
Nearly Linear-Time Zero-Knowledge Proofs for
Correct Program Execution?

Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, Mary Maller ??

University College London

Abstract. There have been tremendous advances in reducing interaction,
communication and verification time in zero-knowledge proofs but it
remains an important challenge to make the prover efficient. We construct
the first zero-knowledge proof of knowledge for the correct execution of
a program on public and private inputs where the prover computation
is nearly linear time. This saves a polylogarithmic factor in asymptotic
performance compared to current state of the art proof systems.
We use the TinyRAM model to capture general purpose processor com-
putation. An instance consists of a TinyRAM program and public inputs.
The witness consists of additional private inputs to the program. The
prover can use our proof system to convince the verifier that the program
terminates with the intended answer within given time and memory
bounds. Our proof system has perfect completeness, statistical special
honest verifier zero-knowledge, and computational knowledge soundness
assuming linear-time computable collision-resistant hash functions exist.
The main advantage of our new proof system is asymptotically efficient
prover computation. The prover’s running time is only a superconstant
factor larger than the program’s running time in an apples-to-apples
comparison where the prover uses the same TinyRAM model. Our proof
system is also efficient on the other performance parameters; the verifier’s
running time time and the communication are sublinear in the execution
time of the program and we only use a log-logarithmic number of rounds.

Keywords. Zero-knowledge proofs, succinct arguments of knowledge,
TinyRAM, ideal linear commitments.

1 Introduction

A zero-knowledge proof system [GMR85] enables a prover to convince a verifier
that a statement is true without revealing anything else. We are interested in
proving statements of the form u ∈ L, where L is a language in NP. A zero-
knowledge proof is an interactive protocol between a prover and a verifier, where
both hold the same instance u, and the prover also holds a witness w to u ∈ L.
The protocol should satisfy three properties:

? The research leading to these results has received funding from the European Research
Council under the European Unions Seventh Framework Programme (FP/2007-2013)
/ ERC Grant Agreement n. 307937

?? Supported by a scholarship from Microsoft Research

2

Completeness: A prover holding a witness to u ∈ L can convince the verifier.
Soundness: A cheating prover cannot convince the verifier when u /∈ L.
Zero-knowledge: The interaction only shows the statement u ∈ L is true. It

reveals nothing else, in particular it does not disclose anything of the witness.

Zero-knowledge proofs have numerous applications and are for instance used
in constructions of public-key encryption schemes secure against chosen ciphertext
attack, digital signatures, voting systems, auction systems, e-cash, secure multi-
party computation, and verifiable outsourced computation. The zero-knowledge
proofs impact the performance of all these applications, and it is therefore
important for them to be as efficient as possible.

There are many zero-knowledge proofs for dealing with arithmetic or boolean
circuit satisfiability. However, in applications usually the type of statements we
want to prove is that a protocol participant is following the protocol honestly;
whatever that protocol may be. This means we want to express statements
relating to program execution such as “running program P specified by the
protocol on public input x and private input y returns the output z.” In principle
such a statement can be reduced to circuit satisfiability but the cost of the
NP-reduction incurs a prohibitive cost. In this paper, we therefore focus on
the important question of getting zero-knowledge proofs for statements relating
directly to program execution.

Performance can be measured on a number of parameters including the
prover’s running time, the verifier’s running time, the number of transmitted
bits and the number of rounds the prover and verifier interact. Current state of
the art zero-knowledge proofs get very good performance on verification time,
communication and round complexity, which makes the prover’s running time
the crucial bottleneck. Indeed, since the other costs are so low, we would happily
increase them for even modest savings on the proving time since this is the barrier
that make some applications such as verifiable outsourced computation currently
unviable. The research challenge we focus on is therefore to get prover-efficient
zero-knowledge proofs for correct program execution.

1.1 Our Contribution

We use the TinyRAM model [BCG+13, BSCG+13] for computation. TinyRAM
specifies a random access machine with a small instruction set working on
W -bit words and addresses. The specification of TinyRAM considers a Harvard-
architecture processor, which means that the program being executed is stored
separately from the data being processed and does not change during execution.1

Experimental results [BCG+13] show that programs written in C can be compiled
efficiently into TinyRAM programs and only have a modest constant overhead
compared to optimized compilation to machine code on a modern processor.

1 TinyRAM can with minor changes also be adapted to a von Neumann architecture
where program instructions are fetched from memory [BCTV14b]. The performance
of our proof systems adapted to a von Neumann architecture would remain the same
up to a constant factor.

3

In our proof system, an instance consists of a TinyRAM program and public
data given to the program, and a witness is private data given as input to the
program. The statement is the claim that the TinyRAM program P running on
given public and private data will terminate with answer 0 within specific time
and memory bounds. When measuring performance we think of the prover and
verifier as being TinyRAM programs with the same word size2.

Our main contribution is an interactive proof system for correct TinyRAM
computation, which has perfect completeness, statistical special honest-verifier
zero-knowledge, and computational knowledge soundness based on collision-
resistant hash functions. Knowledge soundness means that not only do we have
soundness and it is infeasible to prove a false statement, but it is also a proof of
knowledge such that given access to a successful prover it is possible to extract a
witness. For maximal asymptotic efficiency we may use linear-time computable
hash functions, which yields the performance given in Fig. 1.

Our proof system is highly efficient for computationally intensive programs
where the execution time dominates other parameters (see Section 5.2 for a
detailed discussion of parameter choices). For a statement about the execution
of a TinyRAM program of length L, running with time bound T and memory
bound M , the prover runs in O(αT) steps3 for an arbitrarily small superconstant
function α(λ) = ω(1). The proof system is also efficient on other performance
parameters: the verifier running time and the communication grows roughly
with the square-root of the execution time4 and we have log-logarithmic round
complexity. Figure 1 gives an efficiency comparison with a state of the art
zk-SNARK [BCTV14b] for verifying correct program execution on TinyRAM.
Further discussion of other proof systems that can verify correct TinyRAM or
other types of program execution can be found in Section 1.3. The best of these
achieve similar asymptotic prover efficiency as [BCTV14b].

Remarks. Our proof system assumes some public parameters to be set up that
include a description of a finite field, an error-correcting code, and a collision-
resistant hash function. The size of the public parameters is just poly(λ)(L+M +√
T) bits though and they can be computed from a small uniformly random string

in poly(λ)(L + M +
√
T) TinyRAM steps. This means the public parameters

2 We stress the choice of comparing the prover and verifier to program execution on
the same platform. We do this to get an apples-to-apples comparison; there are many
zero-knowledge proofs that are ”linear time” because they use different metrics for
statement evaluation and the prover time, for instance that the cost of validating
the statement given the witness is measured in field multiplications and the prover
computation is measured in exponentiations.

3 The big-O notation hides big constants and we do not recommend implementing
the proof system as it is; our contribution is to make significant asymptotic gains
compared to state-of-the-art zero-knowledge proofs by demonstrating that the prover’s
computation can be nearly linear.

4 Disregarding the SHVZK property for a moment, this is also the first proof system
for general purpose computation that has both nearly linear computation for the
prover and sublinear communication.

4

Work Prover Verifier Communication Rounds Assumption

[BCTV14b] Ω(T log2 T) ω(L+ |v|) ω(1) 1 KoE

This work O(αT) poly(λ)(
√
T + L+ |v|) poly(λ)(

√
T + L) O(log log T) LT-CRHF

Fig. 1: Efficiency comparisons between our arguments and the most efficient
zero-knowledge argument for the correct execution of TinyRAM programs, both
at security level 2−ω(log λ). Computation is measured in TinyRAM steps and
communication in words of length W = Θ(log λ) with λ the security parameter.
KoE stands for knowledge of exponent type assumption in pairing-based groups
and LT-CRHF stands for linear-time collision resistant hash function. It is worth
noting KoE assumptions do not resist quantum computers while a LT-CRHF
may be quantum resistant.

have little effect on the overall efficiency of the proof system. Moreover, there are
variants of the parameters where it is efficiently verifiable the public parameters
have the correct structure. This means the prover does not need to trust the
parameters to get special honest verifier zero-knowledge, so they can be chosen
by the verifier making our proof systems work in the plain model without setup.
We have chosen to separate the public parameters into a separate setup though
because they are independent of the instance and can be used over many separate
proofs.

We did not optimize communication and verification time to go below
√
T

but if needed it is possible to compose our proof system with a verifier-efficient
proof system and get verification time that grows logarithmically in T . This is
done by letting the prover send linear-time computable hashes of her messages to
the verifier instead of the full messages. Since our proof system is public coin the
prover knows after this interaction exactly how the verifier in our proof system
ought to run if given the messages in our proof system. She can therefore give a
verifier-efficient proof of knowledge that she knows pre-images to the hashes that
would make the verifier in our proof system accept.

1.2 New techniques

Ben-Sasson et al. [BCG+13, BCTV14b] offer proof systems for correct TinyRAM
program execution where the prover commits to a time-sorted execution trace
as well as an address-sorted memory trace. They embed words, addresses and
flags that describe the TinyRAM state at a given time into field elements. The
correct transition in the execution trace between the state at time t and the
state at time t + 1 can then be checked by an arithmetic circuit, the correct
writing and reading of memory at a particular address in the memory trace can
be checked by another arithmetic circuit, and finally the consistency of memory
values in the two traces can be checked by a third arithmetic circuit that embeds
a permutation network. Importantly, in these proofs the state transitions can be
proved with the same arithmetic circuits in each step so many of the proofs can
be batched together at low average cost.

5

Combining their approach with the recent linear-time proofs for arithmetic
circuit satisfiability by Bootle et al. [BCG+17] it would be possible to get a zero-
knowledge proof system with sublinear communication and efficient verification.
The prover time, however, would incur at least a logarithmic overhead compared to
the time to execute the TinyRAM program. First, the use of an arithmetic circuit
that embeds a permutation network to check consistency between execution and
memory traces requires a logarithmic number of linear-size layers to describe
an arbitrary permutation which translates into a logarithmic overhead when
generating the proof. Second, TinyRAM allows both arithmetic operations such
as addition and multiplication of words, and logical operations such as bit-wise
XOR, AND and OR. To verify logical operations they decompose words into
single bits that are handled individually. Bit-decomposition makes it easy to
implement the logical operations, but causes an overhead when embedding bits
into full size field elements. From a technical perspective our main contribution
is to overcome these two obstacles.

To reduce the time required to prove the execution trace is consistent with the
memory usage we do not embed a permutation network into an arithmetic circuit.
Instead we relate memory consistency to the existence of a permutation that
maps one memory access in the execution trace to the next access of the same
memory address in the execution trace. Neff [Nef01] proposed permutation proofs
in the context of shuffle proofs used in mix-nets. Follow-up works [Gro10b, GI08]
have improved efficiency of such proofs with Bayer and Groth [BG12] giving
a shuffle argument in the discrete logarithm setting where the prover uses a
linear number of exponentiations and communication is sublinear. These shuffle
proofs are proposed for the discrete logarithm setting and we do not want to
pay the cost of computing exponentiations. The core of the shuffle proofs can be
formulated abstractly using homomorphic commitments to vectors though. Since
the proofs by Bootle et al. [BCG+17] also rely on an idealization of homomorphic
commitments to vectors the ideas are compatible and we get permutation proofs
that cost a linear number of field operations.

To remove the overhead of bit-decomposition we invent a less costly de-
composition. While additions and multiplications are manageable using a nat-
ural embedding of words into field elements, such a representation is not well
suited to logical operations though. However, instead of decomposing words
into individual bits, we decompose them into interleaved odd-position bits and
even-position bits. A nibble (a3, a2, a1, a0) can for instance be decomposed into
(a3, 0, a1, 0)+(0, a2, 0, a0). The key point of this idea is that adding two interleaved
even bit nibbles yields (0, a2, 0, a0)+(0, b2, 0, b0) = (a2∧b2, a2⊕b2, a0∧b0, a0⊕b0).
So using another decomposition into odd-position and even-position bits we can
now extract the XORs and the ANDs. Using this core idea, it is possible to
represent all logical operations using field additions together with decomposition
into odd and even-position bits. This reduces the verification of logical operations
to verifying correct decomposition into odd and even bits.

To enable decomposition proofs into odd and even-position bits, we develop a
new lookup proof that makes it possible to check that a field element belongs

6

to a table of permitted values. By creating a lookup table of all words with
even-position bits, we make it possible to verify such decompositions. Lookup
proofs not only enable decomposition into odd and even-position bits but also
turn out to have many other uses such as demonstrating that a field element
represents a correct program instruction, or that a field element represents a
valid word within the range {0, . . . , 2W − 1}.

Combining arithmetic circuits, permutations and table lookups we get a set
of conditions for a TinyRAM execution being correct. The program execution
of T steps on the TinyRAM machine can in our system be encoded as O(T)
field elements that satisfy the conditions. Using prime order fields of size 2O(W)

would make it possible to represent these field elements as O(1) words each.
However, the soundness of our proof systems depends on the field size and to get
negligible soundness error we choose a larger field to get a superconstant ratio

e = log |F|
W . This factors into the efficiency of our proof system giving a prover

runtime of O(αT) TinyRAM steps for an instance requiring time T , where α is
a superconstant function which specifies how many steps it takes to compute a
field operation, i.e., α = O(e2).

Having the inner core of conditions in place: arithmetic circuits for instruc-
tion executions, permutations for memory consistency, and look-ups for word
decompositions we now deploy the framework of Bootle et al. [BCG+17] to get a
zero-knowlegde proof system. They use error-correcting codes and linear-time
collision-resistant hash functions to give proof systems for arithmetic circuit
satisfiability, while we will use their techniques to prove our conditions on the
execution trace are satisfied. Their proof system for arithmetic circuit satisfiability
requires the prover to use a linear number of field multiplications and the verifier
to use a linear number of field additions. However, we can actually get sublinear
verification when the program and the input is smaller than the execution time.
Technically, the performance difference stems from the type of permutation proof
that they use for verifying the correct wiring of the circuit and that we use for
memory consistency in the execution trace. In their use, the permutation needs
to be linked to the publicly known wiring of the arithmetic circuit and in order
for the verifier to check the wiring is correct he must read the entire circuit. We
on the other hand do not disclose the memory accesses in the execution trace
to the verifier, indeed to get zero-knowledge it is essential the memory accesses
remain secret. We therefore need a hidden permutation proof and such proofs
can have sublinear verification time.

1.3 Related work

Interaction. Interaction is measured by the number of rounds the prover and
verifier exchange messages. Feige and Shamir [FS90] showed that constant round
argument systems exist, and Blum, Feldman and Micali [BFM88] showed that if
the prover and verifier have access to an honestly generated common reference
string it is possible to have non-interactive zero-knowledge proofs where the
prover sends a single message to the verifier.

7

Communication. A series of works [KR08, IKOS09, Gen09, GGI+15] have
constructed proof systems where the number of transmitted bits is proportional
to the witness size. It is unlikely that sublinear communication is possible in proof
systems with statistical soundness but Kilian [Kil92] constructed an argument sys-
tem, a computationally sound proof system, with polylogarithmic communication
complexity. Kilian’s zero-knowledge argument relies on probablistically checkable
proofs [AS98], which are still complex for practical use, but the invention of inter-
active oracle proofs [BCS16] have made this type of proof system a realistic option.
Ishai et al. [IKO07] give laconic arguments where the prover’s communication
is minimal. Groth [Gro10a], working in the common reference string model and
using strong assumptions, gave a pairing-based non-interactive zero-knowledge
argument consisting of a constant number of group elements. Follow-up works
on succinct non-interactive arguments of knowledge (SNARKs) have shown that
it is possible to have both a modest size common reference string and proofs as
small as 3 group elements [BCCT12, GGPR13, PHGR16, BCCT13, Gro16].

Verifier computation. In general the verifier has to read the entire instance
since even a single deviating bit may render the statement u ∈ L false. However,
in many cases an instance can be represented more compactly than the witness
and the instance may be small compared to the computational effort it takes
to verify a witness for the instance. In these cases it is possible to get sublinear
verification time compared to the time it takes to check the relation defining
the language L. This is for instance the case for the SNARKs mentioned above,
where the verification time only depends on the size of the instance but not the
complexity of the relation.

Prover computation. Given the success in reducing interaction, communication
and verification time, the important remaining challenge is to get good efficiency
for the prover.

Boolean and arithmetic circuits. Many classic zero-knowedge proofs rely on cyclic
groups and have applications in digital signatures, encryption schemes, etc. The
techniques first suggested by Schnorr [Sch91] can be generalized to NP-completel
languages such as boolean and arithmetic circuit satisfiability [CD98, Gro09,
BCC+16]. In these proofs and arguments the prover uses O(N) group exponenti-
ations, where N is the number of gates in the circuit. For the discrete logarithm
assumption to hold, the groups must have superpolynomial size in the security
parameter though, so exponentiations incur a significant overhead compared to
direct evaluation of the witness in the circuit. The SNARKs mentioned earlier also
rely on cyclic groups and likewise require the prover to do O(N) exponentiations.
Recently, Bootle et al. [BCG+17] used the structure of [Gro09] to give constant
overhead zero-knowledge proofs for arithmetic circuit satisfiability, where the
prover uses O(N) field multiplications, relying on error-correcting codes and
efficient collision-resistant hash functions instead of cyclic groups.

An alternative to these techniques is to use the “MPC in the head” paradigm
by Ishai et al. [IKOS09]. Relying on efficient MPC techniques, Damg̊ard, Ishai
and Krøigaard gave zero-knowledge arguments with little communication and a

8

prover complexity of polylog(λ)N . Instead of focusing on theoretical performance,
ZKBoo [GMO16] and its subsequent optimisation ZKB++ [CDG+17] are practical
implementations of a “3PC in the head” style zero-knowledge proof for boolean
circuit satisfiability. Communication grows linearly in the circuit size in both
proofs, and a superlogarithmic number of repetitions is required to make the
soundness error negligible, but the speed of the symmetric key primitives makes
practical performance good. Ligero [AHIV17] provides another implementiation
using techniques related to [BCG+17]. It has excellent practical performance
but asymptotically it is not as efficienct as [BCG+17] due to the use of more
expensive error-correcting codes. Another alternative also inspired by the MPC
world is to use garbled circuits to construct zero-knowledge arguments for boolean
circuits [BP12, JKO13, FNO15].The proofs grow linearly in the size of the circuit
and there is a polylogarithmic overhead for the prover and verifier due to the
cryptographic operations but implementations are practical [JKO13].

There are several proof systems for efficient verification of outsourced compu-
tation [GKR08, CMT12, Tha13, WHG+16]. While this line of works mostly focus
on verifying deterministic computation and does not require zero-knowledge,
recent works add in cryptographic techniques to obtain zero-knowledge [ZGK+17,
WJB+17, WTas+17]. Hyrax [WTas+17] offers an implementation with good
concrete performance. It has sublinear communication and verification, while the
prover computation is dominated by O(dN +S logS) field operations for a depth
d and width S circuit when the witness is small compared to the circuit size. If
in addition the circuit can be parallelized into many identical sub-computations
the prover cost can be further reduced to O(dN) field operations. The system
vSQL [ZGK+17] is tailored towards verifing database queries and as in this work
it avoids the use of permutation networks using permutation proofs based on
invariance of roots in polynomials as first suggested by Neff [Nef01].

Correct program execution. In practice, most computation does not resemble
circuit evaluation but is instead done by computer programs processing one
instruction at a time. There has been a sustained effort to construct efficient
zero-knowledge proofs that support real-life computation, i.e., proving statements
of the form “when executing program P on public input x and private input y we
get the output z.” In the context of SNARKs there are already several systems
for proving correct execution of programs written in C [PHGR16, BFR+13,
BCG+13, WSR+15]. These system generally involve a front-end which compiles
the program into an arithmetic circuit which is then fed into a cryptographic
back-end. Much work has been dedicated to improving both sides and achieving
different trade-offs between efficiency and expressiveness of the computation.

When we want to reason theoretically about zero-knowledge proofs for correct
program execution, it is useful to abstract program execution as a random-access
machine that in each instruction can address an arbitrary location in memory
and do integer operations on it. For closer resemblance to real-life computation,
we can bound the integers to a specific word size and specify a more general
set of operations the random-access machine can execute. TinyRAM [BSCG+13,
BCG+13] is a prominent example of a computational model bridging the gap

9

between theory and real-word computation. It comes with a compiler from C to
TinyRAM code and underpins several implementations of zero-knowledge proofs
for correct program execution [BCG+13, BCTV14b, BCTV14a, CTV15, BBC+17]
where the prover time is Ω(T log2 λ) for a program execution that takes time
T . Similar efficiency is also achieved, asymptotically, by other proof systems
that can compile (restricted) C programs and prove correct execution such as
Pinocchio [PHGR16], Pantry [BFR+13] and Buffet [WSR+15]. Our work reduces
the prover’s overhead from Ω(log2 λ) to an arbitrary superconstant α = ω(1) and
is therefore an important step towards optimal prover complexity.

Concurrent Work. Zhang et al. [ZGK+18] have concurrently with our work
developed and implemented a scheme for verifying RAM computations. Like us
and [ZGK+17], they avoid the use of permutation networks by using permutation
proofs based on polynomial invariance by Neff [Nef01]. The idea underlying
their technique for proving the correct fetch of an operation is related to the
idea underpinning our look-up proofs. There are significant differences between
the techniques used in our works; e.g. they rely on techniques from [CMT12]
for instantiating proofs where we use techniques based on ideal linear commit-
ments [BCG+17]. The proofs in [ZGK+18] are not zero-knowledge since they
leak the number of times each type of instruction is executed, while our proofs
are zero-knowledge. In terms of prover efficiency, [ZGK+18] focuses on concrete
efficiency and yields impressive concrete performance. Asymptotically speaking,
however, we are a polylogarithmic factor more efficient. This may require some
explanation because they claim linear complexity for the prover. The reason is
that they treat the prover as a TinyRAM machine with logarithmic word size in
their performance measurement. Looking under the hood, we see that they use
bit-decomposition to handle logical operations, which is constant overhead when
you fix a particular word size (e.g. 32 bits) but asymptotically the cost of this is
logarithmic since it is linear in the word size. Also, they base commitments on
cyclic groups and the use of exponentiations incurs a superlogarithmic overhead
for the prover when implemented in TinyRAM.

2 Preliminaries

2.1 Notation

We write y ← A(x) for an algorithm returning y on input x. When the algorithm is
randomized, we write y ← A(x; r) to explicitly refer to the random coins r picked
by the algorithm. We use a security parameter λ to indicate the desired level of
security. The higher the security parameter, the smaller the risk of an adversary
compromising security should be. For functions f, g : N→ [0, 1], we write f(λ) ≈
g(λ) if |f(λ) − g(λ)| = 1

λω(1) . We say a function f is overwhelming if f(λ) ≈ 1
and that it is negligible if f(λ) ≈ 0. In general we want the adversary’s chance of
breaking our proof systems to be negligible in λ. As a minimum requirement for
an algorithm or adversary to be efficient it has to run in polynomial time in the
security parameter. We abbreviate probabilistic (deterministic) polynomial time

10

in the security parameter PPT (DPT). For a positive integer n, [n] denotes the
set {1, . . . , n}. We use bold letters such as v for row vectors over a finite field F.

2.2 Proofs of Knowledge

We follow [BCG+17] in defining proofs of knowledge over a communication
channel and their specification of the ideal linear commitment channel and the
standard channel. A proof system is defined by stateful PPT algorithms (K,P,V).
The setup generator K is only run once to provide public parameters pp that will
be used by the prover P and verifier V. We will in our security definitions just
assume K is honest, which is reasonable since in our constructions the public
parameters are publicly verifiable and could even be generated by the verifier.

The prover and verifier communicate with each other through a communication

channel
chan←→. When P and V interact on inputs s and t through a channel

chan←→
we let viewV ← 〈P(s)

chan←→ V(t)〉 be the view of the verifier in the execution,

i.e., all inputs he gets including random coins, and we let transP ← 〈P(s)
chan←→

V(t)〉 denote the transcript of the communication between prover and channel.
The protocol ends with the verifier accepting or rejecting the proof. We write

〈P(s)
chan←→ V(t)〉 = b depending on whether he accepts (b = 1) or rejects (b = 0).

In the standard channel ←→, all messages are forwarded between prover and
verifier. As in [BCG+17], we also consider an ideal linear commitment channel,

ILC←→, described in Figure 2. When using the ILC channel, the prover can submit
a commit command to commit to vectors of field elements of some fixed length
k, specified in the public parameters. The vectors remain secretly stored in the
channel, and will not be forwarded to the verifier. Instead, the verifier only learns
how many vectors the prover has committed to. The verifier can submit a send

command to the ILC channel to send a mesage to the prover. In addition, the
verifier can also submit open queries to the ILC channel to obtain openings of
linear combinations of the vectors sent by the prover. We stress that the verifier
can request several linear combinations of stored vectors within a single open

query, as depicted in Figure 2 using matrix notation.

We say a proof system is public coin if the verifier’s messages to the com-
munication channel are chosen uniformly at random and independently of the
actions of the prover, i.e., the verifier’s messages to the prover correspond to
the verifier’s randomness ρ. All our proof systems will be public coin. In a proof
system over the ILC channel, sequences of commit, send and open queries can
alternate arbitrarily. However, since our proof systems are public coin we can
without loss of generality assume the verifier will only make one big open query
at the end of the protocol and then decide whether to accept or reject.

Let R be an efficiently decidable relation of tuples (pp, u, w). We can define
a matching language L = {(pp, u)|∃w : (pp, u, w) ∈ R}. We refer to u as the
instance and w as the witness to (pp, u) ∈ L. The public parameter pp will specify
the security parameter λ, perhaps implicitly through its length, and may also
contain other parameters used for specifying the relation. Typically, pp will also

11

PILC VILC

Fig. 2: Description of the ILC channel.

contain parameters that do not influence membership of R but may aid the
prover and verifier, for instance the field and vector size in the ILC channel.

The protocol (K,P,V) is called a proof of knowledge over a communication

channel
chan←→ for a relation R if it has perfect completeness and computational

knowledge soundness as defined below.

Definition 1 (Perfect Completeness). A proof system is perfectly complete
if for all PPT adversaries A

Pr

[
pp← K(1λ); (u,w)← A(pp) :

(pp, u, w) /∈ R ∨ 〈P(pp, u, w)
chan←→ V(pp, u)〉 = 1

]
= 1.

Definition 2 (Knowledge soundness). A public-coin proof system has com-
putational (strong black-box) knowledge soundness if for all DPT P∗ there exists
an expected PPT extractor E such that for all PPT adversaries A

Pr

[
pp← K(1λ); (u, s)← A(pp);w ← E〈P∗(s)

chan←→V(pp,u)〉(pp, u) :
b = 1 ∧ (pp, u, w) /∈ R

]
≈ 0.

Here the oracle 〈P∗(s) chan←→ V(pp, u)〉 runs a full protocol execution and if the
proof is successful it returns the transcript transP of the prover’s communication
with the channel. The extractor E can ask the oracle to rewind the proof to any
point in a previous transcript and execute the proof again from this point on with
fresh public-coin challenges from the verifier. We let b ∈ {0, 1} be the verifier’s
output in the first oracle execution, i.e., whether it accepts or not, and we think of
s as the state of the prover. The definition can then be paraphrased as saying that
if the prover in state s makes a convincing proof, then E can extract a witness.

If the definition holds also for unbounded P∗ and A we say the proof has
statistical knowledge soundness.

If the definition holds for a non-rewinding extractor, i.e., E only requires a
single transcript of the prover’s communication with the channel, we say the proof
system has knowledge soundness with straight-line extraction.

12

We will construct public-coin proofs of knowledge that have special honest-verifier
zero-knowledge. This means that if the verifier’s challenges are known in advance
then it is possible to simulate the verifier’s view without knowing a witness. In
our definition, the simulator works even for verifiers who may use adversarial
biased coins in choosing their challenges as long as they honestly follow the
specification of the protocol.

Definition 3 (Special Honest-Verifier Zero-Knowledge). A public-coin
proof of knowledge is computationally special honest-verifier zero-knowledge
(SHVZK) if there exists a PPT simulator S such that for all stateful interactive
PPT adversaries A that output (u,w) such that (pp, u, w) ∈ R and randomness
ρ for the verifier

Pr

[
pp← K(1λ); (u,w, ρ)← A(pp);

viewV ← 〈P(pp, u, w)
chan←→ V(pp, u; ρ)〉 : A(viewV) = 1

]
≈ Pr

[
pp← K(1λ); (u,w, ρ)← A(pp); viewV ← S(pp, u, ρ) : A(viewV) = 1

]
.

We say the proof is statistically SHVZK if the definition holds also against un-
bounded adversaries, and we say the proof is perfectly SHVZK if the probabilities
are exactly equal.

Full Zero-Knowledge SHVZK only guarantees the simulator works for honest
verifiers. It is in some applications desirable to have full zero-knowledge where
the simulator works for arbitrary malicious verifiers, even those that deviate from
the protocol. However, it makes sense to simply focus on SHVZK since there are
very efficient standard transformations from SHVZK to full zero-knowledge.

In the Fiat-Shamir transform [FS86] the verifier’s challenges in a proof system
are computed using a cryptographic hash function applied to the transcript up
to the challenge. The Fiat-Shamir transform can therefore make a public-coin
proof system non-interactive. Our proof system is such that the Fiat-Shamir
heuristic yields a non-interactive proof that is knowledge sound and has full
zero-knowledge in the random oracle model.

If the random oracle model is undesirable, an alternative is to use coin-flipping
between the prover and verifier to decide on the challenges. We let the public
parameters include a trapdoor commitment scheme. The prover commits to coins
δ1, . . . , δµ and starts executing the proof system, where in round i with challenge
ρi from the verifier, the prover uses the modified challenge ρ′i = ρi ⊕ δi. In the
last round the prover then opens the commitment to δ1, . . . , δµ so the verifier
learns the modifiers and hence what the challenges were. The idea is now that
we give the simulator the trapdoor for the commitment scheme. This means
it can simulate the proof with random public coin challenges ρ′i, and then at
the end after seeing the verifier challenges ρi open the commitments to suitable
δi = ρ′i ⊕ ρi to make the simulation work.

13

2.3 TinyRAM

TinyRAM is a random-access machine model operating on W -bit words and
using K registers. We now describe the key features of TinyRAM but refer the
reader to the specification [BSCG+13] for full details. A state of the TinyRAM
machine consists of a program P (list of L instructions), a program counter pc
(word), K registers reg0, . . . , regK−1 (words), a condition flag flag (bit), and M
words of memory with addresses 0, . . . ,M − 1.

The TinyRAM specification includes two read-only tapes to retrieve its inputs
but with little loss of efficiency we may assume the program starts by reading
the tapes into memory5 We will therefore skip the reading phase and assume the
memory is initialized with the inputs (and 0 for the remaining words). Also, we
will assume on initialization that pc, the registers and flag are all set to 0.

The program consists of a sequence of L instructions that include bit-wise
logical operations, arithmetic operations, shifts, comparisons, jumps, and storing
and loading data in memory. The program terminates by using a special command
answer that returns a word. We consider the program to have succeeded if it
answers 0, otherwise we consider the answer to be a failure code.

We write regi and ri when referring to register i and to its content, respectively.
We write A to refer to either a register or an immediate value specified in a
program instruction and write A for the value stored therein. Depending on the
instruction a word a may be interpreted as an unsigned value in {0, . . . , 2W − 1}
or as a signed value in {−2W−1, . . . , 2W−1 − 1}. Signed values are in two’s
complement, so given a word a = (aw−1, . . . , a0) ∈ {0, 1}W the bit aW−1 is the
sign and the signed value is −2W + a if aW−1 = 1 and a if aW−1 = 0. We
distinguish operations over signed values by using subscript s, e.g. a ×s b and
a ≥s b are used to denote product and comparison over the signed values. With
this notation in mind, we specify the instruction set in Table 1.

Correct Program Execution. It is often important to check that a protocol
participant supposedly running program P on public input x and private input
w provides the correct output z. Without loss of generality, we can formulate
the verification as an extended program that takes public input v = (x, z) and
answers 0 if and only if z is the output of the computation. We therefore formulate
correct program execution as the program just answering 0.

We now give a relation that captures correct TinyRAM program execution.
An instance is of the form u = (P, v, T,M), where P is a TinyRAM program, v
is a list of words given as input to the program, T is a time bound, and M is the
size of the memory. A witness w is another list of words. We assume without loss
of generality that the witness is appended by 0’s, such that |v|+ |w| = M and
the program starts with the memory being initialized to these words.

The statement we want to prove is that the program P terminates in T steps
using M words of memory on the public input v and private input w with the

5 The specification [BSCG+13] calls a program proper if it first reads all inputs into
memory and provides a 7-line TinyRAM program that does this in ∼ 5M steps.

14

Instruction Operands Effect Flag

and regi regj A compute ri as bitwise AND of rj and A result is 0W

or regi regj A compute ri as bitwise OR of rj and A result is 0W

xor regi regj A compute ri as bitwise XOR of rj and A result is 0W

not regi A compute ri as bitwise NOT of A result is 0W

add regi regj A compute ri = rj + A mod 2W overflow: rj + A ≥ 2W

sub regi regj A compute ri = rj − A mod 2W borrow: rj < A
mull regi regj A compute ri = rj × A mod 2W ¬ overflow: rj × A < 2W

umulh regi regj A compute ri as upper W bits of rj × A ¬ overflow: ri = 0
smulh regi regj A compute ri as upper W bits of the signed ¬ over/underflow: ri = 0

2W -bit rj ×s A (mull gives lower word)
udiv regi regj A compute ri as quotient of rj/A division by zero: A = 0
umod regi regj A compute ri as remainder of rj/A division by zero: A = 0
shl regi regj A compute ri as ri shifted left by A bits MSB of rj
shr regi regj A compute ri as ri shifted right by A bits LSB of rj
cmpe regi A compare if equal equal: ri = A
cmpa regi A compare if above above: ri > A
cmpae regi A compare if above or equal above/equal: ri ≥ A
cmpg regi A signed compare if greater greater: ri >s A
cmpge regi A signed compare if greater or equal greater/equal: ri ≥s A
mov regi A set ri = A flag unchanged
cmov regi A if flag = 1 set ri = A flag unchanged
jmp A set pc = A flag unchanged
cjmp A if flag = 1 set pc = A flag unchanged
cnjmp A if flag = 0 set pc = A flag unchanged
store A regi store in memory address A the word ri flag unchanged
load regi A set ri to the word stored at address A flag unchanged
answer A stall or halt returning the word A flag unchanged

Table 1: TinyRAM instruction set, excluding the read command. The flag is set
equal to 1 if the condition is met and 0 otherwise. If the pc exceeds the program
length, i.e., pc ≥ L, or we address a non-existing part of memory, i.e., in a store
or load instruction A ≥M , the TinyRAM machine halts with answer 1.

15

instruction answer 0. We therefore define

RTinyRAM =


(pp, u, w) = ((W,K, ∗), (P, v, T,M), w)

∣∣
P is a TinyRAM program with W -bit words, K registers,
and M words of addressable memory, which on inputs v and w
terminates in T steps with the instruction answer 0.


Our main interest is to prove correct execution of programs that require heavy
computation so we will throughout the article assume the number of steps
outweigh the other parameters, i.e., T > L + M , where L is the number of
instructions in the program.

3 Arithmetization of Correct Program Execution

As a first step towards the realization of proofs for the correct execution of
TinyRAM programs we translate RTinyRAM into a more amenable relation in-
volving elements in a finite field. Given a TinyRAM machine with word-size W
and a finite field F, we can in a natural way embed words into field elements by
encoding a word a ∈ {0, . . . , 2W − 1} as the field element a1F = 1F + · · · + 1F
(a times). We will use fields of characteristic p > 22W − 2W−1 because then
sums and products of words are less than p and we avoid overflow in the field
operations we apply to the embedded words.

We will encode the program, memory and states of a TinyRAM program as
tuples of field elements. We then introduce a new relation Rfield

TinyRAM consisting of
a set of arithmetic constraints these encodings should satisfy to guarantee the
correct program execution. The relation will take instances u = (P, v, T,M), and
witnesses w consisting of the encodings as well as a set of auxiliary field elements.

In this section we specify the structure of the witness w and how the relation
of correct program execution decomposes into simpler sub-relations. It will be
the case that the encoding of the witness can be done alongside an execution of
the program in O(L+M + T) field operations.

3.1 Witness Structure

Given a correct program execution we encode program, memory and states of
the TinyRAM machine as field elements and arrange them in a number of tables
as pictured in Table 2. The execution table Exe, contains the field elements
encoding of the states of the TinyRAM machine. It consists of T rows, where row
t describes the state at the beginning of step t. A row includes field elements that
encode the time t, the program counter pct, the instruction instpct corresponding
to pct, an immediate value At, the values r0,t, . . . , rK−1,t contained in the registers
reg0, . . . , regK−1 at time t, and the flag flagt. The next row contains the resulting
state of the TinyRAM machine at time t+ 1. Each row also includes a memory
address addrt, and the value vaddrt stored at this address after the execution of
the step, as well as a constant number of auxiliary field elements to be specified
later that will be used to check correctness of program execution.

16

Time pc Instruction Immediate reg0 . . . regK−1 Flag Address Value auxExe

1 0 inst0 A0 0 . . . 0 0 0 0 . . .
...

t pct instpct At r0,t . . . rK−1,t flagt addrt vaddrt . . .
t+ 1 pct+1 instpct+1

At+1 r0,t+1 . . . rK−1,t+1 flagt+1 addrt+1 vaddrt+1 . . .
...

T pcT answer 0 0 r0,T . . . rK−1,T flagT addrT vaddrT . . .

(a) The execution table Exe.

pc Instruction Immediate auxProg

0 inst0 A0 . . .
...

L− 1 instL−1 AL−1 . . .

(b) The program table Prog.

Address Initial value usd

0 0 0
1 v1 0

...
M − 1 vM−1 0

0 0 1
1 v1 1

...
M − 1 vM−1 1

(c) The memory table Mem.

Values

0
1
4
5
...∑W

2
−1

i=0 22i

(d) The table
EvenBits.

Table 2: The execution table Exe, the program table Prog, the memory table
Mem and the table EvenBits.

17

The next table is the program table Prog, which contains the field elements
encoding of the TinyRAM program P . Each row contains the description of one
line of the program, consisting of one instruction, at most three operands, and
possibly an immediate value. Furthermore, we introduce a constant number of
auxiliary field elements in each row. These entries can be efficiently computed
given the program line stored in the same row and will help verifying its execution,
e.g. we encode the position of input and output registers as auxiliary field elements.

The memory table Mem has rows that list the possible memory addresses,
their initial values, and an auxiliary field element usd ∈ {0, 1}. For every pair of
address and corresponding initial value, the memory table Mem contains a row
in which usd = 0 and another row in which usd = 1. Recall that the memory is
initialized with input words listed in v, w, i.e., the input words contributing to
the instance and witness of the relation RTinyRAM.

In addition to these, we also consider an auxiliary lookup table EvenBits
containing the encoding of words of length W whose binary expansion has 0 in
all odd positions. The table contains 2

W
2 field elements and will be used as part

of a check that certain field elements encode a word of length W .
Let (Exe,Prog,Mem,EvenBits) be the tuple of field elements encoding the

program execution and the auxiliary values. We can now reformulate the correct
execution of a TinyRAM program defined by RTinyRAM as a relation that imposes
a number of constraints the field elements should satisfy:

Rfield
TinyRAM =


(pp, u, w) = ((W,K,F, ∗), (P, v, T,M),w)

∣∣
w = (Exe,Prog,Mem,EvenBits, ∗)

(pp, (P, v, T,M),w) ∈ Rcheck

(pp, (T,M),w) ∈ Rmem

(pp,⊥,w) ∈ Rstep


where the relations Rcheck, Rmem,Rstep jointly guarantee the witness w consists
of field elements encoding a correct TinyRAM execution that answers 0 in T
steps using M words of memory, public input v, and additional private inputs.

Specifically, the relation Rcheck checks the initial values of the memory are
correctly included into Mem, the program is correctly encoded in Prog, EvenBits
contains the correct encodings of the auxiliary lookup table, the initial state of
the TinyRAM machine is correct and that it terminates with answer 0 in step
T . The role of Rmem is to check that memory usage is consistent throughout the
execution of the program. That is, if a memory value is loaded at time t then
it should match the last stored value at the same address. Finally, Rstep checks
that each step of the execution has been performed correctly. In the rest of the
section we describe each of these sub-relations, decomposing them in terms of
elemental relations such as equality, lookup, and range relations.

Equality Relations. An equality relation Req can be used to check that rows
Tabi of a table Tab encode tuples v1, . . . ,vm of given W -bit words

Req =

{
(pp, u, w) = ((W,K,F, ∗), (v1, . . . ,vm),Tab)

∣∣
Tab = {Tabi}i ∧ Tabi = vi · 1F ∀ i ∈ [m]

}

18

Lookup Relations. A lookup relation can be used to check membership of a

tuple of field elements w in the set of rows of a table Tab

Rlookup =

{
(pp, u, w) = ((W,K,F, ∗),⊥, (w,Tab))

∣∣
Tab = {Tabi}i ∧ ∃i : Tabi = w

}
We extend this relation in the natural way for checking the membership of
multiple tuples w1,w2, . . . in a table.

Range Relations. We will use a range relation to check that a field element a
can be written as a W -bit word, i.e., a is in the range {0, . . . , 2W − 1}. One could
use a lookup table of length 2W storing all values in the range and check that a is
one of the entries in the table. However, this would give a table of size 2W which
is too large. To get around this, we use ae to store the integer corresponding to
the even-position bits of the word stored in a, and for ao to store the integer
corresponding to the odd-position bits of a. For example, assume that a is a 4-bit
value a = (a3, a2, a1, a0) then we set its decomposition to be

ae = (0, a2, 0, a0) ao = (0, a3, 0, a1),

such that a = 2ao + ae. Let EvenBits be the 2
W
2 word table storing all the words

where all the odd bit positions are zero. We can now check that a is in the range
{0, . . . , 2W − 1} by checking that a = 2ao + ae for ao, ae ∈ EvenBits. This gives
us the following relation for a value a to be contained in a range {0, . . . , 2W − 1}

Rrange =

{
(pp, u, w) = ((W,K,F, ∗),⊥, (a, (ao, ae),EvenBits))

∣∣
(pp,⊥, ((ao, ae),EvenBits)) ∈ Rlookup ∧ a = 2ao + ae

}
.6

Permutation Relations. A permutation relation can be used to check that
two vectors are permutations of each other. The permutation is in the witness
i.e. it is unknown to the verifier.

Rperm =

{
(pp, u, w) =

(
(W,K,F, ∗), T, ({ai, bi,Tabi}Ni=1, π)

) ∣∣
π is a permutation over {1, . . . , T} ∧ π(ai) = bi

}
.

3.2 Checking the Correctness of Values

The role of Rcheck is to check that w consists of the correct number of field
elements that can be partitioned into the appropriate tables and also to check
that specific entries in these tables are correct. In details, the relation Rcheck is
specified by the following conditions

6 The relation can easily be extended to use decomposition into κ words of length W
κ

,

thus reducing the size of the lookup table to |EvenBits| = 2
W
κ . To get good efficiency

the important thing is to have 2
W
κ � T . In the article we assume for simplicity

2
W
2 � T enabling us to use κ = 2 but our proof system can be modified to handle

any T = poly(λ) with appropriate choice of κ.

19

– The first row Exe1 of the execution table Exe contains the following values:
time is set equal to 1, the program counter pc1 is equal to 0, the instruction
instpc1 is equal to the first instruction of the program, the immediate value A1

is the first immediate value of the program, and the contents of the registers
ri,1, the memory address addr1 and its content value vaddr1 are all 0.

– The last row ExeT contains the following values: the time is set equal to T ,
the program counter is pcT = L− 1, the instruction instpcT is answer, and
the immediate value is 0.

– The auxiliary lookup table EvenBits contains the embeddings of all W -bit
words with 0 in all odd positions, i.e.

EvenBits =

0, 1, 4, 5 . . . ,

W
2 −1∑
i=0

22i


– The program table Prog contains the correct field element embedding of the

program P as well as the correct auxiliary entries.
– The memory table Mem contains the correct embedding of the input words

listed in v and of the auxiliary entry usd.

We formalize these equality checks in the relation

Rcheck =



(pp, u, w) = ((W,K,F, ∗), (P, v, T,M),w)
∣∣

w = (Exe,Prog,Mem,EvenBits, ∗),
Exe = {Exet}Tt=1, Prog = {Progi}L−1i=0

Prog0 = (0, inst0,A0, . . .)
(pp, (1, 0, inst0, A0, 0, . . . , 0, . . .) ,Exe1) ∈ Req

(pp, (T,answer, 0, . . .),ExeT) ∈ Req(
pp,
(

0, 1, 4, 5, . . . ,
∑W

2 −1
i=0 22i

)
,EvenBits

)
∈ Req

(pp, P,Prog) ∈ Req (pp, v,Mem) ∈ Req


.

In the relation Req checking table Prog we omitted the auxiliary entries which
we have not yet specified. It will later become clear that these entries can be
efficiently computed given the program P and checked within the above relation.

3.3 Checking Memory Consistency

The relation Rmem checks that the memory is used consistently across different
steps in the execution. For instance, if at step t a value is loaded from memory,
then it should be equal to the last value stored in the same address. If it is the
first time a memory address is accessed, we need to ensure consistency with
the initial values. If two consecutive memory accesses to the same address were
placed into two adjacent rows of Exe it would be easy to check their consistency.
However, this is generally not the case since the Exe table is sorted by execution
time rather than memory access. Therefore, we need to devise a way to check
consistency of memory accesses that could be located in any position of Exe.

20

To help with checking the memory consistency, we include in each row of the
execution table the following auxiliary entries

auxExe = τlink vlink vinit usd S L · · ·

where τlink contains the previous time-step at which the current address was
accessed, unless this is the first time a location is accessed in which case it is set
equal to the last time-step this location is accessed. Similarly, vlink stores the
value contained in the address after time τlink, unless this is the first time that
location is accessed, in which case it stores the last value stored in that location.
The value vinit is a copy of the initial value assigned to that memory location,
which is also stored in the memory table Mem. The value usd is a flag which is
set equal to 0 if this is the first time we access the current memory address, and 1
otherwise. The values S, L are flags set equal to 1 in case the current instruction
is a store or load operation, respectively, and 0 otherwise. The values S, L are
also stored in the auxiliary entries of the program table auxProg = S L · · · .

We check memory consistency by specifying cycles of memory accesses, so
that consecutive terms in a cycle correspond to two consecutive accesses to the
same memory location. By using the above auxiliary entries, we use the relation
Rcycle for the memory access pattern in the rows of Exe being in correspondence
with a permutation π defined by such cycles. The relation Rcycle checks that all
memory accesses (with S + L = 1) relative to the same address are connected
into cycles and that rows not involving memory operations (S + L = 0) are not
included in these cycles. The relation does not include any explicit checks on
whether S + L is equal to 0 or 1. It is sufficient to check that St + Lt = St′ + Lt′ ,
t = τlinkt′ , vaddrt = vlinkt′ and addrt = addrt′ , which ensures that operations which
are not memory operations are not part of cycles including memory operations.

Rcycle =


(pp, u, w) = ((W,K,F, ∗), T, (Exe, π))

∣∣
Exet = (t, . . . , addrt, vlinkt, τlinkt, . . . , St, Lt, . . .)for t ∈ [T]

a1 = {t}t∈[T],a2 = {addrt}t∈[T],a3 = {vaddrt}t∈[T],a4 = {St + Lt}t∈[T]

b1 = {τlinkt}t∈[T], b2 = {addrt}t∈[T], b3 = {vlinkt}t∈[T], b4 = {St + Lt}t∈[T]

((W,K,F, ∗), T, ({ai, bi}4i=1, π)) ∈ Rperm


The above relation only guarantees the existence of cycles over the same

memory location, but it does not guarantee that consecutive terms in a cycle
correspond to consecutive time-steps in which the memory is accessed. To check
that the memory cycles are time-ordered we can simply verify that t > τlinkt for
any given time-step t ∈ [T]7. Since memory accesses are connected into cycles,
the first time we access a new memory location the τlink entry stores the last
point in time that location is accessed by the program. In this case (usd = 0), we
verify that t ≤ τlinkt. The relation Rtime incorporates these conditions

Rtime =

 (pp, u, w) = ((W,K,F, ∗), T,Exe)
∣∣

Exet = (t, . . . , τlinkt, . . . , usdt, . . .) for t ∈ [T]
∀ t ∈ [T] : (usd = 0 ∧ t ≤ τlinkt) ∨ (usd = 1 ∧ t > τlinkt)


7 For this to be sufficient we also need the time-steps in the execution table to be

correct but this is ensured by the Rcheck and Rconsistent (appears later) relations.

21

Next, to ensure that the cycles correspond to sequences of memory addresses
we also require that all the rows touching the same memory address are included
in the same cycle. Since the cycles are time-ordered, they require one time-step
for which usd = 0 in order to close a cycle. Thus, we can ensure each memory
location to be part of at most on cycle by letting usd to be set equal to 0 at most
once for each memory address. We introduce a bounded lookup relation Rblookup

to address this requirement. The relation checks that for any row in Exe, the
tuple (addrt, vinitt, usd) is contained in one row of the table Mem and that each
row (j, vj , 0) of Mem is accessed at most once by the program.

Rblookup =


(pp, u, w) = ((W,K,F, ∗), (T,M), (Exe,Mem))

∣∣
Exet = (t, . . . , addrt, . . . , vinitt, usdt, . . .) for t ∈ [T]

∀ t ∈ [T] (pp,⊥, ((addrt, vinitt, usdt) ,Mem)) ∈ Rlookup ∧
∀ (j, vj , 0) ∈ Mem : (. . . , j, . . . , vj , 0, . . .) occurs at most once in Exe


Finally, we are only left to check that if the program executes a load in-

struction the value vaddrt loaded from memory is consistent with the value stored
at the same address at the previous access. Similarly, if load is executed on a
new memory location, then the value loaded should match with the initial value
vinitt. No additional checks are required for store instructions. These checks are
incorporated in the relation Rload.

Rload =

 (pp, u, w) = ((W,K,F, ∗), T,Exe)
∣∣

Exet = (t, . . . , addrt, vaddrt , τlinkt, vlinkt, vinitt, usdt, . . .) for t ∈ [T]
∀ t ∈ [T] : Lt(vaddrt − vinitt + usdt(vinitt − vlinkt)) = 0


Overall the memory consistency relation Rmem decomposes as follows

Rmem =


(pp, u, w) = ((W,K,F, ∗), (T,M),w)

∣∣
w = (Exe,Prog,Mem,EvenBits, π, ∗),

Exe = {Exet}Tt=1 Mem = {Memj}2M−2j=0

(pp, T, (Exe, π)) ∈ Rcycle, (pp, T,Exe) ∈ Rtime

(pp, (T,M), (Exe,Mem)) ∈ Rblookup, (pp, T,Exe) ∈ Rload


3.4 Checking Correct Execution of Instructions

We use the relation Rstep to guarantee that each step of the execution has been
performed correctly. This involves checking for each row Exet of the execution
table that the stored words are in the range {0, . . . , 2W − 1}, the flagt is a bit,
the program counter pct matches the instruction and the immediate value At
in the program, and that instt is correctly executed. An instruction takes some
inputs, e.g., values indicated by the operands regj , A or the flag and as a result
may change the program counter, a register value, a value stored at a memory
address, or the flag. Since we have already checked memory correctness, if the
operation is a load or store we may assume the memory value is correct.

22

To help checking the consistency of the operations the rows of the execution
and program tables include the following auxiliary entries

auxExe = . . . a b c d out sa sb sc sd sout sch . . .

auxProg = . . . sa sb sc sd sout sch

These consist of some temporary variables a, b, c, d, an output vector out, and
some selection vectors sa, . . . , sch which are also listed in the program table.

The temporary variables are used to store a copy of the inputs and out-
puts of an instruction. For example, if we have to check an addition operation
add regi regj A, we let c = ri,t+1, a = rj,t, b = At and check c = a + b. The
advantage of the temporary variables is that for each addition operation we check,
we will always have the inputs and output in a, b and c, instead of having to
handle multiple registers holding inputs and output in arbitrary order.

Checking operations on temporary values a, b, c and d require us to multiplex
the corresponding register, immediate, and memory values in and out of the
temporary values. We do this using selection vectors sa, sb, sc, sd that are bit-
vectors encoding the operands of an instruction. Each row of the execution table
includes multiple variables that may be selected as an operand, e.g., pct,At, r0,t, . . .
and variables in the next row of the execution table pct+1,At+1, r0,t+1, . . . may
also be selected. A selection vector will have a bit for each of these variables
indicating whether it is picked or not, so if we for instance let sa = (0, 0, 1, 0, . . . , 0)
this corresponds to pick a as r0,t.

Multiplexing the operands into temporary variables leaves us with the task
of checking correct instruction execution on a, b, c and d. TinyRAM has 26
instructions and since we want the proof system to be zero-knowledge, we
cannot reveal which operation we execute in a given step. However, we can
still obtain significant savings compared to using 26 independent instruction
checkers. We make the key observation that many operations are closely re-
lated. For instance checking a subtraction operation sub regi regj A corre-
sponds to checking c = a + b with c = rj,t, a = ri,t+1, b = At, which is
of the same form as an addition operation. Using clever multiplexing we re-
duce the checking of the 26 possible instructions to 9 easily computable values
AND,XOR,OR,SUM,SSUM,PROD,SPROD,MOD,SHIFT and 4 additional val-
ues FLAG1,FLAG2,FLAG3,FLAG4 to check consistency of the flag. We include all
these values into the vector out. Each instruction can be verified by checking that
an appropriate subset of the values are 0. To check an addition operation, we will
for instance check that SUM = 0. Similarly to the selection of the operands, we
use a binary selection vector sout to select which entries of out are relevant for
each operation and check that sout ◦ out = 0, where ◦ is the entry-wise product.

Verifying that rows of the execution table match with states of a TinyRAM
machine also involves checking that entries that are not affected by an instruction
remain the same in the next state. For this we use another selector vector sch
with entries equal to 0, positioned in correspondence of entries that are changed
during the execution, and 1 for entries that do not change in the execution. .

23

The relation Rstep decomposes into the following sub-relations over each pair
of consecutive rows Exet,Exet+1 in the execution table.

– A multiplexing relation Rmux checking that values at, bt, ct, dt are consistent
with operands contained in instt.

– A consistency relation Rconsistent checking that the time counter is correctly
increased, the program counter is in the correct range, the instruction instt
and the immediate value At are consistent with the ones specified in line pct
of the program, the correctness of the selector vectors, the entries in outt
relevant to instt are all equal to zero and all registers are equal in the two
rows unless specified by the instruction.

– An instruction checker relation Rins checking that entries at, bt, ct, dt are in
the range {0, . . . , 2W − 1}, the vector outt is consistent with at, bt, ct, dt.

Rstep =



(pp, u, w) = ((W,K,F, ∗),⊥,w)
∣∣

w = (Exe,Prog,Mem,EvenBits, ∗) ∧ Exe = {Exet}Tt=1

∀t ∈ {1, . . . , T − 1} :
(pp,⊥, (Exet,Exet+1)) ∈ Rmux

(pp,⊥, (Exei,Exei+1,Prog)) ∈ Rconsistent

(pp,⊥, (Exei,Exei+1,EvenBits, ∗)) ∈ Rins


Multiplexing Relation. The multiplexing relation Rmux checks that a, b, c, d
match with the entries in the rows selected by the vectors sa, sb, sc, sd.

Let Exet = (pct,At, r0,t, . . . , rK−1,t, flagt, addrt, vaddrt) be the tuples of se-
lectable entries of row Exet and let sat, sbt, sct, sdt be binary vectors of length
2|Exet|. We can then express the multiplexing relation Rmux in terms of inner
product relations as follows

Rmux =


(pp, u, w) = ((W,K,F, ∗),⊥, (Exet,Exet+1))

∣∣
Exet = (t, . . . , at, bt, ct, dt,outt, sat, sbt, sct, sdt, . . .)

at = sat ·
(
Exet||Exet+1

)
bt = sbt ·

(
Exet||Exet+1

)
ct = sct ·

(
Exet||Exet+1

)
dt = sdt ·

(
Exet||Exet+1

)


Consistency Relation. The consistency relation Rconsistent is checks that the
time is correctly incremented and that the program counter is in the correct
range, i.e. pct+1 ∈ {0, . . . , L− 1} and is incremented unless a jump-instruction
is executed. It also checks that the instruction, the immediate value and the
selection vectors stored in the execution table are consistent with the program
the line indexed pc. Furthermore, it checks that the entries in outt relevant to
instt are all equal to zero and that the contents of the registers do not change,
unless specified by the instruction, e.g. the register storing the result of the
computation.

Let sch be a binary vector of length K + 2, let Ẽxet = (pct, r0,t, . . . , rK−1,t,
flagt) be the restriction of the row Exet to the entries concerning the program
counter, the register values and the flag and let sout be a binary vector of length

24

|sout| = |out| = 13. The consistency relation Rconsistent is defined as follows

Rconsistent =



(pp, u, w) = ((W,K,F, ∗),⊥, (Exet,Exet+1,Prog))
∣∣

Exet = (t, pct, instt,At, . . . , r0,t, . . . , rK−1,t, . . . ,St, Lt, . . . ,out, sa, sb, sc, sd, sout, sch) ∧
Exet+1 = (t′, pct+1, . . . , r0,t+1, . . . , rK−1,t+1, . . .)
t′ = t+ 1 ∧ pct+1 ∈ {0, . . . , L− 1} ∧
sch ◦ (Ẽxet+1 − Ẽxet − (1, 0, . . . , 0)) = (0, 0, . . . , 0) ∧ sout ◦ out = 0 ∧
(pp,⊥, ((pct, instt,At,St, Lt, sa, sb, sc, sd, sout, sch),Prog)) ∈ Rlookup


Instruction Relation. The role of the instruction checker relation Rins is to
guarantee the correct execution of an instruction has taken place. We show that
this can be reduced to check that a, b, c, d ∈ {0, . . . , 2W − 1} and that the output
vector out is consistent with the temporary variables. We divide the entries of out
into 4 groups: logical (AND,XOR,OR), arithmetic (SUM,PROD,SSUM,SPROD,
MOD), shift (SHIFT), and flag (FLAG1,FLAG2,FLAG3,FLAG4). By specifying
constraints to all these entries, we can directly verify all the logical, arithmetic,
and shifts operations after which the variables are named. In Section 3.5 we show
choices of selection vectors which reduce the verification of any other operation
to the ones contained in these 3 categories.

The Rins can be thus decomposed into 3 sub-relations.

Rins =


(pp, u, w) = ((W,K,F, ∗),⊥, (Exet,Exet+1,EvenBits, ∗))

∣∣
(pp,⊥, (Exet,Exet+1,EvenBits)) ∈ Rlogic

(pp,⊥, (Exet,Exet+1,EvenBits)) ∈ Rarith

(pp,⊥, (Exet,Exet+1,EvenBits, ∗)) ∈ Rshift


3.5 A Breakdown of the Instruction Relation

We describe the instruction checker relation Rins that verifies correct execution of
an instruction in a given time-step. We recall that for each operation we multiplex
inputs and outputs into temporary variables a, b, c, d and use selection vectors
sa, sb, sc, sd to ensure that this is done consistently with the the operands specified
by the instruction. Since our aim is to construct zero-knowledge arguments, the
relationRins will incorporate checks concerning all possible TinyRAM instructions
to hide which one was executed. We will show this can be reduced to 13 values
stored in the output vector

out = (AND,XOR,OR,SUM,SSUM,PROD,SPROD,MOD,SHIFT,FLAG1,FLAG2,FLAG3,FLAG4)

Each instruction can be verified by checking that an entry of either the of out
are 0, using a selection vector sout. Similarly, we use vector sch to check that the
program counter, registers and flag do not change unless the instruction specifies
so. Here we assume the selection vectors stored in each row of the execution table
to be consistent with the instruction and immediate value stored in the same
row of Exe, as already ensured by the relation Rconsistent.

We decompose the relation Rins into 3 sub-relations.

Rins =


(pp, u, w) = ((W,K,F, ∗),⊥, (Exet,Exet+1,EvenBits, ∗))

∣∣
(pp,⊥, (Exet,Exet+1,EvenBits)) ∈ Rlogic

(pp,⊥, (Exet,Exet+1,EvenBits)) ∈ Rarith

(pp,⊥, (Exet,Exet+1,EvenBits, ∗)) ∈ Rshift



25

In this section we describe all the sub-relations and reduce the verification of any
operation to these by showing appropriate choices of selection vectors.

We recall that a line in the program consists of an instruction and up to
three operands, e.g. add regi regj A. The first operand, regi, usually points to
the register storing the result of the operation, add, computed on the words
specified by the next two operands, regj , A. The last operand A indicates an
immediate value that could be either used directly in the operation or to point to
the content of another register. We refer to the value to be used in the operation
generically as A, stressing that the selection between either the immediate value
or a register value can be handled by using the appropriate selection vector.

In what follows we specify what constraints the entries of out need to satisfy
and the appropriate choice of selection vectors for each operation. More precisely,
which entries sa, sb, sc, sd, sout are set equal to 1 (with the rest set to 0) and
which entries of sch are set equal to 0 (with the rest set to 1).

Logical Operations Logical operations can be verified using the odd and even-
position bits decomposition introduced in Section 3.1. Let a, b be the inputs of
a logical operation, e.g. bit-wise AND, and let c be the output. To verify the
correctness of the operation, e.g. a ∧ b = c, consider the decompositions of the
inputs into their odd and even-position bits, namely a = 2ao+ae and b = 2bo+be.

Observe that taking the sum of the integers storing the even-positions of a
and b gives

ae + be = (0, aW−2, . . . , 0, a0) + (0, bW−2, . . . , 0, b0)

= (aW−2 ∧ bW−2, aW−2 ⊕ bW−2, . . . , a0 ∧ b0, a0 ⊕ b0)

The above contains the bit-wise AND and XOR of the even bits of a and b placed
in even in odd positions, respectively. Therefore we can consider taking again the
decomposition of ae + be into its odd and even-position bits, i.e. ae + be = 2eo + ee
so that half of the bits of a ∧ b are stored in eo and half of the bits of a⊕ b are
stored in ee. We can repeat the above procedure starting from the odd-position
bits of a and b getting the following

ao + bo = (0, aW−1, . . . , 0, a1) + (0, bW−1, . . . , 0, b1)

= (aW−1 ∧ bW−1, aW−1 ⊕ bW−1, . . . , a1 ∧ b1, a1 ⊕ b1)

= 2oo + oe

where oo stores half of the bits of a∧ b and oe stores and half of the bits of a⊕ b.
Putting everything together, given the decompositions ao, ae, bo, be, oo, oe, eo, ee ∈

EvenBits, if the following hold

a = 2ao + ae b = 2bo + be

ao + bo = 2oo + oe ae + be = 2eo + ee

then we also have

a ∧ b = 2oo + eo a⊕ b = 2oe + ee

26

Let AND = 2oo + eo − c and XOR = 2oe + ee − c. We can verify the execution
of the and regi regj A setting selection vectors so that a = At, b = rj,t, c = ri,t+1

and checking that AND = 0. Note that the latter is 0 if and only if c contains
the bit-wise AND of a and b. Similarly, the execution of xor regi regj A can be
verified by using the selector vectors as above and checking that XOR = 0.

Given a ∧ b and a ⊕ b we can compute the bit-wise OR of a and b in the
following way

a ∨ b = (a ∧ b) + (a⊕ b)

Let OR = XOR + AND + c. To verify the execution of or regi regj A it is
sufficient to set the selection vectors such that a = At, b = rj,t, c = ri,t+1 and
check that OR = 0, which happens if and only if c = a ∨ b.

Bit-wise NOT can be handled by computing bit-wise XOR of A with the word
2W − 1. We can use an additional auxiliary entry in the execution table storing
the word 2W − 1 and use the selector vector to route b to it. Similarly to the
other logical operations, bit-wise NOT the same chek related to the flag, namely
FLAG1 = 0,FLAG2 = 0.

The execution of the above logical operations can also affect the flag. Specifi-
cally, the flag is set equal to 1 exactly when the output is equal to 0. This can be
verified by letting

FLAG1 = flagt+1 · c FLAG2 = (flagt+1 + c) · aflag − 1

and checking both of them to be equal to 0. The first condition guarantees that at
least one among c and flagt+1 is zero, while the second guarantees that not both
of them are equal to zero. In fact, FLAG2 can be made equal to 0 by choosing
aflag as the inverse of flagt+1 + c unless their sum is 0.

We append the decompositions of a, b, c, d as well as oo, oe, eo, ee aflag to the
auxiliary entries of the execution table, i.e.

auxExe = . . . ao ae bo be co ce do de oo oe eo ee aflag . . .

We now give the Rlogic relation which includes all the above checks, as well as
the range checks on a, b, c, d.

Rlogic =



(pp, u, w) = ((W,K,F, ∗),⊥, (Exet,Exet+1,EvenBits))
∣∣

Exet = (t, . . . , . . . , a, b, c, d,out, . . . , ao, ae, bo, be, co, ce, do, de, eo, ee, oo, oe, aflag, . . .)
out = (AND,XOR,OR, . . . ,FLAG1,FLAG2, . . .)
Exet+1 = (t+ 1, . . . , flagt+1, . . .)
(pp,⊥, (a, (ao, ae),EvenBits) ∈ Rrange (pp,⊥, (b, (bo, be),EvenBits) ∈ Rrange

(pp,⊥, (c, (co, ce),EvenBits) ∈ Rrange (pp,⊥, (d, (do, de),EvenBits) ∈ Rrange

(pp,⊥, (ao + bo, (oo, oe),EvenBits) ∈ Rrange (pp,⊥, (ae + be, (eo, ee),EvenBits) ∈ Rrange

XOR = 2oe + ee − c AND = 2oo + eo − c OR = XOR + AND + c
FLAG1 = flagt+1 · c FLAG2 = (flagt+1 + c) · aflag − 1


We summarise the choice of selector vectors for all the logical operations

in Figure 3. The entries specified in the table correspond to the entries of
sa, sb, sc, sd, sout which are set equal to 1 and which entries of sch are set equal
to 0. Note that none of the logical operations requires the temporary variable d,
therefore we can simply let sd to be the zero vector.

27

Operation and or xor not

sa At At At At
sb rj,t rj,t rj,t 2W − 1

sc ri,t+1 ri,t+1 ri,t+1 ri,t+1

sd / / / /

sout AND,FLAG1,FLAG2 OR,FLAG1,FLAG2 XOR,FLAG1,FLAG2 XOR,FLAG1,FLAG2

sch ri, flag ri, flag ri, flag ri, flag

Fig. 3: Logical operations

Integer Operations. Verifying integers operations is easier than logical opera-
tions because we embed words as values in a field that is large enough to contain
the sum and product of words, without causing overflowing.

The execution of an addition operation add regi regj A can be verified by
picking selection vectors such that a = At, b = rj,t, c = ri,t+1 and check that the
following holds

a + b− c− 2Wflagt+1 = 0

Note that this is equal to 0 if and only if c contains the result of a + b with the
flag flagt+1 indicating overflow.

The same check can be used to verify a subtraction operation sub regi regj A
by swapping the role of the selection vector sb, sc and letting b = ri,t+1 and
c = rj,t. The above equation is identically 0 if and only if b is equal to the
difference of c and a where the flag flagt+1 denotes borrow.

Let SUM = a + b− c− 2Wflagt+1 + d. We can check the both additions and
subtractions by letting d = 0 and checking that SUM = 0. While the temporary
variable d is not strictly required for the verification of the above operations,
we will see later that including this variable into the equation will make the
verification of other operations easier.

Selection vectors for addition and subtraction are summarised in Figure 4.

Operation add sub

sa At At
sb rj,t ri,t+1

sc ri,t+1 rj,t
sd 0 0

sout SUM SUM

sch ri, flag ri, flag

Fig. 4: Addition and subtraction.

TinyRAM instruction set includes three multiplication instructions: mull, for
computing the lower word of the product of two unsigned integers; umull, for

28

computing the upper word of the product of two unsigned integers; umulh, for
computing the upper word of the product of two signed integers.

Let PROD = a · b − d − 2W c. We can then verify the correct execution of
mull regi regj A by setting the temporary variables such that a = At, b = rj,t, d =
ri,t+1, c to contain some non-deterministic advice and check that PROD = 0.
Note that the latter is equal to 0 if and only if d stores the lower word of the
product a · b and the upper word is stored in c.

For the execution of umulh regi regj A we can simply change the role of the
selector vectors sc, sd, letting c = ri,t+1 and d be some non-deterministic advice,
and checking that PROD = 0.

Signed Integers. Signed W -bit words use the two’s complement representation
to store an integer. We write σa for the most significant bit of a word a. We
recall that according to the two’s complement representation, a negative word
a has σa = 1. We define the corresponding field element aσ = −σa2W + a ∈
{−2W−1, . . . , 2W−1−1}. Given the decomposition of a it is easy to check the sign
is correct by testing ao + (1− 2σa)2W−2 ∈ EvenBits. Thus, in order to ensure that
a, b, c, d are in the correct range, and the matching signs and signed values are
correct we include the following entries in the auxiliary inputs of the execution
table auxExe = . . . aσ σa bσ σb cσ σc

To verify the execution of signed multiplication operations smulh regi regj A

we proceed similarly to umullh. Let SPROD = aσ · bσ − d− 2W cσ. By selecting
a = At, b = rj,t, c = ri,t+1, and letting d be some non-deterministic advice, we
can verify the execution of signed multiplication by checking that SPROD = 0.

The consistency of the flag of the multiplication operations can be verified by
checking FLAG1 = 0,FLAG2 = 0.

We notice that the two’s complement representation allows to perform addi-
tions and subtractions by reusing the unsigned operation. However, in order to
verify signed comparisons, it will be helpful to define a signed equivalent of SUM.
Thus, we define SSUM = aσ + b− cσ − 2Wflagt+1 + d

The selection vectors for the the multiplication operations are specified in
Figure 5.

Operation mull umulh smulh

sa At At At
sb rj,t rj,t rj,t
sc c ri,t+1 ri,t+1

sd ri,t+1 d d

sout PROD,FLAG1,FLAG2 PROD,FLAG1,FLAG2 SPROD,FLAG1,FLAG2

sch ri, flag ri, flag ri, flag

Fig. 5: Multiplications.

29

To check the execution of modular reduction umod regi regj A, let d = rj,t,

c the modulus At, b the quotient of the division d
c , and a the remainder ri,t+1.

We can then check that d− b · c− a = 0. This check however is not sufficient to
guarantee the correctness of the the operation umod. For example, in case the
modulus is set equal to 0, the operation should return 0 and set the flag equal to
1. This can be solved first, by checking that FLAG1 = 0 and FLAG2 = 0 which
ensure that flagt+1 = 1 if and only if c = 0 and second, by checking the following

− flag · d + d− b · c− a = 0 (1)

In case c = 0, then flagt+1 = 1 and so a = 0. Otherwise if c 6= 0, then flagt+1 = 0
and the check correspond to the previous one.

The last thing that we need to check in order to guarantee the correctness of
the computation is that a < c, in case c 6= 0. We can do this by doing a range
check on the value c−a−1, which involves computing its even/odd decomposition
ro, re and check that c− a− 1 = 2ro + re. We can include the decomposition ro, re
into the auxiliary entries of the execution table and check that ro, re ∈ EvenBits
and check that

(1− flagt+1)(c− a− 1− 2ro − re) = 0 (2)

Since the above checks also include checking the correctness of the quotient
of the division, we can reuse them to check the execution of udiv operation. It
is sufficient to swap the selector vectors sa, sb so that ri,t+1 = b and check that
Eq. (1). Again, this check is not sufficient in the case of division by c = 0. In this
case the operation is expected to return 0 and set the flag equal to 1. The above
check does not suffice since it is merely checking that the remainder a is equal to
0, instead of the quotient b. This can be addressed by additionally checking the
following

b · flagt+1 = 0 (3)

In case c 6= 0, we still need to ensure that a < c to guarantee the correctness
of the result. Note that we can combine Eq. (2) and (3) into a single equation

FLAG3 = b · flagt+1 + (1− flagt+1)(c− a− 1− 2ro − re)

This does not affect the umod operation since in case flagt+1 = 1, the prover
can simply set the non-deterministic advice b equal to 0.

Looking ahead a little bit, Equation 1 will be used to check other operations
by clever choice of the selector vector. With this goal in mind, it will be useful to
replace Equation 1 with the following

MOD = flagt+1(b− d) + d− b · c− a

Note that replacing Eq. (1) with MOD = 0 does not affect the checks done
for umod,udiv. In case flagt+1 = 0, the two equations are equivalent. In case
flagt+1 = 1, we have that c = 0 which means that b− a = 0. In this case however
we get that FLAG3 = 0 implies b = 0, and hence a = 0, as in the case of Eq. (1).
Details of the selection vector for umod,udiv operations are given in Figure 6.

30

Operation umod udiv

sa ri,t+1 a

sb b ri,t+1

sc At At
sd rj,t rj,t
sout MOD,FLAG1,FLAG2,FLAG3 MOD,FLAG1,FLAG2,FLAG3

sch ri, flag ri, flag

Fig. 6: Modular reduction and division.

We can give the relation Rarith for the verification of arithmetic operations.

Rarith =



(pp, u, w) = ((W,K,F, ∗),⊥, (Exet,Exet+1,EvenBits))
∣∣

Exet = (t, . . . , flagt, . . . , a, b, c, d,out, . . . , ao, bo, co, . . . σa, σb, σc, ro, re . . . ,)
out = (. . . ,SUM,SSUM,PROD,SPROD,MOD, . . . ,FLAG3, . . .)
Exet+1 = (t+ 1, . . . , flagt+1, . . .)
(pp,⊥, ((ao + (1− 2σa)2W−2,EvenBits) ∈ Rlookup

(pp,⊥, co + (1− 2σc)2
W−2),EvenBits) ∈ Rlookup

(pp,⊥, bo + (1− 2σb)2W−2,EvenBits) ∈ Rlookup

σa, σb, σc, flagt, flagt+1 ∈ {0, 1} aσ = −σa2W + a
bσ = −σb2W + b cσ = −σc2

W + c
SUM = a + b− c− 2Wflagt+1 + d PROD = a · b− d− 2W c
MOD = flagt+1(b− d) + d− b · c− a
SSUM = aσ + b− cσ − 2Wflagt+1 + d SPROD = aσ · bσ − d− 2W cσ
FLAG3 = b · flagt+1 + (1− flagt+1)(c− a− 1− 2ro − re)


Shift Operations. Operations shl regi regjA and shr regi regjA are used to
shift the word rj,t of A positions to the left, respectively to the right, filling
the vacant positions with 0. The flag is set to the most significant bit and least
significant bit of rj,t, respectively.

Following the observation that shifting a word by A positions is equivalent
to multiply or divide rj,t by 2A, we can treat shifts similarly to the integers
operations shown above. To efficiently check the correctness of shift operations
we include into w the table Pow storing the pairs (a, 2a mod 2W) for a ∈ [W]

Note that the Pow table contains only 2W + 2 entries, which is considerably
smaller than the other tables included in the witness w.

In addition to Pow we store two additional values ashift, apower in the auxiliary
entries of Exe. Say that a stores the value At, the offset of a shift operation. Then
the entry ashift can be used to check if At ∈ [W] by checking that

ashift(ashift − 1) = 0 ∧ (1− ashift)(W − a− 2ro − re) = 0 (4)

where the first equation checks that ashift is a bit and the second checks that
if W < a then ashift = 1. The entry apower can be used to store the element 2a

31

Values Powers

0 1
1 2
2 4
3 8
...

...
W − 1 2W−1

W 0

Table 3: Table Pow.

mod 2W in case ashift = 0 and 0 otherwise. We can then check that apower is
consistent with a by checking that

(pp, (a + ashift(W − a), apower),Pow) ∈ Rlookup (5)

A left shift operation shl can be checked by setting b = rj,t, d = ri,t+1,
respectively, and check that the following is equal to 0

SHIFT = apower · b− d− 2W c (6)

where c is some non-deterministic advice. The consistency of the flag with the
most significant bit of rj,t is checked by the following

flagt+1 − σb = 0

Observe that if we had registers storing two words of W -bits each, shifting a
W -bit word to the right of A positions would correspond to shift the same word
to the left by W − A positions and taking the resulting upper W bits. Since the
size of the field F is big enough, we can use the above observations to check a
right shift as a left shift. This allows to reuse most of the above checks. It is
sufficient to set a = W − At, b = rj,t, d = ri,t+1, let c be some non-deterministic
advice and check conditions (4), (5) and (6) as well as the following

flagt+1 − ρb = 0

where ρb is the least significant bit of b. We can introduce an additional auxiliary
value bflag in the auxiliary information of the program and duplicated in the
execution table which is set equal to for left shifts and equal to 0 otherwise. we
can then merge the above flag checks in the following

FLAG4 = flagt+1 − bflagσb − (1− bflag)ρb

32

We can now give the relationRshift for the correct execution of shifts operations
and summarise the selection vectors of these in Figure 7.

Rshift =



(pp, u, w) = ((W,K,F, ∗),⊥, (Exet,Exet+1, (EvenBits,Pow)))
∣∣

Exet = (t, . . . , flagt, . . . , a, b, c, d,out, . . . , be, . . . , bflag, σb, . . . , ashift, apower)
out = (. . . ,SHIFT, . . . ,FLAG4)
Exet+1 = (t+ 1, . . . , flagt+1, . . .)
ashift ∈ {0, 1}
(pp,⊥, be + (1− 2ρb),EvenBits) ∈ Rlookup

(pp, (a + ashift(W − a), apower),Pow) ∈ Rlookup

SHIFT = apower · b− d− 2W c
FLAG4 = flagt+1 − bflagσb − (1− bflag)ρb



Operation shl shr

sa At At
sb rj,t rj,t
sc c ri,t+1

sd ri,t+1 d

sout SHIFT,FLAG4 SHIFT,FLAG4

sch ri,flag ri, flag

Fig. 7: Shift Operations

Comparison Operations. The instruction compe regi A sets the flag equal
to 1 if ri,t = At, and 0 otherwise. To check the execution of this operation we can
set a = At, b = ri,t and check their bit-wise XOR is equal to 0 or that flagt+1 = 0.
Therefore, we can reuse the checks specified for the bit-wise XOR to check the
compare-equal instruction.

The compare-above instruction compa regi A sets the flag equal to 1 if
and only if ri,t > At and to 0 otherwise. Let a = ri,t, c = At, d = 0, and b
store some non-deterministic advice. By checking that SUM = 0 we have that
(a− c) = (2Wflagt+1 − b). Note that if flagt+1 = 1, the right-hand side is greater
than 0, since b ∈ {0, . . . , 2W −1}, and so is the left-hand side. Thus, if flagt+1 = 1,
a > c. On the other hand if flagt+1 = 0, the right-hand side is less or equal than
0, and thus a ≤ c. The operation compg is the equivalent of compa for the
comparison of signed integers and can be checked in a similar way by checking
that SSUM = aσ + b− cσ − 2Wflagt+1 + d is equal to 0, where d is also set equal
to 0 and the other temporary variables are set as above.

Similarly, the compae regi A sets the flag equal to 1 if and only if ri,t ≥ At and
to 0 otherwise. We can set the selection vector as for the previous operation while
setting d = 1. Whenever SUM = 0 we will have that (a− c) = (2Wflagt+1−b−1).
Now, flagt+1 = 1 makes the right-hand side greater or equal than 0, and thus

33

a ≥ c. On the other hand, flagt+1 = 0 makes the right-hand side strictly less than
0, giving us a < c. The operation compg is the equivalent of compa for the
comparison of signed integers and can be checked in a similar way by checking
that SSUM = aσ + b− cσ − 2Wflagt+1 + d is equal to 0, where d is also set equal
to 1 and the other temporary variables are set as above.

Selection vectors of the comparison operations are summarised in Figure 8.

Operation cmpe cmpa cmpae cmpg cmpge

sa At ri,t ri,t ri,t ri,t
sb ri,t b b b b

sc c At At At At
sd / 0 1 0 1

sout XOR,FLAG1,FLAG2 SUM SUM SSUM SSUM

sch flag flag flag flag flag

Fig. 8: Comparison operations.

3.6 Selection Vectors for Rmux and Rconsistent

The instruction relation insures that logic, arithmetic and shift operations are
carried out correctly. Remaining operations that need to be checked are move
and jump operations, memory operations, and a terminating answer operation.
Correct execution can be ensured whenever Rmux and Rconsistent are satisfied with
a certain choice of selection vectors. Here we specify these remaining selection
vectors.

Move and Jump Operations. The instruction mov regi A stores the value
At into regi and the instruction jmp A sets the program counter pct+1 equal to
At. We can check both this operations by storing input and output in a and b,
respectively, and check that their bit-wise XOR is equal to 0. We summarise the
selection vectors for these operations in Figure 9.

The operation cmov is the conditional operation executing a mov instruction
only in the case the flagt is set equal to 1. It can be verified by setting the selection
vectors so that a = ri,t+1, b = At, c = 0, d = ri,t and check that MOD = 0. Note
that when c = 0, the latter amounts to check

flagt+1(b− d) + d− a = 0

To conclude, by setting the entry of vector sch relative to the flag equal to 1, we
can check that flagt = flagt+1.

The conditional operation cjmp executes a jump operation only in case
flagt = 1. This can be checked in the same way as above by setting a = pct+1, b =

34

At, c = 0, d = pct + 1 and check that MOD = 0. Note that exceptionally we allow
the selector vector sc to have two entries set equal to 1. Note that Rins also
performs a range check on the size of c. Thus we would require the length of
the program to be such that L < 2W − 1. However, this is already implied by
the parameter selection of Section 5.2. The conditional operations cnjmp only
performs a jump instruction if flagt = 0. It is sufficient to swap the roles of b a d
and check MOD = 0.

Selection vectors for the above operations are summarised in Figure 9. We
recall that for all the above operations the selection vector sch is set so that we
check the flag does not change during the execution of the instruction.

Operation mov jmp cmov cjmp cnjmp

sa At At ri,t+1 pct+1 pct+1

sb ri,t+1 pct+1 At At pct + 1

sc 0 0 0 0 0

sd / / rj,t pct + 1 At
sout XOR XOR MOD MOD MOD

sch ri pc ri pc pc

Fig. 9: Move and Jump operations.

Memory Operations. The consistency of memory operations across the execu-
tion has been checked by the memory check relation Rmem. Among other things,
Rmem checks that entries addrt and vaddrt are updated consistently. The last thing
that remains to check is that when performing load and store operations, the
registers are updated consistently to the value stored in vaddrt . This involves
checking equality between vaddrt and either the value stored in the input or output
register, which can be done by checking that their bit-wise XOR is equal to 0.
Details of the selection vectors are given in Figure 10.

Operation store load

sa vaddrt vaddrt

sb ri,t ri,t+1

sc 0 0

sd 0 0

sout XOR XOR

sch none ri

Fig. 10: Store/load.

35

Answer. A correct program execution terminates in step T with answer 0.
With little loss of generality we can assume this is done by jumping to the last
line of the program, which has instruction answer A specifying immediate value
A = 0, which we check in Rcheck. A correct program execution only executes
answer once so we also need to ensure the program execution does not encounter
an answer instruction prematurely. We ensure this by removing all answer
instructions from the program table Prog such that no execution step checked by
Rins for t = 1, . . . , T − 1 can be an answer instruction.

4 Proofs for the Correct Program Execution over the ILC
Channel

In this section we give an overview of our proof system for correct TinyRAM
program execution over the ILC channel by giving a breakdown of it into simpler
proofs, which are detailed in Appendix A, B, and C. Recall that in the idealised
linear commitment channel ILC the prover can submit commit commands to
commit vectors of field elements of length k. The vectors remain secretly stored in
the channel. The verifier can do two things: it can use a send command to send
a message to the prover; and it can submit open queries to the ILC channel for
obtaining the openings of linear combinations of vectors committed by the prover.
The field F and the vector length k are specified by the public parameter ppILC.
It will later emerge that the best communication and computation complexity for
a TinyRAM program terminating in T is achieved when k is approximately

√
T .

In Section 3 we broke the relation of correct program execution down to a
number of sub-relations defined over a finite field F. Our strategy for proving that
they are all satisfied is to commit the extended witness to the ILC channel and
then give an sub-proofs for each sub-relation. To begin we describe how we commit
to the execution trace to the ILC model and discuss a relation Rformat for checking
that the commitments are well formed. We then take a top down approach in order
to describe how to check in the ILC model that the program has been executed
correctly. In the first layer we describe a proof for correct TinyRAM execution in
the ILC model. This proof decomposes into proofs checking that Rcheck, Rmem,
Rstep, and Rformat all hold. In the second layer we then decompose proofs for
Rformat, Rcheck, Rmem, and Rstep in terms of generic proofs for checking relations
Rconst, Rperm, Rrange, Req, Rblookup and Rlookup. We detail this decomposition in
Appendix A. In the third layer we detail how these proofs decompose into proofs
in ILC for elemental relations, such as sums, products, shifts, known permutations,
and entry products of committed vectors. Details of this decomposition can be
found in Appendix B. Our fourth and final layer will provide proofs in the ILC
for these elemental relations, which are detailed in Appendix A. A breakdown of
these layers is given in Figure 11.

4.1 Commitments to the Tables

In our proof system, the prover first commits to the extended witness w. The
extended witness includes the field elements in the execution table Exe, the

36

Fig. 11: A breakdown of the relations required at each layer to prove correct
TinyRAM execution.

memory table Mem, the program table Prog, the range table EvenBits and the
exponent table Pow. The prover arranges these tables in multiple matrices and
to their rows.

The prover commits to each column of the execution table (such as the T
entries containing the time t, the T entries containing the programt counter pct,
etc.) by arranging it into an ` by k matrix, and making a commitment to each
row of the resulting matrix. Entries of Exe relative to the same TinyRAM state
will be inserted in the same position across the different matrices. Furthermore,
in all these matrices the last entry of each column is duplicated in the first entry
of the next column. As an example, let consider the first column of Exe which
contains field elements representing the time-steps of the execution. Without loss
of generality let T = (`− 1)k + 1, where T is the number of steps executed by
the program and k is the vector length of the ILC. The prover organizes the field
elements representing time in a matrix Et ∈ F`×k

Et =


1 ` 2`− 1 . . .
2 `+ 1 2` . . .
...

. . .

`− 1 2`− 2 3`− 3 . . . (`− 1)k
` 2`− 1 3`− 2 . . . T



37

Similarly, the prover organizes the rest of the Exe table into matrices Epc,Einst,EA, . . .
one for each column. Let E be the matrix obtained by stacking all matrices on
top of each other and let E = {ei}, for ei ∈ Fk. The prover commits to Exe by
sending the command (commit, {ei}i) to the ILC.

Each column of the program table is also committed to the ILC separately. In
case L ≤ k we can store each column of Prog in one vector, i.e.

P =


Ppc

Pinst

PA
. . .

 =


0 1 . . . L− 1

inst0 inst1 . . . instL−1
A0 A1 . . . AL−1
.


otherwise, multiple rows can be used. The prover sends (commit, {Ppc,Pinst, . . .})
to the ILC channel to commit to P.

The memory table Mem, the auxiliary lookup table EvenBits and the expo-
nent table Pow can be committed in a similar way using matrices M,R and S,
respectively

M =

(
M0

M1

)
R =


0 1 4 5 . . .

∑W
2 −1
i=0 ki2

2i

. . . ∑W
2 −1
i=0 22i

 S =

(
0 1 2 3 . . . W − 1 W

1 2 4 8
. . . 2W−1 0

)

where

M0 =

Maddr,0

Mv,0

Musd,0

 =

 0 1 . . . M − 1
v0 v1 . . . vM−1
0 0 . . . 0

 M1 =

Maddr,1

Mv,1

Musd,1

 =

 0 1 . . . M − 1
v0 v1 . . . vM−1
1 1 . . . 1


and (kW

2 −1
, . . . , k0) is the binary expansion of k.

In order to show that the tables are committed to in the above manner the
prover will show that the first row each of the matrices describing [Exe] is a shift
the last row.

Rformat =

{
(pp, u, w) = ((W,K,F, ∗), [E],⊥)

∣∣
for 1 ≤ j ≤ k − 1 : [E]`,j = [E]1,j+1

}

4.2 Proof for Correct TinyRAM Execution in the ILC Model

Given the witness for the correct execution of a TinyRAM program, we now
describe how a prover can use the ILC channel to convince a verifier that the trace
satisfies the relation Rfield

TinyRAM corresponding to the correct program execution.
The prover and verifier are given in Figure 12.

Theorem 1. (KILC,PTinyRAM,VTinyRAM) is a proof system for RTinyRAM over
the ILC channel with perfect completeness, statistical knowledge soundness with
straight-line extraction, and perfect special honest-verifier zero-knowledge.

38

PTinyRAM(ppILC, u, w)

– Parse u = (P, v, T,M).
– Extend w to w and parse it as{

Et,Epc,Einst,EA,Ereg0 , . . . ,EregK -1, . . .
Ppc,Pinst, . . . ,M0,addr,M0,val, . . . ,R

}
as in Sec-

tion 4.1. Commit w in this form to the ILC channel.
– Pcheck(ppILC, u,w)
– Pmem(ppILC, u,w)
– Pstep(ppILC, u,w)
– Pformat(ppILC, u,w)

VTinyRAM(ppILC, u)

– parse u =
{

[E], [P], [M], [R]
}

– Vcheck(ppILC, u)
– Vmem(ppILC, u)
– Vstep(ppILC, u)
– Vformat(ppILC, [E])
– Return 1 if all checks pass

Return 0 otherwise

Fig. 12: Proof of correct TinyRAM execution in the ILC model

Proof. Perfect completeness follows from the perfect completeness of the sub-
proofs. Perfect SHVZK follows from the perfect SHVZK of the sub-proofs. A
simulated transcript is obtained by combining the outputs of the simulators of
all the sub-proofs. Statistical knowledge soundness follows from the knowledge
soundness of the sub-proofs. Since all sub-proofs have knowledge soundness with
straight-line extraction, so does the main proof. ut

The efficiency of our TinyRAM proof in the ILC model is given in Figure 13.
The asymptotic results displayed below are obtained when the parameter k
specified by ppILC is approximately

√
T . The query complexity qc is the number

of linear combinations the verifier queries from the ILC channel in the opening
query. The verifier communication CILC is the number of messages sent from the
verifier to the prover via the ILC channel and in our proof system it is proportional
to the number of rounds. Let µ be the number of rounds in the ILC proof and
t1, . . . , tµ be the numbers of vectors that the prover sends to the ILC channel in
each round, and let t =

∑µ
i=1 ti.

Prover computation TPILC = O(T) multiplications in F
Verifier computation TVILC = poly(λ)(L+ |v|+

√
T) multiplications in F

Query complexity qc = O(1)
Verifier communication CILC = O(log log T) field elements
Round complexity µ = O(log log T)

Total number of committed vectors t = O
(√

T
)

vectors in Fk

Fig. 13: Efficiency of our TinyRAM proof in the ILC model for (pp, u, w) ∈
RTinyRAM. Here we are assuming that the number of instructions and words of

memory L,M <
√
T , and that the number of registers K is constant.

39

5 Proofs for the Correct Program Execution over the
Standard Channel

In the previous section we gave an efficient SHVZK proof of knowledge over
the ILC channel for correct TinyRAM program execution. We now want to give
a SHVZK proof of knowledge for correct TinyRAM program execution in the
standard communication model where messages are exchanged directly between
prover and verifier. To do this, we use the compiler from Bootle et al. [BCG+17]
who use an error-correcting code and a collision-resistant hash function to compile
a zero-knowledge proof over the ILC channel to a zero-knowledge proof over the
standard communication channel. In the compilation the hash function is used to
instantiate a non-interactive commitment scheme which realizes the commitment
functionality of the ILC in the standard model. The compilation by Bootle et al.
relies on a common reference string that specifies the error-correcting code and
the hash function. However, the common reference string is instance-independent,
it just sets up an ILC channel. Moreover, it can be generated from uniformly
random bits in poly(λ)(L+M +

√
T) TinyRAM steps and has similar size, so it

has little effect on the overall performance of the system.

Linear Error-Correcting Codes With Linear Distance. A linear code over
a finite field F encodes messages in Fk as codewords in Fn. The code C is defined
by an F-linear map EC : Fk → Fn. The rate of the code is defined to be k

n and the
minimum Hamming distance hdmin is the smallest number of entries two distinct
codewords x,y ∈ Fn differ in. We need our codes to be efficiently generatable,
i.e., there should be a polynomial time setup algorithm GenEC that given F and
k outputs an encoding function EC

In the compilation of proof systems over the ILC channel to the standard
channel, Bootle et al. use efficiently generatable codes with constant rate and
linear minimum distance, i.e., n = O(k) and k

n = Ω(1). From a computational
perspective it will be desirable for the codes to be as efficiently encodable as
possible. A rich body of research [GDP73, Spi96, GI01, GI02, GI03, GI05, DI14,
CDD+16] has studied constant-rate linear minimum distance codes that also
have linear-time encoding. Druk and Ishai [DI14] for instance show that there
are constants ν > 1, δ > 0 such that for every finite field F there is an efficiently
generatable family of codes with dimension n = dνke and minimum distance
hdmin = bδkc, where the encoding functions only use O(k) field additions.

Linear-Time Non-Interactive Commitments. A commitment scheme al-
lows a prover to commit to a secret message. The prover may then later open
the commitment and reveal the message inside. Once the commitment has been
sent, the prover cannot open the same commitment to two different messages, a
property known as binding. At the same time the commitment does not reveal
the committed message to the receiver, a property known as hiding.

Halevi and Micali [HM96] show that a collision-resistant hash function gives
rise to a compact statistically hiding commitment scheme. Their transformation

40

is very efficient, so starting with a linear-time hash function such as the one
by Applebaum et al. [AHI+17], which is public coin, we obtain a linear-time
public-coin statistically hiding commitment scheme.

5.1 Compiling ILC proofs into the Proofs over the Standard
Channel

Let now (KILC,PILC,VILC) be a proof for a relation R over the ILC channel that
is straight-line extractable and where all the verifier queries are sent in parallel
at the end. Bootle et al. adapt the setup algorithm to take the field F and vector
size k specified in the ILC parameters and generate a matching linear-distance
linear error correcting code EC : Fk → Fn and a commitment key ck that will be
included in the public parameters alongside the original ILC parameters ppILC.

Figure 14 illustrates the instantiation of the ILC model. The core idea is to
commit to a vector by first mapping it into a codeword and then apply the
commitment scheme to entries in the codeword. For high efficiency, this is done
not just on one vector at a time but to a batch of vectors v1, . . . ,vm at once.
More precisely, the vectors v1, . . . ,vm are organised as rows in a matrix V and
then each row is encoded. Let us define E = EC(V) as the matrix where the
rows are the corresponding codewords e1, . . . , em and let us write Ej for column
j of the matrix E. Bootle et al. suggest committing to the row vectors in V
by committing to each column of the matrix E = EC(V), giving commitments
c1, . . . , cn.

− v1 −
...

− vm −

 EC−→

− EC(v1) −
...

− EC(vm) −


q ↓ q ↓j1 . . . q ↓jλ(

− v −
) EC−→

(
− EC(v) −

)
Fig. 14: Vectors v1, . . . ,vm organized in matrix V are encoded row-wise as
matrix E = EC(V). The prover commits to each column of E and given query
q = (q1, . . . , qm) ∈ Fm for a linear combination she sends v = qV . The verifier
now asks for openings of λ columns {j1, . . . , jλ} in E and verifies for these columns
that EC(v)j = qEj . If the spot checks pass, the verifier believes that v = qV .

Later when the verifier makes a query to the ILC channel to open some linear
combination of the vectors v1, . . . ,vm the prover will first send the resulting
linear combination v =

∑m
i=1 qivi. The verifier can now pick at random a set of

columns to open, for instance λ columns indexed by j1, . . . , jλ. The prover opens
the corresponding commitments cj1 , . . . , cjλ to the verifier by revealing the field
elements and randomness.

41

If the prover is honest we should have v =
∑m
i=1 vi and since the code is

linear EC(v) =
∑m
i=1 qiei. The verifier spot checks in the opened columns that

this is indeed the case. Since the verifier only needs to encode one codeword and
check on λ columns this is highly efficient for the verifier. Yet, since the code
has linear minimum distance a cheating prover has overwhelming probability of
being caught unless each row in the committed E is close to a codeword and the
encoded vectors v1, . . . ,vm indeed do satisfy v =

∑m
i=1 qivi.

The idea as described is not zero-knowledge because revealing parts of a
codeword leaks information about the encoded vector. However, by replacing
the encoding with a randomized exposure-resilient encoding and some other
modifications, Bootle et al. get an instantiation of the ILC channel where the
prover only has negligible chance of opening a wrong linear combination of the
committed vectors. The following theorem follows directly from their work.

Theorem 2 (Bootle et al. [BCG+17]). Using a linear-distance linear error-
correcting code and a statistically-hiding commitment scheme, we can compile
a public-coin straight-line extractable proof (KILC,PILC,VILC) for a relation R
over the ILC channel to a proof (K,P,V) for R over the standard channel.
The compilation is computationally knowledge sound, statistically SHVZK, and
preserves perfect completeness of the ILC proof.

If instead of being statistically hiding the commitment scheme is statistically bind-
ing, the compilation gives a statistically knowledge sound and computationally
SHVZK proof system. However, since our main interest is to get high efficiency
we want the commitment scheme to be compact to get low communication and
we therefore do not consider statistically binding commitments here.

Combining the above with Theorem 1 we get our main theorem.

Theorem 3 (Main theorem). Compiling the ILC proof system (KILC,PTinyRAM,
VTinyRAM) of Fig. 12, we get a proof system over the standard channel for correct
TinyRAM program execution with perfect completeness, statistical SHVZK, and
computational knowledge soundness assuming the existence of collision-resistant
hash functions. Moreover, using coin flipping as described in Section 2.2 we get a
proof system for correct TinyRAM program execution with perfect completeness,
statistical zero-knowledge, and computational knowledge soundness.

In the following section we detail the efficiency of the proof system obtained
by compiling the proof system of Fig. 12.

5.2 Efficiency of the compiled TinyRAM Proof System

Computation is feasible only when it is polynomial in the security parameter, i.e.,
T = poly(λ) and M = poly(λ). Assuming T,M ≥ λ, this means log T = Θ(log λ)
and logM = Θ(log λ). To address all memory we therefore need W = Ω(log λ).
To keep the circuit size of a processor modest, it is reasonable to keep the word
size low, so we will assume W = Θ(log λ). Our proof system also works for larger
word size but it is less efficient when the word size is superlogarithmic. Note that

42

we can at the cost of a constant factor overhead store register values in memory
and therefore without loss of generality assume K = O(1).

To get negligible knowledge error we need the field to have superpolynomial

size |F| = λω(1). This means we need a superconstant ratio e = log |F|
W = ω(1). On

a TinyRAM machine, field elements require e words to store and using school
book arithmetic field operations can be implemented in α = O(e2) steps8

Our proof system is designed for a setting where the running time is large,
so we will assume T � L+M . In the ILC proof for correct program execution
the prover commits to O(T) field elements and uses O(T) field operations. The
verifier on the other hand, only uses O(L+ |v|+

√
T) field operations.

To compile the ILC proof into a proof over the standard channel, Bootle et
al. use a linear-time collision-resistant hash function and linear error-correcting
codes. The collision-resistant hash function by Applebaum et al. [AHI+17] based
on the bSVP assumption for sparse matrices is computable in linear time and can
be used to instantiate the statistically hiding commitment scheme used in the
compilation. As the hash function operates over bit-strings we need to ensure that
the efficiency is preserved once implemented in a TinyRAM program. If we stored
each bit in a separate word of size W = Θ(log λ) we would incur a logarithmic
overhead. However, the hash function is computable by a linear-size boolean
circuit and we can therefore apply a bit-slicing technique. We view the hash of
an n-word string as W parallel hashes of n-bit strings. Each of the bit-strings
is processed with the same boolean circuit, which means they can computed in
parallel in one go by a TinyRAM program using a linear number of steps.

The error-correcting codes by Druk and Ishai [DI14] have constant rate and
can be computed with a linear number of field additions. Applying the error-
correcting codes therefore only changes the prover and verifier complexities by
constant factors during the compilation. This means the compilation preserves
the efficiency of the ILC proof up to constant factors. Taking into account the
overhead of doing field operations, we summarize the efficiency of our proof
system in Table 15.

Field operations TinyRAM operations

Prover Computation O(T) operations in F O(αT) TinyRAM steps

Verifier Computation poly(λ)(L+ |v|+
√
T) ops in F poly(λ)(L+ |v|+

√
T) steps

Communication poly(λ)
√
T field elements poly(λ)

√
T words

Round Complexity O(log log T) O(log log T)

Fig. 15: Efficiency of our proof system for RTinyRAM under the assumption W =

Θ(log λ), K = O(1), L+M < T ≈ 2W , k ≈
√
T , and log |F| = Θ(

√
α) log λ for

an arbitrarily small α = ω(1).

8 More sophisticated techniques such as FFT may reduce the cost of field multiplications
to O(e log e) steps, but if e is only slightly superconstant it will take a long time
before the asymptotics kick in.

43

References

AHI+17. Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz, and
Vinod Vaikuntanathan. Low-complexity cryptographic hash functions.
Electronic Colloquium on Computational Complexity (ECCC), 24:8, 2017.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. In Conference on Computer and Communications Security, CCS
2017, pages 2087–2104, 2017.

AS98. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new
characterization of NP. J. ACM, 45(1):70–122, 1998.

BBC+17. Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel
Genkin, Matan Hamilis, Evgenya Pergament, Michael Riabzev, Mark Sil-
berstein, Eran Tromer, and Madars Virza. Computational integrity with a
public random string from quasi-linear pcps. In EUROCRYPT 2017, pages
551–579, 2017.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic circuits
in the discrete log setting. In EUROCRYPT 2016, pages 327–357, 2016.

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Innovations in Theoretical Computer Science
ITCS 2012, pages 326–349, 2012.

BCCT13. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive
composition and bootstrapping for SNARKS and proof-carrying data. In
Symposium on Theory of Computing Conference, STOC’13, pages 111–120,
2013.

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. Snarks for C: verifying program executions succinctly and
in zero knowledge. In CRYPTO 2013, pages 90–108, 2013.

BCG+17. Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad
Hajiabadi, and Sune K. Jakobsen. Linear-time zero-knowledge proofs for
arithmetic circuit satisfiability. In ASIACRYPT 2017, pages 336–365, 2017.

BCS16. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle
proofs. In Theory of Cryptography, TCC 2016-B, pages 31–60, 2016.

BCTV14a. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scal-
able zero knowledge via cycles of elliptic curves. In CRYPTO 2014, pages
276–294, 2014.

BCTV14b. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-
cinct non-interactive zero knowledge for a von neumann architecture. In
Proceedings of the 23rd USENIX Security Symposium., pages 781–796, 2014.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In ACM Symposium
on Theory of Computing, STOC’98, pages 103–112, 1988.

BFR+13. Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath T. V. Setty,
Andrew J. Blumberg, and Michael Walfish. Verifying computations with
state. In ACM Symposium on Operating Systems Principles, SOSP, pages
341–357, 2013.

BG12. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for
correctness of a shuffle. In EUROCRYPT 2012, pages 263–280, 2012.

44

BP12. Nir Bitansky and Omer Paneth. Point obfuscation and 3-round zero-
knowledge. In Theory of Cryptography - TCC 2012, pages 190–208, 2012.

BSCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. Tinyram architecture specification, v0. 991, 2013.

CD98. Ronald Cramer and Ivan Damg̊ard. Zero-knowledge proofs for finite field
arithmetic; or: Can zero-knowledge be for free? In CRYPTO ’98, pages
424–441, 1998.

CDD+16. Ignacio Cascudo, Ivan Damg̊ard, Bernardo David, Nico Döttling, and
Jesper Buus Nielsen. Rate-1, linear time and additively homomorphic UC
commitments. In CRYPTO 2016, pages 179–207, 2016.

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primi-
tives. In ACM Conference on Computer and Communications Security,
CCS 2017, pages 1825–1842, 2017.

CMT12. Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical
verified computation with streaming interactive proofs. In Innovations in
Theoretical Computer Science, ITCS’12, pages 90–112, 2012.

CTV15. Alessandro Chiesa, Eran Tromer, and Madars Virza. Cluster computing in
zero knowledge. In EUROCRYPT 2015, pages 371–403, 2015.

DI14. Erez Druk and Yuval Ishai. Linear-time encodable codes meeting the gilbert-
varshamov bound and their cryptographic applications. In Innovations in
Theoretical Computer Science, ITCS’14, pages 169–182, 2014.

FNO15. Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-
free garbled circuits with applications to efficient zero-knowledge. In EU-
ROCRYPT 2015, pages 191–219, 2015.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO ’86, pages 186–194,
1986.

FS90. Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. In ACM Symposium on Theory of Computing, STOC 1990, pages
416–426, 1990.

GDP73. S. I. Gelfand, R. L. Dobrushin, and M. S. Pinsker. On the complexity
of coding. In 2nd International Symposium of Information Theory, pages
177–184, 1973.

Gen09. Craig Gentry. Computing on encrypted data. In Cryptology and Network
Security,CANS 2009, page 477, 2009.

GGI+15. Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and
Adam D. Smith. Using fully homomorphic hybrid encryption to minimize
non-interative zero-knowledge proofs. J. Cryptology, 28(4):820–843, 2015.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In EURO-
CRYPT 2013, pages 626–645, 2013.

GI01. Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of
efficiently decodable codes. In Symposium on Foundations of Computer
Science, FOCS 2001, pages 658–667, 2001.

GI02. Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes
for unique decoding and new list-decodable codes over smaller alphabets.
In ACM Symposium on Theory of Computing, STOC 2002, pages 812–821,
2002.

45

GI03. Venkatesan Guruswami and Piotr Indyk. Linear time encodable and list
decodable codes. In ACM Symposium on Theory of Computing, STOC
2003, pages 126–135, 2003.

GI05. Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable
codes with near-optimal rate. IEEE Trans. Information Theory, 51(10):3393–
3400, 2005.

GI08. Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for
correctness of a shuffle. In EUROCRYPT 2008, pages 379–396, 2008.

GKR08. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: interactive proofs for muggles. In Proceedings of the 40th An-
nual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 113–122, 2008.

GMO16. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster
zero-knowledge for boolean circuits. In 25th USENIX Security Symposium,
pages 1069–1083, 2016.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract). In ACM
Symposium on Theory of Computing, STOC 1985, pages 291–304, 1985.

Gro09. Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In
CRYPTO 2009, pages 192–208, 2009.

Gro10a. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In ASIACRYPT 2010, pages 321–340, 2010.

Gro10b. Jens Groth. A verifiable secret shuffle of homomorphic encryptions. J.
Cryptology, 23(4):546–579, 2010.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
EUROCRYPT 2016, pages 305–326, 2016.

HM96. Shai Halevi and Silvio Micali. Practical and provably-secure commitment
schemes from collision-free hashing. In CRYPTO ’96, pages 201–215, 1996.

IKO07. Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments
without short pcps. In IEEE Conference on Computational Complexity,
CCC 2007, pages 278–291, 2007.

IKOS09. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge proofs from secure multiparty computation. SIAM J. Comput.,
39(3):1121–1152, 2009.

JKO13. Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge
using garbled circuits: how to prove non-algebraic statements efficiently.
In ACMConference on Computer and Communications Security, CCS’13,
pages 955–966, 2013.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments
(extended abstract). In ACM Symposium on Theory of Computing, STOC
1992, pages 723–732, 1992.

KR08. Yael Tauman Kalai and Ran Raz. Interactive PCP. In ICALP 2008, pages
536–547, 2008.

Nef01. C. Andrew Neff. A verifiable secret shuffle and its application to e-voting.
In ACM Conference on Computer and Communications Security, CCS
2001, pages 116–125, 2001.

PHGR16. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
nearly practical verifiable computation. Commun. ACM, 59(2):103–112,
2016.

Sch91. Claus-Peter Schnorr. Efficient signature generation by smart cards. J.
Cryptology, 4(3):161–174, 1991.

46

Spi96. Daniel A. Spielman. Linear-time encodable and decodable error-correcting
codes. IEEE Trans. Information Theory, 42(6):1723–1731, 1996.

Tha13. Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In
CRYPTO 2013, volume 8043 of Lecture Notes in Computer Science, pages
71–89, 2013.

WHG+16. Riad S. Wahby, Max Howald, Siddharth Garg, Abhi Shelat, and Michael
Walfish. Verifiable ASICs. In IEEE Symposium on Security and Privacy,
SP 2016, pages 759–778, 2016.

WJB+17. Riad S. Wahby, Ye Ji, Andrew J. Blumberg, Abhi Shelat, Justin Thaler,
Michael Walfish, and Thomas Wies. Full accounting for verifiable outsourc-
ing. In ACM Conference on Computer and Communications Security, CCS
2017, pages 2071–2086, 2017.

WSR+15. Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg,
and Michael Walfish. Efficient RAM and control flow in verifiable outsourced
computation. In Network and Distributed System Security Symposium,
NDSS 2015, 2015.

WTas+17. Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael
Walfish. Doubly-efficient zksnarks without trusted setup. Cryptology ePrint
Archive, Report 2017/1132, 2017. https://eprint.iacr.org/2017/1132.

ZGK+17. Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos,
and Charalampos Papamanthou. vsql: Verifying arbitrary SQL queries
over dynamic outsourced databases. In IEEE Symposium on Security and
Privacy, SP 2017, pages 863–880, 2017.

ZGK+18. Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos,
and Charalampos Papamanthou. vram: Faster verifiable ram with program-
independent preprocessing, 2018.

https://eprint.iacr.org/2017/1132

47

A Layer 2 Proofs of Correct TinyRAM Execution

Recall that we take a top down approach in order to describe how to check that
program has been executed correctly in the ILC model. In Section 4 we gave the
first layer for a proof for correct TinyRAM execution in the ILC model. This
proof required provers for Rformat, Rcheck, Rmem, and Rstep. In this section we
describe these provers in a model independent manner i.e. we give the second
layer of provers. We will use provers for the relations Rconst, Rperm, Rrange, Req,
Rblookup and Rlookup. Instantiations of these third layer provers will be given in
the ILC model in Section B.

A.1 Checking the Algebraic Constraints

Many of the subproofs we use in checking memory consistency and correct
execution trace include algebraic constraints on the variables in the form of
quadratic equations. We shall store every quadratic constraint that needs checking
in a list const. For instance, suppose that in each row of the execution table the
flag should satisfy flag(flag − 1) = 0 in order to guarantee it is a bit. Then the
constraints list would equal const = {[Eflag] ◦ [Eflag − J] = [O])} where J is a
committed matrix containing all ones and O is a committed matrix containing
all zeros. We then define the relation Rconst to be satisfied if and only if every
constraint in the list constraints holds.

Rconst =

{
(pp, u, w) = ((W,K,F, ∗), (const, [w]),w)

∣∣
The committed value [w] satisfies all of the constraints in const

}
.

A.2 Correct Format of Committed Matrices

Our execution table is committed in a particular format. The reason this is
necessary is that we aim to check that each time step is carried out correctly.
However, if there was no format to the entries, it would require addition checks
to ensure that the final entry in a matrix column is correctly transitioned into the
first entry in the next matrix column. Instead, we force the prover to repeat their
the final entry into the first entry of the next column. This is the role of Rformat

whose proof is described in Figure 16. The proof simply consists of checking that
a constraint relation holds.

A.3 Checking Correctness of Values

Figure 17 provides a proof that Rcheck holds i.e. that certain values in the tables
have been committed to correctly.

A.4 Memory Consistency

Figure 18 provides a proof that Rmem holds i.e. that the memory is consistent. It
uses the matrix of ones J = (1, 1, . . .)).

48

Pformat(ppILC, [E],E)

– const = add checks for Rformat

– Run Pconst(ppILC, (const, [E`], [E1]))

Vformat(ppILC, [E])

– Run Vconst(ppILC, (const, [E`].[E1]))
– Return 1 if all proofs accept,

Return 0 otherwise

Fig. 16: Argument that Rformat holds for a committed execution table.

Pcheck(ppILC, (inst0, A0,answer, [w]), (E,P,M,R,S))

– Initial program state correct.

Peq

(
ppILC, (1, 0, inst0, 0, . . .),
[(Et)0,0, (Epc)0,0, (Einst)0,0, . . .]

)
– Final program state correct.

Peq

(
ppILC, (T,L− 1,answer, 0, . . .),
[(Et)`−1,k−1, (Epc)`−1,k−1, (Einst)`−1,k−1, . . .]

)
– Range table correct.
Peq (ppILC,EvenBits, [R])

– Power table correct
Peq (ppILC,Pow, [S])

– Program table correct.
Peq(ppILC,Prog, ([P]))

– Memory table correctly initialised with instance.
Peq(ppILC, v, [Mv])

Vcheck(ppILC, (inst0, A0,answer, [E], [P], [M], [R], [S]))

– Veq
(
ppILC, (1, 0, inst0, 0, . . .),
[(Et)0,0, (Epc)0,0, (Einst)0,0, . . .]

)
– Veq

(
ppILC, (T,L− 1,answer, 0, . . .),
[(Et)`−1,k−1, (Epc)`−1,k−1, (Einst)`−1,k−1, . . .]

)
– Veq (ppILC,EvenBits, [R])
– Veq (ppILC,Pow, [S])
– Veq(ppILC,Prog, ([P]))
– Veq(ppILC, v, [Mv])
– Return 1 if all proofs accept,

Return 0 otherwise

Fig. 17: Prover and Verifier for Proof of Correctness of Values.

Pmem(ppILC, ([E], [M]), (E,M, π))

– Memory accesses form cycles in Exe i.e. Rcycle.
Set [A1] = [Et], [A2] = [Eaddr], [A3] = [Ev]
Commit to A4 = S + L
Set [B1] = [Eτlink], [B2] = [Eaddr], [B3] =
[Evlink], [B4] = [A4]
const = add checks for Rformat

Pperm

(
ppILC, (T, {[Ai], [Bi]}4i=1), π)

)
– The cycles are in the correct order i.e. Rtime.

Commit to M1 = (J − Eusd) ◦ (Eτlink − Et) + Eusd ◦
(Et − Eτlink − J)
const = add checks for Rtime

Prange(ppILC, [M1], [R])
– Cycles are disjoint i.e. Rblookup

Pblookup(ppILC, ({Eaddr,Evinit ,Eusd}, [M])).
– Loads and stores are consistent i.e. Rload.

const = add checks for Rload

– Pconst(ppILC, (const, [E], [M1], [A4]))

Vmem(ppILC, ([E], [M]))

– [A1], . . . , [A4], [B1], . . . [B4] = same as prover.
Run Vperm

(
ppILC, (T, {[Ai], [Bi]}4i=1)

)
– Vrange(ppILC, ([M1], [R]))
– Vblookup(ppILC, ({[Eaddrt], [Evinitt

], [Eusdt]}, [M]))
Vconst(ppILC, (const, [E], [O], [J], [M1], [M2], [A4]))

– Return 1 if all proofs accept,
Return 0 otherwise

Fig. 18: Prover and Verifier for Proof of Memory Consistency.

49

A.5 Instruction Correctness

Figure 19 provides a proof that Rstep holds i.e. that each step of the program
has been evaluated correctly. It uses the the matrix of ones J = (1, 1, . . .)).

Pstep(ppILC, ([E], [P], [R], [S]), (E,P,R,S))

– Multiplexer relations are satisfied i.e. Rmux.
const = add checks for Rmux

– Exe and Prog are consistent i.e. Rconsistent.
Plookup(ppILC, {[Epc], [Ppc]})

Plookup

ppILC,

{(
[Epc], [Einst], [EA], [ES], [EL], [Esa],

[Esb], [Esc], [Esd], [Esout], [Esch]
)
,

[Prog]
}


const = add checks for Rconsistent

– Instructions are satisfied i.e. Rins

Logic instructions
Prange(ppILC, ([Ea], [R])), Prange(ppILC, ([Eb], [R])),
Prange(ppILC, ([Ec], [R])), Prange(ppILC, ([Ed], [R])),
Commit to M3 = Exeao+Exebo M4 = Exeae+Exebe .
Prange(ppILC, ([M3], [R])), Prange(ppILC, ([M4], [R]))
const = add checks for Rlogic

Arithmetic instructions
Commit to M5 = Exeao + (J − 2Exeσa)2

W−2

M6 = Exebo + (J − 2Exeσb)2W−2

M7 = Execo + (J − 2Exeσc)2
W−2

const = add checks for Rarith

Plookup(ppILC, {([M5], [R]), ([M6], [R]), ([M7], [R])}).
Shift instructions
Commit to M8 = Exebe + (J − 2Exeρb),
M9 = Exea + Exeashift ◦ (WJ − Exea)
const = add checks for Rmshift

Plookup(ppILC, {([M8], [R]), (([M9], [Eapower]), [S])})
– Pconst(ppILC, (const, [E], [M3], . . . , [M9]))

Vstep(ppILC, ([E], [P], [R], [S]))

– Vlookup(ppILC, {[Epc], [Ppc]})

Vlookup

ppILC,

{(
[Epc], [Einst], [EA], [ES], [EL], [Esa],

[Esb], [Esc], [Esd], [Esout], [Esch]
)
,

[Prog]
}


– Vrange(ppILC, ([Ea], [R])), Vrange(ppILC, ([Eb], [R])),
Vrange(ppILC, ([Ec], [R])), Vrange(ppILC, ([Ed], [R])),
Vrange(ppILC, ([M3], [R])), Vrange(ppILC, ([M4], [R]))
Vlookup(ppILC, {([M5], [R]), ([M6], [R]), ([M7], [R])}),
Vlookup(ppILC, {([M8], [R]), (([M9], [Eapower]), [S])}).

– Vconst(ppILC, (const, [E], [M3], . . . , [M9]))
– Return 1 if all proofs accept,

Return 0 otherwise

Fig. 19: Prover and Verifier for Correctness of Instruction Execution.

A.6 Efficiency of Layer 2 Provers.

The efficiency of the proof system is given in the following table, where TP and
TV refers to the prover and verifier computation (meaured in field operations),
qc is the query complexity (measured in the number of linear combination the
verifier asks for), and t is the number of vectors the prover commits to during
the proof.

B Layer 3 Proofs of Correct TinyRAM Execution

Recall that we take a top down approach in order to describe how to check
that program has been executed correctly in the ILC model. In Appendix A we

50

TP TV qc #rounds t

Rformat O(kN logN + kMN) mult. O(kMN) mult. 6 logM + 2 O(MN)
Rcheck 0 O(tk) add. 6 0 0
Rmem O(kN logN + kMN) mult. O(kMN) mult. 308 logM + 2 O(MN)
Rstep O(kN logN + kMN) mult. O(kMN) mult. 1452 logM + 2 O(MN)

Table 4: Efficiency of protocols in Layer 2. The values M,N are tuneable pa-
rameters in the Hadamard product proof; good performance is achieved in the
condition N∗ = MN .

gave the second layer for a proofs for correct TinyRAM execution in the ILC
model. These proof required provers for Rconst, Rperm, Rrange, Req, Rlookup, and
Rblookup. In this section we describe these provers in the ILC model i.e. we give
the third layer of provers. We will use ILC provers for sums, products, known
permutations, shifts, entry-products and grand sums. Instantiations or references
for these fourth layer ILC provers will be given in Appendix C.

B.1 Buildling Blocks

Sums and Products Let [A1], . . . , [An], [B] be matrices committed to the ILC.
Then the relation Rsum is given by

Rsum =

{
(ppILC, u) = ((F, k) , (v, [A1], . . . , [An], [B]), (A1, . . . , An, B)) :

v ∈ Fn ∧A1, . . . , An, B ∈ FN∗×k ∧
∑n
i=1 viAi = B

}
.

Let [A], [B], [C] be matrices committed to the ILC. Then the relation Rprod is
given by

Rprod =

{
(ppILC, u) = ((F, k) , ([A], [B], [C]), (A,B,C)) :

A,B ∈ FNM×k ∧ A ◦B = C

}
.

Known Permutations Let [A], [B] ∈ FN∗×k be matrices committed to the ILC,
and π be a permutation π ∈ Σ[N∗]×[k]. Then the relation Rkperm is given by

Rkperm =

{
(ppILC, u) = ((F, k) , (π, [A], [B]), (A,B)) :

A,B ∈ FN∗×k ∧ π ∈ Σ[N∗]×[k] and A = Bπ

}
.

Shifts Let [A], [B], be matrices committed to the ILC which have MN rows,
given respectively by vectors ai,j ,bi,j ∈ Fk, with 0 ≤ i ≤M − 1, 1 ≤ j ≤ N . The
shift condition specifies that A is a shift of B. This means that: the top-right
element of A is a 1; columns 2 up to k of A are equal to columns 1 up to k − 1
of B; we can obtain the final column of B from the first column of A by deleting
the first entry and appending some quantity. The relation Rmshift is given by

Rmshift =

{
(ppILC, u) = ((F, k) , ([A], [B]), (A,B)) :

A,B satisfy the shift condition

}
.

51

Entry Products Let [A], [P], be matrices committed to the ILC where [P] is
committed by itself as the final entry of a vector whose other entries are all zero.
Then then relation Rentry-prod is given by

Rentry-prod =


(ppILC, u) = ((F, k) , ([A], [P]), (A,P)) :

A ∈ FN∗×k ∧ A = (ai,j)
∧ P =

∏
i,j ai,j

 .

Grandsum Let [A] be a matrix committed to the ILC, and x ∈ F. Then the
relation Rgrandsum is given by

Rgrandsum =

{
(ppILC, u) = ((F, k) , (x, [A]), (A)) :
A ∈ FN∗×k ∧

∑
i,j ai,j = x

}
.

B.2 Proofs of Correct Openings

In the ILC model, [BCG+17] gives a proof for checking consistency of committed
vectors with values in the instance. In their proof, the prover Peq simply commits
to a set of vectors by sending (commit,u1, . . . ,ut) to the ILC channel. Let
U = (ui)

t
i=1 be the part of a given table that we are interested in. We denote

by [U] the committed values stored in the ILC. The verifier asks for a random
linear combination of the corresponding vectors and checks it against the values
u1, . . . ,ut in the instance. The corresponding relation is

Req =

{
(ppILC, u) = ((F, k), (u1, . . . ,ut, [U]), (U)) :

u1, . . . ,ut ∈ Fk ∧ U = (ui)
t
i=1

}
.

Theorem 4 ([BCG+17]). There is a proof system (KILC,Peq,Veq) for the re-
lation Req in the ILC model with perfect completeness, statistical knowledge
soundness with straight-line extraction and perfect special honest verifier zero-
knowledge.

B.3 Arithmetic Constraints

Recall that the relation Rconst is given by

Rconst =

{
(pp, u, w) = ((W,K,F, ∗), (const, [w]),w)

∣∣
The committed value [w] satisfies all of the constraints in const

}
.

In order to simultaneously check that all of the different equations are satisfied, we
use a quadratic arithmetic program (QAP) based approach [GGPR13]. Quadratic
arithmetic programs are a means to batch together a set of quadratic equations
with a single multiplication each into a polynomial equation. While QAPs have
mainly been used to construct pairing-based SNARKs, we find that they can
also be used in interactive proofs.

52

We will extend the QAP approach to give a new batch-QAP argument for
the same QAP holding over many sets of variables. We can specify the algebraic
constraints over each consecutive rows in the execution table as a QAP. Now
we need to prove the QAP holds over the variables in each of the T − 1 pairs of
consecutive rows.

Formally, we will be working with QAPs that have the following description

QAP =
(
F, n, {ui(X̄), vi(X̄), wi(X̄)}mi=0, t(X̄)

)
,

where 1 ≤ n ≤ m, ui(X), vi(X), wi(X), t(X) ∈ F[X] and ui(X), vi(X), wi(X)
have strictly lower degree than n, the degree of t(X). The polynomials can be
determined from a list of quadratic constraints. In our case these are the con-
straints stored in const. A quadratic arithmetic program with such a description
defines the following binary relation, where we define a0 = 1,

R =


(ppILC, u, w) = ((F, k) , (x,QAP) , w) :
x = (ai)

I
i=n ∈ Fk , w = (ai)

n−1
i=1 ∈ Fk

∃z(X) ∈ F[X],deg(h) ≤ n− 2 :
(
∑m
i=0 aiui(X)) · (

∑m
i=0 aivi(X)) =

∑m
i=0 aiwi(X) + z(X)t(X)

 .

It follows from [GGPR13] that the algebraic constraints we have can be bundled
together and expressed as a QAP. To provide a proof for a correct TinyRAM
execution, we will require a batched argument for checking many identical QAPs
using a single proof. For x = (ai,j)

I,MN
i=n,j=1 ∈ Fk and a witness known only to

the prover w = (ai,j)
n−1,MN
i=1,j=1 ∈ Fk the prover shows that for all j, there is a

polynomial zj(X) ∈ Fk[X] of deg ≤ n− 2 such that(
I∑
i=1

ai,jui(X̄)

)
·

(
I∑
i=1

ai,jvi(X̄)

)
=

I∑
i=1

ai,jui(X̄) + zj(X)t(X).

Formal Description. Next, we provide a formal description of the proof of
knowledge of committed matrices satisfying the relation Rconst.

Fig. 20: QAP Proof decomposed into sub-proofs.

Proof:

53

Instance: The prover has already sent [ai,i,j]
I,MN
i=n+1,j=1 to the ILC channel.

Pconst → ILC: For 1 ≤ j ≤MN , the prover computes

[(
I∑
i=1

ai,jui(X̄)

)
◦

(
I∑
i=1

ai,jvi(X̄)

)
−

I∑
i=1

ai,jwi(X̄)

]
/t(X̄) =

I∑
i=1

zi,jX̄
i

The prover sends {zi,j}I,MN
i=1,j=1 to ILC.

ILC← Vconst : Verifier sends x̄← F× to ILC.

Pconst → ILC: For each j, the prover computes

âj =

I∑
i=1

ai,jui(x̄)

b̂j =

I∑
i=1

ai,jvi(x̄)

ĉj =

I∑
i=1

ai,jwi(x̄) +

I∑
i=1

zi,j x̄
it(x̄)

The prover sends [âj]
MN
j=1 , [b̂j]

MN
j=1 , [ĉj]

MN
ij=1 to ILC.

Pconst → ILC← Vconst: The prover and verifier engage in three sum sub-proofs
in order to show that âj , b̂j and ĉj were formed correctly from previously
committed values and the public QAP wire values.
The prover and verifier engage in a product proof in order to show that for
each j, we have âj ◦ b̂j = ĉj .

Security Analysis.

Theorem 5. (KILC,Pconst,Vconst) is a proof system for the relation RQAP in
the ILC model with perfect completeness, statistical knowledge soundness with
straight-line extraction, and perfect special honest verifier zero-knowledge.

Proof. Perfect completeness follows by careful inspection of the protocol and
considering the various polynomial expressions computed by the prover.

Next, we show that the proof has statistical knowledge soundness with straight-
line extraction. This is because the knowledge extractor already has access to
the committed matrices [A] and [Z], having seen all messages sent between the
prover and the ILC. It remains to show that for any deterministic malicious prover
P∗QAP, if the committed vectors are not a valid witness for RQAP, then there is

54

negligible probability of accept. By the knowledge-soundness of the sum proof, it
must be the case that for each j, the values âj , b̂j , ĉj were computed correctly.

âj =

I∑
i=1

ai,jui(x̄)

b̂j =

I∑
i=1

ai,jvi(x̄)

ĉj =

I∑
i=1

ai,jwi(x̄) +

I∑
i=1

zi,j x̄
it(x̄)

By the knowledge-soundness of the product proof, we see that we must have(
I∑
i=1

ai,jui(x̄)

)
◦

(
I∑
i=1

ai,jvi(x̄)

)
=

I∑
i=1

ai,jwi(x̄) +

I∑
i=1

zi,j x̄
it(x̄).

Since the prover committed to ai,j and zi,j before seeing the challenge x̄, these
values must be constant and independent of x̄. By the Schwarz-Zippel lemma,
if the ai,j do not form valid QAP wire assignments, then there is negligible
probability for the above equality to hold over the random choice of x̄. Therefore,
we have statistical knowledge-soundness.

Finally, we show that the proof is honest-verifier zero-knowledge. This follows
trivially from the fact that the sum and product sub-proofs are all honest-verifier
zero-knowledge. ut

Efficiency. The efficiency of the proof system is given in Table 5, and since
the cost is dominated by the cost of the product argument, the efficiency of the
protocol is similar asymptotically. In the verification of a TinyRAM execution,
we need only consider QAPs with constant size I. Therefore, we exclude I in our
efficiency estimates, as it only introduces a constant overhead over the costs in
the product proof, for example.

B.4 Unknown Permutations

We will now give an unknown permutation proof for the relation Rperm. To
correspond to the matrix values committed to the ILC, we write the values
being permuted as matrices. Our techniques are inspired by the shuffle proofs
of Neff [Nef01]. Suppose the prover has committed to the rows of two matrices
A,B ∈ FN∗×k, which we will write with square brackets. Then the claim is that
the committed matrices satisfy B = Aπ for some permutation π, where the
notation Aπ means the matrix with entries aπi,j = aπ(i,j). We generalise this
notion to extend to the case of multiple pairs of permuted matrices.

55

Fig. 21: Unknown Permutation Proof decomposed into sub-proofs.

Define J ∈ FN∗×k to be the matrix that has 1 in all entries, i.e.,

J =

1 1
. . .

1 1

 .

Our permutation proof for Rperm is given in Fig. 22. The idea behind the
construction is to let the verifier pick random challenges x, y and let the prover
commit to A− xJ and B − xJ . The prover will now convince the verifier that
the product of the entries in A − xJ is equal to the product of the entries in
B − xJ . What happens if the prover is trying to cheat and B 6= Aπ? Writing out
the products of entries, we then get that to cheat the prover must have∏

i,j

(ai,j − x) =
∏
i,j

(bi,j − x).

By the Schwartz-Zippel lemma this is unlikely to hold over the random choice of
x unless indeed B contains a permutation of the entries in A.

The final permutation proof applies also to lookups over tuples of length
n, rather than single elements. See B.6 for a discussion on how to extend the
permutation proof to permutations of tuples.

Theorem 6. (KILC,Pperm,Vperm) is a proof system for the relation Rperm in the
ILC model with perfect completeness, statistical knowledge soundness with straight-
line extraction, and perfect special honest verifier zero-knowledge.

Proof. Perfect completeness follows by inspection.
For statistical soundness, note that by the knowledge soundness of the equality

and sum proofs we know the prover has indeed committed correctly to A− xJ
and B−xJ and can extract these committed values. By the knowledge soundness
of the entry product and sum proofs, we get

∏
i,j(ai,j − x) =

∏
i,j(bi,j − x). The

Schwartz-Zippel Lemma tells us that if A and B have different entries, then the
probability that this equality holds over the random choice of x← F is at most
N∗k
|F| , which is negligible. Finally, note that each sub-protocol has straight-line

extraction.
To see we have perfect special honest verifier zero-knowledge, simulate that

the verifier receives commitments to three matrices in FN∗×k and run the perfect
special honest verifier zero-knowledge simulators on the equality, sum and same
product proofs. ut

56

Pperm(ppILC, ({[Ai], [Bi]}ni=1), (π, {Ai, Bi}ni=1))

– If n > 1:
– Get challenge z ∈ F from ILC
– Commit to A =

∑n
i=1Aiz

i

– Commit to B =
∑n
i=1Biz

i

– Set z = (z, z2, . . . , zn)

– Run Psum

(
ppILC, (z, [A1], . . . , [An], [A]),
(A1, . . . , An, A)

)
– Run Psum

(
ppILC, (z, [B1], . . . , [Bn], [B]),
(B1, . . . , Bn, B)

)
– Run Pperm(ppILC, ({[A], [B]}), (π,A,B))
– Get challenge x ∈ F from ILC
– Let U = −xJ
– Let A′ = A− xJ and
B′ = B − xJ

– Commit to the rows of U,A′, B′

– Run Peq(ppILC, (U, [U]), (U))
– Run Psum(ppILC, ((1, 1), [A], [U], [A′]), (A,U,A′))
– Run Psum(ppILC, ((1, 1), [B], [U], [B′]), (B,U,B′))
– Run Pentry−prod(ppILC, ([A

′], [PA]), (A′, PA))
– Run Pentry−prod(ppILC, ([B

′], [PB]), (B′, PB))
– Run Psum(ppILC, ((1, 0), [PA], [O], [PB]), (PA, O, PB))

Vperm(ppILC, ({[Ai], [Bi]}ni=1))

– If n > 1:
– Pick z ∈ F
– Send z to ILC
– Commit to A =

∑n
i=1Aiz

i

– Commit to B =
∑n
i=1Biz

i

– Set z = (z, z2, . . . , zn)
– Run Vsum(ppILC, (z, [A1], . . . , [An], [A]))
– Run Vsum(ppILC, (z, [B1], . . . , [Bn], [B]))
– Run Vperm(ppILC, ({[A], [B]}))
– Return 1 if all proofs accept
– Return 0 otherwise
– Pick x← F
– Send x to ILC
– Compute U = −xJ
– Run Veq(ppILC, (U, [U]))
– Run Vsum(ppILC, ((1, 1), [A], [U], [A′])
– Run Vsum(ppILC, ((1, 1), [B], [U], [B′])
– Run Ventry−prod(ppILC, ([A

′], [PA]))
– Run Ventry−prod(ppILC, ([B

′], [PB]))
– Run Vsum(ppILC, ((1, 1), [PA], [0], [PB]))
– Return 1 if all proofs accept,

Return 0 otherwise

Fig. 22: Unknown permutation proof for two committed matrices.

B.5 Lookups

Fig. 23: Lookup Proof decomposed into sub-proofs.

We will now give a novel lookup proof for matrices, which shows that every
element of a given matrix is an element of another committed matrix. We will
use the notation A ⊆ B to mean that the set of field elements in the entries of A
is a subset of the set of field elements in the entries of B. Suppose the prover has
committed to the rows of a matrix A ∈ FN∗×k and the rows of B ∈ FK×k. Then
the claim is that every entry ai,j of the committed matrix A is equal to some
entry bi,k of B. We generalise this to the case of multiple pairs of matrices. The
corresponding relation is

Rlookup =

{
(ppILC, u) = ((F, k) , ({[Ai], [Bi]}ni=1), ({Ai, Bi}ni=1)) :

for1 ≤ i ≤ n, Ai ∈ FN∗×k ∧ Bi ∈ FK×k ∧ Ai ⊆ Bi

}
.

57

We give the lookup proof for Rlookup in Fig. 24. The idea behind the construc-
tion is that if {ai,j} ⊂ {bi,j} then we can express the polynomial

∏
i,j(X − ai,j)

as
∏
i,j(X − bi,j)ei,j for non-negative integers e1,1, . . . , eK,k which sum to N∗× k.

To construct the argument, we let the verifier pick a random challenge x, and let
the prover commit to A− xJ and the binary expansions of e1,1, . . . , eK,k. The
prover will now use the entry-product argument to compute the product of the
entries in A− xJ , and compute

∏
i,j(X − bi,j)ei,j in a verifiable manner using a

square-and-multiply algorithm and several product arguments. What happens if
the prover is trying to cheat? Writing out the products of entries, we then get
that to cheat the prover must have

∏
i,j

(ai,j − x) =
∏
i,j

(bi,j − x)ei,j .

By the Schwartz-Zippel lemma this is unlikely to hold over the random choice of
x unless indeed {ai,j} ⊂ {bi,j}.

It is relatively simple for the prover to compute the product
∏
i,j(ai,j − x) in

a verifiable manner. They first use the sum and equality arguments to prove that
they have correctly committed to A′ = A− xJ . They then commit to P with a
single non-zero entry in the bottom left corner equal to

∏
i,j x− ai,j and use the

entry-product argument on A′ and P .

Implementing the square-and-multiply algorithm requires more steps. The
prover commits to a matrix E ∈ FK log(N∗k)×k, such that the first row consists of
the lowest order binary digits of e1,1, . . . , e1,k, the second row consists of the next
digits, and so on. We use the notation ei,j [`] to refer to the `th binary digit of ei,j .
After log(N∗k) rows, the matrix continues with the digits of e2,1, . . . , e2,k, and so
on. The prover also computes a matrix V ∈ FK log(N∗k)×k, such that the first row
is (x− b1,1, . . . , x− b1,k), the second row consists of (x−b1,1)2, . . . , (x−b1,k)2, and
so on. Again, after log(N∗k) rows, the matrix continues with rows corresponding
to b2,1, . . . , b2,k, and so on.

E =


e1,1[1] . . . e1,k[1]

.

.

.
.
.
.

e1,1[log(N∗k)] . . . e1,k[log(N∗k)]
e2,1[1] . . . e2,k[1]

.

.

.
.
.
.

eK,1[log(N∗k)] . . . eK,k[log(N∗k)]

 V =



(x− b1,1) . . . (x− b1,k)
(x− b1,1)2 . . . (x− b1,k)2
(x− b1,1)4 . . . (x− b1,k)4

.

.

.
.
.
.

(x− b1,1)N∗k . . . (x− b1,k)N∗k

.

.

.
.
.
.

(x− bK,1)N∗k . . . (x− bK,k)N∗k


.

The prover needs to demonstrate that both of these matrices are correctly formed.
In order to show that E is correctly formed it does two things. It first uses a
product argument to show that E ◦E = E, and hence that the entries of E must
consist of zeroes and ones. In order to check that the sum of the ei,j is equal to
N∗ × k, the prover first commits to the matrix R ∈ FK log(N∗k)×k whose rows
contain powers of 2 (ri,j = 2i). It runs an equality argument on R. It calculates

58

the matrix Eexp = E ◦R and runs a product argument.

Eexp =


e1,1[1] . . . e1,k[1]

.

.

.
.
.
.

2log(N∗k)−1e1,1[log(N∗k)] . . . 2log(N∗k)−1e1,k[log(N∗k)]
e2,1[1] . . . e2,k[1]

.

.

.
.
.
.

2log(N∗k)−1eK,1[log(N∗k)] . . . 2
log(N∗k)−1eK,k[log(N∗k)]


Finally, it runs the grand sum argument on Eexp.

In order to show that E is correctly formed it does the following. First it
demonstrates that the rows containing linear terms in x were computed correctly
showing that Vlinear = xJ∗ −B, where J∗ is an all ones matrix of the same size
as B and Vlineari = V(i−1)×log(N∗k)+1. Let V> be V with the rows corresponding
to most significant bits removed, and let V⊥ be V with the rows corresponding
to least significant bits removed.

V> = V1, . . . , Vlog(N∗k)−1, Vlog(N∗k)+1, . . . , V2 log(N∗k)−1, V2 log(N∗k)+1, . . .
V⊥ = V2, . . . , Vlog(N∗k), Vlog(N∗k)+2, . . . , V2 log(N∗k), V2 log(N∗k)+2, . . .

The prover runs a product proof to demonstrate that V> ◦V> = V⊥, which proves
that the other elements of V are well-formed.

Let J ′ be the matrix with the same dimensions as E and V that contains 1 in
all entries. The prover computes G = E ◦V + J ′−E, and uses several sub-proofs
to demonstrate that it is correctly formed. The matrix G was chosen because
it contains all 2-powers of the factors (x− bi,j) which multiply together to give∏
i,j(x− bi,j). Finally, the prover uses an entry product argument on G and P .

Since P is the same value as before, the proof will only work if the entry-product
of A is equal to the entry-product of B.

The final lookup proof applies also to lookups over tuples of length n, rather
than single elements. See B.6 for a discussion on how to extend the lookup proof
to tuples.

Theorem 7. (KILC,Plookup,Vlookup) is a proof system for the relation Rlookup in
the ILC model with perfect completeness, statistical knowledge soundness with
straight-line extraction, and perfect special honest verifier zero-knowledge.

Proof. Perfect completeness follows by inspection.
For statistical soundness, note that by the knowledge soundness of the various

sub-proofs we know the prover has indeed committed correctly to
∏
i,j(ai,j − x)

and
∏
i,j(bi,j − x)ei,j and can extract these committed values. By the knowledge

soundness of the sum proof, we get
∏
i,j(ai,j − x) =

∏
i,j(bi,j − x)ei,j . The

Schwartz-Zippel Lemma tells us that if the entries of A are not all entries of
B, then the probability over the random choice of x ← F of this equality to
hold is at most N∗k

|F| , which is negligible. Finally, note that each sub-protocol has

straight-line extraction.
To see we have perfect special honest verifier zero-knowledge, simulate that

the verifier receives commitments to the correct number of matrices, with the

59

Plookup(ppILC, ({[Ai]}ni=1, {[Bi]}ni=1), ({Ai, Bi}ni=1))

– If n > 1:
– Get challenge z ∈ F from ILC
– Commit to A =

∑n
i=1Aiz

i

– Commit to B =
∑n
i=1Biz

i

– Set z = (z, z2, . . . , zn)

– Run Psum

(
ppILC, (z, [A1], . . . , [An], [A]),
(A1, . . . , An, A)

)
– Run Psum

(
ppILC, (z, [B1], . . . , [Bn], [B]),
(B1, . . . , Bn, B)

)
– Run Plookup(ppILC, ({[A], [B]}, (A,B))
– Get challenge x ∈ F from ILC.
– Find

∏
i,j x− ai,j

Commit to A′ = xJ −A and P .
Psum(ppILC, ((x,−1), [J], [A], [A′]), (J,A,A′)).
Pentry−prod(ppILC, ([A

′], [P]), (A′, P)).

– Find binary expansion of exponents
Commit to E,R,Eexp.
Pprod(ppILC, ([E], [E], [E]), (E,E,E)).
Peq(ppILC, (R, [R]), (R)).
Pprod(ppILC, ([E], [R], [Eexp]), (E,R,Eexp)).
Pgrandsum(ppILC, (N∗ × k, [E]), (E)).

– Find matrix of values (x− bi,j)`.
Commit to V .
Psum(ppILC, ((x,−1), [J∗], [B], [Vlinear]), (B

′, B, xJ∗)).
Pprod(ppILC, ([V>], [V>], [V⊥]), (V>, V>, V⊥)).

– Find
∏
i,j(x− bi,j)

ei,j

Commit to G = E ◦ V + J ′ − E, and to E ◦ V .
Pprod(ppILC, ([E], [V], [E ◦ V]), (E, V,E ◦ V)).
Psum(ppILC, ((1, 1,−1), [E ◦ V], [J ′], [E], [G]), (E ◦
V, J ′, E,G))
Pentry−prod(ppILC, ([G], [P]), (G,P)).

Vlookup(ppILC, ({[Ai]}ni=1, {[Bi]}ni=1))

– If n > 1:
– Pick z ∈ F
– Send z to ILC
– Commit to A =

∑n
i=1Aiz

i

– Commit to B =
∑n
i=1Biz

i

– Set z = (z, z2, . . . , zn)
– Run Vsum(ppILC, (z, [A1], . . . , [An], [A]))
– Run Vsum(ppILC, (z, [B1], . . . , [Bn], [B]))
– Run Vlookup(ppILC, ({[A], [B]}))
– Return 1 if all proofs accept
– Return 0 otherwise
– Send x ∈ F to the ILC.
– Vsum(ppILC, ((x,−1), [J], [A], [A′])).
– Ventry−prod(ppILC, ([A

′], [P])).
– Vprod(ppILC, ([E], [E], [E])).
– Veq(ppILC, (R, [R])).
– Vprod(ppILC, ([E], [R], [Eexp])).
– Vgrandsum(ppILC, (N∗ × k, [E])).
– Vsum(ppILC, ((x,−1), [J∗], [B], [Vlinear])).
– Vprod(ppILC, ([V>], [V>], [V⊥])).
– Vprod(ppILC, ([E], [V], [E ◦ V])).
– Vsum(ppILC, ((1, 1,−1), [E ◦ V], [J ′], [E], [G]))
– Ventry−prod(ppILC, ([G], [P])).
– Return 1 if all proofs accept,

Return 0 otherwise

Fig. 24: Lookup proof

60

correct dimensions, and run the perfect special honest verifier zero-knowledge
simulators on the sub-proofs. ut

B.6 Bounded Lookups

Fig. 25: Bounded Lookup Proof decomposed into sub-proofs.

Based on the lookup proof, we present an efficient proof for checking bounded
lookups. More precisely, the prover is able to convince the verifier that ev-
ery element of the conjugation of committed columns of the execution table
[Eaddr], [Evinit], [Eusd] appear in the committed memory table [M], and that more-
over every entry in [M1] occurs at most once in [Eaddr], [Evinit], [Eusd]. The protocol
is given in Fig. 26.

The proof begins by running the lookup argument as a sub-proof. This involves
committing to the binary matrix E that encodes information about the number
of times ei,j that each M` appears in [Eaddr], [Evinit], [Eusd]. Each column of E
contains the binary expansion of several ei,j . Use the notation e0,k for the number
of times each M0k occurs and e1,k for the number of times each M1k occurs. To
prove that entries in M0 occur no more than once in [Eaddr], [Evinit], [Eusd], the
prover commits to a matrix of Q.

This Q contains zeros for all entries corresponding to e1,k, and ones in all
entries corresponding to e0,k except those corresponding to the least significant
bit. The entries corresponding to the lsb are 0. The prover and verifier then
engage in an equality proof to demonstrate that Q is correctly formed. Next, the
prover shows that O = Q ◦E. The prover now has that, Q contains all zeroes fpr
entries corresponding to M0, except possibly the least significant bit, which may
be a zero or a one.

Note on Bounded Lookup Arguments for Tuples As stated, the bounded
lookup proofs deal with single values. In order to run the argument for constant-
sized tuples of values, which will be very useful when verifying a correct TinyRAM
execution, we can do as follows. First, the verifier picks a random challenge z ← F.
Now, if the prover wanted to run a bounded lookup argument to show that tuples
{(a1, a2, a3)} were elements of the collection of tuples {(b1, b2, b3)}, stored in
matrices A1, A2, A3 and B1, B2, B3, then the prover could commit to matrices
A = zA1+z2A2+z3A3, and B = zB1+z2B2+z3B3. The prover can demonstrate

61

that A and B are correctly formed with little overhead using a sum argument.
By the Schwarz-Zippel lemma, with high probability, running a bounded lookup
argument on the new matrices A and B demonstrates that the tuples of elements
in B1, B2, B3 in entries defined by S will only appear at most once in A1, A2, A3.
The same trick applies to regular lookup proofs and permutation arguments.

Pblookup(ppILC, ([Eaddr], [Evinit
], [Eusd], [M]), (E,M))

– Get challenge z ∈ F from ILC
– Commit to A = Eaddrz + Evinitz

2 + Eusdz
3

– Commit to B = Maddrz + Mvinitz
2 + Musdz

3

– Set z = (z, z2, z3)

– Psum

(
ppILC, (z, [Eaddr], [Evinit], [Eusd], [A]),
(Eaddr,Evinit ,Eusd))

)
– Psum

(
ppILC, (z, [Maddr], [Mvinit], [Musd], [B]),
(Maddr,Mvinit ,Musd)

)
– Plookup(ppILC, ([A], [B]), (A,B)).
– Commit to Q
– Pequal(ppILC, (Q, [Q]), (Q)).
– Pprod(ppILC, ([Q], [E], [O]), (Q,E,O)).

Vblookup(ppILC, ([Eaddr], [Evinit], [Eusd], [M]))

– Pick z ∈ F
– Send z to ILC
– Set z = (z, z2, z3)
– Vsum(ppILC, (z, [Eaddr], [Evinit], [Eusd], [A]))
– Vsum(ppILC, (z, [Maddr], [Mvinit], [Musd], [B]))
– Vlookup(ppILC, [A], [B]).
– Veq(ppILC, Q, [Q]).
– Vprod(ppILC, ([Q], [E], [O])).
– Return 1 if all proofs accept,

Return 0 otherwise

Fig. 26: Bounded lookup proof.

Theorem 8. (KILC,Pblookup,Vblookup) is a proof system for Rblookup in the ILC
model with perfect completeness, statistical knowledge soundness with straight-line
extraction, and perfect special honest verifier zero-knowledge.

Proof. Perfect completeness follows by inspection.

Let n = 1. For statistical soundness, by the soundness of the lookup proof, we
know that every entry of A1 is an element of B1. The soundness of the equality
and product proofs, ensure both that Q′ was computed correctly, and imply
that the relevant entries of E are zero. Finally, note that each sub-protocol has
straight-line extraction.

If n > 1, then by the soundness of the argument for n = 1, we know that
every entry of A is an element of B. By the Schwarz-Zippel lemma, if the tuples
given by A1, . . . , An are not elements in the table of tuples given by B1, . . . , Bn,
this is only true for randomly chosen z with probability 1/|F|. The additional
sub-protocols used in this case all have straight-line extraction.

To see we have perfect special honest verifier zero-knowledge, simulate that
the verifier receives commitments to two matrices of the correct sizes, and run the
perfect special honest verifier zero-knowledge simulators on the sub-proofs. ut

62

Fig. 27: Range Proof decomposed into sub-proofs.

B.7 Range Checks

Based on the lookup proof and the constraints proof, we present an efficient
proof for checking that all of the elements of a committed matrix are in a given
range [0, 2W − 1], where W is the word-length of the TinyRAM machine. As we
store entries of the tables with field elements, we often need to check that a given
entry can be written as a W -bit word. Let A be a matrix containing integers
in the range. We could simply imagine checking that each element was in the
range using a simple lookup proof. One could use a table of length 2W storing all
values in the range and check that a is one of the entries in the table. However,
this would give a table of size 2W which is too large, as it exceeds the running
time of the program.

We give a more efficient solution in Fig. 28. Intuitively, this works as follows.
Suppose that we need to check that a is in the range {0, . . . , 2W − 1}. To get
around using a large lookup table, we can decompose a into two words ae, ao
of length 2

W
2 . By using a table of length 2

W
2 we can then check that ae, ao are

entries in the table. The only thing left to check is that ae, ao are the correct
decomposition of a.

For the decomposition, we use ae to store the integer corresponding to the even
bits of the binary decomposition of a, and for ao to store the integer corresponding
to the odd bits of a shifted in even position. For example, assume that a is a 4
bit value a = (a3, a2, a1, a0) then we set its decomposition to be

ae = (0, a2, 0, a0) ao = (0, a3, 0, a1)

Let EvenBits be the table storing all the integers of of this form. Note that
this table has size 2

W
2 . By checking that ae, ao are entries in EvenBits we can

check that a is in the range {0, . . . , 2W − 1} by checking that

a = 2ao + ae

Overall, we can write the relation for a value a to be contained in a range
{0, . . . , 2W − 1} as follows

Rrange =

 (pp, u, w) = ((W,K,F, ∗), a, (ao, ae,EvenBits)
∣∣

(pp, ao,EvenBits) ∈ Rlookup ∧ (pp, ae,EvenBits) ∈ Rlookup

∧ a = 2ao + ae



63

The above process can be easily extended to use decomposition into κ words of
length W

κ . As long as κ = O(1), the number of arithmetic constraints introduced
is still constant. In the rest of the paper we mostly refer to the decomposition
into two words to keep the exposition simpler, however, later when we consider
effiiciency of the whole system we will use that it is easy to decompose a range
check into more pieces.

Prange(ppILC, ([A], [EvenBits]), (A,EvenBits))

– Compute Ae and Ao by decomposing each entry of
A.

– Commit to Ae and 2Ao.
– Run Plookup(ppILC, ([Ae], [EvenBits]), (Ae,EvenBits)).
– Run Plookup(ppILC, ([2Ao], [EvenBits]), (2Ao,EvenBits)).
– Run Psum(ppILC, ((1,

1
2
), [Ae], [Ao], [A]), (Ae, Ao, A)).

Vrange(ppILC, ([A], [EvenBits]))

– Run Vlookup(ppILC, [Ae], [EvenBits]).
– Run Vlookup(ppILC, [2Ao], [EvenBits]).
– Run Vsum(ppILC, ((1,

1
2
), [Ae], [Ao], [A])).

– Return 1 if all proofs accept,
Return 0 otherwise

Fig. 28: Range proof for a committed matrix.

Theorem 9. (KILC,Prange,Vrange) is a proof system for the relation Rrange in
the ILC model with perfect completeness, statistical knowledge soundness with
straight-line extraction, and perfect special honest verifier zero-knowledge.

Proof. Perfect completeness follows by inspection.
For statistical soundness, note that by the knowledge soundness of the lookup

and sum proofs, we know the prover has indeed committed correctly to Ae and
Ao whose entries are in EvenBits, and that A = 2Ao + Ae, which implies that
every element of A is in the desired range. Finally, note that each sub-protocol
has straight-line extraction.

To see we have perfect special honest verifier zero-knowledge, simulate that
the verifier receives commitments to two matrices in FN∗×k and run the perfect
special honest verifier zero-knowledge simulators on the sub-proofs. ut

B.8 Efficiency of Layer 3 Provers.

The efficiency of the proof system is given in the following table, where TP and
TV refers to the prover and verifier computation (meaured in field operations),
qc is the query complexity (measured in the number of linear combination the
verifier asks for), and t is the number of vectors the prover commits to during
the proof.

C Layer 4 Proofs of Correct TinyRAM Execution

Recall that we take a top down approach in order to describe how to check that
the program has been executed correctly in the ILC model. In Appendix B we

64

TP TV qc #rounds t

Req 0 O(tk) add. 1 0 0
Rconst O(kN logN + kMN) mult. O(kMN) mult. 6 logM + 4 O(MN)
Rperm O(kN logN + kMN) mult. O(MN + k) mult. 24 logM + 2 O(MN)
Rlookup O(kN logN + kMN) mult. O(MN + k) mult. 90 logM + 2 O(MN)
Rblookup O(kN logN + kMN) mult. O(MN + k) mult. 95 logM + 2 O(MN)
Rrange O(kN logN + kMN) mult. O(kMN) add. 181 logM + 2 O(MN)

Table 5: Efficiency of protocols in Layer 3. The values M,N are tuneable pa-
rameters in the Hadamard product proof; good performance is achieved in the
condition N∗ = MN .

gave the third layer for proofs for correct TinyRAM execution. These provers
required provers forRsum,Rprod,Rmshift,Rkperm,Rentry-prod,Rgrandsum. These basic

proof systems rely on known techniques, several of them appearing in [BCG+17].

C.1 Proof for the Sum of Committed Matrices

In the ILC model, [BCG+17] gives a proof of knowledge of committed matrices
A,B,C ∈ FN∗×k such that A+B = C. The proof trivially generalizes to sums
of more matrices, and arbitrary linear combinations of matrices.

Theorem 10 ([BCG+17]). There is a proof system (KILC,Psum,Vsum) for the
relation Rsum in the ILC model with perfect completeness, statistical knowledge
soundness with straight-line extraction, and perfect special honest verifier zero-
knowledge.

C.2 Proof for the Hadamard Product of Committed Matrices

In the ILC model, [BCG+17] describes a proof of knowledge of matrices A,B,C ∈
FMN×k such that A ◦B = C, where A ◦B is the Hadamard (entry-wise) product
of the matrices.

Theorem 11 ([BCG+17]). There is a proof system (KILC,Pprod,Vprod) for the
relation Rprod in the ILC model with perfect completeness, statistical knowledge
soundness with straight-line extraction and perfect special honest verifier zero-
knowledge.

C.3 Proof for Known Permutation of Matrices

In the ILC model, [BCG+17] gives a known permutation proof for two committed
matrices. The claim is that the matrices A,B ∈ FMN×k satisfy B = Aπ, where
the notation Aπ means the matrix with entries aπi,j = aπ(i,j).

Theorem 12 ([BCG+17]). There is a proof system (KILC,Pkperm,Vkperm) for
the relation Rkperm in the ILC model with perfect completeness, statistical knowl-
edge soundness with straight-line extraction, and perfect special honest verifier
zero-knowledge.

65

C.4 Proof for the Shift of Committed Matrices

We will now give a shift proof. The proof is a tweak of the double-shift proof
in [BCG+17]. Consider the matrices A and B, which have MN rows, given
respectively by vectors ai,j ,bi,j ∈ Fk, with 0 ≤ i ≤ M − 1, 1 ≤ j ≤ N . The
top-right element of A is a 1. Columns 2 up to k of A are equal to columns 1 up
to k− 1 of B. Further, we can obtain the final column of B from the first column
of A by deleting the first entry and appending c. In this case, A is said to be the
shift of B.

a0,1

a1,1

...
aM−1,N


1 a1,2 · · · a1,k
a2,1 a2,2 · · · a2,k

...
...

. . .
...

aMN,1 aMN,2 · · · aMN,k


b0,1

b1,1

...
bM−1,N


a1,2 a1,3 · · · a1,k a2,1
a2,2 a2,3 · · · a2,k a3,1

...
...

. . .
...

...
aMN,2 aMN,3 · · · aMN,k c


Here, we give an proof which allows a prover to convince a verifier in zero

knowledge that for committed matrices A and B, we have A the shift of B. This
is referred to as the shift condition.

Parsing each matrix as a collection of row vectors as above, we now describe
a proof of knowledge of vectors satisfying the stated shift condition. The shift
condition can be encoded as many linear consistency constraints between the
entries of A and B. For example, for the shift condition to hold, it is necessary
that (a0,1)2 − (b0,1)1 = 0. We will use a random challenge y to embed all linear
consistency constraints into one, with each individual constraint embedded with
a different power of y.

We use challenges X0, . . . , XM ′−1, where M = 2M
′
, for compression, and

reduce the number of vectors from 4MN to 4N . Vectors are compressed as follows

âj(x0, . . . , xM ′−1) =

M−1∑
i=0

ai,jx
i0
0 x

i1
1 . . . x

iM′−1

M ′−1

with a similar expression when a is replaced by b.
We then embed the compressed vectors into polynomials in X, again with a

similar expression for a replaced by b.

â(X,x0, . . . , xM ′−1) =

N∑
j=1

âj(x0, . . . , xM ′−1)Xj

We embed all linear consistency constraints into vectors ŵa and ŵb as follows.
Set y = (1, y, . . . , yk−1). Set

ŵa(y,X, x0, . . . , xM ′) = y

M−1,N∑
i=0,j=1

yk(i+(j−1)M)x−i00 . . . x
−iM′−1

M ′−1 X−j

66

ŵb(y,X, x0, . . . , xM ′) = −y ŵa(y,X, x0, . . . , xM ′)

+ (0, . . . , 0, yLMN−1x−10 . . . x−1M ′−1X
−N)

To explain our choice of linear consistency constraint vectors, consider com-
puting the scalar product of â(y,X, x0, . . . , xM ′) and ŵa(y,X, x0, . . . , xM ′). Fo-
cussing on the constant term in X,x0, . . . , xM ′ , we see that the only contributions

come from perfect cancellation of a monomial xi00 x
i1
1 . . . x

iM′−1

M ′−1X
j in â with a

corresponding monomial x−i00 . . . x
−iM′−1

M ′−1 X−j in ŵa. In addition, each monomial

in ŵa is multiplied by a unique power of yk. Since ŵa also contains y as a factor,
the constant term of the expression is a sum of all elements of the matrix A, each
separated by a unique power of y. We can also multiply by powers of y to move
all elements of the matrix to different powers of y. It is then straightforward to
see that we can encode the shift condition for A and B by using this trick, and
subtracting one monomial to ensure that the final element of B is not included.

Careful calculation shows that

â · ŵa(y,X, x0, . . . , xM ′−1) + b̂ · ŵb(y,X, x0, . . . , xM ′−1)

has constant term in X,x0, . . . , xM ′ equal to 1 if and only if A and B satisfy the
shift condition. This happens because when we take the scalar products of the
vectors of polynomials, all of the the linear consistency constraints end up in the
constant term in X, separated by different powers of y. All other waste terms
end up in other coefficients.

The verifier will check the following polynomial expression evaluated in x.

â · ŵa(X,x0, . . . , xM ′−1)

+b̂ · ŵb(X,x0, . . . , xM ′−1) = 1 +

M ′−1∑
t=0

(f+t xt + f−t x
−1
t) +

N−1∑
r=1−N,r 6=0

grX
r

In this expression, the values f+j , f
−
j can be seen as compression factors to

make up for the lossy compression, and the gr are coefficients containing waste
values.

As part of this protocol, the prover is required to send single values to ILC
rather than vectors, but this is easily incorporated into the model by padding,
and has no impact on the asymptotic efficiency.

Note that the polynomials chosen above leak information about the wire
values, so we must also incorporate some random blinders â0 and b̂0 into the
real protocol to achieve zero-knowledge.

Formal Description. Next, we provide a formal description of the proof of
knowledge of committed matrices satisfying the shift relation Rmshift.

67

Proof:
Instance: The prover has already sent [ai,j , bi,j]

M−1,N
i=0,j=1 to the ILC channel.

Pshift → ILC: The prover randomly selects â0, b̂0 ← Fk.
The prover sends â0 and b̂0 to ILC.

ILC← Vshift : Verifier sends y ← F× to ILC.

Pshift → ILC: The prover computes the following polynomial with vector coeffi-
cients in the variables X0, . . . , XM ′−1, where M = 2M

′
, and similar polyno-

mials with a replaced by b, c and d. Here, i0, . . . , iM ′−1 represent the digits
of the binary expansion of i.

âj(X0, . . . , XM ′−1) =

M−1∑
i=0

ai,jX
i0
0 X

i1
1 . . . X

iM′−1

M ′−1

The prover computes the following polynomials with vector coefficients in
the variable X, and similarly for b.

â(X,X0, . . . , XM ′−1) = â0 +

N∑
j=1

âj(X0, . . . , XM ′−1)Xj

ŵa(y,X, x0, . . . , xM ′) = y

M−1,N∑
i=0,j=1

yk(i+(j−1)M)x−i00 . . . x
−iM′−1

M ′−1 X−j

The prover finally takes the scalar product of the previous vectors of polyno-
mials

â(X,X0, . . . , XM ′−1) · ŵa(X,X0, . . . , XM ′−1)

+b̂(X,X0, . . . , XM ′−1) · ŵb(X,X0, . . . , XM ′−1) = 1 + f+0 X0 + f−0 X
−1
0

+ f+1 (X0)X1 + f−1 (X0)X−11

...

+ f+M ′−1(X0, . . . , XM ′−2)XM ′−1

+ f−M ′−1(X0, . . . , XM ′−2)X−1M ′−1

+

N−1∑
r=−N,r 6=0

gr(X0, . . . , XM ′−1)Xr

The prover sends f+0 , f
−
0 to ILC.

68

ILC← Vshift : The verifier sends x0 ← F× to ILC.

Pshift → ILC: The prover sends f+1 = f+1 (x0), f−1 = f−1 (x0) to ILC.

For t = 1 to M ′ − 2:

– ILC← Vshift : The verifier sends xt ← F× to ILC

– Pshift→ ILC: The prover sends f+t+1 = f+t+1(x0, . . . , xt), f
−
t+1 = f−t+1(x0, . . . , xt)

to ILC.

ILC← Vshift : The verifier sends xM ′−1 ← F× to ILC.

Pshift → ILC: The prover computes gr = gr(x0, . . . , xM ′−1) for −N ≤ r ≤
N − 1, r 6= 0.

The prover sends {gr}N−1r=−N,r 6=0 to ILC.

Verification: The verifier selects x ← F× uniformly at random. The verifier
queries the ILC channel to get

â = â0 +

M−1,N∑
i=0,j=1

ai,jx
i0
0 x

i1
1 . . . x

iM′−1

M ′−1x
j

and similarly for b. The verifier also queries the ILC channel to get

ê = 1 +

M ′−1∑
t=0

(
f+t xt + f−t x

−1
t

)
+

N−1∑
r=−N,r 6=0

grx
r

The verifier then checks whether the following equation holds and in that
case accepts.

â · ŵa(x, x0, . . . , xM ′−1)

+b̂ · ŵb(x, x0, . . . , xM ′−1)
?
= ê

Security Analysis. Before analysing the security of the above protocol, we
state a variation of the Schwarz-Zippel Lemma taken from [BCG+17].

Lemma 1 ([BCG+17]). Let F be a field. Let P be a function of the following
form, where p0,i0 are constant values, and p1,i1(Z0), . . . , pu,iu(Z0, . . . , Zu−1) are

69

arbitrary functions and not necessarily polynomials.

P (Z0, . . . , Zu) =

d0∑
i0=−d0

p0,i0Z
i0
0 +

d1∑
i1=−d1,i1 6=0

p1,i1(Z0)Zi11

+ . . .+

du∑
iu=−du,iu 6=0

pu,iu(Z0, . . . , Zu−1)Ziuu

Let S be a finite subset of F×. Let z0, . . . , zu be selected at random independently
and uniformly from S. Let F be the event that at least one value among p0,i0 or
ps,is(z0, . . . , zs−1) is not zero.

Then

Pr [{P (z0, . . . , zu) = 0} ∧ F] ≤
∑u
t=0(2dt + 1)

|S|

Theorem 13. (KILC,Pshift,Vshift) is a proof system for the relation Rmshift in
the ILC model with perfect completeness, statistical knowledge soundness with
straight-line extraction, and perfect special honest verifier zero-knowledge.

Proof. Perfect completeness follows by careful inspection of the protocol and
considering the various polynomial expressions computed by the prover.

Next, we show that the proof has statistical knowledge soundness with straight-
line extraction. This is because the knowledge extractor already has access to
the committed matrices [A] and [B], having seen all messages sent between the
prover and the ILC. It remains to show that for any deterministic malicious prover
P∗shift, if the committed vectors are not a valid witness for Rmshift, then there is
negligible probability of accept. Recall that verifier queries to get the right-hand
side of the following equations.

â = â0 +

M−1,N∑
i=0,j=1

ai,jx
i0
0 x

i1
1 . . . x

iM′−1

M ′−1x
j

b̂ = b̂0 +

M−1,N∑
i=0,j=1

bi,jx
i0
0 x

i1
1 . . . x

iM′−1

M ′−1x
j

â · ŵa(x, x0, . . . , xM ′−1)

+b̂ · ŵb(x, x0, . . . , xM ′−1) =

M ′−1∑
t=0

(
f+t xt + f−t x

−1
t

)
+

N−1∑
r=−N,r 6=0

grx
r.

Now, substitute in the expressions for â and b̂ into the left-hand side of the final
equality. The verifier only accepts if the last equation holds. By assumption, P∗shift

70

is deterministic, and we know when it made its commitments. Hence, â0 and
b̂0 are constants, f+0 , f

−
0 are functions of y, and f+1 , f

−
1 are functions of y and

x0, . . . , , xM ′−1, and the gr are functions of y, x0, . . . , xM ′−1. We can now apply
Lemma 1. Let A denote the concatenation of all the a vectors, indexed from 0
so that Al−1+k(i+(j−1)M) = (ai,j)l, and similarly for b. Suppose the committed
vectors ai,j , bi,j do not satisfy the shift relation. This can happen in two ways:

1. A0 6= 1
2. Ai 6= Bi−1 for some i ∈ [N − 1]

Consider the coefficients of the powers of y in the equation obtained when
substituting the expressions for â, b̂, ĉ and d̂ into the left-hand side of the above
equation. The constant is A0 on the left hand side and 1 on the right-hand side.
Hence, in the first of the five cases, the constant term would be different and
we have the event F . For i from 1 to N − 1, we see that the coefficient of yi is
Ai −Bi−1 on the left-hand side and 0 on the right-hand side, so in the second
case, we will also have event F . So if the input does not satisfy the shift relation,
we have event F . Now Lemma 1 implies that there is negligible probability that
the equation will be satisfied, and hence negligible probability that verifier will
accept.

Finally, we show that the proof is honest-verifier zero-knowledge. We describe
how to simulate the verifier’s view efficiently, given values y, x0, . . . , xM ′−1, x←
F× for the random challenges used in the protocol. In an honest transcript, â0

is chosen uniformly at random and added to something independent of â0 to
obtain â. Hence â is uniformly distributed and can easily be simulated. Similarly
for b, c and d. The final value to simulate is ê, but for an accepting transcript
this is uniquely determined and easy to compute given â and b̂. Therefore, we
can simulate the transcript and the proof system has special honest verifier zero
knowledge. ut

Efficiency. The verifier has a query complexity of 3 and sends µ+1 field elements
to the prover. The prover commits to a total of 2M ′ + 2N vectors in Fk.

In the protocol as written, the prover has computed on multivariate poly-
nomials with vector coefficients. However, the prover only needs to commit to
elements of Fk. Therefore, the prover can save considerable computational effort
by computing mostly on vectors, and using challenges y, x0, . . . , xM ′−1 as they
become available to partially evaluate expressions and ‘collapse’ multiple vectors
into fewer vectors. We analyse the prover’s computation from the final round to
the first round.

After receiving xM ′−1, and computing ȧj , ḃj , the prover must compute the

values er. This is done by expressing ȧ, ḃ as polynomials in X of degree N ,
with vector coefficients ȧj , ḃj . Then, the er are the coefficients of the Hadamard
product polynomial. Using FFT techniques for each vector component, the cost
is O(kN logN).

Now we explain how the prover computes the values f+j , f
−
j by computing

the values of ȧj , ḃj and ȧj ◦ ḃj recursively. Consider the following expressions,

71

assuming that the prover has already evaluated in all challenges preceding XM ′−1.

ȧj(x0, . . . , xM ′−2, XM ′−1) =

M−1∑
i=0

ai,jy
ixi00 x

i1
1 . . . x

iM′−2

M ′−2X
iM′−1

M ′−1 = A0,j + A1,jXM ′−1

ḃj(x0, . . . , xM ′−2, XM ′−1) =

M−1∑
i=0

bi,jx
−i0
0 x−i11 . . . x

−iM′−2

M ′−2 X
−iM′−1

M ′−1 = B0,j + B1,jX
−1
M ′−1

By assumption, A0,j ,A1,j ,B0,j ,B1,j have already been computed at this

stage. The cost of evaluating ȧj , ḃj and ȧj ◦ ḃj and its XM ′−1 coefficients is then
5k multiplications to compute the necessary Hadamard products and multiply by
xM ′−1 and its inverse, giving 5Nk multiplications, since we do the computation

for 1 ≤ j ≤ N . Now, f+M ′−1 =
∑N
j=1 A1,j ·B0,j , and d−M ′−1 can be computed

using a similar expression, which costs only (N − 1)k additions, given that the
Hadamard products, such as A1,j ◦B0,j , were already computed in evaluating

ȧj and ḃj .

Clearly A0,j ,A1,j ,B0,j ,B1,j have the same structure as ȧj , ḃj , but with-
out the variable XM ′−1. Splitting into coefficients of XM ′−2 in a similar way
as with XM ′−1, and assuming that we already have evaluations with respect
to X0, . . . , XM ′−3, we can use the same techniques as above twice to obtain
A0,j ,A1,j ,B0,j ,B1,j , associated Hadamard products A0,j ◦ B0,j ,A1,j ◦ B1,j ,
and f+M ′−2, f

−
M ′−2 using 2 · 5Nk multiplications.

By repeatedly splitting and applying this procedure M ′ times, we can use the
same techniques 4, then 8, up to 2M

′−1 times. Summing up, the overall cost is
dominated by 5kN(2M

′ − 1) multiplications, which is O(kNM) multiplications.
Altogether, the computational costs for the prover are O(kN logN + kNM)

multiplications in F.
Note also that both prover and verifier must compute ŵa(y, x, x0, . . . , xM ′−1),

and similarly for b, in terms of the random challenges. We have that y =
(1, y, . . . , yk−1) and

ŵa(y, x, x0, . . . , xM ′) = y

M−1,N∑
i=0,j=1

yk(i+(j−1)M)x−i00 . . . x
−iM′−1

M ′−1 x−j

This can be done using O(MN + k) multiplications in F, since y requires O(k)
multiplications to compute, and the sum requires O(MN). Aside from that, the
dominant costs of the other parts of the protocol are the same, resulting in a
cost of O(kN logN + kMN) multiplications in F for the prover, and O(MN + k)
multiplications in F for the verifier.

C.5 Proof for the Entry-Product of Matrices

Now that we have a proof for the shift condition, and a Hadamard-product proof,
it is easy to construct a proof which shows that the product of all entries in a

72

Fig. 29: Entry-Product Proof decomposed into sub-proofs.

matrix A was computed correctly. Bootle et al. [BCG+17] gave an ILC model
proof for the product of all entries in two matrices yielding the same value, so
this proof system can be seen as a tweak that handles the simpler setting with a
single matrix.

The proof is constructed by computing the partial products of entries of the
matrix A, beginning with 1, and storing them in a matrix A1 with the same
dimensions as A. The partial products, ending with the product of all elements of
A, are stored in another matrix A2, of which P is the final entry. Now, A2 = A◦A1

by design. Note that the product of all entries in A was correctly computed if and
only if A1 and A2 satisfy the shift condition. This gives rise to the entry-product
proof shown in Fig. 31. An example follows.

A =

(
a1,1 a1,2
a2,1 a2,2

)
,

A1 =

(
1 a1,1

a1,1a1,2 a1,1a1,2a2,1

)
,

A2 =

(
a1,1 a1,1a1,2

a1,1a1,2a2,1 a1,1a1,2a2,1a2,2

)
,

Theorem 14. (KILC,Pentry−prod,Ventry−prod) is a proof system for the relation
Rentry-prod in the ILC model with perfect completeness, statistical knowledge
soundness with straight-line extraction, and perfect special honest verifier zero-
knowledge.

Proof. Perfect completeness follows by inspection.

For statistical knowledge soundness with straight-line extraction, let matrix
A be given. If there exist A1, A2 such that ((F, k), ([A], [A1], [A2]), (A,A1, A2)) ∈
Rprod and ((F, k), ([A1], [A2]), (A1, A2)) ∈ Rmshift, and the final row of A2 contains
the value P , then ((F, k), ([A], [P]), (A,P)) ∈ Rentry-prod. So by the soundness
property of the underlying protocols, if ((F, k), ([A], [B]), (A,B)) 6∈ Rentry-prod,
one of the sub-protocols will have negligible probability of accept. Since the
extractor can read the committed values, we have statistical knowledge soundness
with straight-line extraction.

73

Pentry−prod(ppILC, ([A], [P]), (A,P))

– Commit to matrices A1, A2, i.e. the
partial products of A

– Run Pprod(ppILC, ([A], [A1], [A2]), (A,A1, A2))
– Run Pshift(ppILC, ([A1], [A2]), (A1, A2))
– Commit to v = (0, . . . , 0, 1).
– Run Peq(ppILC, (v, [v]), (v))
– Let p be the final row of A2.
– Run Pprod(ppILC, ([p], [v], [P]), (p,v, P))

Ventry−prod(ppILC, ([A], [P]))

– Run Vprod(ppILC, ([A], [A1], [A2]))
– Run Vshift(ppILC, ([A1], [A2]))
– Run Veq(ppILC, (v, [v]))
– Run Vprod(ppILC, ([p], [v], [P]))
– Return 1 if all proofs accept,

Return 0 otherwise

Fig. 30: Entry-Product Argument for two committed matrices.

To see we have perfect special honest verifier zero-knowledge, simulate that
the verifier receives commitments to a matrix in FN∗×k, commit to random
matrices A1 and A2 in in FN∗×k, and run the perfect special honest verifier
zero-knowledge simulators on the product and shift proofs. ut

C.6 Grandsum

In the ILC model, we describes a proof the entries in a matrix A ∈ FMN×k sum
to a known value x.

The prover wishes to show that the committed matrix [A] is such that∑
i,j ai,j = x. The prover begins by committing to a matrix of zeros in all but

the final row, which contains all ones. It also commits to a matrix with ones in
the first column and zeros everywhere else. It then commits to a matrix that
contains the all zeros in all but the final row, which contains the column-wise
sum of the matrix A, and the transpose of this matrix.

J2 =


0 . . . 0

. . .

0 . . . 0
1 . . . 1

 , V =


0 . . . 0

. . .

0 . . . 0∑
i,1 ai,1 . . .

∑
i,k ai,k

 ,

JT2 =

1 0 . . . 0
...

. . .

1 0 . . . 0

 , V T =


∑
i,1 ai,1 0 . . . 0

. . .∑
i,k ai,k 0 . . . 0

 .

If the dimensions do not match then the required matrices are padded with zeros.
To show that these values are calculated correctly, it runs an equality argument
with J2, JT2 , a product argument to show that V ◦ J2 = V and V T ◦ JT2 = V T ,
and then a sum argument to show that

∑
[Ai] = V . Afterwards, it runs an

74

unknown permutation argument to show that every entry in V appears in V T

(it does not matter which row the entries occur in because the values will be
summed later anyway).

Finally, the prover commits to the matrix X containing x in the bottom left
corner and zeros everywhere else (and runs an equality argument). It runs a sum
argument to show that

∑
[V T]i = [X].

Pgrandsum(ppILC, (x, [A]), (A))

– Commit to matrices J2, J
T
2 , V, V

T , X.
– Run Peq(ppILC, (J2, [J2]), (J2))
– Run Peq(ppILC, (J

T
2 , [J

T
2]), (JT2))

– Run Pprod(ppILC, ([V], [J2], [V]), (V, J2, V))
– Run Pprod(ppILC, ([V

T], [JT2], [V T]), (V T , JT2 , V
T))

– Run Psum(ppILC, ((1, . . . , 1), [A]i, [V]), (A1, . . . , V))
– Run Pperm(ppILC, ([V], [V T]), (π, V, V T))
– Run Peq(ppILC, (X, [X]), (X))
– Run Psum(ppILC, ((1, . . . , 1), [V T]i, [X]), (V T1 , . . . , X))

Vgrandsum(ppILC, (x, [A]))

– Run Veq(ppILC, (J2, [J2]))
– Run Veq(ppILC, (J

T
2 , [J

T
2]))

– Run Vprod(ppILC, ([V], [J2], [V]))
– Run Vprod(ppILC, ([V

T], [JT2], [V T]))
– Run Vsum(ppILC, ((1, . . . , 1), [A]i, [V]))
– Run Vperm(ppILC, ([V], [V T]), π)
– Run Veq(ppILC, (X, [X]))
– Run Vsum(ppILC, ((1, . . . , 1), [V T]i, [X]))
– Return 1 if all proofs accept,

Return 0 otherwise

Fig. 31: Entry-Product Argument for two committed matrices.

Theorem 15. There is a proof system (KILC,Pgrandum,Vgrandsum) for the rela-
tion Rgrandsum in the ILC model with perfect completeness, statistical knowledge
soundness with straight-line extraction and perfect special honest verifier zero-
knowledge.

Proof. Perfect completeness follows by inspection.
For statistical knowledge soundness with straight-line extraction, let matrix

A be given. If there exist V, V T such that ((F, k), ([V], [J2], [V]), (V, V T)) ∈
Rprod and ((F, k), ([V T], [JT2], [V T]), (V T , JT2 , V

T)) ∈ Rprod then V contains zeros

except in the final row and V T contains zeros except in the first column. If
further ((F, k), ((1, . . . , 1), [A]i, [V]), (A1, . . . , V)) ∈ Rsum then V contains the
columnwise sum (which must be in the final row because this is the only non-
zero row). The requirement that ((F, k), ([V], [V T]), (V, V T)) ∈ Rperm means

that all the entries in [V] must occur in the first column of V T . Finally, if
((F, k), ((1, . . . , 1), [V T]i, X), (V T1 , . . . , X)) ∈ Rsum then the sum of all the entries
in A must be equal to x. So by the soundness property of the underlying protocols,
if ((F, k), (x, [A]), (A)) 6∈ Rgrandsum, one of the sub-protocols will have negligible
probability of accept. Since the extractor can read the committed values, we have
statistical knowledge soundness with straight-line extraction.

To see we have perfect special honest verifier zero-knowledge, simulate that the
verifier receives commitments to a matrix in FN∗×k, commit to random matrices
V and V T in in FN∗×k, and run the perfect special honest verifier zero-knowledge
simulators on the product, sum, and permuation proofs. ut

75

C.7 Efficiency of Level 4 Provers

The efficiency of the protocol is given in the following table, where TP and TV
refers to the prover and verifier computation (measured in field operations), qc is
the query complexity (measured in the number of linear combinations the verifier
asks for), and t is the number of vectors the prover commits to during the proof.

TP TV qc #rounds t

Rsum 0 N∗ − 1 mult. 1 0 0
Rprod O(kN logN + kMN) mult. O(MN + k) mult. 3 logM + 2 2M ′ + 2N + 3
Rkperm O(kN logN + kMN) mult. O(kMN) add. 15 logM + 2 O(MN)

Rmshift O(kN logN + kMN) mult. O(MN + k) mult. 3 logM + 2 2M ′ + 2N
Rentry-prod O(kN logN + kMN) mult. O(MN + k) mult. 10 logM + 2 O(MN)
Rgrandsum O(kN logN + kMN) mult. O(MN + k) mult. 35 logM + 2 O(MN)

Table 6: Efficiency of protocols in Layer 4. THe values M , N are tuneable
parameters in the Hadamard product proof; good performance is achieved on
the condition N∗ = MN

	 Nearly Linear-Time Zero-Knowledge Proofs for Correct Program Execution
	Introduction
	Our Contribution
	New techniques
	Related work

	Preliminaries
	Notation
	Proofs of Knowledge
	TinyRAM

	Arithmetization of Correct Program Execution
	Witness Structure
	Checking the Correctness of Values
	Checking Memory Consistency
	Checking Correct Execution of Instructions
	A Breakdown of the Instruction Relation
	Selection Vectors for Rmux and Rconsistent

	Proofs for the Correct Program Execution over the ILC Channel
	Commitments to the Tables
	Proof for Correct TinyRAM Execution in the ILC Model

	Proofs for the Correct Program Execution over the Standard Channel
	Compiling ILC proofs into the Proofs over the Standard Channel
	Efficiency of the compiled TinyRAM Proof System

	Layer 2 Proofs of Correct TinyRAM Execution
	Checking the Algebraic Constraints
	Correct Format of Committed Matrices
	Checking Correctness of Values
	Memory Consistency
	Instruction Correctness
	Efficiency of Layer 2 Provers.

	Layer 3 Proofs of Correct TinyRAM Execution
	Buildling Blocks
	Proofs of Correct Openings
	Arithmetic Constraints
	Unknown Permutations
	Lookups
	Bounded Lookups
	Range Checks
	Efficiency of Layer 3 Provers.

	Layer 4 Proofs of Correct TinyRAM Execution
	Proof for the Sum of Committed Matrices
	Proof for the Hadamard Product of Committed Matrices
	Proof for Known Permutation of Matrices
	Proof for the Shift of Committed Matrices
	Proof for the Entry-Product of Matrices
	Grandsum
	Efficiency of Level 4 Provers

