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Abstract

Certificateless public key cryptography (CL-PKC) is designed to have suc-
cinct public key management without using certificates at the same time avoid
the key-escrow attribute in the identity-based cryptography. However, it ap-
pears difficult to construct CL-PKC schemes from standard algorithms. Secu-
rity mechanisms employing self-certified key (also known as implicit certificate)
can achieve same goals. But there still lacks rigorous security definitions for
implicit-certificate-based mechanisms and such type of schemes were not ana-
lyzed formally and often found vulnerable to attacks later.

In this work, we first unify the security notions of these two types of mech-
anisms within an extended CL-PKC formulation. We then present a general
key-pair generation algorithm for CL-PKC schemes and use it with the key
prefixing technique to construct certificateless public key signature (CL-PKS)
schemes from standard algorithms. The security of the schemes is analyzed
within the new model, and it shows that the applied technique helps defeat
known-attacks against existing constructions.

The resulting schemes could be quickly deployed based on the existing stan-
dard algorithm implementations. They are particularly useful in the Internet
of Things (IoT) to provide security services such as entity authentication, data
integrity and non-repudiation because of their low computation cost, bandwidth
consumption and storage requirement.
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1 Introduction

In a public key cryptography system, a security mechanism to unequivocally demon-
strate the relationship between the public key and the identity of the key’s owner
is indispensable. In the public key infrastructure (PKI) system, the authority is-
sues a certificate to bind a user’s identity with his public key. While the solution
is well-established and universal, the PKI system can be very complicated and faces
many challenges in practice, such as the efficiency and scalability of the system. The
identity-based cryptography (IBC) offers an attractive alternative. In an IBC system,
a user treats his identity as his public key, or more accurately everyone can derive a
user’s public key from his identity string through a pre-defined function with a set
of system parameters. Hence, in such a system, the public key authenticity problem
becomes trivial, and certificates are no longer necessary. However, the key generation
center (KGC) can generate the private key corresponding to any identity in an IBC
system. This key-escrow function sometimes causes concerns about users’ privacy.
Moreover, the compromise of the KGC resulting in leaking the master secret could
be a disastrous event.

In 2003, Al-Riyami and Paterson introduced a new paradigm: the certificateless
public key cryptography (CL-PKC) [1]. CL-PKC is designed to have succinct public
key management without certificates at the same time remove the key-escrow property
embedded in the IBC. In CL-PKC, a user has a public key, and his private key is
determined by two pieces of secrets: one secret associated with the user’s identity is
extracted from the KGC, and the other is generated by the user himself. Moreover,
one secret is not computable from the other, so the KGC cannot compute the user’s
private key. Hence, CL-PKC is key-escrow free. The approach against the public
key replacement attack in CL-PKC is not to directly prove the authenticity of a
public key with a certificate. Instead, CL-PKC guarantees that even if a malicious
user successfully replaces a target’s public key with his own choice, he still cannot
generate a valid signature or decrypt a ciphertext generated with the false public key
and the target’s identity. This effect will undoubtedly reduce the interest of launching
the attack.

CL-PKC includes Certificateless Public Key Encryption (CL-PKE) and Certifi-
cateless Public Key Signatures (CL-PKS). In this paper, we focus on signature schemes.
As shown in Table 1, there are many schemes in this category. All of the existing un-
broken CL-PKS schemes use custom signature algorithms while those using standard
algorithms, such as ECDSA or Schnorr, have been broken or is vulnerable to cer-
tain attack. In this work, we introduce several CL-PKS schemes, which use standard
signature schemes, and analyze their security.

1.1 Related Work

In the literature, there are many publications on CL-PKC either presenting concrete
schemes or researching the formal models of related security notions. A short and
incomplete list includes [1, 2, 6, 8, 18, 28, 29, 30, 27, 34, 35, 36, 37, 48, 51, 52].
In practice, many products have implemented standard cryptographic schemes. If
the CL-PKC constructions can reuse these existing infrastructures, it will certainly
help facilitate the adoption of CL-PKC-based security solutions. However, it appears
difficult to construct secure CL-PKC schemes upon standard algorithms under current
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Table 1: List of Some CL-PKS Schemes

Scheme Security status From standard alg.

AP[1] broken[31] No
CPHL[19] proof∗ No

HMSWW[30] proof∗ No
ZWXF[52] proof∗ No

ZZZ[53] proof∗ No

HRL[27] no proof∗,$ No
HCZ[29] broken[49] No
JHLC[34] proof∗ No

LXWHH[37] proof∗ No
YSCC[51] broken[34] Schnorr

PH/OMC+ECDSA[42, 14]# broken[14] ECDSA

Arazi/ECQV+ECDSA[5, 17]# attack[14] ECDSA

CL-PKS1# partial proof ECDSA

CL-PKS2# proof Enhanced ECDSA

CL-PKS3# proof Schnorr

∗ By Remark 1, these schemes do not satisfy the CL-PKS security notion in
Definition 2 in this work.

$ The scheme does not strictly follow the Al-Riyami-Paterson formulation.

# The schemes fit in with the extended CL-PKS formulation in this work.

CL-PKC formulation. For example, there are schemes such as [6, 27, 28, 29, 34, 35,
37, 48, 51] that do not require pairing, but none of the unbroken CL-PKS algorithms
is constructed upon standard algorithms such as ECDSA [32], SM2 [21].

For similar security purpose, another line of work named “self-certified keys” or
“implicit certificate” [23, 42, 5, 43, 15] had been developed before the birth of CL-
PKC. In 1991, Girault brought forth the notion of “self-certified” public key [23] and
constructed two schemes with RSA/Rabin signature and El-Gamal signature. The
schemes were used with an identification protocol and a key exchange protocol. In
1997, Petersen and Horster presented self-certified keys based on the Schnorr signa-
ture and proposed to use such keys with standard algorithms [42]. In 1998, Arazi
proposed a modified Schnorr signature to generate “certification” of keys [5]. Arazi
also described how to use the the generated “certificate” of keys with the standard-
ized algorithms. In 2000, Pintsov and Vanstone [43] proposed an “implicit certificate”
scheme, called the Optimal Mail Certificate (OMC) scheme, which is similar to the
Petersen-Horster scheme (we refer to both schemes as OMC hereafter). The OMC
scheme was combined with the Pintsov-Vanstone signature to form a partial message
recovery signature. In 2001, Brown, Gallant and Vanstone [15] described a modi-
fication of the OMC scheme, which is similar to Arazi’s key generation algorithm.
This scheme later became known as the elliptic curve Qu-Vanstone (ECQV) implicit
certificate scheme [17]. ECQV has found its applications in the Internet of Things
(IoT). For example, it becomes part of the cryptographic suite building blocks in the
ZigBee smart energy standard [54]. Brecht et al. have proposed using ECQV with
ECDSA in the vehicle to everything (V2X) applications [16].

As specified in [17], an implicit certificate is comprised of a user’s identity, the
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public key reconstruction data and some extension fields which, together with KGC’s
public key, are used to generate the user’s public key. The public key reconstruction
data is same as user’s public value in [5, 42]. Hence, an implicit certificate is a form
of representing user’s identity and self-certified key. Hereafter, we refer to both types
of mechanisms as implicit certificate for convenience.

After many years of development, there still lacks a systematic treatment of the se-
curity notions of the implicit certificate and the security mechanisms using it. In [15],
Brown et al. presented an implicit certificate security model, which however does
not fully address the impact of a malicious KGC. Moreover, a direct composition
of a sound implicit certificate with a standard mechanism such as a secure signa-
ture does not always result in a scheme to achieve the intended security properties.
For example, OMC+ECDSA is completely broken and there is an attack against
ECQV+ECDSA [14]. Hence, only a security definition of implicit certificate schemes
is inadequate, and it’s important to formulate security notions for the full implicit-
certificate-based security mechanisms and so be able to formally analyze the security
of this type of mechanisms.

It’s worth mentioning that Groves developed an elliptic curve-based certificateless
signature named ECCSI [24] “by drawing on ideas set out by Arazi.” ECCSI does not
allow a user to generate his secret. Hence it is more like an identity-based signature
(IBS) because it still maintains the key-escrow attribute.

1.2 Our Contributions

In this work, we first extend the Al-Riyami-Paterson formulation of CL-PKC and de-
fine a unified model to cover both implicit-certificate-based mechanisms and CL-PKC
schemes following Al-Riyami-Paterson’s definition. We define the security notions for
both signature and encryption primitives. Under the new model, we can use implicit
certificate schemes to construct CL-PKC schemes and systematically analyze their
security. Second, we present a certificateless key generation algorithm (CL-KGA)
based on the Petersen-Horster scheme [42], and we formally analyze its security. The
scheme could have better performance than ECQV if point scalar pre-computation
is available. Third, we apply the key prefixing technique [39] to combine the pro-
posed CL-KGA with several standard algorithms to construct CL-PKS schemes, and
we analyze their security in our new security model. Because of the possibility of
pre-computing point scalar operation in practical implementations, the new schemes
could be more efficient than the related ones using ECQV.

1.3 Paper Organization

The paper is organized as follows. In Section 2, we redefine the formulation of CL-PKC
and security notions of signature and encryption. Then, we present a CL-KGA and
formally analyze its security in Section 3. We apply the key prefixing technique [39]
to construct CL-PKS schemes by combining the presented CL-KGA and standard
algorithms including ECDSA, Schnorr, etc. in Section 4 and analyze their security in
Section 5. The performance of the proposed schemes is compared with the related
ones in the literature and an implementation on an ARM chip is reported in Section 6.
Finally, we draw a conclusion.
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2 CL-PKC Definition

2.1 CL-PKC Formulation

In this section, we revisit the Al-Riyami-Paterson definition of CL-PKC and redefine
the formulation of CL-PKS and CL-PKE. Because this type of cryptographic scheme
shares a common key generation process (we call it CL-KGA), we define this process
first and then describe signature and encryption functions.

Given a security parameter k, a CL-KGA uses following five functions to generate
public/private keypairs. The first three functions are probabilistic and the others
are deterministic. Function CL.Setup and CL.Extract-Partial-Key are typically
executed by a KGC, which keeps Msk confidential.

• (Mpk,Msk)← CL.Setup(1k). The output is a master public/secret keypair.

• (UA, xA)← CL.Set-User-Key(Mpk, IDA). IDA ∈ {0, 1}∗ refers to an identity
string of entity A; the output is a pair of public/secret values.

• (WA, dA) ← CL.Extract-Partial-Key(Mpk, Msk, IDA, UA). The output is a
pair of partial public/private keys.

• sA ← CL.Set-Private-Key(Mpk, IDA, UA, xA, WA, dA). The output is the
private key of entity A.

• PA ← CL.Set-Public-Key(Mpk, IDA, UA, WA). The output is the claimed
public key of entity A.

The above key generation process is substantially different from the Al-Riyami-
Paterson definition [1, 2], in which, two public key values UA and WA are not ad-
dressed. We replace their CL.Set-Secret-Value by CL.Set-User-Key to make UA
“visible”. We also modify their CL.Extract-Partial-Key by specifically adding UA
as input and outputting WA. Finally, in our definition, these two values are explic-
itly inputted to CL.Set-Private-Key and CL.Set-Public-Key, and xA is excluded
from the input to CL.Set-Public-Key.

Apparently, CL.Set-User-Key can compute any value, which needs xA and is
necessary to generate PA, and include it in UA. Hence, any key generation scheme
following the Al-Riyami-Paterson definition can be covered by our definition. On the
other hand, some schemes such as the ones presented in this work achieve the same
goals of CL-PKC but cannot fit with the Al-Riyami-Paterson definition. Specifically,
the schemes presented in this work require that CL.Extract-Partial-Key makes use
of UA. In [2], Al-Riyami and Paterson elaborated a method to construct Certificate-
Based Encryption (CBE) [22] from CL-PKE. It requires to execute CL.Set-Public-
Key immediately after CL.Set-Private-Key and uses PA as part of IDA to in-
voke CL.Extract-Partial-Key. This method essentially sets UA = PA and calls
CL.Extract-Partial-Key(Mpk, Msk, IDA‖UA, ∅) with an empty variable ∅ under
our definition. We think this circumventive method, which forces inefficient construc-
tions on many occasions, is unnatural. An example of CL-KGA closely following the
Al-Riyami-Paterson formulation is given in Appendix 8.2 for comparison. It shows
that there is significant difference between the Al-Riyami-Paterson formulation and
our new one.
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By removing xA from the input to CL.Set-Public-Key, the KGC can compute
PA after executing CL.Extract-Partial-Key. This modification is important to
facilitate the security definitions below. We note that in principle CL.Set-Public-
Key is unnecessary in the new formulation because CL.Extract-Partial-Key could
return PA instead of WA, and we keep this function so that the new formulation is
compatible with the existing work in the literature.

Once having generated the keypair, the user should be able to execute CL.Verify-
Key to check the correctness of it.

• {valid or invalid}← CL.Verify-Key(Mpk, IDA, PA, sA). The deterministic
function outputs whether (IDA, PA, sA) is valid with regard to Mpk.

In CL-PKC schemes, another value derived from the identity and the master
public key together with PA is used as the real public key. This derivation process
is typically specified in the encryption or signature verification function. Here, we
explicitly define this process as the CL.Calculate-Public-Key function. We think
this generalization could present a more distinct view of CL-PKC constructions.

• OA ← CL.Calculate-Public-Key(Mpk, IDA, PA). The deterministic function
outputs the real public key OA of entity A.

So both PA and OA are treated as the public keys of entity IDA. PA (called the
public key reconstruction data in the implicit certificate work [14]) is distributed in
some way such as through an active directory or as part of a signature or message
exchanged in a key establishment protocol, and OA is computed from Mpk, IDA,
and PA. OA is the one used as the real public key of IDA in the CL.Encrypt or
CL.Verify or a session key computation function.

If CL.Verify-Key(Mpk, IDA, PA, sA) returns valid, the keypair (OA, sA), when
used in cryptographic schemes such as encryption or signature, should satisfy the
soundness requirement of those types of mechanisms.

Now we are ready to define the CL-PKS and CL-PKE. A CL-PKS scheme is
specified by following two functions with the key generation scheme above.

• σ ←CL.Sign(Mpk, IDA, PA, sA, m). The probabilistic function signs a message
m and outputs a signature σ.

• {valid or invalid}← CL.Verify(Mpk, IDA, PA, m, σ). The deterministic func-
tion outputs whether σ is a valid signature of m with respect to (Mpk, IDA, PA).

A CL-PKE scheme is specified by following two functions together with the key
generation scheme above.

• C ← CL.Encrypt(Mpk, IDA, PA, m). The probabilistic function encrypts a
message m with (Mpk, IDA, PA) and outputs a ciphertext C.

• {m or ⊥}← CL.Decrypt(Mpk, IDA, PA, sA, C). The deterministic function
outputs a plaintext m or a failure symbol ⊥.

As explained above, our CL-PKC formulation covers constructions following the
Al-Riyami-Paterson definition. As shown in the following sections, implicit-certificate-
based mechanisms are also embraced by this definition. For example, Appendix 8.1
shows that ECQV fits well in the above formulation as a CL-KGA. It has been demon-
strated in [2] that Gentry’s CBE can be constructed with the Al-Riyami-Paterson
CL-PKE. Our generalized definition obviously works for CBE as well.
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2.2 Security Definition

Al-Riyami and Paterson defined the security notion of indistinguishability under the
adaptive chosen-ciphertext attack (IND-CCA) of CL-PKE [1]. A serial of work [30, 52]
refined the security notion of existential unforgeability against the adaptive chosen-
message attack (EUF-CMA) of CL-PKS. The formal security model of certificateless
key agreement (CL-KA) can be found in such as [36]. All of these security notions are
defined with two games. Game 1 is conducted between a challenger C and a Type-I
adversary AI who does not know the master secret key but can replace a user’s public
key with its choice. This type of adversary simulates those who may impersonate a
party by providing others with a false public key. Game 2 is conducted between
a challenger C and a Type-II adversary AII who knows the master secret key (so
every entity’s partial private key). This type of adversary simulates a malicious KGC
adversary who eavesdrops the communications between its subscribers or may even
switch public keys among them. We refer to [1, 52, 36] for further details.

Here, we first introduce a formal security model of CL-KGA which has not been
defined in the literature and can also serve as a model for implicit certificate mecha-
nisms.1 In CL-PKC, a KGC and its users could be opponents to each other, but they
work together to generate a keypair for an identity ID if both behave honestly. Hence,
they are in a different security world from the classic signature. On the other hand,
we show that one still can make use of the security definition of signature mechanism
to address the security requirements of a CL-KGA.

Following Al-Riyami and Paterson’s approach, the two games of CL-KGA are
depicted in Table 2. In these games, an adversary can access an oracle OCL to issue
queries adaptively before outputting a keypair (ID∗, P∗, s∗) for test. In both games,
query CL.Get-Public-Key, CL.Get-Private-Key and CL.Get-User-Key can
be asked. And in Game 1, query CL.Extract-Partial-Key can also be asked.

• Query CL.Extract-Partial-Key(Mpk, Msk, IDA, UA). The oracle follows the
function definition to generate WA and dA and calls function CL.Set-Public-
Key(Mpk, IDA, UA, WA) to get PA. It returns WA and dA after recording
(IDA, PA) in a set Q. The oracle can build the set Q because CL.Set-Public-
Key doesn’t need xA in our CL-KGA formulation.

• Query CL.Get-Public-Key(IDA, bNewKey). If bNewKey is true, the ora-
cle follows function CL.Set-User-Key, CL.Extract-Partial-Key, CL.Set-
Private-Key, and CL.Set-Public-Key sequentially to generate keys, and it
returns PA after recording all the internal keys as (IDA, PA, xA, sA) in a set
L and putting PA in a set P. Otherwise, the oracle returns PA from the latest
record indexed by IDA in L.

• Query CL.Get-Private-Key(IDA, PA). The oracle returns sA from the record
indexed by (IDA, PA) in L after putting (IDA, PA) in a set S1

• Query CL.Get-User-Key(IDA, PA). The oracle returns xA from the record
indexed by (IDA, PA) in L after putting (IDA, PA) in a set S2.

1In [15], a security model of the implicit certificate mechanism is defined. The model is more like
for a key agreement and does not consider the Type-II adversary.
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Table 2: The CL-KGA Games

Game 1: Type-I Adversary

1. (Mpk,Msk)← CL.Setup(1k).

2. (ID∗, P∗, s∗)←A
O1
CL

I (Mpk).

3. succeed if (ID∗, P∗) /∈ S1 ∪ Q and valid←CL.Verify-Key(Mpk, ID∗, P∗, s∗).

Game 2: Type-II Adversary

1. (Mpk,Msk)← CL.Setup(1k).

2. (ID∗, P∗, s∗)←A
O2
CL

II (Mpk,Msk).

3. succeed if P∗ ∈ P, (ID∗, P∗) /∈ S1 ∪ S2 and valid←CL.Verify-Key(Mpk, ID∗, P∗, s∗).

In these two games, if no record is found when searching L, the oracle returns an
error. To exclude the cases that the adversary can win trivially, CL.Get-Private-
Key(ID∗, P∗) is disallowed in both games, i.e., (ID∗, P∗) /∈ S1. In Game 1, (ID∗, P∗) is
not allowed in the final test if CL.Extract-Partial-Key(Mpk, Msk, ID∗, U∗) has been
queried for some U∗, and W∗ from the query output satisfies P∗ = CL.Set-Public-
Key(Mpk, ID∗, U∗, W∗), i.e., (ID∗, P∗) /∈ Q. In Game 2, CL.Get-User-Key(ID∗, P∗)
is forbidden, i.e., (ID∗, P∗) /∈ S2, and P∗ has to be a public key generated through a
query CL.Get-Public-Key(IDA, true) for some IDA, i.e., P∗ ∈ P.

The two games above are defined in such way to respond to CL-PKE and CL-PKS’
security requirements of a used CL-KGA. Intuitively, a secure CL-PKE requires that
an adversary, who does not know one of xA and dA for a valid keypair (IDA, PA,
sA), should not be able to decrypt a ciphertext encrypted with (IDA, PA). Following
the two-game definition, a Type-I adversary AI succeeds in Game 1, if it generates
a valid keypair (ID∗, P∗, s∗) from any (ID∗, U∗) and CL.Extract-Partial-Key(Mpk,
Msk, ID∗, U∗) has not been queried. A Type-II adversary AII succeeds in Game 2 if
it generates a valid keypair (ID∗, P∗, s∗) of which P∗ is generated by the challenger
through CL.Set-Public-Key and related functions, and its related secret values x∗
and s∗ are not disclosed to the adversary. A secure CL-PKE requires that its CL-KGA
is safe against these two types of adversaries.

Similarly, a secure CL-PKS at least requires that an adversary, who does not
know one of xA and dA, should not be able to generate a valid signature with a
keypair (IDA, PA, sA). For non-repudiation, a secure CL-PKS further requires that
an adversary should not be able to generate a signature on a message with a pair of
keys different from the one obtained through CL.Extract-Partial-Key. More for-
mally, an adversary succeeds in Game 1 if it generates two valid keypairs (ID∗, P∗, s∗)
and (ID∗, P

′
∗, s
′
∗) for any chosen (ID∗, U∗) and CL.Extract-Partial-Key(Mpk, Msk,

ID∗, U∗) has been queried at most once. A secure CL-PKS requires its CL-KGA is
safe against this type of adversary. This requirement is similar to the strong EUF-
CMA notion of a signature scheme [3]. As in a CL-PKE, a CL-PKS requires that its
CL-KGA is also secure against Type-II adversaries.

Definition 1 A CL-KGA is secure if the success probability of both AI and AII in
the CL-KGA games is negligible.
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Table 3: The CL-PKS-EUF-CMA Games

Game 1: Type-I Adversary

1. (Mpk,Msk)← CL.Setup(1k).

2. (ID∗, P∗,m∗, σ∗)←A
O1
CL

I (Mpk).

3. succeed if (ID∗, P∗) /∈ S1 ∪ Q, (ID∗, P∗,m∗) /∈ M and
valid←CL.Verify(Mpk, ID∗, P∗,m∗, σ∗).

Game 2: Type-II Adversary

1. (Mpk,Msk)← CL.Setup(1k).

2. (ID∗, P∗,m∗, σ∗)←A
O2
CL

II (Mpk,Msk).

3. succeed if P∗ ∈ P, (ID∗, P∗) /∈ S1 ∪ S2, (ID∗, P∗,m∗) /∈ M and
valid←CL.Verify(Mpk, ID∗, P∗,m∗, σ∗).

For CL-PKS, we use the security games shown in Table 3 to define the security
notion of EUF-CMA. As in the CL-KGA games, query CL.Get-Public-Key(IDA,
bNewKey), CL.Get-Private-Key(IDA, PA) and CL.Get-User-Key (IDA, PA) can
be issued in both games, and in Game 1, query CL.Extract-Partial-Key(Mpk, Msk,
IDA, UA) can also be asked. To enable signature queries, the following extra query
is allowed in both games.

• Query CL.Get-Sign(IDA, PA,m). The oracle uses the private key sA from
the record indexed by (IDA, PA) in L to sign the message m and returns the
signature after recording (IDA, PA, m) in a set M. If no private key is found
corresponding to PA belonging to IDA, return an error.

In the security model of [30, 52], the adversary in Game 1 is allowed to issue
another query CL.Replace-Public-Key(IDA, PA), which replaces user IDA’s public
key with his choice PA. This query simulates the attack to forge a signature for a
targeted identity but with a faked public key. In this work, we don’t use this query
because CL-PKS may work as an IBS by sending the public key together with a
signature [7]. In this case, a user doesn’t publish his key separately. To be able to
simulate more usage scenarios, instead we allow the adversary to provide a public
key of his choice in CL.Verify in the final stage of both games. This arrangement
implicitly empowers the adversary to cheat a signature verifier with a faked public key.
Adversaries defined by this approach corresponds to the normal (instead of strong)
adversaries in [30].

As in the CL-KGA games, same restrictions are applied to allowed queries to avoid
trivial cases that the adversary can win. Moreover, CL.Get-Sign(ID∗, P∗, m∗) is
disallowed in both games, which implies (ID∗, P∗, m∗) /∈ M, because the some of
proposed schemes in this work are not strong EUF-CMA-secure.

Definition 2 A CL-PKS is secure if the success probability of both AI and AII in
the CL-PKS-EUF-CMA games is negligible.

Remark 1 Definition 2 defines a very strong security notion. It requires that without
the help from the KGC, a user of identity IDA cannot generate a pair of keys (PA, sA)
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satisfying valid← CL.Verify-Key(Mpk, IDA, PA, sA). This attribute is essential
for a CL-PKS to provide non-repudiation security service. Any CL-PKS scheme
implementing function CL.Extract-Partial-Key without including UA as part of
the input will be broken by an adversary in Game 1 as follows: the adversary first
issues the CL.Extract-Partial-Key query and generates a valid public key PA and
private key sA following the specification (in this case (IDA, PA) /∈ S1 ∪Q) and then
it produces a signature on any message to win the game.

Here, we also define the security notion for CL-PKE with our new formulation,
which may be of independent interest to analyze CL-PKE schemes. We use the
standard two-stage games shown in Table 4 to define the IND-CCA security notion
of as in [1]. Like the CL-KGA games, query CL.Get-Public-Key(IDA, bNewKey),
CL.Get-Private-Key(IDA, PA) and CL.Get-User-Key(IDA, PA) can be issued in
both games, and in Game 1, query CL.Extract-Partial-Key(Mpk, Msk, IDA, UA)
can also be asked. To enable decryption queries, the following extra query is allowed
in both games.

• Query CL.Decrypt-Message(IDA, PA, C). The oracle uses the private key sA
from the record indexed by (IDA, PA) in L to decrypt the ciphertext C and
returns the output. If no private key is located with such index, then use the
latest private key (if any) belonging to user IDA to decrypt C and return the
output. The challenger in stage two records (IDA, PA, C) in a set D, which
implies that both AI−2 and AII−2 cannot ask this query with (ID∗, P∗, C∗).

Table 4: The CL-PKE-IND-CCA Games

Game 1: Type-I Adversary

1. (Mpk,Msk)← CL.Setup(1k).

2. (ID∗, P∗,m1,m2, ρ)←A
O1
CL

I−1 (Mpk).

3. C∗ ← CL.Enc(Mpk, ID∗, P∗,mb) with random b← {0, 1}.

4. b′←A
O1
CL

I−2 (Mpk, ID∗, P∗,m1,m2, C∗, ρ).

5. succeed if b = b′, (ID∗, P∗) /∈ S1 ∪ Q, and (ID∗, P∗, C∗) /∈ D.

Game 2: Type-II Adversary

1. (Mpk,Msk)← CL.Setup(1k).

2. (ID∗, P∗,m1,m2, ρ)←A
O2
CL

II−1(Mpk,Msk).

3. C∗ ← CL.Enc(Mpk, ID∗, P∗,mb) with random b← {0, 1}.

4. b′←A
O2
CL

II−2(Mpk,Msk, ID∗, P∗,m1,m2, C∗, ρ).

5. succeed if b = b′, P∗ ∈ P, (ID∗, P∗) /∈ S1 ∪ S2, and (ID∗, P∗, C∗) /∈ D.

Like the security definition of CL-PKS, the adversary here is not allowed to is-
sue the CL.Replace-Public-Key(IDA, PA) query. Instead, at the end of stage one
in both games, the challenger has to encrypt the message mb with a public key P∗
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chosen by the adversary. The challenger does not need to answer query CL.Decrypt-
Message(IDA, PA, C) correctly without knowing related private key as in practice.
Adversaries defined by this approach corresponds to the normal (instead of concep-
tional strong) adversaries in [1].

Definition 3 A CL-PKE is secure if the advantage: 2(Pr[succeed]-1/2) of both AI
and AII in the CL-PKE-IND-CCA games is negligible.

2.3 Unification of Two Realms

In [14], the authors interpreted the reason that “the composition of two ‘provably
secure’ schemes, namely original OMC and ECDSA, results in an insecure scheme”
as “This situation may be viewed as a specific limitation of the security definition for
implicit certificates given in” [15], “or ... as a broader limitation of provable security,
or ... as a need to formulate all security definitions according to the recently defined
universal composability.”

Because both OMC and ECQV appear to be natural candidates to generate im-
plicit certificates, we interpret this failure of universal composition as the limitation
of implicit certificates in general. Hence, we should not purposely define a stronger
implicit-certificate security notion, which maintains universal composability but ex-
cludes those natural constructions such as OMC and ECQV. Instead, we need to define
proper security notions that the full implicit-certificate-based mechanisms should sat-
isfy. Meanwhile, the Al-Riyami-Paterson CL-PKC formulation has rigorous security
definitions [1, 52] but it appears difficult to construct cryptographic schemes from
standard algorithms under the model.

The new CL-PKC formulation and security definitions in this work overcome this
hurdle. The formulation above unifies these two types of security mechanisms, namely
the one using implicit certificates and CL-PKC following Al-Riyami-Paterson’s def-
inition, under one umbrella, and brings forth the benefits of both realms, i.e., the
efficiency of implicit-certificate-based schemes and the rigorous security analysis ap-
proach of CL-PKC.

3 Certificateless Key Generation

3.1 The CL-KGA Scheme

Here following the definition in Section 2, we present a certificateless key generation
algorithm to generate public/private keypairs, which will be used in the CL-PKS
schemes later. The algorithm can also be used to construct CL-PKE and CL-KA
schemes. The scheme is built upon the standard elliptic curve Schnorr signature
(specifically EC-FSDSA [32]). In the description, we use symbol ∈R to denote the
operation to randomly choose from a set, and xG and yG to signify the x-coordinate
and y-coordinate of a point G respectively.

• CL.Setup(1k)

1. Select an elliptic curve E : Y 3 = X2 + aX + b defined over a prime field
Fp. The curve has a cyclic point group G of prime order q.

12



2. Pick a generator G ∈ G.

3. s ∈R Z∗q .
4. PKGC = [s]G.

5. Pick two cryptographic hash functions: H1 : {0, 1}∗ → {0, 1}n;H2 :
{0, 1}∗ → Z∗q for some integer n > 0.

6. Output Mpk = (a, b, p, q, G, PKGC , H1, H2) and Msk = s.

• CL.Set-User-Key(Mpk, IDA)

1. xA ∈R Z∗q .
2. UA = [xA]G.

3. Output (UA, xA).

• CL.Extract-Partial-Key(Mpk, Msk, IDA, UA)

1. Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA).

2. w ∈R Z∗q .
3. X = [w]G.

4. W = UA +X.

5. λ = H2(xW ‖yW ‖Z).

6. t = (w + λ · s) mod q.

7. Output (WA = W,dA = t).

• CL.Set-Private-Key(Mpk, IDA, UA, xA, WA, dA)

1. Output sA = (xA + dA) mod q.

• CL.Set-Public-Key(Mpk, IDA, UA, WA)

1. Output PA = WA.

• CL.Calculate-Public-Key(Mpk, IDA, PA)

1. Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. OA = PA + [λ]PKGC .

• CL.Verify-Key(Mpk, IDA, PA, sA)

1. Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. P ′A = [sA]G− [λ]PKGC .

4. Output valid if PA = P ′A, and invalid otherwise.
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It is easy to check that OA = [sA]G and everyone can compute it from public
values. However, function CL.Verify-Key makes use of sA, so only the owner of
the keypair can validate its correctness. It cannot be done by one just knowing OA.
The equation P ′A = OA − [λ]PKGC and PA = P ′A does not mean a Schnorr signature.
The hash-function H1 in the description is unnecessary in theory, but useful for a neat
implementation. CL.Calculate-Public-Key(Mpk, IDA, PA) in this scheme could be
more efficient than the corresponding operation of ECQV as shown in Appendix 8.1,
because [λ]PKGC could be speeded up with pre-computation for the fixed PKGC .

We note that one may switch the position of PKGC and W in the operation to
generate Z and λ and adjust the sequence of operations accordingly in CL.Extract-
Partial-Key.

The security of the CL-KGA can be summarised by following two theorems.

Definition 4 Let (G, G, q) be a group of prime order q and G is a generator. The
discrete logarithm problem (DLP) is given a random P ∈ G to find α such that
P = [α]G.

Theorem 1 If there exists a Type-I adversary AI that has a non-negligible probability
of success in Game 1 against the CL-KGA, then the DLP in group G can be solved
in polynomial time in the random oracle model.

The reduction behaves very much like the reduction of Schnorr signature in [44].
The challenger simulates the KGC (the signer) to answer CL.Extract-Partial-
Key(Mpk, Msk, IDA, UA) as follows: it randomly chooses w, λ ∈ Z∗q , and returns
(W = [w]G + UA − [λ]PKGC , t = w) if W is not point zero, otherwise resamples w.
This response should be indistinguishable from the result generated with private key
s: randomly choose w, λ ∈ Z∗q , and return (W = [w]G+UA, t = (w+λ·s) mod q). To
answer query CL.Get-Public-Key(IDi, true), randomly select xi, di, λi ∈ Z∗q , return
Pi = [xi]G+ [di]G− [λi]PKGC . To answer query CL.Get-Private-Key(IDi, Pi), re-
turn xi + di. To answer CL.Get-User-Key(IDi, Pi), return xi. We skip the details
of the full reduction.

Theorem 2 If there exists a Type-II adversary AII that has a non-negligible prob-
ability of success in Game 2 against the CL-KGA, then the DLP in group G can be
solved in polynomial time in the random oracle model.

Proof. Suppose that AII succeeds in Game 2 with a non-negligible probability ε(k)
in time t(k). Given a DLP (G, G, [α]G), we use AII to construct an algorithm C to
compute α. Suppose that in Game 2, CL.Get-Public-Key is queried Npub times
with bNewKey as true. The challenger C randomly selects an index 0 < I ≤ Npub. C
maintains a tuple T in the form of 〈IDi, Pi, Ui, xi, di, si, wi〉, which is indexed by
(IDi, Pi). Tc is a counter, which increases by one each time when a new entry is put
in T . C answers the queries as follows:

• CL.Setup(1k). C follows the algorithm to compute Mpk and Msk, and passes
the values to AII .

• CL.Get-Public-Key(IDi, bNewKey). If bNewKey is false and at least one
entry in T includes IDi, then C returns Pi in the latest entry of IDi in T ,
otherwise responds differently in the following two cases:
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1. If Tc = I, then C runs CL.Extract-Partial-Key(Mpk, Msk, IDi, [α]G) to
get (Wi, di) and the internal random value w∗i , and puts 〈IDi, Wi, [α]G,
⊥, di, ⊥, w∗i 〉 in T ; C returns Wi.

2. Else, C randomly selects xi ∈ Z∗q and runs CL.Extract-Partial-Key(Mpk,
Msk, IDi, [xi]G) to get (Wi, di) and the internal random value wi, and puts
〈IDi, Wi, [xi]G, xi, di, xi + di, wi〉 in T ; C returns Pi.

• CL.Get-Private-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, if si of the found entry is ⊥, then terminate the game
(Event 1), or return si.

• CL.Get-User-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, if xi of the found entry is ⊥, then terminate the game
(Event 2), or return xi.

• CL.Verify-Key(Mpk, ID∗, P∗, s∗). C searches T , and if the I-th entry does
not include P∗, then terminates the game (Event 3). Otherwise, C outputs
s∗ − sλ∗ − w∗i as the solution to the DLP, where λ∗ is computed according to
the specification by querying H1 and H2.

• Query to random oracle H1 or H2: C just simulates these random oracles as
standard ones.

If the I-th entry includes P∗ (¬Event 3), then the game won’t terminate early
(¬Event 1∧¬Event 2) and AII won’t notice any difference between the simulation

and the attacking environment. C solves the DLP with the probability of ε(k)
Npub and

time O(t(k)). �

3.2 On Some Choices of the Scheme

One may notice that CL.Verify-Key after step 2 is precisely a standard Schnorr
verification function which verifies the signature (PA, sA) on the message Z.

Message Z here is a hash result of the concatenation of octet representation of
Mpk and IDA. We choose this design based on several considerations. The use of
H1 is unnecessary in theory, but useful for a neat implementation. Z can be only
the concatenation of octet representation of Mpk and IDA. This change would not
affect much the security analysis of the CL-KGA. While from the practical point
of view, the interface of a signature algorithm such as [47] typically only accepts a
message digest instead of a full message. This type of interface not only forces a
modular approach for the signing and verification process but also reduces memory
consumption in a (hardware) implementation. Without restricting the length of IDA,
which may include other information such as the time period of the generated key, it
appears reasonable to introduce an extra hash operation.

The inclusion of Mpk in the input to H1 appears to help only a little on the
security of the CL-KGA. On the key-related attack, Morita et al. showed that one
has to recompute PKGC = [s]G in every signing action before including PKGC in
H1 to defend certain attack [40]. On the aspect of security deduction in the multi-
user setting [9], there won’t be many KGCs, and a user usually will only register
with a handful of them. On the other hand, Z computed in current mode may
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serve as a fixed-size globally unique identifier of a user with a KGC. Therefore λ,
which is generated in the Schnorr signing process, may act as a fixed-size globally
unique identifier of the 〈KGC, user, public-key〉 trio. Instead of using an independent
procedure to compute these values to identify keys, integrating these values into the
cryptographic schemes helps avoid possible management operational mistakes.

The downside of the design is that an extra hash operation is executed in the
CL.Calculate-Public-Key function whenever OA is required and additional storage
is used to store those input values. Fortunately, for the CL.Sign function, saving only
λ is enough if we ignore some advanced key-related attacks and λ is also necessary
for the security of the presented CL-PKS schemes as we will see in Section 4. The
CL.Encrypt and CL.Verify function can compute Z on the fly without the extra
cost of persistent storage.

Overall the benefit brought by the current way of generating Z weighs against
the little extra cost of a hash operation and minor implementation hassle. On the
unique representation of the domain parameter Mpk, instead of only using PKGC , a
conservative approach of including those essential values is chosen to prevent possible
loopholes including advanced attacks exploiting different curve parameters such as
the invalid-curve attack [4] or the domain parameter shifting attack [50]. If all KGCs
use a fixed curve and G, the value of a, b and G may be excluded from H1.

3.3 Secure Key Provision

In the CL-KGA process, a user queries the KGC for his partial keys with his public
key value UA. Once (WA, dA) is generated, there should be a security protection
mechanism to safely distribute these values to the user. One solution is to establish
a secure channel between users and the KGC, which requires extra trust chain or
pre-deployed secrets. Due to the high sensitivity of dA and in pursuit of a more
succinct key management system using CL-PKC, it would be desirable to have a
better solution. Observing that UA is provided by the user who should know the
corresponding private value, the KGC can encrypt dA with UA through a standard
public key encryption algorithm such as ECIES [33]. This approach also implicitly
verifies that the user knows dA, which is although not as critical as a process required
for the same security purpose when a CA issues certificates.

4 CL-PKS

4.1 Generic Approach to Construct CL-PKS

Using CL-KGA, a user with identity IDA generates a pair of keys (PA, sA), and every-
one can call function CL.Calculate-Public-Key(Mpk, IDA, PA) to compute the real
public key OA. A standard signature scheme is defined by three functions (G,Σ, V )
such that the key generation function G generates a keypair (OA, sA), the signing
function Σ takes (OA, sA,m) as input and produces a signature σ, and the verifica-
tion function V takes (OA,m, σ) as input and tests whether σ is a valid signature of
m with respect to OA. An obvious way to construct a CL-PKS is to call a CL-KGA
to generate keys and call Σ in CL.Sign and call CL.Calculate-Public-Key first to
compute OA and then call V to test a signature in CL.Verify. However, such crude
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construction with a CL-KGA that is secure by Definition 1 and a signature scheme
that is EUF-CMA-secure even in the multi-user setting [39] does not always end up
with a secure CL-PKS satisfying Definition 2.

Menezes and Smart investigated the security notions of digital signature in the
multi-user setting [39]. They formulated two types of security notions for a signature
scheme in this case. One security notion is formulated against weak-key substitution
(WSK) attacks, which requires that an adversary, if outputs a pair of message and
signature generated upon public key Oi that is also valid with respect to a different
public key O∗, should know the private key corresponding to O∗. With this restriction,
they proved that ECDSA is WSK-secure if users share the same domain parameters
such as those in Mpk. In Section 3 we have proved that the CL-KGA, which bears high
similarity with the OMC scheme, is secure by Definition 1. However, the simple combi-
nation of the CL-KGA with ECDSA following the suggested method does not produce
a secure CL-PKS. In [14] Brown et al. detailed a security analysis which shows that
the OMC with ECDSA is completely broken and the ECQV with ECDSA is not safe
against an artificial forgery attack. These cases demonstrate that an EUF-CMA and
WSK-secure DSA is not sufficient for universal composability. This happens because
in the CL-PKS setting, an adversary may output a valid tuple (ID∗, P∗,m∗, σ∗) with-
out knowing the private key. Moreover, m∗ may not have been signed by any entity in
the system and P∗ may not belong to any entity either. Hence, it appears necessary
that the used EUF-CMA-secure DSA is against the strong-key substitution (SKS) at-
tacks [39], which does not require the adversary knows the private key corresponding
to O∗ after outputting (ID∗, P∗,m∗, σ∗) for test, where O∗ ←CL.Calculate-Public-
Key(Mpk, ID∗, P∗) and valid←CL.Verify(Mpk, ID∗, P∗,m∗, σ∗).

Here, we show a simple technique to enhance the security of composed schemes.
The intermediate value λ in the CL-KGA, which is generated in the Schnorr signing
process, is called the assignment in the general framework defined in ISO/IEC 14888-
3 [32] for signatures schemes based on discrete logarithm with randomized witness.
If the signing function of the digital signature algorithm (DSA) is signing on (λ‖m)
instead of m, the two algorithms, the CL-KGA and DSA, are linked together to
safeguard the security of resulting CL-PKS. Intuitively, with including λ as the prefix
of the message to be signed, the signer is forced to commit to a public key PA and hence
the corresponding real public key OA before generating a signature. This mechanism
takes away the freedom of a forger to generate a signature before finding a public
key PA satisfying the verification equation. The security of a standard DSA such as
ECDSA guarantees that without knowing the private key, it is unlikely to generate a
valid signature with respect to a given public key OA. Meanwhile, the security of the
CL-KGA assures that without the help of the KGC, the adversary cannot compute
the private key sA corresponding to a given public key OA.

This simple technique works like applying with the so-called “key prefixing” tech-
nique [9, 39] by signing on a message together with the signer’s public key and its
identity indirectly. The technique has been used in [24] to construct an identity-based
signature (IBS) scheme ECCSI. We apply this technique to construct four CL-PKS
schemes. We will show later that the technique indeed plays an essential role to defeat
all the known attacks against the resulting CL-PKS. We note that using Z‖xPA‖yPA
instead of λ as the key prefixing achieves the same effect.
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4.2 CL-PKS1 from ECDSA

First, we present a scheme (CL-PKS1) using the CL-KGA and the standard algorithm
ECDSA. The scheme uses another hash function H3 : {0, 1}∗ → {0, 1}n. In practice,
both H1 and H3 are instantiated by a secure hash function like SHA256. H2 is also
constructed from the same hash function by excluding the zero output modulo q.

Table 5: CL-PKS1

CL.Sign(Mpk, IDA, PA, sA, m) CL.Verify(Mpk, IDA, PA, m, σ)

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. h = H3(λ‖m).

4. r ∈R Z∗q .

5. Q = [r]G.

6. u = xQ mod q.

7. v = r−1 · (u · sA + h) mod q.

8. Output σ = (u, v).

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. OA = PA + [λ]PKGC .

4. h = H3(λ‖m).

5. v1 = v−1 · h mod q.

6. v2 = v−1 · u mod q.

7. Q′ = [v1]G+ [v2]OA.

8. u′ = xQ′ mod q.

9. Output valid if u = u′, and invalid
otherwise.

The presented CL.Sign function from step 3 exactly follows ECDSA to sign with
private key sA on message (λ‖m). The first two steps can be treated as a message
preparation process, which re-generates the assignment computed in the Schnorr sign-
ing process invoked by CL.Extract-Partial-Key. These two steps can further be
saved if λ is pre-computed and stored. CL.Verify function invokes two functions
sequentially. It first activates CL.Calculate-Public-Key to calculate the signer’s
supposed real public key OA and then calls the verification function of ECDSA to ver-
ify signature σ on message (λ‖m) with regard to OA. We note that signing on (λ‖m)
instead of m does not require any modification to the implementation of ECDSA
either in software or hardware.

4.3 Effect of Using the Assignment as the Key Prefixing

4.3.1 Revisiting Existing Attacks

In [14], it’s been shown that both the OMC and ECQV are insecure with ECDSA
with direct composition. The analysis below shows that after applying with the key
prefixing technique of signing on (λ‖m), both CL-PKS1 and ECQV with ECDSA are
secure against the known attacks and CL-PKS1 has better security than the ECQV
with the vanilla ECDSA scheme.

Using the notation of this paper, we revisit the attack analysis of [14] applying to
CL-PKS1 and ECQV with ECDSA. To guarantee that CL.Verify(Mpk, IDA, PA, m,
σ) outputs valid in CL-PKS1, equation (1) should be satisfied.

[v]Q− [u]PA = [h]G+ [λ][u]PKGC . (1)
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We express equation (1) using row and column vectors:

[
−u v

] [PA
Q

]
=

[
λu h

] [PKGC
G

]
. (2)

The relation of PA and Q to PKGC and G can be expressed as[
PA
Q

]
=

[
d e
f g

] [
PKGC
G

]
. (3)

After replacing [PA, Q] and eliminating [PKGC , G] and transposing the resulting ma-
trix, we have [

d f
e g

] [
−u
v

]
=

[
λu
h

]
. (4)

By multiplying the inverse matrix (we first assume that the matrix is invertible), we
get [

−u
v

]
=

1

dg − ef

[
guλ− fh
−euλ+ dh

]
. (5)

As in [14], we consider λ as a non-linear function of d and e: λ = L(d, e), since
λ = H2(xPA‖yPA‖Z) and PA = [d]PKGC + [e]G. Similarly, we have u as a non-linear
function of f and g: u = U(f, g), since u = x̃Q = xQ mod q and Q = [f ]PKGC+[g]G.
Different from [14], we have an extra non-linear function h = H(L(d, e)), since h =
H3(λ‖m). This produces five equations:

−u =
guλ− fh
dg − ef

, (6)

v =
−euλ+ dh

dg − ef
, (7)

λ = L(d, e), (8)

u = U(f, g), (9)

h = H(L(d, e)). (10)

Substituting λ, u and h in equation (6) and (7) with equation (8), (9) and (10) re-
spectively, we get

−U(f, g) =
g

dg − ef
U(f, g)L(d, e)− f

dg − ef
H(L(d, e)), (11)

v = − e

dg − ef
U(f, g)L(d, e) +

d

dg − ef
H(L(d, e)). (12)

If we choose g = 0 as the attacks in [14], the adversary needs to resolve the
following equations:

−U(f, 0) =
1

e
H(L(d, e)), (13)

v = −H(L(d, e))(L(d, e) + d)

ef
. (14)
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We slight abuse the notation by using a point instead of coordinates of a point in
hash functions. The above equations can be converted to

PA = [d]PKGC + [e]G, (15)

x̃[f ]PKGC = −1

e
H3(H2(PA‖Z)‖m), (16)

v =
x̃[f ]PKGC · (H2(PA‖Z) + d)

f
. (17)

By using the attacks in [14] on OMC with ECDSA to forge a valid signature, the
attacker simply chooses an identity IDA, a message m and any 0 < d, f < q and

computes u = x̃[f ]PKGC and e = − H3(m)
x̃[f]PKGC

first, and further computes v according

to equation (7). However, in CL-PKS1, e appears on both sides of equation (18) and
the relation is non-linear because of involving hash functions.

e = −H3(H2(([d]PKGC + [e]G)‖Z)‖m)

x̃[f ]PKGC
. (18)

Recall that Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA). Hence, given any 0 < f < q,
if the hash functions are collision resistant, it would be difficult to find d and e or
some IDA or m satisfying equation (18). Conversely, given any proper d and e or some
IDA or m, the hash functions simulated as random oracles would generate a random
j = − 1

eH3(H2(PA‖Z)‖m) corresponding to the x-coordinate modulo q of a point in a
set J whose cardinality is small for practically used curves [38]. The problem becomes
given (G, [s]G, J) finding f such that [f ][s]G ∈ J for a random s and a random small
set J . This problem appears hard based on the DL assumption.

It’s not difficult to verify that the above analysis also works on the combination
of ECQV with ECDSA. In ECQV plus ECDSA, if (λ‖m) is signed, equation (11)
becomes

−U(f, g)L(d, e) =
g

dg − ef
U(f, g)− f

dg − ef
H(L(d, e)). (19)

When g = 0, the equation of e becomes

e = − H3(H2(([d]PKGC + [e]G)‖Z)‖m)

H2(([d]PKGC + [e]G)‖Z) · x̃[f ]PKGC
. (20)

The Kravitz attack [14] requires finding (Z,PA,m) satisfying H3(H2(PA‖Z)‖m) =
H2(PA‖Z). This task becomes difficult if the used hash functions are collision resis-
tant.

Now, let’s consider that the matrix in equation (4) is non-invertible (dg = ef),
and in this case the attacker against CL-PKS1 has to find (Z, PA, m, x̃Q, v) satisfying
the following simultaneous equations:

PA = [d][s]G+ [e]G,
Q = [f ][s]G+ [g]G,

dg = ef,

v =
H2(PA‖Z)sx̃Q + dsx̃Q + ex̃Q +H3(H2(PA‖Z)‖m)

fs+ g
. (21)

Note that a valid signature requires H3(H2(PA‖Z)‖m) 6= 0, u = x̃Q 6= 0 and
v 6= 0. Let’s investigate the possible four cases depending on the value of f and e.
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1. Case 1: f = 0, d = 0, then g 6= 0 and e 6= 0, and

v =
H2(PA‖Z)sx̃Q + ex̃Q +H3(H2(PA‖Z)‖m)

g
.

Now, PA = [e]G. Hence, if PA is fixed, so is e, and there is only a negligible
probability that H2(PA‖Z) = −e/s.

2. Case 2: f = 0, e = 0, then g 6= 0 and d 6= 0, and

v =
H2(PA‖Z)sx̃Q + dsx̃Q +H3(H2(PA‖Z)‖m)

g
.

Now, PA = [d][s]G. Hence, if PA is fixed, so is d, and there is only a negligible
probability that H2(PA‖Z) = −d.

3. Case 3: e = 0, g = 0, then f 6= 0, d 6= 0, and

v =
H2(PA‖Z)x̃Q + dx̃Q

f
+
H3(H2(PA‖Z)‖m)

fs
.

A valid signature requires H3(H2(PA‖Z)‖m) 6= 0.

4. Case 4: ef = dg 6= 0. H2 as a random oracle forces the attacker to fix PA before
computing v. Let c = ds + e 6= 0 as some constant. From dg = ef , we have
fs+ g = gc/e, so the attacker after querying H2 and H3 computes

v = e
H2(PA‖Z)sx̃Q + cx̃Q +H3(H2(PA‖Z)‖m)

gc
.

Again, there is only a negligible probability that H2(PA‖Z) = −c/s.

In all four cases, there appears to be no simple trick to compute v without knowing
s.

Overall, we can see that the key prefixing method by signing on (λ‖m) indeed plays
an essential role to help CL-PKS1 defeat existing attacks against OMC or ECQV.

4.3.2 Further Security Result

We see that CL-PKS1 can defend known attacks against a direct composition of CL-
KGA and ECDSA. In fact, with including λ in H3, we can further establish following
result.

Lemma 1 In the random oracle model, if there exists an efficient algorithm to solve
equation (11), then there exists an efficient algorithm to solve equation (19).

Proof. Suppose that an algorithm A finds a solution to equation (11) with probability
ε(k) in running time t(k). Suppose A makes NH3 queries to H3. Let ζ be a random
integer such that 0 < ζ ≤ NH3 . We construct an algorithm B by re-running A.
However, this time for the ζ-th query to H3(λζ‖mζ), the oracle returns hζλζ , where
hζ is the output of the same query in the last run, and all other random oracle queries
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return same values as last time. With 1/NH3
probability, B will find a solution to the

following equation

−U(f, g)L−1(d, e) =
g

dg − ef
U(f, g)− f

dg − ef
H(L(d, e)). (22)

Suppose B makes NH2
queries to H2. Let γ be a random integer such that 0 < γ ≤

NH2
. We construct an algorithm D by re-running B. This time the oracle returns 1/λγ

for the γ-th query to H2(Pγ‖Zγ) and returns H3( 1
λγ
‖mj) = hj , where in the last run

λγ = H2(Pγ‖Zγ) and hj = H3(λγ‖mj) for each j. Overall, if such algorithm A exists,

then there exists an algorithm to solve equation (19) with probability O( ε(k)
NH2

·NH3
)

and time O(t(k)). �
In [14], Brown et al. proved in Theorem 1 that in the combined random oracle

(for the hash function) and generic group model (for the elliptic curve group) [45],
there does not exist an efficiently algorithm, which can find a solution (other than
Kravitz’s) to equation (23)

−U(f, g)L(d, e) =
g

dg − ef
U(f, g)− f

dg − ef
H ′, (23)

where H ′ is a hash function that only depends on m. Obviously any solution to
equation (19) can be converted to a solution to equation (23) by using λ‖m as the
message input to H ′. Following from Lemma 1, we conclude that there is no efficient
algorithm to solve equation (11) in the same model. This result implies that CL-PKS1
has the security at least equivalent to (in fact better than) the vanilla ECQV with
ECDSA scheme against attackers who forge a signature by solving equation (11) and
(23) respectively. Note that in the generic group model, the DLP is hard [45].

4.4 More CL-PKS from ECDSA-II and Schnorr-DSA

Because ECDSA lacks a security reduction based on a standard complexity assump-
tion, several modifications to ECDSA such as [38] were proposed to address this
issue. All modifications include u as an input to H3. However, the way to generate u
is different in each proposal. We use a variant of ECDSA by setting u = xQ (called
ECDSA-II in [38]). For most of the elliptic curves defined over prime fields used in
practice, this modification will not change the size of the representation of u. On the
other hand, this variant can be proved secure in the random oracle with the Improved
Forking Lemma [11] as in [38]. We use this modified ECDSA to construct CL-PKS2.

We note that without including λ, even with u as an input to H3, such variant
still suffers from the attacks shown in Section 4.3. This again demonstrates the
effectiveness of the key prefixing technique. Another scheme with a standard reduction
is Schnorr DSA: EC-FSDSA [32]. A certificateless variant of EC-FSDSA is shown in
Table 7.

5 Security Analysis

Now, we analyze the security of the schemes. Apart from the analysis against the
existing attacks in Section 4.3, we present two formal security results of CL-PKS1 for
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Table 6: CL-PKS2

CL.Sign(Mpk, IDA, PA, sA, m) CL.Verify(Mpk, IDA, PA, m, σ)

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. r ∈R Z∗q .

4. Q = [r]G.

5. u = xQ.

6. h = H3(u‖λ‖m).

7. v = r−1 · (u · sA + h) mod q.

8. Output σ = (u, v).

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. OA = PA + [λ]PKGC .

4. h = H3(u‖λ‖m).

5. v1 = v−1 · h mod q.

6. v2 = v−1 · u mod q.

7. Q′ = [v1]G+ [v2]OA.

8. u′ = xQ′ .

9. Output valid if u = u′, and invalid
otherwise.

Table 7: CL-PKS3

CL.Sign(Mpk, IDA, PA, sA, m) CL.Verify(Mpk, IDA, PA, m, σ)

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. r ∈R Z∗q .

4. Q = [r]G.

5. h = H3(xQ‖yQ‖λ‖m).

6. v = (r + h · sA) mod q.

7. Output σ = (Q, v).

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. OA = PA + [λ]PKGC .

4. h = H3(xQ‖yQ‖λ‖m).

5. Q′ = [v]G− [h]OA.

6. Output valid ifQ = Q′, and invalid
otherwise.

building confidence in the scheme. The analysis of CL-PKS1 with a few changes is
also applicable to ECQV with ECDSA if the technique of signing on (λ‖m) is used.
We fully analyze CL-PKS2’s security. The analysis of CL-PKS3 can be done similarly
to CL-PKS2.

Because the CL-PKS1 scheme is the composition of the CL-KGA and ECDSA, the
security of the scheme won’t be better than either of the components. For ECDSA,
the known security result is either based on the collision resistance of the used hash
function in the generic group model [12] or based on so-called the semi-logarithm
problem (SLP) in the random oracle model [13, 20]. As we have already adopted the
random oracle model to analyze the security of the CL-KGA, here we continue to
analyze the security of the CL-PKS schemes in the same model.

To address the technique shortcoming of the proof, we put a restriction on the
CL.Get-Sign(IDA, PA, m) query. If ID∗ = IDA and P∗ = PA, then each message
m can be queried at most once. This “one-per-message unforgeability” security no-
tion [20] is weaker than the EUF-CMA. However, it is so far the provable one for
ECDSA in the random oracle. We label these two types of adversaries as Type-I−

and Type-II− adversary. We note that for CL-PKS2 (CL-PKS3), this restriction is
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unnecessary because of including u (Q) in H3.

Definition 5 Let (G, G, q) be a group of prime order q and G is a generator. The
semi-logarithm problem is given a random P ∈ G to find (u, v) such that u =
F([v−1](G+ [u]P ), where F(X) returns x-coordinate of point X.

For Type-I adversaries, there are two possible attacking cases. Case 1: AIa gen-
erates a signature which is valid with a targeted ID∗ and ID∗’s public key. Case 2:
AIb generates a signature which is valid with a targeted ID∗ but a public key different
from ID∗’s. Note that in this case, the owner of ID∗ may have no public key. The
security analysis results of these two CL-PKS schemes are as follows.

Lemma 2 If there exists an adversary A−Ia that has a non-negligible probability of
success in Game 1 against CL-PKS1 in the random oracle model, then the SLP in
group G can be solved in polynomial time.

Proof. Suppose that A−Ia succeeds in Game 1 with a non-negligible probability ε(k)
in time t(k). Given a SLP (G, G, [α]G), we use A−Ia to construct an algorithm C to
find a solution. Suppose that in Game 1, H1 and H2 are queried NH1 and NH2 times
respectively and NKey keys are generated in the game through CL.Get-Public-Key,
and the targeted ID∗ has generated NTKey keys and NTH3

queries on H3 with the
targeted ID∗ and P∗ are called and NE CL.Extract-Partial-Key queries are asked.
The challenger C randomly selects three indices 0 < I ≤ NH1

, 0 < J ≤ NTKey, 0 <
K ≤ NTH3

. C maintains a tuple T in the form of 〈IDi, Pi, λi, Ui, xi, di, si〉, which is
indexed by (IDi, Pi). For the presentation purpose, we use PI to denote the system
parameter string a‖b‖xG‖yG‖xPKGC‖yPKGC . C answers the queries as follows:

• CL.Setup(1k). C sets PKGC = [α]G, and passes Mpk to A−Ia. C randomly
chooses three values Z∗, h∗ ∈ {0, 1}n and λ∗ ∈ Z∗q .

• H1(PI‖IDA). C maintains a list H1 in the form of 〈Ii, Zi〉. If the input is on
the list, then the hash value is returned. If this is the I-th distinctive query,
then C puts (PI‖IDA, Z∗) on the list, and returns Z∗. Otherwise, it randomly
samples Zi ∈ {0, 1}n (if Zi = Z∗, terminate the game (Event 1)), and returns
Zi after putting the pair into H1.

• H2(PA‖Z). Similarly, C has a list H2 in the form of 〈Ii, λi〉. If the input is
on the list, then the hash value is returned. Otherwise, it randomly samples
λi ∈ Z∗q . If λi 6= λ∗, return λi after putting the pair into H2, else terminate the
game (Event 1).

• H3(λ‖m). C maintains a list H3 in the form of 〈Ii, hi, ui, vi〉. If the input is on
the list, then the hash value hi is returned. Otherwise, C behaves differently in
the following cases:

1. If λ 6= λ∗, then randomly choose hi ∈ {0, 1}n, return hi after putting
(λ‖m,hi,⊥,⊥) into H3.

2. Else, if this is the K-th query, then after putting (λ‖m, h∗, ⊥, ⊥) in the
list, return h∗. Otherwise, randomly sample (ai, bi) ∈ Z∗q2 and compute
ui = F([ai]G + [bi][h∗][α]G), vi = ui/bi, and hi = aiui/bi. C returns hi
after putting (λ‖m,hi, ui, vi) into H3.
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• CL.Extract-Partial-Key(Mpk, Msk, IDi, Ui). C randomly selects di, λi ∈ Z∗q ,
and computes Pi = [di]G + Ui − [λi][α]G. C puts (Pi‖Zi, λi) in H2 with Zi =
H1(PI‖IDi) and returns (Pi, di) after putting (IDi, Pi) in a set Q. If H2 has an
entry indexed by (Pi‖Zi) that has different value from λi, terminate the game
(Event 1).

• CL.Get-Public-Key(IDi,bNewKey). If bNewKey is false and at least one entry
in T includes IDi, then C returns Pi in the latest entry of IDi in T . Otherwise,
let Zi = H1(PI‖IDi), and C responds differently in the following cases:

1. If Zi = Z∗, and this is the J -th public key generation on IDi, then compute
Pi = [h∗−λ∗][α]G, put (Pi‖Zi, λ∗) in H2 and randomly select xi ∈ Z∗q and
put (IDi, Pi, λ∗, [xi]G, xi, ⊥, ⊥) in T ; C returns Pi. If H2 has an entry
indexed by (Pi‖Zi) that has different value from λ∗, terminate the game
(Event 1).

2. Else, randomly select xi, di, λi ∈ Z∗q (if λi = λ∗, terminate the game
(Event 1)), compute Pi = [xi]G + [di]G − [λi][α]G, put (Pi‖Zi, λi) in
H2 and (IDi, Pi, λi, [xi]G, xi, di, xi + di) in T ; C returns Pi.

• CL.Get-Private-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, if si of the found entry is ⊥, then terminate the game
(Event 2), or return si.

• CL.Get-User-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, return xi from the found entry.

• CL.Get-Sign(IDi, Pi,mi). If there is no entry indexed by (IDi, Pi) in T , return
error. Otherwise, use λi from the found entry to query H3(λi‖mi) and respond
as follows:

1. If si from the found entry is not ⊥, then use si as the private key and Pi
as the public key to sign the message and return signature.

2. Else (i.e., λi = λ∗), use λi‖mi to search the list H3.

– If ui is ⊥ on the found entry, then terminate the game (Event 3).

– Else, return (ui, vi) as the signature.

• CL.Verify(Mpk, ID∗, P∗,m∗, σ∗). If Z∗ 6= H1(PI‖ID∗) or λ∗ 6= H2(P∗‖Z∗)
or h∗ 6= H3(λ∗‖m∗) or (ID∗, P∗) ∈ Q, then terminate the game (Event 4).
Otherwise, parse σ∗ as (u∗, v∗) and output (u∗, v∗/h∗).

First, we claim that if the game is not terminated prematurely, then the simulation
is indistinguishable from the environment and the final output is the solution of
the SLP. The output of H1, H2 and H3 are all sampled randomly. CL.Extract-
Partial-Key returns the correct response as Zi = H1(PI‖IDi), λi = H2(Pi‖Zi),
Oi = Pi + [λi]PKGC = [di]G + Ui. The keypair (IDi, Pi, si) for an identity IDi is
also generated randomly. For any (IDi, Pi, si) with IDi 6= ID∗ or Pi 6= P∗, we have
Zi = H1(PI‖IDi), λi = H2(Pi‖Zi), Oi = Pi + [λi]PKGC = [xi + di]G and si = xi + di
with xi, di, si from the entry indexed with (IDi, Pi) in T . Hence, the keypair is valid
and the signature generated by CL.Get-Sign(IDi, Pi,mi) is also valid. On the case
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that IDi = ID∗ and Pi = P∗, (ui, vi) is returned as the signature. According to the
reduction, Z∗ = H1(PI‖ID∗), λ∗ = H2(P∗‖Z∗) and P∗ = [h∗ − λ∗][α]G. Hence,
O∗ = P∗ + [λ∗][α]G = [αh∗]G. According to CL.Verify, we have v1i = v−1i hi = ai,
v2i = v−1i ui = bi, Q

′
i = [v1i ]G + [v2i ]O∗ = [ai]G + [biαh∗]G. Hence, xQ′

i
= ui,

which means the signature is valid. Furthermore, if (u∗, v∗) is a valid signature,
u∗ = F([v−1∗ h∗]G + [v−1∗ u∗][h∗α]G) = F([(v∗/h∗)

−1](G + [u∗][α]G)) and the SLP
is solved successfully. CL.Get-Private-Key and CL.Get-User-Key return valid
values which satisfy the requirements of the corresponding function definitions.

Second, we analyze the possibility of finding a solution. Let Event 1 be that
the hash collision happens on either H1 or H2. Let Event 5 be that the adversary
A−Ia indeed chooses the I-th identity as the target, the J -th public key of the target
and the K-th query of H2(λ∗‖m∗) to generate σ∗. If Event 5 happens, then Event
2, 3 and 4 won’t happen. Overall, C solves the SLP with the probability at least

ε(k)
NH1

·NTKey·NTH3
− NH2

+NKey+NE
q − NH1

2n and time O(t(k)). �

Theorem 3 If there exists an adversary A−II that has a non-negligible probability of
success in Game 2 against CL-PKS1 in the random oracle model, then the SLP in
group G can be solved in polynomial time.

Proof. Suppose that A−II succeeds in Game 2 with a non-negligible probability ε(k)
in time t(k). Given a SLP (G, G, [α]G), we use A−II to construct an algorithm C to
find a solution. Suppose that in Game 2, H1 and H2 are queried NH1 and NH2 times
respectively, and NKey keys are generated through CL.Get-Public-Key and NTH3

queries with the targeted ID∗ and P∗ are called. The challenger C randomly selects
three indices 0 < I ≤ NH1

, 0 < J ≤ NKey, 0 < K ≤ NTH3
. C maintains a tuple T

in the form of 〈IDi, Pi, λi, Ui, xi, di, si〉, which is indexed by (IDi, Pi). C answers the
queries as follows:

• CL.Setup(1k). C follows the algorithm to compute Mpk and Msk, and passes
the values to AII . In particular, C chooses a random s ∈ Z∗q as Msk and sets
PKGC = [s]G. C randomly chooses four values Z∗, h∗ ∈ {0, 1}n and λ∗, λJ ∈ Z∗q .

• H1(PI‖IDA). C maintains a list H1 in the form of 〈Ii, Zi〉. If the input is on
the list, then the hash value is returned. If this is the I-th distinctive query,
then C puts (PI‖IDA, Z∗) on the list, and returns Z∗. Otherwise, it randomly
samples Zi ∈ {0, 1}n (if Zi = Z∗, terminate the game (Event 1)), and returns
Zi after putting the pair into H1.

• H2(PA‖Z). Similarly, C has a list H2 in the form of 〈Ii, λi〉. If the input is
on the list, then the hash value is returned. Otherwise, it randomly samples
λi ∈ Z∗q . If λi 6= λ∗ and λi 6= λJ , return λi after putting the pair into H2, else
terminate the game (Event 1).

• H3(λ‖m). C maintains a list H3 in the form of 〈Ii, hi, ui, vi〉. If the input is on
the list, then the hash value hi is returned. Otherwise, C behaves differently in
the following cases:

1. If λ 6= λJ and λ 6= λ∗, randomly choose hi ∈ {0, 1}n, return hi after
putting (λ‖m, hi, ⊥, ⊥) into H3.
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2. Else (i.e., λ = λ∗ or λ = λJ ), if the J -th public key has not been generated,
terminate the game (Event 1). C responds differently in the following
cases.

– In the J -th public key generation Zi 6= Z∗,

∗ λ = λ∗. If this is the K-th query, set hi = h∗, else randomly select
hi ∈ Z∗q , after putting (λ‖m, hi, ⊥, ⊥) in the list, return hi

∗ λ = λJ . Randomly sample (ai, bi) ∈ Z2
q and compute ui =

F([ai]G + [bi][h∗][α]G + [bi][λJ − λ∗][s]G), vi = ui/bi, and hi =
aiui/bi. C returns hi after putting (λ‖m, hi, ui, vi) into H3.

– Otherwise, if this is the K-th query with λ∗, then after putting (λ‖m,
h∗, ⊥, ⊥) in the list, return h∗. Otherwise, randomly sample (ai, bi) ∈
Z∗q2 and compute ui = F([ai]G + [bi][h∗][α]G), vi = ui/bi, and hi =
aiui/bi. C returns hi after putting (λ‖m,hi, ui, vi) into H3.

• CL.Get-Public-Key(IDi,bNewKey). If bNewKey is false and at least one entry
in T includes IDi, then C returns Pi in the latest entry of IDi in T . Otherwise,
let Zi = H1(PI‖IDi), and C responds differently in the following cases:

1. If this is the J -th public key generation in the game, then compute Pi =
[h∗α]G− [sλ∗]G. Put (Pi‖Z∗, λ∗) in H2. If Zi = Z∗, set λi = λ∗, else put
(Pi‖Zi, λJ ) in H2 and set λi = λJ . If the list has an entry indexed by
(Pi‖Zi) that has different value from λi, terminate the game (Event 1).
Put (IDi, Pi, λi, ⊥, ⊥, ⊥, ⊥) in T . C returns Pi.

2. Else, randomly select xi, di, λi ∈ Z∗q (if λi = λ∗ or λi = λJ , terminate the
game (Event 1)), compute Pi = [xi]G + [di]G − [λi][s]G, put (Pi‖Zi, λi)
in H2 and (IDi, Pi, Zi, λi, [xi]G, xi, di, xi + di) in T . C returns Pi.

• CL.Get-Private-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, if si of the found entry is ⊥, then terminate the game
(Event 2), or return si.

• CL.Get-User-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, if xi of the found entry is ⊥, then terminate the game
(Event 3), or return xi.

• CL.Get-Sign(IDi, Pi,mi). If there is no entry indexed by (IDi, Pi) in T , return
error. Otherwise, use λi from the found entry to query H3(λi‖mi) and respond
as follows:

1. If si from the found entry is not ⊥, then use si as the private key and Pi
as the public key to sign the message and return signature.

2. Else, use λi‖mi to search the list H3.

– If ui is ⊥ on the found entry, then terminate the game (Event 4).

– Else, return (ui, vi) as the signature.

• CL.Verify(Mpk, ID∗, P∗,m∗, σ∗). If Z∗ 6= H1(PI‖ID∗) or λ∗ 6= H2(P∗‖Z∗) or
h∗ 6= H3(λ∗‖m∗), then terminate the game (Event 5). Otherwise, parse σ∗ as
(u∗, v∗) and output (u∗, v∗/h∗).
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It is easy to verify that if the game is not terminated prematurely, then the sim-
ulation is indistinguishable from the environment. In particular, if the targeted ID∗ 6=
IDJ in the CL.Get-Public-Key query, C still answers the CL.Get-Sign(IDJ , PJ ,mi)
properly. Precisely, OJ = PJ + [λJ ][s]G = [h∗α]G + [λJ − λ∗][s]G. According to
CL.Verify, we have v1i = v−1i hi = ai, v

2
i = v−1i ui = bi, Q

′
i = [v1i ]G + [v2i ]OJ =

[ai]G + [bi][h∗][α]G + [bi][λJ − λ∗][s]G. Hence, xQ′
i

= ui, which means the signa-
ture is valid. The final output is the solution of the SLP. Let Event 1 be that the
hash collision happens on either H1 or H2. If the attacker chooses the I-th iden-
tity and the J -th public key and the K-th message queried with λ∗, then Event
2, 3, 4 and 5 won’t happen. Hence, C solves the SLP with probability at least

ε(k)
NH1

·NKey·NTH3
− 2

NH2
+NKey
q − NH1

2n and time O(t(k)). �

Lemma 3 If there exists an adversary AIa that has a non-negligible probability of
success in Game 1 against CL-PKS2 in the random oracle model, then the DLP in
group G can be solved in polynomial time.

The reduction in Lemma 2 can be modified easily for CL-PKS2 but still based on
the strong semi-logarithm assumption. Applying the Multiple-Forking Lemma [10],
the security of CL-PKS2 against AIa can be further reduced to the DLP. We skip the
details.

Lemma 4 If there exists an adversary AIb that has a non-negligible probability of
success in Game 1 against CL-PKS2 in the random oracle model, then the DLP in
group G can be solved in polynomial time.

Proof. Suppose that in the game, H2 and H3 are queried NH2 and NH3 times re-
spectively, and AIb wins the game with probability ε(k) in time t(k). Given a DLP
(G, G, [α]G), we use AIb to construct C to solve the problem. C maintains a tuple
T in the form of 〈IDi, Pi, λi, Ui, xi, di, si〉, which is indexed by (IDi, Pi). C answers
the queries as follows:

• CL.Setup(1k). C sets PKGC = [α]G, and passes Mpk to AIb. C randomly
chooses three values Z∗, h∗ ∈ {0, 1}n and λ∗ ∈ Z∗q .

• H1(PI‖IDA). C maintains a list H1 in the form of 〈Ii, Zi〉. If the input is
on the list, then the hash value is returned. Otherwise, it randomly samples
Zi ∈ {0, 1}n, and returns Zi after putting the pair into H1.

• H2(PA‖Z). Similarly, C has a list H2 in the form of 〈Ii, λi〉. If the input is
on the list, then the hash value is returned. Otherwise, it randomly samples
λi ∈ Z∗q , and returns λi after putting the pair into H2.

• H3(u‖λ‖m). C maintains a list H3 in the form of 〈Ii, hi〉. If the input is
on the list, then the hash value hi is returned. Otherwise, randomly sample
hi ∈ {0, 1}n, return hi after putting (u‖λ‖m,hi) into H3.

• CL.Extract-Partial-Key(Mpk, Msk, IDi, Ui). C randomly selects di, λi ∈ Z∗q ,
and computes Pi = [di]G + Ui − [λi][α]G. C puts (Pi‖Zi, λi) in H2 with Zi =
H1(PI‖IDi) and returns (Pi, di).

28



• CL.Get-Public-Key(IDi,bNewKey). If bNewKey is false and at least one entry
in T includes IDi, then C returns Pi in the latest entry of IDi in T . Otherwise,
randomly select xi, di, λi ∈ Z∗q , compute Pi = [xi]G + [di]G − [λi][α]G, put
(Pi‖Zi, λi) in H2 with Zi = H1(PI‖IDi) and (IDi, Pi, λi, [xi]G, xi, di, xi + di) in
T .

• CL.Get-Private-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, return si from the found entry.

• CL.Get-User-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, return xi from the found entry.

• CL.Get-Sign(IDi, Pi,mi). If there is no entry indexed by (IDi, Pi) in T , return
error. Otherwise, use the found si as the private key and Pi as the public key
to sign the message and return its signature.

C perfectly simulates the attacking environment. Before applying the Multiple-
Forking Lemma [10] to argue the security, we make several assumptions, so to make the
analysis simpler. First, as explained in Section 3, the use of H1 is unnecessary, in the
following analysis we assume H1 to be a normal collision-resistance hash function and
C requires the attacker to output Z instead of ID. This assumption is sound because
the reduction above does not make use of any random oracle property of H1. Second,
in the attacking process A may query H3(u‖λ‖m) before querying λ = H2(P‖Z).
However, as H2 is simulated as a random oracle, there is only a negligible probability
that this event has happened and at the same time σ is valid. We henceforth ignore
this event in the analysis. C runs the multiple-forking algorithm MFAIb,3(Mpk) and
gets four forgeries (Z,m,P, (ui, vi)), i = 0, . . . , 3 for some Z, some message m and
some P . Moreover each ui corresponds to a point Qi = ±[ri]G, and u0 = u1 and
u2 = u3. If the forged signatures are valid, by assuming Q0 = [r0]G and Q2 = [r2]G,
we have

Q0 = [v−10 h0]G+ [v−10 u0](P + [λ0][α]G),
Q0 = [v−11 h1]G+ [v−11 u0](P + [λ0][α]G),
Q2 = [v−12 h2]G+ [v−12 u2](P + [λ2][α]G),
Q2 = [v−13 h3]G+ [v−13 u2](P + [λ2][α]G).

Let ai = hi/vi for i = 0, . . . , 3, b0 = −u0/v0, b1 = −u0/v1, b2 = −u2/v2 and
b0 = −u2/v3. C computes α′ as follows:

α′ =
(a0 − a1)(b2 − b3)− (a2 − a3)(b0 − b1)

(λ0 − λ2)(b0 − b1)(b2 − b3)
.

If Q0 = −[r0]G or Q2 = −[r2]G, C can compute α′ in a similar way and test its
correctness by checking if [α′]G = [α]G and find the solution to the DLP. By the

Multiple-Forking Lemma, C solves the DLP with probability O( ε4(k)
(NH2

+NH3
)6 ) and time

O(t(k)). 2 �

Theorem 4 If there exists an adversary AI that has a non-negligible probability of
success in Game 1 against CL-PKS2 in the random oracle model, then the DLP in
group G can be solved in polynomial time.

2With the help of λ in H3, a tighter reduction could be established but with much more compli-
cated analysis.
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Theorem 4 follows from Lemma 3 and 4.

Theorem 5 If there exists an adversary AII that has a non-negligible probability of
success in Game 2 against CL-PKS2 in the random oracle model, then the DLP in
group G can be solved in polynomial time.

The reduction in Theorem 3 can be simply modified for CL-PKS2 but still based
on the strong semi-logarithm assumption. Applying the Multiple-Forking Lemma, the
security of CL-PKS2 against AII can be reduced to the DLP. We skip the details.

Similar techniques used in the reductions for CL-PKS2 can be applied to analyze
CL-PKS3 and we have following results. Again the use of λ in H3 can help to construct
tighter reductions.

Theorem 6 If there exists an adversary AI that has a non-negligible probability of
success in Game 1 against CL-PKS3 in the random oracle model, then the DLP in
group G can be solved in polynomial time.

Theorem 7 If there exists an adversary AII that has a non-negligible probability of
success in Game 2 against CL-PKS3 in the random oracle model, then the DLP in
group G can be solved in polynomial time.

Overall, CL-PKS2 and CL-PKS3 are secure schemes with regard to Definition 2
in the random oracle model based on the DL assumption. With two results from
Lemma 2 and Theorem 3, CL-PKS1 still lacks a formal security analysis against
the A−Ib adversary without resorting to the generic group model or introducing new
complexity assumption. On the other hand, the argument in Section 4.3 has demon-
strated its security strength against potential attacks. Particularly, with the result of
Lemma 1, it is shown that CL-PKS1 is more secure than ECQV+ECDSA.

6 Performance Evaluation and Application

We first compare the proposed CL-PKS schemes with the related schemes including
existing CL-PKS schemes and standard signature schemes using implicit certificates.
Many CL-PKS schemes with or without pairing are proposed in the literature. Pairing
(denoted by P, which is a bilinear map: G1 × G2 → G3 such that G1 and G2 are
two cyclic groups and G3 is a related extension field) is a much heavier computation
operation than the point scalar (denoted by S) or exponentiation (denoted by E)
in field G3. We don’t list all the existing CL-PKS schemes. Instead, only some
commonly referred pairing-based schemes and some most efficient pairing-free schemes
are compared. |G| and |q| denote the bit length of the size of a group G and an integer
q respectively.

According to Table 8, it is known that our schemes are among the most efficient
ones. One may compute OA first and then call ECDSA verification process so to
for example make use of the hardware implementation of the algorithm. When a
pre-computation of point scalar of PKGC is implemented, computing OA in CL-PKS1
could be six to eight times faster than the one in ECQV+ECDSA. Moreover, CL-
PKS1 doesn’t suffer from the Kravitz attack that affects ECQV+ECDSA.

As explained, CL-PKS1 can be realized by reusing the existing implementation of
ECDSA. This is a particularly important advantage in practice because many security
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Table 8: Performance Comparison

Scheme Key size Computation Signature
Private Public Signing Verification size

AP[1] |G1| 2|G1| 1P + 3S 4P + 1E |G1|+ |q|
CPHL[19] |G1| |G1| 2S 2P + 2S 2|G1|

HMSWW[30] |q|+ |G1| |G1| 1S 3P |G1|
ZWXF[52] |q|+ |G1| |G1| 3S 4P 2|G1|

ZZZ[53] |q|+ |G1| |G2| 1S + 2E 1P + 3E |G1|+ 2|q|
HRL[27] |q| |q|+ |G| 1S 5S 2|G|
HCZ[29] |q| 2|G| 1S 3S |G|+ |q|
JHLC[34] |q| 2|G| 1S 3S |G|+ |q|

LXWHH[37] 2|q| 2|G| 1S 3S 2|q|
YSCC[51] |q| |G| 1S 3S |G|+ |q|

PH/OMC+
ECDSA[42, 14] |q| |G| 1S 3S 2|q|
Arazi/ECQV+
ECDSA[5, 17] |q| |G| 1S 3S 2|q|

CL-PKS1 |q| |G| 1S 3S 2|q|

CL-PKS2 |q| |G| 1S 3S |p|+ |q|
CL-PKS3 |q| |G| 1S 3S |G|+ |q|
CL-PKS4 |q| |G| 1S 3S 2|q|

elements (SE) have ECDSA embedded and the private key is protected within the SE.
Deploying CL-PKS1 doesn’t need to modify existing hardware chips and won’t cause
extra security concerns because the signing process can use the private key stored in
SE in the same way as ECDSA.

We have implemented CL-PKS1 on the 32-bit Cortex-M4 MCU STM32F4 to
evaluate the performance. STMicroelectronics provides a crypto library [47], which
has interfaces to access the implementation of ECDSA and point scalar operation
over the NIST p256 elliptic curve. The signing process of CL-PKS1 can directly
call ECDSA signature generation function in the library by signing on (λ‖m). The
verification process first calls the scalar and addition operations to compute OA and
then calls the verification function of ECDSA in the library. We have also implemented
CL-PKS1 from scratch to evaluate the performance of a native implementation of the
scheme. In the implementation, the Montgomery modular is applied to compute
multiplication in Fp. The addition and multiplication operations are implemented
with the assembly language. The code is compiled with -O3 option and speed is
measured with STM32F4 working at 168MHz.

Table 9: Implementation of CL-PKS1 on STM32F4

Implementation STM crypto lib. Our software
Code size 15K 11K
Stack size 0.5K 0.7K

Signing time 0.078s 0.058s
Verification time 0.076s(scalar)+0.104s(ECDSA ver.) 0.132s
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Our software implementation is even faster than the one using the library provided
by STMicroelectronics. The speed of the implementation appears quick enough for
most applications.

Systems employing CL-PKS will enjoy the benefit of lightweight key management.
For example, inter-domain authentication in the Internet of Things such as V2X com-
munication [16] requires PKC-based security solutions. Considering the constrained
resource, diversity of devices and the scale of the IoT, an efficient CL-PKS scheme
like CL-PKS1 offers clear advantages over the certificate-based, identity-based, and
raw public key with out-of-band validation (RPK-OOBV) solutions. The certificate
size and the complicated validation process could quickly drain available resources of
a constrained device (see [46] for a detailed evaluation of the impact of a certificate on
IoT devices). The RPK-OOBV has small public key data but requires other validation
mechanisms such as DNSSEC. On the other hand, the proposed CL-PKS has small
key size as RPK-OOBV and removes the necessity of public key validation. With
only slightly larger communication overhead by including the public key PA as part
of a signature as suggested in [7], CL-PKS can work just like an IBS but is free from
the key-escrow concern. Certainly, CL-PKS1 can play the role of ECQV+ECDSA
in [16] to achieve better security and possibly a higher performance if the public key
calculation process can make use of point scalar pre-computation with PKGC .

7 Conclusion

In this work, we redefine the formulation of CL-PKC to unify it with security mech-
anisms using implicit certificates. We then construct a CL-KGA from the Schnorr
signature and prove its security in the random oracle model. Furthermore, we demon-
strate that using the assignment computed in the CL.Extract-Partial-Key process as
the key prefixing in the message signing process helps improve the security of a CL-
PKS that combines a secure CL-KGA with a standard signature algorithm. Several of
such CL-PKS schemes are described. CL-PKS1 can be implemented based on existing
security elements that support ECDSA. Security analysis shows that CL-PKS1 has
stronger security than the composition of ECQV with ECDSA. CL-PKS2 and CL-
PKS3 have full security reductions based on the discrete logarithm assumption in the
random oracle model. The results presented in the work may also shed light on the
way of using ECQV with ECDSA. With little cost, the security of the ECQV-based
signature scheme can benefit from the key prefixing technique. However, whether
using the assignment as the key prefixing allows universal composability of a secure
CL-KGA with a EUF-CMA-secure DSA, which fits in with the general framework
defined in ISO/IEC 14888-3, remains an open problem.
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8 Appendix

8.1 The ECQV Implicit Certificate Scheme as a CL-KGA

For reference, we reprint the ECQV implicit certificate scheme following the descrip-
tion in [17] under the formulation of CL-KGA. ECQV uses the same CL.Setup and
CL.Set-User-Key as the one in Section 3.

CL.Extract-Partial-Key(Mpk, Msk, IDA, UA)

1. w ∈R Z∗q .

2. X = [w]G.

3. W = UA +X.

4. CertA = Encode(W, IDA, ∗).

5. λ = H2(CertA).

6. t = (s+ λ · w) mod q.

7. Output (WA = W,dA = t).

CL.Set-Private-Key(Mpk, IDA, UA, xA, WA, dA)

1. CertA = Encode(WA, IDA, ∗).
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2. λ = H2(CertA).

3. Output sA = (λxA + dA) mod q.

CL.Set-Public-Key(Mpk, IDA, UA, WA)

1. Output PA = WA.

CL.Calculate-Public-Key(Mpk, IDA, PA)

1. CertA = Encode(PA, IDA, ∗).

2. λ = H2(CertA).

3. OA = [λ]PA + PKGC .

CL.Verify-Key(Mpk, IDA, PA, sA)

1. CertA = Encode(PA, IDA, ∗).

2. λ = H2(CertA).

3. P ′A = [1/λ]([sA]G− PKGC).

4. Output valid if PA = P ′A, and invalid otherwise.

8.2 Another CL-KGA

Here we describe another CL-KGA scheme in which CL.Extract-Partial-Key uses
UA as part of IDA to generate dA as suggested in [1]. Function CL.Setup and
CL.Set-User-Key remain unchanged as the one in Section 3.

CL.Extract-Partial-Key(Mpk, Msk, IDA‖UA, ∅)

1. Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA‖xUA‖yUA).

2. w ∈R Z∗q .

3. W = [w]G.

4. λ = H2(xW ‖yW ‖Z).

5. t = (w + λ · s) mod q.

6. Output (WA = W,dA = t).

CL.Set-Private-Key(Mpk, IDA, UA, xA, WA, dA)

1. Output sA = (xA + dA) mod q.

CL.Set-Public-Key(Mpk, IDA, UA, WA)

1. Output PA = (UA,WA).

CL.Calculate-Public-Key(Mpk, IDA, PA)
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1. Parse PA as (UA,WA).

2. Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA‖xUA‖yUA).

3. λ = H2(xWA
‖yWA

‖Z).

4. OA = UA +WA + [λ]PKGC .

CL.Verify-Key(Mpk, IDA, PA, sA)

1. Parse PA as (UA,WA).

2. Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA‖xUA‖yUA).

3. λ = H2(xWA
‖yWA

‖Z).

4. W ′A = [sA]G− UA − [λ]PKGC .

5. Output valid if WA = W ′A, and invalid otherwise.

Compared with the keypair generation process in Section 3, CL.Extract-Partial-
Key here treats UA as part of IDA as proposed in [1] and the published public key
PA now has two points. The input to CL.Set-Public-Key in [1] has xA and does
not include the output of CL.Extract-Partial-Key, so it is unable to include W
in PA. Hence, the construction here does not fully fit with the Al-Riyami-Paterson
formulation.

8.3 CL-PKS from SM2-DSA

Here we present a CL-PKS scheme based upon the SM2 digital signature algo-
rithm [21] as in Table 10. The key generation process makes use of the CL-KGA
in Section 3. Here, we use Z‖xPA‖yPA instead of λ as the key prefixing, and this
makes the algorithm closer to the plain SM2.

Table 10: CL-PKS4 from SM2-DSA

CL.Sign(Mpk, IDA, PA, sA, m) CL.Verify(Mpk, IDA, PA, m, σ)

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. e = H3(Z‖xPA‖yPA‖m).

3. r ∈R Z∗q .

4. Q = [r]G.

5. u = (e+ xQ) mod q.

6. v = (1 + sA)−1 · (r− u · sA) mod q.

7. Output σ = (u, v).

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. OA = PA + [λ]PKGC .

4. e = H3(Z‖xPA‖yPA‖m).

5. t = (u+ v) mod q.

6. Q′ = [v]G+ [t]OA.

7. u′ = (e+ xQ′ ) mod q.

8. Output valid if u = u′, and invalid
otherwise.

In CL.Sign, step 3-7 is exactly the signing process on a message digest e in SM2
and in CL.Verify step 5-8 is the verification process in SM2 on a signature with
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respect to a message digest e and public key OA. We note that if the position of
PKGC and W in the operation to generate Z and λ is switched in the CL-KGA, then
e could be computed without input PA.
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