance WSCC(sid, r) as WSCCr and let
Csid,r,i, Csid,r,i,Gsid,r,i, Gsid,r,i,Ssid,r,i, Ssid,r,i and Hsid,r,i denote the Ci, Ci,Gi, Gi,Si, Si and Hi sets
respectively, built during WSCCr. // See protocol WSCC in Section 4 for the notations.

2. If output is obtained during WSCCr, include (sid, r) to the decision set DS(i,sid), initialized to ∅.
3. If |DS(i,sid)| ≥ 2 then do the following, followed by terminating WSCC1,WSCC2,WSCC3, along

with the underlying WSCCMM, SAVSS-MM instances, followed by terminating SCC:
◦ Broadcast (Terminate, Pi,DS(i,sid), {(Ssid,r,i, Hsid,r,i)}(sid,r)∈DS(i,sid)).
◦ Output 0 if 0 is computed as the output during WSCCr for any (sid, r) ∈ DS(i,sid), else output 1.

4. If (Terminate, Pj ,DS(j,sid), {(Ssid,r,j , Hsid,r,j)}(sid,r)∈DS(j,sid)) is received from the broadcast of
some party Pj , then do the following:

a Check if all the following holds:
◦ |DS(j,sid)| ≥ 2;
◦ For every (sid, r) ∈ DS(j,sid), the condition Ssid,r,j ⊆ Ssid,r,i and Hsid,r,j ⊆ Gsid,r,i holds;
◦ For every (sid, r) ∈ DS(j,sid), the associated value vk of every Pk ∈ Hsid,r,j is computed

during WSCCr. // See WSCC in Section 4 for the meaning of associated values.
b If all the above holds then do the following, followed by terminating WSCC1,WSCC2,WSCC3,

along with the underlying WSCCMM, SAVSS-MM instances, followed by terminating SCC.
◦ For every (sid, r) ∈ DS(j,sid) where output is not yet obtained in WSCCr, compute the

output of WSCCr as follows: If there exists a party Pk ∈ Hsid,r,j whose associated value
vk = 0, then set 0 as the output of WSCCr. Else, set 1 as the output of WSCCr.

◦ Output 0 if 0 is the output during WSCCr for any (sid, r) ∈ DS(j,sid), else output 1.

Now, we prove the properties of SCC and begin with the termination property. To prove the termination,
we prove a crucial lemma, which states that there can be at most one instance WSCCr among WSCC1,WSCC2

and WSCC3, such that no honest party obtains its output during WSCCr.

Lemma 5.1. For any sid ∈ N, the following holds during the SCC protocol with id sid: if all the honest
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parties participate in SCC, then there can be at most one instance out of WSCC1,WSCC2 and WSCC3 in
which no honest party obtains its output.

Proof. Let WSCCmin denote the first WSCC instance among WSCC1,WSCC2 and WSCC3, such that no
honest party obtains its output during WSCCmin. If min = 3, then there is nothing to prove. So consider the
case when min < 3. In this case, it follows from Lemma 4.4 that at least t

2 + 1 corrupt parties are shunned
and not included in the A set A(i,sid,min) of all the honest parties Pi. As a result, the messages of these t

2 + 1
corrupt parties are not considered by any honest party in the subsequent invocations of WSCC, invoked as
part of SCC. That is, for every WSCCr, where r > min, the WSCCMM protocol with id (sid, r) does not
allow the messages of the t

2 + 1 shunned corrupt parties for processing by WSCCr. This implies that there
are at most t

2 − 1 corrupt parties, whose messages are considered during WSCCr. It now follows from the
termination property of Rec (Corollary 3.3) that all Rec instances invoked collectively by the honest parties
during WSCCr eventually terminates. Moreover, as proved in Lemma 4.3, all honest party eventually sets its
Flag variable to 1 during WSCCr. Hence each honest party eventually obtains its output during WSCCr.

We next prove another important property, which is used to prove the termination of SCC. The property
states that if some honest party terminates SCC by obtaining its output for two instances of WSCC during
SCC, then every other honest party eventually terminates SCC.

Lemma 5.2. For any sid ∈ N, if all honest parties participate in the SCC protocol with id sid, then the fol-
lowing holds: if |DS(j,sid)| ≥ 2 holds for some honest party Pj , then every honest party eventually terminates
SCC.

Proof. Let Pj be an honest party such that |DS(j,sid)| ≥ 2 holds. This implies that Pj terminates SCC. In
addition, party Pj broadcasts (Terminate, Pj ,DS(j,sid), {(Ssid,r,i, Hsid,r,j)}(sid,r)∈DS(j,sid)). Let Pi be another
honest party, which has not yet terminated SCC. The property of broadcast ensures that Pi eventually receives
the above broadcast message. Moreover, from Lemma 4.5, it holds that for every WSCC instance (sid, r) ∈
DS(j,sid), the conditions Ssid,r,j ⊆ Ssid,r,i and Hsid,r,j ⊆ Gsid,r,i are eventually true. Furthermore, for every
(sid, r) ∈ DS(j,sid), party Pi eventually computes the associated value of every Pk ∈ Hsid,r,j during WSCCr.
This is because since Pj is able to compute these associated values by terminating the required Rec instances,
it holds that Pi also eventually terminates these Rec instances (follows from Lemma 3.2, part three). Hence,
as part of SCC, party Pi eventually computes its output for every WSCC instance (sid, r) ∈ DS(j,sid) and
hence terminates SCC.

Lemma 5.3 (Termination of SCC). For any sid, with sid ∈ N, if each honest party participates in the
protocol SCC with id sid, then each honest party eventually terminates SCC.

Proof. From Lemma 5.1, there can be at most one instance WSCCr among WSCC1,WSCC2,WSCC3,
for which no honest party obtains its output. This implies that for the remaining two WSCC instances
WSCCr′ ∈ {WSCC1,WSCC2,WSCC3} \ WSCCr, there exists at least one honest party which eventually
obtains its output for WSCCr′ . The proof now follows from Lemma 5.2.

We next proceed to prove the correctness of SCC. Note that in SCC, a party Pi decides its outcome for
any WSCCr ∈ {WSCC1,WSCC2,WSCC3}, either based on its own Hi set or based on the Hj set of some
other party Pj , who has obtained its output for WSCCr. We first prove that irrespective of the way a party
decides its outcome for WSCCr, the correctness property for the instance WSCCr holds. That is, with proba-
bility 0.139 and 0.63, all honest parties output 0 and 1 respectively during WSCCr; otherwise at least t

4 + 1
local conflicts occur.

Lemma 5.4. For any sid, with sid ∈ N, the following holds in the protocol SCC with id sid: if the honest
parties are able to compute their output during any WSCCr ∈ {WSCC1,WSCC2,WSCC3}, then one of the
following holds:
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1. All honest parties output σ = 0 during WSCCr with probability at least p0 = 0.139. And all honest
parties output σ = 1 during WSCCr with probability at least p1 = 0.63; otherwise

2. At least t4 + 1 local conflicts occur during the protocol.

Proof. Let Pi be an arbitrary honest party, such that Pi is able to compute its output during WSCCr ∈
{WSCC1,WSCC2,WSCC3}. Then there are two possible cases.

1. Party Pi decides its output for WSCCr based on its own set4 Hsid,r,i: In this case, the proof is exactly
the same as in Lemma 4.8 and follows from the correctness property of WSCC.

2. Party Pi decides its output for WSCCr based on some other set5 Hsid,r,j : Here there are two further
sub-cases. For any Pk ∈ Hsid,r,j , let vk ∈ [0, . . . , u − 1] denote the uniformly random value, which is
guaranteed to exist, as per Lemma 4.6. If Pi is able to correctly associate vk for every Pk ∈ Hsid,r,j ,
then again the proof is exactly the same as in Lemma 4.8. On the other hand, if for some Pk ∈ Hsid,r,j ,
party Pi associates v′k 6= vk, then as per Lemma 4.6, at least t4 + 1 local conflicts occur.

We next prove that if it is ensured that for every WSCC instance WSCCr ∈ {WSCC1,WSCC2,WSCC3}
for which all honest parties are able to compute their output, 0 and 1 can be the potential common outcome
with probability 0.139 and 0.63 respectively, then for every value σ ∈ {0, 1}, with probability at least 0.25,
all honest parties output σ in SCC.

Lemma 5.5. For any sid, with sid ∈ N, the following holds in the protocol SCC with id sid: if it is ensured
that for every WSCCr ∈ {WSCC1,WSCC2,WSCC3} for which all honest parties are able to compute their
output, the parties output 0 and 1 with probability 0.139 and 0.63 respectively, then for every value σ ∈ {0, 1},
with probability at least 0.25, all honest parties output σ on terminating SCC

Proof. Let for every WSCCr ∈ {WSCC1,WSCC2,WSCC3} where all the honest parties are able to compute
their output, 0 and 1 occurs as the common output with probability 0.139 and 0.63 respectively. In SCC, each
party sets its output based on the outcome of two WSCC instances for which the party is able to compute
its local output. Due to asynchrony, different honest parties may consider different pairs of WSCC instances
from {WSCC1,WSCC2,WSCC3} to decide their output for SCC. Now in order that all the honest parties
output 0 in SCC, the honest parties should output 0 in at least two WSCC instances 6 out of WSCC1,WSCC2

and WSCC3. The probability that at least two WSCC instances output 0 for all the honest parties is at least
1− (1−0.139)2 ≥ 0.25. Hence, the probability that all honest parties output σ = 0 is at least 0.25. Similarly,
in order that all the honest parties output 1 in SCC, the parties should output 1 in all the three WSCC instances
WSCC1,WSCC2 and WSCC3. The probability of this is at least (0.63)3 ≥ 0.25.

Finally, we state the correctness property for SCC, which simply follows from Lemma 5.4 and Lemma 5.5
respectively.

Lemma 5.6 (Correctness of SCC). For any sid with sid ∈ N, if each honest party participates in the protocol
SCC with id sid, then one of the following holds:

4In this case, Pi executes step 3 of SCC to decide its output for WSCCr.
5In this case, Pi executes step 4(b) of SCC to decide its output for WSCCr
6Otherwise, if the common outputs for the honest parties in WSCC1,WSCC2 and WSCC3 are 0, 1 and 1 respectively, then due to

asynchrony some honest parties may end up considering 0, 1 to determine their output for SCC, while others may end up considering
1, 1 to determine their output for SCC, leading to different outputs for the parties.
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1. For every σ ∈ {0, 1}, with probability at least 0.25, all honest parties output σ on terminating SCC; or

2. At least t4 + 1 local conflicts occur during the protocol.

The following theorem follows from Lemma 5.3-5.6. The communication complexity follows from the fact
that three instances of WSCC are invoked inside SCC.

Theorem 5.7. For every sid ∈ N, protocol SCC is a 1
4 -SCC scheme, with communication complexity of

O(n6 log |F|) bits.

6 Almost-Surely Terminating ABA

The design of our almost-surely terminating ABA protocol ABA from SCC is exactly the same as that of
[1, 22]. We first recall a voting protocol called Vote from [8], which will be used in our ABA protocol. The
current description of Vote and its properties is reproduced from [19].

6.1 Existing Voting Protocol

Informally, the voting protocol does “whatever can be done deterministically” to reach agreement. In a voting
protocol, every party has a single bit as input. The protocol tries to find out whether there is a detectable
majority for some value among the inputs of the parties. In the protocol, each party’s output can have five
different forms:

1. For σ ∈ {0, 1}, the output (σ, 2) stands for “overwhelming majority for σ”;

2. For σ ∈ {0, 1}, the output (σ, 1) stands for “distinct majority for σ”;

3. The output (Λ, 0) stands for “non-distinct majority”.

The voting protocol ensures the following properties:

1. If each honest party has the same input σ, then each honest party outputs (σ, 2);

2. If some honest party outputs (σ, 2), then every other honest party outputs either (σ, 2) or (σ, 1);

3. If some honest party outputs (σ, 1) and no honest party outputs (σ, 2) then each honest party outputs
either (σ, 1) or (Λ, 0).

The voting protocol consists of three “stages”, each having a similar structure. The protocol called Vote is
presented in Fig 6. In the protocol, each party Pi has the input bit xi. Each instance of Vote has a unique id
sid associated with it, where sid ∈ N. For simplicity, we do not associate sid explicitly in the protocol steps
of Vote.

The properties of the protocol Vote are stated in the following lemmas, whose proofs are available in [8].
For the sake of completeness, we recall the proofs here.

Lemma 6.1 ([8]). For any sid ∈ N, each honest party terminates the protocol Vote with id sid in a constant
time.

Proof. Every honest party Pi broadcasts its input xi. As there are at least n − t honest parties, from the
properties of broadcast, for every honest Pi, eventually |Xi| = |Yi| = |Zi| = n − t holds. Consequently,
every honest Pi terminates the protocol in a constant time.
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Figure 6: Vote protocol with id sid.

Protocol Vote(sid)

For i = 1, . . . , n, every party Pi ∈ P executes the following code:

1. On input xi, broadcast (input, Pi, xi).
2. Create a dynamic set Xi, which is initialized to ∅. Add (Pj , xj) to Xi if (input, Pj , xj) is received

from the broadcast of Pj .
3. Wait until |Xi| = n − t. Assign Xi = Xi. Set ai to the majority bit among {xj | (Pj , xj) ∈ Xi}

and broadcast (vote, Pi, Xi, ai).
4. Create a dynamic set Yi, which is initialized to ∅. Add (Pj , Xj , aj) to Yi if (vote, Pj , Xj , aj) is

received from the broadcast of Pj , Xj ⊆ Xi, and aj is the majority bit of Xj .
5. Wait until |Yi| = n− t. Assign Yi = Yi. Set bi to the majority bit among {aj | (Pj , Xj , aj) ∈ Yi}

and broadcast (re-vote, Pi, Yi, bi).
6. Create a set Zi, which is initialized to ∅. Add (Pj , Yj , bj) to Zi if (re-vote, Pj , Yj , bj) is received

from the broadcast of Pj , Yj ⊆ Yi, and bj is the majority bit of Yj .
7. Wait until |Zi| = n − t. If all the parties Pj ∈ Yi have the same vote aj = σ, then output (σ, 2)

and terminate.
Otherwise, if all the parties Pj ∈ Zi have the same re-vote bj = σ, then output (σ, 1) and
terminate.
Otherwise, output (Λ, 0) and terminate.

Lemma 6.2 ([8]). For any sid ∈ N, if every honest party has the same input σ for the Vote protocol with id
sid, then each honest party outputs (σ, 2) in the Vote protocol with id sid.

Proof. Consider an arbitrary honest party Pi. If all the honest parties have the same input σ, then at most
t (corrupt) parties may broadcast σ as their input. Therefore, it is easy to see that every Pk ∈ Yi must have
broadcasted its vote bk = σ. Hence the honest Pi outputs (σ, 2).

Lemma 6.3 ([8]). For any id sid ∈ N, if some honest party outputs (σ, 2) during the Vote protocol with id
sid, then every other honest party outputs either (σ, 2) or (σ, 1) during the Vote protocol with id sid.

Proof. Let an honest Pi outputs (σ, 2). This implies that every Pj ∈ Yi broadcasts vote aj = σ. As
|Yi| = 2t+ 1, it implies that for every other honest party Pk, it holds that |Yi∩Yk| ≥ t+ 1 and so Pk is bound
to broadcast re-vote bk = σ and hence outputs either (σ, 2) or (σ, 1).

Lemma 6.4 ([8]). For any id sid ∈ N, if some honest party outputs (σ, 1) and no honest party outputs (σ, 2)
during the Vote protocol with id sid, then every other honest party outputs either (σ, 1) or (Λ, 0) during the
Vote protocol with id sid.

Proof. Assume that an honest party Pi outputs (σ, 1). This implies that all the parties Pj ∈ Zi broadcasts
the same re-vote bj = σ. Since |Zi| = n − t, in the worst case there can be most t parties (outside Zi)
who may broadcast re-vote σ. Thus it is clear that no honest party outputs (σ, 1). Now since the honest
parties in Zi broadcast their re-vote as σ, there must be at least t+ 1 parties who broadcasts their vote as
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σ. Thus no honest party outputs (σ, 2) for which at least n− t = 2t+ 1 parties are required to broadcast their
vote as σ. Hence no honest party outputs from {(σ, 2), (σ, 1)}. Therefore the honest parties output either
(σ, 1) or (Λ, 0).

The communication complexity of the protocol Vote is stated in the following lemma.

Lemma 6.5. Protocol Vote has a communication complexity of O(n4 log n) bits.

Proof. In the protocol, each party broadcasts X, Y and Z sets, each containing the identity of O(n) par-
ties. Since the identity of each party can be represented by log n bits, the protocol requires a broadcast of
O(n2 log n) bits and hence a total communication of O(n4 log n) bits.

6.2 The ABA Protocol

Given protocol SCC and Vote, we design our ABA protocol called ABA for a single bit (Fig 7), following
[1, 22]. The protocol is based on the idea of [8], which uses CC and Vote for several rounds to decide
the outcome. In our case, we replace the CC protocol by our SCC protocol. In the protocol, during each
iteration, every party computes a “modified input” value. In the first iteration, the modified input of a party
Pi is its private input bit (for the ABA protocol) xi. In each iteration, the parties execute an instance of the
protocol Vote and SCC sequentially, that is, a party participates in the instance of SCC, only after terminating
the instance of Vote (the reason for this provision will be clear while proving the properties of the ABA
protocol). If a party outputs (σ, 1) in the instance of the Vote protocol, implying that it finds a “distinct
majority” for the value σ, then the party sets its modified input for the next iteration to σ, irrespective of
the value which is going to be output in the instance of SCC; otherwise, the party sets its modified input for
the next iteration to be the output of the SCC protocol, which is invoked by all the parties in each iteration,
irrespective of whether the output of the SCC protocol is used or not by the parties for setting the modified
inputs for the next iteration. Once a party outputs (σ, 2) in an instance of the Vote protocol, implying that it
finds an “overwhelming majority” for the value σ, then it broadcasts σ. Finally, once a party receives σ from
the broadcast of t+ 1 parties, it outputs σ and terminates.

We now proceed to prove the properties of ABA, which are similar to [22], which in turn are slight variants
of the properties proved in [9]. We first prove the validity property.

Lemma 6.6. If all the honest parties have the same input σ, then each honest party outputs σ during ABA.

Proof. If every honest party has the same input σ during the ABA protocol, then by Lemma 6.2, all honest
party outputs (y1,m1) = (σ, 2) at the end of the Vote protocol during the first iteration. Hence every honest
party broadcasts the message (Terminate with σ) during the first iteration. As there are at least n− t honest
parties, each honest party eventually receives n − t (Terminate with σ) broadcast message and at most
t (Terminate with σ) broadcast message. Consequently, each honest party outputs σ and terminates the
protocol at the end of second iteration.

We next prove the agreement property.

Lemma 6.7. In protocol ABA, if some honest party terminates with output σ, then every other honest party
eventually terminates ABA with output σ.

Proof. We first show that if an honest party broadcasts (Terminate with σ) for some value σ, then every
other honest party eventually broadcasts (Terminate with σ). Let k be the first iteration, when some honest
party, say Pi, broadcasts (Terminate with σ). Then, from the property of Vote protocol (Lemma 6.3), every
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Figure 7: Almost-surely terminating ABA protocol for a single bit with n = 3t+ 1.

ABA
Each Pi ∈ P executes the following code:

1. Set sid = 0 and vi = xi, where xi ∈ {0, 1} is the input bit for party Pi.
2. Repeat until terminating: (each iteration is considered as a round)

a. Set sid = sid + 1. Participate in Vote(sid) with input vsid and wait for its termination. Let
(ysid,msid) denote the output of Vote(sid).

b. Invoke SCC(sid) and wait until its termination. Let csid denote the output of SCC(sid).
c. Consider the following cases:

i. If msid = 2, then set vsid+1 = ysid and broadcast the message (Terminate with vsid).
Participate in only one more instance of Vote protocol and only one more instance of
SCC.

ii. If msid = 1, then set vsid+1 = ysid.
iii. Else, set vsid+1 = csid

d. Upon receiving the message (Terminate with σ) for some value σ ∈ {0, 1} from the broad-
cast of t+ 1 different parties, output σ and terminate the protocol.

honest party outputs yk = σ and either mk = 2 or mk = 1 at the end of Vote(k). Hence no honest party
broadcasts (Terminate with σ) during iteration k. Furthermore, all honest parties (including Pi) participate
in Vote(k + 1) with input σ. So from the property of Vote (Lemma 6.2), at the end of Vote(k + 1), each
honest party has (yk+1,mk+1) = (σ, 2). Hence, each honest party broadcasts (Terminate with σ) either
during iteration k or k + 1.

Now let some honest party, sayPh, terminate ABA with output σ. This implies thatPh receives (Terminate
with σ) broadcast message from t + 1 different parties. This implies that at least one honest party broad-
casts (Terminate with σ). Consequently, each honest party eventually broadcasts (Terminate with σ).
Hence, each honest party eventually receives n − t (Terminate with σ) broadcast message and at most t
(Terminate with σ) broadcast message. Hence, each honest party outputs σ.

We next prove a crucial lemma, which states that at the end of each iteration, the updated value of all honest
parties will be the same with probability at least 1

4 , or t
4 + 1 new local conflicts occur.

Lemma 6.8. In protocol ABA, if all honest parties initiate and complete iteration k, then one of the following
holds:

• With probability at least 1
4 , all honest parties have the same value for vk+1; or

• A new set of t4 + 1 local conflicts occur.

Proof. We first note that Pi is honest and if at all any local conflict (Pi, Pj) occurs during iteration k of ABA,
then the conflict is different from any local conflict of the form (Pi, ?), which could have occurred during any
iteration k′ of ABA, where k′ < k. On contrary, let the local conflict (Pi, Pj) occurs both during iteration k′ as
well as k. Since the conflict occurs during the iteration k′, it follows that during the execution of SCC(k′), one
of the underlying memory management protocols includes Pj to the set Bi. As a result, any communication
from party Pj is completely ignored by Pi in any instance SCC(k), with k > k′. Consequently, the local
conflict (Pi, Pj) does not re-occur during iteration k, which is a contradiction.
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Now to prove the lemma statement, we have to consider two cases. If all honest parties set vk+1 to the
output of SCC(k) (namely by executing step 2.c(iii) of ABA), then the lemma is true as per the correctness
property of SCC (Lemma 5.6). Otherwise, let some honest party set vk+1 to the output of Vote(k). That is,
some honest party sets vk+1 = σ for some σ ∈ {0, 1}, either during step 2.c(i) or step 2.c(ii) of iteration
k. The property of Vote (Lemma 6.4) ensures that the other honest parties who set vk+1 either during step
2.c(i) or step 2.c(ii) of iteration k, never set vk+1 to σ̄. The correctness property of SCC (Lemma 5.6) ensures
that with probability at least 1

4 , the outcome of SCC(k) is the same as σ for all the honest parties, or other-
wise a set of t

4 + 1 local conflicts are revealed. Hence, even for the honest parties who set vk+1 as the output
of Vote(k) instead of SCC(k), the value vk+1 is either set to σ or a set of t

4 +1 local conflicts are revealed.

As a corollary of Lemma 6.8, we can state that there can be at most 8t + 4 iterations where the honest
parties have the same updated value at the end with probability strictly less than 1

4 . This is because there are
at most (n − t)t different local conflicts which can occur throughout ABA. From Lemma 6.8, if the honest
parties do not have the same updated value at the end of an iteration with probability 1

4 or more, a new set of
t
4 + 1 local conflicts occur. Hence there can be at most (n−t)t

t
4
+1
≤ 8t + 4 such iterations, as n = 3t + 1. We

formally state this property, which will be crucial while proving the expected running time of ABA.

Corollary 6.9. Let I denote the set of iterations k in ABA, such that all the honest parties terminate iteration
k but have the same value for vk+1 with probability less than 1

4 . Then |I| ≤ 8t+ 4.

Lemma 6.10. The honest parties terminate ABA within constant time after the first honest party broadcasts
the message (Terminate with σ) for some σ ∈ {0, 1}.

Proof. Assume that in ABA, the first honest party broadcasts the message (Terminate with σ) for some
σ ∈ {0, 1} during iteration k. Then all honest parties participate in Vote(k + 1) as well as SCC(k + 1). As
seen in the proof of Lemma 6.7, every honest party broadcasts the message (Terminate with σ) by iteration
k + 1. All these instances of broadcast complete in constant time. And each honest party terminates ABA
after completing t + 1 of these broadcasts. Consequently, once the first honest party broadcasts the message
(Terminate with σ), each honest party terminates the protocol in a constant time.

We now proceed to derive the expected running time of ABA. We begin with a simple case, where we
assume that at the end of each iteration of ABA, all honest parties have the same updated modified input
(which occurs except with probability at most 3

4 ); we show in this case, protocol ABA requires 16 iterations
in expectation.

Lemma 6.11. In protocol ABA, if for every iteration k, all the honest parties have the same updated modified
input for the (k + 1)th iteration with probability at least 1

4 , then the protocol requires expected 16 rounds to
terminate.

Proof. We first note that in ABA, every iteration k in which all honest parties participate, eventually terminates
for every honest party. This is because the instance of Vote and SCC in such iterations terminate for all honest
parties, which follows from the termination properties of Vote (Lemma 6.1) and SCC (Lemma 5.3). From
Lemma 6.10, the honest parties terminate ABA within constant time, once an honest party broadcasts the
message (Terminate with σ) for some σ ∈ {0, 1}. Now as per the lemma condition, for every iteration k,
all the honest parties have the same updated modified input for the (k+ 1)th iteration, except with probability
at most 3

4 . To complete the proof, we need to show that in this case, there can be 16 expected iterations in
ABA until some honest party broadcasts the message (Terminate with σ). Let τ be a random variable
which counts the number of iterations until some honest party broadcasts the message (Terminate with σ).
The probability that τ = k i.e. Pr(τ = k), is given as:

Pr(τ 6= 1)·Pr(τ 6= 2|τ 6= 1)·. . .·Pr(τ 6= (k−1)|τ 6= 1∩. . .∩τ 6= (k−2))·Pr(τ = k|τ 6= 1∩. . .∩τ 6= (k−1))
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Now, as per the lemma condition, each multiplicand on the right hand side, except the last one, is upper
bounded by 3

4 . And the last multiplicand is upper bounded by 1
4 as this is equivalent to the probability of

terminating in a particular iteration. Hence we get Pr(τ = k) ≤ (34)k−1(14). Now the expected value E(τ) of
τ is computed as follows:

E(τ) =
∞∑
k=0

k Pr(τ = k)

≤
∞∑
k=0

k
(3

4

)k−1(1

4

)
≤
∞∑
k=0

k
(3

4

)k
=

1

1− 3
4

+
(1)(34)

(1− 3
4)2

= 16

The expression for E(τ) is a sum of AGP upto infinite terms, which is given by a
1−r + dr

(1−r)2 , where a = 1,

r = 3
4 and d = 1. Hence, we have that E(τ) ≤ 16.

We next derive the expected number of rounds required in the protocol ABA. This automatically derives
the expected running time of ABA, as each round in ABA requires a constant time.

Lemma 6.12. Protocol ABA terminates for the honest parties in O(n) expected running time.

Proof. From Lemma 6.10, the honest parties terminate ABA within constant time, once an honest party
broadcasts the message (Terminate with σ) for some σ ∈ {0, 1}. To complete the proof, we claim that
there can be 8t + 20 = O(n) expected number of iterations in ABA until some honest party broadcasts the
message (Terminate with σ). This follows from Corollary 6.9 and Lemma 6.11. Specifically, there can be
at most 8t + 4 iterations in ABA, where at the end of the iteration, the modified input values of the honest
parties are different with probability more than 3

4 . After this, in each iteration of ABA, the honest parties will
have the same modified input value, except with probability at most 3

4 and as a result, ABA will require ex-
pected 16 rounds. As each round requires constant time, it follows that ABA terminates for the honest parties
in O(n) expected running time.

The following theorem follows from Lemma 6.6, Lemma 6.7 and Lemma 6.12. The expected communi-
cation complexity follows from the fact that there are O(n) expected number of iterations executed in ABA
and each iteration involves one instance of Vote and one instance of SCC.

Theorem 6.13. Let n = 3t+1. Then protocol ABA is an almost-surely terminating ABA protocol for a single
bit with expected communication complexity of O(n7 log |F|)) bits and expected running time of R = O(n).

7 Variants of Our ABA Protocol

We first discuss how to modify the protocol ABA to get an almost-surely terminating ABA protocol MABA,
which allows to reach agreement on t+ 1 bits simultaneously, without affecting the expected communication
complexity.

7.1 Agreement on t+ 1 Bits Simultaneously

Let the parties want to reach agreement on t+ 1 = Θ(n) bits simultaneously in an almost-surely terminating
fashion. A trivial way to do this is to invoke t + 1 independent instances of ABA, which will have an
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expected communication complexity of O(n8 log |F|)) bits, with R = O(n) being the expected running
time of the protocol. Instead, we show how to achieve agreement on t+ 1 bits simultaneously, with expected
communication complexity ofO(n7 log |F|) bits. So in the amortized sense, agreement on a single bit involves
an expected communication complexity of O(n6 log |F|) bits. We first discuss how we can modify WSCC to
obtain a multi-valued WSCC protocol MWSCC, which allows the parties to obtain t+1 independent common
coins, instead of a single common coin. Before doing that, we discuss a well known randomness-extraction
technique, used in MWSCC.

Information-Theoretic Randomness Extraction [12, 3, 19]. Let a1, . . . , aN ∈ F, such that at least K out
of these N values are selected uniformly at random from F; however, the exact identities of those K values
are unknown. The goal is to compute K values from a1, . . . , aN , say b1, . . . , bK , each of which is uniformly
distributed over F. This is achieved as follows: let f(x) be the polynomial of degree at most N − 1, such that
f(i) = ai+1, for i = 0, . . . , N − 1. Then set b1 = f(N), . . . , bK = f(N + K − 1) (note that, we require
|F| ≥ N + K to make the technique work; in our protocols, N,K and |F| will be such that this relationship
holds). The elements b1, . . . , bK are uniformly distributed over F, as there exists a one-to-one mapping be-
tween b1, . . . , bK and the K random elements in the vector (a1, . . . , aN ). We call this algorithm as Extrand
and invoke it as (b1, . . . , bK) = Extrand(a1, . . . , aN ). We are now ready to describe the protocol MWSCC.

From WSCC to MWSCC: The idea behind extending WSCC to MWSCC is based on a technique of [19].
Each party Pi now ensures that its Ci set is 2t + 1 instead of t + 1. We note that this eventually happens
for each honest Pi, as there are at least 2t + 1 Sh instances, invoked by the honest dealers, which eventually
terminates for Pi. This modification ensures that there are at least t+ 1 honest parties in the set Ci, who share
truly random and unknown values on the behalf of Pi. This implies that at least t+1 truly random values from
F are attached to Pi. Now let {sji}Pj∈Ci denote the secrets attached to Pi. And let {rji}Pj∈Ci denote the
corresponding values, which are later reconstructed. If {rji}Pj∈Ci 6= {sji}Pj∈Ci , then from the proof of the
correctness property of WSCC (Lemma 4.8), at least t4 + 1 local faults occur. On the other hand, consider the
case when {rji}Pj∈Ci = {sji}Pj∈Ci . As at least t+ 1 values in the set {rji}Pj∈Ci are truly random, it follows
from the properties of Extrand that if we set (Vi1, . . . , Vi(t+1)) = Extrand({rji}Pj∈Ci), with N and K being
2t+ 1 and t+ 1 respectively, then the values Vi1, . . . , Vi(t+1) will be truly random values from F. This further

implies that if we set vik
def
= Vik mod u for k = 1, . . . , t + 1, then the t + 1 values vi1, . . . , vi(t+1) will be

uniformly distributed over [0, . . . u− 1]. These t+ 1 values are now considered as the t+ 1 values associated
with Pi. This way, instead of associating one random value in the range [0, . . . , u − 1] with Pi, the parties
now associate t+ 1 random values.

Now the decision rule to decide the final outcome of MWSCC is extended for the case of t + 1 bits, by
applying t+1 times the decision rule used in WSCC. Specifically, to decide the lth output bit σl for MWSCC,
party Pi checks if for some party in Hi, the lth associated value is 0. If so, then σl is set to 0, else it is set to
1. More formally, for l ∈ {1, . . . , t + 1}, party Pi sets σl = 0, if for some Pk ∈ Hi, the lth associated value
vkl is 0, else Pi sets σl to 1. Finally, party Pi outputs t+ 1 values σ1, . . . , σt+1. We note that communication
complexity of MWSCC remains the same as WSCC. We summarize the above discussion in the following
lemma, whose proof is similar to that of WSCC and so we do not provide it again to avoid repetition.

Lemma 7.1. For any id (sid, r) where sid ∈ N and r ∈ {1, 2, 3}, the following holds during MWSCC(sid, r):

1. Correctness: If all honest parties are able to compute their output, then one of the following holds:

(a) For every l ∈ {1, . . . , t+ 1}, all honest parties output σl = 0 and σl = 1 with probability at least
0.139 and 0.63 respectively; otherwise

(b) At least t4 + 1 local conflicts occur during the protocol.
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2. Communication Complexity: The protocol has communication complexity of O(n6 log |F|) bits.

We next discuss how we can extend SCC to get a multi-valued SCC protocol MSCC, which allows the par-
ties to obtain t+1 independent common coins, instead of a single common coin, with guaranteed termination.

From SCC to MSCC: Protocol MSCC is a straight-forward extension of SCC to deal with t + 1 output
bits. More specifically, instead of executing three parallel instances of WSCC, the parties now execute three
parallel instances of MWSCC and wait for receiving t+ 1 output bits in two out of these three instances. The
decision rule used to decide the output bit in SCC, is now applied t+ 1 times. That is, each party Pi decides
its t + 1 outputs bits in MSCC as follows: to decide the lth output bit, party Pi checks the two MWSCC
instances, for which Pi is able to obtain its output (as in SCC, it can be proved that each honest Pi eventually
obtains its output in at least two out of the three MWSCC instances). Now if the lth output bit in any of these
two MWSCC instances is 0, then Pi sets the lth output bit for MSCC to 0, else it is set to 1. The properties of
MSCC (stated in Lemma 7.2) follows in a straight-forward fashion from the properties of SCC and so we do
not provide the formal proof to avoid repetition.

Lemma 7.2. For any id sid where sid ∈ N, the following holds during MSCC(sid):

1. Termination: If all honest parties participate in MSCC, then each honest party eventually terminates.

2. Correctness: One of the following holds:

(a) For every l ∈ {1, . . . , t + 1}, for every possible σl ∈ {0, 1}, with probability at least 0.25, all
honest parties output σl as the lth output bit on terminating SCC; otherwise

(b) At least t4 + 1 local conflicts occur during the protocol.

3. Communication Complexity: The protocol has communication complexity of O(n6 log |F|) bits.

Finally we discuss how to extend ABA to MABA.

From ABA to MABA: Protocol MABA is similar to ABA, except that the parties use MSCC instead of
SCC; moreover, t + 1 instances of Vote protocol are invoked in each iteration. Each party participates in
MABA with an input vector of t + 1 bits. Then the protocol consists of several iterations of t + 1 instances
of Vote followed by one instance of MSCC and at the end of each iteration, the parties update their vector
of t + 1 bits. More specifically, during the first iteration, the value for each party will consists of its private
t + 1 input bits. Then in each iteration, the parties execute t + 1 parallel instances of the Vote protocol (one
instance on behalf of each bit), followed by a single instance of the MSCC. Each party then applies the same
logic as in ABA t+1 times, taking into account the outcome of the Vote and MSCC, to update its t+1 values
for the next iteration.

More formally, after completing the iteration k, each party updates its lth bit for the (k+ 1)th iteration as
follows, for each l ∈ {1, . . . , t+ 1}: if (σl, 1) is obtained as the output of the lth instance of Vote during the
kth iteration, then the lth bit is updated to σl; otherwise the lth bit is updated to the lth common coin, obtained
at the end of MSCC protocol during the kth iteration. This process is repeated till (σl, 2) is obtained as the
output of the lth instance of Vote during some iteration, in which case, a party stops all computations related
to the lth bit and broadcasts the Terminate message for σl. Protocol MABA finally terminates when t + 1
Terminate message is broadcasted for each of the t+ 1 output bits. For formal details, see Fig 8.
The properties of MABA (stated in Theorem 7.3) follow using similar arguments as used for ABA and from
the properties of MWSCC and MSCC. We do not give the complete proof to avoid repetition.

Theorem 7.3. MABA is an almost-surely terminating ABA protocol for t + 1 = Θ(n) bits with R = O(n)
expected running time and expected communication complexity of O(n7 log |F|) bits. In an amortized sense,
to agree on a single bit, the protocol requires an expected communication complexity of O(n6 log |F|) bits.
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Figure 8: Almost-surely terminating ABA protocol for t+ 1 bits with n = 3t+ 1.

MABA
Each Pi ∈ P executes the following code:

1. Set sid = 0. On having the input (xi1, . . . , xi(t+1)), set vil = xil, for l = 1, . . . , t + 1 and set
flagl = 0. a

2. Repeat until terminating: (each iteration is considered as a round)

a. Set sid = sid + 1. Participate in t+ 1 instances of Vote, where for l ∈ {1, . . . , t+ 1}, the input
for the lth instance is vil. Let (y(sid,l),m(sid,l)) denote the output of the lth instance of Vote.

b. Wait to terminate all the t+1 instances of the Vote protocol, executed in the previous step. Then
invoke MSCC(sid) and wait until its termination. Let (c(sid,1), . . . , c(sid,t+1)) denote the output
of MSCC(sid).

c. For every l ∈ {1, . . . , t+ 1}, such that flagl = 0, do the following:

i. If m(sid,l) = 2, then set v(sid+1,l) = y(sid,l), broadcast the message (Terminate with

v(sid+1,l), l) and participate in one more instance of Vote protocol corresponding to the lth

bit with v(sid+1,l) as the input.
Participate in one more instance of MSCC if (Terminate with v(sid+1,l), l) is broad-
casted for all l = 1, . . . , t+ 1.

i.. If m(sid,l) = 1, set v(sid+1,l) = y(sid,l).
iii. Else, set v(sid+1,l) = c(sid,l).

d. Upon receiving (Terminate with δl, l) from the broadcast of at least t + 1 parties, for some
value δl ∈ {0, 1}, output δl as the lth bit, terminate all the computation regarding lth bit and
set flagl = 1.

e. If flagl = 1 for every l ∈ {1, . . . , t+ 1} then terminate the protocol with output (δ1, . . . , δt+1).

a Here flag1, . . . , flagt+1 are the (local) Boolean flags to indicate whether the agreement on the lth bit has
been achieved.

7.2 Almost Surely Terminating ABA with a Constant Expected Running Time

We have already seen that the expected running time of our ABA protocol for n = 3t + 1 is O(n). We now
show how the expected running time of our ABA protocol can be reduced fromO(n) toO(1ε ) for n ≥ (3+ε)t
where ε > 0. This improvement in the expected running time is ultimately the result of the modifications made
to our SAVSS protocol. So, we first discuss our modified SAVSS protocol.

The Modified SAVSS Scheme. The modified SAVSS comprises of a pair of protocols (CSh,CRec). While
CSh is the same as Sh, the following modification is made in Rec to get CRec:

– All RS decoding procedures are invoked as RS-Dec(t, 2n−5t−24 ,Kj); hence the parameter c is changed
from t

4 to 2n−5t−2
4 . Notice that N = |Kj | = n− t− t

2 is automatically changed from 3t
2 + 1 to 3t

2 + εt.
This is because now n ≥ (3 + ε)t, instead of n = 3t+ 1.

In Rec, at least t
4 + 1 local conflicts occur whenever correctness property is violated. We next show that at

least εt
2

4 (1 + 2ε) local conflicts occur in CRec if correctness is violated. The properties of (CSh,CRec) are
formally stated in lemma 7.4.

Lemma 7.4. For any sid ∈ N, the following holds during the (CSh,CRec) protocol with id sid:
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1. Termination: The following holds:

(a) If D is honest and all honest parties participate in CSh, then each honest party eventually termi-
nates CSh.

(b) If some honest party terminates CSh, then every other honest party eventually terminates CSh.

(c) If all honest parties participate in CRec, then one of the following holds:

i. All honest parties eventually terminate CRec; or
ii. At least t2 + 1 corrupt parties are included in theW setW(i,sid) of every honest party Pi

2. Correctness: If the honest parties terminate CRec, then there exists a unique value s̄ where s̄ = s for
an honest D and s̄ ∈ F ∪ {⊥} for a corrupt D, such that one of the following holds:

(a) Each honest party outputs s̄ at the end of CRec; or

(b) At least εt
2

4 (1 + 2ε) local conflicts occur.

Proof. The proof for the termination property is exactly the same as in Lemma 3.2 and so we avoid repeating
it. We next prove the correctness property for the case when D is honest. Note that if D is honest, then for
every party Pj ∈ V , the polynomial f̂j(x) received by Pj , is the same as t-degree polynomial fj(x), where
fj(x) = F (x, j) and F (x, y) is the t-degree bivariate polynomial selected by D. To prove the correctness, we
need to show that each honest party Pi either reconstructs f̄j(x) = fj(x) during CRec for each Pj ∈ V or at
least εt

2

4 (1 + 2ε) local conflicts occur. If for each Pj ∈ V , the honest Pi reconstructs f̄j(x) = fj(x) during
CRec, then clearly F (x, y) = F (x, y) holds and hence s̄ = s holds. On the other hand, let there exists some
Pj ∈ V , such that Pi reconstructs f̄j(x) 6= fj(x) during CRec. Note that f̄j(x) is the output of executing
RS-Dec

(
with N = n− 3t

2 = 3t
2 + εt and c = 2n−5t−2

4 = t+2εt−2
4

)
on the set Kj . If there are at most t+2εt−2

4
incorrect values in the set Kj constructed by Pi, then f̄j(x) = fj(x) holds. So, for f̄j(x) 6= fj(x) to be true,
there should be at least t+2εt

4 incorrect values (k, f̂k(j)) in Kj , such that f̂k(j) 6= fk(j) holds. This implies
that at least t+2εt

4 corrupt parties Pk ∈ Vj broadcast f̂k(x) during CRec, such that f̂k(x) 6= fk(x). We note
that if Pk ∈ Vj then it implies that Pk ∈ V as well because the sub-guards in each sub-guard list is restricted
within V . This implies that there exists a set Vk as well. We claim that if a polynomial f̂k(x) is received from
the broadcast of Pk during CRec, such that f̂k(x) 6= fk(x), then at least εt honest parties Pl ∈ Vk will be in
local conflict with Pk. It easily follows from this claim that at least εt2

4 (1 + 2ε) local conflicts occur since
there are at least t+2εt

4 corrupt parties Pk, which reveal f̂k(x) 6= fk(x).
To prove our claim, we note that for every party Pk ∈ V , the set Vk has at least n − 2t = t + εt honest

parties Pl from V because |V ∩ Vk| ≥ n − t is ensured. Let Hk be the set of such honest parties Pl. For
each party Pl ∈ Hk, the condition fk(l) = fl(k) holds. This is because Pl is included in Vk only after
Pk broadcasts the message (ok, l), on receiving flk = fl(k) from Pl and locally verifying that fk(l) = fl(k)
holds. Moreover, the values flk corresponding to the parties Pl ∈ Hk uniquely define the t-degree polynomial
fk(x) since |Hk| ≥ t+ εt. So, if a polynomial f̂k(x) is received from the broadcast of Pk during CRec, such
that f̂k(x) 6= fk(x), then there are at most t parties Pl from Hk for which f̂k(l) = flk holds. This is because
two different t-degree polynomials f̂k(x), fk(x) can have at most t common values. Hence there exists at
least εt parties Pl ∈ Hk for which f̂k(l) 6= flk holds. So during SAVSS-MM, such parties Pl will be in local
conflict with Pk and include Pk to the set Bl.

Lastly, we need to show the correctness property holds for a corrupt D as well. This is, for the most
part, similar to the proof of lemma 3.4 for a corrupt D. The proof mainly diverges from lemma 3.4 when
incorrect polynomials are reconstructed i.e. f̄j(x) 6= f̂j(x) for some Pj ∈ V . Whenever this happens, we can
show that at least εt

2

4 (1+2ε) local conflicts occur by using similar reasoning as in the case of an honest D.

We next extend our MWSCC protocol to get the protocol ConstMWSCC for the case n ≥ (3 + ε)t case.
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The ConstMWSCC protocol is exactly the same as MWSCC, except that it invokes (CSh,CRec), instead of
(Sh,Rec). It easily follows from the properties of (CSh,CRec) that at least εt2

4 (1 + 2ε) local conflicts oc-
cur, whenever the common randomness property for the honest parties is violated with probability more than
3
4 . The properties of ConstMWSCC are stated formally in lemma 7.5; we do not give the proof to avoid
repetition, as they follow from the proof of the properties of MWSCC.

Lemma 7.5. Let n ≥ (3 + ε)t. Then for any id (sid, r) where sid ∈ N and r ∈ {1, 2, 3}, the following holds
during ConstMWSCC(sid, r):

1. Correctness: If all honest parties are able to compute their output, then the following holds:

(a) For every l ∈ {1, . . . , t+ 1}, all honest parties output σl = 0 and σl = 1 with probability at least
0.139 and 0.63 respectively; otherwise

(b) At least εt
2

4 (1 + 2ε) local conflicts occur during the protocol.

We next use the ConstMWSCC protocol to get the extended version of MSCC protocol ConstMSCC. In other
words, in ConstMSCC, three instances of ConstMWSCC are invoked. From the properties of ConstMWSCC,
we can infer that, in the ConstMSCC protocol, all honest parties have the same common randomness with
probability at least 0.25 or at least εt

2

4 (1+ 2ε) local conflicts occur. A more formal statement of the properties
of ConstMSCC is stated in lemma 7.6.

Lemma 7.6. Let n ≥ (3 + ε)t, where ε > 0. Then for any id sid where sid ∈ N, the following holds during
ConstMSCC(sid):

1. Termination: If all honest parties participate in ConstMSCC, then each honest party eventually ter-
minates.

2. Correctness: One of the following holds:

(a) For every l ∈ {1, . . . , t + 1}, for every possible σl ∈ {0, 1}, with probability at least 0.25, all
honest parties output σl as the lth output bit on terminating ConstMSCC or

(b) At least εt
2

4 (1 + 2ε) local conflicts occur during the protocol.

Finally, we extend MABA to ConstMABA, which is similar to MABA, except that instead of MSCC, the par-
ties invoke ConstMSCC in each iteration and use the output of ConstMSCC to update their values in the same
way as mentioned in the MABA protocol. It easily follows from the properties of ConstMSCC that at the end
of each iteration, the updated values of all honest parties will be the same with probability at least 1

4 , or other
wise εt2

4 (1 + 2ε) new local conflicts occur. Note that there can be at most (n − t)t different local conflicts
that can occur throughout ConstMABA. Hence, there can be at most (n−t)t

εt2

4
(1+2ε)

= (2t+εt)t
εt2

4
(1+2ε)

= 4(2+ε)
ε(1+2ε) ≤

8
ε

iterations where the updated values of all honest parties will be different with probability more than 3
4 . From

this, we can infer that ConstMABA protocol will run for at least 8
ε iterations in the worst case. By using sim-

ilar arguments as used in Lemma 6.11 and Lemma 6.12, we can conclude that the expected running time of
ConstMABA isO(1ε ). The properties of ConstMABA (stated in Theorem 7.7) follow using similar arguments
as used for MABA and from the properties of ConstMWSCC and ConstMSCC. We do not give the complete
proof to avoid repetition.

Theorem 7.7. Let n ≥ (3 + ε)t, where ε > 0. Then protocol ConstMABA is an almost-surely terminating
ABA protocol for t + 1 bits with an expected communication complexity of O(n7 log |F|) bits and expected
running time of R = O(1ε ). In an amortized sense, to agree on a single bit, the protocol requires an expected
communication complexity of O(n6 log |F|) bits.
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A Analysis of the ABA Protocols of [1] and [22]

We provide an analysis of the expected communication complexity, expected running time and local com-
putation of the ABA protocols of [1] and [22] in this section. For the protocols in both [1] and [22], all
communication and computation are done over a finite field F, where |F| > n.

A.1 Analysis of [1]

In [1], the general framework described in [8] is followed, where an SAVSS is used, instead of AVSS and SCC
is used in place of a CC protocol. Further, a moderated weak SVSS (MW-SVSS), which is a weaker version of
the SAVSS, has been constructed and used as a building block for the SAVSS protocol. The MW-SVSS pro-
tocol comprises of two sub-protocols: Share and Reconstruct. In the Share protocol of MW-SVSS, the dealer
selects O(n) t-degree polynomials and sends a polynomial to each party, which involves a communication
of O(n2 log |F|) bits. Having received these polynomials from the dealer, the parties carry out a pairwise
consistency check of their received polynomials, which also involves a communication of O(n2 log |F|) bits.
Based on these pairwise checking, each party broadcasts the identities of n − t parties, whose polynomials
are pair-wise consistent with it. This involves a communication of BC(O(n2 log n)) bits, as the identity of
each party can be represented by log n bits. Since broadcast of a single bit requires a communication of
O(n2) bits over the point-to-point channels, BC(O(n2 log n)) bits translates to a point-to-point communica-
tion of O(n4 log n) bits. During the reconstruction phase, each party ends up broadcasting its entire t-degree
polynomial, incurring a total communication of BC(O(n2 log |F|)) bits or a point-to-point communication of
O(n4 log |F|) bits. Overall, the sharing protocol has a communication complexity ofO(n4 log |F|) bits (since
|F| > n, we have O(log n) = O(log |F|)). And the reconstruction protocol has a communication complexity
of O(n4 log |F|) bits.

Now, let us analyze the SAVSS protocol. Similar to the Sharing protocol of MW-SVSS, the dealer sends a
t-degree polynomial to each of the n parties, incurring a total communication ofO(n2 log |F|) bits. Then, each
party acts as a dealer and invokes n−1 instances of MW-SVSS Share protocol, one with respect to every other
party acting as a moderator. This implies that O(n2) MW-SVSS Share instances are invoked. So, the SAVSS
protocol sharing protocol has communication complexity of O(n6 log |F|) bits. The reconstruction phase
of SAVSS involves O(n2) instances of MW-SVSS reconstruction protocol and hence has communication
complexity of O(n6 log |F|) bits.

In SCC, each party acts as a dealer and shares n secrets using the SAVSS share protocol and later these
values are reconstructed. Hence O(n2) sharing and reconstruction instances are involved. As a result, one
instance of SCC has communication complexity of O(n8 log |F|) bits. The ABA protocol invokes the SCC
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protocol in each iteration, in a similar manner as [8]. It is to be noted that whenever the correctness property
of SCC is violated, then at least one local conflict occurs. Since there are at most t corrupt parties, there can
be at most (n− t)t = O(n2) iterations in which correctness is violated. In all other iterations, the correctness
property of SCC holds and only expected constant number of such iterations are needed for the ABA to
terminate. Hence, the ABA protocol requires an expected running time of R = O(n2). This implies that the
expected number of SCC instances invoked inside the ABA protocol is O(n2). Hence the ABA protocol has
an expected communication complexity of O(n10 log |F|) bits. The local computation required by each party
in each iteration is polynomial, as the underlying SAVSS and SCC instances require polynomial amount of
local computation.

A.2 Analysis of [22]

The ABA protocol presented in [22] also follows the general framework of obtaining an ABA from an AVSS
described in [8]. Instead of using an AVSS, a variant of AVSS known as Inferable Verifiable Secret Sharing
(IVSS) is used. Property-wise, IVSS is similar to SAVSS except that instead of local conflicts, the parties
globally identify faulty pairs of the form (Pi, Pj), if correctness is violated. It is guaranteed that at least one
party in every globally identified faulty pair (Pi, Pj) is corrupt. Just like an AVSS, the IVSS comprises of a
sharing protocol and a reconstruction protocol. In the sharing protocol, the dealer picks a t-degree symmetric
bivariate polynomial and sends a t-degree univariate polynomial, that is related to the bivariate polynomial
to each party. This requires a total communication of O(n2 log |F|) bits. Then, the parties perform pair-wise
consistency check of the received univariate polynomials, which requires a communication of O(n2 log |F|)
bits. For each party Pj , whose polynomial is pair-wise consistent with the polynomial of Pi, the party Pi
broadcasts the message “Equal(i, j)”, which of size O(log |F|) bits. Since this is done for all pairs of parties,
this step has communication complexity of BC(O(n2 log n)) bits, where the identity of each party can be
represented by log n bits. Based on these messages, dealer creates a consistency graph with P1, . . . , Pn being
the vertices and where the edge between Pi and Pj implies that Pi and Pj have broadcasted Equal(i, j) and
Equal(j, i) respectively. Based on the consistency graph, dealer tries to find a setM of n− t parties, such the
univariate polynomials of all the parties inM are mutually pair-wise consistent. This is equivalent to finding
a clique of size n− t in the consistency graph and this requires exponential amount of computation from the
dealer. Once dealer findsM, it broadcasts it, which has communication complexity of BC(O(n log n)) bits.
On receivingM, the parties themselves locally construct the consistency graph and verify ifM is a clique of
size n− t in the consistency graph. Overall, the sharing protocol requires BC(O(n2 log |F|)) bits (since |F| >
n, we have that O(log |F|) = O(log n)). During the reconstruction protocol, each party inM broadcasts its
univariate polynomial and this requires a communication complexity of BC(O(n2 log |F|)) bits. By replacing
the communication required for each BC instance as O(n2), we get the overall communication complexity of
the sharing protocol to be O(n4 log |F|) bits and that of the reconstruction protocol is O(n4 log |F|) bits as
well.

A variant of the CC protocol called Inferable Common Coin (ICC) was presented in [22]. The construction
of ICC from an IVSS is similar to that of CC from AVSS [8]. The ICC invokes O(n2) instances of IVSS
sharing and reconstruction and hence has communication complexity of O(n6 log |F|) bits, with the parties
performing exponential amount of local computation. The ICC ensures that if the common randomness
property (correctness) gets violated, then Ω(n) faulty pairs are globally inferred. The ABA protocol invokes
an instance of ICC in each iteration. Since there can be O(n2) faulty pairs, the number of iterations in which
the correctness property is violated isO(n). For the ABA protocol to terminate, an expected constant number
of iterations in which the correctness of ICC is not violated are needed. This implies that the overall expected
running time of the ABA protocol is R = O(n). From this, we gather that the expected communication
complexity of the ABA protocol is O(n7 log |F|) bits, with the parties performing exponential amount of
computation.
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