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Abstract. In this paper, we construct a Lattice-based one-time Link-
able Ring Signature (L2RS) scheme, which enables the public to verify
if two or more signatures were generated by same signatory, whilst still
preserving the anonymity of the signatory. The L2RS provides uncondi-
tional anonymity and security guarantees under the Ring Short Integer
Solution (Ring-SIS) lattice hardness assumption. The proposed L2RS
scheme is extended to be applied in a protocol that we called Lattice Ring
Confidential transaction (Lattice RingCT) RingCT v1.0, which forms the
foundation of the privacy-preserving protocol in any post-quantum se-
cure cryptocurrency such as Hcash.

Keywords: Linkable Ring Signature, Lattice-Based Cryptography, Post-
Quantum Cryptography, Cryptocurrencies

1 Introduction

The notion of a Ring Signature scheme was initially formalised in [1]. This scheme
allows signing a message on behalf of a spontaneous group of signers, while pre-
serving the anonymity of the signer. The creation of a ring signature does not
require members of a group to cooperate, meaning that this scheme will not
longer have a manager who eventually can reveal the identity of the signer, and
thus the anonymity will be unconditionally preserved. This approach was a re-
markable security improvement when compared with the group signature scheme
[2] where a group manager was part of its construction. Later, an extended prop-
erty called Linkability was introduced in a ring signature scheme, under the name
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of Linkable Spontaneous Anonymous Group but is now known as Linkable Ring
Signature [3]. The linkability property of ring signatures allows one to detect if
two signatures were generated by the same signer (using the same private-key)
whilst still preserving their anonymity. This scheme was proved to be secure un-
der the discrete logarithm assumption and in Random Oracle Model (ROM). In
comparison with previous unlinkable ring signature schemes, this scheme adds
an efficient algorithm to verify the linkability property. Each signature (o) is ac-
companied by a label (or tag), which is computed based on the signer’s private
key and a hash function modelled as a random oracle in a deterministic manner.
The label can be used by the linking algorithm the check whether two signatures
are created by the same signer. Specifically, if the labels accompanying two sig-
natures are the same, it means that the two signatures are created by the same
signer. This particular feature opens the possibility of many practical scenarios
[3-5], such as, cryptocurrency, in particular the RingCT confidential transaction
protocol adapted in Monero cryptocurrency [6], and e-voting applications.

Nevertheless, the above ring signature schemes are based on classical number-
theory mathematical assumptions, for instance, the hardness of discrete loga-
rithm [7,8] and factoring large numbers [9]. As a consequence, they are be-
lieved to be vulnerable with the onset of powerful quantum computers [10].
This situation has sparked the primarily motivation of researchers in the area of
post-quantum cryptography to construct secure approaches against these type
of computers. Among the alternatives, lattice-based cryptography has attracted
the attention of this field due to its distinguishing features and new applications.
Algorithms based on lattices tend to be efficient, simple, highly parallelisable and
provide strong provable security guarantees [11,12].

1.1 Contribution

— We construct a Lattice-based one-time Linkable Ring Signature (L2RS)
scheme. Our L2RS is a generalisation of the BLISS [13] scheme which is
currently one of the practical lattice digital signatures. L2RS provides un-
conditional anonymity as well as unforgeability security guarantees under
the hardness of standard lattice assumptions.

— We devise a new cryptocurrency privacy-preserving protocol that we call
Lattice RingCT v1.0. This protocol employs our proposed post-quantum
L2RS as a fundamental building block along with a homomorphic com-
mitment primitive to provide post-quantum secure confidential transactions
which forms the foundation of the privacy-preserving protocol for blockchain
cryptocurrencies, such as Hcash.

This paper is organised in eight parts, including the introduction. Section 2
gives a brief background of the current linkable ring signature approaches. After
describing the technical description used in Section 3 and the security model in
Section 4, this research shows the construction of the L2RS scheme in Section
5 along with the security analysis in Section 6. In Section 7, we present an
application of this L2RS in a cryptocurrency protocol that we called Lattice
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RingCT v1.0. Finally, a performance analysis of these proposals is presented in
Section 8.

2 Related Work

Linkable Ring Signature (LRS) primitive is receiving attention thanks to its dis-
tinguishing capabilities of anonymously detecting if two linkable ring signatures
are being signed by same signatory. Most of the current linkable ring signature
schemes along with different variants [3,5,14-25] rely on the hardness assump-
tions of classical cryptography. Technically, this primitive uses a linkability tag
that has a secure relationship with the signer’s publick-key, then the LRS uses
this tag to verify whether or not a singer signs two signatures. Monero, a cryp-
tocurrency application, exploits this property to prevent double spending while
keeping the user’s anonymity [6].

However, this primitive and its variants will be vulnerable to quantum at-
tacks [10,26,12]. This situation has led to a new area in the field of cryptog-
raphy called Post-Quantum Cryptography, aimed at constructing new crypto-
graphic algorithms that are intractable even in the presence of powerful quantum
computers. Among the current post-quantum cryptographic proposals [12,27],
lattice-based cryptography has attracted the attention of cryptographers. It is a
candidate to be standardised as a post-quantum cryptography solution due to
its efficiency, parallelism, uniqueness and strong security assurances under the
worst-case hardness of lattice problems, which is significantly better than the
average-case hardness of other cryptographic constructions [28, 11].

Digital signatures which are constructed based on lattice-based cryptography
can be categorised into GGH/NTRUSign [29, 30], Hash-and-sign [31] and Fiat-
Shamir signatures [32]. Fiat-Shamir transformation [33,34] is used by the Bi-
modal Lattice Signature Scheme (BLISS) [13], which is currently one of the most
practical lattice-based digital signature schemes. BLISS has been constructed
using the following well known lattice-based cryptography problems, the Short
Integer Solution (SIS) [35], Ring-SIS [36] and the Ring-LWE (Learning With
Errors) [37] problems 4. The Ring-SIS version of BLISS offers practical runtime
and key sizes. Moreover, this scheme uses a probabilistic test based on rejection
sampling technique to make the distribution of the private-key independent, an
important property that completely hides the private-key from any adversary.

Several lattice-based ring signatures schemes have been proposed in [38-43]
and there were recently three LRS proposals based on lattice-based cryptog-
raphy. The first of these constructions [44], is based on the development of a
lattice-based weak Pseudo Random Function (wPRF), an accumulator scheme
(Acc) and a framework named as Zero-Knowledge Arguments of Knowledge
(ZKAoK). These techniques are used to construct LRS schemes where the secu-
rity guarantees for the LRS properties’ unforgeability, anonymity, linkability and
non-slanderability rely on the lattice problems. The second lattice LRS scheme

4 The Ring-SIS and Ring-LWE refer to the Ring mathematical structure and differ
from the Ring in the Ring Signature scheme.
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[45], uses ideal lattices along with a lattice-based homomorphic commitment in
its construction. The security properties are based on the hardness of lattices;
however, there is no discussion as to how to secure the scheme in terms of non-
slanderability. This scheme is shown to be used in a cryptocurrency application.
The last lattice LRS proposal [46], is devised using lattice-based variants named
Module-SIS and Module-LWE problems and its security properties rely on the
lattice assumptions.

Our (L2RS) scheme was designed independently and concurrently with
[46]. The schemes share similar features, but our scheme offers unconditional
anonymity. The construction of this work, which we call Lattice-based one-
time Linkable Ring Signature (L2RS), is an extension of BLISS, a demonstrated
practical lattice-based digital signature [13]. It is secure in terms of unforgeabil-
ity, linkability and non-slanderability under the lattice hardness of the Ring-SIS
problem and unlike the above Lattice-based LRS schemes [44,45] and [46], the
L2RS scheme achieves unconditional anonymity, meaning that this scheme will
be secure even if an adversary has unlimited computational resources and time.
As an application of this construction, we designed the Lattice RingCT v1.0,
a cryptocurrency protocol that provides confidential transactions and which its
security guarantees rely on our post-quantum cryptographic L2RS scheme.

3 Preliminaries

The ring R = Z[z]/f(z) is a degree-n polynomial ring, where f(x) is a poly-
nomial of degree of n. The ring R, is then defined to be the quotient ring
Ry = R/(qR) = Zg[z]/f(x), where Z, denotes the set of all positive inte-
gers modulo ¢ (a prime number ¢ = 1 mod 2n) in the interval [—¢q/2, ¢/2] and
f(z) = 2™ + 1 where n is a power of 2. The challenge S, ., is the set of all bi-
nary vectors of length n and weight <. Two hash functions modeled as Random
Oracle Model (ROM), Hy with range S, , C Roq, and H, with range R}]X(m_l).
When we use x < D, it means that x is chosen from the distribution D, and
y < R, means that y is chosen uniformly at random according to R,. Matrices
are written in bold upper case letters whereas vectors are represented in bold
lower case letters, where vectors are column vectors and v’ is the transpose
of the vector v. The hardness assumption of this work is the Ring-SIS (Short
Integer Solution) problem and this is defined as follows.

Definition 1 (R—SISim’ﬁ problem). (Based on [13], Def. 2.3). Let K be some
uniform distribution over the ring Réxm. Given a random matrix A € R}]X’”
sampled from K distribution, find a non-zero vector v € RZ”“ such that Av = 0
and ||v]2 < B, where || - |2 denotes the Euclidean norm.

Lemma 1 (Leftover Hash Lemma (LHL)). (Based on [13], Lemma B.1).
Let H be a universal hash family of hash functions from X to Y. If h < H and
x < X are chosen uniformly and independently, then the statistical distance

1
between (h,h(x)) and the uniform distribution on H XY is at most 2 /1Y|/1X].
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Remark 1. We use this lemma for a SIS family of hash function H(S) = A -

S € R,,with S € Domg, where each function is indexed by A € Réx(m_l)

and Domg C Réx(mfl) consists of vectors of R, elements with coefficients in
I £ (—27,27). This is a universal hash family if for all S # S’ we have

Pr[A-S:A-S’]:%.
q

This is a universal hash family if there exists 1 <4 < m — 1 such that s; — s} is
invertible in R, with s;, s; € I'"™. This can be guaranteed by appropriate choice
of ¢, e.g. as shown in ([47], Corollary 1.2), it is sufficient to use ¢ such that
f(z) = 2™+ 1 factors into k irreducible factors modulo ¢ and 27 < ﬁ gk, We
assume that R, is chosen to satisfy this condition.

Lemma 2 (Rejection Sampling). (Based on [13], Lemma 2.1). Let V be an
arbitrary set, and h :' V. — R and f : Z™ — R be probability distributions. If
gv + Z™ — R is a family of probability distributions indexed by v € V with the
property that there exists a M € R such that Vv € V,Yv € Z™ M - g,(z) > f(z).
Then the output distributions of the following two algorithms are identical:

1. v+ h,z < gy, output(z,v) with probability f(z)/(M - g,(z)).
2. v h,z <+ f,output(z,v) with probability 1/M.

Definition 2 (Gaussian Distribution). The discrete Gaussian distribution
over Z™ with standard deviation o € R and center at zero, is defined by
D () = po(x)/ps(Z™), where p, is m dimensional Gaussian function p,(x) =

exp (42F)
202 :

4 Security model

4.1 Structure of Lattice-based one-time Linkable Ring Signature
(L2RS)

An L2RS scheme has five PPT algorithms (L2RS.Setup, L2RS.KeyGen,
L2RS.SigGen, L2RS.SigVer, L2RS.SiglLink). In addition, the correctness of this
scheme is satisfied by the Signature correctness L2RS.SigGen Correctness and the
Linkability correctness L2RS.SigLink Correctness. These algorithms are defined
as follows:

— L2RS.Setup: a PPT algorithm that takes the security parameter A and pro-
duces the Public Parameters (Pub-Params).

— L2RS.KeyGen: a PPT algorithm that by taking the Pub-Params, it produces
a pair of keys: the public-key pk and the private-key sk.

— L2RS.SigGen: a PPT algorithm that receives the Pub-Params, a singer n’s sk,
a message i and the list L of users’ pk’s in the ring signature, and outputs
a signature o, (u).
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— L2RS.SigVer: a PPT algorithm that takes Pub-Params, a signature o, (u),
a list L of pk’s and the message p, and it verifies if this signature was
legitimately created, this algorithm outputs either: Accept or Reject.

— L2RS.SigLink: a PPT algorithm that inputs two valid signatures o, (1) and
or(p2) and it anonymously determines if these signatures were produced by
same signer m. Thus, this algorithm has a deterministic output: Linked or
Unlinked.

CORRECTNESS REQUIREMENTS:

— L2RS.SigGen Correctness: this guarantees that valid signatures signed by hon-
est signers will be accepted by a verifier with overwhelming probability.

— L2RS.SigLink Correctness: this ensures that if two signatures o (p1) and
or(pe) are signed by an honest signer , SiglLink will output Linked with
overwhelming probability.

4.2 Oracles for adversaries

The following oracles are available to any adversary who tries to break the se-
curity of an L2RS scheme:

— pk; < JO(L). The Joining Oracle, on request, adds new user(s) to the
system. It returns the public-key(s) pk;.

— sk; + CO(pk;). The Corruption Oracle, on input a pk; that is a query output
of JO, returns the corresponding sk;.

— o () < SO(w, L, pk_, ). The Signing Oracle, on input a group size w, a
set L of w pk’s, the signer’s pk,, and a message (i, this oracle returns a valid
signature o7 ().

4.3 Threat Model

— ONE-TIME UNFORGEABILITY. One time unforgeability for the L2RS scheme
is defined in the following game between a simulator S and an adversary A
who has access to the oracles JO, CO, SO and the random oracle:

1. S generates and gives the list L of pk’s to A.
2. A may query the oracles according to any adaptive strategy.
3. A gives S a ring signature size w, a set L of w pk’s, a message p and a
signature o, ().
A wins the game if:

L2RS.SigVer(o(u))=Accept.

pk’s in the L are outputs from JO oracle.

No pk in L has been input to CO.

or(p) is not an output of SO.

e No signing key pk, was queried more than once to SO.

The advantage of the one-time unforgeability in the L2RS scheme is denoted
by
Advantage’, “"/()\) = Pr[A wins the game ]
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Definition 3 (One-Time Unforgeability). The L2RS scheme is one-time

unforgeable if for all PPT adversary A, Advantageiffunf (N\) is negligible.
UNCONDITIONAL ANONYMITY. It should be infeasible for an adversary .4
to distinguish a signer’s pk with probability 1/2, even if the adversary has
unlimited computing resources. This property for L2RS schemes is defined
in the following game between a simulator S and an unbounded adversary
A.
1. A may query JO according to any adaptive strategy.
2. A gives § the L = {pkg, pk;}, which is the output of the JO, and a
message .
3. S flips a coin b = {0,1}, then S computes the signature o, =
L2RS.SigGen(L, sk, i1, Pub-Params). This signature is given to A.
4. A outputs a bit .
5. The output of this experiment is defined to be 1 if b = ¥/, or 0 “zero”
otherwise.
A wins the game if:
e pk, and pk;cannot be used by CO and SO.
e Outputs 1, where b = V', with Pr =1/2.
The unconditional anonymity advantage of the L2RS scheme is denoted by

1

Advantage’""(\) = | Pr[b = b'] — 3

Definition 4 (Unconditional Anonymity). The L2RS scheme is uncon-

ditional anonymous if for any unbounded adversary A, Advantageﬁ”‘m \)
18 zero.

LINKABILITY. It should be infeasible for an adversary A to unlinked two
valid L2RS signatures which were correctly generated with same sk,. To
describe this, we use the interaction between a simulator S and an adversary
A:
1. The A queries the JO multiple times.
2. The A outputs two signatures o, (p) and o7, (1) and two lists L and L’
of pk’s.
A wins the game if:
e The pk’s in L and L’ are outputs of JO.
e Queried CO only once to get the sk, corresponding to pk,.
e By calling L2RS.SigVer on input o () and o}, ('), it outputs Accept
on both inputs.
e Finally, it gets Unlinked, when calling L2RS.SigLink on input o, (1) and
o (1)
Thus the advantage of the linkability in the L2RS scheme is denoted by

Advantage’ ;™" ()\) = Pr[A wins the game].

Definition 5 (Linkability). The L2RS scheme is linkable if for all PPT
adversary A, Advantageimk is negligible.
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— NON-SLANDERABILITY. It should be infeasible for an adversary A to linked
two valid L2RS signatures which were correctly generated with different sk’s.
This means that an adversary can frame an honest user for signing a valid
signature so the adversary can produce another valid signature such that
the L2RS.SigLink algorithm outputs Linked. To describe this, we use the
interaction between a simulator S and an adversary A:

1. The S generates and gives the list L of pk’s to A.
2. The A queries the JO and CO to obtain pk, and sk, respectively.
3. A gives the generated parameters to S.
4. S uses the sk, and calls the SO to output a valid signature o, (p), which
is given to A.
5. The A uses the remaining keys of the ring signature (w — 1) to create a
second signature o (1) by calling the SO algorithm.
A wins the game if:
e The L2RS.SigVer, on input oy, (¢) and of (i), outputs Accept.
e The keys pk, and sk, were not used to generated the second signature
o (w).
o When calling the L2RS.SigLink on input o (i) and o} (p), it outputs
Linked.
Thus the advantage of the non-slanderability in the L2RS scheme is denoted
by

Advantage}® (\) = Pr[A wins the game].

Definition 6 (Non-Slanderability). The L2RS scheme s non-
slanderable if for all PPT adversary A, Advantageﬁs is megligible.

5 L2RS Scheme description

The scheme L2RS = (L2RS.Setup, L2RS.KeyGen, L2RS.SigGen, L2RS.SigVer,
L2RS.SigLink) works as follows.

5.1 L2RS.Setup

By receiving the security parameter A, this L2RS.Setup algorithm randomly
chooses A = (ag,...,a,_1) <+ Réx(mfl) and H = (hy,...,h;,,—1) «
Réx(mfl). This outputs the public parameters (Pub-Params): A and H.

Remark 2. To prevent malicious attack, L2RS.Setup incorporates a trapdoor in
A or H, in practice L2RS.Setup would generate A and H based on the crypto-
graphic Hash function Hs evaluated at two distinct and fixed constants.

Definition 7 (Function L2RS.Lift). This function maps Ry*™ to Réqu
with respect to a public parameter A € ’R,},X(m_l). Given a € Ry, we let

L2RS.Lift(A,a) 2 (2- A, ~2-a+q) € R™.
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5.2 Key Generation - L2RS.KeyGen

This algorithm receives the public parameter Pub-Param: A € Réx(m_l), then
it generates a key pair in R, we:

— Pick (s1,...,8m,m—1) with every component chosen uniformly and indepen-
dently with coefficients in (—27,27).

— Define ST = (s1,--+,Sm—1) € ’Réx(m_l).

— Compute a = A -Smod ¢ € R4. The a and S are the public-key pk and the
private-key sk, respectively.

This L2RS.KeyGen algorithm is described in the following Algorithm 1:

Algorithm 1 L2RS.KeyGen - Key-pair Generation (a, S)

Input: Pub-Param: A € 'R}ZX(WFU.

Output: (a,S), being the public-key and the private-key, respectively.

1: procedure L2RS.KEYGEN(A)

2: Let ST = (s1,...,8m-1) € Réx(m_l), where s; « (—27,2")" for1<i<m-—1
3: Compute a = A - Smod q € R,.

4: return (a, S).

5.3 Signature Generation - L2RS.SigGen

The L2RS.SigGen algorithm inputs the user’s private-key S, the message u, the

list of user’s public-keys L and the public parameters Pub-Params: H € Réx (m=1)

and A € Réx(m_l). This algorithm outputs the signature o (p). We call w the
index in {1,...,w} of the user or signatory who wants to sign a message pu.
For a message p € {0,1}*, the fixed list of public-keys L = {aj,...,a,} and
the private-key S, which corresponds to a, with 1 < 7 < w; the following
computations are performed:

1. We define the linkability tag as Hy, = (2 -H,—2-h+ q) e RIX™ where H

2q
is the fixed public parameter for all users, and h = H-S; € R,. We consider
ST € Ry as an element in Ry, and let S3yx = (SE,1) € Ry*™, such

that ng . qu,ﬂ- =qc qu.

2. The 7’s public-key is lifted from Réxm to Réqu, so by calling the lift function
L2RS.Lift(A, a,), we get Aoy = (2- A, —2-a, +q) € Ry*™.

3. Note that Agy r - Sogxr =q € Raq

4. By choosing a random vector u; = (uy,...,u,)", where u; < D7, for 1 <
i < m, we calculate c,41 = Hi (L, Hoy, 11, Aggr - Ur, Hog - ur ).

5. We choose random vector t; = (t;1,...,tim)", where t; ; < D7, for 1 <
j<m,thenfor i=7+1,...,w,1,2,... 7 —1), after lifting from Réxm to
R%;m7 using L2RS.Lift(A, a;), we obtain Ay, ; = (2- A, —2-a;+¢q) € R%qu.

Then, we compute Cit1 — H1 (L, ng, s A2q,i -t + q-C;, ng -t + q- C,)
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6. Select a random bit b € {0,1} and finally compute t, = u+ Saq - Cx - (—1)°
using rejection sampling (Definition 2).

7. Output the signature o, (u) = (cl,tl, AU h).

A formal description of this algorithm is shown in Algorithm 2.

Algorithm 2 L2RS.SigGen - Signature Generation o, (1)

Input: S,,pu, L ={ai,...,a,}, Pub-Params: H € R}]X(m_l) and A € R}]X(m_l).
Output: or(u) = (cl, ti,...,tw, Pub—Params)
: procedure L2RS.SIGGEN(Sx, u, L, Pub-Params)
: Set Hyy = (2-H,-2-h+¢q) € R} ™, whereh=H" S, € R,.
Call L2RS.Lift(A, a,) to obtain Agy » = (2- A, —2-a, + q) € RAX™.

T 2
)

Let u= (u1,...,um)", where wu; < D7, for 1 <i < m.
for (i=n+1,7+2,...,w,1,2,...,7m— 1) do
Call L2RS. Lift(A, a;) to obtain Agy; = (2- A, —2-a; +q) € Ry
: Let t; = (ti71, ce ,tiym)T, where tij < D(;-, for 1 S] <m.
9: Compute c;+1 = H; (L, Hag, 11, Azgi -ti +q-ci, Hog -t + ¢ - CZ‘).
10: Choose b + {0,1}.
11:  Let tr < u+ Soqr-cr- (—1)°.

1
2
3
4
5: Compute cr4+1 = Hi (L7 Hog, i1, Ao -u, Hoy - u)-
6
7
8

12: Continue with probability L

R (tr, S0z Cx)
(M exp ( Y cosh —
otherwise Restart.

13: return o (u) = (C1,t1,~-,tw7h)~

5.4 Signature Verification - L2RS.SigVer

The L2RS.SigVer algorithm receives the signature oy, (u) along with the message
w, the fixed list L = {ay,...,a,} and the Pub-Params: H € Réx(m_l) and

A € Réx(m_l), and it outputs a decisional verification answer: accept or reject
(see Algorithm 3). The signature o, (1) can be publicly validated by computing
H,, = (2~H7 —2~h—|—q) € R%qu in ¢c;4q for (i =1,...,w), and it is verified and
only accepted under the following conditions: ||t;||2 < Bz and [|t;]|ec < ¢/4 for
1 < i < w, where By is the acceptance bound [13], ¢; = H; (L,ng,,u,qu’w .

tw+Q'CwaH2q'tw+q'cw)-

Theorem 1. Let By = noy/nm and q¢/4 > (/2(A+1)In2 + 2In (nm))o and
or(p) = (cl, t,..., ty, h) be generated based on Algorithm 2. Then the output
of Algorithm 3 on input or(u) is Accept with probability 1 — 27,
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Algorithm 3 L2RS.SigVer - Signature Verification
Input: op(p) = (cl,tl, e ,tw7h), L={ai,...,aw}, u, Pub-Params: H € R}]X(m_l)

and A € ’Réx(mfl)
Output: Accept or Reject
1: procedure L2RS.SIGVER(o (1), Pub-Params)
2: if Hyy=(2-H,-2-h+gq) € ’Ré;m then Continue
for (:=1,...,w) do
Call L2RS.Lift(A, a;) to obtain Az, ; = (2- A, —2-a; +q) € "Réqu.
if Ci+1 = H1 (L, ng, My A2q,i -t + q-Ci, qu -t + q- Ci) then Continue
else if ||t;||2 < B2 then Continue
else if ||t;|| < ¢/4 then Continue
else if ¢1 = H; (L7 Hag, pt, A2gw - tw +q - Cw, Hag -t + ¢ - cw) then Accept

else Reject

10: return Accept or Reject

Proof. In this proof, we use [lemma 4.4, parts 1 and 3, in [48]]. The part 3
of this lemma shows that the bound on Euclidean norm Bs = no/nm, for
a given > 1, has a probability Pr[|[t;|l2 > noy/nm] > 1 — 2*. In addition,
the bound on infinity norm (||t;||cc < ¢/4) is analysed in part 1 of this lemma
where its union bound is also considered. It turns out that 7 is required such
q/4>no > (v/2(A+1)In2 + 2In (nm))o, except with probability of 27*. O

5.5 Signature Linkability - L2RS.SigLink

The L2RS.SigLink algorithm, illustrated in Algorithm 4, takes two signatures
as input: oz (u1) and o (pe), and it outputs either Linked if these signatures
were generated by same signatory, or Unlinked, otherwise. For a fixed list
of public-keys L and given two signatures: op(u1) and op(ue2), with the

list L which can be described as: or(p1) = (€1 t1,015-- > tw s, Dy, ) and
O'L(:u?) = (Clwzvtl#z? s vtw:uwhuz)'

These two signatures must be successfully accepted by the L2RS.SigVer al-
gorithm, then one can verify that the linkability property is achieved if the
linkability tags (h,, and h,,) of the above signatures o (1) and o (us) are
equal.

The correctness proofs of L2RS.SigGen and L2RS.SigLink are given in Appendix
A.

6 Security Analysis

Theorem 2 (One-Time Unforgeability). Suppose \/% 1s negligi-

ble in n and ﬁ 18 negligible and y = h is polynomial in n, where h denotes the
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Algorithm 4 L2RS.SigLink - Signature Linkability

Input: oz (p1) and o (ue2)

Output: Linked or Unlinked

1: procedure L2RS.SIGLINK (o (u1), or(p2))

2: if (LQRS.SigVer(aL(ul)) = Accept and L2RS.SigVer(o(u2)) = Accept) then
Continue [

3: else if h,, = h,, then Linked

4: else Unlinked ]

5: return Linked or Unlinked

number of queries to the random oracle Hy. If there is a PPT algorithm against
one-time unforgeability of L2RS with non-negligible probability &, then there ex-

ist a PPT algorithm that can extract a solution to the R—SISff’m’B problem (for

S— L
B = 2By) with non-negligible probability <5 — ‘51 ) . < ‘znw‘ _ Siﬂ) —

.l
q2n

Proof. The proof is given in Appendix B. a

Theorem 3 (Anonymity). Suppose \/% is negligible in n with an

attack against the unconditional anonymity that makes h queries to the random
oracle Hy, where h, w are polynomial in n, then the L2RS scheme is uncondi-
tionally secure for anonymity as defined in Def. 4.

Proof. The proof is given in Appendix C. a

Theorem 4 (Linkability). The L2RS scheme is linkable in the random oracle
model if the R-SIS),, 5 problem is hard.

Proof. The proof is given in Appendix D. a

Theorem 5 (Non-Slanderability). For any linkable ring signature, if it sat-
isfies unforgeability and linkability, then it satisfies non-slanderability.

Proof. The proof is given in Appendix E. ad
Corollary 1 (Non-Slanderability). The L2RS scheme is non-slanderable un-

der the assumptions of Theorem 2 and Theorem /4.

7 Lattice RingCT v1.0 Protocol (LRCT)

This LRCT protocol is an extension of the original Ring CT protocol described
in [49], and is constructed based on the L2RS scheme. Its algorithms are defined
as follows:
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— LRCT.Setup: this PPT algorithm uses L2RS.Setup where it takes the security
parameter A and outputs the public parameters Pub-Params.

— LRCT.KeyGen: this PPT algorithm uses the L2RS.KeyGen to produce a pair
of keys, the public-key pk and the private-key sk.

— LRCT.Mint: a PPT algorithm that generates new coins. This algorithm re-
ceives the public-key pk and the amount $, it outputs a coin cn along with
its associated coin-key ck.

— LRCT.Spend: a PPT algorithm that receives the Pub-Params, a set of input
wallets ITW; with 1 < i < w, a user 7’s input wallet W, along with its set
of secret keys K, a set of output addresses O A, some transaction string p €
{0,1}* and the set of output wallets OW. Then, this algorithm outputs the
transaction TX = (u, IW,OW), uses L2RS.SigGen to generate and output
the signature o(u), and finally output a set of transaction/serial numbers
TN, which is used to prevent the double spending.

— LRCT .Verify: a deterministic PPT algorithm that takes as input the Pub-
Params, the signature o(u), the TX, and the TN, it then uses L2RS.SigVer
and outputs either: Accept (1) or Reject (0).

7.1 Scheme construction

Our Lattice RingCT scheme requires homomorphic commitment (Com) as an
additional primitive. It is a cryptographic technique used to provide confidential
transactions, in particular cryptocurrencies [6]. This primitive allows one party
to commit to a chosen value while keeping it secret to other parties, then this
committed value can be revealed later. This model is restricted to have a Single-
Input Single-Output (SISO) wallets, meaning that an Input Wallet will be spent
into an Output Wallet (OW) only. We use the structure of the L2RS.KeyGen
scheme Algorithm 1, where the public parameter A € Réx(m_l) is used to
commit to a scalar message m € Dom,, C R, with Dom,, = [0, .. L2 C z.
This property is defined as Coma (m, sk) = A-sk+m € R, where the randomness

sk € Domg C R((]m_l)ﬂ. The properties of the homomorphic operations are also
defined as:

Coma (my, sk) Com (my, sk’) = Coma (my, sk) + Coma (mg,sk’) mod g
£ Coma (m; & my, sk + sk’) mod ¢, (1)

where my, mp € Ry;and sk, sk’ € R((Jm_l)“. The integers mi, my € Z are en-
coded in binary as coefficient vectors m; = (mjg,...,my ¢—1,0,...,0) € {0,1}"
and my = (msp,...,moe1,0,...,0) € {0,1}" where m; = Zf;é(mj,i - 20,
with m;; € {0, 1} andj S {0, 1}, andm=m; —my = (ml)o—m270, ce.,My g1 —
mys—1,0,...,0) € {—1,0,1}". The difference between these vectors is zero
€ Rq if m; = my, non-zero otherwise. Hence the commitment is done to bits.

The SISO scheme wusing the protocol Lattice RingCT v1.0, LRCT =
(LRCT.Setup, LRCT.KeyGen, LRCT.Mint, LRCT.Spend, LRCT.Verify) works as

follows.
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1. (Pub-Params) <— LRCT.Setup(\): On input security parameter A, this algo-

rithm calls L2RS.Setup and outputs the public parameters, A € Réx(m_l)

and H € Ry ™Y,

2. (a,S) + LRCT.KeyGen(A): Given the public parameter A, it outputs a pair
of keys, the public-key pk: a € R, and the private-key sk: S € ’Rémfl)“.
Then we define the commitment of the LRCT.KeyGen asa = A-S+0 mod ¢ €
Rq = ComA(O,S).

3. (cn,ck) + LRCT.Mint(a, $): This is illustrated in Algorithm 5. It receives
a valid one-time address a as well as an input amount $ € [O, 20— 1].
Then, to create a coin cn, this algorithm chooses a coin-key ck € Domsg.

Then, the commitment of Mint is computed as cn = A - ck + $ mod ¢ €
Ry = Coma (8, ck). This algorithm returns (cn, ck).

Algorithm 5 LRCT.Mint

Input: (a € Ry, $ € BY), being the Public-key, the amount and the public parameter,
respectively.
Output: (cn,ck), where they are the coin and the coin key, respectively.
1: procedure LRCT.MINT(a, $)
2: Let ck” = (cki,...,ckm_1) € Réx(m_l)with ck; + (—27,27)", for 1 <4 <
m—1
3: cn=A-ck+3$modqe Ry =Comal($,ck), where A € R;X(mfl) is the public
parameter and a component of a.
4: return (cn, ck)

4. (TX,00(n), TN) + LRCT.Spend(p, IW,IW,, K., OA, Pub-Params): De-
scribed in Algorithm 6, this follows the steps:

(a) The IW and IW, were properly constructed. In this SISO protocol a
user 7 spends one IW into one OW, this means that as we defined in
Table 77, the w’s number of wallets to be spent N;,, = 1.

(b) We denote the m's input wallet to be spent as IWLY =
{a(m) s C (m) } € Ry xR, with the corresponding private part K( ) =
{S(m) W,ck(;)l) }e Rlx(m R Réx(m D and the one (Nout = 1) out-

put valid address OA = a(OL £ where 7 intends to spend his money. Then,

7 selects $EBA) € [0,...,2% — 1], such balances satisfy: $(1) $(Out)
The LRCT.Mint( (iit),$(out)) is called to obtain (cngli) ckEiLt)), this

defines an output wallet as OW = OW®) = {a(ilt),cnglt)}. Then,
1

the coin-key ck( ut) and $(,,) are securely sent to the user holding the
1)

output valid address OA = CYHS
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(¢) 7 selects w — 1 (or the L2RS list L) of input wallets IW = IWi(l) =
{a(m) B (m) z}ie[w], to anonymously spend ITW", with w being the

ring signature size.
(1)

(d) A new list is constructed as L' = {A(m) € Rg, where ﬁ(m)’i is

’lU

~(1
the homomorphic commitment with randomness ng)z),i that we define
as follows:

~(1 1 1 1 1 (1)
agw)l)i = agii)vi +enV o an ) = ComA($ — g S(m) i)

(in),i out) (in),i (out)’
such that for the wuser’s 7 this is a zero commitment:
e
ComA (O,S( )

n),

g® e (CO NN CY!
(S(iny.i T Kiny.i ~ K(our)

~()

S(zn) i
(e) To create the proof of knowledge, we use the 7’s private-key: S(in),x» the
list L’ and a transaction string u € {0, 1}*. Then, the signature of knowl—

) € R,

edge is generated by calling the L2RS.SigGen(§E;)l)m, L, pu, Pub—Params),
Algorithm 2, which outputs o/ (p) = (cl, t1, ..., ty, h).

(f) We set the transaction TX as (p, [W,OW) and TN = h.
(g) This algorithm ultimately outputs TX, TN, and o/ ().

Algorithm 6 LRCT.Spend - SISO

Input: (u, IW,IW,, OA, Pub-Params), being the message, the Input Wallets, 7’s Input
Wallet, the Output Address and the public parameters, respectively.

Output: (TX7 O'L/(/,L),TN)

1: procedure LRCT.SPEND(u, IW, IW.OA, Pub-Params)

2. Define ws WY = {aV) n(® } € Ry x Reand K =

(2'n),7r7 (zn)

{Sgl)) Ckzl) }e Rlx(mfl) Rlx(m 1)

3: Define a valid output address OA = a<out) and $Eilt) € [0, o2 — 1} such

1 — g (€] (1) 1)

$tinyx = S(our)» then compute (cn(out>, k(out)) — LRCT.M|nt(a(Out>,$(Out))

4: Define OW' = {a{}) . c ‘})Lt)} € Ry X Ry.

5: Send securely coin-key ck( ) to user’s agllt).

6: Create the list of input Wallets IW<1) {a<m) i 821) i}z‘e[w—l] (Ring Confidential
Transaction).

7 Set L' = {&A(in),: }
with randomness §<m) i
Define aE”)L) ; (m) ,+cn (m> ; anOLt) = ComA($
9: Define S(m)ﬂ = (S(m)ﬁ +ck(in),i — ck(out)) € Ry.
10: Call L2RS.SignGen(S(in),x, L', i, Pub-Params) and retrieve or/(n) =
(cl,tl, . 7tw,h).

11:  Set TX = (u, IW,0OW), TN = h.
12: return (TX, o/ (u), TN)

ielw] € Rq , where a(;y,); is the homomorphic commitment

@ g
$(out)7 S(”L) )

%

(in),i
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5. (Accept/Reject) <+ LRCT.Verify(TX, o/ (1), TN): This algorithm calls
L2RS.SigVer (Algorithm 3) with o7/ (1) = (cl,tl,...,tmh), TN = h,
L = {ﬁ(m)7i}ie[w] = {@(in),i + N (in),; — CN(our) } € Ry and Pub-Params, this
ultimately outputs either Accept or Reject.

8 Performance Analysis

We proposed a set of parameters (Table 1) to implement the L2RS and
SISO.LRCT schemes. They are secure against direct lattice attacks in terms
of the BKZ algorithm Hermite factor §, using the value of § = 1.007, based
on the BKZ 2.0 complexity estimates with pruning enumeration-based Shortest
Vector Problem (SVP) [50], this might give 90 — 100 bits of security. We use
the conditions stated in the L2RS.SigVer algorithm and in the security analysis
(Section 6). Table 1 illustrates this information for five different versions of both
L2RS and SISO.LRCT: I, Il lll; IV and V, where these versions vary with the
polynomial ring degree n. The figures of this table infer that the signature size
grows linear with the number of users in the Ring Signature.

Table 1. Concrete parameters and sizes for L2RS and SISO.LRCT

‘ Parameter ‘Description H | ‘ I} ‘ 11 ‘ v ‘ \% ‘
n Polynomial ring degree 128 256 512 1024 2048
m Polynomial ring size 18 10 6 5 5
A Security parameter 100 100 100 100 100
1 Hermite factor 1.007 1.007 1.007 1.007 1.007

log(q) Modulus ¢ - quotient 123 61 31 26 27
K Random Oracle weight 32 21 17 14 12
n Correctness 1.1 1.1 1.1 1.1 1.1
«a Rejection sampling 0.1 0.1 0.1 0.1 0.1
M Rejection sampling 1.0027 1.0027 1.0027 1.0027 1.0027

v =~ log(2 - n - k)|Private-key density 13.6 13.6 13.6 13.6 13.6

o Gaussian standard deviation|| 337151 | 287898 | 283754 332435 435260
private-key 1.95 KB |1.93 KB |1.96 KB | 3.28 KB | 6.78 KB
public-key 1.92KB|1.90 KB |1.93 KB | 3.24 KB | 6.74 KB

w=1° 72KB [ 7.7KB [ 89KB | 15KB | 30.9KB
w=>5 28.4 KB |30.9 KB |36.7 KB | 62 KB 126 KB

w=3_8 44.3 KB | 48.4 KB | 57.6 KB | 97.2 KB | 198.7 KB

w =16 86.6 KB | 94.8 KB [113.2 KB| 191.1 KB | 390.5 KB

w =32 171.2 KB|187.6 KB|224.5 KB| 379 KB | 774.1 KB

w =64 340.4 KB|373.3 KB|447.1 KB| 754.6 KB |1541.4 KB

w =128 678.9 KB|744.7 KB|892.3 KB|1505.9 KB|3075.9 KB

Acknowledgement. The work of Ron Steinfeld and Amin Sakzad was sup-
ported in part by ARC Discovery Project grant DP150100285. This work was
also supported by the Monash-HKPU-Collinstar Blockchain Research Lab.

5 w is the Ring Signature size
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A L2RS - Correctness requirements

A.1 Correctness of SigGen

Proof. Beyond the required conditions of L2RS.SigVer, we claim that if
or(pu1) = (e1,t1,...,ty,h) is the output of the L2RS.SigGen algorithm on input
(u, L, Sy, Pub-Params), then the output of L2RS.SigVer on input (i, L,or(u1))
should be accepted. We need to show that when L2RS.SigVer computes
Hy(L,Hag, pt, Aog - tw + G - €y, Hog - ty, + ¢ - €y), the result is equal to c;.
We also show that Hi(L,Haq, pt, Aog; - t; +q-¢c;,Hog - t; + g - ¢;) = ¢4 for
1 <i<w-—1in L2RS.SigVer. In this evaluation, we consider two scenarios, one
when i # 7 and ¢ = 7:

— For i # m, in L2RS.SigGen we have c;11 = Hi(L,Hog p, Agg -
ti + ¢ - ¢,Hy, - t;, + ¢ - ¢;), while in L2RS.SigVer we compute
Cit+1 = Hl(L,H2q,ILL,A2q,i . ti + q - Ci7H2q . ti + q - Ci)~ These are
equal since Agg; - t; + ¢ - ¢; (in L2RS.SigGen) = Ay, - t; + ¢ - ¢; (in
L2RS.SigVer); and Hy, - t; + ¢ - ¢; (in L2RS.SigGen) = Hyg - t; + ¢ - ¢; (in
L2RS.SigVer).

— For i = 7, in L2RS.SigGen we have c.41 = H1(L, Hog, pt, Aog » - u, Ho, - 1),
whereas in L2RS.SigVer we calculate cry1 = Hi(L,Hog, pt, Ao x -t + ¢ -
Cr,Hog -tz +¢-c;). In this case, we need to show that c,4; (in L2RS.SigGen)
= cy41 (in L2RS.SigVer). In doing so, the following equalities need to be
proved:
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1. Aggn-u = Agy -tz +q-cr, which is equivalent to Agy - (u—ty) =
q - ¢;. Here, we replace t, as defined in Algorithm 2, to obtain:
Agyrn-(u—u—Sy;r-Cr- (1)) =q-cr =
—AggrSogrCr- (-1 =q-cp =
—q-cr- (1)’ =gq-cx
We distinguish two cases for b:
e When b = 0, we verify that -¢ - ¢, = ¢ - ¢, mod 2q.
e When b = 1, we have ¢- ¢, = ¢- ¢, mod 2q.
2. Hy; - u = Hy, - t; + ¢ - ¢, which means that:
Hyy-(u—t;)=¢-c, <
H2q~(u7ufSﬂocﬁ~(71)b) =q-c; =
—Hyg - Sogr - Cr - (_1)b =g Cr
—q-cr- (1)’ =q-cx
We distinguish between two cases:
e When b = 0, it is verified that —¢ - ¢, = ¢ - ¢; mod 2q.
e When b = 1, we have ¢- ¢, = ¢ - ¢, mod 2gq.

A.2 Correctness of SiglLink

Proof. We show that an honest user m who signs two messages 1 and pg in
the L2RS scheme with the list of public-keys L, obtains a Linked output from
L2RS.SigLink algorithm with overwhelming probability. As shown in Algorithm
4, two signatures or,(p1) and o, () were created, and then successfully verified
by L2RS.SigVer. Therefore, the linkability tags h,, and h,, must be equal. To
prove this, we show that:
Hyy = (2 -H,-2-h,, + q) € Rag, where
H = Pub-Param and h,,, = (H-S,; 4+ q) € R,
Hyy o = (2 -H,-2-h,, + q) € Raq, where
H = Pub-Param and h,, = (H-S; 4+ ¢) € R,

The first parts of the linkability tag in both L2RS signatures have same equality
with following probability:

Prl2-H=2-H] =1.

Ultimately, the second part uses the honest user’s private-key S, is used, so we
conclude that:

Pr[—2-hy, +q+2-h,, —q=0] =1
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B Security Analysis - One-Time Unforgeability

Proof. As stated in [13], this L2RS scheme relies on the R-Slssmﬁ problem
to be secure against any existential forger. This means that a forgery algorithm
succeeds with a negligible probability and so we conclude that under this prob-
ability, the attacker will also find a solution to the R—SISﬂﬁmﬂ problem. To
prove this, we start replacing the L2RS.SigGen algorithm with L2RS.Hybrid-1 and
L2RS.Hybrid-2 algorithms that are used to simulate the creation of the signatures,
until we obtain an algorithm that breaks the R—SIS;m’ 5 problem. These Hybrid
algorithms are illustrated in Algorithm 7 and Algorithm 8, respectively.

In L2RS.Hybrid-1, the output of the random oracle Hy is chosen at random
from S, C Raq and then it is programmed, without checking the value of
Ajg - -uand Hy, - u being already set. This equality can be described as:

Hl(LaHQqa,UvA2q,w “ty +q- Cw,ng “ty +q- Cw) =
Hl (L; H2qa/j/7A2q,7T ) u7H2q ' u)

Every time the L2RS.Hybrid-1 is called, the probability of generating u such
that Aggr - u and Hy, - u are equal to one of the previous output that was
queried is at most 27"*1, We define that the probability of getting a collusion
each time is at most h - 27"t where “h” is the number of calls to the random
oracle Hy, whereas the probability of occurring a collision after “o” queries to
the L2RS.Hybrid-1 is at most o - h - 271 which is negligible (Based on [13],
Lemma 3.4).

After analyzing how c; can be forged, we evaluate the (ti,...,t,) of the
L2RS scheme. We claim that these are forgeable when an attacker finds a PPT
algorithm F to solve the R—SISimﬁ problem. This attack can be simulated
using the L2RS.Hydrid-2 shown in Algorithm 8, where t, is directly chosen
from the distribution D7 (Based on [13], Lemma 3.5).

The public-key Ay, € Réqu is generated such Ay, -Soq = ¢ € Ray, so finding
a vector v such that Ay, -v =0 mod ¢ . We denote y = h where y is the number
of times the random oracle H; is programmed during this attack. Then this
attack is performed as follows:

1. Random coins are selected for the forger ¢ and signer .

2. The random oracle H; is called to generate the responses of the users in the
L2RS scheme, (c1,...,Cy)  Sp k-

3. These create a SubRoutine that takes as input (Aag, ¢, 9, ¢1,...,Cy).

4. F is initialized and run by providing the A, and forger’s random coins ¢.

5. The SubRoutine signs the message p using the signer’s coins @ in the
L2RS.Hydrid-2, this produces a signature or,(u).

6. During the signing process, F calls the oracle H; and answers are placed in
the list (cy,...,¢Cyw), the queries are kept in a table in the event that same
queries are used in this oracle.

7. F is stopped and it outputs a forgery that is the SubRoutine’s result
(c1,t1,...,ty, h), with negligible probability . This output has to be suc-
cessfully accepted by the L2RS.SigVer algorithm.



22 W. Alberto Torres et al.

Algorithm 7 One-Time Unforgeability - Signature algorithm of L2RS Hybrid
1
Input: S;,u, L ={ai,...,a,}, Pub-Params: H and A.

Output: o (u) = (cl,tl,...,tw,h)

1: procedure L2RS.HYBRID-1(Sx, u, L, Pub-Params)

2 Set Hyg = (2-H,—2-h+¢q) € R} "™, where h = (H- S: + q) € Ry.
3 Call L2RS Lift(A, ax) to obtain Agg~ = (2 A, —2-ax +q) € Ry ™.
4 Let u = (u1,...,um)”, where u; « D7, for 1 <1i < m.

5: ‘ Choose at random cry1 < Sp i ‘

6 for (i=n+1,7+2,...,w,1,2,...,7m—1) do

7 Call L2RS.Lift(A, a;) to obtain Agy; = (2- A, —2-a; +q) € Ry ™.
8 Let t; = (ti71,...,t¢7m)T, where t; ; < D7, for 1 <j <m.

9: Compute ci+1 = Hi (L, qu, uw, Azqyi -t +q-c, ng “ti+q- Ci).

10: Choose b + {0,1}.
11: Let tr < u+ Sag,x - Cr - (fl)b.
1

12: Continue with probability

[[S2q,x - ex }|? (tr,S2q,7 - Cr)
otherwise Restart.

13: return oz (p) = (cl,tl,...,tw,h).

If the random oracle was not called using some input Ay, ;-t;+¢q-c;, Hog-t;+¢-
c;, then F has 1/|S,, | chances of producing a ¢ such that ¢ = Hq(L, Hag, i, Aoy
t+¢-c,Hy, -t +¢-c). This turns out that § — 1/|S,, x| be the probability that
c = c; for some j.
FORGERY 1. Let’s consider the situation that c;; is the result after using F
which is ¢;41 = Hy(L,Hoy, i/, Aog-t'+q-cj, Hay - t'4+¢-c;). Then by comparing
this with a legitimate signature, we have:

H1 (L, ng, s A2q't+q'Cj, H2q~t—|—Q'Cj) = H1 (L7 ng, /J//, qu-t/—i-q-Cj, ng-t/—i-q-Cj)

F will find a preimage of c¢; if p # p/ or Agg -t +¢q-c; # Agg-t' +¢q-cj or
Hy,-t+q-c; # Hyy-t'+¢-c;. Then, we have with overwhelming probability that
p=p and Agg-t+q-c; = Agy-t'+¢-cj and Hyy-t+¢q-c; = Hay-t'+¢-c;. These
equalities will result in: Agy(t —t') = 0 mod 2¢ and Hy,(t — t’) = 0 mod 2g.
We assume that both t and t’ are different and they met the L2RS.SigVer
conditions, so it yields t — t’ # 0 mod ¢, and ||t — t|| < 2Bs.

FORGERY 2. In this scenario, we assume that the L2RS scheme can be forged
by an attacker F as it was presented in the FORGERY 1 and obtain c;, then

another attacker can generate (c c.,) < Sn. by replaying the first attack

ey
and using same message 1. We use the forking lemma [51] to show the probability
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Algorithm 8 One-Time Unforgeability - Signature algorithm of L2RS Hybrid
2 0(p)

Input: S;,u, L = {ai,...,a,}, Pub-Params: H and A.

Output: or(u) = (cl,tl,... tw,h)

1: procedure L2RS.HYBRID- 2(S7r,,u,L Pub—Params)

2: Set Hyg = (2-H, -2 h+q)€R ™ where h = (H-S; +q) € R,.

3 Call L2RS.Lift(A, a,) to obtain AQQ,,r =(2-A,—2-ar+q) € Ry

4: Let u= (ul,...,um)T, where w; < D2, for 1 <i<m.
5: Choose at random cry1 < Sn.x
6.
7
8
9

for (i=n+1,7+2,...,w,1,2,...,m—1) do
Call L2RS Lift(A, a;) to obtain Asg: = (2- A, —2-a; +q) € Ry ™.
Let t; = (ts1,. .- ,th)T, where t; ; < D7, for 1 <j <m.
Compute c;41 = H; (L,ng,u,qu,,- “ti+q-ci,Hog-t; +q- ci).
10: Choose b + {0,1}.
11: ‘ Choose t, < DI ‘

1
12: Continue with probability Vi otherwise Restart.
13: return oz () = (cl,tl,...,tw,h).

and the forger uses an oracle response c; is at least:

(5_ Isnhl) (621'” B |Si,n> (2)

Therefore, with the probability (2), F creates a signature op(p) =
(ch,t], ...,tw,h) where Ay, -t +¢q-c; = Ay, -t' +¢- ¢ and ng t+q-c;=
Hy, - t' + ¢ - ¢}. We now obtained: Ay, - (t —t') = q(c; — ¢j) mod 2¢ and
ng (t—t') = q(cj c’) mod 2¢. Since ¢ —c; #0mod 2, so in both equations,
we have t —t' # 0 mod 2q where ||t — t/||0 < q/2. By applying this reduction,
we find a small non-zero vector v.= t —t’ # 0 mod ¢q. This v will compute
Ay, v =0mod ¢ with ||v|| < 2Bj,. Since Ay, mod ¢ = 2(A, —a) mod ¢, we have
2(A,—a)v = 0 mod ¢, this implies that (A, —a)v = 0 mod g, since ¢ is odd.
Notice that L2RS.Hydrid-2 shown in Algorithm 8 no longer uses the private-
key Sy, except for generating Agq » to obtain the final R—SISfﬁm’B solution. We
modified the L2RS.KeyGen algorithm with the L2RS.Hydrid-3 game shown in Al-
gorithm 9, where the public-key a is uniformly and randomly taken: a + R,.
By the argument of the Leftover Hash Lemma (LHL) - Lemma 1 and our as-

)
och—cj

sumption that ngzw is negligible in n. The probability of success of an
attacker in L2RS.Hydrid-3 differs by a negligible amount from the success prob-
ability in L2RS.KeyGen and is thus non-negligible. Therefore, this vector v will
be a solution to the R—SISEm’B problem, where 8 = 2B5, with non-negligible
probability and with respect to (A, —a) over R,.

O
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Algorithm 9 Key pair generation of L2RS Hybrid 3 (a, S)

Input: Pub-Param: A.

Output: (a,S), being the public-key and the private-key, respectively.

1: procedure L2RS.HYBRID-3(A)

2: Let ST = (s1,...,5m_1) € RV where s, + (—27,27)", for 1 <i <m—1
4: return (a, S).

C Security Analysis - Anonymity

Proof. We prove the anonymity of this scheme using the sequence-of-games ap-
proach [52] where we make changes between successive games. In doing so, we
use the “transition based on indistinguishability”. We can start this analysis by:

Game 0: Suppose that an attacker A is given the list of pk’s L = {ag,a; }, the
signature o (1), message p, and the random oracle models (H; and Hs). The
key generation algorithm creates the pair of users’ keys in this ring signature:
Private-Keys < (Sp,S1) and the Public-Keys <+ (ap,a;); a user b is chosen
uniformly at random from the list L = {ap,a;}, then the signature o (u) =
L2RS.SigGen(Sp, i, L, Pub-Param) is generated. So in Game 0, a PPT adversary
A outputs a guess b’ € {0, 1}; thus in the event Game 0, A succeeds in breaking
ambiguity Game 0(b = b') if Pr[Game 0] < 1 + non — negl(\).

Game 1: Changes in this game are made to the user m in the second part
of the linkability tag h = (H - S) € R, in signature of user =, and public-key
a= (A-S) € R, in the L2RS.KeyGen algorithm. The h and a; are now randomly
chosen from R,. We claim that | Pr[Game 0] — Pr[Game 1]| < €1 nr,-
Where €111, is the advantage of some efficient algorithm which is negligible.
In both cases h = (H-S) € R, and a = (A - S) € R,, we know that H and
A are uniform and S is chosen small and with coefficients in (—27,27). When
S is multiplied by H and A respectively, it gives h and a that are close to
uniform over R,. By applying the Leftover Hash Lemma (LHL) - Lemma 1,

the statistical distance between the distribution of (h mod ¢ and a mod ¢) and

1 q2n
2\ 2 D (m—Dymn - We conclude

2
-\ s ®3)

the uniform distribution on R4 x R, is at most n-
that in Game 1:

| Pr[Game 0] — Pr[Game 1]| < n -

[N

Game 2: This time a change is made in the second part of the remaining public-
keys a; (1 <4 <w, i # w) which are in the ring signature list L. They are now
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randomly chosen as a; < R,. It turns out that | PrjGame 1] — Pr[Game 2]| <
€LHLGs-

Where €111, is the advantage of some efficient algorithm which is negligible.
We consider that for (i = 1 to w where i # 7), we know that a; = (A -
S; mod ¢) are uniform and all S;’s are chosen small with coefficients in (—27,27).
When the S;’s are multiplied by A,’s, it gives (a; mod ¢)’s that are close to
uniform over R,. By applying the Leftover Hash Lemma (LHL) - Lemma 1,
the statistical distance between the distribution of the (A - S; mod ¢)’s and the

. S . . . 1 qn .
uniform distribution on R, X R, is at most n- 5 -/ se7nie—= - (w—1). So in
Game 2, we conclude that:

| Pr[Game 1] - Pr(Game 2]| <n- L/t (w—1). (@)

Game 3: At this time, we make a change in ¢, 1. Instead of programming the
oracle as Hy (L, Haq, ft, Aog i -u, Hag - 1), it is now randomly chosen cry1 < Sy .
We have that | Pr[Game 2] — Pr[Game 3]| < eg3 where egs is the advantage
of some efficient algorithm which is negligible. This scenario outputs a signature
or(p1) = (e1,t1,...,ty, h) and programs the oracle as Hy (L, Hag, ft, Aog r -tz +
q-cr,Hyy -tz +¢-cz) = crp1. Then, the adversary A makes h queries to Hi;
so the distinguishing advantage of the signing algorithm and the one in Game
2 is at most h - 27"+, We conclude that in Game 3:

| Pr[Game 2] — Pr[Game 3]| < h-27"FL (5)

Game 4: In this game a change is made in t,. Namely, instead of computing it
asu+Sog r-Cr- (—1)b”, it is now directly chosen from the Gaussian distribution
D7 Tt is argued that | Pr[Game 3] — Pr[Game 4]| < €grg,,-
Where €grg,, is the advantage of some efficient algorithm which is negligible.
In previous Games, t, is computed using rejection sampling - Lemma 2, thus
it is always sample from the Gaussian distribution D} . In this Game, however,
t, is directly chosen from D7, this means that the advantage erg., Will be zero
as in both Game 3 and Game 4, t, is having same distribution. In Game 4,
we have:
| Pr[Game 3] — Pr[Game 4]| = 0. (6)

Game 5: Finally, in the Game 5, a change is made in the index 7. Namely,
instead of choosing m + 1, it will be randomly chosen (1, ..., w). We claim that
| PriGame 4] — Pr[Game 5]| < eg5 where egs is the advantage of some efficient
algorithm which is negligible. In this Game 5, we consider that when 7 is
replaced by a fixed d, it might produce some collisions with previous queries to
the oracle Hy; saying this, the adversary A may make h queries to Hy; therefore,
the distinguishing advantage of the signing algorithm between Game 4 and this
Game 5 is at most h - 27"+ . . Finally, in Game 5 we have:

| Pr[Game 4] — Pr[Game 5]| < h- 27" .. (7)
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We also conclude that in Game 5, the adversary’s view is statistical independent
of 7, thus Pr[Game 5] = .

Combining the probabilities of the above games (C), (4), (5), (6) and (7) we
obtain:

| Pr[Game 5] — Pr[Game 0]| < |Pr[Game 1] — Pr[Game 0]| + | Pr|Game 2]—
Pr[Game 1]| + | Pr[Game 3] — Pr[Game 2]| + | Pr[Game 4] — Pr[Game 3]|+
| Pr[Game 5] — Pr[Game 4]|.

By replacing the resulting probabilities, we have:

1 1
| PriGame 5] — Pr[Game 0]| SE —57Te (8)

which means that | Pr[Game 5] — Pr[Game 0]| < ¢, which itself is smaller than

U} - 1 2n n+1
2(v+1) EryE v+1 o | TR 27 (L tw).

We notice that since h and w are polynomial in n, we get h-27""1.(1+w) is neg-

o . . oL q2n qn
ligible in n. In addition, we can say that \/2(w+1)-(m71)~n + \/2(“{+1)~(m1)~n> < 2.

/ g2n / q2n .
G FD (m=T)n which is neghglble by the assumptlon that S FD (m=Dn is also

negligible. Hence we conclude that e is negligible, meaning that Pr[Game 0] <
1
5+ €. O
2

D Security Analysis - Linkability

Proof. We construct the algorithm B for the R'SISZm,B problem. This algo-
rithm runs the linkability attack game (Def. 5) as follows:

1. B generates using the L2RS.KeyGen algorithm all private-keys S;’s with the
corresponding public-keys a;’s, then B gives S, to the attacker A as a re-
sponse to the attacker’s CO query.

2. A outputs two signatures o (u1) and of,(u’) along with their correspond-
ing lists L and L’ such that both signatures are successfully verified by
L2RS.SigVer, but the linkability tags are different h,, # h,,.

3. B computes h,, = H-S; mod ¢, where 7 is the true signer’s 7 linkability
tag. This h,_ tag can then be compared with the linkability tags h, and
h,/, output by A, in step 2, and one of them will be different.

4. Without loss of generality, suppose h,, # h, modq. Using the fork-
ing lemma [51], B rewinds the attacker A to the H; query correspond-
ing to the L2RS.SigVer of the signature op(u1). B reruns A with a dif-
ferent response of H; and ultimately gets another signature: op(uz) =
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(1> 1 pas - - -5 buwps, 1y, ). This second signature is used to extract a so-
lution to the R—SISEmﬁ problem, in case the A finds an efficient way to

unlink these signatures, as shown in step 7.
. The adversary A matches the challenge message of both signatures where
Hy, ., and Aggw,u, are kept. Thus we have:
(a) AQQA,W’M : tw7#1 T4 Cuwpy = AQq,w’Hl : tw’#z T4 Cuw,pys
(b) Hogpy - bwps + 0 Cowpy = Hogpy - bwps + 0+ Cups-
These expressions can be represented as:
() Asgawpu - (bwus = bwpin) = - (Cwps = Cwp)s
(b) H2q,u1 ) (tw,lM - tw7/t2) =4q- (Cw,/tz - Cw,/n)'
Reducing them modg we have (if (Cy,u, — Cw,py) 7 0 mod 2):
(a) Asguwp; - (bwpu, — bwp,) =0mod g,
(b) Hagpuy * (b — tw,u,) = 0 mod g.
We denote by t;, ., the first (m — 1) ring elements in t,, ,, and by t;, , the
! /
:}‘/’”1 :t}f”‘”) € Ry", and
w, 1 w, 12

using the public-key and linkability parts, we have:

m-th ring element in t,, ,,, i.e. ty 4 — tw u = (

(a) 2 ’ ’ (tilhlh - tgﬂ,uz) = _2 Ta- (t'lulhlh - tZ/;Mz)’ N
/
(b) 2-H- (tiu,/u 7t21),/¢2) = 72'h/11 ’ (tZ),/u 7tu/),p‘2)’ where hltl =H-S; ¢ 7?’(I'

. Welet S = % mod ¢ where (t, , —t;, ) # 0mod q. We distin-

guish two cases:

(a) If S # S, mod ¢, since we have A -S = A -S, = amod ¢, then (S —S)
is a small non-zero vector R—SIS{;m,ﬁ solution for A € R(llx(m_l).

(b) If S = S, mod ¢, then h,, = H-S mod ¢ = H- S, mod g. The target
is to show that h,, = h, mod 2 and h,, = h,_mod g¢. If so, then we
have h,, = h, mod 2¢, which is a contradiction with our assumption
at step 4 of this proof. We now prove the first target:

h,, =-2.h' +g=1mod2=-2-H-S;+¢=h,_,

M1

where the first and the last equalities follow from definition of h in second
line of Algorithm 2. To show the second target, we have

h, =-2-h, +¢g=-2-h, modgqg

:—2-H~S_‘;modq:—2-H~S7Trnodq:hu7r7

where the first and the last equalities follow from definition of h in sec-
ond line of Algorithm 2 and the middle equality is true based on the
argument at the beginning of step (6.b).
. Since (Cu,py — Cw,py) # 0mod 2, we have (ty 4y — tuw,u,) # 0mod 2¢. In
addition, we know that ||ty ;i — tw,u, [leo < ¢/2, which implies that (t ., —
tw,u,) 7 0mod ¢. Ultimately, we have A - (ty,u, — tw,u,) = 0 mod ¢ and
[|(tw, 1, —tw,up) mod g|| < 2B5. Therefore, this small non-zero vector (t, ,,, —
tw,u,) is the output of the algorithm B, and this vector is a solution to the
R—SISZM’B problem with 8 = 2B for a € R,.

O
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E Security Analysis - Non-Slanderability

Proof. Let’s suppose there is a non-slanderability adversary Ag;,nqg Who is given
pk;,sk;,i # m,and i € {1,...w}, and he produces a valid signature o7 (u) with
linkability tag h, (,) which is equal to h,, (., or(n) being the legitimate sig-
nature generated with respect to sk;. This means that Agj.,q can create a
signature with the linkability tag hg,, ) without knowing sk;. The adversary
can also compute a valid o7 (u) with sk;, ¢ # m,and 7 € {1,...w} for which
h,v () # hor (). We give (07 (1), 07, (1)) to the forger, which can turn it to an
’R—SISZW 3 solution. In particular, it will be computationally secure when two
valid signatures created by different users are unlinked using the L2RS algo-
rithms. An adversary A will break these properties with negligible probability
as demonstrated in Theorems (2 and 4), and with these probabilities the A
will find a R—SISEm, 3 solution. Therefore, non-slanderability is implied by the
definitions of the unforgeability (Def. 3) and linkability (Def. 5), and security
analysis, (Appendix B) and (Appendix D), respectively. O



