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Abstract

We present a new public key broadcast encryption scheme where both the ciphertext and
secret keys consist of a constant number of group elements. Our result improves upon the work
of Boneh, Gentry and Waters (Crypto ’05) as well as several recent follow-ups (TCC ’16-A,
Asiacrypt ’16) in two ways: (i) we achieve adaptive security instead of selective security,
and (ii) our construction relies on the decisional k-Linear Assumption in prime-order groups
(as opposed to q-type assumptions or subgroup decisional assumptions in composite-order
groups); our improvements come at the cost of a larger public key. Finally, we show that our
scheme achieves adaptive security in the multi-ciphertext setting with a security loss that is
independent of the number of challenge ciphertexts.

1 Introduction

Broadcast encryption schemes [FN94] allow a sender to encrypt messages to a set Γ ⊂ [n] of
authorized users such that any user in the set Γ can decrypt, and no (possibly colluding) set
of unauthorized users can learn anything about the plaintext. Two key measures of efficiency
for broadcast encryption are the size of the secret keys and the ciphertext overhead (beyond
description of the recipient set and the symmetric encryption of the message). The early
contructions of broadcast encryption schemes achieve ciphertext overhead that grows with the
number of either authorized or excluded users [NNL01, HS02, DF02, GST04].

The BGW Cryptosystem. Ideally, we would like a broadcast encryption scheme where the
size of secret keys and ciphertext overhead is independent of the number of users. This was first
achieved in the break-through work of Boneh, Gentry and Waters [BGW05], which presented
a broadcast encryption scheme in bilinear groups where both the secret keys and ciphertext
overhead consist of a constant number of group elements. In their scheme, the decryption
algorithm needs to know the public key, which is linear in the number of users.
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The BGW cryptosystem has two main limitations, which is the focus of several follow-up
works as well as our current one:

• First, the BGW scheme achieves selective security, where an adversary must declare a
target set of unauthorized users with which it will attack the scheme before even seeing the
system parameters. This restriction does not capture the power of many kinds of attackers
(for instance: an attacker might choose to corrupt a user after seeing the public parameters,
or in response to seeing secret keys for already corrupted parties), so in practice, we would
prefer to have schemes that satisfy the more general and stronger notion of adaptive security,
which does not place such restrictions on the adversary.

• Next, the BGW scheme relies on parameterized assumptions. Parameterized assumptions
(a.k.a q-type assumptions), while in some cases allowing for improvements over the state-of-
the-art, are not particularly well understood. The assumptions are often closely related to
the schemes which use them. For example, the size of the assumption often scales with the
number of oracle queries that can be made in the security reduction. Furthermore, q-type
assumptions become stronger as q grows, with the time needed to recover the discrete
logarithm and break the assumption scaling inversely with q [Che06]. As a result, it is
desirable to design systems that can be proven secure under static assumptions, like the
decisional k-Linear Assumption in prime-order bilinear groups (k-Lin).

These limitations were fixed individually by the works of [GW09] and [Wee16, CMM16a]
respectively (the latter in composite-order groups), but improving [BGW05] to achieve security
that is both adaptive and based on a static assumption has remained out of reach.

1.1 Our Results

In this paper we present the first broadcast encryption scheme with constant key and ciphertext
overhead size that simultaneously overcomes both of the limitations above. Namely, we achieve
adaptive security under a static assumption (k-Lin) in prime-order bilinear groups. Our improve-
ments come at the cost of a larger public key that is quadratic instead of linear in the total
number of users. We stress that prior to this work, it was not known how to achieve broadcast
encryption with any size public parameters, constant-sized keys and ciphertext overhead, and
even just selective security under a static assumption in prime-order groups.

As with the BGW cryptosystem and the follow-up works in [Wee16, CMM16a], the decryption
algorithm in our scheme needs to know the public key in addition to the secret key. Considering
the complications that come with managing user secret keys, which have to be distributed
individually and stored securely, we achieve a desirable public/private key size tradeoff that
makes sense particularly in applications where decryptors have access to large shared public
storage.

We give an additional broadcast encryption scheme with constant key and ciphertext overhead
size which is adaptively-secure in the multi-challenge setting under static assumptions with a tight
security reduction (where the security loss is independent of the number of challenge ciphertexts).
Tight security reductions, which have been studied previously in the context of encryption
[BBM00, HJ12] and signatures [Cor00], are desirable when fixing concrete security parameters,
since the security loss directly impacts the size of scheme elements. In the context of advanced
encryption schemes, tight constructions were only known for identity-based encryption [CW13].
In this work, we give the first tightly secure broadcast encryption scheme. Note that while our
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security loss is independent of the number of challenge ciphertexts, it remains proportional to n:
the number of users in the system. In this work, we view n as being not too large since our public
key contains O(n2) group elements, which would be impractical for very large n anyway. Thus, a
security loss of a small constant times n is much more desirable than one that is proportional to
the number of challenge ciphertexts, which could be much larger for largely deployed systems.

1.2 Related Work

Previous broadcast encryption schemes for n users that are secure in the standard model either
carry the baggage of a (n/t, t)-tradeoff in key/ciphertext size, use a non-static assumption (i.e
q-type assumption), or are only secure in the weaker, selective security setting (see Figure 1). In
fact, all known broadcast encryption schemes that are adaptively secure under a static assumption
and that use the Dual System Encryption methodology [Att14, Wee14, CGW15, AC16] fall in
the scope of the lower bound of (n/t, t) for the (ciphertext overhead, secret key) size proved
in [GKW15]. We note that we are able to bypass this lower bound by using the modified
definition of broadcast encryption proposed by [BGW05], where decryption is allowed to take
public parameters as input in addition to the secret key, as explained above.

Reference |ct| |sk| |pk| assumption security Dec

BGW05 [BGW05] O(1) O(1) O(n) q-type selective pk
GW09 [GW09] O(1) O(1) O(n) q-type adaptive pk

Wee16[Wee16], CMM16[CMM16b] O(1) O(1) O(n) composite selective pk
BW06 [BW06] O(

√
n) O(

√
n) O(

√
n) composite adaptive −

GKSW10 [GKSW10] O(
√
n) O(

√
n) O(n) 2-Lin adaptive −

Waters09 [Wat09] O(1) O(n) O(n) 2-Lin adaptive −
GKW15 [GKW15] O(n/t) O(t) O(n) k-Lin adaptive −
this work O(1) O(1) O(n2) composite adaptive pk
this work O(1) O(1) O(n2) k-Lin adaptive pk

Figure 1: Comparison amongst broadcast encryption schemes in the standard model, where n
denotes the number of users, |ct|, |sk| and |pk| respectively denote the ciphertext, secret key and
public key size (i.e the number of group elements or exponents of group elements). The last
column refers to whether or not the decryption algorithm Dec requires the public key pk as input.

Short keys and ciphertext overhead have been accomplished in other schemes by moving outside
the standard model: [GW09] gives a construction (different from the one depicted in Figure 1
which uses q-type assumptions) with adaptive security and constant key and ciphertext overhead
size, but in the random oracle model; [BWZ14] achieves adaptive security with polylogarithmic
(in the number of users) size public parameters, keys, and ciphertext overhead, but is only
proven secure in the multilinear generic group model; and [BZ14] achieves adaptive security with
linear size public parameters, constant size keys and ciphertext overhead, but relies on strong
assumptions, namely, indistinguishability obfuscation [BGI+01]. Lastly, we note that while our
constructions harness the power of computational assumptions to achieve their efficiency, the
problem of broadcast encryption has been studied in the information-theoretic realm as well
[Sv98, SSW00, GSW00, GSY99].
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1.3 Our Techniques

We give a construction in the composite-order setting which is secure under standard static
decision assumptions to illustrate the main techniques, as well as a construction using prime-order
bilinear groups which is secure under k-Lin.

Dual System Proof Methodology. We employ the dual system proof methodology [Wat09]
to achieve the adaptive security of our schemes. A dual system encryption scheme is constructed
so that an adversary cannot distinguish the distribution of normal keys (or ciphertexts) from
special “semi-functional” keys (or ciphertexts). Semi-functional keys are capable of decrypting
normal ciphertexts, but semi-functional keys cannot decrypt a semi-functional ciphertext. A
typical dual system proof consists of a hybrid where the first step is constructing the challenge
ciphertext as a semi-functional ciphertext. The hybrid then runs over each key requested by
the adversary, replacing each requested key with a semi-functional key. At the end, only semi-
functional keys are given to an adversary whose job is to break the security of a semi-functional
ciphertext. Due to the way semi-functional ciphertexts and secret keys are constructed, it is
typically easy to argue the game’s security at this point (semi-functional secret keys cannot
be used to decrypt any semi-functional ciphertexts, including the semi-functional challenge
ciphertext).

Overview of the Construction Our constructions can be understood by starting with the
Boneh-Gentry-Waters construction for broadcast encryption [BGW05], which is selectively-secure
under a (non-static) q-type assumption. BGW’s public parameters look like:

pk := (gγ , gα, gα
2
, . . . , gα

n
, hα, hα

2
, . . . , hα

n
, hα

n+2
, . . . , hα

2n
, e(g, h)α

n+1
)

where γ, α are random exponents in Zp, and g, h respectively generate prime order groups G,H,
where |G| = |H| = p, and e : G×H → GT .

The ciphertext for a subset Γ ⊆ [n] and the key for a user i ∈ [n] are given by:

ctΓ := (gs, g(γ+
∑

j∈Γ α
j)s, e(g, h)sα

n+1 ·M), ski := hα
n−i+1γ

Decryption works as follows. Note that a message M in a ciphertext is hidden by an
encapsulation key e(g, h)sα

n+1
. First, an authorized user of index i pairs hα

n−i+1
from the public

parameters with g(γ+
∑

j∈Γ α
j)s from the ciphertext to get the encapsulation key hidden by a

product of e(g, h)s(n+1−i+j) for j 6= i ∈ Γ and e(g, h)sα
n−i+1γ . The former can be removed by

performing judicious pairings with elements from pk and gs from the ciphertext, and the latter
can only by removed by computing the pairing of gs with the (authorized) user’s secret key ski.
The encapsulation key can therefore be computed and used to obtain the message M .

The q-type assumption underlying BGW’s security is enabled by the powers of α. These
powers prevent a straightforward dual-system proof of adaptive security from static assumptions.
To obtain a construction based on static assumptions, we need to remove the powers of α in the
scheme. Towards this goal, consider the substitutions:

gα
j 7→ gwj , hα

n−j+1 7→ hrj , j ∈ [n]

where w1, . . . , wn, r1, . . . , rn are chosen uniformly at random. Correctness of BGW scheme relies
on the fact that

{e(gαjs, hα
n−i+1

)}i,j∈[n],j 6=i
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lies in a set of linear size, namely

{e(gs, hα), . . . , e(gs, hα
n
), e(gs, hα

n+2
), . . . , e(gs, hα

2n
)}.

With our substitutions, the corresponding collection lies in a set

{e(gs, hwjri)}i,j∈[n],j 6=i

of size O(n2), and hence the corresponding blow-up in the size of the public key, which needs to
additionally contain {hwjri}i,j∈[n],i 6=j .

Finally, replacing the prime-order pairing group by an composite-order asymmetric bilinear
group (G,H,GT ) where |G| = |H| = N = pq, so as to use a subgroup membership assumption
instead of the q-DBDH assumption used in BGW, and replacing g 7→ gp, h 7→ hp, where gp, hp
respectively generate Gp, Hp: prime order subgroups of groups G,H, we obtain our composite-
order scheme.

Alternative Viewpoint. As seen above, we can view our construction as a modification of
the broadcast encryption scheme from [BGW05] where we improve the secret key/public key size
trade-off. An alternative way to view our construction is to start from the broadcast encryption
scheme of Waters [Wat09], which can be proven adaptively secure from static assumptions (using
the dual system proof methodology) and features constant size ciphertext overhead, but linear
size secret keys. We describe the construction using composite-order asymmetric bilinear groups
for simplicity:

pk :=
(
{gwj
p }j∈[n], e(gp, hp)

α
)

ctΓ :=
(
gsp, g

s(u+
∑

j /∈Γ wj)
p , e(gp, hp)

sα ·M
)

ski :=
(
hrip , {h

wjri
p } j∈[n],

j 6=i

, hα+uri
p

)
where s, u, α, wj , ri for i, j ∈ [n] are random exponents in ZN , and gp, hp respectively generate
Gp, Hp: prime order subgroups of groups G,H, where |G| = |H| = N = pq, and e : G×H → GT .

Decryption works as follows. Note that a message M in a ciphertext is again hidden by
an encapsulation key e(gp, hp)

sα. To get the encapsulation key e(gp, hp)
sα, decryption pairs gsp

with hα+uri
p . To get rid of the extra term e(gp, hp)

suri , it pairs g
s(u+

∑
j /∈Γ wj)

p from the ciphertext

together with hrip . Doing so, decryption also gets many cross terms of the form e(gp, hp)
s
∑

j /∈Γ wjri

which can be stripped away, pairing gsp with the appropriate h
wjri
p from the secret key. Note that

these secret key elements are all available only when i ∈ Γ and the key is therefore authorized.
To improve this construction’s linear-sized secret keys to constant-size, we pre-compute the

values {hrip , h
wjri
p }j∈[n],j 6=i and include them in the public parameters instead of the secret key.

Therefore, the secret key is reduced to the part that contains the encapsulation key α. Note that
this crucially takes advantage of our modified model of broadcast encryption where decryption is
allowed to use elements from the public key as well as the secret key.

Indeed, the main technical challenge in proving our schemes secure is to carry on the dual-
system proof when the values {hrip , h

wjri
p }j∈[n],j 6=i are public for every i ∈ [n], and only a single

group element remains private. This is in contrast to the security proof of previous dual system
schemes, such as [Wat09], where the values hrip , {h

wjri
p }j∈[n],j 6=i are known to the adversary only

for queried keys ski. We solve it by carefully switching the hrip , {h
wjri
p }j∈[n],j 6=i for each i ∈ [n]

5



one by one to semi-functional, thereby changing the distribution of the public parameters over
the hybrid through the keys. Similar techniques are also found in the selectively secure broadcast
encryption of [Wee16, CMM16a], which removed the use of q-type assumptions in [BGW05],
using the Déjà Q paradigm introduced by [CM14].

Prime-Order Groups. The scheme we just described in two ways is based on composite-order
asymmetric bilinear groups. We give the scheme in detail in Section 3 and its proof in Section 4.
For efficiency reasons [Gui13], schemes based on prime-order groups are preferable in practice.
As such, we additionally provide a translation of our composite-order scheme to the prime-order
setting in Section 5.

Our construction uses a proof paradigm that can be seen as an optimization of known
composite to prime-order translation frameworks, such as [Fre10, OT08, OT09, Lew12, CGW15,
Att15, AC16]. Roughly speaking, in these frameworks, a random group element gsp of a composite

order bilinear group G is emulated by a vector of group elements [As]1, where s ∈ Zkp, A ∈
Z(k+1)×k
p is a k-Lin matrix, and we use the bracket notation [a]i to denote the element gai for

i ∈ {1, 2, T} (for a prime order bilinear group G1 × G2 → GT ). Here, k depends on the k-Lin
assumption used, i.e: k = 1 corresponds to the Symmetric External Diffie-Hellman Assumption,
or SXDH. The decision assumption used to argue that gsp ≈ gspgsq in composite order groups is

replaced by the k-Lin assumption: [As]1 ≈ [u]1, where A ∈ Z(k+1)×k
p is a k-Lin matrix, s←R Zkp,

and u←R Zk+1
p is a uniformly random vector over Zk+1

p . Finally, each group element gwi of the
public parameters is mapped to a (k + 1)× (k + 1) matrix of group elements.

Our constructions employ an optimization that uses public parameter matrices of size only
(k + 1)× k, thereby reducing the public parameters and the ciphertext size by a factor of k + 1
(see Figure 2). This is done by replacing the information theoretic argument at the heart of the
dual system encryption methodology (used to switch secret keys to semi-functional secret keys)
with a computational argument. Similar techniques are used in [CW14, BKP14, AC16].

In [CGW15]:

wj →Wj ∈ Z(k+1)×(k+1)
p

s→ s ∈ Zkp, ri → ri ∈ Zkp
gsp → [s>A>]1, hrip → [Bri]2

g
wjs
p → [s>A>Wj ]1, h

wjri
p → [WjBri]2

In our work:

wj →Wj ∈ Z(k+1)×k
p

s→ s ∈ Zkp, ri → ri ∈ Zkp
gsp → [s>A>]1, hrip → [Bri]2

g
wjs
p → [s>A>Wj ]1, h

wjri
p → [WjBri]2

Figure 2: A,B ∈ Z(k+1)×k
p are k-Lin matrices, B ∈ Zk×kp denotes the k upper rows of B.

Tight security proof in the multi-challenge setting. The security definition of public
key encryption schemes typically involves a game where there is only one challenge ciphertext,
since this implies security of the scheme when multiple challenge ciphertexts are allowed to be
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requested via a standard hybrid argument. However, using such an argument incurs a security
loss that is proportional to the number of challenge ciphertexts. This can be problematic since
real-life attacks might be performed on many challenge ciphertexts. In particular, for widely
deployed schemes, the number of challenge ciphertexts can be as large as 220, or even 230. A
standard hybrid over the ciphertexts in the latter case results in an increase in the size of
the security parameter by 30 compared to the setting where the adversary receives only one
challenge ciphertext. For elliptic curve groups eligible to instantiate our scheme in which the
SXDH assumption is believed to hold, such an increase would translate to a 2 · 30 = 60 bit
increase in the size of each group element description. Thus, a tight security reduction allows for
shorter group element descriptions and increased efficiency. Finally, note that the number of
challenge ciphertexts can be unknown during the setup phase, which means that a conservative
estimate could assume it to be high during security parameter calculation, thereby resulting in
needlessly large group elements used in the scheme. Tight security reductions avoid this problem
by allowing the security parameter to be set in a way that is independent of the number of
challenge ciphertexts.

To obtain a tightly secure construction, we slightly modify the prime-order scheme mentioned
above, so as to allow a different proof strategy. The modification does not incur any increase in
the ciphertext size for the most efficient version of the scheme: when k = 1 and security holds
under 1-Lin a.k.a. the SXDH assumption. In general, the ciphertext size in the tightly secure
scheme increases by k − 1 group elements when security is based on k-Lin. In the tight-security
proof, we simultaneously switch all of the challenge ciphertexts to semi-functional mode using the
random self reducibility of the k-Lin assumption. Then, the high-level proof structure is similar
to that of previous scheme: we perform a hybrid argument that switches each secret key one by
one to a semi-functional version (note that the number of secret keys is upper bounded by n, so
this hybrid argument only incurs a security loss that is proportional to n, the number of users).
To switch the key sk` to semi-functional mode, we use entropy from the component [W0r`]2 in
the key sk` to obtain a new random semi-functional component (the component γ`a

⊥). Doing so
requires analysis of the entropy of W0 leaked by the public key and the challenge ciphertext(s).
When there is only one challenge ciphertext for some set of users Γ, the (non-tight) proof crucially
relies on the fact that ` /∈ Γ for the challenge Γ, as required by the security game definition and
the fact that the adversary queried sk`. For the tight reduction, we have many challenges Γi, so
we must deal with potentially more information about W0 leaked. In fact, this is not the case:
the challenge ciphertexts for all sets Γi queried to EncO do not leak more information about W0

than a single ciphertext for the set
⋃
i Γi, which would be an allowed challenge query given the

same set of user keys. This allows us to reduce to the argument for the single-ciphertext case.

1.4 Discussion

Prior to this work, it wasn’t clear what the bottleneck was in improving a broadcast encryption
scheme with constant size secret keys and ciphertext overhead based on q-type assumptions to
being based only on static assumptions. More specifically, one might ask: “What exactly is the
use of q-type assumptions in [BGW05] buying us?” Our work clarifies that the main bottleneck
is to get to linear-size public keys (and not constant-size secret keys or ciphertext overhead).
Indeed, as noted earlier, if you replace the ri, wi in the composite-order scheme of Section 3 with
powers of α (ri = αi, wi = αn−i+1), we can compress the public parameters to linear size, and
essentially recover the construction of [BGW05]. That is, the role of the q-type assumption is to
compress a quadratic number of terms to linear. This is very different from the use of q-type
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assumptions in the HIBE of [BBG05], for example, which were replaced with static assumptions
by [LW10] without a loss in asymptotic parameters.
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2 Preliminaries

2.1 Notation

We denote by x ←R X the fact that x is picked uniformly at random from a finite set X. By
“PPT”, we denote a probabilistic polynomial-time algorithm.

2.2 Bilinear Groups

We instantiate both broadcast encryption schemes using asymmetric bilinear groups. Let G be a
probabilistic polynomial time (PPT) algorithm that on input a security parameter 1λ returns an
asymmetric bilinear group description G := (N,G1, G2, GT , e), where G1, G2 and GT are cyclic
groups of order N , and e : G1 ×G2 → GT is a non-degenerate bilinear map. We require that the
group operations in G1, G2 and GT as well as the bilinear map e are computable in deterministic
polynomial time.

Composite-order groups. For the composite-order construction in Section 3, we consider
groups of order N = pq, where p, q are distinct primes of Θ(λ) bits, and G1 = G,G2 = H are
asymmetric groups. In this setting, we can write G = GpGq and H = HpHq, where Gp, Gq, Hp, Hq

are subgroups of the subscripted order. In addition, we use G∗s, H
∗
s to denote Gs \ {1}, Hs \ {1},

where s ∈ {p, q}. We will often use write gp, gq, hp, hq to denote random generators for the
subgroup Gp, Gq, Hp, Hq.

Prime-order groups. For the prime-order construction in Section 5, we consider groups of
order N = p for some prime p of Θ(λ) bits, where G1 and G2 are possibly different groups (type
1, 2 or 3 pairing). We write g1, g2 to denote random generators of G1 and G2 respectively, and
gT := e(g1, g2), which is a generator of GT . We use implicit representation of group elements: for
a ∈ Zp, define [a]s = ags ∈ Gs as the implicit representation of a in Gs, for s ∈ {1, 2, T}. Given
[a]1 and [b]2, one can efficiently compute [ab]T using the pairing e. For two matrices A ∈ Z`×mp ,

B ∈ Zm×np , define e([A]1, [B]2) := [AB]T ∈ G`×mT .

2.3 Static Composite-Order Assumptions

The security of the composite-order scheme in Section 3 is proven under three static assumptions
in composite-order asymmetric bilinear groups. We define the advantage functions referred to in
the assumptions in Figure 3.

Definition 2.1 (Composite-Order Static Decision Assumptions). We say that the Static Deci-
sion Assumptions hold relative to G if for all PPT adversaries A, the advantages AdvSD1

G,A (λ),

AdvSD2
G,A (λ), and AdvSD3

G,A (λ) are negligible functions in λ.

2.4 Matrix Diffie-Hellman Assumptions

The security of the prime-order scheme in Section 5 is proven under the Matrix Decision
Diffie-Hellman (MDDH) Assumption [EHK+13], whose definition we recall here.

Definition 2.2 (Matrix Distribution). Let k, ` ∈ N, with ` > k. We callD`,k a matrix distribution
if it outputs matrices in Z`×kp of full rank k in polynomial time. We write Dk := Dk+1,k.
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AdvSD1
G,A (λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|

where G← G(λ), D := (gp, hp), gp ←R G
∗
p, hp ←R H

∗
p

and T0 := gsp ←R Gp, T1 = gspg
s′
q ←R GpGq

AdvSD2
G,A (λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|

where G← G(λ), D := (gp, hp, g
s
pg
s′
q , h

α′
q ),

gp ←R G
∗
p, hp ←R H

∗
p , g

s
pg
s′
q ←R GpGq, h

α′
q ←R Hq

and T0 := hzp ←R Hp, T1 = hzph
z′
q ←R HpHq

AdvSD3
G,A (λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|

where G← G(λ), D := (gp, hp, g
s
pg
s′
q , h

α
ph

α′
q ),

gp ←R G
∗
p, hp ←R H

∗
p , g

s
pg
s′
q ←R GpGq, h

α
ph

α′
q ←R HpHq

and T0 := e(gp, hp)
sα, T1 = X ←R GT

Figure 3: Advantage functions

Without loss of generality, we assume the first k rows of A ←R D`,k form an invertible
matrix. The D`,k-Matrix Diffie-Hellman problem in Gs for s ∈ {1, 2, T} is to distinguish the two
distributions ([A]s, [Aw]s) and ([A]s, [u]s) where A←R D`,k, w←R Zkp and u←R Z`p.

Definition 2.3 (D`,k-Matrix Diffie-Hellman Assumption D`,k-MDDH). Let D`,k be a matrix
distribution. We say that the D`,k-Matrix Diffie-Hellman (D`,k-MDDH) Assumption holds relative
to G in Gs for s ∈ {1, 2, T} if for all PPT adversaries A,

AdvMDDH
G,D`,k,A(λ) := |Pr[A(, [A]s, [Aw]s) = 1]− Pr[A(, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over ←R G(1λ), A←R Dk,w←R Zkp,u←R Z`p.

For each k ≥ 1, [EHK+13] specifies distributions Lk, SCk, Ck (and others) over Z(k+1)×k
p

such that the corresponding Dk-MDDH assumptions are generically secure in bilinear groups
and form a hierarchy of increasingly weaker assumptions. Lk-MDDH is the well known k-Linear
Assumption k-Lin with 1-Lin = DDH.

Definition 2.4 (Uniform distribution). Let `, k ∈ N, with ` > k. We denote by U`,k the uniform
distribution over all full-rank `× k matrices over Zp. Let Uk := Uk+1,k.

Among all possible matrix distributions D`,k, the uniform matrix distribution Uk is the
hardest possible instance, so in particular k-Lin⇒ Uk-MDDH.

Lemma 2.5 (D`,k-MDDH⇒ Uk-MDDH, [EHK+13]). Let D`,k be a matrix distribution. For any
PPT adversary A, there exists an adversary B such that T(B) ≈ T(A) and AdvMDDH

G,D`,k,A(λ) =

AdvMDDH
G,Uk,B(λ).

Let Q ≥ 1. For W←R Zk×Qp ,U←R Z`×Qp , we consider the Q-fold D`,k-MDDH Assumption
in Gs for s ∈ {1, 2, T} which consists in distinguishing the distributions ([A]s, [AW]s) from
([A]s, [U]s). That is, a challenge for the Q-fold D`,k-MDDH Assumption consists of Q independent
challenges of the D`,k-MDDH Assumption (with the same A but different randomness w). In
[EHK+13] it is shown that the two problems are equivalent, where (for Q ≥ `− k) the reduction
loses a factor `− k.
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Lemma 2.6 (Random self-reducibility of D`,k-MDDH, [EHK+13]). Let `, k,Q ∈ N with ` > k.
For any PPT adversary A, there exists an adversary B such that T(B) ≈ T(A) + Q · poly(λ)
with poly(λ) independent of T(A), and

AdvQ-MDDH
G,D`,k,A (λ) ≤ (`− k) ·AdvMDDH

G,D`,k,B(λ) +
1

p− 1

where AdvQ-MDDH
G,D`,k,A (λ) := |Pr[A(G, [A]s, [AW]s) = 1]− Pr[B(G, [A]s, [U]s) = 1]| and the proba-

bility is over G←R G(1λ), A←R D`,k,W←R Zk×Qp ,U←R Z`×Qp .

2.5 Broadcast encryption

A broadcast encryption scheme consists of three randomized algorithms (Setup,Enc,Dec), along
with a fourth deterministic procedure: KeyGen.

• Setup(1λ, 1n) → (pk,msk). The setup algorithm gets as input the security parameter 1λ

and the number of users 1n. It outputs the public parameters pk and master secret key
msk.

• KeyGen(msk, i)→ ski. The key generation algorithm gets as input the master secret key
msk and an index i ∈ [n]. It (deterministically) outputs the secret key for user i: ski.

• Enc(pk,Γ,M)→ ctΓ. The encryption algorithm gets as input pk and a subset Γ ⊆ [n]. It
outputs a ciphertext ctΓ. Here, Γ is public given ctΓ.

• Dec(pk, ski, ctΓ)→M . The decryption algorithm gets as input pk, ski, and ctΓ. It outputs
a message M .

Correctness

We require that for all Γ ⊆ [n], messages M , and i ∈ [n] for which i ∈ Γ,

Pr[ctΓ ← Enc(pk,Γ,M), ski ← KeyGen(msk, i);Dec(pk, ski, ctΓ) = M ] = 1

where the probability is taken over (pk,msk)← Setup(1λ, 1n) and the coins of Enc.

Security

For an adversary A, we define the advantage function

AdvBE
A (λ) :=

∣∣∣∣ Pr
(b,pk,msk)←SetupO

[
b′ = b

∣∣∣ b′ ← AKeyGenO(·),EncO(·,·)(1λ)
]
− 1/2

∣∣∣∣
where:

• SetupO samples (pk,msk) ←R Setup(1λ, 1n) and b ←R {0, 1}, and returns pk. SetupO is
called once at the beginning of the game.

• KeyGenO(i ∈ [n]) returns KeyGen(msk, i).

• If M0 and M1 are two messages of equal length, and Γ ⊂ [n], EncO(Γ,M0,M1) returns
Enc(pk,Γ,Mb).

11



with the restriction that for all queries i ∈ [n] that A makes to KeyGenO(·) and all queries Γ ⊂ [n]
to EncO satisfy i /∈ Γ (that is, ski does not decrypt ctΓ).

Note that this definition allows the adversary to query EncO multiple times. We call this the
multi-challenge setting and say that a broadcast encryption scheme is adaptively secure in the
multi-challenge setting if for all PPT adversaries A, AdvBE

A (λ) is a negligible function in λ.
If we only consider adversaries that query EncO once, we have the standard notion of adaptive

security. Namely, we say that a broadcast encryption scheme is adaptively secure if for all PPT
adversaries A that issue only one query to Enc, AdvBE

A (λ) is a negligible function in λ.
Note that a scheme being adaptively secure implies that it is also adaptively secure in the

multi-challenge setting via a hybrid argument over the challenge ciphertexts. However, this incurs
a security loss proportional to the number of challenge ciphertexts, In Section 7, we present a
scheme with a tight reduction in the multi-challenge security proof that avoids this loss.
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3 Composite-Order Construction

Figure 4 shows our composite order construction.

Setup(1λ, 1n):

G←R G(1λ);gp ←R G
∗
p, hp ←R H

∗
p ; α, u←R ZN ; {wi, ri ←R ZN}i∈[n]

Output pk =
(
gp, g

u
p , {gwi

p }i∈[n], {hrip }i∈[n], {h
wirj
p }i6=j , e(gp, hp)α

)
and

msk =
(
hp, α, u, {ri}∈[n]

)
.

KeyGen(msk, i ∈ [n])):

Output ski = hα+uri
p ∈ Hp.

Enc(pk,Γ ⊂ [n],M ∈ GT ):

s←R ZN

C0 := gsp; C1 := g
s

(
u+

∑
j 6∈Γ

wj

)
p ; C2 := e(gp, hp)

αs ·M
Output ctΓ := (C0, C1, C2) ∈ G2

p ×GT

Dec(ctΓ, ski):

Compute D0 = e((gsp)
−1︸ ︷︷ ︸

=C−1
0

, hα+uri
p︸ ︷︷ ︸
=ski

) = e(gp, hp)
−sα+−suri

Compute D1 = e(g
s

(
u+

∑
j 6∈Γ

wj

)
p︸ ︷︷ ︸

=C1

, hrip︸︷︷︸
from pk

) = e(gp, hp)
suri+s

∑
j 6∈Γ

wjri

Compute D2 = e((gsp)
−1︸ ︷︷ ︸

=C−1
0

,
∏
j 6∈Γ

hwjri
p︸ ︷︷ ︸

from pk

) = e(gp, hp)
s
∑
j 6∈Γ

wjri

Compute and output M = C2 ·D0 ·D1 ·D2.

Figure 4: BEcomposite, an adaptively secure broadcast encryption scheme based on composite-order
bilinear groups.

4 Security Proof of the Composite-Order Construction

4.1 Hybrid definitions

Our proof will be accomplished through a standard “dual system” series of hybrids over the
challenge ciphertext and n key indices, beginning with Gamereal, the real security game, and
ending at Gamefinal, a game in which the adversary has no advantage.

These games will differ in the distribution of the challenge ciphertext, secret keys, and public
parameters. We define new semifunctional distributions of ciphertexts and secret keys in Figures 5
and 6.
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Semi-functional Ciphertext. A semi-functional ciphertext is formed as follows:

Start with a normal ctΓ = M · e(gp, hp)αs, gsp, g

s

(
u+

∑
j 6∈Γ

wj

)
p

Pick s′, u′, w′1, ..., w
′
n ←R ZN

Output ct′Γ = M · e(gp, hp)αs, gspg
s′
q , g

s

(
u+

∑
j 6∈Γ

wj

)
p g

s′

(
u′+

∑
j 6∈Γ

w′j

)
q

Figure 5: Semi-functional Ciphertext

To form semi-functional (keys, public parameters) for index t, first the normal public
parameter and key generation procedures are performed to get:
pk := (gp, g

u
p , {gwi

p }i∈[n], {hrip }i∈[n], {h
wirj
p }i 6=j , e(gp, hp)α)

skt := hα+uyt
p

Draw α′, w′1, .., w
′
n, r
′
1, ..., r

′
n ←R ZN . The remaining steps depend on the particular type

of semi-functional key / public parameters:

Type (t, 1) Semi-functional keys:
Semi-functional keys of type (t, 1) are formed as follows:

skt,1 := hα+urt
p h

u′r′t
q

Type (t, 2) Semi-functional keys:
Semifunctional keys of type (t, 2) are formed as follows:

skt,2 := hα+urt
p h

α′+u′r′t
q

Type (t, 3) Semi-functional keys:
A semi-functional key of type (t, 3) is formed as follows:
skt,3 := hα+urt

p hα
′
q

Type t public parameters:
Semi-functional public parameters of type t are formed as follows:

pkt := gp, g
u
p , {gwi

p }i∈[n], {hrip }i 6=t∈[n] ∪ {hrtp h
r′t
q }, {h

wirj
p } i 6=j

j 6=t
∪ {hwirt

p h
w′ir
′
t

q }i 6=t,
e(gp, hp)

α

Figure 6: Semi-functional Keys
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Game0

Same as Gamereal, but challenge ciphertext is semi-functional.

Game`,1
Same as Game(`−1),3, but the public parameters are semi-functional of type ` and the

key for index ` is semi-functional of type (`, 1).

Game`,2
Same as Game`,1, but the key for index ` is semi-functional of type (`, 2) (public

parameters remain semi-functional of type `).

Game`,3
Same as Game`,2, but the public parameters are normally formed and the key for index

` is semi-functional of type (`, 3).

Gamefinal
Same as Gamen,3, except the message Mb in the challenge ciphertext is blinded by an

independently random group element X ←R GT instead of e(gp, hp)
αs.

Figure 7: Hybrid Games

We use these distributions in Figure 7 to define the following hybrid games, where ` ranges
from 1 to n.

Note that Game0 is identical to Game0,3.
We first argue that no adversary can achieve non-negligible difference in advantage between

Gamereal and Game0 ≡ Game0,3. We then hybrid over each key index, arguing that no adversary
can achieve non-negligible difference in advantage between Game(`−1),3 and Game`,1, then Game`,1
and Game`,2, then Game`,2 and Game`,3 for ` = 1, ...n until arriving at Gamen,3, then finally
Gamefinal, at which the adversary has no non-negligible advantage. Namely, we show that

Gamereal ≈c Game0 ≡ Game0,3 ≈c Game1,0 ≈c Game1,1 ≡ Game1,2 ≈c Game1,3

≈c Game2,0 . . . . . . ≈c Gamen,3 ≈c Gamefinal

where ≡ denotes statistical equality, and ≈c denotes computational indistinguishability.
Figure 8 details how the constructions change throughout these games.
Notice that in the hybrid over key requests, all semi-functional keys before the hybrid index t

are unable to decrypt a semi-functional ciphertext, even if they were in the authorized set. The
key for index t becomes unable to do the same starting in Gamet,2.
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SetupO:

G = (N,G,H,GT , e)← G(1λ)

α, u←R ZN ; α′ ←R ZN ; u′ ←R ZN
{wi, ri ←R ZN}i∈[n]; {w′i, r′i ←R ZN}i∈[n]

pk = gp, g
u
p , {gwi

p }i∈[n], {hrip }i∈[n], {h
wirj
p }i 6=j , e(gp, hp)α

pkt := gp, g
u
p , {gwi

p }i, {hrip }i 6=t ∪ {hrtp h
r′t
q }, {hwirj

p } i6=j
j 6=t
∪ {hwirt

p h
w′ir
′
t

q }i 6=t, e(gp, hp)α

pkt := gp, g
u
p , {gwi

p }i, {hrip }i 6=t ∪ {hrtp h
r′t
q }, {hwirj

p } i6=j
j 6=t
∪ {hwirt

p h
w′ir
′
t

q }i 6=t, e(gp, hp)α

pk := gp, g
u
p , {gwi

p }i, {hrip }i, {h
wirj
p }i6=j , e(gp, hp)α

Output pk

EncO(Γ? ⊂ [n],M0 ∈ GT ,M1 ∈ GT ):

b←R {0, 1}, s←R ZN , s′ ←R ZN

C0 := gsp gs
′

q

C1 := g
s

(
u+

∑
j 6∈Γ?

wj

)
p g

s′

(
u′+

∑
j 6∈Γ?

w′j

)
q

C2 := e(gp, hp)
αs ·Mb

Output ctΓ? := (C0, C1, C2) ∈ G×G×GT

KeyGenO(` ∈ [n]):

For ` < t, sk` := hα+ur`
p hα

′

q

For ` = t, skt := hα+urt
p h

u′r′t
q

For ` = t, skt := hα+urt
p h

α′+u′r′t
q

For ` = t, skt := hα+urt
p hα

′

q

For ` > t and all keys in Gamereal, sk` := hα+ur`
p

Output sk`

Gamereal, Game0, Gamet,1 , Gamet,2 , Gamet,3

Figure 8: Gamereal,Game0,Gamet,1,Gamet,2(for 1 ≤ t ≤ n),Gamet,3 (for 0 ≤ t ≤ n) for the proof
of security of BEcomposite defined in Figure 4. In each procedure, the components inside a solid
(dotted, light gray, gray) frame are only present in the games marked by a solid (dotted, light
gray, gray) frame.
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4.2 Hybrid Indistinguishability

We will show that any PPT adversary A’s advantage in the real game, AdvBE
A (λ) = Advreal,

satisfies the following:

AdvBE
A (λ) = Advreal ≤ AdvSD1

G,A1
(λ) + n ·AdvSD2

G,A2
(λ) + n ·AdvSD2

G,A3
(λ) + AdvSD3

G,A4
(λ)

for adversaries A1,A2,A3,A4 whose running times are essentially the same as A’s.
We accomplish this in the following lemmas. Let Advi denote the adversary’s advantage in

Gamei. Then:

Lemma 4.1. Advreal −Adv0 = Advreal −Adv0,3 ≤ AdvSD1
G,A1

(λ)

Proof. Given gp ←R G∗p, hp ←R H∗p , and T = gsp ←R Gp or gspg
s′
q ←R GpGq, an adversary A1

could simulate the security game with A by running Setup and using KeyGen to respond to all
key requests as usual with gp, hp.

When the challenge ciphertext is requested for set Γ?, form it as follows:

ctΓ? = Mb · e(T, hp)α, T, T
u+

∑
j 6∈Γ?

wj

Notice that when T = gsp, then this is the same distribution as Gamereal.

When T = gspg
s′
q , then this is the same distribution as Game0 = Game0,3

(due to the Chinese Remainder theorem, g

u+
∑

j 6∈Γ?
wj

q is distributed identically to g

u′+
∑

j 6∈Γ?
w′j

q

where u′, w′j are chosen independently at random from ZN ).
It follows that a difference in advantage Advreal−Adv0,3 of A could be used by A1 to achieve

the same advantage in the Static Decision Problem 1, so

Advreal −Adv0,3 ≤ AdvSD1
G,A1

(λ)

Lemma 4.2. Adv(t−1),3 −Advt,1 ≤ AdvSD2
G,A2

(λ) for t = 1, ..., n.

Proof. Given gp ←R G∗p, hp ←R H∗p , gspg
s′
q ←R GpGq, h

α′
q ←R Hq, and T = hzp ←R Hp or

hzph
z′
q ←R HpHq, an adversary A2 could simulate the security game with A by first forming the

public parameters as follows:

α, u, w1, ..., wn, r1, ..., rt−1, rt+1, ..., rn ←R ZN

Output:

pk = gp, g
u
p , {gwi

p }i∈[n], {hrip }i 6=t ∪ {T}, {h
wirj
p }i 6=j,j 6=t ∪ {Twi}i 6=t, e(gp, hp)α

To form the (semi-functional) challenge ciphertext for set Γ?, compute:

ctΓ? = Mb · e(gspgs
′
q , hp)

α, (gspg
s′
q ), (gspg

s′
q )

u+
∑

j 6∈Γ?
wj
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(recall that due to the Chinese Remainder Theorem, the gupg
u
q , gwi

p g
wi
q are distributed identi-

cally to gupg
u′
q , gwi

p g
w′i
q for independently chosen u′, w′i)

To form (semi-functional of type (`, 3)) keys for indices ` less than t, compute:

sk′`,3 = hα+ur`
p (hα

′
q )

Notice that (normal) keys for indices greater than t can also be computed, since α, u, hp and
r` are known (for all ` 6= t).

For a key request for index t, compute:

skt = hαp (T )u

Notice that when T = hzp, then this is the same distribution as Game(t−1),3 (the sk for index
t and the public parameters are distributed normally), where rt = z.

When T = hzph
z′
q , then this is the same distribution as Gamet,1 (the sk for index t is semi-

functional of type (t, 1) and the public parameters are semi-functional of type t), where rt = z,
and r′t = z′.

It follows that a difference in advantage Adv(t−1),3 −Advt,1 of A for any t = 1, ..., n could be
used by A2 to achieve the same advantage in the Static Decision Problem 2 , so

Adv(t−1),3 −Advt,1 ≤ AdvSD2
G,A2

(λ) for t = 1, ..., n

Lemma 4.3. Advt,1 −Advt,2 = 0 for t = 1, ..., n.

Proof. The distributions of Gamet,1 and Gamet,2 are actually identical. To see this, note that
the only difference between Gamet,1 and Gamet,2 is that the hq component of the secret key for

index t goes from h
r′tu
′

q to h
α′+r′tu

′

q .
If index t is not queried, then there is obviously no difference in the distribution between

games.
Otherwise, if a key for index t is queried, notice that the only place w′t occurs is in the gq

component of the challenge ciphertext: g

s′(u′+
∑

j 6∈Γ?
w′j)

q (we know that w′t occurs in the sum because
this key request must be for an index t not in the authorized set Γ?). Therefore, this w′t in the
summation is enough to information-theoretically hide the value of u′ given just the challenge
ciphertext. The only other place u′ occurs is in the hq component of the secret key for index

t: h
r′tu
′

q . So, u′ is enough to make the distribution of the h
r′tu
′

q uniformly random (identical to

h
α′+r′tu

′

q for an independent random α′).
Either way, the two distributions are identical, and therefore Advt,1 − Advt,2 = 0 for

t = 1, ..., n.

Lemma 4.4. Advt,2 −Advt,3 ≤ AdvSD2
G,A3

(λ) for t = 1, ..., n.

Proof. Given gp ←R G∗p, hp ←R H∗p , gspg
s′
q ←R GpGq, h

α′
q ←R Hq, and T = hzp ←R Hp or

hzph
z′
q ←R HpHq, an adversary A3 could simulate the security game with A by first forming the

public parameters as follows:

α, u, w1, ..., wn, r1, ..., rt−1, rt+1, ..., rn ←R ZN
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Output:

pk = gp, g
u
p , {gwi

p }i∈[n], {hrip }i 6=t ∪ {T}, {h
wirj
p }i 6=j,j 6=t ∪ {Twi}i 6=t, e(gp, hp)α

To form the (semi-functional) challenge ciphertext for set Γ?, compute:

ctΓ? = Mb · e(gspgs
′
q , hp)

α, (gspg
s′
q ), (gspg

s′
q )

u+
∑

j 6∈Γ?
wj

(recall that due to the Chinese Remainder Theorem, the gupg
u
q , gwi

p g
wi
q are distributed identi-

cally to gupg
u′
q , gwi

p g
w′i
q for independently chosen u′, w′i)

To form (semi-functional of type (`, 3)) keys for indices less than t, compute:

sk′`,3 = hα+ur`
p (hα

′
q )

Notice that (normal) keys for indices greater than t can also be computed, since α, u, hp, and
r` are known (for all ` 6= t).

For a key request for index t compute:

skt = hαp (T )u(gα
′

q )

Notice that when T = hzph
z′
q , then this is the same distribution as Gamet,2 (The sk for index

t is semi-functional of type (t, 2) and the public parameters are semi-functional of type t), where
rt = z, and r′t = z′.

When T = hzp, then this is the same distribution as Gamet,3) (the public parameters are
distributed normally and the tth sk is semi-functional of type (t, 3)), where rt = z.

It follows that a difference in advantage Advt,2 − Advt,3 of A for any t = 1, ..., n could be
used by A3 to achieve the same advantage in the Static Decision Problem 2, so

Advt,2 −Advt,3 ≤ AdvSD2
G,A3

(λ) for t = 1, ..., n.

The preceding three lemmas take us all the way up to Gamen,3, where the public parameters
are normally formed, the challenge ciphertext is semi-functional, and all keys are semi-functional
of type (n, 3). We argue that any difference in advantage of A between this game and Gamefinal,
which is the same game except the message Mb is blinded by a independently random target
group element, can be used to achieve the same advantage in the Static Decision Problem 3:

Lemma 4.5. Advn,3 −Advfinal ≤ AdvSD3
G,A4

(λ)

Proof. Given gp ←R G∗p, hp ←R H∗p , gspg
s′
q ←R GpGq, h

α
ph

α′
q ←R HpHq, and T = e(gp, hp)

αs or
X ←R GT , an adversary A4 could simulate the security game with A by forming the public
parameters as follows:

u,w1, ..., wn, r1, ..., rn ←R ZN

pk = gp, g
u
p , {gwi

p }i∈[n], {hrip }i∈[n], {h
wirj
p }i 6=j , e(gp, hαphα

′
q )
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To form the (semi-functional) challenge ciphertext for set Γ?, compute:

ctΓ? = Mb · T, (gspg
s′
q ), (gspg

s′
q )

u+
∑

j 6∈Γ?
wj

To form (semi-functional of type (`, 3)) keys, compute:

sk`,3 = (hαph
α′
q )hur`p

for any ` ∈ [n] requested.
Note that if T = e(gp, hp)

αs, then this game is distributed exactly as in Gamen,3.

If T = X for a uniformly random X, then we are in Gamefinal.

It follows that a difference in advantage Advn,3−Advfinal of A could be used by A4 to achieve
the same advantage in the Static Decision Problem 3, so Advn,3 −Advfinal ≤ AdvSD3

G,A4
(λ).

Theorem 4.6. If the Static Decision Assumptions of Definition 2.1 hold, then the broadcast
encryption scheme BEcomposite defined in Figure 4 is adaptively secure.

Proof. Summing the statements of the previous lemmas gives us:

Advreal −Advfinal ≤ AdvSD1
G,A1

(λ) + n ·AdvSD2
G,A2

(λ) + n ·AdvSD2
G,A3

(λ) + AdvSD3
G,A4

(λ)

In Gamefinal the challenge message Mb is information theoretically hidden by X, so it is obvious
that no PPT adversary can achieve nonzero advantage in this game (that is, Advfinal = 0). So,
we have:

Advreal ≤ AdvSD1
G,A1

(λ) + n ·AdvSD2
G,A2

(λ) + n ·AdvSD2
G,A3

(λ) + AdvSD3
G,A4

(λ)

Our static decision assumptions state that AdvSD1
G,A1

(λ), AdvSD2
G,A2

(λ), AdvSD2
G,A3

(λ), AdvSD3
G,A4

(λ) are

negligible functions of λ (and n is a polynomial function of λ), so the advantage AdvBE
A (λ) =

Advreal is a negligible function of λ, and therefore our scheme is adaptively secure.
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5 Prime Order Construction

Our prime-order construction is detailed in Figure 9.

Setup(1λ, 1n):

G←R G(1λ);A←R Dk; k←R Zk+1
p ; {Wi ←R Z(k+1)×k

p , ri ←R Zkp}i∈[n]

Output pk :=
(

[A]1, [A
>W0]1{[A>Wi]1, [ri]2}i∈[n], [A

>k]T , {[Wjri]2}i,j∈[n],i6=j

)
and

msk :=
(
[k]2, {[W0ri]2}i∈[n]

)
.

KeyGen(msk, i ∈ [n])):

Output ski := [k + W0ri]2 ∈ G(k+1)
2 .

Enc(pk,Γ ⊂ [n],M ∈ GT ):

s←R Zkp
C0 := [s>A>]1; C1 := [s>A>(W0 +

∑
j /∈Γ?

Wj)]1; C2 := [s>A>k]T ·M

Output ctΓ := (C0, C1, C2) ∈ G2k+1
1 ×GT

Dec(ctΓ, ski): // ctΓ and ski implictly contain a description of Γ and i

Compute e([s>A>]1︸ ︷︷ ︸
=C0

, [k + W0ri]2︸ ︷︷ ︸
=ski

)/e([s>A>(W0 +
∑
j /∈Γ

Wj)]1︸ ︷︷ ︸
=C1

, [ri]1︸︷︷︸
∈pk

) = [s>A>k − s>A>
∑
j /∈Γ Wjri]T .

Multiply the previous term by e([s>A>]1︸ ︷︷ ︸
=C0

, [
∑
j /∈Γ

Wjri]2︸ ︷︷ ︸
∈pk for i∈Γ

) to get the encapsulation key [s>A>k]T and to

output the message M .

Figure 9: BEprime, an adaptively secure broadcast encryption scheme based on prime-order
bilinear groups.

6 Security Proof of the Prime-Order Construction

We now give the security proof of the scheme BEprime, presented in Figure 9.

Theorem 6.1. If the Dk-MDDH Assumption holds in G1 and G2, then the broadcast encryption
scheme BEprime defined in Figure 9 is adaptively secure (as defined in section 2.5). Namely, for
any adversary A, there exists an adversary B such that T(B) ≈ T(A) and

AdvBE
A (λ) ≤ (2n+ 1) ·AdvMDDH

G,Dk,B(λ) + 2−Ω(λ),

where n is the number of users.

We prove Theorem 6.1 via a series of games described in Figure 10 and we use Advi to denote
the advantage of A in game Gamei. Namely, we show that: Gamereal ≈c Game0 ≈c Game1 ≈c
. . . ≈c Gamen, where ≈c denotes computational indistinguishability. Gamereal is the security
game as defined in Section 2.5, and the other Gamei are defined in Figure 10. Theorem 6.1
follows from Lemma 6.2, 6.3 and 6.4 below.
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SetupO:

G←R G(1λ);A←R Dk; k←R Zk+1
p ; W0, . . . ,Wn ←R Z(k+1)×k

p ; r1, . . . , rn ←R Zkp
a⊥ ←R Uk+1,1 such that A>a⊥ = 0

Output pk :=
(

[A]1, [A
>W0]1, {[A>Wi]1, [ri]2}i∈[n], [A

>k]T , {[Wjri]2}i,j∈[n],i6=j

)
KeyGenO(` ∈ [n]):

sk` := [k + W0r`]2

If ` ≤ t, sk` := [k + W0r` + γ`a
⊥]2, with γ` ←R Zp. Otherwise, sk` := [k + W0r`]2.

EncO(Γ? ⊂ [n],M0 ∈ GT ,M1 ∈ GT ):

b←R {0, 1}; s←R Zkp; z := As; z←R Zk+1
p

C0 := [z>]1; C1 := [z>(W0 +
∑
j /∈Γ?

Wj)]1; C2 := [z>k]T ·Mb; ctΓ? := (C0, C1, C2) ∈ G2k+1
1 ×GT

Gamereal, Gamet

Figure 10: Gamereal,Gamet (for 0 ≤ t ≤ n) for the proof of security of BEprime defined in Figure 9.
Here n denotes the number of users. In each procedure, the components inside a solid frame are
only present in the games marked by a solid frame.

Lemma 6.2 (Gamereal ≈c Game0). There exists an adversary B0 such that T(B0) ≈ T(A) and

|Advreal −Adv0| ≤ AdvMDDH
G,Dk,B0

(λ).

Here, we use the MDDH assumption to switch the distribution of the challenge ciphertext.

Proof. To go from Gamereal to Game0, we switch the distribution of the vector [z]1 in the challenge
ciphertext, using the Dk-MDDH Assumption on [A]1 (see Definition 2.3).

Upon receiving a challenge (G, [A]1, [v]1) for the Dk-MDDH Assumption, B0 picks b←R {0, 1},
k ←R Zk+1

p ; W0, . . . ,Wn ←R Z(k+1)×k
p ; r1, . . . , rn ←R Zkp, sets [z]1 := [v]1, and simulates the

public parameters, the secret keys and the challenge ciphertext as defined in Figure 10. Note
that when [v]1 is a proper MDDH sample, B0 simulates Gamereal, and when [v]1 is uniformly
random over Gk+1

1 , it simulates Game0.

Lemma 6.3 (Gamet−1 ≈c Gamet). For all t ∈ [n], there exists an adversary Bt−1 such that
T(Bt−1) ≈ T(A) and

|Advt−1 −Advt| ≤ 2 ·AdvMDDH
G,Dk,Bt−1

(λ).

Here, we embed an MDDH challenge in pk and skt. More precisely, the simulator sets
rt := Bvt ∈ Zkp, where B←R Dk and vt ←R Zkp, i.e. the upper part of an MDDH challenge. The
lower part Bvt ∈ Zp is embedded in skt, if skt is queried by the adversary (it may not be the
case, in particular if t ∈ Γ?). Note that the simulator needs to know if skt is going to be queried
by the adversary when simulating pk.

Proof. Upon receiving a challenge (G, [B]2, [v]2) for the Dk-MDDH Assumption, Bt−1 simulates
A’s view as follows.
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• SetupO:
Bt−1 guesses if A is going to query skt (by picking a random β ←R {0, 1}). If so (β = 1),

W0 and Wt are implicitly defined as W0 := Ŵ0 − a⊥TB and Wt := Ŵt + a⊥TB,

where Ŵ0,Ŵt ←R Z(k+1)×k
p , and TB := BB

−1 ∈ Z1×k
p (recall that wlog., B is an

invertible matrix). Otherwise (β = 0), they are defined as W0 := Ŵ0 ←R Z(k+1)×k
p and

Wt := Ŵt ←R Z(k+1)×k
p .

Then, Bt−1 picks A ←R Dk; a⊥ ← Uk+1,1 such that A>a⊥ = 0; k ←R Zk+1
p ; Wi ←R

Z(k+1)×k
p ; vi ←R Zkp and sets [ri]2 := [Bvi]2, for i ∈ [n], i 6= t. Finally, Bt−1 embeds the

upper part of the MDDH challenge in rt by setting [rt]2 := [v]2. It outputs

pk :=
(

[A>]1, [A
>W0]1, . . . , [A

>Wt]1︸ ︷︷ ︸
=[A>Ŵt]1

, . . . , [A>Wn]1, [A
>k]T , [r1]2, . . . , [rt]2︸︷︷︸

=[v]2

, . . . , [rn]2,

{[Wirj ]2}i,j∈[n],i 6=j,i6=t, { [Wtrj ]2︸ ︷︷ ︸
=[ŴtBvi]2 if β = 0

=[ŴtBvi+a⊥Bvi]2 if β = 1

}j∈[n],j 6=t

)
.

Note that the simulated pk is identically distributed (independently of β) as the pk is
Gamet−1 and Gamet (pk is identically distributed in these two games).

• KeyGenO(` ∈ [n]):

For each query ` ∈ [n], Bt−1 picks γ` ←R Zp and outputs sk` := [k + W0r` + γ` · a⊥]2 if

` ≤ t−1, and sk` := [k+W0r`]2 if ` > t, where W0 is implicitly set to Ŵ0 if β = 0, and to

Ŵ0 − a⊥TB if β = 1. If ` = t, then, β should be 1. If this is not the case, Bt−1 aborts the
simulation, since the guess was incorrect. Otherwise, it outputs skt := [k + Ŵ0v + a⊥v]2.

Note that when [v]2 is a real MDDH challenge, i.e v = TBv, then Ŵ0v + a⊥v = W0rt,
that is, skt is distributed as in Gamet−1. When it is a uniformly random vector, i.e

v = TBv + γt , where γt ←R Zp, then Ŵ0v + a⊥v + γta
⊥ , that is, skt is distributed as

in Gamet.

• EncO(Γ? ⊂ [n],M0 ∈ GT ,M1 ∈ GT ):

Bt−1 picks b←R {0, 1}; z←R Zk+1
p ; sets C0 := [z>]1 and C2 := [z>k]T ·Mb. Then,

– If β = 0:
Then, Bt−1 sets

C1 := [z>(W0 +
∑
j /∈Γ?

Wj)]1,

where W0 = Ŵ0 and Wt = Ŵt.

– If β = 1:
If t ∈ Γ?, then in particular skt cannot be queried by A, by defintion of the security
game. Therefore, Bt−1 aborts the simulation: the guess was incorrect. Otherwise, it
sets

C1 := [z>(Ŵ0 +
∑

i/∈Γ?,i 6=t

Wi + Ŵt)]1.
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Note that Bt−1 is correctly simulating skt, since W0 + Wt = Ŵ0 − a⊥TB + Ŵt +
a⊥TB = Ŵ0 + Ŵt, i.e the extra terms cancel out. Recall that these terms must
cancel out since Bt−1 only knows Ŵ0 and Ŵt, and not TB.

Finally, Bt−1 outputs ctΓ? := (C0, C1, C2).

We have shown that when the guess β is correct: if [v]2 is an MDDH challenge, Bt−1 simulates
Gamet−1, otherwise, it simulates Gamet. The guess β is correct with probability exactly 1/2,
since β ←R {0, 1} is independent from A’s view, and independent, in particular, from A’s secret
key queries. When β is correct, if the adversary A guesses correctly b, then Bt−1 outputs 1;
otherwise, it outputs 0. When the guess β is chosen incorrectly, Bt−1 aborts the simulation and
outputs 0. We call E the event: guess β is successful, ¬E its complement. We have:

AdvMDDH
G,Dk,Bt−1

(λ) = |Pr[Bt−1(G, [B]2, [Br]2) = 1]− Pr[Bt−1(G, [B]2, [u]2) = 1]|
= Pr[E] · Pr[Bt−1(G, [B]2, [Br]2) = 1|E] + Pr[¬E] · Pr[Bt−1(G, [B]2, [Br]2) = 1|¬E]

− Pr[E] · Pr[Bt−1(G, [B]2, [u]2) = 1|E]− Pr[¬E] · Pr[Bt−1(G, [B]2, [u]2) = 1|¬E]|
≥ 1/2 · |Pr[Bt−1(G, [B]2, [Br]2) = 1|E]− Pr[Bt−1(G, [B]2, [u]2) = 1|E]|
= 1/2 · |Advt−1 −Advt|

where r ←R Zkp, u ←R Zk+1
p , and the probabilities are taken over the random coins of A and

Bt−1.

Lemma 6.4 (Gamen).
|Advn| ≤ 1/p.

Proof. Here, we argue that the component of k in span(a⊥) is masked by γ` in sk`, and it is
hidden from the pk since only A>k appears. Therefore, if z used in the challenge ciphertext is
not in the span of A, then the value [z>k]T is random and completely masks the message Mb.
We use the fact that the following two distributions are the same:

(k, {γi}`∈[n]) and (k + µ · a⊥, {γi − µ}i∈[n]),

where k ←R Zk+1
p , γ`, µ ←R Zp. Note that the extra component µ · a⊥ does not appear in

the pk since A>(k + µ · a⊥)) = A>k and it does not appear in the secret keys since k + µ ·
a⊥ + γ` · a⊥ − µ · a⊥ = k + γ` · a⊥, i.e the extra terms cancel out. The challenge ciphertext

contains C2 := [z>k + µ · z>a⊥ ]T ·Mb. If z>a⊥ 6= 0 (which happens with probability 1 − 1/p

over the choice of z ←R Zk+1
p ), then, C2 is uniformly random over GT , and A cannot guess b

with probability more than 1/2.
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7 Tightly Secure, Prime Order Construction

Figure 11 contains our tightly secure prime-order construction. It is similar to the scheme
of Figure 9 except that matrices A and B are sampled from the distribution D2k,k, and not
Dk. In fact, the scheme of Figure 9 is already tightly-secure under the SXDH assumption
(corresponding to the case k = 1). We generalize the construction here to work under the
D2k,k-MDDH Assumption for any k ∈ N and any matrix distribution D2k,k.

Setup(1λ, 1n):

G←R G(1λ);A←R D2k,k; k←R Z2k
p ; {Wi ←R Z2k×k

p , ri ←R Zkp}i∈[n]

Output pk :=
(

[A>]1, [A
>W0]1{[A>Wi]1, [ri]2}i∈[n], [A

>k]T , {[Wjri]2}i,j∈[n],i6=j

)
and

msk :=
(
[k]2, {[W0ri]2}i∈[n]

)
.

KeyGen(msk, i ∈ [n])):

Output ski := [k + W0ri]2 ∈ G2k
2 .

Enc(pk,Γ ⊂ [n],M ∈ GT ):

s←R Zkp
C0 := [s>A>]1; C1 := [s>A>(W0 +

∑
j /∈Γ?

Wj)]1; C2 := [s>A>k]T ·M

Output ctΓ := (C0, C1, C2) ∈ G3k
1 ×GT

Dec(ctΓ, ski): // ctΓ and ski implictly contain a description of Γ and i

Compute e([s>A>]1︸ ︷︷ ︸
=C0

, [k + W0ri]2︸ ︷︷ ︸
=ski

)/e([s>A>(W0 +
∑
j /∈Γ

Wj)]1︸ ︷︷ ︸
=C1

, [ri]1︸︷︷︸
∈pk

) = [s>A>k − s>A>
∑
j /∈Γ Wjri]T .

Multiply the previous term by e([s>A>]1︸ ︷︷ ︸
=C0

, [
∑
j /∈Γ

Wjri]2︸ ︷︷ ︸
∈pk for i∈Γ

) to get the encapsulation key [s>A>k]T used to

obtain the message M .

Figure 11: BEtight, a tightly, adaptively-secure broadcast encryption scheme based on prime-order
bilinear groups.

We prove the tight security of this scheme in the multichallenge setting in Section 8.
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8 Security Proof of the Tightly Secure, Prime-Order Construc-
tion

We now prove the security of the scheme BEtight, presented in Figure 11.

Theorem 8.1. If the Dk-MDDH Assumption holds in G1 and G2, then the broadcast encryption
scheme BEtight defined in Figure 11 is tightly, adaptively secure in the multi-challenge setting
(as defined in section 2.5). Namely, for any adversary A, there exists an adversary B such that
T(B) ≈ T(A) + (Qct + Qsk) · poly(λ), where Qct, Qsk denote the number of calls to EncO and
KeyGenO respectively, poly(λ) is independent of T(A), and

AdvBE
A,multiChal(λ) ≤ 2(n+ k) ·AdvMDDH

G,D2k,k,B(λ) + 2−Ω(λ),

where n is the number of users.

SetupO:

G←R G(1λ);A←R D2k,k; k←R Z2k
p ; {Wi ←R Z2k×k

p , ri ←R Zkp}i∈[n]

A⊥ ←R Uk+1,k such that A>A⊥ = 0

Output pk :=
(

[A]1, [A
>W0]1, {[A>Wi]1, [ri]2}i∈[n], [A

>k]T , {[Wjri]2}i,j∈[n],i6=j

)
KeyGenO(` ∈ [n]):

sk` := [k + W0r`]2

If ` ≤ t, sk` := [k + W0r` + A⊥u`]2, with u` ←R Zkp. Otherwise, sk` := [k + W0r`]2.

Output sk`

EncO(Γ ⊂ [n],M0 ∈ GT ,M1 ∈ GT ):

b←R {0, 1}; s←R Zkp; z := As; z←R Z2k
p

C0 := [z>]1; C1 := [z>(W0 +
∑
j /∈Γ?

Wj)]1;

C2 := [z>k]T ·Mb; C2 ←R GT

Output ctΓ? := (C0, C1, C2) ∈ G3k
1 ×GT

Gamereal, Gamet, Gamen+1

Figure 12: Gamereal,Gamet (for 0 ≤ t ≤ n), Gamen+1 for the proof of security of BEtight defined
in Figure 11. Here n denotes the number of users. In each procedure, the components inside a
solid (dotted) frame are only present in the games marked by a solid (dotted) frame.

We prove Theorem 8.1 via a series of games described in Figure 12 and we use Advi to denote
the advantage of A in game Gamei. Namely, we show that:

Gamereal ≈c Game0 ≈c Game1 ≈c . . . ≈c Gamen+1

where ≈c denotes computational indistinguishability. Gamereal is the security game as defined
in Section 2.5, and the other Gamei are defined in Figure 12. Theorem 8.1 follows from the
Lemma 8.2, 8.3, 8.4 and 8.5 below.
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Lemma 8.2 (Gamereal ≈c Game0). There exists an adversary B0 such that T(B0) ≈ T(A) +
(Qct+Qsk) ·poly(λ), where Qct, Qsk denote the number of calls to EncO and KeyGenO respectively,
poly(λ) is independent of T(A), and

|Advreal −Adv0| ≤ k ·AdvMDDH
G,D2k,k,B0

(λ) +
1

p− 1
.

Here, we use the MDDH assumption to tightly switch the distribution of all challenge
ciphertexts.

Proof. To go from Gamereal to Game0, we switch the distribution of the vector [z]1 in all challenge
ciphertexts, using the Qct-fold Dk-MDDH Assumption on [A]1 (see Definition 2.3).

We build an adversary B′0 against the Qct-fold D2k,k-MDDH Assumption, such that T(B′0) ≈
T(A) + (Qct +Qsk) · poly(λ) with poly(λ) independent of T(A), and

|Adv0 −Adv1| ≤ AdvQct-MDDH
G,D2k,k,B′0

(λ).

This implies the lemma by Lemma 2.6 (self-reducibility of D2k,k-MDDH). Upon receiving a

challenge (G, [A]1 ∈ G2k×k
1 , [H]1 := [h1|h2| . . . |hQct ]1 ∈ G2k×Qct

1 ) for the Qct-fold Dk-MDDH
Assumption, B′0 picks b ←R {0, 1}, k ←R Z2k

p ; W0, . . . ,Wn ←R Z2k×k
p ; r1, . . . , rn ←R Zkp,

thanks to which it can simulate SetupO and KeyGenO as described in Figure 12. To simu-
late EncO(Γ,M0,M1) on its i’th query, for i = 1, . . . , Qct, B′0 sets [z]1 := [hi]1, and returns
([z>]1, [z

>(W0 +
∑

j /∈Γ Wj)]1, [z
>k]T ·Mb. Note that when [H]1 is a proper MDDH sample, B′0

simulates Gamereal, and when [H]1 is uniformly random over G2k×Qct
1 , it simulates Game0.

Lemma 8.3 (Gamet−1 ≈c Gamet). For all t ∈ [n], there exists an adversary Bt−1 such that
T(Bt−1) ≈ T(A) + (Qct +Qsk) · poly(λ), with poly(λ) independent of T(A); and

|Advt−1 −Advt| ≤ 2 ·AdvMDDH
G,D2k,k,Bt−1

(λ).

Here, we embed an MDDH challenge in pk and skt. More precisely, the simulator sets
rt := Bvt ∈ Zkp, where B←R Dk and vt ←R Zkp, i.e. the upper part of an MDDH challenge. The
lower part Bvt ∈ Zp is embedded in skt, if skt is queried by the adversary (it may not be the case,
in particular if t ∈ Γ?). Note that the simulator needs to know if skt is going to be queried by
the adversary when simulating pk. The proof of this lemma is exactly as the proof of Lemma 6.3,
in Section 5. See the later for further details.

Lemma 8.4 (Gamen ≈c Gamen+1). There exists an adversary Bn such that T(Bn) ≈ T(A) +
(Qct +Qsk) · poly(λ), with poly(λ) independent of T(A); and

|Advn −Advn+1| ≤ k ·AdvMDDH
G,D2k,k,Bn(λ) +

1

p− 1
.

Here, we use the MDDH Assumption to increase the entropy in all challenge ciphertexts,
thereby hiding the underlying plaintexts. Namely, we use the fact that the vector k has some
entropy that is not revealed by pk and the queried sk, which can be used together with the
randomness of the challenge ciphertexts (the vector z←R Z2k

p ) to embed an MDDH challenge.

Proof. We use the three following facts:
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1. we can write k←R Z2k
p := k′+ A⊥u, where k′ ←R Z2k

p and u←R Zkp, without changing the

distribution of k. Note that the term A⊥u does not appear in the pk since A>(k′+A⊥u) =
A>k′, and is hidden from the queried sk` thanks to the A⊥u` components in them.

2. we write z←R Z2k
p sampled in challenge ciphertexts as z := Av + Bw, where v,w←R Zkp,

(A|B) forms a basis of Z2k
p , and B>A⊥ is invertible.

3. we write the vector u used in k′ + A⊥u as
(
B>A⊥

)−1
u′, where u′ ←R Zkp which does not

change the distribution of u.

From these three facts, we deduce we can write challenge ciphertexts as ctΓ :=
(
[z]1 := [v>A> +

w>B>]1, [z
>(W0 +

∑
j /∈Γ Wj)]1, [z

>k′]T +[w>u′]T +Mb

)
. We can argue that [

(
w

w>u′

)
]1 ≈c [w′]1 ←R

Gk+1
1 by the Uk-MDDH Assumption. More concretely, we build an adversary B′n, against the

Qct-fold Uk-MDDH Assumption, such that T(B′n) ≈ T(A) + (Qct + Qsk) · poly(λ) with poly(λ)
independent of T(A), and

|Advn −Advn+1| ≤ AdvQct-MDDH
G,Uk,B′n

(λ).

This implies the lemma by Lemma 2.5 (D2k,k-MDDH ⇒ Uk-MDDH) and Lemma 2.6 (self-
reducibility of D2k,k-MDDH).

Upon receiving a challenge (G, [U]1 ←R G
(k+1)×k
1 , [H]1 := [h1|h2| . . . |hQct ]1 ∈ G

(k+1)×Qct

1 )
for the Qct-fold Dk-MDDH Assumption, B′n picks A ←R D2k,k, b ←R {0, 1}, k′ ←R Z2k

p ;

W0, . . . ,Wn ←R Z2k×k
p ; r1, . . . , rn ←R Zkp, thanks to which it can simulate SetupO and

KeyGenO as described in Figure 12. To simulate EncO(Γ,M0,M1) on its i’th query, for
i = 1, . . . , Qct, B′n picks v ←R Zkp, B ←R Z2k×k

p and sets [z]1 := [Av]1 + [Bhi]1, and re-
turns ctΓ := ([z>]1, [z

>(W0 +
∑

j /∈Γ Wj)]1, [z
>k′]T + [hi]T +Mb. Note that when [H]1 is a proper

Uk-MDDH sample, that is, when hi :=
(

w
w>u′

)
with w,u′ ←R Zkp, B′n simulates Gamen, and when

[H]1 is uniformly random over G
(k+1)×Qct

1 , it simulates Gamen+1.

Lemma 8.5 (Gamen+1). For all A, Advn+1 = 0.

Proof. In this game, plaintexts are completely masked by uniformly random values in the
challenge ciphertexts, so nonzero advantage is impossible to achieve.
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algebraic framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147, Santa
Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

30

http://eprint.iacr.org/


[FN94] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, edi-
tor, CRYPTO’93, volume 773 of LNCS, pages 480–491, Santa Barbara, CA, USA,
August 22–26, 1994. Springer, Heidelberg, Germany.

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from composite-
order groups to prime-order groups. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 44–61, French Riviera, May 30 – June 3, 2010. Springer,
Heidelberg, Germany.

[GKSW10] Sanjam Garg, Abishek Kumarasubramanian, Amit Sahai, and Brent Waters. Building
efficient fully collusion-resilient traitor tracing and revocation schemes. In Ehab
Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10, pages
121–130, Chicago, Illinois, USA, October 4–8, 2010. ACM Press.

[GKW15] Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication complexity of
conditional disclosure of secrets and attribute-based encryption. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 485–502, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg,
Germany.

[GST04] Michael T. Goodrich, Jonathan Z. Sun, and Roberto Tamassia. Efficient tree-based
revocation in groups of low-state devices. In Matthew Franklin, editor, CRYPTO 2004,
volume 3152 of LNCS, pages 511–527, Santa Barbara, CA, USA, August 15–19, 2004.
Springer, Heidelberg, Germany.

[GSW00] Juan A. Garay, Jessica Staddon, and Avishai Wool. Long-lived broadcast encryption.
In Mihir Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 333–352, Santa
Barbara, CA, USA, August 20–24, 2000. Springer, Heidelberg, Germany.

[GSY99] Eli Gafni, Jessica Staddon, and Yiqun Lisa Yin. Efficient methods for integrating
traceability and broadcast encryption. In Michael J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 372–387, Santa Barbara, CA, USA, August 15–19, 1999.
Springer, Heidelberg, Germany.

[Gui13] Aurore Guillevic. Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In Michael J. Jacobson Jr., Michael E. Locasto, Payman
Mohassel, and Reihaneh Safavi-Naini, editors, ACNS 13, volume 7954 of LNCS,
pages 357–372, Banff, AB, Canada, June 25–28, 2013. Springer, Heidelberg, Germany.

[GW09] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems
(with short ciphertexts). In Antoine Joux, editor, EUROCRYPT 2009, volume 5479
of LNCS, pages 171–188, Cologne, Germany, April 26–30, 2009. Springer, Heidelberg,
Germany.

[HJ12] Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key encryption.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 590–607, Santa Barbara, CA, USA, August 19–23, 2012. Springer,
Heidelberg, Germany.

31



[HS02] Dani Halevy and Adi Shamir. The LSD broadcast encryption scheme. In Moti Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages 47–60, Santa Barbara, CA,
USA, August 18–22, 2002. Springer, Heidelberg, Germany.

[Lew12] Allison B. Lewko. Tools for simulating features of composite order bilinear groups
in the prime order setting. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 318–335, Cambridge, UK, April 15–
19, 2012. Springer, Heidelberg, Germany.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and
fully secure HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC 2010,
volume 5978 of LNCS, pages 455–479, Zurich, Switzerland, February 9–11, 2010.
Springer, Heidelberg, Germany.

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for
stateless receivers. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 41–62, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg,
Germany.

[OT08] Tatsuaki Okamoto and Katsuyuki Takashima. Homomorphic encryption and signa-
tures from vector decomposition. In Steven D. Galbraith and Kenneth G. Paterson,
editors, PAIRING 2008, volume 5209 of LNCS, pages 57–74, Egham, UK, Septem-
ber 1–3, 2008. Springer, Heidelberg, Germany.

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption
for inner-products. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of
LNCS, pages 214–231, Tokyo, Japan, December 6–10, 2009. Springer, Heidelberg,
Germany.

[SSW00] J.N. Staddon, D.R. Stinson, and R. Wei. Combinatorial properties of frameproof
and traceability codes. Cryptology ePrint Archive, Report 2000/004, 2000. http:

//eprint.iacr.org/2000/004.

[Sv98] Douglas R. Stinson and Tran van Trung. Some new results on key distribution
patterns and broadcast encryption. Designs, Codes and Cryptography, 14(3):261–279,
1998.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 619–636, Santa Barbara, CA, USA, August 16–20, 2009. Springer, Heidelberg,
Germany.

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In Yehuda Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 616–637, San Diego, CA, USA,
February 24–26, 2014. Springer, Heidelberg, Germany.
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