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Abstract. At Asiacrypt 2014, Sun et al. proposed a MILP model [20] to
search for differential characteristics of bit-oriented block ciphers. In this
paper, we improve this model to search for differential characteristics of
GIFT [2], a new lightweight block cipher proposed at CHES 2017. GIFT
has two versions, namely GIFT-64 and GIFT-128. For GIFT-64, we find
the best 12-round differential characteristic and a number of iterative
4-round differential characteristics with our MILP-based model. We give
a key-recovery attack on 19-round GIFT-64. For GIFT-128, we find a
18-round differential characteristic and give the first attack on 22-round
GIFT-128.

Keywords: GIFT, Differential Cryptanalysis, Lightweight Block Ci-
pher, MILP

1 Introduction

In recent years, research on lightweight block ciphers has received a lot of at-
tentions. Lightweight block ciphers are widely used in Internet of things and
wireless communication because their structures are simple and they can be run
in low-power environment. Many lightweight block ciphers such as PRESENT
[5], CLEFIA [17], LED [10], PRINCE [6], SIMON and SPECK [3] have been pub-
lished in last decades. GIFT [2] is a new lightweight block cipher proposed by
Banik et al. at CHES 2017, which is designed to celebrate 10 years of PRESENT.
GIFT has an SPN structure which is similar to PRESENT. It has two versions,
namely GIFT-64 and GIFT-128, whose block sizes are 64 and 128, and the round
numbers are 28 and 40 respectively.

Many classical cryptanalysis methods could be converted to mathematical
optimization problems which aims to achieve the minimal or maximal value of

* This paper is a corrected version of CT-RSA 2019. We would like to thank Siang
Meng Sim for pointing out the error in the attack on 23-round GIFT-128 in the
original paper at CT-RSA 2019 [22].
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an objective function under certain constraints. Mixed-integer Linear Program-
ming (MILP) is the most widely studied technique to solve these optimization
problems. One of the most successful applications of MILP is to search for d-
ifferential and linear trails. Mouha et al. first applied MILP method to count
active S-boxes of word-based block ciphers [12]. Then, at Asiacrypt 2014, Sun et
al. extended this technique to search for differential and linear trails [20], whose
main idea is to derive some linear inequalities through the H-Representation of
the convex hull of all differential patterns and linear bias of S-box. Xiang et al.
[21] introduced a MILP model to search for integral distinguisher, Sasaki et al.
[16] and Cui et al. [7] gave the MILP-based impossible differential search mod-
el independently. There are many MILP-based tools proposed already, such as
MILP-based differential/linear search model for ARX ciphers [8], MILP-based
conditional cube attacks [I1] on Keccak [4], etc.

Our Contributions

The designers of GIFT provided many analysis result about GIFT in [2]. They
use MILP to compute the lower bounds for the number of active S-boxes in
differential cryptanalysis firstly. Then they presented round-reduced differential
probabilities. For GIFT-64, they provided a 9-round differential characteristic
with probability of 27444® and they expected that the differential probability
of 13-round GIFT-64 will be lower than 2763, For GIFT-128, they provided a
9-round differential probability of 2747 and they expected that the differential
probability of 26-round GIFT-128 will be lower than 27'27. The designers did
not present actual attack on GIFT in [2].

In this paper, we generalize an efficient two-stage MILP-based model inspired
by Sun et al.’s two-stage model [I8]. Our model includes two interactive sub-
models, denoted as outer-MILP and inner-MILP part. The outer-MILP part
obtains the minimal active S-boxes, namely, the truncated differential. Then
the inner-MILP part produces the differential characteristic with maximal prob-
ability, the differential characteristic should match the truncated differential.
With our two-stage model, we find some 12-round differential characteristics of
GIFT-64, some of the differential characteristics are iterative. Moreover, using
a 12-round differential characteristic with probability of 2769, we give an attack
on 19-round reduced GIFT-64 (out of 28 full rounds) with time complexity 2112,
memory complexity 2%° and data complexity 263.

In addition, we also improved our search model to find differential charac-
teristics of GIFT-128. Firstly, the algorithm solves a sub-MILP-model to obtain
an acceptable differential characteristic with small number of rounds. The out-
put difference of a sub-MILP-model should be served as input difference of the
following sub-MILP-model. The sub-MILP-model is iterated until the proba-
bility of the whole differential characteristic is higher than the given bound.
Using our algorithm, we find some new differential characteristics, including a
new 18-round differential characteristic with probability 27107, We give the first
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attack on 22—roundE] GIFT-128 (out of 40 full rounds) with the 18-round dif-
ferential characteristic. All of the source code is uploaded to GitHub (https:
//github.com/zhuby12/MILP-basedModel).

The summary of differential analysis of GIFT is shown in Table

Table 1. Summary of cryptography analysis on GIFT

Type |Rounds|Time/Memory|Data|Source
GIFT-64 | Integral 14 |29 2% 2] [
GIFT-64 | MitM 15 20201 2% [ 2% ] 7
GIFT-64 | MitM 15 [212] 21 2% [ [14]
GIFT-64 |Differential] 19 [2™2] 250 2% | Ours
GIFT-128|Differential| 22 [2™*] 255 [2™*] Ours

2 Preliminaries

2.1 Description of GIFT

GIFT has an SPN structure which is similar to PRESENT. It has two versions,
namely GIFT-64 and GIFT-128, whose block sizes are 64 and 128 and round
numbers are 28 and 40 respectively. Both versions have a key length of 128 bits.

Each round of GIFT consists of three steps: SubCells, PermBits and Ad-
dRoundKey. The round function of GIFT-64 is shown in Figure [I} Similarly,
GIFT-128 adopts thirty-two 4-bit S-boxes for each round.

SubCells Both versions of GIFT use the same invertible 4-bit S-box, which
is the only nonlinear component of the algorithm. The action of this S-box in
hexadecimal notation is given in Table

Table 2. Sbox of GIFT

r 0123456789abcdef
GS(z)1la4c6£f392db7508e

PermBits The bit permutation used in GIFT-64 and GIFT-128 are given in
Table [3

* The attack on 23-round GIFT-128 in our original paper at CT-RSA 2019 [27] is
wrong. With the 18-round differential characteristic, we could only get a 22-round
key-recovery attack.
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Fig. 1. Two rounds of GIFT-64

Table 3. Specifications of GIFT Bit Permutation

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pss(i)| 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Pss(i)| 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7
1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Pss(i) | 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11
1 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Psa(i) |12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Piog(i)| 0 33 66 99 96 1 34 67 64 97 2 35 32 65 98 3
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Piog(i)| 4 37 70 103100 5 38 71 68 101 6 39 36 69 102 7
1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Piog(i)| 8 41 74 107104 9 42 75 72 105 10 43 40 73 106 11
1 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Piog(i)| 12 45 78 111108 13 46 79 76 109 14 47 44 77 110 15
1 64 65 66 67 68 69 70 71 T2 73 74 75 76 7T T8 79
Piog(i)| 16 49 82 115112 17 50 83 80 113 18 51 48 81 114 19
1 80 81 82 83 84 85 8 87 88 &89 90 91 92 93 94 95
Pi2g(i)| 20 53 86 119 116 21 54 87 84 117 22 55 52 85 118 23
1 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
Piog(i)[24 57 90 123120 25 58 91 88 121 26 59 56 89 122 27
1 (112113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
Pog(4)[28 61 94 127124 29 62 95 92 125 30 63 60 93 126 31

GIFT-64

GIFT-128
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AddRoundKey The round key RK is extracted from the key state. A round
key is first extracted from the key state before the key state update.

For GIFT-64, two 16-bit words of the key state are extracted as the round key
RK =UJ|V.Uand V are XORed to by;+1 and by; of the cipher state respectively.
b; represents the i-th bit of the cipher state. u; and v; represent the i-th bit of
U and V.

U+ ]{11, V « ko

bajy1 < bait1 ® uy, ba; by ®v;, Vi € {0,---,15}

For GIFT-128, four 16-bit words of the key state are extracted as the round
key RK = U||V. U and V are XORed to by; 2 and bg;11 of the cipher state
respectively.

U + k5|\l<;4,V < k‘lHkio
baito < baiyo © Ui, bagp1 < baiyr vy, Vi € {0,---, 31}

The key state for two versions are updated as follows,
kr||kol] - - |[K1]|Ko < K1 >> 2[ko >> 12]] - - - [|ka] k2
Round Constants For both versions of GIFT, a single bit ”1” and a 6-bit
constant C' = {cs, ¢4, c3, Ca, ¢1, co } are XORed into the cipher state at bit position
n-1,23,19,15,11,7,3 respectively in each round. For GIFT-64, n-1 is 63 and for

GIFT-128, n-1 is 127. {c5, ¢4, c3,¢2,c1,¢o} are initialized to ”0”, and they are
updated as follow:

(655 C4, 63762761700) <~ (047 ¢3,C2,C1,Cp,Cs Dcy D 1)

2.2 Notations

K/ The j-th bit of the i-th round key

AP The differential in the plaintext

AXE The differential in the output of the i-th round’s Shox

AXp The differential in the output of the ¢-th round’s Permutation
AXE The differential in the output of the i-th round’s AddKey
AX%,P,K AXY or AXE or AX}(

AXG pim} The m-th bit of AXY p x

AXg’P’K{ml-mt} The (m¢-m;+1) bits totally from the my-th bit to the my-th bit

of AX.%’,P,K

3 Related Works

3.1 Mouha et al.’s Framework for Word-Oriented Block Ciphers

Mouha et al. [12] introduced MILP model to count the number of differentially
active S-boxes for word-oriented block ciphers.
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Definition 1. Consider a differential characteristic state A consisting of n bytes
A= (Ay, Ay,...,An_1). Then, the difference vector x = (xg,21,...,Tn_1) COT-
responding to A is defined as

xi{o ifA; =0, W

1 otherwise.

Based on Moubha et al. translated the XOR operation and the linear
transformation to linear inequalities as follows:

— Equations describing the XOR operation: Suppose the input difference
vector for the XOR, operation be (mfill, x?fﬂ) and the corresponding output
difference vector be x% ,. The following constraints will make sure that when
P 22, and 20, are not all zero, then there are at least two of them are
nonzero: o o o

Lin1 + Lin2 t Tout > 2d@ (2>
d@ 2 .’E@ d@ 2 x@ d@ 2 .’E(E)But

inl’ in2?

where dg, is a dummy variable taking values in {0,1}.
— Equations describing the linear transformation: Assume linear trans-

formation L transforms the input difference vector (¥, zL,... 2L ) to the
output difference vector (y&,v%,...,yL ). Given the differential branch

number Bp. The following constraints can describe the relation between the
input and output difference vectors, they should be subject to:

2771 af + szil yl > Bpd" (3)
dt > zk dl > ykie {0,...,m—1}

where d* is a dummy variable taking values in {0,1}.

3.2 Sun et al.’s Framework for Bit-Oriented Block Ciphers

At Asiacrypt 2014, Sun et al. [20] extended Mouha et al.’s framework [12] to bit-
oriented ciphers. For bit-oriented ciphers, Mouha et al.’s descriptions of XOR
operation and linear transformation are also suitable.

Definition 2. Consider a differential characteristic state A consisting of n bit-
s A = (Ao, A1, ..., An_1). Then, the difference vector x = (xg,Z1,...,Tn—1)
corresponding to A is defined as

_ 0 ifA =0,
xi_{l ifA; = 1. @)

Based on Sun et al. translated the S-box operation to linear in-
equalities as follow:

— Equations describing the S-box operation Suppose (zq, ..., Z,-1) and
(Y0, ---,Yu—1) are the input and output bit-level differences of an w x v S-
box. A is a dummy variable taking values in {0,1} to describe whether the
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S-box is active or not. A = 1 holds if and only if zg, x1, ..., 2z, _1 are not all
zero. The following constraints should be obeyed:

A—2;>0,i€{0,...,w—1} (5)
Zw_lxi—AZO

K3

3.3 Valid Cutting-off Inequalities from the Convex Hull of S-box

The convex hull of a set @ of discrete points in R™ is the smallest convex that
contains Q. A convex hull in R™ can be described as the common solutions of a
set of finitely many linear equalities and inequalities.

Suppose p = (z,y) = (o, .-+, Tw—1,Y0, - - - s Yo—1) 18 a differential pattern of
a w X v S-box, in which z is the input differential vector and y is the output
differential vector. If we treat a differential pattern of a w x v S-box as a discrete
point in R¥T?, then we can get a set of finitely discrete points which includes
all possible differential patterns of the S-box. We can describe this definite set
with the following inequalities:

00,0T0 + ... + Q0,w-1Tw—1 + Bo,oYo + ... + Bo,v—1Yv—1 + 70 =0
(6)

Qn, 00 +...+ Up w—1Tw—1 + Bn,OyO +...+ ﬁn,vflyvfl + Tn > 0

This is called the H-Representation of a w x v S-box, in which a and 3 are
constant. With the help of SageMath [I], hundreds of linear inequalities can
be derived by the differential distribution table of a S-box. But the inequalities
is redundant in general, for example, the number of inequalities of GIFT S-
box given by SageMath is 237. Because the efficiency of the MILP optimizer is
reduced radically when the amount of linear inequalities increase, adding all of
the inequalities to the MILP model will make the model insolvable in practical
time.

In order to minimize the number of the set of inequalities, Sasaki et al.
raised a MILP-based reduction algorithm in [15] to find the optimal combination
with minimal number of linear inequalities from hundreds of inequalities in the
H-representation of the convex hull. The algorithm considers each impossible
pattern in the DDT of S-box. An impossible pattern should be excluded from
the solution space by at least one inequality. Under these constraints, we can
minimize the number of inequalities by using MILP optimizer.
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4 MILP-based Model to Search Differential
Characteristic For GIFT-64

4.1 MILP-based two-stage algorithm to search for differential
characteristic

Two-stage search strategy to find differential characteristics of block ciphers
is used in [UI3I18]. In the first step, truncated differential characteristics with
minimal active S-box will be found. Then, concrete differential characteristics
matching the truncated differential characteristic can be found in a subroutine
algorithm. In previous works, one first chose a prespecified threshold of the
number of active S-box. However, it is possible that the characteristic with the
highest probability do not have the minimal number of active S-box. In this
section, we propose Algorithm [I| to search for the best or better differential
characteristic.

Algorithm 1 MILP-based differential characteristic searching algorithm

Require: r-round block cipher; valid cutting-off inequalities from the convex hull of
the S-box; Mr is the minimal number of active S-boxes in all of the r-round dif-
ferential characteristics.

Ensure: The highest probability; differential characteristics with high probability.

1: Define M Pr = 2754 as the initial differential probability of GIFT-64.

2: In the Outer-MILP part, construct a model M describing the differential behavior
of the cipher. The target value of M is a truncated differential characteristic, which
active S-boxes number is minimum in current solution space. Define M7young = Mr
as the lower bound of the number of active S-box in M.

3: Solve the model M; using an MILP optimizer.

4: if A feasible solution 7D is found in M, save it to a file. then

5: & begin of Inner-MILP part

6: Construct a MILP model M2 describing the differential behavior of the cipher
and add the truncated differential characteristic 7D as a constraint to Mo.
The objective function of M2 is the differential characteristic with maximal
probability.

7:  Solve the model using an MILP optimizer. If a feasible solution x is found, save

z and its probability Pr to the file. If Pr > M Pr, set M Pr equal to Pr.
8: < end of Inner-MILP part
9: end if

10: Remove the truncated differential 7D from the feasible region of M;.

11: Solve M; again. If a new solution 7D is found and its active S-boxes number is
equal to Mr, save it and go to step 5. Else go to step 12.

12: If the number of active S-boxes of is more than Mr and less than Mr + 3, set
Mrpound equal to MTpouna + 1, go to step 5. If a new solution 7D is not found or
the number of active S-boxes of 7D is greater than or equal to Mr + 3, return
M Pr and the collection of solution x.

Algorithm [I]does not need the predefined threshold and could get the charac-
teristic with highest probability definitely. Algorithm [1]includes two interactive
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sub-models, denoted as outer-MILP part and inner-MILP part. The two stages
are interactive. In the outer-MILP part, the objective function is the minimal
active S-boxes. When a solution is found in the outer-MILP part, the truncated
differential that contains the information of the positions of active S-boxes will
input the inner-MILP part as constraints. In the inner-MILP part, it produces
the differential characteristic with maximal probability that matches the trun-
cated differential. Then the algorithm goes to the outer-MILP part with the
truncated differential removed from its feasible region.

In addition, the maximal probability of the derived differential characteristic
is also used to reduce the feasible region of the outer-MILP part dynamically.
In details, if a differential characteristic with larger probability could be found
in the next loops, the number of active S-boxes produced in outer-MILP part
must be lower than a certain bound. The bound is dynamically computed by
the current maximal probability. When the outer-MILP part is infeasible, the
algorithm returned.

We apply Algorithm [1] to search for differential characteristics for GIFT-64,
and get some interesting results.

4.2 Search for Differentials of GIFT-64

Algorithm [I] needs two convex hulls about the S-box in the outer-MILP part
and the inner-MILP part respectively. First, we compute the H-representation
of convex hull of differential patterns of S-box in Appendix[A] Using SageMath,
237 inequalities are produced in the H-Representation of the convex hull of
GIFT S-box, then after selecting inequalities by the method introduced in [15],
we get 21 inequalities. Second, we study the convex hull of differential patterns
with probabilities of the S-box. Sun et al. introduced the differential distribution
probability of S-box to MILP-model in [19]. Since, for GIFT S-box, there are 4
possible probabilities, i.e. 1, 271415 272 273 we need three extra bits (pg, p1, p2)
to encode the differential patterns with probability. The new differential pattern

is (w0, %1, %2, T3, Yo, Y1, Y2, Y3; Po, P1,p2) € F3 T which satisfies [Equation 7]

(po, p1,p2) = (0,0,0),if Pry[(xo, x1, 2, 23) — (Y0, y1,Y2,¥3)] =1 =27

(po, p1,p2) = (0,0,1),if Pry[(zo, 21, T2, 3) — (Yo, Y1, Y2, y3)] = 6/16 = 271415
(pOaplaPQ) (07 170)71fPrs[(‘T , L1,T2,T 3) — (yanlayQay-?')] 4/16 = 272
(Pos p1,p2) = (17070)7ifPrs[(‘r(lvwlvale) — (40, Y1, Y2, y3)] = 2/16 = 273

(7)

Then the objective function is changed to minimize (3 X po + 2 X p1 +
1.415 x po).

We implement the Algorithm [I] to search for differential characteristics for
GIFT-64. In the Outer-MILP part of the Algorithm [T} the objective function is
to minimize active S-boxes. We get the tight bound of number of active S-boxes
for 11-round and 12-round reduced GIFT-64, which are 22 and 24 respectively.
Using the Algorithm [} we find many 12-round differential characteristics. The
highest probability of 12-round differential characteristic is 27°%, the 12-round
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differential characteristic with highest probability is shown in Table[d Meanwhile
we get dozens of differential characteristics with probability 2760,

Table 4. 12-round Differential Characteristic with Probability 275°

Round Differential-1 Probability
Input  |0c00 0000 0060 0000 1
1st round {0000 0000 0000 4020 24
2nd round [0005 0000 0005 0000 278
3rd round 0000 0000 2020 0000| 2714
4th round |0050 0000 0050 0000| 2718
5th round (0000 0000 0000 2020 2724
6th round 0005 0000 0005 0000| 2728
7th round |0000 0000 2020 0000| 2734
8th round |0050 0000 0050 0000| 2738
9th round 0000 0000 0000 2020 2744
10th round|0000 0000 0005 000a| 274°
11th round|0080 0000 0000 0001| 2754
12th round|1008 0000 0002 2000| 2759

We observe that some of 12-round characteristics are iterative. As a result, we
get eight 4-round differential characteristics with probability 272° totally. These
4-round characteristics are iterative, namely, their input states are identical to
their output states. One of them is shown in Table[5] and these characteristics can
be extended to more rounds. So we get one of 12-round differential characteristics
cycled by three 4-round differential characteristics with probability 279 in Table
@ A 13-round characteristic with probability 2764 can also be generated by
adding another round at the beginning of 12-round differential characteristic.
Note that the designers of GIFT claimed that the differential probability of 13-
round GIFT-64 will be lower than 27%3. Our result does not violate the claim,
however the gap is very small.

Table 5. 4-round Differential Characteristic with Probability 272°

Round Differential-1 Probability
Input 0000 0000 0000 1010 1
1st round |0000 000a 0000 000a. 276
2nd round|0000 0000 0000 0101| 271
3rd round [000a 0000 000a 0000| 2716
4th round [0000 0000 0000 1010| 2~2°

4.3 Attack on 19-round GIFT-64

Using the 12-round differential characteristic with probability 2769 in Table @,
we could launch a key-recovery attack against 19-round GIFT-64. We choose
this differential characteristic because its active bits in the head and tail is less
than others. As shown in Table [7] we add three rounds at its beginning and
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Table 6. 12-round Differential Characteristic with Probability 27°

Round Differential Probability
Input  |0000 0000 0000 1010 1
1st round |0000 000a 0000 000a 2=6
2nd round |0000 0000 0000 0101| 271
3rd round |000a 0000 000a 0000| 2716
4th round |0000 0000 0000 1010| 272
5th round [0000 000a 0000 000a| 2726
6th round (0000 0000 0000 0101| 273
7th round |000a 0000 000a 0000| 2736
8th round |0000 0000 0000 1010 2740
9th round 0000 000a 0000 000a| 2746
10th round|0000 0000 0000 0101| 275
11th round|000a 0000 000a 0000| 276
12th round|0000 0000 0000 1010| 276

four rounds at the end of the differential characteristic. Therefore, we can attack
19-round GIFT-64. According to the key schedule, the round key used in 1-

st, 2-nd, 16-th,

17-th, 18-th and 19-th round corresponds to (ki, ko), (ks,k2),

(k7 >> 6,ke > 4), (k1 >> 8, ko), (ks >> 8,k2) and (ks >> 8,k4) in initial key
state (kv, ke, k5, ka, ks, k2, k1, ko), respectively.

Table 7. 19-round Differential Attack on GIFT-64

AP

PPV? PP PP PP VPP PRV PVP? VPP PRV PP PR PP VPP PRV 0?7 P

AXS
AXp
AX

AX§
AXE
AX3

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0707 1070 0707 1070
0000 0000 0000 1777 0000 0000 0000 0000 0000 0000 0000 17?7 0000 0000 0000 0000
0000 0000 0000 1777 0000 0000 0000 0000 0000 0000 0000 17?7 0000 0000 0000 0000

AXS
AX3,
AX3

0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

4th round input

15th round output

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

AX%G 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 7?77 0000 ?77? 0000
AXPG 0000 0000 0000 0707 0000 0000 0000 7070 0000 0000 0000 0707 0000 0000 0000 7070
AX}f 0000 0000 0000 0707 0000 0000 0000 7070 0000 0000 0000 0707 0000 0000 0000 7070
AX;7 0000 0000 0000 ??77 0000 0000 0000 ??77 0000 0000 0000 ??77 0000 0000 0000 7?77
AX}; 7000 7000 7000 7000 0700 0700 0700 0700 0070 0070 0070 0070 0007 0007 0007 0007
AX}; 7000 7000 7000 7000 0700 0700 0700 0700 0070 0070 0070 0070 0007 0007 0007 0007
AXé N O N O N O N O N O N O U O O O N O N O O N O N N S N O A N SN N g
AX1138 O N O N O N O O N O N O O Y N O N O N O S N N S O A N SN NN e
AXGE TPV V0T V0V 0V V0V V0V QX0 00X V0V VYV 0000 V0T V0V 007 207 7077
AXéQ O O o O U O O O Y O U N o O N O O U O N O A O N S N N N O S Y O N A Y AN g
AX;Q N O o O N O N O U o O N O O N N O N O N O N S S N N SN Y O S Y AN g
AXII<9 TPV VVVT VDV 0VD VXD VXV QD000 V00 0000000 V200 7002 0027 272907 27077

Data collection

Since GIFT-

P permutation

64 does not have whitening key layer at the beginning, after the
of the first round, we could build 2" structures. Each structure
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traverses the sixteen bits undetermined in AX}, i.e. the bit labeled by ”?” in
AX} of Table[7] thus it can generate 21621 = 231 pairs obeying the differential.
Therefore, 2" structures can generate 2" x 231 = 27131 pajrs.

For such a pair, it has an average probability of 2716 to meet the differential
in 4-th round in Table[7] Then, the pair encrypted with the right key will obey
the differential after 15th round with probability of 2760, While the pair with a
wrong key will obey it with a random probability of 2764, Therefore, with the
right key guess, 27731 x 2716 x 2760 — 9n=45 pairg will obey the differential after
15th round. Here we choose n = 47. So the data complexity is 247 x 216 = 263,

Round Key bit

15 7,14 113 7,12 711 7,10 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0
Ist round Ky, k1™, k1" kot ke kL Ry, Ry ke kYL R kY R kY R, Ry
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
kO 7k0 akO 7k0 7k0 akO 7k07k07k05k07k07k07k07k07k07k0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
2nd round k3”, k3", k3”, k3™, ks, k3", k3, k3, k3, k3, k3, k3, k3, k3, k3, k3
15 7,14 1,13 7,12 7211 710 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0
k2 7k2 7k2 >k2 7k2 7k2 >k27k27k27k27k27k27k27k27k2>k2
5 124 1.3 1.2 1.1 1.0 1,15 7,14 713 512 7211 7,10 1.9 1.8 1.7 1.6
16th round k77k77k77k7ak77k75k7 7k7 7k7 ak7 7k7 7k7 7k77k73k77k7

3 1.2 1.1 1.0 7,15 1,14 713 712 511 1,10 7.9 7.8 1.7 1.6 1.5 1.4
kGakﬁvaakGakG akﬁ 7k6 akG akﬁ 7k6 ak67k67k67k63k67k6

17th round K, k¥, k7, k1, k9, K%, ki, kY, Rt k1%, K%, K02, ket RO KD kY
ko®, kot ko’ ko?, kot ko®, kO, kG, kG, kG, kG, ko, kG, K3, Ko, Ko
18th round k3, k§, k3, k3, k3, k3, k3, kS, ks®, k3*, ks®, ks® k3, k%, kS, k5
ko® kat ka® ka® ko' ka® K, K5, k3, kS, k3, k2, k3, k3, k3, k3
19th round kf, k8, k3, k3, k3, k3, ks, kS, ks, ks®, k3®, ks?, kst ks®, kS, kS

15 7,14 113 7,12 7211 7,10 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0
k4 7k/4 ak4 7‘I€4 7k/4 ak4 7k4ak47k45k4’k4vk47k47k43k47k4

Table 8. Round Keys of GIFT-64

Key recovery

When processing the key recovery, the guessing key bits include: k3, k%, ki,
K9, k3, k2, k§, kS in 1st round, k32, k3%, ki, k3 in 2nd round; kS, k§, k1%, KQ
in 16th round, k3%, k1%, ki3, ki2, k3, k2, k§, kJ in 17th round, as well as all 64
key bits in 18th, 19th round. Totally, we construct 280 counters for the possible
values of the 80 key bits above.

For each of the 247131 = 278 pairs, we repeat the following key guessing
phase. The whole attack procedure is a guess and filter approach. Guess two
key bits k9, k9, then we can partially encrypt the plaintexts. As the middle
values of right pairs should obey AX2{0} =0, AXZ%{2} =0, AX2{3} =1, the
(plaintext, ciphertext) pairs can be filtered with a probability of 273. Similarly,
guessing ki, ki, i = 1,2,3 and partially encrypt, corresponding conditions in
AXZE{5,7}, AXZ{8,10,11}, AX2{13,15} can filter the pairs with 272, 273 and
272, Totally 1st round provide a filtering probability of 2710,
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Similarly, the encryption at 2-nd, 16-th, 17-th, 18-th round can filter the
pairs with probability 276, 278, 278 2748 while all 32 key bits in 19th round
need to be guessed. Thus, 272 pairs will be left for a random key, while 4 pairs
should be left for a right key.

The time complexity is 22 x 231447 x 232 = 2112 the data complexity is
and the memory complexity is 289.

263

5 Improved MILP-based Method to Find Differential for
GIFT-128

GIFT-128 adopts 128 bits state and has thirty-two 4-bit S-boxes in each round.
The variables and constrains are twice as many as GIFT-64. The designers of
GIFT [2] gives 9-round differential characteristics of GIFT-128. We test Algo-
rithm [I] on 9-round GIFT-128 and obtain the designers’ conclusion. But it costs
days to solve. In this section, we devise a segmented MILP-based method to
search for longer differential characteristics for GIFT-128.

Suppose we aim to find a r-round differential characteristic for a block ci-
pher. We first divide it as r;-round (i = 1,2, ...,t) sub-ciphers and Zi T, =T.
We choose probability thresholds for ri-round,rs-round,...,r;-round ciphers as
P, P.,,.., P, so that the probability p,, for r;-round sub-cipher should be
larger than P,,. Choose a threshold value Pyqpge¢ for r-round. If p, p,, ... p., is
larger than Pjq,4e¢, an acceptable solution is found.

As shown in Figure [2] for r;-round sub-cipher, the input state are fixed as
the output state of the differential characteristic D;_; of r;_;-round sub-cipher,
and construct the MILP model M,.,. If M, is feasible, we continue to construct
M., for riyi-round sub-cipher; else, we remove D;_; from M,,_,, and solve
it again. The search terminates until we find the differential characteristics of
ri-round,rs-round,...,r;-round sub-ciphers that could be connected to produce a
r-round differential characteristic.

Add input constrain Add input constrain
M., M, M,

W Infeasible

Fig. 2. The framework of our search algorithm

We apply this model to search for differential characteristics for GIFT-128. It
is indeed a heuristic and empirical process. For GIFT-128, it is time consuming
to solve a more than 6-round MILP model. In order to keep the efficiency, we
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choose r; < 6. P,, is chosen more flexible. According to the designers’ analysis in
[2], for 3/4/5-round GIFT-128, the numbers of minimum active S-boxes are 3,
5, and 7, respectively. The length of the sub-cipher can neither be too short nor
be too long. If the number of rounds is smaller than 2, this sub-MILP-model is
unnecessary to solve. On the other hand, if the number of rounds is bigger than
6 or 7, it costs too much time to solve the sub-model that we cannot bear. We do
not want the probability of r;-round differential characteristic of GIFT-128 to be
much smaller than the highest one. So P,, are chosen according to the minimum
active S-boxes of r;-round GIFT-128. In this section, we choose P, —3 = 2730,
P,y =274 and P,,_5 = 27° to act as the exact lower bound of differential
probability of each sub-model.

We use this model and the strategies above choosing parameters to search
for differential characteristics for GIFT-128. We list some results in Table[@l The
12-round and 14-round differential characteristics are shown in Appendix [C]

Table 9. Probabilities of Some Differential Characteristics of GIFT-128

Round Parameters for r; Probability |Source
9 — 2= 2]
12 =T =r3=74=23 275245 1 Ours
14 rir=ro=4andr3 =6 278 Ours
18 [ri=ro=rs=4andrs =6/ 271 Ours

The 18-round characteristic, shown in Table is constructed by the con-
nection of the following three 4-round differential characteristics and a 6-round
differential characteristic:

Table 10. 18-round Differential Characteristic of GIFT-128

Round Input Difference Probability
Tnput 0000 0000 7060 0000 0000 0000 0000 0000 1
1st 0000 0000 0000 0000 0000 0000 00a0 0000 2-°

2nd 0000 0010 0000 0000 0000 0000 0000 0000 2-7

3rd 0000 0000 0800 0000 0000 0000 0000 0000 2710
4th 0020 0000 0010 0000 0000 0000 0000 0000 2712
5th 0000 0000 0000 0000 4040 0000 2020 0000 2717
6th 0000 5050 0000 0000 0000 5050 0000 0000 27 2°
7th 0000 0000 0000 0000 0000 0000 0a00 0a00 2737
8th 0000 0000 0000 0011 0000 0000 00000000 2~ 4%
9th 0008 0000 0008 0000 0000 0000 0000 0000 2747
10th 0000 0000 0000 0000 2020 0000 1010 0000 2751

11th 0000 5050 0000 0000 0000 5050 0000 0000 2~ 6%

12th 0000 0000 0¢00 000 0000 0000 0000 0000 2773
13th 0000 0000 0011 0000 0000 0000 0000 0000 2777
14th 0090 0000 000 0000 0000 0000 0000 0000 2782
15th 1000 0000 0080 0000 0000 0000 0000 0000 2789
16th 0010 0000 0000 0000 0000 0000 8020 0000 2794
17th 0000 0000 8000 0020 0000 0050 0000 0020 2~ 101
18th 0000 0100 0020 0800 0014 0404 0002 0202 2109
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—roun —12
0000 0000 7060 0000 0000 0000 0000 0000) Aoround, 27, (0020 0000 0010 0000 0000 0000 0000 0000)

—roun —29
0020 0000 0010 0000 0000 0000 0000 0000) : 42 (0000 0000 0000 0011 0000 0000 0000 0000)

(
(

o —32
(0000 0000 0000 0011 0000 0000 0000 0000) =24 2" "7, (H000 0000 0200 0200 0000 0000 0000 0000)
(

—rou —36
0000 0000 0200 0200 0000 0000 0000 0000) =724 2", (660 0100 0020 0800 0014 0404 0002 0202)

With the 18-round differential characteristic, we can add three rounds at its
beginning and one round at the end to attack 22-round reduced GIFT-128. The
attack procedure is similar to
Data collection

As shown in Table there are 48 active bits in AX}, so we construct
data structure by traversing these active bits. Therefore 2™ structures can gen-
erate 2" x 248%2=1 = 2n¥95 pairs. After filtered by 88 zero bits in AX2? only
2n+95-88 — on+7 pairs left.

Key Recovery

When processing the key recovery, the guessing key bits include: in the first
round, 24 key bits, i.e. ki>~8 E2~0 k158 k3~0: in the 2nd round, 10 key bits,
ie. k3P, kit KIS KA RL2) K20 KD KD) k% K3 in the 22nd round, 20 key bits,
ie., k33 k32 kAL RO KO KD, K2, KO, kA, KL, KRS, KS, ki, k2, kD, KS, K3, k3,
ki, k35. Since k3 are involved both in the 2nd round and 22nd round, there
are 24+10+20-1=53 key bits are involved in the key recovery phase. Hence, we
construct 2°% independent counters for the possible values of the 53 key bits
above.

The whole attack procedure is a guess and filter approach for the 277 pairs:

1. In the first round, guess two key bits ki®, k1% then we can partially encrypt
the plaintexts. As the middle values of right pairs should obey AX2{127} =
0, AX2{126} =1, AX2{124} = 0, the pairs can be filtered with a probability
of 273. There are 2" pairs left.

2. Similarly, guess two key bits for each active S-box, we get filters 272,272,273,
273,973 973 274 973 972 273 274 There are 2"+4732 = 27=28 pairs left.

3. In the second round, guess two key bits for each active S-boxes, we get filters
273,273 272 273 972 There are 2728 = 274! pairs left.

4. In the 22nd round, there are 10 active S-boxes. In each active S-box, we guess
2 key bits and filtered pairs by a factor 27%4. There are 2741740 — gn—81
pairs left.

Complexity

In the data collection phase, we choose n = 66, so the data complexity is
206+48 — 9114 chosen plaintexts. Under the correct key guessing, number of the
right pairs are 266+95-109=48 — 16 For the wrong key guessing, the expected
counter is 266-81 = 2-15,

The time complexity of the first step is about 266+7+2 = 275 Similar time
complexities are cost in other steps. The whole time complexity is bounded by
the chosen plaintexts, which is 214,
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Table 11. 22-round Differential Attack on GIFT-128

AP POV NVLT VT NVVY VDD 00V VVVD 0000 00XY V2T 000 VWD 0007 VN0 0707 70707
PP VVVT TVVL 0DV VVVD 200 VVDD 70T VVVD 22T 000D VWD 0207 V9D 2777 7222
AXL 0700 0070 0007 7000 0700 0070 0007 7000 0700 0070 0007 7000 0700 0070 0007 7000
s 0?7?70 00?7 7007 7700 0770 00?7 7007 7700 0770 0077 7007 7700 0770 0077 7007 ?700
AxL POVT VYL YT N w002 72?7 7277 0000 0000 0000 0000 7YY PTT 22N 2?07
P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
AX] PLVLNVYT XXV VVYY VT 00?7 0007 727277 0000 0000 0000 0000 72?7 YYYT 200?777
K 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
AX2 0170 0077 7007 7100 0700 0070 0007 1000 0000 0000 0000 0000 0170 0077 100? 1100
s 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
AX2 7177 1777 0000 1177 0000 0000 0000 0000 7177 0000 0000 1177 0000 0000 0000 0000
P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
AX2 7177 1777 0000 1177 0000 0000 0000 0000 7177 0000 0000 1177 0000 0000 0000 0000
K 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
AX3 0010 0001 0000 0100 0000 0000 0000 0000 0010 0000 0000 0100 0000 0000 0000 0000
s 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
AX3 0000 0000 0000 0000 0000 0000 0000 0000 0111 0000 0110 0000 0000 0000 0000 0000
P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
AX% 0000 0000 0000 0000 0000 0000 0000 0000 0111 0000 0110 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

4th round input

21th round input

0000 0000 0000 0000 0000 0000 0000 0000 0111 0000 0110 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0010 0000 0000 1000 0000 0000
0000 0000 0001 0100 0000 0100 0000 0100 0000 0000 0000 0010 0000 0010 0000 0010

0000 0000 0000 0000 0000 7?7?77 0000 0000 0000 0000 ???? 0000 0000 7777 0000 0000

22
AX5 0000 0000 ?2?? 227? 0000 ?2?? 0000 7?22 0000 0000 0000 ???? 0000 ?2?? 0000 2727
Ax2? 0000 0070 0007 0070 7007 7070 2000 7070 0000 0007 7000 0007 2700 0707 0700 0707
P 0000 7000 0?00 7000 0?70 7070 00?0 70?0 0000 0?00 0070 0700 00?? 0707 000? 0707
A2 0000 0070 0007 0070 7007 7070 2000 7070 0000 0007 7000 0007 2700 0707 0700 0707
K 0000 7000 0?00 7000 0?70 7070 00?0 70?0 0000 0?00 00?0 0700 00?? 0?02 000? 0707
Round Key bit

3 15 714 713 712 711 710 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0
Ist round k5, k5™, k5°, k5~ k5™, k5", ks, ks, ks, ks, ks, ks, ks, k5, ks, ks

15 1,14 3,13 2,12 111 32,10 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0
k4 7k4 7k4 7k4 7k4 7k4 7k47k47k47k4>k4ak47k47k41k47k4
15 714 1,13 3,12 7211 310 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0
kl 7k1 7k1 7k1 7k1 7k1 7k17klaklak17k17k17k17k17k17k1

15 714 1,13 712 711 310 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0
kD 7k0 akO 7k0 7k0 akO 7k03k07k07k07k07k07k07k0ak07k0

15 714 713 7,12 7,11 710 7.9 1.8 7.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0
2nd round k77, k77, k7%, ke ke, kyo ky by ke ke ke k7 ky kg ke, ky

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
k6 7k6 7k6 7k6 7k6 7k6 7k67k67k67k67k67k67k65k67k67k6
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
k3 7k3 7k3 7k3 7k3 7k3 7k37k37k37k37k37k37k37k37k37k3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
k2 7k2 7k2 7k2 7k2 7'I€2 7k27k27k2zk2,k27k27k27k27k27k2

22nd round k7, k7, k7, k%, k2, k7, k2, k7, kg, k7, ky®, ki ki ki ket ke

11 7,10 19 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 115 ;.14 113 ;12
kG 7k6 7k67k67k67k67k6’k67k67k67k67k67k6 7k6 7k6 7k6
9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 7.0 7,15 714 7513 712 ;11 7,10
k33k37k33k37k33k37k37k3ak37k3>k3 7k3 7k3 >k3 7k3 7k3

11 10 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 115 114 713 112
k2 7k2 ak27k‘23k27k25k27k27k27k27k23k27k2 7k/2 ak2 7k‘2

Table 12. Round Keys of GIFT-128
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6 Conclusion

In this paper, first, we design a more efficient MILP-based differential search
model. Using this model, we give a 12-round differential characteristic with prob-
ability 279 and get the first 19-round key-recovery attack on GIFT-64. Second,
we improve our MILP-based model for block ciphers with large state size. With
this model, we give 18-round differential characteristic with probability 2109
and obtain the first 22-round key-recovery attack on GIFT-128.

MILP can efficiently find high-probabilistic differential characteristics when
attacking algorithms whose permutation layer will not cause diffusion. In the
future work, we can try to apply heuristic method to constrain global variables,
so as to find a higher probability differential characteristics.
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A Difference Distribution Table(DDT) of GIFT S-box

Table 13. DDT of GIFT S-b

Q
»

0123456789abcdef
016000000000000000
10000022022222002
20000044002200220
30000022020022222
40002040602000200
50020020020002224
6 0046000200200020
70020020022242000
8 0004000400040004
90202002220202200
a 0400004002200220
b 0202002222002020
c0040400020202020
d 0220400000220202
e 0400400022002200
f 0220400002020022
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B Some 4-round Iterative Differential Characteristics of
GIFT-64

Table 14. 4-round Iterative Differential Characteristics of GIFT-64

Round Input Difference Probability
Input 0005 0000 0005 0000 T
1st 0000 0000 2020 0000 276
2nd 0050 0000 00500000 2710
3rd 00000000 00002020 2716
4th 00050000 00050000 2720

Input 0000 000a 0000 000a 1
1st 0000 0000 0000 0101 24
2nd  000a 0000 000a 0000 2710
3rd 0000 000000001010 2~ 1%
4th 0000 000a 0000 000a 220

Input 0000 0020 0000 00a0 1
1st 0101 0000 0000 0000 2-4
2nd @000 0000 a000 0000 2710
3rd  0000000010100000 2714
4th 0000 00a0 0000 00a0 2720

Input 0000 0000 0101 0000 1
1st  00a0 0000 00a0 0000 2-6
2nd 10100000 00000000 2710
3rd 0000 2000 0000 a000 2716
4th 000000000101 0000 220

Input 0000 0202 0000 0000 1
1st 0000 0500 0000 0500 2—4
2nd 0202 000000000000 2~ 1°
3rd 00005000 00005000 2714
4th 000002020000 0000 2720

Tnput 0000 1010 0000 0000 1
1st 0000 0a00 0000 0¢00 2-6
2nd 00000101 00000000 2710
3rd  0a00 0000 0200 0000 2716
4th 00001010 0000 0000 220

Input 0000 0050 0000 0050 T
1st 0000 0000 0000 0202 276
2nd 0000 0005 0000 0005 2710
3rd 00000000 02020000 2716
4th 0000 0050 0000 0050 2720

Input 0500 0000 0500 0000 1
1st 2020 0000 0000 0000 276
2nd 5000 0000 50000000 2710
3rd 00002020 0000 0000 2716
4th 0500 0000 0500 0000 220
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C 12-round and 14-round Differential Characteristics of
GIFT-128

Table 15. 12-round Differential Characteristic of GIFT-128

Round Input Difference Probability
Input 0000 0000 7060 0000 0000 0000 0000 0000 1
1st 0000 0000 0000 0000 0000 0000 00a0 0000 27°
2nd 0000 0010 0000 0000 0000 0000 0000 0000 2~ 7
3rd 0000 0000 0800 0000 0000 0000 0000 0000 2710
4th 0020 0000 0010 0000 0000 0000 0000 0000 2712
5th 0000 0000 0000 0000 4040 0000 2020 0000 2717
6th 0000 5050 0000 0000 0000 5050 0000 0000 27 2°
7th 0000 0000 0¢00 000 0000 0000 0000 0000 2737
8th 0000 0000 0011 0000 0000 0000 0000 0000 2741
9th 0090 0000 0000 0000 0060 0000 0000 0000 2747
10th 1000 0000 0000 0000 0000 0000 0000 2000 2752
11th 0000 0004 0000 0002 0000 0000 8000 0000 2757
12th 0000 0000 0404 0020 0200 0010 0101 0000 2~ 62-415

Table 16. 14-round Differential Characteristic of GIFT-128

Round Input Difference Probability
Input 0000 0000 0000 0000 0000 0706 0000 0000 1
1st 0000 0000 0000 0000 0000 0a00 0000 0000 2-5
2nd 0000 0000 0000 0100 0000 0000 0000 0000 2~ 7
3rd 0000 0000 0000 0000 0008 0000 0000 0000 2~ 1°
4th 0000 0000 0000 0000 0000 2000 0000 1000 2712
5th 0000 0404 0000 0202 0000 0000 0000 0000 2717
6th 0000 0000 0505 0000 0000 0000 05050000 2~ 25
7th  00a0 00a0 0000 0000 0000 0000 0000 0000 2737
8th 1100 0000 0000 0000 0000 0000 0000 0000 2741
9th 6000 0000 0000 0000 0000 0000 c000 0000  2~47
10th 0000 0000 2000 0020 0000 0000 0000 0000 251
11th 00410000 0000 0000 0014 0000 0000 0000 2755
12th 9000 0000 0000 c000 0000 0000 30001000 2796
13th 0000 0000 0002 0000 0000 0000 8000 0088 2~ 77
14th 0000 0001 0040 0020 0000 0012 00100003 ~ 2785
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