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Abstract. In this paper, we present an identity-based encryption scheme from codes with efficient key

revocation. Recently, in Crypto 2017, Gaborit et al. proposed a first identity-based encryption scheme

from codes with rank metric, called RankIBE. To extract the decryption key from any public identity, they

constructed a trapdoor function which relies on RankSign, a signature scheme proposed by Gaborit et al.

in PQCrypto 2014. We adopt the same trapdoor function to add efficient key revocation functionality in

the RankIBE scheme. Our revocable IBE scheme from codes with rank metric makes use of a binary tree

data structure to reduce the amount of work in terms of key updates for the key authority. The total

size of key updates requires logarithmic complexity in the maximum number of users and linear in the

number of revoked users. We prove that our revocable IBE scheme is selective-ID secure in the random

oracle model, under the hardness of three problems: the Rank Syndrome Decoding (RSD) problem, the

Augmented Low Rank Parity Check Code (LRPC+) problem, and the Rank Support Learning (RSL) problem.

Keywords : Code-based Cryptography, Identity-based Encryption, Key Revocation, Rank Metric, LRPC

Codes, RSD Problem.

1 Introduction

The security of traditional public-key cryptosystems relies mainly on the hardness of factoring large integers,

solving discrete logarithmic problems, etc. In the presence of quantum computers, these hard problems would be

solvable in polynomial time using Shor’s algorithm [33]. Therefore, it is the need of time to design and analyze

post-quantum secure cryptosystems, the importance of which has also been reflected in the efforts made by NIST

for standardization of post-quantum secure cryptographic protocols [11]. The currently known post-quantum

secure cryptosystem emerge from one of these fields: lattice-based, code-based, hash-based and multivariate

polynomial based cryptosystems. In particular, our proposed revocable identity-based encryption scheme relies

on hard problems from codes with rank metric.

Code-based Cryptography. The history of code based cryptography is as old as of public key cryptography.

The first code based encryption scheme relying on Hamming metric, McEliece cryptosystem [27] was introduced

in 1978, that uses binary Goppa codes. Its security is based on indistinguishability of Goppa codes from random

codes and the inherent complexity of decoding a random linear code, which is considered to be NP-complete [7].
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Although it provides fast encryption and decryption procedures, it requires an extremely large public key. Till

date, the original proposal made by McEliece has been extensively analyzed and unbroken, but the large public

key size makes it impractical to use. Various attempts have been made to overcome this drawback, in terms of

using quasi-cyclic codes with different underlying algebraic code, mainly subfamilies of alternant codes [6,17,28].

However, most of these were broken by using structural attacks [15]. To prevent the structural attacks and to

reduce the public key size, low-density parity-check codes (LDPC) [23] with quasi-cyclic parity check matrix were

introduced and analyzed in [3–5]. The drawback of LDPC codes is that the low weight rows can be seen as

low weight codewords in the dual code [30]. In 2013, a promising variant of McEliece cryptosystem (with small

key) based on quasi-cyclic moderate density parity-check codes (QC-MDPC) [29] was introduced with a security

reduction to syndrome decoding problem for a random quasi-cyclic linear code.

In 1985, Gabidulin [16] proposed rank metric as an alternative to Hamming metric. Indeed, Gabidulin [16]

showed that it is possible to construct a rank analogue of Reed-Solomon codes, called Gabidulin codes. The

generic syndrome decoding problem for the rank metric is considered to be harder than for the Hamming metric.

Many variants of McEliece cryptosystem were proposed based on different masking scheme of Gabidulin codes,

but most of these were broken by using structural attacks because of the strong algebraic structure of these codes.

To avoid structural attacks, Gaborit et al. [19] introduced Low Rank Parity Check (LRPC) codes, similar to

LDPC/MDPC codes. One of the major advantages of LRPC codes is that the decoding error probability can be

made arbitrarily small by choosing suitable parameters. Moreover, the complexity of best-known attacks against

rank-metric based cryptosystems grows very quickly with the size of parameters. It is possible to obtain a general

instance of the rank syndrome decoding problem for (say) 280 security with small public key [19].

Identity-based Cryptography. The idea of identity-based cryptography was first introduced by Shamir [32]

in 1984, where the public key of a user is his identity (e.g., email address). The private key corresponds to public

identity is issued by a trusted authority called private key generator (PKG), who has the knowledge of some extra

secret information to generate private keys. This simplifies the public key infrastructure (PKI) and eliminates the

requirement of certificate authorities. In his seminal work, Shamir also proposed a concrete implementation of

identity-based signature (IBS) scheme. However, he conjectured that the identity-based encryption (IBE) scheme

exists as well. In 2001, Boneh and Franklin [9] proposed a fully functional IBE, built on elliptic curves with bilinear

pairings. In 2010, Agrawal et al. [1] proposed an efficient IBE based on lattices. Recently, in 2017, Gaborit et

al. [18] also proposed a solution to a long standing open problem of building an IBE from codes.

The problem of efficient revocation, has been widely studied in both PKI and IBE settings. In the IBE setting,

Boneh and Franklin [9] suggested that users renew their private key periodically. However, their proposal requires

PKG has to be online for the process of key updates and keeping the PKG online can be a bottleneck for a

vast number of users. In 2008, Boldyreva et al. [8] significantly improved the technique suggested by Boneh and

Franklin [9] and reduced the authority’s periodic workload to be logarithmic (instead of linear) in the number of

users while keeping the scheme efficient for senders and receivers. Their revocable IBE scheme [8] uses a binary

tree data structure. A similar idea of building a revocable IBE scheme from lattices was adapted by Chen et

al. [10]. They extended IBE scheme of Agrawal et al. [1] to revocable IBE by adopting binary tree data structure.

Later, Wang and Bi [34] also introduced an identity-based broadcast encryption from lattice-based delegation

technique. Motivated by all these developments, we also build an efficiently revocable IBE scheme from codes.
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1.1 Our Results

We construct a revocable IBE (RIBE) from codes with rank metric in the random oracle model. Our construction

of RIBE makes use of the following building blocks: (i) IBE from codes with rank metric [18]; (ii) trapdoors

using RankSign from codes with rank metric [21]; and (iii) the binary tree data structure for key update used

in [2, 8, 10,25,31].

We note that our RIBE scheme is not a straightforward combination of the aforementioned building blocks

since we require that a user’s public key consists of two components: identity (id) and time (t), in order to obtain

the non-interactive key revocation procedure. Thus, our construction requires two instances of Gaborit et al.’s IBE

scheme to deal with identities and times respectively. Furthermore, Gaborit et al.’s IBE requires the public key

as (A,G), whereas our RIBE requires the public key (A,G,u). We require an extra random vector u to link the

identity with time for each node associated to the binary tree. Briefly speaking, this can be achieved by randomly

splitting the vector u into two vectors u1, u2 for each node corresponding to identity and time, respectively. A

similar idea is also used in lattice-based RIBE construction of Chen et al. [10]. However, embedding identity and

time attributes with additive shares u1, u2 of vector u in our construction is a different approach.

Though the key generation process is different in our RIBE scheme but the encryption and decryption process

is quite similar to IBE [18], in terms of construction and computational requirement. We are able to add revocable

functionality without any increase in the size of ciphertext. The inclusion of binary tree data structure improves

the efficiency of secret key updates. The key authority needs to perform key updates which has logarithmic

complexity in the maximal number of users and linear complexity in the number of revoked users.

We prove that our RIBE scheme is selective-ID secure in the random oracle model. The security of RIBE relies

on three hard problems: Rank Syndrome Decoding (RSD) problem, Rank Support Learning (RSL) problem and

the Augmented Low Rank Parity Check Code (LRPC+) problem.

1.2 Organization of the Paper

This paper is organized as follows. Section 2 presents the basic definitions, Section 3 covers the background on

codes with rank metric, RankSign signature scheme, and how to sample secrets using trapdoors. We then describe

the construction of revocable IBE (RIBE) from codes with rank metric in Section 4. Section 4.3 proves that

RIBE is IND-sRID-CPA secure in the random oracle model and Section 4.4 suggests general parameters. Section 5

concludes the work. In Appendix A, we discuss the hardness of rank syndrome decoding problem. In Appendix B,

we state and prove the lemma for the indistinguishability of syndromes generated using augmented parity-check

matrix. In Appendix C, we provide the complete security proof of our RIBE.

2 Definitions

2.1 Notation

Let N denote the set of natural numbers and {0, 1}∗ denotes the set of all binary strings of finite length. We let

λ ∈ N to be a security parameter. We say that a function ε : R≥0 → R≥0 is negligible if ε(λ) is smaller than all

polynomial fractions for sufficiently large λ. We say that an event happens with overwhelming probability if it

happens with probability at least 1− ε(λ) for some negligible function ε. If S is a finite set then x
$←− S denotes

that x is selected uniformly at random from S. If D is a distribution, x← D denotes that x is chosen at random

according to D. Let q denote a power of prime p. The finite field with q elements is denoted by Fq and more
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generally for any positive integer m the finite field with qm elements is denoted by Fqm . We use bold lowercase

and capital letters to denote vectors and matrices respectively. For two matrices A, B of compatible dimensions,

we let (A|B) and

(
A

B

)
respectively denote the horizontal and vertical concatenations of A and B.

2.2 Syntax of Revocable IBE

Here, we recall the definition of revocable IBE scheme from [8].

Definition 1 (Revocable IBE). An identity-based encryption with efficient revocation or simply Revocable

IBE scheme RIBE = (S,SK,KU ,DK, E ,D,R) is defined by seven algorithms and has associated message space

M, identity space I and time space T . We assume that the size of T is polynomial in the security parameter. Each

algorithm is run by an entity which is of one of the following types – key authority, sender or receiver. Key authority

maintains a revocation list RL and state ST. We say an algorithm is stateful if it updates RL or ST.

• The stateful setup algorithm S (run by key authority): takes as input the security parameter 1λ and the number

of users N , and outputs public parameters PP, master secret key MSK, revocation list RL (initially empty)

and state ST.

• The stateful private key generation algorithm SK (run by key authority): takes as input public parameters

PP, master secret key MSK, identity id ∈ I and state ST, and outputs the private key SKid and an updated

state ST.

• The key update generation algorithm KU (run by key authority): takes as input the public parameters PP,

master secret key MSK, key update time t ∈ T , revocation list RL and state ST, and outputs key update KUt.

• The deterministic decryption key generation algorithm DK (run by receiver): takes as input the private key

SKid and key update KUt, and outputs decryption key DKid,t, or a special symbol ⊥ indicating that id was

revoked. (We say that an identity id was revoked at time t if revocation algorithm R was run by key authority

on input (id, t,RL,ST) for any RL, ST.)

• The encryption algorithm E (run by sender): takes as input the public parameters PP, identity id ∈ I,

encryption time t ∈ T and message m ∈ M, and outputs ciphertext c. For simplicity and without loss of

generality, we assume that id, t are efficiently computable from c.

• The decryption algorithm D (run by receiver): takes as input the decryption key DKid,t and ciphertext c, and

outputs a message m ∈M or a special symbol ⊥ indicating that the ciphertext is invalid.

• The stateful revocation algorithm R (run by key authority): takes as input the identity id ∈ I to be revoked,

revocation time t ∈ T , revocation list RL and state ST, and outputs an updated revocation list RL.

The consistency condition requires that for all λ ∈ N, all PP and MSK output by setup algorithm S, all m ∈M,

id ∈ I, t ∈ T and all possible states ST and revocation lists RL, if identity id was not revoked before or, at time t

then the following experiment returns 1 except with a negligible probability:

(SKid,ST)
$←− SK(PP,MSK, id,ST); KUt

$←− KU(PP,MSK, t,RL,ST)

DKid,t
$←− DK(SKid,KUt); c

$←− E(PP, id, t,m)

If D(DKid,t, c) = m, then return 1 else return 0.
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2.3 Security of Revocable IBE

Boldyreva et al. [8] formalized the selective-revocable-ID security that captures the usual notion of selective-ID

security and also takes revocation into account. In addition to a private key generation oracle SK(·) that outputs

private keys for identities of its choice, the adversary is allowed to revoke users at will using a dedicated oracle

R(·, ·) (taking as input identities id and time t) and can obtain key update information (which is assumed to

be public) for any time t via queries to KU(·). We follow the same definition from Boldyreva et al. [8]. For an

adversary A and number of users N , we define the following experiment:

Experiment Expind−srid−cpaA,RIBE (1λ) :

(id∗, t∗, state)
$←− A(1λ)

(PP,MSK,RL,ST)
$←− S(1λ, N)

(m0,m1, state)← ASK(·),KU(·),R(·,·)(PP, state)

β
$←− {0, 1}

c∗ ← E(PP, id∗, t∗,mb)

β′ ← ASK(·),KU(·),R(·,·)(PP, c∗, state)

If β′ = β, then return 1, else return 0.

The following conditions must always hold:

• m0,m1 ∈M and |m0| = |m1|.
• KU(·) and R(·, ·) can be queried on time which is greater than or equal to the time of all previous queries,

i.e., the adversary is allowed to query only in non-decreasing order of time. Also, the oracle R(·, ·) cannot be

queried at time t if KU(·) was queried at time t.

• If SK(·) was queried on identity id∗ then R(·, ·) must be queried on (id∗, t∗) for any time t ≤ t∗, i.e., identity

id∗ must be in RL when key update oracle KU(·) is queried at time t∗.

We define the advantage of A as the quantity

Advind-srid-cpaA,RIBE (λ) :=

∣∣∣∣Pr[β′ = β]− 1

2

∣∣∣∣ .
Definition 2. The scheme RIBE is said to be IND-sRID-CPA secure if the function Advind-srid-cpaA,RIBE (λ) is negligible

in λ for any efficient adversary A.

3 Background on Codes with Rank Metric

Definition 3. (Rank metric over Fnqm) Let x = (x1, x2, · · · , xn) ∈ Fnqm and consider an arbitrary basis

(β1, β2, · · · , βm) of Fmqm of Fqm viewed as an m-dimensional vector space over Fq. Then each entry xj in this

basis can be written as xj =
∑m
i=1 xijβi. The m × n matrix associated with x is given by M(x) = (xij)1≤i≤m

1≤j≤n
.

The rank weight of x, denoted by ‖x‖ is defined as:

‖x‖ = Rank M(x).

The rank distance between elements x and y, denoted as d(x,y) is defined by d(x,y) = ‖x− y‖.
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Note 1. It can be easily seen that the rank weight is invariant under the choice of basis. One can refer to [26] for

more properties of codes with rank metric.

Rank Code. A rank code C of length n and dimension k is a subspace of dimension k of Fnqm , embedded with

the rank metric. The generator matrix G of C, is of size k × n, consisting of k linearly independent rows.

Minimum Rank distance: Let C be a rank code over Fqm then r
def
== minc1 6=c2∈C d(c1, c2) is the minimum rank

distance of C.

Dual Code. One can define usual inner product on Fnqm , to define dual of C. The dual code C′ has dimension

n− k and the corresponding generator matrix say H of size (n− k)× n, forms a parity check matrix for C.

Support of x. Let x = (x1, x2, · · · , xn) ∈ Fnqm be a vector of rank weight r. Define the set E = 〈x1, x2, . . . , xn〉Fq
,

the Fq-linear subspace of Fqm generated by the linear combinations of x1, x2, · · · , xn over Fq. The subspace E is

called the support of x and is denoted by Supp(x).

3.1 Bounds for Rank Metric Codes.

To present the analogues of Singleton and Gilbert-Varshamov bound for codes with rank metric, we recall the

following definitions (given a vector x ∈ Fnqm):

• Sphere of radius ` centered at x: S(x, n,m, q, `) = {y ∈ Fnqm | d(x,y) = `}.
• Ball of radius ` centered at x : B(x, n,m, q, `) = ∪`i=0S(x, n,m, q, i).

Since the rank metric is invariant under the translation of vectors, the volume of a sphere and ball does not

depend on the center. Therefore, we can define S(n,m, q, `) which is equal to number of m× n, q-ary matrices of

rank `, where 0 ≤ ` ≤ min(m,n). Clearly S(n,m, q, 0) = 1. Moreover, one can show that [26]:

S(n,m, q, `) =

`−1∏
j=0

(qn − qj)(qm − qj)
q` − qj

.

B(n,m, q, `) =
∑̀
i=0

S(n,m, q, i).

Definition 4 (Rank Gilbert-Varshamov bound (RGV)). For a linear code [n, k] over Fqm with rank metric,

the Rank Gilbert-Varshamov (RGV) bound is defined as the smallest integer `, such that B(n,m, q, `) ≥ qm(n−k).

From decoding point of view, the Gilbert-Varshamov bound for a code C, with parity check matrix H, is the

smallest weight r such that for any syndrome s, there exists on average a codeword x of weight r such that

HxT = s. In the case of codes with rank metric, for m = n, asymptotically we have [26]:

RGV (n, k,m, q)

n
∼ 1−

√
k

n
.

Definition 5 (Singleton Bound). The singleton bound for codes with rank metric of minimum rank r, is given

by r ≤ n− k + 1; when n > m this bound can be rewritten as [26]: r ≤ 1 +

⌊
(n− k)m

n

⌋
.
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3.2 Low Rank Parity Check Codes

Definition 6 (Low Rank Parity Check Codes [19]). A Low Rank Parity Check (LRPC) code of rank d,

length n and dimension k over Fqm is a code defined by an (n− k)× n parity check matrix H = (hij), such that

all its coordinates hij belong to the same Fq-subspace F of dimension d of Fqm . We denote by {F 1,F 2, . . . ,F d}
a basis of F .

The decoding error probability for LRPC codes can be made arbitrarily small up to
n− k
d

errors [19].

Definition 7 (Augmented Low Rank Parity Check (LRPC+) Codes [21]). Let H ∈ F(n−k)×n
qm be a

homogeneous matrix of full-rank and of weight d, i.e., all its entries belong to the same Fq-vector subspace of

dimension d. Let R ∈ F(n−k)×`
qm be a random matrix. Let P ∈ GLn−k(Fqm) and Q ∈ GLn+`(Fq) be two invertible

matrices. Let H ′ = P (R|H)Q be a parity-check matrix of a code C of type [n + `, ` + k]. By definition, such a

code is an LRPC+ code. If ` = 0, C is an LRPC code.

Definition 8 (Simple Codes [18]). A code C is said to be (n, k, `)-simple when it has a parity-check matrix H

of the form

H =

(
0`

In−k
R

)
where In−k is the (n − k) × (n − k) identity matrix, 0` is the zero-matrix of size ` × k and R is a matrix over

Fqm of size (n− k− `)× k. It is called a random simple code if R is chosen uniformly at random among matrices

of this size.

Decoding of Simple Code. Let C be a random (n, k, `)-simple code with ` <
m+ n−

√
(m− n)2 + 4km

2
and

w an integer. If w ≤ `, then C can decode an error of weight w with probability of failure pf ∼
1

q`−w+1
when

q →∞ [18].

3.3 Hard Problems for Rank-based Cryptography

The security of code based cryptosystems generally relies on the hardness of syndrome decoding problem. We

define the rank metric version of this problem.

Definition 9 (Rank (Metric) Syndrome Decoding Problem (RSD)). Let H be a full rank (n − k) × n
matrix over Fnqm with k ≤ n, s ∈ Fn−kqm and w be an integer. The problem is to find x ∈ Fnqm such that Rank(x) = w

and Hx = s. We denote this problem as the RSDq,m,n,k,w problem.

The RSD problem has recently been proven hard in [22] on probabilistic reduction. We also discuss the hardness

of RSD problem in Appendix A. This problem has an equivalent dual version. Let H be a parity-check matrix of

a code C and G be a generator matrix. Then the RSD problem is equivalent to find m ∈ Fkqm and x ∈ Fnqm such

that mG + x = y with Rank(x) = w and y some preimage of s by H.

Definition 10 (Decisional Rank Syndrome Decoding Problem (DRSD)). Let G be a full rank k × n

matrix over Fqm , m ∈ Fkqm and x ∈ Fnqm of weight w. Can we distinguish the pair (G,mG+x) from (G,y) with

y
$←− Fnqm ?

7



The hardness of the DRSD problem is proven in [18].

Definition 11 (Rank Support Learning (RSL) Problem [18]). Let A be a random full-rank matrix of size

(n− k)× n over Fqm and U be a subspace of Fqm of dimension w. Let O be an oracle which gives samples of the

form (A,Av), where v
$←− Un. The RSLq,m,n,k,w problem is to recover U given only access to the oracle. We say

that the problem is (N, t, ε)-hard if for every probabilistic algorithm A running in time t, we have

Pr[A(A,AV ) = U ] ≤ ε, V
$←− Un×N

When we are allowed to make exactly N calls to the oracle, we denote this problem by RSLq,m,n,k,w,N problem. The

pair (A,AV ) is referred to as an instance of the RSLq,m,n,k,w,N problem. The corresponding decisional problem,

namely DRSL, is to distinguish (A,AV ) from (A,Y ) where Y
$←− F(n−k)×N

qm .

The RSLq,m,n,k,w,N problem is proven as hard as RSDq,m,n,k,w problem in [18].

Definition 12 (LRPC+ Problem [21]). Given an augmented LRPC code, distinguish it from a random code

with the same parameters.

The hardness of this problem is studied in [21,24].

3.4 RankSign Algorithm

We will use RankSign algorithm [21] to construct trapdoors which will be used to generate the secret keys

corresponding to identity and time in our RIBE. The security of RankSign algorithm relies on the hardness

of the RSD problem.

In short, the RankSign algorithm uses an efficient decoding algorithm which takes input a random word of the

syndrome space (obtained from the hash of the file we want to sign) and outputs a word of small weight with the

given syndrome. This is an instance of the RSD problem. However, the parity-check matrix H has a trapdoor which

makes the RSD problem easy. The public key is a description of the code which hides its structure, while the secret

key reveals the structure of the code, which allows the signer to solve the RSD problem. The RankSign algorithm

does not compute a codeword of weight below the Gilbert-Varshamov bound, but instead a codeword of rank

weight between the Gilbert-Varshamov and the Singleton bound. The idea is to use a family of augmented Low

Rank Parity Check Codes, and an adapted decoding algorithm (called the General Errors/Erasures Decoding

algorithm) to produce such a codeword from any syndrome. The decoding algorithm is probabilistic, and the

parameters of the code have to be chosen precisely in order to have a probability of success very close to 1. One

can refer to [21] for more details.

3.4.1 Sampling Secrets using Trapdoors from RankSign Algorithm. Similar to the approach of Gaborit

et al. [18], we also adapt the RankSign algorithm to construct a trapdoor, by which one can sample the secrets

corresponding to a public identity. Associated to a matrix A ∈ F(n−k)×n
qm , we define the function fA as follows:

fA : Fn−kqm × Fnqm → Fnqm

(s, e)→ sA + e

8



The matrix A is generated with a trapdoor T such that fA is a trapdoor function: from a random p ∈ Fnqm , with

the trapdoor T , one can sample (s, e) = f−1A (p) such that e is indistinguishable from a random element in Wr,

the set of all words of rank r and of length n.

We extend the same approach to generate secrets corresponding to two attributes identity and time, but these

two attributes are bound together in the sense that two secrets will make a complete decryption key in RIBE

setting. In our case, from a random p ∈ Fnqm and u ∈ Fnqm , with the trapdoor T , one can sample (s, e) = f−1A (p+u)

such that e is indistinguishable from a random element in Wr.

4 Revocable IBE from Codes with Rank Metric

4.1 The Binary Tree Data Structure

Our construction makes use of binary tree data structure as described in [8]. We denote the binary tree by BT

and its root node by root. If v is a leaf node then Path(v) stands for the set of nodes on the path from v to the

root (inclusive of both v and root). Each user is assigned to a leaf node v. Upon registration, the key authority

provides the user with a set of distinct private keys for each node in Path(v). Whenever θ is a non-leaf node,

θ` and θr denote the left and right children of θ respectively. We assume that all nodes in the tree are uniquely

encoded as strings, and the tree is defined by all of its node descriptions.

The KUNodes algorithm run by the key authority, at each time t, determines the minimal set Y ⊂ BT of nodes

that contains an ancestor of all leaves corresponding to non-revoked users. This minimal set precisely contains

nodes for which key updates have to be published in such a way that only non-revoked users will be able to

generate the appropriate decryption key for the matching time. It first marks all ancestors of users that were

revoked by time t as revoked nodes. Then, it inserts in Y the non-revoked children of revoked nodes. It can be

formally specified as follows:

KUNodes(BT,RL, t)

X,Y ← φ

∀(vi, ti) ∈ RL

if ti ≤ t then add Path(vi) to X

∀θ ∈ X
if θ` /∈ X then add θ` to Y , if θr /∈ X then add θr to Y

If Y = φ then add root to Y

Return Y

The key authority then publishes a key update for all the nodes of Y . A user assigned to leaf v is then able to form

an effective decryption key for time t if the set Y contains a node in Path(v). A graphical description is given in

Appendix D.

4.2 Our RIBE Construction

Our Revocable IBE (RIBE) scheme consists of following seven PPT algorithms:

1. Setup S(1λ, N): on input the security parameter λ and a maximal number N of users, set the parameters

(n,m, k, d, `) as specified in subsection 4.4.
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• Let H1 : {0, 1}∗ → Fn+`qm and H2 : {0, 1}∗ → Fn+`qm be two cryptographic hash functions.

• Let H is a parity-check matrix of an LRPC code of weight d over F(n−k)×n
qm . Let R ∈ F(n−k)×`

qm be a

random matrix. Let P ∈ GLn−k(Fqm) and Q ∈ GLn+`(Fq) be two invertible matrices. Let A be a full

rank (k + `)× (n+ `) matrix over Fqm such that H ′AT = 0 with H ′ = P (R|H)Q and the trapdoor T

is (P ,Q).

• Define G ∈ Fk
′×n′
qm a generator matrix of a public simple code C′ which can decode errors of weight up

to 2wr, where w is the weight of a homogeneous matrix used in encryption algorithm, and r is the rank

weight of error vector e of length n+ `.

• Let RL be an empty set and BT be a binary tree with at least N leaf nodes, set ST := BT.

• Select a uniformly random vector u
$←− Fn+`qm .

• Output RL, ST, the public parameters, and the master key MSK,

PP := (A,G,u), MSK := T = (P ,Q).

2. Private key generation SK(PP,MSK, id,ST): on input the public parameters PP, the master secret key

MSK, an identity id and the state ST, it picks an unassigned leaf node v from BT and stores id in that node.

It then performs the following steps:

• ∀θ ∈ Path(v), if uθ,1, uθ,2 are undefined, then pick uθ,1
$←− Fn+`qm , set uθ,2 := u− uθ,1, and store them in

node θ.

• Compute p1 = H1(id) and syndrome xθ,1 = H ′pT
1 + H ′uT

θ,1.

• Sample eθ,1 ∈ Fn+`qm of rank weight r, as H ′eTθ,1 = xθ,1 using RankSign algorithm with trapdoor T .

• Compute sθ,1 ∈ Fk+`qm as p1 + uθ,1 = sθ,1A + eθ,1.

• Output SKid := {(θ, sθ,1)}θ∈Path(v), ST.

3. Key update generation KU(PP,MSK, t,RL,ST): on input the public parameters PP, the master secret key

MSK, a time t ∈ Fnqm , the revocation list RL, and the state ST, it performs the following steps:

• For all θ ∈ KUNodes(BT,RL, t), if uθ,1, uθ,2 are undefined, then pick uθ,2
$←− Fn+`qm , set uθ,1 := u − uθ,2,

and store them in node θ.

• Compute p2 = H2(t) and syndrome xθ,2 = H ′pT
2 + H ′uT

θ,2.

• Sample eθ,2 ∈ Fn+`qm of rank weight r, as H ′eTθ,2 = xθ,2 using RankSign algorithm with trapdoor T .

• Compute sθ,2 ∈ Fk+`qm as p2 + uθ,2 = sθ,2A + eθ,2.

• Output KUt := {(θ, sθ,2)}θ∈KUNodes(BT,RL,t), ST.

4. Decryption key generation DK(SKid,KUt): on input a private secret key SKid := {(i, si,1)}i∈I , and key

update KUt := {(j, sj,2)}j∈J for some set of nodes I, J ; it performs the following steps:

• ∀(i, si,1) ∈ SKid, (j, sj,2) ∈ KUt, if ∃(i, j) such that i = j then DKid,t ← (si,1, sj,2); else (if SKid and KUt

do not have any node in common) DKid,t ← ⊥.

• Output DKid,t.

We can drop the subscripts i, j since they are equal, i.e., DKid,t := (s1, s2). The algorithm finds components

of SKid and KUt (since they are in the same node) such that (p1 + p2 + u) = (s1 + s2)A + (e1 + e2).
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5. Encryption E(PP, id, t,m): on input the public parameters PP, an identity id, a time t, and a message

m ∈ Fk′qm , it performs the following steps:

• Compute p1 = H1(id) and p2 = H2(t).

• Generate a random homogeneous matrix V ∈ F(n+`)×n′
qm of weight w.

• Compute the pair (C,x) of m as(
A

p1 + p2 + u

)
V +

(
0

mG

)
=

(
C

x

)

• Output the ciphertext CT = (id, t,C,x).

6. Decryption D(PP,DKid,t,CT): on input the public parameters PP, a decryption key DKid,t := (s1, s2), and

a ciphertext CT = (id, t,C,x), it performs the following steps:

• Compute p1 = H1(id) and p2 = H2(t).

• Use the decryption key (s1, s2) with s = s1 + s2 to compute

(
s | −1

)(C

x

)
= sC − x

= −(e1 + e2)V −mG.

• Since V is a homogeneous matrix of weight w, and e1, e2 are the error vectors of rank r, we have

‖(e1 + e2)V ‖ ≤ 2wr. Therefore, by using the decoding algorithm of C′, we can recover m.

7. Revocation R(id, t,RL,ST): on input an identity id, a time t, the revocation list RL, and the state ST; let v

be the leaf node associated with id. To revoke the identity id at time t, add (v, t) to RL, and return RL.

4.3 Security Result

Theorem 1. Suppose the hash functions H1 and H2 are random oracles, and the DRSD, DRSL and LRPC+

assumptions hold. Then RIBE scheme is IND-sRID-CPA secure in the random oracle model. More precisely, if

there exists an adversary A against the IND-sRID-CPA security, who makes at most q
H1

and q
H2

distinct queries

to the H1 and H2 random oracles, then the advantage of adversary A is given by the following expression

εribe ≤
(
q
H1

+ q
H2

)
.

(
2

q
+ εdrsd

)
+ εlrpc+ + εdrsl,

where εribe, εdrsd, εdrsl and εlrpc+ are respectively the bound on the advantage of the attacks against the RIBE system,

the DRSD, DRSL and LRPC+ problems.

Proof. The complete proof is given in Appendix C, but we provide its intuition here. We show that a probabilistic

polynomial time adversary A cannot distinguish between the games which proves that the adversary has a

negligible advantage in winning the original IND-sRID-CPA game. In moving from game G0 to G1, we randomly

generate the decryption keys without the knowledge of the trapdoor, and the following relationship still holds

between the decryption key and the public key: p1+p2+u = (s1+s2)A+(e1+e2). To ensure that no information

is leaked about the decryption keys during the game, we consider two kinds of adversaries:
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• Type 1 Adversary: It chooses to be challenged on the targeted identity id∗ but is revoked before or on time

t∗.

• Type 2 Adversary : It does not challenge the target identity id∗ at any time.

The main difficulty we face in simulating the private key generation and key update oracles with identity

id = id∗ and time t = t∗ respectively, for Type-1 adversary. We need to simulate the queries in such a way that

revoked user id∗ does not get key update information at time t∗, since it is revoked at a time t∗. In brief, on

private key query id∗, for nodes θ ∈ Path(v∗), we choose sθ,1, eθ,1, p1 randomly and define the shares uθ,1 and

uθ,2 such that u = uθ,1 +uθ,2. On key update query t∗, for nodes θ /∈ Path(v∗), we choose sθ,2, eθ,2, p2 randomly

and define the shares uθ,2 and uθ,1 such that u = uθ,1 + uθ,2. As a consequence, Type-1 adversary does not get

the key update information at time t∗ for the identity id∗. On the contrary, it is easy to simulate the queries for

Type-2 adversary since it does not query id∗ at any time. Finally, we have a new tuple (p1,u1, s1, e1) which is

random, therefore the advantage of adversary to distinguish a RSD pair (A,p+u = sA+e) with a random one,

is bounded by εdrsd plus some decoding error probability.

In moving from game G1 to G2, we define matrix A to be a random matrix. Note that A is used to generate

the codewords. Thus, the advantage of adversary in distinguishing an augmented LRPC code from a random

code, is bounded by εlrpc+ .

In moving from game G2 to G3, we randomly choose challenged ciphertext, then the problem is reducible to

DRSL problem. Thus, the distinguishing advantage of adversary is bounded by εdrsl.

At the end, in game G4 we bound the advantage of adversary to guess the bit β hidden in perfectly random

ciphertext, which is 1/2. This justifies the bound on the advantage of adversary to break RIBE.

4.4 General Parameters

Here, we discuss the size of parameters for our RIBE scheme against the best known attacks. The parameters

used in our scheme are as follows. Let q is the size of the base field Fq and m is the degree of the extension field

Fqm ; n is the length of the hidden LRPC code; ` is the number of random columns added to the LRPC to hide

it; k is the dimension of the LRPC code and r is the rank weight of the signature e computed by the RankSign

algorithm; (n′, k′, `′) are the parameters of a simple code that can correct up to 2wr errors. To make the density

of decodable syndrome close to 1, these parameters must satisfy the following three conditions [21]:

n = d(n− k); (r − `)(m− r) + (n− k)(rd−m) = 0; r = `+
n− k
d

.

Observe that the three conditions mentioned above are homogeneous if d is constant. Thus, we can make another

set of parameters from one set by multiplying all the parameters (except for d) by a constant. d is the weight of the

LRPC+ code used for public parameters, which should not be too small to ensure the security of public parameters.

A Practical Set of Parameters. From the security result in Theorem 1, we have εribe ≤(
q
H1

+ q
H2

)
.
(

2
q + εdrsd

)
+ εlrpc+ + εdrsl. We need εribe < 2−λ, where λ is the security parameter. Since the first

term only depends upon q and the number of queries q
H1

and q
H2

, thus we need q > (q
H1

+ q
H2

)2λ+1 to hold.

We stress that the size of data and computation time are linear in the logarithmic of q. Moreover, since all the

combinatorial attacks are polynomial in q, thus they are inefficient to break RIBE. Furthermore, the success of

algebraic attacks depends upon the hardness of LRPC+ and DRSD problems.
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The size of parameters for our RIBE are similar to IBE of Gaborit et al. [18] except the case that we have to

choose the parameters of the simple code in such a way that it can decode up to 2wr errors and the decoding

error with failure probability ≈ 1
q`′−2wr+1 is small. As an example, we take the standard values λ = 128 for the

security parameter and q
H1

= q
H2

= 260, and q = 2192 will suffice the standard security requirement.

Scheme n n− k m q d ` r dGV dsign Public Key Size (Bytes) n′ k′ `′ w

RIBE 100 20 96 2192 5 12 16 11 20 4,497,408 of (A,u) 96 9 66 2

With these parameters one can achieve decoding failure probability pf ≈ 2−576, which is negligible.

5 Conclusion and Open Problems

This paper introduced a revocable identity-based encryption scheme, called RIBE from codes with rank metric,

and proved its selective-ID security in the random oracle model, under the hardness of DRSD, DRSL, and LRPC+

problems. As a future work, it might be possible to construct an adaptive-ID secure RIBE scheme. Another open

problem is to construct an adaptive secure IBE and RIBE schemes from rank metric codes in the standard model.
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A Hardness of Rank Syndrome Decoding Problem

The RSD problem has recently been proven hard in [22] on probabilistic reduction. From a practical point of

view, the complexity of attacks grows very fast because of the existing structure in codes. In case of Hamming

metric, a key step in the attacks is to find out the number of codewords of length n and weight w, which equals

to Newton binomial coefficient
(
n
w

)
(exponential in nature); whereas in case of rank metric, the number of such

codewords corresponds to number of subspaces of dimension w in Fqm , which is equal to Gaussian binomial

coefficient of size approximately equal to qw(m−w), whose value is also exponential but with a quadratic term in

exponent. Next, we discuss the complexity of two types of possible generic attacks.

Combinatorial Attacks: These attacks adapt the basic information set decoding approach in rank metric

context, whose complexity increases very fast with large values of q (as seen above). The recent improvements

based on birthday paradox does not fit in case of rank metric because of the different notion of support. In

practice, when m ≤ n, the best combinatorial attacks have complexity O((n− k)3m3q(r−1)b
(k+1)m

n c) [20].

Algebraic Attacks: The nature of the rank metric suites the algebraic attacks and solving equations by Gröbner

basis. These attacks are largely independent of q and in some cases also independent of m. There exist different

settings of algebraic equation, that can be solved with Gröbner basis [12–14, 20]. Algebraic attacks solve the

system of equations over the base field Fq, where the number of unknowns is quadratic in the length of the code.

As the complexity of Gröbner basis technique is exponential in the number of unknowns, it turns out that these

attacks have exponential complexity in the length of the code.

B Distinguishing Lemma

We introduce a slightly modified lemma similar to the result of [18], to prove the security of RIBE.

Lemma 1. Let H ′ be an augmented parity-check matrix and A be a generator matrix of the associated code. The

two following distributions are computationally indistinguishable:

• Suppose D0 be the distribution (p,u, s, e) where p
$←− Fk+`qm , u

$←− Fn+`qm , e ∈ Wr is sampled from RankSign

algorithm such that H ′eT = H ′pT + H ′uT and s is the solution of the linear system xA = p + u − e of

unknown x.

• Suppose D1 be the distribution (p′,u′, s′, e′) with u′
$←− Fn+`qm , s′

$←− Fk+`qm , e′
$←− Wr (where Wr be a set of

codewords of rank weight r), and p′ + u′ = s′A + e′.

The maximum advantage ε of adversary to distinguish D0 from D1 is bounded by : ε ≤ 2
q + εdrsd, where q is the

size of base field Fq and εdrsd is the bound on the successful probability of the attacks against the DRSD problem.

Proof. Let D2 be the distribution (s, e) where s
$←− Fk+`qm and e is a signature of s by RankSign with the public

key H ′ (i.e., ‖e‖ ≤ r and H ′eT = s).
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Let D3 be the distribution (s′ = H ′e′
T
, e′

T
) with e′

$←−Wr. Now, as proved in Theorem 2 of [21], if one sample

(H ′e′
T
, e′

T
) according to distribution D3, then the probability that (H ′e′

T
, e′

T
) is not decodable, is less than 2

q .

Therefore, the advantage of an adversary to distinguish D2 from D3 is bounded by 2
q .

To prove the lemma, now let us examine the distribution D0. Since H ′ is a linear map and p
$←− Fn+`qm ,

u
$←− Fn+`qm , and s = H ′pT + H ′uT is uniformly distributed among Fk+`qm . This implies (s, e) ← D2. Moreover,

(p + u− e) is uniformly distributed among the codewords generated by A, hence s
$←− Fk+`qm .

According to the indistinguishability of D2 and D3, the distribution of e′ and e are computationally

indistinguishable, and s and s′ are both uniformly distributed. Finally, based on the assumption that the DRSD

problem is hard, (p + u) and (p′ + u′) are indistinguishable except the negligible advantage εdrsd.

Putting all together, the advantage of an adversary to distinguish D0 and D1 is bounded by 2
q + εdrsd. ut

C Security Proof of RIBE

Proof. Our proof proceeds in a sequence of games where the first game is identical to the IND-sRID-CPA game

from Definition 2. In the last game of the sequence, the adversary has zero advantage. We show a PPT adversary

cannot distinguish between the games which will prove that the adversary has a negligible advantage in winning the

original IND-sRID-CPA game. The DRSD problem is used in proving that games G0 and G1 are indistinguishable;

LRPC+ problem is used in proving that games G1 and G2 are indistinguishable; and DRSL problem is used in

proving that games G2 and G3 are indistinguishable.

To ensure that no information is leaked about the decryption keys during the game, we consider two kinds of

adversaries:

• Type 1 Adversary: It chooses to be challenged on the targeted identity id∗ but is revoked before or on time

t∗.

• Type 2 Adversary : It does not challenge the target identity id∗ at any time.

At the start of the game, we flip a coin rvk
$←− {0, 1} for the type of adversary with whom we will be faced.

All the sequence of the games for these two types of adversaries are similar except for game G1. We will show

that the adversary cannot distinguish which type of challenger simulated and thus we have probability 1/2 to

simulate the correct game.

Regardless of the value of rvk, for each node θ ∈ BT, we split the public key element u ∈ Fn+`qm into two

specific additive shares (uθ,1,uθ,2) such that u = uθ,1 + uθ,2. We model hash functions H1 and H2 as random

oracles.

Game G0. This is the original IND-sRID-CPA game from Definition 2. An adversary A outputs the challenge

identity id∗ to be targeted at time t∗. Then RIBE.Setup is run, and the adversary A is fed with the public

parameters PP = (A,G,u). A can ask queries to H1, H2 and private key, update key oracles. A also ouputs a

pair of messages (m0,m1). Next a challenge ciphertext is produced by flipping a coin β and producing a ciphertext

CT∗ = (C∗,x∗) = E(PP, id∗, t∗,mβ).

On input CT∗ = (C∗,x∗), A in guessing phase can coninue to ask queries to H1, H2 and private key, update

key oracles, which are different from id∗ and t∗ depending on the type of adevrsary as described above. Finally,

A outputs β′.
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We denote by S0 the event β′ = β and use the same notation Sn in any game Gn for n = 1, 2, . . . as given

below.

AdvIND-sRID-CPA
A,RIBE (λ) := εribe =

∣∣∣∣Pr[S0]− 1

2

∣∣∣∣ ,
where εribe is the bound on the advantage of attacks against the RIBE scheme.

As this is a real attack game, for a private key query on identity id, the private key generation algorithm

SK(PP,MSK, id,RL,ST) is run and the private key is given to A. We recall this algorithm : let v ∈ BT be the

node that we assign to id.

− ∀θ ∈ Path(v), if uθ,1, uθ,2 are undefined, then pick uθ,1
$←− Fn+`qm , set uθ,2 := u−uθ,1, and store them in node

θ.

− Compute p1 = H1(id) and syndrome xθ,1 = H ′pT
1 + H ′uT

θ,1.

− Sample eθ,1 ∈ Fn+`qm of weight r, as H ′eTθ,1 = xθ,1 using RankSign algorithm with trapdoor T .

− Compute sθ,1 ∈ Fk+`qm as p1 + uθ,1 = sθ,1A + eθ,1.

− Output SKid := {(θ, sθ,1)}θ∈Path(v), ST.

For a update key query at time t, the key update generation algorithm KU(PP,MSK, t,RL,ST) is run and the

updated key is given to A. We also recall this algorithm : let v ∈ BT be the node that we assign to id.

− For all θ ∈ KUNodes(BT,RL, t), if uθ,1, uθ,2 are undefined, then pick uθ,2
$←− Fn+`qm , set uθ,1 := u− uθ,2, and

store them in node θ.

− Compute p2 = H2(t) and syndrome xθ,2 = H ′pT
2 + H ′uT

θ,2.

− Sample eθ,2 ∈ Fn+`qm of weight r, as H ′eTθ,2 = xθ,2 using RankSign algorithm with trapdoor T .

− Compute sθ,2 ∈ Fk+`qm as p2 + uθ,2 = sθ,2A + eθ,2.

− Output KUt := {(θ, sθ,2)}θ∈KUNodes(BT,RL,t), ST.

Finally, the decryption key generation DK(SKid,KUt) algorithm is run : on input a private key SKid :=

{(i, si,1)}i∈I , and key update KUt := {(j, sj,2)}j∈J for some set of nodes I, J ; it performs the following steps.

− ∀(i, si,1) ∈ SKid, (j, sj,2) ∈ KUt, if ∃(i, j) s.t. i = j then DKid,t ← (si,1, sj,2); else (if SKid and KUt do not have

any node in common) DKid,t ← ⊥.

− Output DKid,t = (s1, s2).

Game G1. In this game, we modify the answers to the private key queries and key update queries so that it

does not require the trapdoor T anymore. In order to make the answers consistent, we also need to simulate the

queries of random oracles H1 and H2. To do so, we maintain two lists ListH1 and ListH2, initially set to be empty.

ListH1 stores the tuple (id,p1,u1, s1, e1), where p1 is the value that we respond to the H1 query on id, and s1 is

the secret key which corresponds to the public key p1 we generate. ListH2 stores the tuple (t,p2,u2, s2, e2), where

p2 is the value that we respond to the H2 query on t, s2 is the secret key which corresponds to the public key p2

we generate.

The challenger generates vectors for the private key query of id∗ and key update query of t∗ as follows (without

loss of generality, we pick a node v∗ from BT beforehand, to which id∗ may be assigned):
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• If rvk = 0, we simulate the game to face Type-1 adversary.

− On identity id∗ query : if there exists p1 such that (id∗,p1, ·, ·, ·) ∈ H1, return p1; otherwise we pick a

random vector p1
$←− Fn+`qm . Next, we generate uθ,1 and uθ,2 for every node θ in BT as follows:

∗ For all θ ∈ Path(v∗), we pick sθ,1
$←− Fn−kqm and eθ,1

$←− Fnqm . We then generate uθ,1 = sθ,1A+eθ,1−p1,

and set uθ,2 = u− uθ,1. We store uθ,1 and uθ,2 in node θ.

∗ For each node θ, we add the tuple (id∗,p1,uθ,1, sθ,1, eθ,1) to the ListH1
.

− On time t∗ query : if there exists p2 such that (t∗,p2, ·, ·, ·) ∈ H2, return p2; otherwise we pick a random

string p2
$←− Fn+`qm . Next, we generate uθ,1 and uθ,2 for every node θ in BT as follows:

∗ For all θ /∈ Path(v∗), we pick sθ,2
$←− Fn−kqm and eθ,2

$←− Fnqm . We then generate uθ,2 = sθ,2A+eθ,2−p2,

and set uθ,1 = u− uθ,2. We store uθ,1 and uθ,2 in node θ.

∗ For each node θ, we add the tuple (t∗,p2,uθ,2, sθ,2, eθ,2) to the ListH2 .

Since id∗ has been revoked before adversary A has queried for update key at time t∗, thus no ancestor of v∗

lies in the set Y determined by KUNodes at time t∗, i.e., we have KUNodes(BT,RL, t) ∩ Path(v∗) = φ. Then

the challenger responds a private key query for id∗ but using {(θ, sθ,1)}θ∈Path(v∗) and a update key query for

t∗ by using {(θ, sθ,2)}θ∈KUNodes(BT,RL,t∗).

• If rvk = 1, we simulate the game to face Type-2 adversary. Recall that Type-2 adversary A does not query the

private key of id∗ at any time. We generate uθ,1 and uθ,2 for every node θ in BT as follows:

− On time t query : if there exists p2 such that (t,p2, ·, ·, ·) ∈ H2, return p2; otherwise we pick a random string

p2
$←− Fn+`qm . Next, we generate uθ,1 and uθ,2 for every node θ in BT as follows:

∗ We pick sθ,2
$←− Fn−kqm and eθ,2

$←− Fnqm . We generate uθ,2 = sθ,2A + eθ,2 − p2, and set uθ,1 = u − uθ,2.

We store uθ,1 and uθ,2 in node θ.

∗ For each node θ, we add the tuple (t,p2,uθ,2, sθ,2, eθ,2) to the ListH2
.

Since id∗ has never been queried, the challenger responds a update key query for t∗ by using

{(θ, sθ,2)}θ∈KUNodes(BT,RL,t∗). Note that whenever adversary A asks identity id query to H1, we return p1 to

A, whereas for private key queries, we return s1 to A. Similarly, whenever adversary A asks time t query to H2,

we return p2 to A, whereas for key update queries we return s2 to A. We also note that for each node θ ∈ Path(v),

the set of q
H1

tuples (p1,uθ,1, sθ,1, eθ,1) in the previous game are sampled from the distribution D0 (as defined

in Lemma 1) and the set of q
H1

tuples (p1,uθ,1, sθ,1, eθ,1) in this game are sampled from the distribution D1 (as

defined in Lemma 1). Similarly, the set of q
H2

tuples (p2,uθ,2, sθ,2, eθ,2) in the previous game are sampled from

the distribution D0 and the set of q
H2

tuples (p2,uθ,2, sθ,2, eθ,2) in this game are sampled from the distribution

D1. Thus, from Lemma 1, we have

|Pr[S1]− Pr[S0]| ≤ (q
H1

+ q
H2

).

(
2

q
+ εdrsd

)
,

where εdrsl is the bound on the successful probability of the attacks against the DRSD problem.

Game G2. In this game, we define matrix A to be a random matrix. We keep all the simulations for secret key

and update key queries exactly same as in game G1. By the assumption that the LRPC+ problem is hard, i.e., it is

hard to distinguish augmented LRPC code from a random code, this game is indistinguishable from the previous

game G1. Therefore, we have

|Pr[S2]− Pr[S1]| ≤ εlrpc+ ,
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where εlrpc+ is the bound on the successful probability of the attacks against the LRPC+ problem.

Game G3. In this game, we replace (C∗,x∗) by (C∗
$←− F(k+`)×n′

qm ,x∗
$←− Fn′qm). As x∗ is perfectly random,

x∗ −m∗G is also perfectly random. In other words, this game replaces(
A

p1 + p2 + u

)
V =

(
C∗

x∗ −m∗G

)

by a perfectly random matrix. The indistinguishability of two games G2 and G3 follows from the hardness of the

DRSL problem, applying it to the matrix A′ =

(
A

p1 + p2 + u

)
, which is perfectly random because A, p1, p2

and u are all perfectly random. Thus, we have

|Pr[S3]− Pr[S2]| ≤ εdrsl,

where εdrsl is the bound on the successful probability of the attacks against the DRSL problem.

Game G4. In this last game, as the challenge ciphertext CT∗ = (C∗,x∗) is perfectly random and independent,

the bit β is perfectly hidden to any adversary A. Therefore, we have

Pr[S3] = Pr[S4] and Pr[S4] =
1

2
.

Putting all together, we have

εribe ≤
(
q
H1

+ q
H2

)
.

(
2

q
+ εdrsd

)
+ εlrpc+ + εdrsl.

This completes the proof. ut

D Example of Revocation using KUNodes Algorithm

√ ×

√

√

√×

×

×
u1 u2 u3 u4 u5 u6 u7 u8 u1 u2 u3 u4 u5 u6 u7 u8

(a) No user is revoked (b) User u3 is revoked

Fig. 1: A graphical description of the KUNodes(BT,RL, t) algorithm.
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