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Abstract. In this paper, we analyze security properties of the Wal-
nutDSA, a digital signature algorithm recently proposed by I. Anshel,
D. Atkins, D. Goldfeld, and P. Gunnels, that has been accepted by the
National Institute of Standards and Technology for evaluation as a stan-
dard for quantum-resistant public-key cryptography. At the core of the
algorithm is an action, named E-multiplication, of a braid group on some
finite set. The protocol assigns a pair of braids to the signer as a private
key. A signature of a message m is a specially constructed braid that is
obtained as a product of private keys, the hash value of m encoded as a
braid, and three specially designed cloaking elements.

We present a heuristic algorithm that allows a passive eavesdropper
to recover a substitute for the signer’s private key by removing cloaking
elements and then solving a system of conjugacy equations in braids.
Our attack has 100% success rate on randomly generated instances of
the protocol. It works with braids only and its success rate is not af-
fected by a choice of the base finite field. In particular, it has the same
100% success rate for recently suggested parameters values (including
a new way to generate cloaking elements, see [1]). Implementation of
our attack in C++, as well as our implementation of the WalnutDSA
protocol, is available on GitHub [7].
Keywords. WalnutDSA, group-based cryptography, digital signature,
algebraic eraser, braid group, colored Burau presentation, conjugacy
problem.
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1. Introduction

WalnutDSA is a digital signature algorithm recently proposed by I. An-
shel, D. Atkins, D. Goldfeld, and P. Gunnels in [4]. It has been accepted
by the National Institute of Standards and Technology for evaluation as
a standard for quantum-resistant public-key cryptography. At the core of
WalnutDSA is a highly specialized one-way function called E-multiplication,
claimed to be quantum resistant and highly resistant to reverse engineering.
The scheme is also claimed to be suitable for low-resource devices.

Date: April 30, 2018.
The second author was supported by Russian Science Foundation (project N16-11-

10002).

1



AN ATTACK ON THE WALNUT DIGITAL SIGNATURE ALGORITHM 2

1.1. Related work. The protocol received significant attention; and very
recently two algebraic attacks were proposed ([10] and [5]). Recall that the
private key in WalnutDSA consists of a pair of braids (w,w′), see Section 5
for details. The first paper, [10], describes a factorization attack that breaks
WalnutDSA under the assumption that w = w′. One of the drawbacks of
that attack, besides the assumption w = w′, is that the forged signatures are
much longer than the original. Imposing a limit on the length of signatures
allows to defend against this attack.

The second paper, [5], describes three attacks on WalnutDSA:

• The authors show that the factorization attack proposed in [10] can
be modified to work for general private keys (w,w′). Unfortunately,
the modified attack has the same problem as the original one; it
produces very long signatures.
• The authors describe a collision search attack. They make an ob-

servation that the sizes of orbits of E-multiplication are relatively
small for the proposed parameter values and exploit that to create
messages with the same signature.
• One problem underlying security of WalnutDSA is the so-called re-

versing E-multiplication problem, or REM-problem. [5] shows that
REM-problem can be solved efficiently for the proposed parameter
values. This attack directly constructs equivalent secret keys in less
than a minute for the parameters suggested by the authors of Wal-
nutDSA.

See Section 7 for more details, where we give a short overlook of these
papers. Very recently, to counter [5], the authors of WalnutDSA suggested to
increase certain parameter values and slightly changed the design of cloaking
elements.

1.2. Our contribution. We describe a different method to break the pro-
tocol that ignores E-multiplication and operates purely with braids. In
particular, its success does not depend on the size of the base field. It works
for the original parameter values and for the new ones. It also successfully
works with very recently proposed cloaking elements (see Proposition 2.3).

1.3. Outline. In Section 2 we give definitions that are necessary to define
WalnutDSA: colored Burau representation, E-multiplication, and cloaking
elements. Fast checks for identity and conjugacy problems in braids are
presented in Section 3. In Section 4 we describe an encoding procedure
used in WalnutDSA to convert a message into a braid word. In Section 5
WalnutDSA protocol is introduced. In Section 6 we define the parameters
we used to test our attack. Section 7 is a short survey of the previous
known attacks. In Section 8 we describe our attack. Section 9 contains the
obtained results and further remarks on the performance of our algorithm.
We conclude the paper in Section 10.
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2. E-multiplication

Here we shortly review a non-faithful representation of a braid group Bn
called the colored Burau group and an action of Bn on a certain finite set
(called E-multiplication).

2.1. Braid group. The group Bn of braids on n strands has the following
combinatorial presentation:

Bn '
〈
x1, . . . , xn−1

∣∣∣∣ xixj = xjxi for |i− j| > 1,
xixi+1xi = xi+1xixi+1

〉
.

A word w = w(x1, . . . , xn−1) in the generators of Bn and their inverses
is called a braid word. Every braid word w defines an actual (physical)
braid. Length |w| of a braid word w is the number of letters in w. If
u = (u1, . . . , uk) is a k-tuple of braid words, then the total length |u| of u is

defined as
∑k

i=1 |ui|.
Every braid w naturally defines a permutation σw, which is actually a

permutation of the endpoints of the involved strands, and the corresponding
map w 7→ σw is an epimorphism. If σw is trivial, then w is called a pure
braid. The group of pure braids on n strands is denoted by Pn.

For a set of braids u1, . . . , uk define a set

C(u1, . . . , uk) = {c ∈ Bn | [c, ui] = 1 for 1 ≤ i ≤ k},
called the centralizer of u1, . . . , uk. It is easy to check that a centralizer is a
subgroup of Bn.

The group Bn has a cyclic center generated by the element ∆2, where ∆
is the element called the half twist. It can be expressed in the generators of
Bn as follows:

∆ = (x1 . . . xn−1) · (x1 . . . xn−2) · . . . · (x1).

2.2. Geodesic braid approximation. Let w be a word in generators of
Bn. The problem to find a shortest braid word representing the same el-
ement as w is known to be computationally hard (see [15]). It is known
however (see e.g. [16, 11]) that many NP-complete problems have poly-
nomial time generic- or average-case solutions or have good approximate
solutions. In this paper, we use a geodesic-braid approximation method
that was introduced in [13, 14] and proved to be very useful in many other
attacks.

The following algorithm attempts to minimize the given braid word. It
exploits the property of Dehornoy’s form D(w) (introduced in [8]) that for
a “generic” braid word w one has |D(w)| < |w|.

Algorithm 1 (Braid Minimization).
Input. A word w = w(x1, . . . , xn−1) in the generators of the group Bn.
Output. A word w′ such that |w′| ≤ |w| and w′ = w in Bn.
Initialization. Put w0 = w and i = 0.
Computations.
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(1) Increment i.
(2) Put wi = D(wi−1).
(3) If |wi| < |wi−1|, then:

(a) Put wi = w∆
i

(b) Goto (1).
(4) If i is even, then output w′ = w∆

i+1.
(5) If i is odd, then output w′ = wi+1.

2.3. Colored matrices. Fix a finite field Fq and denote by Rn the ring
of Laurent polynomials in variables {t1, . . . , tn} with coefficients in Fq. Let
GLn(Rn) be the group of invertible matrices over Rn. The symmetric group
Sn naturally acts on GLn(Rn) by permuting the variables {t1, . . . , tn}. The
result of the action of σ ∈ Sn on M ∈ GLn(Rn) is denoted by Mσ. Recall
that a semidirect product of GLn(Rn) and Sn is a group

GLn(Rn) o Sn = {(M,π) |M ∈ GLn(Rn) and π ∈ Sn},
equipped with the operation

(M1, σ1) · (M2, σ2) = (M1M
σ1
2 , σ1σ2).

Define n × n-matrices C1(t1), . . . , Cn−1(tn−1) over polynomials in variables
{t1, . . . , tn}:

C1(t1) =

 −t1 1 0
0 1 0
0 0 In−2

 and Ci(ti) =


Ii−2 0 0 0 0

0 1 0 0 0
0 ti −ti 1 0
0 0 0 1 0
0 0 0 0 In−i−1


for 2 ≤ i ≤ n − 1. It is easy to check that the map ϕ on the generators
x1, . . . , xn−1 of Bn:

xi
ϕ7→ (Ci(ti), πi),

where πi = (i, i+ 1) ∈ Sn, extends into a group homomorphism. The group

〈(C1(t1), π1), . . . , (Cn−1(tn−1), πn−1)〉
is called the colored Burau representation of Bn and is denoted by CBn.

2.4. Action of CBn on a certain finite set. Fix n nontrivial elements
τ1, . . . , τn ∈ Fq termed t-values and define a group homomorphism

ε : GLn(Rn)→ GLn(Fq)
that for each i replaces ti with the value τi. For (m,σ) ∈ GLn(Fq)×Sn and
(C, ρ) ∈ CBn define the following operation:

(m,σ) ? (C, ρ) = (m · ε(Cσ), σρ).

It is straightforward to check that the map ? defines an action of CBn on
GLn(Fq)×Sn. By E-multiplication we understand the induced action of Bn
on GLn(Fq)× Sn. For a braid w define a pair:

(1) P(w) = (I, id) ? w.
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For a pair (m,σ) define Matrix((m,σ)) = m.

2.5. Cloaking elements. Let G be a group acting on a set X and x ∈ X.
The stabilizer of x is the set

Stab(x) = {g ∈ G | xg = x}.
It is easy to check that Stab(x) is a subgroup of G. In general, it is a difficult
problem to describe Stab(x) for a given x. The protocol [4] requires braids
stabilizing some (m,σ) ∈ GLn(Fq) × Sn through the right action of the
braid group via E-multiplication. Such braids are called cloaking elements
in [4, Definition 2.1]. Observe that these elements depend on t-values that
are used to define E-multiplication.

The following way of constructing cloaking elements was proposed in [4].
Fix (m,σ) ∈ GLn(Fq)× Sn and assume that a, b, i ∈ N and w ∈ Bn satisfy
the following conditions:

1 ≤ a < b ≤ n and τa = τb = 1,

σw(i) = σ−1(a) and σw(i+ 1) = σ−1(b).

Proposition 2.1 ([4, Proposition 2.2]). wx±2
i w−1 ∈ Stab((m,σ)).

Proof. Denote by (Cw, σw) the image of w in CBn. Step by step proof for
wx2

iw
−1:

• (m,σ)?w = (m · ε(Cσw), σσw), where σσw(i) = a and σσw(i+ 1) = b.
• (m,σ) ? wxi = (m · ε(Cσw) · ε(Ci(ti)σσw), σσwσi), where Ci(ti)

σσw =
Ci(ta) and, hence, ε(Ci(ti)

σσw) = Ci(1). Thus, we get (m · ε(Cσw) ·
Ci(1), σσwσi) and σσwσi(i) = b and σσwσi(i+ 1) = a.
• (m ·ε(Cσw) ·Ci(1), σσwσi)?xi = (m ·ε(Cσw) ·Ci(1) ·ε(Ci(ti)σσwσi , σσw),

where ε(Ci(ti)
σσwσi) = ε(Ci(tb)) = Ci(1). Since Ci(1) · Ci(1) = I,

the result is (m · ε(Cσw), σσw).
• Finally, (m · ε(Cσw), σσw) ? w−1 = (m,σ) ? (w · w−1) = (m,σ). �

Observe that the property of a braid w to cloak (m,σ) depends on σ only.
Hence, we can say that w cloaks σ.

Remark 2.2. Geometrically, the condition in Proposition 2.1 defines a braid
that:

• twists strands to set strands σ−1(a) and σ−1(b) next to each other
using w,
• double twists strands σ−1(a) and σ−1(b) using x2

i ,
• twists strands backwards using w−1.

Schematically, wx2
iw
−1 has the structure as shown in Figure 1.

Official WalnutDSA specification [2] contains a detailed description for
generation of cloaking elements for a permutation σ:

(1) Pick a random integer 2 ≤ i ≤ n− 1.
(2) Compute a random permutation σw such that σw(i) = σ−1(a) and

σw(i+ 1) = σ−1(b).
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xi xiw w-1

σ−1(a)

σ−1(b)

Figure 1. Cloaking element.

(3) Generate a random braid w with permutation σw.
(4) Extend w with L pure braids.
(5) Compute the cloaking element v = wx±2

i w−1.

Generation of a random braid word w with a given permutation σw is also
described in [2] and consists of decomposing σw into the product of trans-
positions

σw = (i1, i1 + 1) · . . . · (ik, ik + 1),

where ij ∈ {1, . . . , n − 1}, and taking w = xε1i1 . . . x
εk
ik

, where εj = ±1.
To meet security requirements, it is suggested to augment the resulting
braid word w with L random pure braid generators. Recall that pure braid

subgroup of Bn is generated by n(n−1)
2 generators

(2) gi,j = xj−1xj−2 . . . xi+1x
2
ix
−1
i+1 . . . x

−1
j−2x

−1
j−1, 1 ≤ i < j ≤ n.

Another way to generate cloaking elements was recently suggested by
SecureRF in [1]. Fix (m,σ) ∈ GLn(Fq)×Sn and assume that a, b, i ∈ N and
w ∈ Bn satisfy:

1 ≤ a < b ≤ n and τb = −τ−1
a

σw(i) = σ−1(a) and σw(i+ 1) = σ−1(b).

Proposition 2.3. wx±4
i w−1 ∈ Stab((m,σ)).

Proof. It follows from the identity [Ci(τa)Ci(−τ−1
a )]2 = I. �

Geometrically, the braid defined in Proposition 2.3 is very similar to the
braid defined in Proposition 2.1, but uses four copies of xi in the middle
instead of two.

3. Fast checks for identity and conjugacy problems in braids

Recall that a braid word w(x1, . . . , xn−1) is called an identity of Bn if it
represents the trivial braid. An algorithmic problem to determine if w is an
identity, or not, is called the identity problem for Bn. Also, recall that braid
words u and v are said to be conjugate in Bn if

v =Bn x
−1ux,
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for some braid word x. An algorithmic problem to determine if u and v are
conjugate, or not, is called the conjugacy problem for Bn. Both problems
are well studied for braids. The identity problem is known to have quadratic
time complexity, and it is an open problem if the conjugacy problem can be
solved by a polynomial time algorithm (exponential time solution is known).

In practice, the fastest way to solve the identity problem is to use the De-
hornoy handle free form, which is conjectured to have linear time complexity,
but even that requires some significant time to halt on braids of length 2000
and longer. To speed up computations, we designed the following heuristic
that works very fast for nontrivial w.

• Fix a sufficiently large prime modulus p (199 in our experiments)
and nontrivial t-values τ1, . . . , τn ∈ Fp.
• If (I, id) ? w 6= (I, id), then return No. Otherwise return DoNot-

Know.

Recall that abelianizations of conjugate elements are the same. Hence, a
fast and easy way to check if u and v are not conjugate in Bn is to check
their abelianizations, and report No if they are not the same. This is a very
useful approach for practical computations, but it had limited success in our
experiments. We designed the following heuristic to check if u and v are not
conjugate.

• Fix a sufficiently large prime modulus p (199 in our experiments)
and equal t-values τ1 = . . . = τn ∈ Fp \ {0, 1}.
• Compute characteristic polynomials for

Matrix((I, id) ? u) and Matrix((I, id) ? v)

and return No if they are not the same. Otherwise return DoNot-
Know.

Observe that the choice of all equal t-values gives a homomorphism from Bn
into GL(n,Fp). Hence, the images of conjugate braids must be conjugate
in GL(n,Fp). Hence, their characteristic polynomials must be the same.

4. Message encoding

In order to sign a message m ∈ {0, 1}∗, one needs to convert it into a
braid word. In this section, we describe an encoding method proposed in
[4, Section 7]. Let H : {0, 1}∗ → {0, 1}4k be a cryptographic hash function
for some positive integer k. The method below defines an encoding function
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E : {0, 1}4k → Bn. Consider a collection of braids:

gn−1,n = x2
n−1,

gn−2,n = xn−1x
2
n−2x

−1
n−1,

gn−3,n = xn−1xn−2x
2
n−3x

−1
n−2x

−1
n−1,

...

g1,n = xn−1xn−2 . . . x2x
2
1x
−1
2 . . . x−1

n−2x
−1
n−1.

It is a well-known fact that the elements gn−1,n, . . . , g1,n form a basis of a
free subgroup of Bn. Fix four elements of that form:

gk1,n, gk2,n, gk3,n, gk4,n.

This choice defines a function from 4-bit blocks to braids:

(3) b3b2b1b0 7→ gνkµ,n,

where µ = 2b1 + b0 + 1 and ν = 2b3 + b2 + 1. Further, we can assign a braid
E(H(m)) to any bit-sequence H(m) by cutting H(m) into a sequence of
4-bit blocks and taking the concatenation of the corresponding braid words.
Below we mention some features of the encoding E that, in our opinion,
make the encryption algorithm weaker.

Remark 4.1. It was noticed in [1] that encoding E defined above is not in-
jective, for example, we have E(0000 0100) = (gk1,n)3 = E(0100 0000). This
is definitely a drawback of E. However, E can be easily fixed to guarantee
an injective map of bit sequences into braids, and a few ways of achieving it
were suggested in [1]. We note that a choice of E is not relevant for success
of our attack and we work with the original E as it is defined in (3).

Remark 4.2. Each letter in gi,n crosses the nth strand with other strands
and the whole E(H(m)) is a pure braid obtained by taking strands 1, . . . , n−
1 and pulling the nth strand through them (without moving strands 1, . . . , n−
1), see Figure 2. This situation (pulling a single strand through others) can

5

4

3

2

1

Figure 2. The element g1,5g
−1
3,5g4,5.

be easily recognized algorithmically. We believe this observation can lead to
a successful attack that tries to find and isolate E(H(m)) inside a signature
for m.
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Remark 4.3. For any choice of k1, . . . , k4 there exists a conjugator c such
that 〈gk1,n, gk2,n, gk3,n, gk4,n〉c is a subgroup of 〈x1, x2, x3, x4〉. We believe
that this property contributes to the efficacy of our attack. We enumerate
conjugates of some tuples of braids in our attack. In all our experiments,
our procedure was able to reduce the rank of the underlying braid group
to 5 using an appropriate sequence of conjugations, see Section 8.2.1. This
observation also explains the reason why the authors of [5] in Section 4.1
obtain dimension 13 in practical experiments.

5. The protocol

WalnutDSA allows a signer (Alice) with a fixed private-/public-key pair
to create a digital signature associated with a given message that can be
validated by anyone who knows the Alice’s public-key and the verification
protocol. We now describe the algorithms for private-/public-key genera-
tion.

Fix initial public information available to each interested party:

• The rank n of the braid group Bn (n ≥ 8).
• A rewriting algorithm R : Bn → Bn, called an obfuscation procedure,

that transforms a braid word w into an equivalent braid word R(w)
and, in some sense, hides information in w.
• A finite field Fq (q ≥ 32).
• Two integers 1 ≤ a < b ≤ n.
• Non-zero values τ1, . . . , τn ∈ Fq such that τa = τb = 1 or τb = −τ−1

a

depending on a choice of a cloaking element type.

By a protocol instance we mean a set of values for all the parameters above.
Alice’s private key:

• A pair of braid words (w,w′) representing elements in Bn.

Alice’s public key:

• A pair (P(w),P(w′)), see (1) for the definition of P.

To sign a message m, Alice does the following:

• computes E(H(m));
• picks v that cloaks (I, id), v1 that cloaks P(w), and v2 that cloaks
P(w′);
• computes S = R(v1 · w−1 · v · E(H(m)) · w′ · v2);
• finally, the signature for m is the pair (H(m), S).

To validate the signature, one checks the equality:

Matrix(P(w) ? S) = Matrix(P(E(H(m)))) ·Matrix(P(w′)).

It is easy to check that a valid signature passes this test.
We note that the official WalnutDSA specification [2] appeared later than

paper [4], and the following changes to the protocol were made:

(1) the public key is of the form (P(w),Matrix(P(w′)).
(2) a = 1 and b = 2 (with τ1 = τ2 = 1).



AN ATTACK ON THE WALNUT DIGITAL SIGNATURE ALGORITHM 10

We note that the first change does not make any difference since the per-
mutation σw′ can be restored from any signature. Also, a choice of a and b
does not affect our attack and we used values from [4].

6. Key generation and parameter values

For 128-bit security level, the official specification [2] suggests the follow-
ing parameters:

• n = 8.
• q = 32.
• L = 15 (see Section 2.5).
• l = 132 (the minimal length of braids in private keys).
• H is SHA2-256 hash function.

For 256-bit security level suggested parameters are:

• n = 8.
• q = 256.
• L = 30.
• l = 287.
• H is SHA2-512 hash function.

Recently the following changes to the original parameters were proposed in
[1] to counter [5]:

(1) n = 11 instead of n = 8;
(2) q = 231 − 1 and q = 261 − 1 for 128-bit and 256-bit security levels

respectively;
(3) τb = −τ−1

a and cloaking elements of the form wx±4
i w−1, as defined

in Proposition 2.3.

6.1. Tested parameter values. We tested originally proposed sets of pa-
rameters for 128-bit and 256-bit security levels and also 256-bit parameters
with n = 11. For each set of parameters we tried 2 cases, one using cloaking
elements of Proposition 2.1 and another using cloaking elements of Propo-
sition 2.3. Note that:

• We did not test values q = 231 − 1 or q = 261 − 1 since the size
of the base field is not relevant for the success of our attack as our
algorithm works with braids only.
• In our experiments we did not work with actual hash values of mes-

sages H(m). Instead, we generated random bit sequences of length
256 or 512.
• We used Garside normal forms [9] to obfuscate signatures instead

of Birman-Ko-Lee forms [6] since they are the most tested normal
forms in CRAG [7]. This technical preference does not give us any
particular advantage.
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7. Short survey of existing attacks

In this section, we give short explanations of the attacks presented in [10]
and [5] to show that we use a completely different approach.

7.1. Factorization attacks. Recall the definition of existential unforgeabil-
ity under chosen message attacks. An adversary can ask for polynomially
many signatures of messages of its choice to a signing oracle. The attack is
considered successful if the attacker is able to produce a valid pair (message,
signature) for a message different from those queried to the oracle. In [10] it
is shown that the earlier version of WalnutDSA, where the two secret braids
w and w′ are equal, is not resistant to this kind of attack. The method is
modified in [5] to break the current version of WalnutDSA. It exploits the
following property.

Theorem 7.1 ([5]). Suppose m,m1,m2 are messages. Let h, h1, h2 be the
matrix parts of P(E(H(m))),P(E(H(m1))),P(E(H(m2))) respectively. Let
w1, w2, w3 ∈ Bn be braids. Then

(1) If m = m−1 and S1 is a valid signature for m1 under the public key
(P(w1),P(w2)), then S−1

1 is a valid signature for m under the public
key (P(w2),P(w1)).

(2) If m = m1 ·m2 and S1, S2 are valid signatures for m1 and m2 under
the public keys (P(w1),P(w2)) and (P(w2), P (w3)) respectively, then
S1 ·S2 is a valid signature for m under the public key (P(w1),P(w3)).

Let O be an oracle that solves the factorization problem in the group An
of invertible matrices of the form{(

X Y
0 1

)
| X ∈ GLn−1(Fq), Y ∈ Fn−1

q

}
.

It is possible to break WalnutDSA using O as follows. Suppose we want
to forge a signature for a message m under the public key (P(w),P(w′)).
We start by collecting a number of pairs (m1, S1), . . . , (mk, Sk) that are
valid under the same public key. Now it suffices to find a factorization
h = hi1 · h−1

i2
· hi3 · · ·h−1

im−1
· him , where h is the matrix part of P(E(H(m))),

and hi are the matrix parts of P(E(H(mi))). To find such a factorization,
one constructs the list of generators {hi · h−1

j | i 6= j; 1 ≤ i, j ≤ k} and

calls the oracle O to obtain a factorization for h · h−1
1 with factors in this

list. Appending the factor h1 to the result, we get a factorization of h of
the desired form. This reduces breaking WalnutDSA to the factorization
problem in An.

[10] proposes an algorithm to solve the factorization problem. The algo-

rithm has a time complexity O(q
n−1
2 ); and for the 128-bit security parame-

ters it finds a factorization in minutes. However, the constructed factoriza-
tions contain roughly 225 factors. Therefore, the factorization attacks can
be blocked by imposing a length limit on valid signatures.
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7.2. A collision search attack. The second attack in [5] constructs a pair
of messages with the same signature. Recall that a signature S is validated
using the equality

Matrix(P(w) ? S) = Matrix(P(E(H(m)))) ·Matrix(P(w′)).

Therefore, if m1 and m2 satisfy P(E(H(m1))) = P(E(H(m2))), then a
signature S is valid for m1 if and only if it is valid for m2. A generic collision
search requires roughly |P(E(H({0, 1}∗)))|1/2 evaluations of the composition
function P ◦E ◦H. [5] shows that this value is at most q6.5 for the originally
proposed parameter values. Therefore, finding a collision cannot take much
more than 232.5 evaluations of P ◦E ◦H for 128-bit security parameters and
252 evaluations of P ◦ E ◦H for 256-bit security parameters.

The authors of [5] implemented the generic collision finding algorithm
of van Oorschot and Wiener and used it to find collisions for the function
g ◦P ◦E ◦H, where g is a function that takes the output of P and converts
it to some plausible message m. It takes one hour on a standard desktop
PC to find a pair of colliding messages.

7.3. Reversing E-multiplication. A fundamental problem underlying Wal-
nutDSA is the “reversing E-multiplication” problem. Given a pair (m,σ)
such that (m,σ) = (I, id)?w for some braid w ∈ Bn, we need to find a braid
w′ ∈ Bn such that (I, id) ? w′ = (m,σ). The third attack proposed in [5]
solves the REM problem for the proposed parameter values. The method
exploits the fact that E-multiplication, when restricted to pure braids, is
a group homomorphism and that this homomorphism maps the chain of
subgroups P2 ⊂ P3 ⊂ · · · ⊂ Pn to a nice chain of subgroups of GLn(Fq).
The attack directly constructs equivalent secret keys in under one second for
128-bit security parameters and in less than a minute for 256-bit security
parameters.

All the attacks exploit various algebraic properties of the E-multiplication
fundamental for WalnutDSA. In order to avoid these attacks, the parameters
of WalnutDSA should be increased significantly.

8. The attack

We start out with a general outline of our attack. Details are presented
in the following subsections. Initially, given an instance of the protocol, the
attack collects a number of messages mi signed by Alice with her private
key (w,w′), i.e., pairs (mi, SA(mi)), where:

SA(mi) = v
(i)
1 · w

−1 · v(i) · E(H(mi)) · w′ · v(i)
2 ,

for i = 1, . . . , k. Then it removes cloaking elements from the signatures
SA(mi) and produces products Pi = w−1 · E(H(mi)) · w′ for each i. Note
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that the following equalities hold:

(4)

 P1P
−1
2 = w−1E(H(m1))E(H(m2))−1w,

. . .
Pk−1P

−1
k = w−1E(H(mk−1))E(H(mk))

−1w,

with known elements Pi−1P
−1
i and E(H(mi−1))E(H(mi))

−1 and the secret
element w. Hence, on the next stage, we solve the system of conjugacy
equations (4). Denote the obtained solution by x and compute x′:

(5) x′ = E(H(mi))
−1xPi,

using some i = 1, . . . , k. We say that the attack is successful if the pair
(x, x′) is a valid substitute for the pair (w,w′). That property is checked
by generating 10 random messages, signing them without cloaking elements
using (x, x′) as a private key, and validating the produced signatures.

We would like to point out that in our experiments we never obtained the
original private key (w,w′) and this is not an issue. Denote the centralizer

C = C(E(H(m1))E(H(m2))−1, . . . , E(H(mk−1))E(H(mk))
−1).

Clearly, any solution x of (4) is of the form x = hw, where h belongs to
the centralizer C, and x′ = E(H(mi))

−1hwPi. Signing a random message
m without cloaking elements and with (x, x′) as a private key, we get

SA(m) = x−1E(H(m))x′

= w−1h−1E(H(m))E(H(mi))
−1hwPi

= w−1h−1E(H(m))E(H(mi))
−1hE(H(mi))w

′.

If h centralizes E(H(m))E(H(mi))
−1, then

SA(m) = w−1h−1E(H(m))E(H(mi))
−1hE(H(mi))w

′

= w−1E(H(m))E(H(mi))
−1E(H(mi))w

′

= w−1E(H(m))w′,

so the signature of m obtained using (x, x′) coincides as a braid word with
the signature obtained using (w,w′). We note that this was the case in all
our experiments; and all our forged signatures were equivalent as braids to
the original signatures generated without cloaking elements.

In the rest of the section, we provide detailed description of the main
steps in the attack.

8.1. Uncloaking signatures. Here we describe a heuristic procedure that
removes cloaking elements from a given signature

S = R(v1w
−1vE(H(m))w′v2)

and computes the product w−1E(H(m))w′. Our algorithm uses the follow-
ing rather informally stated observations:

• As mentioned in Remark 2.2, the letters xi in the word wx±2
i w−1

from Proposition 2.1 twist two particular strands σ−1(a) and σ−1(b).
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• Replacement wxεix
ε
iw
−1 → wx−εi xεiw

−1, where ε = ±1, produces the
trivial braid.
• Replacement of a single letter x±1

i that twists strands σ−1(a) and

σ−1(b) with x∓1
i in a braid word corresponds to multiplication of the

word by a cloaking element.
• Multiplying a braid word with cloaking elements on the left or on

the right increases the length of the braid.
• Even though obfuscation of a cloaked braid word changes the way

the word looks, it preserves the isotopy type of the braid and the
result of obfuscation typically twists strands σ−1(a) and σ−1(b) at
the crossing corresponding to the middle of wx±2

i w−1. See Remark
9.1.
• By tracing strands in a given braid, we can algorithmically find all

letters that twist strands σ−1(a) and σ−1(b). We call those letters
critical letters.

The uncloaking algorithm operates on pairs of signatures S1, S2 as fol-
lows:

(1) Trace the strands and find all critical letters in the signature S1. For
each critical letter, flip its power and braid-minimize the result:

S1 = . . . x±1
i . . .→ . . . x∓1

i . . . .

That produces a list of braid words S
(1)
1 , . . . , S

(k)
1 . Perform the same

with S2 and obtain a list of braid words S
(1)
2 , . . . , S

(l)
2 . Then consider

all products of the type:

(6) S
(i)
1 ·

(
S

(j)
2

)−1
, where 1 ≤ i ≤ k, 1 ≤ j ≤ l.

Braid-minimize the length and find a pair S
(i)
1 , S

(j)
2 that gives a prod-

uct of minimal length.
Most of the time these manipulations produce a pair of signatures

with cloaking elements v2 removed, because a proper removal of v2

(that comes from flipping the power of a critical letter) in S1 and in
S2 results in full cancellation of w′ in the product (6).

(2) We remove cloaking elements v1 from S1 and S2 in a similar fashion.
We find all critical letters, flip powers, consider all products of the

type
(
S

(i)
1

)−1
· S(j)

2 , and choose the pair that gives the minimal

length of the product (under assumption that a big cancellation in
that product is a result of a proper removal of cloaking elements v1).

(3) We remove the middle cloaking element from each signature S1 and
S2 separately. As above, we find all critical letters in the signa-
ture, flip powers, minimize the result, and choose a word of minimal
length.
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The procedure outlined above works specifically for cloaking elements de-
scribed in Proposition 2.1. To remove cloaking elements given in Proposition
2.3, we flip the powers of critical letters as follows: x±1

i → x∓3
i .

8.2. Solving a system of conjugacy equations in Bn with errors. As
described above, a proper removal of cloaking elements leads to the system
of conjugacy equations (4). Unfortunately, our uncloaking procedure occa-
sionally fails to produce an element w−1E(H(mi))w

′, which gives a system
(4) that has no solutions. This situation can be countered by generating a
new collection of signatures and running the process again hoping that the
system (4) has no errors.

Instead, we devised a heuristic algorithm to solve a system of conjugacy
equations in Bn:  v1 = x−1u1x,

. . .
vk = x−1ukx,

with a few errors, i.e., a system where a few (one or two) equations do not
hold.

The algorithm starts with two tuples of braids v = (v1, . . . , vk) and
u = (u1, . . . , uk) and then enumerates conjugates of these tuples trying to
minimize the total length. The algorithm runs until it finds an element con-
jugate to both v and u. On each iteration the algorithm picks an unchecked
tuple v′ = (v′1, . . . , v

′
k) conjugate to v of the least total length and conjugates

it by each generator xi to produce a tuple

x−1
i v′xi = (x−1

i v′1xi, . . . , x
−1
i v′kxi),

with each entry being braid-minimized. If the tuple is new, we save it as
a new unchecked tuple conjugate to v. We process tuples conjugate to u
in the same fashion. The algorithm was allowed to make sixty iterations to
recover a pair (x, x′).

8.2.1. Reducing the rank. If at any iteration we find out that a tuple v′ (or
u′) does not involve one braid generator, then we appropriately conjugate
v′ to obtain a tuple from Bn−1. From that point on we conjugate tuples by
generators x1, . . . , xn−2 only. This improves running time of the algorithm.
In all our experiments, we observed that both tuples were conjugated to
tuples of braid words on generators x1, x2, x3, x4 (a consequence of Remark
4.3), that improved the running time of the attack significantly (by about a
factor of two).

8.2.2. Fast checks to find errors in a system. To identify errors in the sys-
tem of the conjugacy equations, we used fast checks described in Section 3,
namely abelianization and characteristic polynomials of non-colored Burau
matrices. It turned out that this approach worked for all experiments we
generated.
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This requires some explanation. Our initial algorithm checked abelianiza-
tion only, which missed about a half of bad conjugacy equations. That is the
reason why we remove worst performing components (Section 8.2.3) and al-
low several attempts (Section 8.2.5). The reader can find these components
in the implementation. Exploiting characteristic polynomials of non-colored
Burau matrices solved the problem of erroneous equations (for randomly
generated instances). But, of course, there exist cases for which our fast
check will fail. We keep components described in Sections 8.2.3 and 8.2.5
for such cases.

8.2.3. Removing worst performing components from the system. On itera-
tions 15, 20, 25, 30 our algorithm finds the “worst performing” components
and drops it from the system. We pick a tuple of the least total length v′ and
compute the values |vi|− |v′i|, which shows our progress (length decrease) in
the ith component. The component with the least decrease is dropped from
the system.

8.2.4. Fast descend. To improve running time of the heuristic descend, on
each iteration, we conjugate the current tuple v′ = (v′1, . . . , v

′
k) with the

inverted initial segment of v′1 of length 10. This gives a significant boost to
performance and allows to significantly decrease the number of steps in the
described heuristic descend.

Also, initially, we conjugate the tuple of elements

vi = w−1E(H(mi))E(H(mi+1))−1w

with the inverted initial segment of v1 of length 250. This trick dramatically
improves performance of the descend.

8.2.5. Attempts. In rare cases when our algorithm makes too many errors
removing cloaking elements, we generate new signatures and run the process
from scratch. In our experiments, we allow 10 attempts before we accept
failure.

9. Results and further remarks on performance of the attack

In this section, we describe two experiments we performed to demonstrate
correctness of our heuristic claims. All experiments were performed on an
Intel I7-4770 based personal computer (eight logical core CPU with each
core clocked at 3.40GHz) with 16GB memory.

The first experiment shows that our heuristic indeed can identify (as
described in Section 8.1) cloaking elements in a random signature. We tested
3 sets of parameters corresponding to 128-bit, 256-bit, and 256-bit with
n = 11 security levels (see Section 6 for details). For each set of parameters
we tested originally proposed (Proposition 2.1) as well as recently proposed
(Proposition 2.3) cloaking elements. For each case we performed 100 tests
described below:

(1) Generate a random protocol instance.
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(2) Generate a random private key (w,w′).
(3) Generate a signature S = R(v1w

−1vE(H(m))w′v2) for a random
message m.

(4) Find all critical letters in S. For each critical letter, flip its power

and braid-minimize the result to get a list of braids S(1), . . . , S(k).
(5) The test is called successful if for some i1, i2, i3 we have

S(i1) = w−1vE(H(m))w′v2,

S(i2) = v1w
−1E(H(m))w′v2,

S(i3) = v1w
−1vE(H(m))w′,

i.e. if the list S(1), . . . , S(k) contains S without each cloaking element.

Table 1 shows success rate for each set of parameters. Notice that it does
not depend much on the rank of the braid group and on the length of private
keys. It is about 80% for the cloaking elements defined in Proposition 2.1 and
100% for those defined in Proposition 2.3. That means that using cloaking
elements from Proposition 2.3 makes the challenge easier.

Ultimately, the reason for failure in the first experiment is obfuscation
of braid words. Note that we used normal forms to obfuscate signatures,
which is the strongest possible way to obfuscate braids. Figure 3 gives an
example of a product of two cloaking elements modified into a braid that
has no critical letters.

Remark 9.1. It is not correct to claim that for any braid words u, v such
that u is equal to v in Bn, u crosses strands σ−1(a) and σ−1(b) if and
only if v does. Figure 3 shows that a product of two cloaking elements
x−1

1 x2
2x1 ·x1x

−2
2 x−1

1 (here τ1 = τ3 = 1) can be written as a braid x−2
1 x−2

2 x2
1x

2
2

that does not cross the first and the third strands, i.e., it does not contain
critical letters. Notice that both words have length 8.

3

2

1

3

2

1

Figure 3. Hidden cloaking elements.

128-bit 256-bit 256-bit, n = 11
Cloaking elements wx2

iw
−1 80% 77% 76%

Cloaking elements wx4
iw
−1 100% 100% 100%

Table 1. Percentage of properly identified cloaking ele-
ments v1, v, v2.

Cloaking elements given in Proposition 2.3 are much easier targets for
our attack than those given in Proposition 2.1 as they contain more critical
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letters and are easier to detect. Furthermore, it is easier to recognize bad
critical pairs (those that do not come from cloaking elements). Indeed, if a
critical letter xi does not come from a cloaking element, then replacing xi
with x−3

i results in length increase by two symbols.
Our second experiment tested success rate of the full attack. For each set

of parameters and a way to generate cloaking elements, we generated one
hundred random protocol instances with random private keys. As described
in Section 8, we first uncloaked signatures and then solved the corresponding
system of conjugacy equations. In all cases cloaking elements were correctly
removed from signatures and, hence, systems of the conjugacy equations
did not have errors. In particular, our attack used only one attempt to find
private keys. Table 2 shows average running time of the attack.

128-bit 256-bit 256-bit, n = 11
Cloaking elements wx2

iw
−1 89.94 544.82 781.38

Cloaking elements wx4
iw
−1 74.88 495.10 620.48

Table 2. Average running time (in seconds) for the full attack.

Increasing the rank of the braid group makes the algorithm slower as it
has to perform more conjugations during heuristic descend. It also takes
more time to compute Dehornoy form. On the other hand it makes the
braids more sparse (without increasing lengths of the involved braid) and
descends more straightforward.

10. Conclusion

The protocol described in [4] does not provide the claimed level of security.
It suffers from poor choice of cloaking elements. By design, cloaking elements
have very specific geometric type defined by a fixed pair of strands that
can be algorithmically recognized (critical letters) and removed. Once the
cloaking elements are removed, a heuristic length-minimization allows to
solve simultaneous conjugacy search problem and find substitutes for the
private key.

A potential way to defeat our attack is to artificially introduce many
critical letters into private braids and use many (say 30) cloaking elements
on each side instead of one. But, as we show in our analysis [12] of the
Kayawood key agreement protocol proposed in [3], that might be fruitless
especially with higher values of the rank. Also, we suggest to use short
conjugators for cloaking elements. Long conjugators make cloaking elements
more visible.
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